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1.0 SUMMARY 

Although we have seen the von Neumann model’s influence on some of today’s high- 
performance computers, the principles the model espouses are not adequate for solving many 
problems of great theoretical and practical importance. Lots of real-life intelligent problems cannot 
meet the conditions of von Neumann model (e.g., accurate data and well-defined algorithms), 
which makes conventional computing architectures less effective in capturing the complexity of 
the problem. In this study, we investigated several emerging, neuromorphic computing paradigms, 
which will play key roles in supporting next-generation autonomy.  

The objective of this research was to analyze, evaluate, and characterize the computing and 
energy requirements for next-generation autonomous systems of significance to DoD’s mission-
essential tasks, and thus to investigate the effective and efficient computational intelligence 
approaches capable of supporting desired autonomy. This assessment will help determine the 
processing flow of an autonomous system from the cognitive perspectives, as well as the desired 
performance and energy requirements from the computing perspectives.  

Specifically, in this project, we outlined the necessary cognitive primitives and processing flow 
for a flexible autonomous system capable of real-time problem solving. Then, we focused on the 
autonomous target tracking problem and explored multiple computational intelligence methods, 
including artificial neural network (ANN), reservoir computing (RC), and deep learning (DL) 
architectures, to achieve the desired autonomy. Third, we investigated the computational 
characteristics of those intelligence models, assessed the performance metrics in terms of accuracy, 
speed, and energy consumption, characterized performance and energy requirements according to 
the scope of problem, as well as identified the most suitable solutions fitting into the cognitive 
processing flow. Finally, we explored bio-inspired dynamic ensembles of reservoir networks for 
multiple pattern recognition, category learning driven classification network, and evolutionary 
adaptation of reservoir network optimization. 



 

Approved for Public Release; Distribution Unlimited.  
2 

 

2.0 INTRODUCTION 

2.1 Task 1: Cognitive Process for Real-Time Autonomous Problem Solving 

The term “cognition” dates back to the 15th century when it meant “thinking and awareness” 
and mainly focused on human minds in philosophy. Humans never stop exploring the way our 
brain works.  Cognition or cognitive processes are analyzed from different perspectives and in 
different contexts, in linguistics, education, neurology, psychology, philosophy, computer science, 
etc. Generally speaking, cognitive systems are either natural or artificial systems which may 
acquire some or all of the capacities of sensing, data processing, learning, reasoning, planning, 
decision making, acting and representing, etc. 

In the 20th century, there was remarkable growth and development of computer science and 
engineering, which provided powerful tools and methods to research related to cognition. Since 
then, significant efforts have been made to simulate the capabilities of human minds and to achieve 
expected properties of artificial or synthetic intelligence using computational technologies 
combined with neuroscience, psychology and some other disciplines. For instance, researchers 
have been working on a variety of methods like machine learning and neural networks to achieve 
artificial cognitive abilities, and there is no doubt that those methods and algorithms play an 
important role in cognitive systems. Cognitive systems and the related problems form a broad topic.  
Excess focus on high payoff but limited scope capabilities can lead to getting lost in pursuing the 
improvement of some specific methods without being aware of that such methods may not always 
be the most optimal one, or not even the right one to achieve broad cognition. Focusing on specific 
capabilities is a bottom-up process and follows reductionism at the methodology level. This can 
indeed achieve better performance for a particular task but may also lose efficiency and breadth in 
the long run. 

In order to address the aforementioned problems, one reasonable approach is to view from a 
higher level and address things in a top-down manner. This means that we need to have overall 
planning. What are the essential capabilities of the sub-systems? What are the potential relations 
among those sub-systems? For each sub-system, what kind of methods and technologies can be 
adopted to achieve the capability? What are the applicable conditions for each method? This 
process follows holistic thought at the methodology level. 

In this task, we mainly focused on artificial cognitive systems and figured out a general picture 
of cognitive studies, analyzed from different perspectives and different levels, summarized 
existing methods and models, understood the state of the art, and proposed a comprehensive 
guideline in this area from the systematic perspective. 

2.2 Task 2: Performance Assessment and Characterization of Computational 
Intelligence Approaches in Autonomous Target Tracking 

As one of the most critical missions for cognitive recognition, recognizing and tracking targets 
in images/videos from battlefield or search-and-rescue (SAR) unmanned aerial vehicles (UAVs) 
have been a challenging problem due to various types of image distortion. Moreover, the 
significantly high computational overhead of existing image/video processing techniques and the 
limited computing resources available onboard UAVs require most of the processing tasks to be 
performed in an off-line manner. To achieve fast and autonomous target identification on UAVs, 
we investigated several computational intelligence approaches that can fulfill real-time processing 
requirements and evaluated their performance. 
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Deep Neural Network Approach: Recently, inspired by the mammalian visual system where 
a simple algorithm is invoked in the neocortex through a recursive hierarchy [1, 2], deep neural 
network (DNN) approaches have been extensively investigated and advanced for classification 
and categorization problems [3, 4], given the fact that DNNs can effectively model higher level 
feature representations. In our research, deep learning architectures-based target tracking 
approaches were investigated and developed, including the convolutional neural network (CNN) 
and stacked denoising autoencoder (SDAE). Our initial results showed the superior performance 
advantages of deep learning architectures in accurately recognizing the targets out of the 
background, and particularly in precisely tracking multiple moving targets. For instance, the 
average variation errors of the three moving targets have remained at a stable level for over 80 
video frames, that is, the tracking routes consistently match the ground-truth trajectories. 

Most DNNs follow the multi-stage Hubel-Wiesel architecture, which contains a hierarchy of 
layers consisting of filtering, non-linearity and pooling stages. Given the dramatic complexity of 
those DNN processes, most of existing solutions are hardly applicable to real-time applications 
with the simultaneous restrictions of extremely limited computational capability and energy 
efficiency. As we anticipated, the deep architectures demand a relatively high level of computation 
and suffers from the challenges of limited labeled training data sets. 

Reservoir Computing Approach: Given the limitations of the aforementioned approaches, 
reservoir computing is a promising alternative, because of its superior nature in terms of higher-
level feature representation (reservoir), temporal state information (recurrent network), and simple 
training mechanism (one readout layer to be trained). Following our previous efforts, we 
investigated a RC-based approach for autonomous target tracking. It is clear that the characteristics 
of the reservoir network, in terms of number of neurons, topology, and connectivity, play critical 
roles in determining the performance of the entire system. However, most of the previous research 
in reservoir computing simply chose a popular topological structure and the number of neurons 
according to experiences. Little research has shown a comprehensive methodology for selecting 
the most effective and appropriate reservoir network towards the target application [5]. Thus, in 
this research, we sought to investigate the potential impacts of changing the reservoir network. 
Specifically, we used the popular random connectivity as a baseline and varied the amount of 
connectivity. Lowering the average degree of connectivity decreased sensitivity, while 
unfortunately; also decreasing the strength the network has in representability and, in the 
persistence of the signal. (That is, a low degree of connectivity causes the activity to die down 
quickly because of the lack of feedback and thus the network cannot recognize an “older” input 
signal.) On the other hand, a higher connectivity will give a larger set of “filters” that separate 
signals, but also make it more sensitive to changes. Moreover, we also explored other topological 
structures. 

Performance Benchmarking and Characterization: Our primary goal was to explore and 
understand the rationale and characteristics of multiple computational intelligence approaches and 
the corresponding solutions in addressing the autonomous target tracking problem. Accordingly, 
we assessed the performance metrics of those solutions, in terms of accuracy, speed, and energy 
consumption, characterized their respective performance and energy requirements according to the 
scope of problem, and identified the most suitable solutions fitting into the cognitive processing 
flow. Specifically, a cross-platform generic evaluation was performed: 
• Cognitive Accuracy: The capability of correctly recognizing and tracking the target(s);
• Computational Demands: The required execution time, computing platform and power

consumption;
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• Scalability: The estimated changes of accuracy and computational demands, corresponding to 
different performance requirements, and available resources. 

2.3 Task 3: Dynamic Ensembles of Reservoir Networks for Multi-Object Pattern 
Recognition 

Motivated by the natural principles of local neural adaptation and development in cognitive 
neuroscience, artificial reservoirs whose internal structure can be closely represented [5] as cortical 
microcolumns (or cortical template) in the brain have been shown to be able to represent rich and 
complex neural dynamics and perform well when involving temporal information [6, 7. However, 
in the practice of conventional reservoir computing paradigm, a single reservoir computing model 
is not omnipotent. As shown in [8], it was barely possible for a single reservoir to be trained to 
work as a multiple superimposed oscillator, even when the function consists of only two sine waves 
(with different phases). Some observations rooted in neurobiological studies have shown that 
cortical neural networks have a distinctive modular and laminar structure which provides powerful 
computational functions [6]. Inspired by this specific neuroscience study, in this research, we 
aimed to develop a new model using dynamic ensembles of reservoir computing, which consist of 
several sub-reservoirs. The dynamic ensemble model can also lay a foundation for future 
exploration of energy-efficient, modular neuromorphic architectures, where only a selected set of 
sub-networks are active for a certain type of cognitive task, similar to the regional cerebral blood 
flow distributions in the brain for various brain functions. 

Lateral inhibition is a well-known mechanism, which was originally discovered in 
neurobiological systems including the retina, cochlear, and pressure sensitive nerves in skin. 
Specially, when a neuron is stimulated, the neural activity of its surrounding region is suppressed 
via lateral inhibitory synapses. In this way, different neurons would possess various receptive 
fields, i.e., they will respond to stimulations of different conditions such as orientation, frequency 
and pressure. Therefore, in this research, the dynamic ensembles of reservoir computing were 
designed to emulate this kind of neurobiological system through the adaption of synaptic 
connections. 

A dynamic ensemble model of reservoir computing may consist of several sub-reservoirs. For 
one specific pattern, only one or a few sub-reservoirs would produce a strong response while the 
other sub-reservoirs will be inhibited and present much less response on the associated pattern. 
This proposed method would implement the competitive mechanism through dynamic connection 
routing associated with different input patterns and ever sparser connections between multiple sub-
reservoirs, and integrate the internal states of all the sub-reservoirs to output the action potentials. 
In this way, the correlation of neural dynamics between different sub-reservoirs is reduced, and 
multiple internal states are thereby generated to cooperatively recognize multiple patterns. 

2.4 Task 4: Human Category Learning Inspired Classification Network 

Category learning has long been considered as a basic component of human intelligence and a 
key ability towards concept generalization, which is the foundation of sophisticated thoughts [9-
12]. Nevertheless, in the field of cognition, no agreement has been reached on the mechanism of 
category learning. 

In recent years, remarkable advances have been achieved in solving classification tasks from 
the computational models’ side. However, it has been argued that many sophisticated models being 
proposed and studied seem to gradually deviate from the nature of intelligence and primarily focus 
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on specific tasks and data mining. More and more efforts have been made in seeking tiny 
optimization tricks for a specific algorithm rather than looking at the fundamental problems from 
the true perspectives of cognitive and neural sciences. Emphasis is on the quality and 
representativeness of the target data rather than focusing on the intrinsic but flexible learning 
ability/mechanism that can grow to learn the learning algorithm of doing different things by itself. 
To this end, this effort explored fundamental category learning utilizing the chaotic state of 
reservoir computing and the unsupervised characteristics of synaptic learning. 

In previous tasks, we demonstrated the learning ability of reservoir computing composed of a 
single reservoir or multiple reservoirs when dealing with either relatively simple problems or some 
complex problems that may incorporate different types of dynamics. In this task, we investigated 
the potential of a single-reservoir echo state network (ESN) in learning the categories. To make it 
more biologically and theoretically plausible, unsupervised Hebbian learning of internal synapses 
was applied to the reservoir, intending to learn the conjunctions between the features and the 
boundaries among diverse categories at the same time. 

2.5 Task 5: Evolutionary Adaptation for Reservoir Network Optimization 

One cannot expect any reasonably robust performance from any autonomous system that is 
incapable of learning. Furthermore, it seems reasonable to contend that any hand-crafted system 
will fall short of expectations, and so accommodating some form of continuous improvement cycle 
will be needed. This improvement cycle may be manually implemented, but we strongly argue that 
some form of automated evolution will perform better. 

It can be useful to identify a data structure in any computerized implementation of a cognitive 
function that serves as the repository for control of that function. Let us call this data structure, 
memory. Learning may then be applied to making updates to that memory. Design of such learning 
systems requires identification of mechanisms for identifying performance errors (to serve as, 
among other things, the impetus for learning), for deciding what changes to the memory are 
permitted and desirable, and for testing that any changes considered, are effective for overcoming 
the observed errors, and in addition, do not contribute to disrupting the well-functioning aspects 
of performance. 

For reservoir computing, a critical part of memory is rooted in the reservoir structure, wherein 
the intricate connections with recurrent circuits represent complex relations of current states and 
past experience. However, the original concept of RC uses a fixed randomly initialized reservoir 
to reduce the training overhead. It means that the internal “memory” of the reservoir is randomly 
created without further update. Lacking the effective internal adaption and evolution, the learning 
ability of reservoir is more or less limited. For this reason, it is argued that evolving the reservoirs 
in a dynamic manner can improve performance on a given application. One train of thought is to 
find an optimal reservoir given a certain task. This idea is based on the fact that the performance 
of randomly chosen reservoirs forms a distribution. Given some search algorithms, such as genetic 
algorithms (GAs), it is thus easy to perform better than average by choosing the right reservoir. 
Another possibility is to start out with a large reservoir and to enhance (or prune away) principal 
(or redundant) nodes given a certain task. In this task, we investigated both approaches and figured 
out an effective way to enable the evolutionary adaption of reservoirs. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Task 1: Cognitive Process for Real-Time Autonomous Problem Solving 

Over the past few decades, research on cognition and cognitive systems has been well 
addressed in various contexts. No matter in psychology, ethology, anthropology, sociology, or in 
neuroscience and computer science, unremitting research efforts have been made to keep pushing 
the development of cognitive science forward step by step. A complete understanding of the 
mind/brain cannot be attained by studying at one certain level. In this study, a two-dimensional 
categorization of cognition related research is proposed, with the goal of providing a clearer view 
of the overall picture of the human cognitive processing.  

3.1.1 Dimensions of Current Research.  

As shown in Table 1, the research areas are divided into two dimensions: the horizontal 
dimension and the vertical dimension. The horizontal dimension represents different objects of 
study, which mainly contains natural cognitive systems (animals and human) and artificial 
cognitive systems (artificial intelligence). The vertical dimension represents different levels of 
study, ranging from behavioral level (surface level) to neurobiology level (deeper level). 
•  Behavioral Level: The goals at this level are usually to describe the constitution and process 

of cognition by observing experimental outcomes (in ethology, anthropology, sociology, and 
sometimes psychology), like psychophysical responses and reaction time. As a result, they are 
usually in the domain of natural cognitive systems. 

• Paradigms and Model Level: Studies are conducted in both natural systems and artificial 
systems, pursuing extracted general models of cognition. Research work on natural cognitive 
systems has been performed from the perspective of psychology, anthropology and sociology 
based on experimental data and results in the behavior level. Adopting these as a foundation 
and integrating knowledge from neurology and computer science, more unified theories are 
integrated to achieve cognitive behaviors in artificial systems. There are three paradigms of 
artificial cognitive systems: cognitivist approach, emergent approach and hybrid approach. 
They will be addressed in detail in the following discussion. 

• Neurobiology Level: When it comes to the neurobiology level, the boundary between the 
natural and the artificial cognitive systems is rather ambiguous. The two parts are so highly 
dependent that none of the work is launched only for a single type of system. The goal of this 
stage is to reveal the real mechanism of human mind leveraging brain imaging, neurobiological 
and many other computational technologies, so as to create human-level artificial systems and 
next generation neural computing technologies. 
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Table 1 Two-Dimensional Categorization of Cognition Researches

3.1.2 Different Paradigms of Cognition. 

In order to clearly understand and be able to take advantage of the concept of cognition, we 
must first discuss and answer the following questions. What motivates the cognition? How are the 
actions selected? How are knowledge and experiences represented? How is perception dealt with 
and how is the information processed? In which way will the actions be evaluated and selected? 
What drives the development of the system? Undoubtedly, there are different ways to answer those 
questions, based on people’s position within particular fields. Each position takes significant 
attitudes from different perspectives on the nature of cognition, the operation of a cognitive system, 
the mechanism of achieving cognition and the way of analysis and synthesis [13, 14]. 

It has been widely accepted that the stances of cognition go into two broad classes: the 
cognitivist approach and the emergent approach. The most significant difference lies in their 
distinct perspectives on knowledge representation and processing, where the cognitivist approach 
is based on symbolic rule systems and the emergent approach relies on emergent properties of self-
organized processing units [15]. In addition to this, there are still more distinctions to differentiate 
these two types of approaches. 

The cognitivist proponents view cognition in a functional way in which cognition and mind 
are analogous to computers. That view comes from both systems using symbolic representations. 
The emergent approach, which embraces connectionist, dynamical, and enactive systems, and is 
more likely to treat cognition as an emergent, self-organizing, and dynamical process [16-18]. 

David Vernon, et al. [19] proposed a comparison between the two paradigms. However, his 
statements seem obscure in concepts. In this report, the distinctions are compared in a more 
straightforward way. We will now take a brief look at some crucial differences between the 
cognitivist approach and the emergent approach. 



 

Approved for Public Release; Distribution Unlimited.  
8 

 

• Symbolic vs. Sub-symbolic: The debate over this topic is the fundamental contradiction 
between cognitivism and emergence. The contrast can further be divided into three aspects. a) 
Representation: Cognitivist systems use symbol tokens to represent either internal or external 
events (knowledge and situations). This kind of representations is usually provided by human 
designers and thus can be directly read and understood by humans. Representations of 
emergent systems are usually self-produced global system states encoded in the dynamic 
distributed network structures. These representations are not directly readable by humans. b) 
Computational operation. The operations in a cognitivist system are typically rule-based, 
typically but not necessarily in a sequential manner. In contrast, emergent systems specify no 
such priori rules and rely on interacting of distributed processing units (nodes in networks). c) 
Perception and Action. In cognitivist systems, perception occurs by extracting symbolic 
representation from sensory data so as to make the symbolic representation of the external 
world. Actions in turn, are selected through a consequent processing of internal symbolic 
representations. For emergent systems, perception is achieved in the form of system state 
changes caused by external perturbations, while actions are the system generated perturbations 
towards environment. 

• Fixed vs. Dynamic: The cognitivist approach has its root in functionalism, which determines 
that aspects of cognition are constant over time and so are the components of structure. This 
demonstrates that the cognitivist systems represent the fixed part of cognition. This is the 
reason why they cannot accomplish anything in their own right and need prior knowledge to 
perform given tasks. For the emergent approach, which is based on connectionism and self-
organization, mechanisms for perception, action, adaptation, anticipation, and motivation are 
embedded, so that dynamic processes of self-production, self-maintenance, and self-
development over the system’s lifetime can be enabled. 

• Independency vs. Dependency of Cognition: Due to the foundation of functionalism and the 
feature of fixed structure, cognition is independent of the architecture. On the contrary, the 
properties of emergence and dynamical processes cause physical instantiation of the emergent 
systems be closely tied with the cognitive process. In other words, cognition in the emergent 
approach is agent-dependent. 

• New knowledge vs. New Dynamics: This distinction is determined by their forms of adaption. 
For cognitivism, adaption performs in the manner of acquisition of new knowledge, while for 
the emergent approach, adaption implies a structural alteration or re-organization to affect a 
new set of dynamics [20]. Ultimately, the difference on adaption is also determined by the first 
two comparisons. 

3.1.3 Cognitive Architectures.  

Although in the 20th century, researchers had gained supportive theories, data, and experiences 
about cognition from the perspectives of cognitive ethology and cognitive psychology, it had 
always been a difficult task to integrate existing knowledge towards the implementation of 
cognitive systems. However, it was seen as an important step for cognitive science when Newell 
published his work in 1982 [21]. This is believed to be the origin of the term cognitive architecture. 
Since then, research on cognitive architectures became an important trend in the following decades 
and a number of famous works, which will be introduced later, came on the scene.  

A cognitive architecture specifies the infrastructure or overall arrangement of a cognitive 
(intelligent) system. It is worth noting that what a cognitive architecture includes should only be 
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those aspects of a cognitive agent that are constant over time and across different application 
domains [22]. In other words, models and knowledge are applied within some specific cognitive 
architecture but can’t be seen as the part of the architecture because of they are user-defined and 
time-variant. Moreover, distinct cognitive architectures may differ in the assumptions they make. 
One simple example may briefly illustrate the idea within the definition of cognitive architectures. 
Different vehicles may be provided with different shapes or layouts due to different assumptions 
they were endowed with, just like different cognitive architectures. For one specific type, no matter 
how the decoration or accessories may change for different purposes, its basic architecture will 
always remain the same. 

Research on cognitive architectures is important because it is no longer driven by seeking 
solutions for specific tasks, instead it is driven by the objective of unified theories of cognition 
[23]. Even though cognitive architectures may differ in paradigms and models, they take the same 
effort to achieve the synthesis of a broad range of cognitive issues by integrating interdisciplinary 
knowledge from psychology, philosophy, neurology, and computer science. 

Based on different paradigms of cognition, cognitive architectures also include cognitivist 
architectures and emergent architectures. In addition, a hybrid type of architectures is developed 
to combine the former two types. Due to the large number of cognitive architectures developed, 
we are not able to present and discuss all of them. In this report, we will introduce some well-
known cognitive architectures which cover all three paradigms and give a brief discuss about their 
features and abilities. 

3.1.3.1 Soar 
Soar, which was first proposed in the early 1980s, is one of the first cognitive architectures [24, 

25] and has been well developed. The mission of Soar is to support all capabilities of general
intelligent agents. To accomplish this big goal, it is endowed with a wide range of problem solving
models as well as the ability to learn, represent and use tasks related knowledge [26]. It has been
widely used on verity of tasks in artificial intelligence and cognitive science.

Under the guidance that a cognitive architecture must help produce cognitive behavior, Newell 
et al. abstracted 6 common characteristics from everyday behaviors [23]: 
− It is goal-oriented; 
− It takes place in a rich, complex, detailed environment; 
− It requires a large amount of knowledge; 
− It requires the use of symbols and abstractions; 
− It is flexible, and a function of the environment; 
− It requires learning from the environment and experience. 

To reflect these characteristics, they picked memory, perception, action, and cognition as 
primitive features, connect them with a mechanism and formed the Soar cognitive architecture.  
Interaction with the environment is enabled by linking the perception and action with a decision-
making mechanism. Information from the environment is represented in the working memory 
(WM) through perception. The knowledge in WM can then be used to match and retrieve relevant 
knowledge from long term memory (LTM) to WM according to a set of production rules. During 
this procedure, procedural knowledge plays a key role of controlling behaviors and is mapped 
directly onto the operator knowledge in WM, while semantic and episodic knowledge are 
employed as supplements in the procedure of solving problems. Finally, preferences are made as 
recommendations to evaluate and select operators and trigger the steps of actions, the environment 
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can be influenced as well. It is in such way that a fixed decision cycle is formed as the essence of 
problem solving mechanism: input, elaboration, decision, application, and output. 

However, it may occur that no appropriate knowledge can be found from the LTM. Applicable 
operators will not be found and Soar will make no decisions. An impasse is encountered [24]. The 
situation is not a waste of time, for it provides Soar with an opportunity to learn from its failure 
[27]. This is a brilliant mechanism built inside the architecture. It is inspired by the human’s 
behavior of “practice”: the act of doing the task strengthens our ability to do the task in the future. 

In Soar, there was originally a single learning mechanism called chunking, three more were 
added later: reinforcement learning, semantic learning, and episodic learning. The chunking 
mechanism allows the expansion of production rules (in LTM), preventing the repetition of the 
same impasse. Reinforcement learning gives Soar rewards for successes and punishments for 
failures, helps to improve future performance. The episodic and semantic learning help to gain 
knowledge from past experiences for the use of additional cues in operator selection. Each of the 
learning mechanisms introduces a different source of knowledge. In coordination, they ensure the 
self-improvement of the system. 

3.1.3.2 ACT-R 
ACT-R, short for Adaptive Control of Thought – Rational, is another effort to build the unified 

theories of cognition, although it uses an alternative way of expression, an integrated theory of 
mind [28]. By putting forward this programming language like cognitive architecture, researchers 
intend to simulate and understand how human cognition works based on assumptions and facts 
derived from psychology experiments. 

The goal of exploring the organization of human brain and the origin of intelligent behavior 
makes ACT-R unique in two aspects. First, it focuses on modular decomposition of cognition [19] 
and achieves cognition in the manner of harmonious integration of the modules. Second and more 
importantly, it allows researchers to collect quantitative measures of the model and then compare 
directly with the quantitative measures obtained from human participants, even including 
neurological data obtained from functional Magnetic Resonance Imaging (fMRI).  

The ACT-R architecture comprises 3 main components: modules, buffers and a central 
production system.  A set of modules are employed to process different kinds of information. 
Generally, they can be divided into two broad types: perceptual-motor modules, which take care 
of the interface with the real world; and the memory modules which store the knowledge. Five 
developed modules are included in the above structure. Visual and the manual modules are 
perceptual-motor modules. The visual module is designed to recognize and detect the position of 
objects. The manual module is designed to control actuators and perform actions. The declarative 
module helps to retrieve information from memory. The goal module is important for keeping 
track of current goals and intentions. [28] 

ACT-R accesses its modules through buffers. For each module, a dedicated buffer serves as 
the interface with that module. The buffers also represent the internal state of ACT-R at the 
moment. In order to achieve coordinated behaviors, all of the buffers are connected through a 
central production system, in which the production rules are implemented. 

In the architecture, the whole set of components are analogous to the regions of human brain, 
while the connections and working mechanism are designed on the basis of cognitive psychology. 
The central production system serves as the basal ganglia in human brain. Within the production 
system, production rules are divided into matching, selection and execution mapping to the 
function of striatum, pallidum and thalamus. The goal buffer plays the role of the dorsolateral 
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prefrontal cortex (DLPFC). The retrieval buffer is mapped to the ventrolateral prefrontal cortex 
(VLPFC). The manual buffer is associated with the motor and somatosensory cortical areas, which 
are the two areas responsible for controlling and monitoring hand movements. The visual buffer 
is identified with the abilities of locating and identifying the object corresponding to dorsal path 
and ventral path respectively. 

ACT-R operates in a mixed manner of parallel processing and serial processing. The buffers 
first represent the information determined by the external world and internal modules. In this stage, 
they work simultaneously within and between the modules. Then the production rules will match 
the state of the buffers and search for a production. On occasion, an estimation and selection 
process is needed when several productions match the state of the buffers. When a production fires 
(is executed), the buffers can be updated and thus the state of the system is changed. The matching, 
selection and execution in the central production system are processed in succession. A production 
rule in ACT–R corresponds to a specification of a cycle from the cortex, to the basal ganglia, and 
back again. 

There are two levels of serial bottlenecks that the researchers of ACT-R already recognized. 
The first one, in their own words, the content of any buffer is limited to a “single declarative unit 
of knowledge”, called a chunk in ACT–R. Thus, at one moment, only a single memory can be 
retrieved or only a single object can be encoded from the visual field. Second, only a single 
production can be selected and fired at each cycle. For the second bottleneck, one development 
has been made, called production compilation. It enables the combination of separate production 
rules into one. But for the first bottleneck, it’s more like a deliberate design to explain the 
phenomenon that people are usually not aware of all the information in the visual field but only 
the object they are currently attending to. A similar thing happens for long-term memory when 
people try to retrieve something to deal with the facing situation. 

However, the biggest potential threat comes along with the basic hypothesis of ACT-R and 
therefore the basic structure. The high-level separation of buffers and modules in ACT-R is based 
on the hypothesis that the organization of the human brain conforms with functional specialization. 
This point of view is consistent with the previous research and practice in psychology and 
neuroscience to partition the brain into segregated, cortico–striatal–thalamic loops. However, 
findings seem to challenge this view by showing some interdependence between the regions. Some 
evidence has been proposed by Giacomo Rizzolatti et al in their research about ventral and dorsal 
pathways [29, 30]. 

Anyway, ACT-R is still an excellent cognitive architecture, which has improved over the years 
and has been widely applied in the areas of education, human-computer interaction, cognitive 
psychology, and neuroscience. 

3.1.3.3 The Subsumption Architecture 
The subsumption architecture represents an alternative approach to realize cognitive behavior. 

Unlike the classical cognitivist architectures (such as Soar and ACT-R, etc.) that decompose the 
system into specific functional components, the subsumption architecture maps different levels of 
competence onto a multi-layer structure in an incremental and bottom-up manner. It reflects the 
idea of emergence and was proposed by Brooks in 1985 [31]. 

The subsumption architecture has a hierarchical structure organized into layers. Environmental 
information acquired through sensors is allowed to be accessed by all layers and consequently 
multiple behaviors can be executed simultaneously (in parallel). Also, each layer is capable of 
controlling the system by itself. This is the most obvious distinction in topology with the 
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cognitivist architectures. Each layer corresponds to a certain level of competence and is 
responsible for pursuing a particular goal. It begins with simple systems that can act effectively in 
simple circumstances (lower layers), more sophisticated systems (higher layers) are then added 
incrementally from bottom to top, and the lower layer is designed to be subsumed in the layer of 
higher level. Based upon the hierarchical structure, the lower layers would behave like a quick 
response mechanism, allowing the agent to quickly adapt to changes of environment. The higher 
layers take charge of the whole situation driving the system towards the overall goals. As 
mentioned above, in order to achieve a higher level of competence, a new layer can be simply 
added without altering existing layers [27, 32]. The inspiration of the working mechanism more 
or less comes from the biological nervous system, which is explained in Brook’s paper [33]. When 
a new competence of operating more complex function has been achieved, a new section of brain 
is developed to manage it, while the old sections are still responsible to perform their original tasks. 

One benefit of this structure is that the lower level competence can be well tested and adjusted 
before the higher ones can be added. This makes the debugging easier to handle and also ensures 
the stability of the system. The adoption of multiple distributed layers can serve as buffer layers 
as well, so that the performance won’t fall dramatically when facing a huge change in environment. 
Compared to the symbolic processing employed by Soar and ACT-R (cognitivist architectures), 
there is no explicit representation of knowledge, no production rules for matching and no central 
control system. These features meet with the inherent meaning of emergent system. Even though 
no specific computational nodes or clear structure of network can be found in the subsumption 
architecture, we still see the form of hierarchical organization which is the important feature in 
some later artificial neural networks. 

3.1.3.4 CLARION 
CLARION is the abbreviation for “connectionist learning with adaptive rule induction on-line”. 

Simply from the name we can tell that it is a hybrid cognitive architecture with the learning 
capability fulfilled by the combination of symbolic structure (chunks and rules) and connectionist 
module (more specifically neural networks). 

The architecture is designed to provide the advantages of cognitivist and emergent 
architectures by evolving both implicit memories and explicit memories and addressing both top-
down learning (from explicit to implicit knowledge) and bottom-up learning (from implicit to 
explicit knowledge). 

The main components of CLARION include four subsystems: the action-centered subsystem 
(ACS for procedural knowledge), the non-action-centered subsystem (NACS for declarative 
knowledge), the motivational subsystem (MS) and the metacognitive subsystem (MCS) [34]. 
Within each subsystem, both implicit and explicit representations are allocated. Implicit 
knowledge is represented in an emergent way like neural networks and explicit knowledge is 
represented in a symbolic way by using chunks and rules. 

The role of the ACS is to control both external and internal actions. Neural networks (called 
Action Neural Networks) are used to form the bottom implicit memory. The top explicit memory 
is made with action rules. The rules can be extracted either from the environment or from the 
bottom implicit memory. 

The role of the NACS subsystem is to maintain general knowledge. Additional neural networks 
(called Associative Neural Networks) are adopted to build the bottom implicit layer. Knowledge 
and facts stored in the top explicit memory are further divided into semantic and episodic. The 
semantic representation corresponds to generalized knowledge, and episodic is applicable to more 
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specific situations. It is notable that in CLARION, declarative knowledge is not necessarily explicit, 
but can also exist in the implicit layer. 

The MS is provided the duty of forming goals and underlying motivations for all behavior of 
the system as the name suggests. A boundary is set between explicit goals and implicit motivations, 
dividing MS into goal structure and drivers. In this case, the combined motivational processes 
which include both explicit and implicit parts is believed to have better performance on keeping 
the system sustained, purposeful, focused, and adaptive. 

The MCS takes the overall control of other subsystems’ processes by monitoring, directing, 
and modifying their operations. Actions include setting goals for MS and setting parameters as 
well as changing on-going process in both ACS and NACS. 

Based on the four-way division structure, learning algorithms are addressed with both implicit 
and explicit representation. Implicit knowledge can be gradually accumulated through 
reinforcement learning, which works in a manner of repeated practice. Explicit knowledge is 
acquired through hypothesis testing rule learning and bottom-up rule learning (from implicit to 
explicit knowledge). Instead of evaluating only the rules, CLARION also combines the cumulative 
reward value computed by reinforcement learning and judge in a weighted sum. Then the most 
appropriate action can be decided. 

3.2 Task 2: Performance Assessment and Characterization of Computational 
Intelligence Approaches in Autonomous Target Tracking 

For a comprehensive understanding of reservoir computing, an extensive literature survey has 
been conducted to investigate the key parameters associated with general reservoir network 
architectures that influence the performance, including the activation function, connectivity, and 
number of neurons. Moreover, the existing popular optimization strategies have also been explored 
and discussed. Specifically, several examples of changing performance resulting from varying 
connectivity and number of neurons was implemented and presented. 

In the autonomous target tracking task, an RC-based tracking algorithm has been developed 
and implemented for single object tracking, along with the Softmax classifier. With the goal of 
assessing and characterizing the performance of multiple computational intelligence approaches, 
including the RC, SDAE, and CNN, we proposed an object tracking flow involving the RC in a 
similar way as we did with SDAE and CNN. The experiments show that the RC-based tracker 
(RCT) could achieve comparable performance as the SDAE- or CNN-based methods. The speedup 
on GPU platforms using RCT was further evaluated. However, because the current processing 
flow was developed targeting at the conventional neural network structures, it is not able to fully 
make use of the superior advantage of RC in terms of dynamic representation of temporal states 
and behaviors.  

Aiming at RC’s weakness in directly handling image data, we proposed an RC-compatible, 
temporal-aware object tracking flow through combining RC network, autoencoder (AE) and 
particle filter together, trying to leverage RC’s advantage in handling time series data. The tracking 
performance and computational efficiency were further examined and discussed. The object 
tracking task can be managed by the new method and computational efficiency were largely 
improved.  
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3.2.1 Key Parameters of Reservoir Network. 

As illustrated in Jaegers’ work [8, 35, 36, 54], the initialization of the reservoir plays a large 
part in the performance of the ESN and this was shown to be the case for the liquid state machine 
(LSM). It was discussed in [36] that due to the random nature of RC systems, it is by definition 
that the networks are not optimized. This suggests that the variables within these reservoir base 
networks can be altered to improve the performance of the system. In this section, the primary 
variables of interest will be discussed and are listed as follows: activation function, 
connectivity/weights, and number of neurons. 

3.2.1.1 Activation function.  
The activation function primarily acts as a method for limiting the output of a neuron. It is also 

referred to as a squashing function in the way that it “squashes” the range of unbounded input to a 
bounded range of output. As it has been discussed in [37], different activation functions can have 
different effects on the performance of neural networks in general, and this would be applicable in 
the different network types within RC. Commonly used types include the spiking neuron activation, 
sigmoid function activation and hyperbolic tangent functions. The sigmoid function is often used 
in the non-saturation regions to allow for dynamic representations within the RC. 

As the activation function can be any transfer function which takes an unbounded input and 
transforms it a bounded output, it becomes obvious that the choice of function becomes non-trivial 
and requires further research to determine the applicability of different types to different 
applications. 

3.2.1.2 Connectivity and weighted connections.  
Connectivity means the number of recurrent connections within the reservoir. In artificial 

neural networks, it is common for the connections to be fully connected from layer to layer. Even 
structure specific custom network types such as convolutional neural networks, the number of 
connections from layer to layer is defined, and thus connectivity has no applicable meaning. 
However, this is not the case in the RC network structure where instead the connections are 
initialized randomly and sparsely from a preset connectivity. As it has been consistently shown, 
the connectivity decided upon at the initialization of the RC network affects the complexity of the 
reservoir and has a direct impact on its performance [38, 39]. Too many connections may affect 
the ESN’s ability to be successfully trained, because an excessive connectivity may result in a 
stronger coupling effect of internal neuronal states and reduce the diversity of the neuronal states 
in the reservoir. This suggests that the alteration of the number of interconnections within the 
reservoir in RC networks has great potential when optimizing the performance of said networks. 
It is common in practice to maintain a rather sparse connectivity, usually between 0.01 and 0.2 
[40]. 

In any neural network, the system is constructed by connections that pass signals between 
neurons. These connections are weighted so that the signals being passed through the connections 
can be scaled and adjusted. In traditional neural networks, these weighted connections are altered 
during the training phase so the overall system can more closely model the system of interest. This 
is again not the case in RC networks, where the weights within the reservoir remain constant once 
they have been initialized. Whilst if initialized with consideration, the network functions well in 
modeling many time series applications [39-43], it is clear that with the update of these weights it 
would be possible to improve the network performance. 
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3.2.1.3 Reservoir size. 
Reservoir size represents the number of internal neurons within the reservoir. As with regular 

artificial neural networks, the number of neurons represents the complexity of the signal it is able 
to model, and the amount of feature the network is able to capture from the input signal. Deciding 
the number of neurons to have within the network becomes a non-trivial task when considering 
performance of the network vs. the computational complexity. Even in cases where computational 
power is not an issue, over fitting with a large number of neurons can be an issue faced in RC 
systems. Therefore, this is probably the most significant and challenging factor for RC modeling, 
because the size of the reservoir determines the maximum number of synaptic connections in the 
reservoir network. Many studies have shown that the reservoir size represents the potential 
memory capacity [38]. Reservoirs that are too small will result in the RC not being able to 
accurately model the task while too large ones will encounter issues with over fitting of the data 
[8]. 

3.2.1.4 Spectral radius. 
Spectral radius is the length of “memory” the reservoir is capable of retaining. The larger the 

spectral radius, the longer the past inputs to the RC are able to affect the current output. To ensure 
the stability of neuronal dynamics, the size of the spectral radius, which is the largest absolute 
eigenvalue of the connection weight matrix, must been properly controlled [38]. 

Figures 1 - 4 show the effect of the connectivity on the error of the system for output 1 and 
output 2. Figure 1 and Figure 2 show the errors for output 1 with networks ranging from 100 to 
900 at connectivity between 0.1 to 1 and Figure 3 and Figure 4 show the same for output 2. We 
can clearly see that that for network sizes from 100 to 500 there is a clear increase in error rate 
when the connectivity is increased. This is observed in Figure 1 and Figure 3 for both outputs. This 
effect is not seen in Figure 2 and Figure 4.  For network sizes of 600 and larger, it can be seen 
that the error is large (greater than 1) and that there is no clear relationship to the connectivity. 
This is likely due to the fact that the systems were not converged, and therefore the errors are large 
regardless of the connectivity. 

3.2.2 Existing Optimization Methods. 

Having demonstrated the vast nature of the initialization space of RC networks, it is manifest 
that a brute force method for determining the optimal parameters for the reservoir is impractical. 
At the same time, due to the limited understanding and lack of a rigorous mathematical 
representation of the randomized reservoir, directed optimization algorithms are difficult to 
implement. For this reason, optimization methods which do not require an explicit understanding 
of the mechanics of the RC networks but is still able to search the state space of the parameters to 
achieve a better performance have been explored. Below, some of the optimization methods more 
commonly used with RC networks are outlined. 

3.2.2.1 Neural plasticity. 
Since neural networks are biologically inspired systems, it makes sense to draw inspiration for 

their adaptation from biology as well. Neural plasticity describes the change to brain architectures 
in response to development and learning. This process can be largely described by two main types 
of plasticity: synaptic and intrinsic plasticity [44]. 
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Figure 1 Errors for Output 1 Given Varying Connectivity and Number of Neurons (100-500) 

 
 

 
Figure 2 Errors for Output 1 Given Varying Connectivity and Number of Neurons (600-900) 
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Figure 3 Errors for Output 2 Given Varying Connectivity and Number of Neurons (100-500) 

Figure 4 Errors for Output 2 Given Varying Connectivity and Number of Neurons (600-900) 
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• Synaptic Plasticity. Synaptic plasticity refers to the strengthening or weakening of a synapse 
connection between neurons due to their activity [45]. In neural networks, the strength of the 
synapse is analogous to the weights of the connections. One popular model that is repeatedly 
visited in the study of self-organization of neural network (NN) weights is Hebbian theory, 
which postulates that the synaptic strength between two neurons are strengthened when there 
is a correlation between their activity [46]. This effect has been thoroughly investigated, and 
has resulted in more accurate models such as the Oja and Bienenstock, Cooper and Munro 
(BCM) rules [47, 48, 49].  These have been implemented in algorithm form and have been 
proven to improve the performance of neural networks. In these cases, the algorithms alter the 
weights of the RC networks depending on the nature of the input data to achieve better results. 

• Intrinsic Plasticity. Intrinsic plasticity refers to the change in the way a neuron fires in a 
network. One frequently focused upon model of the Intrinsic plasticity is the long term 
potential of intrinsic excitability (LTP-IE). This postulates that more frequently firing neurons 
will become more excitable over time. This concept when compared to artificial neural 
networks translates into the activation function changing depending on the type of signal which 
stimulates the system. It has been shown in a number of studies that the intrinsic plasticity is 
able to improve the performance of RC systems [36, 43, 50]. 

3.2.2.2 Particle Swarm Algorithm.  
This algorithm observes variables as "particles" moving at velocities. The performance of the 

variables at the current iteration is assessed to obtain the velocities at which the "particles" move. 
The new positions of the particles represent the values of the new variables and the performance 
is reassessed. The new positions are kept if the performance has been improved. This type of 
algorithm has been implemented in many applications of ESNs to deal with the optimization of 
the connection weights within the networks. The particle swarm algorithm (PSA) has been shown 
to improve the performance of neural networks in general, and has been used to improve RC 
networks in many applications. 

3.2.2.3 Genetic Algorithms.  
Genetic algorithms (GA) alter the construction of neural networks incrementally to achieve an 

improvement in performance. The general function of a genetic algorithm involves the generation 
of "genomes" which are used to alter the parameters of interest. The genomes are also "mutated" 
to provide a degree of randomness, much like biological evolution. The new parameters are applied 
and the performance of the system is evaluated, and at the same time, the "fitness" of the solution 
is assessed. In cases where a better fitness is achieved, the solution is kept. The process is repeated 
by multiple iterations in order to search for better solutions. 

There are certain issues with GAs when being applied to NNs. In particular, they are often seen 
as brute force methods, and therefore are computationally expensive. It was shown that GAs did 
not perform well with large networks [51]. Another issue is that depending on the type used, the 
way the network is altered may vary drastically. Investigation has been conducted on altering the 
weights, the neuron population, the connections, and a varying combination of these, with varying 
results [52, 53]. However, there has been no consensus on the best practice using GA algorithms. 
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3.2.3 Reservoir Computing Based Object Tracker 

Object tracking has been generally recognized as a very challenging problem in practical 
application scenarios. In this task, we developed a robust object tracker based on RC networks, so 
as to evaluate the feasibility of RC in image representation and object tracking. In the RC-based 
tracker (RCT), a standard RC network plays the role of feature extractor and is used to directly 
process image inputs. A particle filter helps to generate probable candidates and to identify the 
object being tracked among them. Softmax regression is adopted as a binary classifier, explicitly 
distinguishing the object from its background. 

3.2.3.1 Feature extractor of RC-based tracker. 
In this task, our objective is to investigate the capability and applicability of the RC network 

in handling image data and consecutive video frames. Given RC’s intrinsic temporal properties, 
instead of using RC as a classifier, we propose to make use of the RC network as a feature extractor 
and seek to take advantage of its rich collection of dynamical input-output mapping. 

Figure 5 The Structure of Conventional RC Network. 

As shown in Figure 5, for each observation, the input data 𝒖𝒖(𝑛𝑛) is fed into the network 
through the input connections and drive the reservoir to update its internal activations 𝒙𝒙(𝑛𝑛) (also 
called internal states): 

𝒙𝒙(𝑛𝑛 + 1) = 𝑓𝑓�𝑾𝑾𝑖𝑖𝑖𝑖𝒖𝒖(𝑛𝑛 + 1) + 𝑾𝑾𝒙𝒙(𝑛𝑛) + 𝑾𝑾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝒚𝒚(𝑛𝑛)�              (1) 
𝑓𝑓 is the activation function of the internal neurons, which is typically the sigmoid function or the 
linear function. Due to the recurrent connections inside the reservoir, internal states at step 𝑛𝑛 + 1 
are related to the internal states of the previous step. The output of RC network 𝒚𝒚(𝑛𝑛) is then 
calculated as: 

𝒚𝒚(𝑛𝑛 + 1) = 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 �𝑾𝑾𝑜𝑜𝑜𝑜𝑜𝑜�𝒖𝒖(𝑛𝑛 + 1),𝒙𝒙(𝑛𝑛 + 1),𝒚𝒚(𝑛𝑛)�� (2) 
where f out represents the activation function of the output neurons. Among those four weight 
matrices Win, W, Wback and Wout, which directly determine the topology and connections of the RC 
structure, the first three are generally derived using normal or uniform distributions. By forcing 
the output values towards the expected teacher data, Wout is commonly trained and updated either 
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online or offline using one of the linear regression algorithms according to the specific application 
tasks and requirements. In this way, a linear combination can be learnt to model the implicit 
relationships and approximately represent the structures of input data. 

3.2.3.2 Classifier of RC-based tracker.  
Softmax regression is a widely-used classifier. It can be viewed as the generalization of logistic 

regression with which we can handle multiple classes as opposed to only the binary classification. 
In other words, label 𝒚𝒚 can take 𝐾𝐾 different values, 𝒚𝒚(𝑖𝑖)  ∈  {1,2, . . . ,𝐾𝐾}. Since the purpose is 
to estimate the probability of each possible label becoming the classification result when given 
testing data, the Softmax function is defined as: 

ℎ𝜃𝜃(𝑥𝑥) = 𝑃𝑃(𝑦𝑦 = 𝑗𝑗|𝑥𝑥) =
exp�𝜃𝜃𝑗𝑗

𝑇𝑇𝑥𝑥�

∑ exp�𝜃𝜃𝑘𝑘
𝑇𝑇𝑥𝑥�𝐾𝐾

𝑘𝑘=1
                        (3) 

where 𝑗𝑗 stands for the one out of 𝐾𝐾 possible classes, 𝜃𝜃 represents a vector of weights and 
𝑥𝑥 is the vector of inputs. For the convenience of computation, the weight vectors are always 
arranged row-wise into a matrix.  

3.2.3.3 Network configuration. 
The overall network architecture is shown in Figure 6. 
 
 

 
Figure 6 Network for Online Tracking 

 
For a reservoir network, input weights and internal weights are randomly generated with 

uniform distribution. Sigmoidal activation functions have been used. The size of each layer is 
designed as foregoing structure in Figure 6 to make it comparable to the SDAE architecture and 
be capable of progressively extracting image features. Connectivity is set to 0.1 and spectral radius 
takes the mid-value as 0.5. The configurations of a CNN and a SDAE are inherited from our 
previous experiments. As a summary, Tables 2, 3 and 4 respectively give the configurations of the 
proposed RC-based tracker, previously implemented SDAE-based tracker and CNN-based tracker. 
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3.2.3.4 Training and tracking. 
So far, we have introduced the two main parts of the object tracker, the feature extractor and 

the classifier, as well as the network configuration. Now we will explain the training method and 
how the previous two parts can work together. 

Table 2 Configuration of RC-Based Tracker 
Layers Description # of Neurons 

1st layer image input 1024 

2nd layer reservoir 512 

3rd layer reservoir output 215 

4th layer softmax layer 1 

Table 3 Configuration of SDAE-Based Tracker 
Layers Description # of Neurons 

1st layer image input 1024 

2nd layer hidden layer 2560 

3rd layer hidden layer 1024 

4th layer hidden layer 512 

5th layer hidden layer 215 

6th layer softmax layer 1 

Table 4 Configuration of CNN-Based Tracker 
Layers Description Feature Map Size Kernel Size/Pooling Ratio 

1st layer image input 32 × 32 / 

2nd layer hidden layer 28 × 28 × 12 kernel size: 5 × 5 

3rd layer hidden layer 14 × 14 × 12 polling ratio: 2 

4th layer hidden layer 10 × 10 × 24 kernel size: 5 × 5 

5th layer hidden layer 5 × 5 × 24 polling ratio: 2 

6th layer fully connected layer / / 

7th layer softmax layer / / 
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As shown in Figure 6, the front portion of the architecture is a standard RC network, followed 
with a Softmax layer as the classifier. The output layer of the RC network is trained to extract 
features of the object being tracked. However, unlike the traditional way of training, the features 
yet to be learnt cannot be precisely described as the teacher data. Consequently, linear regression 
is not feasible in this case and back propagation is used instead. 

In this application, we used a testing dataset of 80 video frames, the same as our previous work. 
For simplifying the implementation and verifying feasibility of RC in such task, only one trailer 
out of three is to be tracked. The position of the object to be tracked is specified manually in the 
first frame of video with a bounding box, as shown in Figure 7 (the numbering on the image starts 
from 0). Some negative examples from the background are also selected to train the tracker. 

 
 

 
Figure 7 First Frame in Video Clip Used for Initialization 

 
For each frame of the video clip, the input of the tracker is a 32 × 32 gray image, indicating 

one possible candidate of object. In this case, each image is represented by a vector of size of 1024 
(i.e., number of pixels). The gray-scale values are directly fed into the input layer with each input 
neuron corresponding to one pixel.  

Given the fact that the position of the object in one frame is strongly relevant to its position in 
the last frame, particle filter can be very helpful in sampling latent candidates from the potential 
areas. Therefore, when a new frame comes, a set of particles are drawn first and each particle is 
then passed forward through the whole network to evaluate the confidence. Once all particle 
confidence levels are calculated, the position of the object can be identified as the particle with the 
largest confidence. 

In case of potential image distortions during tracking, a threshold of confidence τ is set. Every 
time the largest confidence falls below the threshold, it may indicate some significant object 
distortions, and the network will be trained and tuned again to adapt to the changes. 

Although some prior research has adopted RC in computer vision tasks such as image 
segmentation, action recognition and facial expression recognition, it is still reported by many, that 
directly handling image data with a RC network is not easy. In order to simplify the 
implementation and investigate the basic image processing ability of reservoir computing, we 
skipped the pre-training of the network which consumes a long time to learn meaningful features 
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from a large number of general images, and developed a RC-based tracker using only online 
training for single object tracking. 

10 positive and 100 negative samples are selected from the first frame to initialize the latter 
part of the network, which includes the output layer of the RC network and the Softmax layer. The 
training repeats for 20 epochs before the tracking starts and the trained network can be used to 
evaluate the confidence and distinguish between object and background in the following frames. 

3.2.4 Tracking with the Combination of RC and AE. 

Compared with the stacked denoising autoencoder (SDAE) and the convolutional neural 
network (CNN) approaches, RCT gave the worst performance on both tracking accuracy and 
computational efficiency, leading to the conclusion that RC is less effective and favorable on direct 
and accurate image representation (details see section 4.1). Through analyzing the unsatisfactory 
performance of RCT, we consider that the echo state property of RC model which significantly 
benefits the processing of time series data, has become a limitation in image representation, 
especially in object tracking when directly combining with particle filter. In time series modeling, 
the echo state property is usually leveraged to handle the temporal relations. However, in object 
tracking with the adoption of the particle filter, the input data sequence is a cluster of possible 
candidates established over spatial relations rather than temporal relations. For this reason, the 
representation of current candidate may be affected by the “memories” of the previous input 
samples through the feedback pathways. This may result in inaccuracy in image representation 
and the subsequent classification. In addition, the complex non-linear combinations and recurrent 
feedbacks inherent in the chaotic structure of the reservoir could cause significant delay when 
updating the internal activations. “Memories” echoed among the internal connections shall be 
spread and expressed sequentially, resulting in the expensive time cost. This is especially the case 
when the dimensions of input and reservoir are extremely huge, as in the application of image 
processing. 

In view of the above reasons, we have explored a new way to leverage RC’s advantage in 
handling time series data and proposed a paradigm in which RC is adopted to predict the movement 
of the target, based on the estimated position, where SDAE and softmax are used to recognize the 
object. In this way, we expect that role of the particle filter can be weakened and the computational 
efficiency could be improved. 

3.2.4.1 Trajectory predictor. 
In order to make use of RC’s ability in time series modeling and avoid the weakness of accurate 

image representation, we combine RC and AE to develop a new tracking paradigm (RCAET for 
short), in which a standard RC network is adopted as the trajectory predictor. Instead of directly 
feeding the images into RC, the target location in the previous frame is used as the only input and 
the output is trained to predict the potential position in the current frame. 

From the learning perspective, this approach still faces the same challenge as the other methods 
in visual tracking, for very limited training samples (usually only one instance in the first image 
frame) are available ahead of time. In the subsequent frames, the tracker has to learn to predict the 
trajectory and, based on the estimated location, to identify variations of the tracked object with 
only unlabeled data available. With nearly no prior knowledge about the object’s history trajectory, 
it is easy for the tracker to lose track of the target. Thus, it is necessary for the tracker to learn prior 
knowledge about the object. To address this issue, a virtual trajectory with 1000 data points was 
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generated in advance. It is designed to be ended with the object position in the first frame and to 
comply with two restrictions for each step: the maximum step length of 40 pixels and the maximum 
turning angle of 30 degrees. 

A schematic diagram of the whole trajectory which contains both virtual and actual trajectories 
is provided as Figure 8. It is seen that the actual trajectory marked in the red box is connected with 
the virtual trajectory. Two input neurons and two output neurons are implemented, representing 
the X and Y coordinates of the target location. 

 

 
Figure 8 The Virtual and Actual Trajectories. 

 
To verify the feasibility of RC on trajectory prediction, we utilized the whole trajectory in a 

compliance test. Virtual trajectory for training and actual trajectory for testing. The prediction 
result using ground truth as input is shown in Figure 9. The blue line draws the ground truth and 
the red line describes the predicted values. 

 

 
Figure 9 Prediction Result of RC Predictor (left: x, y coordinates; right: trajectory) 
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Although it has shown very good performance on trajectory prediction, the results are obtained 
using ground truth data, which can never be available in real cases. Therefore, only the virtual 
trajectory is used to train the RC predictor and to initialize the internal states before tracking. 
Starting from the second frame, the determined position identified by particle filter and classifier 
will be used as input instead of true position. 

3.2.4.2 Feature extractor and classifier. 
We’ve concluded that RC is not the most effective option as a feature extractor and it has been 

observed that SDAE based tracker exhibits the best performance among all three paradigms no 
matter in accuracy or time efficiency. We hereby choose SDAE as feature extractor and softmax 
as classifier.  

3.2.4.3 Network configuration. 
The network configurations of SDAE as well as the network for online tracking are presented 

in Table 5. 

Table 5 Network Configurations of SDAE and Online Tracking Network 

Layers 

SDAE Network for online 
tracking 

Description # of 
Neurons 

Description # of 
Neurons 

1st Layer image input 1024 image input 1024 

2nd Layer hidden layer 2560 hidden layer 2560 

3rd Layer hidden layer 1024 hidden layer 1024 

4th Layer hidden layer 512 hidden layer 512 

5th Layer hidden layer 256 softmax 
layer 

1 

6th Layer hidden layer 512 / / 

7th Layer hidden layer 1024 / / 

8th Layer hidden layer 2560 / / 

9th Layer image output 1024 / / 

3.2.4.4 Training and tracking. 
For the two reference networks SDAE and CNN, neither of them have the capability of dealing 

with temporal relations over successive video frames. To overcome this fatal shortage for object 
tracking, a particle filter is adopted so that the intrinsic temporal relations can be transformed and 
represented as spatial relations. However, along with the employment of a particle filter, a large 
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amount of computation was introduced into the tracking process. By incorporating temporal 
information with an RC trajectory predictor, we seek to weaken the role of the particle filter in this 
tracking task and hence improve the efficiency of RC tracker. 

To achieve this goal, the tracking is executed in the following way. First, the RC network is 
trained and initialized using the randomly generated virtual trajectory. After that, the position of 
the object to be tracked is specified manually in the first frame. Some positive and negative 
examples are selected to train the SDAE in a supervised manner. For the first 10 frames, the object 
is tracked in the old way, with 1000 latent candidates being selected by the particle filter. The 
position of the object can be identified through the calculation of encode network and softmax. In 
the meantime, the RC network takes the position of the identified object as input and makes the 
prediction. Although at this time, the predicted positions don’t participate in tracking, some highly 
accurate input data can be acquired for the RC predictor. This is very important for the accurate 
prediction in the following frames. Starting from the 11th frame, the particle filter will no longer 
sample 1000 candidates based on the object position in the last frame, instead, it will search in a 
smaller area around the predicted object position of current frame (i.e., the output of the RC 
network), generating a candidate space of 500. 

In case of potential image distortions during tracking, an update threshold τu is set. Every time 
the largest confidence falls below the threshold, it may indicate some significant object distortions, 
and the network will be trained and tuned again to adapt to the changes. It is worthy to note that, 
the implementation of the RC predictor may bring in some additional errors in the prediction stage. 
In order to achieve robust tracking, such error must be managed with an extra threshold (a give-
up threshold τg) to avoid failure from the very beginning. The give-up threshold is set to be lower 
than the update threshold. Once the largest confidence become even smaller than τg, the predicted 
position derived from the RC network will be given up, the system will redo the tracking of the 
current frame and the conventional configuration of particle filter with 1000 candidates will be 
reused based on the previous position. Through utilizing both thresholds, the robustness can be 
better guaranteed. 

3.3 Task 3: Dynamic Ensembles of Reservoir Networks for Multi-Object Pattern 
Recognition 

Reservoir computing (RC), mainly consisting of echo state network (ESN) [54] and liquid state 
machine (LSM) [55], was proposed as an extension of recurrent neural networks (RNNs). The 
underlying features of the sparse network illustrate the original ideas of RC, which include: 1) a 
single “reservoir” within which the connections and weights are randomly generated; 2) the fixed 
topology of the reservoir after its formation; as well as (3) the only trainable linear combination of 
all connections in the readout layer. 

Thanks to the aforementioned characteristics, RC is relatively easy to implement and has been 
successfully applied in a broad range of applications, from image processing, pattern recognition, 
speech recognition to chaotic systems prediction and control [5, 8, 38, 53-59]. The echo state 
property makes it good at handling time series data. In addition, a bunch of tunable parameters, 
such as reservoir size, spectral radius, degree of sparsity, the scaling of inputs/feedbacks, and 
sometimes even the connection weights provide rich sets of dynamics to achieve desired 
performance. However, requirements of experiences on tuning the parameters and understanding 
about various dynamic behaviors resulted from different topologies as well as internal connections 
have driven the research efforts in optimizing the generation of reservoirs to adapt to diverse 
practical problems. 
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Keeping those characteristics in mind, it is not surprising to see that majority of the prior 
research work focused on the application and optimization of RC with the presence of a single 
reservoir. One considerable issue that has long been ignored is the potential and significance of 
the network of multiple reservoirs. As reported by many in the literature, the conventional ESN 
which only contains one reservoir could be powerless when facing some complex multiple 
superimposed oscillator (MSO) problems and even incapable of modeling the function with two 
sine waves of different frequencies [54, 60, 61]. That may possibly be because of the inherent 
coupling among neurons within one reservoir, introducing difficulties in modeling multiple 
somewhat uncorrelated dynamics [62]. This problem leads to the idea to construct a reservoir 
ensemble with multiple reservoirs wherein each reservoir is responsible for a specific set of 
dynamics. The concept of a reservoir ensemble is also inspired by its biological counterpart, the 
structure of the brain cortex, where different regions (roughly divided into frontal lobe, parietal 
lobe, occipital lobe, and temporal lobe) are responsible for diverse functions and actions, such as 
emotion, movement, visual/ auditory/ olfactory processing, memory and speech [63]. Those 
defined functional regions connected with nerve fibers underneath, form a sophisticated dynamic 
system and help us to adapt to complex situations as well as to make comprehensive decisions 
based on all kinds of information. In a word, the reservoir ensemble holds great potential in 
addressing more complicated applications which involves intricate dynamics and complications. 

Reservoir ensemble is not a brand-new concept. Some prior research efforts have been 
conducted, providing solutions to MSO and multi-object problems with the combination of certain 
type of reservoir ensembles and other novel techniques. 

Yanbo Xue et al. [60] constructed decoupled echo state networks (DESN) with multiple 
randomly generated reservoirs (termed sub-reservoir) of different configurations. Connections 
between sub-reservoirs are implemented using lateral inhibition in two ways to overcome the 
coupling effects within a single reservoir and to reduce the correlation of dynamics between sub-
reservoirs at the same time. Internal states of all the sub-reservoirs are integrated at last to output 
the action potentials. In this way, multiple tasks could be cooperatively accomplished. The model 
was tested with an MSO problem of two sine waves and was applied in prediction of sea clutter 
data, good performance was observed. 

Jun Yin and Yan Meng [5] proposed a GRN-regulated self-organizing reservoir computing 
(GRN-SO-RC) model targeting at multi-object behavior recognizing in computer vision. In their 
model, several sub-reservoirs are constructed in a cortical neural network and connected through 
inhibitory connections. A gene regulatory network (GRN) was used to regulate the parameters of 
the RC model and hence each reservoir can be capable to detect one behavior. The output layer is 
also constructed by combining the internal states of sub-reservoirs. 

Fabian Triefenbach et al. [58, 64] introduced deep hierarchical architecture into RC by 
connecting several “layers” of reservoirs end-to-end. In this case, the readout layer of the former 
reservoir is treated as the input layer of the latter reservoir. Benefits from this, such as different 
levels of acoustic units, like phonetic states, phones, syllables and so forth, can be extracted 
sequentially in the application of acoustic modeling. 

Guihua Wen et al. [57] proposed an approach based on RC for facial expression recognition. 
Multiple independent reservoirs are adopted as basic classifiers. A convolutional neural network 
is set ahead of each reservoir to extract features that will be fed into reservoirs as inputs. At the 
readout layer, outputs from multiple reservoirs are fused with a voting strategy.  

All the above work has shown some possible structures for reservoir ensembles and have 
achieved good results in their fields. However, only one structure (either the structure with one 
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input layer, multiple reservoirs and multiple output layers or the structure with one input layer, 
multiple reservoirs and one output layer) was selected and analyzed in each research effort for the 
purpose of solving specific problems. In order to gain a more comprehensive understanding on the 
potential and significance of reservoir ensemble architecture, more systematic analysis must be 
addressed over all possible configurations. In the next section, a brief introduction and explanation 
will be provided on significant structures. 

3.3.1 RC with Multiple Reservoirs 

It has been well understood that the structure of RC is composed of four main parts: input layer, 
reservoir, readout layer and all connections therein. Among the four parts, the first three determine 
the shape of the structure while the connections represent the way in which reservoirs are 
correlated. Therefore, it is necessary to first list all possible structures defined by the numbers of 
input layers, reservoirs and readout layers before we take a further look. 

Table 6 shows eight different configurations of RC structure. Note here that the number of 
input/output layers does not mean the number of neurons but individual layers, multiple 
input/output neurons could exist within one layer.  

 
  

Table 6 All possible configurations of RC structures 
# of input layers # of reservoirs # of output layers Notation 

1 1 1 1I-1R-1O 
1 1 Multiple 1I-1R-MO 
1 Multiple 1 1I-MR-1O 
1 Multiple Multiple 1I-MR-MO 

Multiple 1 1 MI-1R-1O 
Multiple 1 Multiple MI-1R-MO 
Multiple Multiple 1 MI-MR-1O 
Multiple Multiple Multiple MI-MR-MO 

 
Obviously, the first configuration in Table 6 is the conventional RC structure, but not all of the 

listed structures are meaningful and feasible. In what follows, we will discuss the various structures 
as well as their feasibility and practical significance.  

3.3.1.1 Redundant Structures 
The structures below are redundant, not only because they are barely workable, but also that 

they are somewhat meaningless or simply equivalent to the conventional structure even if they 
appear to have different configurations (be equipped with multiple input/output layers or multiple 
reservoirs).  

1I-1R-MO, MI-1R-1O & MI-1R-MO. It is not hard to point out that most structures with a 
single reservoir are functionally equivalent with the conventional model, even though multiple 
input or output layers are equipped. Figure 10 shows two structures with only one reservoir. In 
both cases (and as well the case with multiple input layers and readout layers at the same time), if 
we assume that the input and output layers consist of same type of neurons and no difference is 
introduced into the processing and training procedures among the multiple layers, then they can 
always be seen as an equivalent structure. This is because each input/output neuron (no matter in 
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which layer) is created equally, connecting with all internal neurons of the reservoir. This always 
makes it equivalent with the conventional model. 

Figure 10 (a) Structure with Multiple Input Layers, Single Reservoir and Single Output Layer; (b) Structure 
with Single Input Layer, Single Reservoir and Multiple Output Layers. 

MI-MR-MO. This model can be seen as a general form of all structures. It requires a mapping
from different input layers to multiple reservoirs as well as a mapping from multiple reservoirs to 
diverse readout layers. Necessary connections between reservoirs are also required, or it may easily 
break up to several independent networks of other types (conventional structure, 1I-MR-1O, 1I-
MR-MO or MI-MR-1O). Since the numbers of reservoirs and input/output layers may not 
necessarily be equal, it will end up with a large number of complex instances. Moreover, it hardly 
fits into any application scenarios, nor holds any explicit significance. Therefore, we are not 
interested in this construction. 

3.3.1.2 Significant Structures 
1I-MR-1O. Two cases under this configuration should be considered: 1) the structure where 

reservoirs are independent with each other; 2) the structure where reservoirs are connected with 
each other at a certain level (connectivity).  

For the first case, it’s not very significant. Since all the connections within a reservoir are 
randomly generated, sparse, it can be simply seen as multiple collections of internal neurons that 
happen to hold no connections (0 weights) with each other. From this perspective, it is also 
equivalent with the conventional model. 

For the second case, evidence has been provided by Jun Yin and Yan Meng [5] and Yanbo 
Xue et al. [60] that it not only exhibits significance, but also achieves good results in real-life 
applications. However, not all such structures are practically significant. The constraint condition 
is that the connections between reservoirs shouldn’t be generated randomly, or it would have no 
difference compared with the conventional model. 

1N-MR-MO. This structure has also been investigated in the literature [57, 58, 64] in two 
types. The first type constructs a hierarchical architecture in a cascade manner (Figure 11). It is 
similar to deep neural networks in terms that it hierarchically extracts features in different levels. 
Although only the last readout layer is used as the final result, it reserves all its readout layers in 
the middle of the chain. So, we still classify it as 1N-MR-MO. The second type is built in a flat 



 

Approved for Public Release; Distribution Unlimited.  
30 

 

shape (Figure 12). This specific type only makes sense when different reservoirs are provided with 
different configurations and different tasks or when the connections between reservoirs are 
something other than random generations (similar as 1I-MR-1O). 

 
 

 
Figure 11 Hierarchical Structure with 1N-MR-MO 

 
 

 
Figure 12 Flat Structure with 1N-MR-MO 

 
MN-MR-1O. This is the structure that we are most interested in, generally because of the 

motivation from real-life decision making. One objective can be reflected and determined from 
different aspects, and in turns, better decisions can be made with multiple sources of information. 
One simple example would be the fusion of different sensory information in our brain. When 
determining the quality of some food, one may need the information of color, smell and flavor 
together to make the decision. The schematic diagram of this structure is shown in Figure 13. 

 

 
Figure 13 MN-MR-1O Structure 
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3.3.2 Dynamic Reservoir Ensemble Model Based on Genetic Algorithm 

By analyzing the complex structures discussed above, it is not difficult to see that further 
exploration of reservoir ensemble is confronted with two critical problems. The first problem is 
the large searching space, caused by the vast number of connection combinations, makes it difficult 
to manually design a capable structure for a given task, and a considerable amount of domain 
knowledge may also be required. The second problem is that once a certain structure is picked, the 
connections are fixed and there is no way to adapt to other tasks. Considering these limitations, we 
seek to find an approach to save energy from model designing and to adapt the reservoir ensemble 
to complex tasks through dynamic optimization of the structures. We call this approach the 
Dynamic Reservoir Ensemble (DRE) model and conversely, we term the models in previous 
section as Static Reservoir Ensemble (SRE) models. 

DRE employs the genetic algorithm (GA) as an optimizer. The newly proposed model is 
expected to dynamically evolve and adapt itself based on the given task so that complex dynamics 
can be modeled and designers can be released from the burdensome work of designing appropriate 
structure as well as exploiting a vast amount of domain-knowledge. 

3.3.2.1 Genetic Algorithm 
A genetic algorithm (GA) is a commonly used evolutionary algorithm inspired by the process 

of biological evolution and natural selection [65]. A GA tries to optimize the parameters gradually 
by inheriting the properties from relatively good parents in the last generation and introducing 
mutation to escape local optima. 

All the properties of a candidate solution (also called individual) are encoded into a vector or 
string (chromosome or genotype) which is allowed to be edited. Each generation consists of a 
population of individuals. Usually, the first generation is initialized randomly, which means the 
chromosomes are generated following the uniform distribution. For each generation, the 
performance (fitness) of each individual is evaluated using an objective function (fitness function). 
According to the fitness value, selection is taken throughout the current generation and parents 
(the group of individuals that have better fitness) will be chosen to contribute their genes. 
Subsequently, three types of children will be created to make up the next generation. The 
individuals with best fitness automatically survive to the next generation and become elite children. 
Crossover children are created by randomly exchanging portions of chromosomes from two or 
more relatively good parents. Mutation occurs by infrequently, randomly changing the gene of a 
single parent, so that diversity can be explored and guaranteed and thereby falling into local optima 
can be largely avoided. Evolution operates following this manner iteratively, pushing the 
optimization problem towards better solutions until one or more stopping conditions are met, 
which may include the maximum number of generations, operation time limits, target fitness value, 
generation number of no improvement, etc. 

There are several reasons for the choice of a GA instead of another optimization or 
evolutionary algorithm. Firstly, we proposed a general model that evolves the near-optimum 
structure for different applications, so that no explicit formulation or analysis of the target system 
is needed. In addition, there is no clear functional relationship between network structures and 
fitness values. In other words, the reservoir ensemble network serves like a black-box simulation 
model and the objective function is discrete and stochastic. Thus, derivation methods cannot be 
applied. Moreover, the existence or absence of connections can be easily encoded into binary 
strings, making GAs more capable of parametric representation than other evolutionary algorithms 
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such as particle swarm and ant colony optimization, etc. Meanwhile, GAs always come up with 
an answer, which usually becomes better and better with time. For the aforementioned reasons, we 
consider the GA an applicable method in our case. 

3.3.2.2 Dynamic Reservoir Ensemble Model 
In this model, the MI-MR-MO structure is adopted to meet with the most general case. For a 

specific task, it can be assumed that the types of input data and desired outputs are defined. In this 
case, with one neuron corresponding to a certain type of input/output data, the number of input 
neurons and output neurons are fixed. In our model, the input/output neurons are treated as 
independent, in other words, those neurons are not bounded in one layer anymore and are provided 
with the freedom of connecting to any or multiple reservoirs. The structure of the reservoir is 
determined by connections from inputs to reservoirs, connections from reservoirs to outputs and 
the connections between different reservoirs. To narrow down the size of the search space (i.e., 
reduce the number of parameters) and to evolve a good solution more quickly, the number of 
reservoirs as well as the connections between different reservoirs are predefined and fixed. In this 
way, only the mappings from inputs to reservoirs and from reservoirs to outputs matter. For 
simplicity, all connection weights will still be generated randomly in accordance with the standard 
way. 

The properties of each candidate structure are encoded into a bit string, in which every single 
bit represents the existence (encoded as “1”) and nonexistence (encoded as “0”) of a connection. 
Figure 14 (a) shows the chromosome of a reservoir ensemble with K input neurons, M reservoirs 
and L output neurons. The chromosome consisting of (K + L) × M bits can be divided into M 
segments, corresponding to the M reservoirs. Each segment contains K + L bits, where the first K 
bits represent the connections from the input neurons to the current reservoir and the last L bits 
represent the connections from the reservoir to the L output neurons. The bit string hence covers 
all possible structures in the searching space, and given one specific string, the only structure can 
be reconstructed accordingly (again, let alone the weights). The structure of reservoir ensemble 
corresponding to the chromosome given in Figure 14 (a) is shown in Figure 14 (b) (feedbacks and 
input-to-output connections are not displayed in this figure). 

In the proposed model, output error is evaluated to indicate the performance of the structure. 
Therefore, the fitness function is defined as the normalized root mean square error (NRMSE) of 
the outputs on testing data. 

The initial generation is created by randomly producing a population of bit strings following 
the uniform distribution. Corresponding reservoir ensemble structures are then generated and 
trained. According to the NRMSE values of the testing results, a selection is made and elite 
structures are passed directly to the next generation. New structures can be created through 
crossover and mutation, heredity and changes consequently take place in different parts of the 
input/output connection. 
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Figure 14 (a) Chromosome of Reservoir Ensemble Model; (b) Corresponding Reservoir Ensemble Structure 

3.3.2.3 Time Series Prediction Using Dynamic Reservoir Ensemble 
We test and evaluate the performance of the proposed dynamic reservoir ensemble model on 

a real-life time-series problem, surface temperature prediction. We choose the dataset of historical 
meteorological observations in the Binghamton Tri-Cities Airport from 1948 to 1952 (downloaded 
from the website of the United States National Climatic Data Center [66]). From the observations, 
five variables were picked as the inputs: daily mean dew point (DEWP), daily mean station 
pressure (STP), daily mean wind speed (WDSP), daily highest temperature (High Temp.) and daily 
lowest temperature (Low Temp.).  The highest and lowest temperatures are to be predicted. 1000 
days of data are adopted for training and the successive 100 days for testing. The standard model, 
static reservoir ensemble (5I-5R-1O structure as an example) and dynamic reservoir ensemble are 
applied respectively and results of different structures are compared and analyzed. 

For the standard model, two types of structures were tested. The first one employed only one 
input neuron and one output neuron. Under this structure, two sets of experiments were 
implemented, the history data of either High Temp or Low Temp was adopted as input signal and 
the reservoir was trained to predict the future value of High Temp or Low Temp The second type 
adopts five input neurons and two output neurons. All five input signals were used simultaneously 
to drive the single reservoir. In this way, both high temperature and low temperature were modeled 
using one set of dynamics. 

For the static reservoir ensemble model, five input neurons, five reservoirs and two output 
neurons were adopted. Different from the standard model, each input neuron was connected only 
to one reservoir, while output neurons were connected to all five reservoirs. We tested two variants 
under this configuration, one exhibited correlations among sub-reservoirs, the other held no 
correlation. 
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For the dynamic reservoir ensemble model, we used five reservoirs to model High Temp and 
Low Temp using the five input signals. However, considering that the complex mechanism behind 
the climate system and the interactions between variables remained unclear to us, some unavailable 
factors may have affected temperature values.  We kept the connections between reservoirs and 
input/output layers unspecified and allowed the dynamic reservoir ensemble model to explore an 
optimal structure that could handle the potential unknown relations by itself. 

To implement the reservoir networks, the MATLAB toolbox developed by Jaeger [67] was 
used to generate the standard model. Tanh function was adopted as the activation function for both 
internal neurons and readout neurons. Without loss of fairness and generality, the net dimension 
(reservoir size) was set to be 200 neurons for the standard structure and 40 neurons in each 
reservoir of the static and dynamic reservoir ensemble models, so that the total numbers of 
computational units in all three configurations were the same. All the weights were randomly 
generated. The connectivity (sparsity) within each reservoir was set to be 0.1 and connectivity 
between different reservoirs (if applicable) is 0.01. For each of the input signals, 15 samples were 
used for each step of the input. In the genetic algorithm, the population size was 100, 5 elite 
children were to be generated in each generation, uniform mutation occurred at the rate of 0.2, and 
80% of the population were recombined to generate crossover children. A 5-2-bit crossover 
function was customized to break down the chromosome for each 5 and 2 bits, corresponding to 5 
input-to-reservoir and 2 reservoir-to-output legal connections for each reservoir. The purpose was 
to preserve the full information of input and output connections of a reservoir for inheritance. Since 
we relied on the two outputs equally, the fitness value was the average of two NRMSEs. The 
results are described in section 4.4. Evolutionary Adaptation for Reservoir Network Optimization 

3.4 Task 4: Human Category Learning Inspired Classification Network 

Although not extensively investigated, category learning has been addressed by some early 
studies [68-72]. Among which, some notable computational models on category learning were 
established based on the structure of an auto-encoder [71, 72]. In this work, a neural model called 
divergent auto-encoder (DIVA) was trained in the supervised manner to gain shared information 
among the connections of the hidden layer and to differentiate different categories over the divided 
outputs. Inspired from the basic idea, we felt that it would be interesting to explore this issue based 
on a more biologically plausible combination, RC network internally trained with synaptic learning. 

3.4.1 Network Architecture. 

We constructed the network as Figure 15. Two divided output layers were employed, 
corresponding to two different categories. Considering that if there are only forwarding 
connections in the readout layers, the divergent outputs would have no difference with a (single) 
joint longer output layer and hence become meaningless, we reserved the output feedback 
connections. Thus, the output values from both categories will be able to affect the inner states of 
the reservoir and therewith exhibit influences on the other output as well as itself. This effect, to 
some extent, also simulates the feedback behaviors in the cognition process. Different from the 
output layers, a single input layer is built for the purpose of unified inputs and alternative training 
over each category. 
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Figure 15 Echo State Network Based Category Learning Model 

3.4.2 Training Strategy. 

Two stages of training were employed. Unsupervised synaptic learning was applied to the 
internal weights (inside the reservoir), attempting to learn common features underlying the 
externally different but intrinsically relevant data (over two categories). The conventional 
supervised training was implemented as usual on the readout layers so as to learn the boundaries 
among different categories (two categories in this experiment) and correctly identify them when 
they appear at the input. Synaptic learning and supervised training on different categories were 
organized in an alternately interleaving way for several iterations. We did not implement the 
training phase as a one-time effort because after training the second category, both internal states 
and the weights in the second readout layer were updated, which would have a significant impact 
on the first output and disrupt the learned ability on that category (results are shown in section 4.3). 
For this reason, we trained the model for multiple iterations to obtain stable and balanced 
internal/output weights over both categories. To achieve this, the training data for each category 
was split into several segments. For each iteration, a training segment of category one was first fed 
into the model, then the internal weights were trained with synaptic learning. The supervised 
learning was only applied on the first readout layer when training category one. Immediately 
following the training of category one, category two were trained based on a segment of training 
data in similar way, except that the second readout layer was to be trained instead of the first. 

3.5 Task 5: Evolutionary Adaptation for Reservoir Network Optimization 

The echo state network (ESN) is a type of recurrent neural network (RNN) that falls under 
what is known as the “Reservoir Computing” (RC) paradigm.  It was first introduced by H. Jaeger 
in 2001. Its structures and properties have since been thoroughly studied and documented. The 
appeal of ESNs stems from the fact that it's reservoir is randomized, and is fixed once initialized. 
This allows ESNs to have fewer synaptic connections to train, and thus are comparatively 
computationally inexpensive as opposed to other types of RNN. It has been established that the 
echo state network has high performance in certain benchmarks, and outperforms regular RNNs 
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in a number of applications [39, 41]. However, it was also discovered that there are certain 
limitations or constraints faced by ESNs that require further investigation. 

Currently, ESNs face inherent issues present within reservoir computing methods which make 
it difficult to be applied to practical applications. One of the major drawbacks of ESNs lies with 
the fact that its properties and performance are contingent on its initialization [39, 42]. However, 
each task of interest may require a different topology and reservoir size, making the task of 
choosing initialization parameters a non-trivial endeavor. While there are guidelines that may 
assist in the selection of these parameters [38], fitting ESNs to a specific task often becomes a 
game of guess and check. The performance of the networks differs drastically for different starting 
parameters. 

A number of studies have been conducted in an attempt to address these drawbacks and gain 
performance improvements. Those solutions range from changing the topologies of the initial 
randomized network to online alterations of the connections and weights within the network, many 
of which have provided desirable results [39, 43, 73]. However, one of the main issues surrounding 
the current methods is the inherently complicated nature of the solutions presented. Due to the 
black box nature of the reservoir structure, there are remarkable difficulties in establishing 
theoretical models, thus resulting in an incomplete understanding about what aspects of the process 
are specifically responsible for the performance, whether positive or negative [41].  

Another issue is that some original features of reservoir computing (RC) still limit further 
improvements of such type of networks. For example, although the randomly initialized and fixed 
weights of the input layer and the reservoir indeed largely reduce the computational complexity 
and hence the training efforts, this feature also provides a less optimal network for the given task, 
more or less limiting the performance of the network. 

With these issues in mind, this research attempted to search for a bio-inspired approach of 
reservoir evolution, from the perspective of both structural and synaptic adaption, to deal with 
dynamic optimization as well as the initialization issues present in ESNs.  

3.5.1 Synaptic Adaption Based on Synaptic Plasticity. 

3.5.1.1 Principal Neuron Reinforcement. 
Inspired by neuroplasticity, an algorithm was proposed to alter the reservoir of ESNs to reach 

a comparable performance from different starting parameters. 
Neural plasticity refers to the process of change which occurs to different aspects of the brain. 

This change can be triggered by different events which occur throughout a person's life. One of 
the more specific sub-processes is synaptic plasticity, which refers in particular to the ability of 
the synapse to strengthen or weaken over time depending on the degree to which they are 
stimulated [74]. 

Synaptic plasticity allows synapses in the brain to change and adapt according to the amount 
of activity in which they are involved. Specifically, the plasticity mechanism is able to modify the 
strength of the synapses within the reservoir based on the activities stimulated by the input [75]. It 
is intuitive that the more important a synapse is to the transportation of information, the more it 
would be used. This reinforcement allows the synapse to be strengthened and therefore be more 
responsive to future stimulation. This effect can also occur in reverse, where the synapse weakens 
or degrades due to inactivity. 

For the reservoir computing paradigm, specifically echo state networks, while the fixed 
internal connections of reservoir networks perform adequately for many applications, the 
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structures’ randomized nature results in an amount of unpredictability in the performance. There 
has thus been motivation to optimize the reservoir structure to achieve better performance in RC 
networks. In this work, we proposed an alternative synaptic plasticity model, Principle Neuron 
Reinforcement (PNR), to determine which synapses to modify. The core principles of the PNR is 
described as follows. 

The PNR assumes that in a fixed network structure (as reservoir networks commonly are), 
there will be neurons that play more important roles in the modeling of target signals. These 
“principal” neurons contribute critical information to the neurons in the next layer and therefore, 
if the connections between these principal neurons and the neurons in the next layer are 
strengthened, more critical information will be passed through. Conversely, there will be neurons 
that have little impact on target signals, thus their connections should be weakened. 

Once an ESN has been trained, it is obvious that the magnitude of the output weights of each 
neuron in the hidden layer will vary. Here, the larger weights signify strengthened synapses, 
indicating the connections are frequently used, and that the signal which is passed through these 
connections are of greater importance in contrast to that passed through weaker connections. From 
this point, it can be inferred that data passed from the neuron to which the high magnitude weights 
were connected is important. 

On the basis of the findings outlined above, two hypotheses were formed: 

Hypothesis 1: Neurons in the hidden layer with high magnitude output weights contributed 
more “important information” to the output. 

Hypothesis 2: The “important information” from these neurons make positive contributions 
to others in the hidden layer with which these neurons are recurrently connected. 

Built upon these two hypotheses, following the Hebbian learning principle, we proposed the 
PNR learning rule, a model of how neurons within the reservoir alter the strength of synaptic 
connections according to the presented input-output patterns. 

𝑊𝑊|𝑖𝑖
𝑗𝑗(𝑡𝑡 + 1) = (1 + 𝛼𝛼)𝑊𝑊|𝑖𝑖

𝑗𝑗(𝑡𝑡),   𝑖𝑖𝑓𝑓 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜|𝑖𝑖𝑏𝑏 > 𝜉𝜉 (4) 

where α is the learning rate. The synaptic connection from the neuron i to the neuron j within 
the reservoir, 𝑊𝑊|𝑖𝑖

𝑗𝑗 , is only updated when the readout weight originating from the neuron i to the
neuron k, 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜|𝑖𝑖𝑏𝑏, is larger than a chosen threshold 𝜉𝜉. The neuron i, in this case, is called the 
“principal neuron.” The PNR rule regulates that the alternation of synaptic connections can only 
happen to those ones associated with the principle neurons. 

3.5.1.2 Experiment procedure. 
In order to test the aforementioned hypotheses and evaluate the performance of the proposed 

PNR learning rule on ESNs, we performed a set of experiments with varying reservoir size and 
neuronal connectivity on a benchmark dataset. 

The MATLAB toolbox developed by H. Jaeger [67] was used to initialize the echo state 
networks required for the experiments. The two vector input data is a generated times-series 
benchmark dataset provided within the toolbox. The equations used to generate the dataset is as 
follows: 

𝒚𝒚𝒚𝒚(𝑡𝑡)  =  𝒙𝒙𝒙𝒙(𝑡𝑡 − 5) ∙ 𝒙𝒙𝒙𝒙(𝑡𝑡 − 10) + 𝒙𝒙𝒙𝒙(𝑡𝑡 − 2) ∙ 𝒚𝒚𝒙𝒙(𝑡𝑡 − 2)  (5)
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𝒚𝒚𝒙𝒙(𝑡𝑡) = 𝒙𝒙𝒙𝒙(𝑡𝑡 − 1) ∙ 𝒙𝒙𝒙𝒙(𝑡𝑡 − 3) + 𝒙𝒙𝒙𝒙(𝑡𝑡 − 2) ∙ 𝒚𝒚𝒚𝒚(𝑡𝑡 − 2) (6) 

where 𝒙𝒙𝒚𝒚, 𝒙𝒙𝒙𝒙, 𝒚𝒚𝒚𝒚, 𝒚𝒚𝒙𝒙 are the input vectors 1 and 2 as well as the output vectors 1 and 2 
respectively. For this experiment, 𝒙𝒙𝒚𝒚 was set to be 1 throughout the vector length and 𝒙𝒙𝒙𝒙 was a 
random vector normally distributed between 0 and 0.5. An input vector of length 2000 was 
generated, the first 100 of which were used to train the system, and the next 1900 were used in the 
testing of the trained network. 

The ESN was initialized with a connectivity of 0.1 and with configurations of neurons ranging 
from 100 to 900 in increments of 100. They were then trained using the benchmark dataset. The 
weights of the internal neurons were bound between -1 and 1. The ESN was initialized with two 
neurons in the input and output layers respectively. 

According to the PNR rule, the recurrent connections to and from the principal neurons 
contributing the “important information” are strengthened or weakened in a trained ESN. Once the 
weights have been strengthened and/or weakened, the ESN is retrained and retested. Upon training, 
the output weights of the ESN were analyzed and ranked from the highest magnitude to the lowest. 
For the purposes of this experiment, a threshold ξ was chosen by the author for the determination 
of what is a “high” magnitude. In this experiment, this threshold was chosen to be the top tenth of 
the weight magnitudes. The threshold was chosen at this point as it is where the weight magnitudes 
start to rapidly increase. 

From here, the recurrent connections associated with these “principal neurons” were 
strengthened. For this experiment, the increase of the weights was applied incrementally over 
several iterations at a learning rate of α = 0.001. This process was also repeated for weakening the 
lowest tenth of the weight magnitudes. The performance for strengthened-ESN, weakened-ESN 
and strengthening+weakening-ESN were compared to the original ESN without neuronal plasticity. 

This experiment was also repeated with different settings of connectivity. The connectivity 
was varied from 0.1 to 1.0 at increments of 0.1 with a setting of 500 neurons. The effects of how 
connectivity affects error rate and whether the proposed algorithm can counter its effects, was 
observed. 

A similar experiment was applied to a Non-linear Auto Regressive Moving Average (NARMA) 
dataset to evaluate how well the PNR extended to other types of data. The 10th order NARMA 
dataset is driven by the equation: 

𝒚𝒚𝒚𝒚(𝑡𝑡)  = 0.3𝒚𝒚(𝑡𝑡 − 1) +  0.05𝒚𝒚(𝑡𝑡 − 1)∑ 𝒚𝒚(𝑖𝑖 − 1)10
𝑖𝑖=1 + 0.5𝒙𝒙(𝑡𝑡 − 9) ∙ 𝒙𝒙(𝑡𝑡 − 1) + 0.1 (7)

We also attempted to evaluate the effectiveness of PRN with respect to current plasticity 
methods. As established in [75] the Anti-Oja learning rule is effective in improving the rates of 
error in many time-series prediction applications of the ESN. However, this was under the setting 
where the initial performance of the ESN was already reasonably high. The Anti-Oja rule was also 
applied to the training of the aforementioned equations and the results are compared to that of the 
PNR in section 4.4. 

3.5.2 Structural Evolution Based on Genetic Algorithm. 

A genetic algorithm was employed to optimize an ensemble of Echo State Networks to achieve 
the goal of predicting the high and low temperature given historic data. The assumption was that 
in an application like this, the structure of the ensemble would largely determine the performance 
of the system. To determine the best structure of the ensemble, i.e., which reservoir should be 
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connected to the inputs and outputs, GA was used by encoding the input and output connections 
into genes. It has been seen from experiments that the genetic algorithm employed is able to 
improve the performance of the system. Details of the methods are described in section 3.3. 

3.5.3 Neuronal Plasticity Inspired Reservoir Ensemble Optimization 

3.5.3.1 Verification of the Structural Contribution in Reservoir Ensemble 
In the submitted paper [76], we proposed a dynamic reservoir ensemble model that consists of 

multiple reservoirs and is capable of automatically adapting and optimizing the structural plasticity 
of a reservoir ensemble towards an optimal performance using the genetic algorithm. Implemented 
in a real-life time series application - temperature prediction, the proposed model demonstrates 
superior performance over both conventional single-reservoir model and the static reservoir 
ensemble model with fixed connections. 

In order to further verify the contribution of the structure determined by the GA and confirm 
that the good performance is mainly benefited from the reservoir ensemble, we designed an 
experiment to remove the least important reservoirs one by one.  The performance was then 
observed.  

The determining rule of the least important reservoir is established as follows: 

Rule 1: The reservoir that connects to the least number of output neurons is determined as the 
least important one; 

Rule 2: For reservoirs with same number of outputs, the output weights are summarized with 
respect to each reservoir, reservoirs with larger total values tends to be seen as more important. 

Based on the weather dataset adopted in the IJCNN paper, two trials were played and two 
relatively good RC ensemble structures were evolved as shown in Figure 16. In both GA 
determined structures there exists one reservoir that is not connected to both outputs. Those 
reservoirs are to be removed first. According to the rule, the order of removing reservoirs in two 
reservoir ensemble models are 2, 4, 5, 3 and 1, 5, 4, 2 respectively. The performance for each 
removal is collected in Table 8 and Table 9.  

Figure 16 GA Determined Structures 1 (Left) and 2 (Right) 
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It can be observed from Table 7 and Table 8 that by removing the first reservoir, the normalized 
root-mean-square error (NRMSE) for both outputs were increased dramatically, which indicates 
that even holding no output connections, the least important reservoirs still contribute to the output 
performance through structural connections. 

 
Table 7 MSE of Each Removal for Structure 1 (40 neurons for each reservoir) 

Steps NRMSE of Output 1 NRMSE of Output 2 

Structure 1 0.59932 0.62483 
1 Reservoir Removed 0.76741 0.70344 
2 Reservoir Removed 0.68458 0.67891 
3 Reservoir Removed 0.7113 0.74802 
4 Reservoir Removed 0.79227 0.74399 

 
 

Table 8 MSE of Each Removal for Structure 2 (40 neurons for each reservoir) 

Steps NRMSE of Output 1 NRMSE of Output 2 

Structure 2 0.55844 0.65731 
1 Reservoir Removed 0.71061 0.70181 
2 Reservoir Removed 0.76111 0.73969 
3 Reservoir Removed 0.75541 0.71748 
4 Reservoir Removed 0.69503 0.71136 

 
Another interesting observation in both cases is that, as we keep removing less important 

reservoirs, the performance may improve a little bit for some certain steps, but the NRMSE will 
never drop below that of the entire ensemble. This observation corresponds to one of the key ideas 
in the complex systems theory: a reliable system can be formed with unreliable components, 
conversely, using all optimal components may not necessarily end up with an optimal system. 

As we further enlarged the size of each reservoir from 40 to 100, a similar trend was observed, 
whereas the NRMSE increases for each removal. Result are shown in Table 9. 

 
Table 9 MSE of Each Removal for Structure 3(100 neurons for each reservoir) 

Steps NRMSE of Output 1 NRMSE of Output 2 

Structure 3 0.6689 0.6295 
1 Reservoir Removed 0.7157 0.7431 
2 Reservoir Removed 0.8227 0.9094 
3 Reservoir Removed 0.8738 0.9529 

 
From the above results, it can be further verified and convinced that the optimized structure 

rather than the principle reservoir(s) is the major contributor to the improved output performance. 

3.5.3.2 Enhanced Dynamic Reservoir Ensemble with Principal Neuron Reinforcement 
Based on our previous works on dynamic reservoir ensembles (DRE) [76] and principal 

neuron reinforcement (PNR) [77], we investigated the effects of combining those two techniques 
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to further optimize reservoir ensembles from both structural and neuronal plasticity perspectives. 
On one hand, DRE improves the performance by optimizing the structure, resulting in a desirable 
structure to improve the performance of the system. On the other hand, PNR allows the strength 
of internal connections to be changed, at the same time removing the difficult task of selecting 
initialization parameters. Since one method improves the performance by optimizing the structure 
while the other improves performance by modifying the internal connections, we investigated the 
potential that both techniques can synergistically produce a comprehensive method, which has the 
ability to deal with both. 

DRE and PNR were combined based on the temperature prediction task.  Networks with 
different reservoir sizes were tested. The optimization results and discussion of their significance 
will be presented in section 4.4. 

3.5.3.3 Enhanced Dynamic Reservoir Ensemble with Classic Synaptic Plasticity 
As shown in our previous work, although the dynamic reservoir ensemble model and principal 

neuron reinforcement can work well independently to enable the adaption of RC and improve its 
performance, significant improvement was not observed when bringing the two parts together. To 
deal with such issue, we reexamined the biological process of synaptic plasticity which works in 
a manner that gradually changes (strengthens or weakens) the synaptic strength over time and 
sought for some classic synaptic plasticity rules that help.  

When applied to artificial neural networks (ANNs), several synaptic plasticity learning rules 
have been proposed. We identified and analyzed the four most popular plasticity learning 
approaches: 

Hebbian Learning. Hebbian theory is probably the most famous theory in the domain of 
synaptic plasticity, which gives a plausible explanation for the synaptic adapting mechanism of 
neurons in the brain. As stated by Donald Hebb: 

 
“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes 

part in firing it, some growth process or metabolic change takes place in one or both cells such 
that A's efficiency, as one of the cells firing B, is increased.” 

 
To be more specific, Hebb’s rule takes the view that a synapse between two neurons is 

strengthened when the firing of one neuron always (or frequently) leads to the firing of the other 
one. 

In the context of artificial systems or more specifically artificial neuron networks, the Hebbian 
learning rule is formalized to a method determining how to change weights of neural connections. 
It can be described as the weight between two neurons increases with high correlation between 
their activations and reduces if they activate separately. 

Mathematically, the Hebbian learning rule can be described as follows: 
 

∆𝜔𝜔𝑖𝑖 = 𝜂𝜂𝑥𝑥𝑖𝑖𝑦𝑦                                   (8) 
𝑦𝑦 = ∑ 𝜔𝜔𝑗𝑗𝑗𝑗 𝑥𝑥𝑗𝑗                                    (9) 

 
where ∆𝜔𝜔𝑖𝑖 is the change of the 𝑖𝑖th synaptic weight of the postsynaptic neuron, 𝜂𝜂 denotes 

the learning rate, 𝑥𝑥𝑖𝑖 and 𝑦𝑦 represent the 𝑖𝑖th input for postsynaptic neuron (namely the response 
of the presynaptic neuron) and postsynaptic response (output activity of the post-synaptic neuron). 
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Although it plays an important role in revealing the essence of learning and is often regarded 
as the neuronal basis of unsupervised learning, it has been shown that the standard Hebbian 
learning rule is not stable, because the weights will keep increasing or decreasing without bounds 
for any network with a dominant signal, resulting in a divergence. 

Hebbian Learning with Decay. In order to avoid the unstoppable strengthening process in the 
standard Hebbian learning rule, researchers started to look for ways that can enforce constraints 
onto the learning process. One successful approach is to directly add a decay term into the learning 
rule. A general form of this version is 

 
∆𝜔𝜔𝑖𝑖 = 𝜂𝜂𝑥𝑥𝑖𝑖𝑦𝑦 − 𝜆𝜆𝜔𝜔𝑖𝑖                               (10) 

 
where 𝜆𝜆 represents the decay rate. As seen from the above equation, the weight will be stable 

(when ∆𝜔𝜔𝑖𝑖 = 0) at the point 𝜔𝜔𝑖𝑖 = 𝜂𝜂𝑥𝑥𝑖𝑖𝑦𝑦/𝜆𝜆. 
Oja Learning Rule. Oja learning rule (or Oja’s rule) is another variant of the standard Hebbian 

learning rule that solves the stability problem and learns to compute the principal component from 
its input stream. Its mathematical formulation is derived from the standard Hebbian learning rule 
after some simplifications, for the purpose of a concise statement, we omit the derivation and only 
provide its final expression here as 

 
∆𝜔𝜔𝑖𝑖 = 𝜂𝜂(𝑥𝑥𝑖𝑖𝑦𝑦 − 𝑦𝑦2𝜔𝜔𝑖𝑖)                             (11) 

 
It differs from Hebbian learning with decay only in the decay term. That is, in the Hebbian 

learning with decay, the decay term is a value of scaled weight, while in the Oja’s rule, it is a term 
proportional not only to the weight but also to the square of the neuronal output. In this manner, 
Oja’s rule guarantees that stronger restrictions will be applied on synapses with larger weights and 
higher postsynaptic activation levels. 

BCM Learning Rule. The BCM rule, named after the authors of the 1982 paper, Bienenstock, 
Cooper and Munro [47], is an unsupervised learning rule for synaptic plasticity. It originates as a 
simplified mathematical model that captures and models the selectivity of visual cortical neurons 
and has been successfully applied to other types of neurons later. Similar to the other plasticity 
learning rules that we have investigated, it also follows the basic principle of the classic Hebbian 
learning. Discriminatively, BCM introduces a sliding threshold as the regulator that controls the 
changing of the synaptic strength. The mathematical formulation of BCM rule takes the form of 

 
∆ω = ϕ(y, θ)                               (12) 

 
From the perspective of artificial neural networks, the BCM rule regulates the changes on 

synaptic weights based on the input pattern vector 𝒙𝒙 and a nonlinear function 𝜙𝜙. This nonlinear 
function determines how to modify the weights given the values of post-synaptic neural activity 
𝑦𝑦 and a certain dynamic threshold 𝜃𝜃. As shown in Figure 17, the synaptic weight will be reduced 
(with negative 𝜙𝜙) for a low level of post-synaptic activity (𝑦𝑦 < 𝜃𝜃) and will be increased (with 
positive 𝜙𝜙) when the neuronal output value is large (𝑦𝑦 > 𝜃𝜃):  

 

ϕ(y, θ) �
= 0, if y = 0 or θ
< 0, if 0 < y < θ 

> 0, if y > θ          
                     (13)  
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The sliding threshold 𝜃𝜃 is modified over time based on the temporal moving average over 

recent past activation values of y.  The alteration of the threshold determines the weakening or 
the strengthening of the neuronal connection, leading to a self-regulation of the neural plasticity. 
The function 𝜙𝜙 and threshold 𝜃𝜃 are usually expressed as follows 

 
𝜙𝜙(𝑦𝑦,𝜃𝜃) = 𝑦𝑦(𝑦𝑦 − 𝜃𝜃)                           (14) 

 
𝜃𝜃 = 𝐸𝐸[𝑦𝑦𝑞𝑞] = ∑ 𝑝𝑝𝑏𝑏(𝑦𝑦𝑏𝑏)𝑞𝑞𝑏𝑏 , (∀ 𝑞𝑞 > 1)                   (15) 

 
where 𝐸𝐸[𝑦𝑦𝑞𝑞] represents temporal average, 𝑝𝑝𝑏𝑏 is the probability of choosing input pattern 𝑦𝑦𝑏𝑏 

from the dataset. This learning rule is proved to be stable for any 𝑞𝑞 larger than 1, however, 𝑞𝑞 =
2 is often used for the purpose of better simulation [78]. Therefore, we also follow this convention 
in our study. 

 
 

 
Figure 17 The Shape of Nonlinear Function ϕ and Its Relationship 

 
 
Practically, for the ease of implementation, the temporal average of neuron activities is always 

calculated over some recent past. We therefore follow the solution provide by Intrator and Cooper 
in 1992 [79], as 

 
∆𝜃𝜃 = 1

𝜏𝜏
(𝑦𝑦2 − 𝜃𝜃)                              (16) 

 
where 𝜏𝜏 is the averaging period. 

3.5.3.4 Training Procedure. 
To benchmark the capabilities of all synaptic plasticity learning rules mentioned above, the 

synaptic learning was performed based on the evolution DRE using the weather observations [66]. 
In the experiments, DRE optimization process was first performed to evolve a good reservoir 
ensemble structure for the objective problem. Based on the same structure generated, different 
learning rules were applied separately for a certain number of iterations. Once the weights were 
strengthened, the whole network was retrained and retested. Diverse learning rates and decay rates 
(if applicable) were also adopted for each synaptic rule to observe their performance over different 
settings. Except for data scaling and activation function (will explain later), all other settings of 
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the DRE model (including settings of the genetic algorithm and the configuration as well as the 
parameters selection of the network) and data preparation are identical as those in our previous 
work [76].  

After the formation of the ensemble ESN, two types of training are still required for the further 
synaptic adaption, i.e., the supervised training of the readout layer and the unsupervised synaptic 
learning process.  

For the readout layer training, it has been proven by many that offline training provides more 
stable and accurate performance [80], we therefore conducted the readout training in the offline 
manner, where all neuronal activations stimulated along the training sequence are preserved and 
collected for the one-off update of the output weights thereafter. 

For the synaptic learning, a seemingly online training protocol was adopted. As illustrated in 
Figure 18, the unsupervised tuning of the reservoir weights is performed simultaneously with the 
processing of training data. Then the supervised training is carried out as soon as the knowledge 
of the entire training set has been observed. In other words, the internal weights of the reservoirs 
are trained prior to the updating of the output layer. Finally, some new data were tested based on 
the trained internal and output weights to evaluate the learning performance. 

 
 

 
Figure 18 A Diagram of Training Procedures 

 
 
To search for the optimal solution, synaptic learning rules were tested for various lengths of 

training iterations ranging from 50 to 900, increasing by 50 steps, at diverse learning rates and 
decay rates (if applicable). The learning rates of Hebbian learning (with or without decay) and Oja 
learning rule varied from 0.0001 to 0.003 in increments of 0.0001. For the decay rate of Hebbian 
learning with decay, it changed from 0 to 0.0001 for every 0.00002. Note that it is actually the 
classic Hebbian learning when the decay rate takes on value 0. As for the BCM rule, learning rate 
fell into the range between 0.0005 and 0.01 increment at 0.0005 and the τ took on values from 
20 to 300 with increments of 20. 

The NRMSEs of the outputs on testing data were calculated and recorded as the measurement 
of the performance. Results of different learning rules were compared and analyzed. 

In order to apply BCM to the reservoir ensemble networks, we have to make some changes to 
the model settings and parameters to fit the BCM learning rule to the application and benchmark 
all those synaptic plasticity methods. We then illustrate how we changed the activation function 
and data scaling of the ensemble model and state the way we train the synapses. 

In the previous experiments [76], we adopted the hyperbolic tangent function (also known as 
tanh function) as the activation function for all computing units. It maps the input values from 
(−∞, +∞) to (−1, +1). This works well for Hebbian learning (with or without decay) and Oja’s 
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rule, however, as for BCM, an inherent characteristic observed in Figure 21 shows that the outputs 
of neurons should not be negative. For this reason, the tanh function would not be appropriate for 
BCM learning. We then changed the activation function to one of the sigmoidal membership 
functions which maps values from (−∞, +∞) to (0, 1). The inversion of the activation function 
was modified accordingly for training the readout layer. The expressions of the sigmoidal function 
we used and its inverse function are given as follows: 

 
𝑓𝑓(𝑥𝑥) = 1

1+𝑒𝑒−2𝑥𝑥
                              (17) 

𝑓𝑓−1(𝑥𝑥) = 1
2

(ln𝑦𝑦 − ln(1 − 𝑦𝑦))                       (18) 
 

Furthermore, we also needed to rescale the input and teacher data to match the activation 
function. We previously scaled both the input and teacher data to [−0.5, +0.5], now, we scaled 
them to [0.1, 0.9] by multiplying a scaling factor 0.8 and shifting by 0.5. We did not let the data 
range fill up the entire codomain of sigmoid function (0, 1) to avoid generating excessively large 
weights. 

These new settings for BCM were then applied on all synaptic rules to provide a unified 
standard and to benchmark their learning capabilities. The results will be analyzed in section 4.4. 

3.5.4 Interpretive Reservoir: A Preliminary Study on the Association Between 
Artificial Neural Network and Biological Neural Network 

With several decades of growth, artificial neural network (ANN) and its variants have been 
widely explored and exploited for a wide variety of applications in different areas, as a state-of-
the-art learning technique. In the course of its development, there have been two different 
perspectives, which in turn, have resulted in two lines of research. 

The first research line is primarily promoted by those in the field of computer science. The 
motivation lies in the great interest in designing novel neural networks and seeking more powerful 
learning algorithms that can perform complex computational tasks (e.g., classification and 
functional approximation). Leveraging recent advances in artificial neural networks, many 
applications, such as image and object recognition, natural language processing, human-computer 
interaction, games, and autopilot, have already achieved human level or even super-human level 
performance. In this line of research, most of the prior research were task- or application- driven, 
with primarily focus on the improvement of result accuracy and precision, from the pure 
computational perspective. As the neural network architectures became more and more complex, 
some severe problems emerged. For instance, the predictions or classifications provided by neural 
networks become more difficult to explain, and the training process gets harder to control in a 
predictable manner. This increasingly critical issue is well known as the black box problem and 
many researchers have extensively explored various strategies to better explain the behaviors of 
black-box classifiers [81-84]. An alternative approach is, instead of examining the mathematical 
representations in the neural networks, we may look for the answers from the perspective of the 
neural dynamics of biological neural networks, from which the ANN was originally inspired. 

The other research line is related to and motivated by neuroscience, cognitive science, and 
psychology, etc. Different from the first perspective, what is to be primarily investigated is no 
longer the computational procedures and mechanisms, but rather the unclear neural and neuronal 
dynamics (either biological or artificial). Therefore, the other research line combines the 
computational schemes with the biological behaviors and seeks their underlying associations. It is 
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expected that this interaction between the biological brain and the artificial algorithm may lead to 
more insightful understanding about the working principles on both sides. Taking advantage of the 
most recent neuroimaging technologies, researchers have been able to capture the intensive hidden 
responses of brain neurons in several ways. In particular, functional magnetic resonance imaging 
(fMRI) and electroencephalography (EEG) (or a closely relevant method called event-related 
potential, ERP) are the two most popular measurements of brain activities in the domains of 
neuroscience and cognitive science. In this line of research, prior studies have primarily focused 
on investigating and interpreting the cognitive process of humans and have used various types of 
neural networks as the analytic tool. fMRI has been widely used for those studies, because of its 
outstanding ability of identifying brain regions involved in the reaction to specific stimuli and 
constructing the brain functional mapping with rich spatial information by detecting changes 
associated with blood flow [85]. Some research has used neural networks to segregate and analyze 
fMRI data to achieve quantification as well as to model brain dynamics. Others have sought to 
build up the relations between fMRI patterns and certain cognitive processes so as to identify brain 
activities and even read or reconstruct the visual stimuli seen or imagined by a human subject 
(known as brain decoding) [86]. On the other hand, given the bi-directionality of the interaction 
between the biological brain and the artificial network, another branch within this line of research 
has been under-explored, that is, interpreting the learning scheme (or the black box issue) of ANNs 
with the support of real brain activity data. 

Since the black box issue has limited the development of ANNs for quite some time, 
investigation on this issue using brain activity data may help to bridge the gap between the 
biological and artificial neural networks and promote our understanding of the learning scheme 
associated with ANNs. 

3.5.5 Rationale 

Memory is fundamental to cognitive learning and the representation of the intrinsic memory 
mechanism in the context of artificial neural networks has been a long- standing and unexplained 
problem.  We argue that we can partially emulate the intrinsic neural and neuronal dynamics 
exhibited within the biological brain by indirectly examining extrinsic brain activity characteristics. 
The objective of this study was to preliminarily investigate and interpret the memory mechanism 
of a neural network based on some biological observations about brain activity, especially how the 
intrinsic knowledge is represented and evolved in a biological neural network. 

The rationale of this study was derived from a widely-accepted assumption that different 
people have different memory built upon their distinct knowledge base and diverse experiences. 
The different experiences result in the changes in brain by creating and eliminating neuronal 
connections (synapses) as well as strengthening and weakening existing synaptic connections to 
continuously learn and remember [80, 87, 88]. Those in turn greatly contribute to the very different 
reactions of people to the surroundings, and consequently result in the significant differences 
among individuals’ brain activities when facing even the same stimulus. It can be therefore 
assumed that the diversity of individual memory is rooted in the varied brain structures and 
partially reflected as the ever-changing brain activities measured through many ways (e.g., 
EEG/ERP). Using these brain activity signals as the training data, we attempted to generate a 
neural network with certain topology and connectivity so that it could serve as a simplified brain 
model and approximately mimic the observed brain activities. With the brain signal recorded from 
different subjects, diverse network models were generated, and through analysis and comparison, 
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we were able find some measurable indices to explain the representation and principle of memory 
in artificial neural networks. 

3.5.5.1 Brain Activity Measurement 
For the measurement and representation of brain activities, the two most common and most 

frequently used techniques are fMRI and Electroencephalography (EEG).  
fMRI, as a hemodynamic technique, measures brain activity by imaging changes associated 

with blood flow, primarily in the form of blood-oxygen-level dependent (BOLD) contrast. It works 
based on the finding that cerebral blood flow is spatially coupled with neural activation. 
Consequently, fMRI is widely used in the study and localization of region-related brain activity.  

EEG is an electrophysiological method to monitor the electrical activity of the brain. It is 
usually operated by placing a number of electrodes on the fixed locations along the scalp and 
measuring voltage fluctuations resulting from ionic current within the neurons of the brain. 
Therefore, each channel (a time series signal recorded from one electrode) of EEG signals 
represents the integrated brain activations of a certain area. However, as an ongoing signal, EEG 
can be collected without the presence of any particular stimulation. Therefore, it cannot represent 
and be associated with any specific cognitive process.  

Alternatively, ERP as the measured brain response (measured by means of EEG) that is the 
direct result of a specific sensory or cognitive event, is usually adopted in cognitive neuroscience 
research to allow some experimental controls over the cognitive state of the subject and to measure 
dedicated brain response to a specific stimulus. It is calculated by averaging several trials of EEG 
responses time-locked to the event of interest. Through this way, brain activity not related to the 
event of interest is mitigated and that related only to the event of interest is emphasized.  

For our purposes, EEG/Event Related Potential (ERP) have unique advantages over fMRI, 
mainly from the following aspects:  
• Compared with fMRI, EEG/ERP offer very direct measurements of neural electrical activity. 

The external appearance and the partial internal mechanism of neuronal activities are the 
propagation of electrical signals (or spikes), while fMRI is based on the indirect relationship 
between neural activity and BOLD. EEG is more suitable of the direct expression of brain 
activities; 

• EEG/ERP have excellent temporal resolution (determined by the sampling rate) and relatively 
low spatial resolution, while fMRI provides relatively low temporal resolution (inherently 
limited by the slow speed of the BOLD response) and high spatial resolution. Considering the 
facts that memory itself is a sophisticated time-related mechanism, and additionally, non-
volitional memory-related brain activities usually occur and last for a very short time period 
(in the order of milliseconds) [89], EEG/ERP are thus more capable than fMRI for 
continuously measuring and recording the time-sensitive target brain activity;  

• EEG can be directly collected and sampled as quantized data in a relatively convenient way at 
a lower cost. However, the recording of fMRI requires large specialized medical facilities, 
which is much more expensive and introduces difficulties in quantification.  

3.5.5.2 Data Acquisition. 
For this study, to measure and model the diverse brain activities, we utilized individually 

unique experience and memory. Data was obtained from another, related project where we 
collected EEG readings. In that project an ERP biometric protocol called Cognitive Event RElated 
Biometric REcognition (CEREBRE) [90, 91] was employed in the data acquisition process. The 
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CEREBRE protocol was designed to elicit differential responses across subjects from multiple 
functional brain systems. It applies control over the cognitive state of participants using carefully 
designed categories of image stimulation that are likely to cause unique patterns of functional brain 
activity. With the help of CEREBRE protocol, a more stable measurement is provided, and the 
disadvantage of remarkable inconsistency and noise level associated with raw EEG signals can be 
largely diminished. 

Figure 19 demonstrates the electrode locations in the CEREBRE protocol, among which, 26 
are placed on the scalp, 3 around the eyes to record electrooculogram (EOG) and 1 at the right 
mastoid as reference.  

 
 

 
Figure 19 The Spatial Locations of 30 EEG Channels (Electrodes) 

 
 
In the brainwave collection process, participants were presented with a set of image stimuli. 

The raw EEG signals were recorded for 1.1 seconds after each switch of the stimuli at a sampling 
rate of 500 Hz, resulting in a path of time series with 550 data points. Following this way, the 
unintentional reactions of the human subjects towards the visual stimuli were recorded when they 
were focusing on watching. We recorded the EEG signals over 10 adult subjects. For each subject, 
30 channels of EEG were acquired simultaneously from 30 electrodes placed along the scalp and 
face, monitoring the electrical activities of different regions in the brain. 

Following the CEREBRE protocol, the image stimuli presented to the subjects were organized 
into six categories: black-and-white Gabor patches (BW Gabor, a set of sinusoidal gratings), black-
and-white low-frequency GRE words (BW Text), black-and-white celebrity faces (BW Celebs), 
black- and-white food (BW Food), color food (C Food) and color targets mixture (C Mix, which 
mixes up the color images of the first 5 categories). It aimed at evoking the participants’ diverse 
intuitive responses that associated with their unique memory and knowledge. The output from the 
previous project was analyzed from the neuro-network perspective in this project.  

 

3.5.5.3 Artificial Neural Network Architecture. 
With regard to the neural network architecture employed, we chose a variant architecture of 

reservoir computing (RC). The reason was that, information in a biological brain does not 
propagate in a single direction; it is diffused along recurrent pathways and feedbacks. The structure 
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of RC networks is more like that of biological brain and enables such complex signal propagations 
and neural dynamics compared to feed forward networks. Among echo state network (ESN) [20] 
and liquid state machine (LSM) [55], we selected the ESN paradigm in this preliminary study in 
view of its ease of implementation. 

Considering the protocol of brainwave collection, in order to fit neural networks to brain 
activities, EEG/ERP signals can be seen as the output potentials (activation values) of hidden units 
in a neural network. Based on this assumption, a single neuron was adopted for the processing of 
each EEG signal channel. Since the EEG/ERP data were collected/computed over 30 channels, the 
network structure was built with 30 neurons in total, as shown in Figure 20, representing 30 brain 
areas recorded by the electrodes. This small network is the most simplified model we could come 
up with. It may have the potential to investigate the relationships between brain regions and 
provide us with some initial ideas about the effects that network structures may have on the 
expression of memory. 

 

 
Figure 20 The ESN like Net Structure Adopted 

 
 
Although an ESN-like RNN was established for brain modeling, we would not be able to build 

up the network normally due to some tricky issues that need to be dealt with. First of all, 
determining the network inputs was a tough problem. Generally, in research cases where subjects 
were presented with image stimuli, either the raw stimulating images or brain signals are used 
directly as network input. However, our intention was neither to learn the representation of the 
seen images, nor to identify the on-going brain activities, so neither strategy is suitable and 
applicable for our case. In addition, it would be unrealistic to directly use the original stimuli as 
the input for such a simplified model of brain simulation. Furthermore, it’s not an easy job to 
translate the stimuli otherwise in the context of ANNs. As a result, how to properly define the 
network input becomes very challenging. Similarly, it is not feasible to precisely identify the 
network outputs. We only adopted non-volitional EEG brainwaves and did not involve or trigger 
any conscious behaviors [89]. Hence, the EEG signals in this situation should be seen as the 
internal activations rather than the output activations of the brain, and no output signal could be 
explicitly defined or recorded during the data acquisition process. In summary, compared with the 
traditional network implementations, the difference not only lies in the absence of explicit inputs, 
but also in the absence of clear outputs. 
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To tackle the issues above, we defined the network inputs as unknown but constant values to 
be determined in consideration of the way that image stimuli were presented (static image stimuli 
are presented without changing throughout the recording of each EEG clip). Random initialization 
of inputs would be implemented. We also got rid of the output layer in the network. The eventually 
measurable values were the activation values associated with each hidden neuron. 

The network structure we constructed with 30 neurons is shown in Figure 20. All dashed lines 
including the neuronal connections and the input indicate the undetermined parameters and the 
solid lines illustrate the known internal states (hidden activations) composed of ERP data series. 
The connection weights are denoted by a 30×1 input weight matrix Win and a 30 × 30 internal 
weight matrix W. Accordingly, the updating of the internal activations of the reservoir (also termed 
as internal states) was processed as follows: 

 
       𝒙𝒙𝑜𝑜 = 𝑓𝑓(𝑾𝑾𝑖𝑖𝑖𝑖𝒖𝒖𝑜𝑜 + 𝑾𝑾𝒙𝒙𝑜𝑜−1)                         (19) 

 
where 𝑓𝑓 is the activation function of internal neurons, 𝒖𝒖𝑜𝑜 and 𝒙𝒙𝑜𝑜= (𝑥𝑥1,𝑜𝑜, ..., 𝑥𝑥30,𝑜𝑜)′ represent 

the input stimulus and internal states at time t. 
 

3.5.5.4 Modeling Method. 
In this work, to evolve neural networks based on ERP data, the input and all connection 

weights were defined as parameters to be trained and the ERP signals were used as the training 
data. However, given the aforementioned restrictions, it was manifest that we are not able to train 
the network in the conventional manner, where the internal weights within the reservoir are fixed 
and only output weights are trained. 

The essence of the task is a multivariate time series problem. We thus consider a vector 
autoregressive (VAR) model as a feasible method to estimate the parameters. Generalizing from 
the univariate autoregressive model, VAR allows for more than one evolving variable for the 
analysis of multivariate time series. It describes the evolution of a set of variables as linear 
functions of their past values (or lagged values) over the same period [92]. 

Let 𝒀𝒀𝑜𝑜= (𝑦𝑦1,𝑜𝑜, 𝑦𝑦2,𝑜𝑜, ..., 𝑦𝑦𝑖𝑖,𝑜𝑜)′ be an n × 1 vector of time series variables. Then a p-th order 
(also called p-lag) VAR model, denoted by VAR(p) has the form: 

 
  𝒀𝒀𝑜𝑜 = 𝒄𝒄 + 𝑨𝑨1𝒀𝒀𝑜𝑜−1 + 𝑨𝑨2𝒀𝒀𝑜𝑜−2 + ⋯+ 𝑨𝑨𝑝𝑝𝒀𝒀𝑜𝑜−𝑝𝑝 + 𝜀𝜀𝑜𝑜                  (20) 

 
where t = 1, ..., T, 𝑨𝑨𝑖𝑖 (i = 1, ..., p) are n × n coefficient matrices, 𝒄𝒄 = (𝑐𝑐1, ..., 𝑐𝑐𝑖𝑖)′ is a fixed 

(n × 1) vector of constant terms and 𝜀𝜀𝑜𝑜 is an n-dimensional vector of error terms made up of 
serially uncorrelated or independent white noise. Given the observations of y over the entire sample 
period, 𝒄𝒄, 𝑨𝑨𝑖𝑖 and 𝜀𝜀𝑜𝑜 can be estimated with multivariate least squares (MLS) approach. 

Remember that for the network adopted, input 𝒖𝒖𝑜𝑜 is defined as unknown constant parameter 
and 𝑾𝑾𝑖𝑖𝑖𝑖 is a vector of static parameter terms. Consequently, when multiplied together, they can 
be combined as a 30 × 1 constant vector, representing the collection of values fed into each hidden 
neuron. The combining of 𝒖𝒖𝑜𝑜 and 𝑾𝑾𝑖𝑖𝑖𝑖 also prevents the equations from ending up with infinite 
solutions. We hereby define this term as 

 
               𝒄𝒄 = 𝑾𝑾𝑖𝑖𝑖𝑖𝒖𝒖𝑜𝑜                                (21) 
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It can also be noted from (19) that the internal states 𝒙𝒙𝑜𝑜 is a linear function of their first-lag 
values 𝒙𝒙𝑜𝑜−1 for all variables in the set. Hence when employing linear activation function, the state 
updating equation (19) fits the VAR model of order 1 (i.e., VAR(1)). We rewrite it below as: 

 
                𝒙𝒙𝑜𝑜 = 𝒄𝒄 + 𝑾𝑾𝒙𝒙𝑜𝑜−1                            (22) 

 
The activations of hidden neurons serve as 30 time series variables (n=30) in this model. The 

constant input term 𝒄𝒄 and internal weight matrix W are the parameters that need to be estimated 
using vector autoregressive.  
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4.0 RESULTS AND DISCUSSION 

4.1 Task 2: Performance Assessment and Characterization of Computational 
Intelligence Approaches in Autonomous Target Tracking 

4.1.1 Result Comparison Among RC-based, SDAE-based and CNN-based Trackers.  

10 positive and 100 negative samples were selected from the first frame to initialize the 
network. The training repeats for 20 epochs before the tracking starts. Experiments were developed 
and implemented in MATLAB. No offline pre-training was applied. 

Figure 21 presents the actual and estimated trajectories of the three trackers described above. 
It is shown that SDAE and CNN provide similar outstanding performance. Although RC-based 
tracker exhibits worst accuracy in recognizing and tracking, it can still manage to seize the target 
through the whole process and never loss the track. 

 
 

 
Figure 21 Ground Truth Trajectory vs. Estimated Trajectories of RC-based (left) SDAE-based (middle) and 

CNN-based (right) trackers 
 
 
Results that are more illustrative are given in Figure 22-24, which selectively present the 

tracking results of all three methods in randomly selected frames. This demonstrated that despite 
the relatively lower accuracy in some frames, the RC network succeeds in representing the input 
images and achieves acceptable performance even in some complex situation such as the case 
indicated in frame 44 and 53 when two subjects get close to each other. 
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Figure 22 Tracking Results of RC-Based Tracker in 9 Selective Frames 

 
All three tracking learners were developed and implemented in MATLAB. No off-line pre-

training was applied. We only executed the trackers on a 2.7GHz 2-core Intel Core i5 processor 
with 8GB DDR3 memory. The computational efficiency is evaluated in Table 10. 

 
 

Table 10 Computational Efficiency of Three Trackers on CPU 

Tracker Efficiency Elapsed Time 
RC 0.175fps 452.001s 

SDAE 2.839fps 27.823s 
CNN 1.849fps 42.735s 
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Figure 23 Tracking Results of SDAE-Based Tracker in 9 Selective Frames 

 
 

 
Figure 24 Tracking Results of CNN-Based Tracker in 9 Selective Frames 
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4.1.2 Speedup on GPU Using Reservoir Computing Based Object Tracker 

In the previously proposed method, a standard RC network was adopted as the feature extractor 
to directly process image inputs. An additional softmax layer connected to the outputs of the RC 
network plays the role of binary classifier, explicitly distinguishing the object from its background. 
Particle filter can generate probable candidates and identify the object being tracked among them. 
By combining the three parts and making RC directly deal with the raw image pixels, it was 
observed that RCT managed to handle the tracking task with difficulty. Compared with the other 
two methods respectively based on stacked denoising autoencoder (SDAE) and convolutional 
neural network (CNN), RCT gave the worst performance on both tracking accuracy and 
computational efficiency, leading to the conclusion that RC is less effective and favorable on direct 
and accurate image representation. 

Considering that the employment of a GPU platform in the massive computation may 
potentially promote the efficiency of the RCT, we improved the codes and activated the GPU (an 
NVIDIA Geforce GTX 780) by invoking the built-in CUDA functions in the MATLAB 
environment. The acceleration outcomes over all three methods were compared with the tracking 
experiments executed on CPU (two 2.40GHz 6-core Intel Xeon processors), as shown in Table 11. 

 
 

Table 11 Speedup of GPU Compared with CPU 

 SDAE CNN RC 

CPU Platform 20.372s/3.878fps 53.783s/1.470fps 549.061s/0.144fps 
GPU Platform 5.705s/13.846fps 188.205s/0.420fps 37.319s/2.117fps 

 

4.1.3 Tracking Results of the Combined Method (RCAET) 

As in previous experiments, 10 positive and 100 negative samples were selected from the first 
frame to initialize the latter part of the network. The training repeats for 20 epochs before the 
tracking starts. Experiments were developed and implemented in MATLAB. No offline pre-
training was applied. We executed the tracking on the same CPU platform (Intel Xeon processors) 
as mentioned above. 

Figure 25 presents the actual and estimated trajectories of two trackers, RCAET (combining 
RC and AE) and SDAE-based tracker. The update threshold of 0.6 was applied on both trackers, 
while RCAET had an additional give-up threshold 0.4. From this figure, it can be observed that 
RCAET managed to track the target through the whole process but provided a jagged trajectory. 
SDAE-based tracker showed a smoother trajectory but lost the target midway through. 
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Figure 25 Ground Truth vs. Estimated Trajectories of RCAET (left) and SDAE-based Tracker (right) 

 
 

In Figure 26 and Figure 27, certain frames were selected to demonstrate the tacking results of 
the two methods. This showed that in spite of relatively lower accuracy in some frames, RCAET 
succeeded in tracking the trailer and achieved acceptable performance even in some complex 
situations such as the case indicated in frame 44 and 53 when two subjects get close to each other. 
However, due to the cut down of the update threshold, (it originally adopted 0.8), the SDAE-based 
tracker loses some capacity of fixing the classification error, and finally lead to the failure of the 
task (shown in frame 62 and 71). 

 
 

 
Figure 26 Tracking Results of RCAET in 9 Selective Frames 
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Figure 27 Tracking Results of SDAE-based in 9 Selective Frames 

 
Timestamp data were collected for analysis from the time efficiency perspective. The 

summary of computational efficiency is then evaluated in Table 12. 
 

Table 12 Computational Efficiency of Three Trackers on CPU 

Tracker Thresholds Tracker Elapsed Time 

RCAET τg = 0.4; τu = 0.6 19.2997s 4.093fps 

RCT τu = 0.8 549.061s 0.144fps 

SDAE-based 
Tracker 

τu = 0.6 15.454s (fail) 5.112fps (fail) 

τu = 0.8 20.372s 3.878fps 
 
This shows that by utilizing the RC prediction model, our new paradigm can improve 

efficiency that was comparable or even better than the original SDAE-based tracker. Although the 
SDAE-based Tracker with a τu of 0.6 consumed the shortest time, it failed to track the object 
throughout complete video sequences. 
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4.2 Task 3: Dynamic Ensembles of Reservoir Networks for Multi-Object Pattern 
Recognition  

The dynamic reservoir ensemble model was tested on the temperature prediction task. The 
experiment ran for 69 iterations before it stopped. For all three models (standard RC, static 
reservoir ensemble and dynamic reservoir ensemble), testing data was used for the NRMSE 
calculation. NRMSEs of the standard RC and SRE were calculated as the average of 10 runs with 
different random weights. For DRE, the weights were first generated and then left unchanged in 
the evolutionary process, 5 different sets of random weights were initialized ahead of time and 5 
runs were performed for each set. NRMSEs under this model were the average over 25 runs. 

The optimization result over 69 generations is displayed in Figure 28, where the red dots 
represent the mean fitness value of each generation and the blue dots refer to the best fitness within 
each generation. It shows clearly that for the initial generations, the fitness values of the population 
are extremely large, as the genetic algorithm iteratively searches in the space and evolves the 
candidate solutions, better individuals are derived and the fitness function comes to a convergence. 
The bottom of this figure indicates the best chromosome. 

 

 
Figure 28 Optimization process and best solution of dynamic reservoir ensemble 

 
According to this chromosome, the best reservoir ensemble structure gained can be easily 

reproduced as shown in Figure 29.  
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Figure 29 Optimal Reservoir Ensemble Structure Constructed by the Dynamic Reservoir Ensemble Model 

 
Figure 30 shows the testing NRMSE of all the structures implemented. As the labels indicated, 

“Standard” refers to the two standard structures implemented. “1-I/O Neuron” is the one with a 
single input and a single output, “5I-2O Neurons” represents the model with five inputs and two 
outputs. “SRE” represents the static reservoir ensemble model used in this experiment, namely 5I-
5R-1O. “DRE” is short for dynamic reservoir ensemble. It can be observed from those values that 
the structures obtained from DRE model always outperform the other structures on testing 
performance (with the worst case of DRE 0.62564 and 0.67456 still better than the best case of the 
other structures 0.70517 and 0.75923) and exhibit very stable performance.  

 
 

 
Figure 30 Testing NRMSE of All Models 
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Combined with some more intuitive results shown in Figure 31, Figure 32 and Figure 33, it 
can also be observed that the standard structure is unsolvable for single (either high or low) 
temperature prediction. Therefore, it is found that the static reservoir ensemble without internal 
correlations is also unsolvable for high and low temperature prediction, because it is similar to the 
standard model except for the output layer. However, the linear combination in output layer is far 
from capable of handling multiple sets of dynamics. 

 
 

 
Figure 31 Performance of Standard Model (a) with 1 I/O Neuron; (b) with 5I-2O Neurons 

 
 

 
Figure 32 Performance of SRE Model without (a) and with (b) Inter-Reservoir Correlations 
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Figure 33 Performance of DRE (a) Prediction Result of High Temp.; (b) Prediction Result of Low Temp 
 
Another interesting finding was that the static reservoir ensemble with correlations had better 

performance than the standard model with five input neurons and two output neurons. Note that 
both structures introduce some degree of dependency between the five input signals. For the 
standard model, due to the normal distribution of connections and weights over the entire reservoir, 
the dependency of the five signals can be roughly treated as equal. However, in the reservoir 
ensemble model, the higher sparsity between reservoirs leads to a biased dependency over different 
sets of dynamics. This may potentially be an explanation of this result. In Figure 37, the best 
performance of temperature prediction is achieved using the proposed dynamic reservoir ensemble 
model. 

4.3 Task 4: Human Category Learning Inspired Classification Network 

4.3.1 Experiment Setup. 

Input and Output Sequence. 
In this experiment, we used two different types of time sequence as inputs (shown as Figure 

34 (a)). A random sequence (between 0 and 1) was adopted as category 1 (C1) and a sinusoidal 
wave with 10% noise as category 2 (C2). The input sequence of category 2 was derived using the 
following equation: 

 
𝑢𝑢𝐶𝐶2(𝑖𝑖) = sin 𝜋𝜋

16
𝑖𝑖 + 0.1𝜖𝜖                           (23) 

 
where 𝑖𝑖 is the index of the current data sample, 𝜖𝜖 is a random error. 
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Figure 34 Model Input (a) and Output (b) 

 
 
The model is supposed to distinguish between the two categories and learn a different nonlinear 

autoregressive moving average (NARMA) function for each of them. The expected (teacher) 
outputs are shown in Figure 34 (b) and the NARMA signals for C1 and C2 are described as: 

 
𝑦𝑦𝐶𝐶1(𝑛𝑛) = 0.1𝑢𝑢𝐶𝐶1(𝑛𝑛 − 2) + 0.05𝑢𝑢𝐶𝐶1(𝑛𝑛 − 2)∑ (𝑢𝑢𝐶𝐶1 − 𝑖𝑖)10

𝑖𝑖=6 + 0.2𝑢𝑢𝐶𝐶12(𝑛𝑛 − 5) + 0.5     (24) 
 

𝑦𝑦𝐶𝐶2(𝑛𝑛) = 0.3𝑢𝑢𝐶𝐶2(𝑛𝑛 − 1) + 0.05𝑢𝑢𝐶𝐶2(𝑛𝑛 − 1)∑ (𝑢𝑢𝐶𝐶2 − 𝑖𝑖)5
𝑖𝑖=1 + 0.5𝑢𝑢𝐶𝐶2(𝑛𝑛 − 1) ∙ 𝑢𝑢𝐶𝐶2(𝑛𝑛 − 9) + 0.5 (25) 

 

Model Parameters. 
In the ESN, one reservoir with 100 neurons and 10% connectivity was constructed. Two output 

neurons with feedback to the reservoir were adopted, one for each category. Spectral radius was 
set as 0.8, hyperbolic tangent (tanh) activation function was employed for all neurons. 

BCM learning was used as synaptic training of the internal weights of reservoir. τ = 1, η =
0.007. 100 steps of synaptic learning were applied for each category in each iteration. 

The model was trained for 5 iterations, within each iteration, the two categories were trained 
successively. For each category, the model was fitted to a segment of 500 samples of that category, 
in which a 100-sample initial run was adopted to washout the internal states.  The last 100 
samples were for verification. After the 5-iteration training, the trained model was tested on a new 
testing segment of 100 samples. 

For comparison, we also implemented a control experiment, in which the model was trained 
only once. 1500 samples were used for this one-time training to match the data volume used for 
training in the iterative learning. 

4.3.2 Results.  

When training and testing on one category, we did not cut off the output layer of the other 
category, so that its output values can uninterruptedly make effect on the internal states of the 
reservoir as well as the output of the true category. This is a very important feature of our 
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implementation. For one thing, our biological cognitive system is not a simple accumulation of 
exclusively trained “classifiers” that are non-interfering with each other. Instead, it is a highly-
sophisticated composition where different components are working with frequent interaction. 
Therefore, this implementation mimics the real scenario of category learning, where when learning 
a new concept, the previously learned knowledge or skills will still play roles in one way or another. 
It is the wonder of the brain that even though all the time in noise, it can still work steadily and 
efficiently. For another, the reservation of feedback connections guarantees the significance of the 
model. Without the output feedback connections, it is no different from training two individual 
ESNs separately. Next, the test results of one-time training and iterative training will be provided 
and analyzed. 

The test result on both outputs after one-time training were plotted in Figure 35. Since we did 
not remove the other output layer when processing one category, there are some unimportant 
signals generated from that output (as shown in the lower left and upper right of Figure 35). Due 
to the interference between the categories and the biased training, the error is relatively large, 
especially for the sinusoidal wave. 

For iterative training, it can be observed from Figure 36 that both categories have been 
correctly recognized and accurately predicted.  

 

 
Figure 35 Test Results on Category 1 (a) and Category 2 (b) for One-time Training. 
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Figure 36 Test Results on Category 1 (a) and Category 2 (b) for Iterative Training. 

 
The normalized root mean square errors (NRMSEs) on both categories for the two training 

schedules are listed in Table 13. 
 

Table 13 Test Errors (NRMSE) on Both Categories for One-time Training and Iterative Training. 

Test on 
One-time Training Iterative Training 

Out 1 Out 2 Out 1 Out 2 
Category 1 0.35936 (1.6398) 0.29822 (2.9154) 
Category 2 (2.0142) 0.35166 (1.7771) 0.061255 

 
The values in parentheses are the NRMSEs for the false category (the category different from 

the one at input) hence, they are not important. The accuracies on both categories are significantly 
improved, especially for category 2. It shows that the iterative training process can enhance the 
performance of this category learning task and balance the model over both categories. 

Based on the results of this study, it can be concluded that when combined with synaptic 
learning and trained over multiple iterations, the ESN with one reservoir, divergent output layers 
and output feedback connections is capable of learning different categories and the associated 
computational rules from time sequences. Iterative training is helpful in the formation of a 
balanced model. 

4.4 Task 5: Evolutionary Adaptation for Reservoir Network Optimization 

4.4.1 Results of Principal Neuronal Reinforcement 

The results for this study were obtained from the averaging of the data obtained over 10 
repetitions of the experiment. The errors presented are that of the testing data, which is indicative 
of the network performance. The NRMSE of the experiments are displayed in Figures 37(a) - (c), 
presenting the effects of strengthening, weakening and combination respectively. In these graphs, 
O1 and O2 refer to the NRMSE of standard ESN outputs 1 and 2, while the corresponding dotted 
lines refer to the NRMSE of the PNR trained outputs. It was observed that for ESN of neuron size 
100 - 300, there isn’t a clear distinguishable improvement in the errors observed. This is due to the 
fact that the errors of these networks were quite low to begin with, and thus the effects of the 
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plasticity updating were not apparent. However, as the network size continues to increase, the 
improvement becomes obvious in all three cases. 

 

 
Figure 37 Comparison of NRMS Error Pre/Post-Retraining Performance 

 
It is very clear from these figures that the pre-PNR training output NRMSE becomes 

increasingly large as the networks size increases, and that upon applying the PNR training, the 
NRMSE settle at below 0.5 for all cases. 

In contrast to this, Figures 38 and Figure 39 present an example of the efficacy of the proposed 
PNR rule in improving performance. Figure 38 shows the ESN trained with 900 randomly 
initialized neurons. It is clear that a large error is present, i.e., the NRMSE errors of larger than 1.0 
and a large visually verifiable mismatch between the actual (green) and target (blue) outputs. In 
Figure 39, the internal weights had both the strengthening and weakening schemes applied, and 
the error is obviously smaller (i.e., the NRMSE errors of approximately 0.4 or lower), and the 
output is now much more representative of the desired output. 

 
 

 
Figure 38 Trained ESN Performance from Randomized Initialization 
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Figure 39 Retrained ESN Performance from Updated Weights 

 
 
Looking at the results of for the NARMA dataset, we can see in Figure 40 that a similar trend 

was observed. There is a general increase in NRMSE as there is an increase in ESN size. Once 
again, upon the application of PNR update, there is a clear improvement in the performance of the 
system. Note that the error rate for 100 neurons is clearly higher than that of the other neuron sizes. 
This is likely due to the fact that 100 neurons are not enough to fully capture the dynamics of the 
system, thus the learning rule had limited effects. This was verified with an exploratory search and 
found the optimal starting neuron size to be around 280 neurons. 

 
 

 
Figure 40 NRMSE Pre/Post-Retraining for NARMA Dataset 

 
 
The experiments into the algorithm’s effects on connectivity also showed positive results. 

From Figures 41(a) - (c), there is a general increase in the initialization errors present as the 
connectivity increases. However, it is apparent that upon the application of the PNR rule and 
retraining, the error for all the connectivity were reduced. 
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Figure 41 Comparison of NRMS Error Pre/Post-Retraining Performance 

 
 
In Tables 14 and 15 we can see that the PNR outperforms the Anti-Oja rule in improving the 

performance of the system for both the benchmark dataset and the NARMA dataset. For the 
benchmark dataset, the Anti-Oja rule was not able to retrain the ESN to converge when the starting 
error was large, causing the retrained error to settle at around 1.1. For the NARMA dataset, it was 
seen that the PNR scheme also outperformed the Anti-Oja rule, with the output error settling at 
around 0.264 and 0.159 for outputs 1 and 2 respectively compared to the 0.497 and 0.369 of the 
Anti-Oja scheme. 

 
Table 14 Average NRMSE Over 100-900 Neurons After Plasticity Rule (Toolbox Dataset) 

 PNR Anti-Oja 
Average NRMSE 0.242 1.146 

 
 

Table 15 Average NRMSE Over 100-900 Neurons After Plasticity Rule (NARMA Dataset) 
 PNR Anti-Oja 
 Output 1 Output 2 Output 1 Output 2 

NRMSE 0.264 0.159 0.497 0.369 
 

4.4.2 Neuronal Plasticity Inspired Reservoir Ensemble Optimization 

Enhanced Dynamic Reservoir Ensemble with Principal Neuron Reinforcement 
The experiments were conducted with a reservoir ensemble consisting of 5 reservoirs, under 

two settings: with 40/100 neurons for each reservoir.  
Four configurations were investigated in this study. Upon training the system with the GA 

method, the system was furthered trained under the following scenarios: 
 

• Applying PNR with respect to entire ensemble: This configuration was chosen as it is the 
most straightforward and simple combination of the two methods. The PNR method is applied 
directly to the structure determined by the GA. 

• Applying PNR with respect to each reservoir in the ensemble: This configuration was 
chosen to ensure an equal influence on each reservoir by the PNR. The first configuration 
chooses principal neurons from all the output weights, which may result in bias over different 
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reservoirs. For example, more neurons could be chosen from one reservoir than another. By 
performing the PNR individually and separately on each reservoir in the ensemble, the same 
number of principal neurons will be chosen in each reservoir. 

• Applying PNR to principle neurons in dominant reservoirs in the ensemble: As the 
connections to the outputs vary among the reservoirs in the ensemble, it is intuitive that certain 
reservoirs may be more dominant than others. This configuration attempts to strengthen only 
the principal neurons identified in the dominant reservoirs. 

• Applying PNR to all neurons in dominant reservoirs in the ensemble: Similar to the 
previous configuration, the dominant reservoir is determined. For this case, all the neurons in 
the dominant reservoir is identified as principal neurons. This in effect strengthens all 
connections in and out of the dominant reservoir. 
 
For the PNR training process, the output weights are ranked from high to low, where the 

neurons connected to the highest 10% of the weights are considered the principal neurons. All 
weights that are connected to these principal neurons are increased by 1% and the system is 
retrained. This is repeatedly performed until no further improvement in the output error is seen. 

All the experiments were also repeated with the reservoir size of 100 for each reservoir to 
investigate the effect of having a larger dynamic system on the performance of the output. 

 

4.4.2.1 Strengthening Principal Neurons with Respect to Ensemble. 
Under the first scenario, the DRE method was first executed to optimize the reservoir ensemble 

with GA, then PNR was directly applied to the optimized reservoir ensemble structure. The 
weights to both output neurons are ranked from high to low, and the reservoir neurons connected 
to the top tenth of the weights were labeled as principal neurons. PNR was applied separately, first 
to the principal neurons identified from the weights to only output 1, then to the principal neurons 
identified from the weights to only output 2, finally to both simultaneously. The results are 
displayed respectively in Table 16 and Table 17. 

 
 

Table 16 Strengthening Principal Neurons with Respect to Ensemble (40 neurons per reservoir) - Instance 1 
 Steps  NRMSE of Output 1 NRMSE of Output 2 

DRE (5 reservoir/40 neuron) 0.6431 0.5231 
Strengthened by output 1 0.6635 0.5175 
Strengthened by output 2 0.6750 0.5186 

Strengthened by both 06833 05116 
 
 
Table 17 Strengthening Principal Neurons with Respect to Ensemble (40 neurons per reservoir) - Instance 2 
 Steps  NRMSE of Output 1 NRMSE of Output 2 
DRE (5 reservoir/40 neuron) 0.6788 0.5628 

Strengthened by output 1 0.6792 0.5629 
Strengthened by output 2 0.6708 0.5890 

Strengthened by both 0.6712 0.5889 
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It can be seen that for output 2, the NRMSE is reduced when PNR is applied in all three cases 

where the opposite is seen with output 1. However, this effect is not consistent across multiple 
tests. As can be seen in Table 17, the error of output 1 has been reduced while the error for output 
2 has increased. It was discovered through repeated testing that each GA determined structure 
usually yielded one output that could be improved using the PNR method while the other output's 
performance could be weakened. 

The experiment was also repeated with 100 neurons in each reservoir. Result is shown in Table 
18. In this configuration, the same trend was observed where one output was likely to gain an 
improvement after PNR being performed while the error for the other output increases. It is perhaps 
important to note that though there is a change in value for the errors, visually it is not noticeable. 
As it can be seen in Figure 42 and Figure 43, the two are virtually indistinguishable. 
 

 
Table 18 Strengthening Principal Neurons with Respect to Ensemble (100 neurons per reservoir) 

Steps  NRMSE of Output 1 NRMSE of Output 2 
 DRE (5 reservoir/100 

neurons) 
0.6689 0.6295 

 Strengthened by output 1 0.6691 0.6298 
 Strengthened by output 2 0.6331 0.7661 
 Strengthened by both 0.6234 0.7669 

 
 

 
Figure 42 Output 1 and 2 Optimized with GA (40 neuron) 
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Figure 43 Output 1 and 2 Optimized with GA and PNR (40 neuron) 

 
 

4.4.2.2 Strengthening Principal Neuron with Respect to Each Reservoir. 
Under the second scenario, PNR was applied to each reservoir separately. This case did not 

yield a clear improvement on the error for either outputs. Table 19 shows typical results for this 
scenario, where there may be a small improvement on one of the outputs and a small increase in 
error for the other. This was also tested for the configuration 100 neurons per reservoir, a similar 
type of improvement is seen in Table 20. 

 
 
Table 19 Strengthening Principal Neuron with Respect to Each Reservoir (40 neurons per reservoir) 

Steps NRMSE of Output 1 NRMSE of Output 2 
DRE (5 reservoir/40 neurons) 0.6431 0.5231 
After Strengthening with PNR 0.6583 0.5220 

 
 
Table 20 Strengthening Principal Neuron with Respect to Each Reservoir (100 neurons per reservoir) 

Steps NRMSE of Output 1 NRMSE of Output 2 
DRE (5 reservoir/100 neurons) 0.6689 0.6295 
After Strengthening with PNR 0.6745 0.6226 
 

4.4.2.3 Strengthening Principal Neurons in Dominant Reservoirs. 
The third configuration carried out PNR on one reservoir that was determined to be dominant. 

To find this, the output weights of each reservoir was summed and the one with the largest 
magnitude was deemed to be the dominant reservoir. It was noted that having a larger summed 
weight suggests a higher importance of a specific reservoir. This configuration often resulted with 
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the error being decreased for both as seen in Table 21. However, for the 100-neuron configuration, 
we can see from Table 22 that this is not true, where the NRMSE for output 1 barely changed and 
increased for output 2. 

 
 

Table 21 Strengthening Principal Neurons within Dominant Reservoirs (40 neurons per reservoir) 
Steps NRMSE of Output 1 NRMSE of Output 2 

DRE (5 reservoir/40 neurons) 0.6431 0.5231 
After Strengthening with PNR 0.6425 0.5176 

 
 
Table 22 Strengthening Principal Neurons within Dominant Reservoirs (100 neurons per reservoir) 

Steps NRMSE of Output 1 NRMSE of Output 2 
DRE (5 reservoir/100 neurons) 06689 06295 
After Strengthening with PNR 06688 06329 

 
 

4.4.2.4 Strengthening All Neurons in Dominant Reservoirs. 
The final scenario tested was to select a principal reservoir, and strengthen all the connections 

to the neurons within it. From the results in Table 23 and Table 24, the changes to the errors of this 
configuration were usually very small for both the 40/100 neuron configurations. 

 
 

Table 23 Strengthen Connections to all Neurons within Dominant Reservoir (40 neurons per reservoir) 
Steps NRMSE of Output 1 NRMSE of Output 2 

DRE (5 reservoir/40 neurons) 0.6431 0.5231 
After Strengthening with PNR 0.6425 0.5240 

 
Table 24 Strengthen Connections to all Neurons within Dominant Reservoir (100 neurons per reservoir) 

Steps NRMSE of Output 1 NRMSE of Output 2 
DRE (5 reservoir/100 neurons) 06689 06295 
After Strengthening with PNR 06688 06329 

 
 
The results of the four scenarios illustrate that when being directly applied on the DRE model, 

PNR can neither gain stable improvements nor well handle the initialization issue. 

4.4.2.5 Enhanced Dynamic Reservoir Ensemble with Classic Synaptic Plasticity 
To test the capabilities of all synaptic plasticity learning rules mentioned and explore their 

potentials to be combined with DRE model, a set of experiments were performed based on the 
weather prediction application implemented in our previous work. Using the activation function 
and scaling settings described in the BCM part of section 3.5.3, we tested all the synaptic rules to 
provide unified standard and benchmark their learning capabilities. 
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Based on the new activation function, the reservoir ensemble structure obtained through the 
GA evolution is given in Figure 44. The NRMSEs of such structure are 0.5642008 for output 1 
(High Temp.) and 0.6090616 for output 2 (Low Temp.). 

 

 
Figure 44 Reservoir Ensemble Structure Constructed by DRE Process 

 
 
During evaluation, we observed that the two outputs are not necessarily improved together. In 

fact, their optimal improvements are usually achieved under different settings. Considering this, 
we mainly focus on the average over two outputs, and once the lowest error on the average value 
is found, we go back to check out the separate improvement of each output. Without applying 
neural plasticity, the NRMSEs are 0.56420, 0.60906 for output1 and output2 respectively and 
0.58663 on average. The evaluation of the learning rules is provided below.  

For Anti-Oja learning, the lowest error rates are 0.56348 and 0.60299 for individual outputs 
and 0.58324 on average. The learning performance over the entire setting space is exhibited in the 
form of color map (see Figure 45), where the darker the blue, the lower the error, and therefore the 
better the learning performance. Similarly, the darker the red, the worse the learning rule worked. 
The learning trend of Anti-Oja is shown in Figure 46. 
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Figure 45 Color Map of Anti-Oja 

 
 

 
Figure 46 Learning Trend of Anti-Oja 

 
 
For Hebbian learning and Hebbian learning with decay, we put the results together. Since there 

are 3 tunable parameters, learning rate, decay rate and training iterations, we cut the 4-dimentional 
result chunk based on different values of decay rate. Specifically, when decay rate equals 0, it 
represents the classic Hebbian learning rule. The best case under each decay factor is shown in 
Figure 47. We notice that the classic Hebb’s rule with no decay gets the optimal improvement. 
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Figure 47 Hebbian Learning's Best Case for Each Decay Rate 

 
 
We hence visualize the color map and learning trend of classic Hebbian learning in Figure 

48 and Figure 49. When the learning rate is 0.0012, training for 350 iterations without decay, 
Hebbian learning achieves the lowest errors 0.57478, 0.55433 and 0.59523 for average output, 
output1 and output2 respectively. 

 

 
Figure 48 Color Map of Hebbian Learning (decay rate = 0) 
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Figure 49 Learning Trend of Hebbian Learning (decay rate = 0) 

 
 

BCM learning also has 3 tunable parameters, learning rate, 𝜏𝜏 and learning iterations. Based 
on different values of 𝜏𝜏, we cut the result matrix into 15 parts. It can be seen from Figure 50 that 
changing the value of 𝜏𝜏 has a significant effect on the learning performance of BCM. We point 
out that the optimal point was reached when 𝜏𝜏 took on value 260. Consequently, the detailed 
results for 𝜏𝜏 = 260 are organized and shown in Figure 51 and Figure 52. 

 
 

 
Figure 50 BCM's Best Case for Each Tau 
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Figure 51 Color Map of BCM (tau = 260) 

 
 

 
Figure 52 Learning Trend of BCM (tau = 260) 

 
 

The best average output when applying BCM learning is 0.57364, the corresponding output 
errors of output1 and output2 are 0.55700 and 0.59028. This optimum is obtained at a learning rate 
of 0.0025 and a training iteration of 350. 

To compare the capabilities of all synaptic learning rules above, the lowest output errors for 
each rule are concluded in Table 25. Note that for Hebbian learning with decay, the best 
performance was obtained at the smallest decay rate implemented (i.e. 0.00002). 
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Table 25 The Best Performance for Each Rule 

Learning Rules Output 1 Output 2 Output Avg. 
No Plasticity 0.564200751 0.609061584 0.586631168 
Hebb’s Rule 0.554328315 0.595228256 0.574778285 

Hebb’s Rule with Decay 0.554194701 0.595378040 0.574786371 
Oja’s Rule 0.563482968 0.602993386 0.583238177 

BCM 0.556995932 0.590276516 0.573636224 
 
 

The best improvements are calculated by subtracting the lowest NRMSE achieved from the 
value before synaptic learning. Figure 53 shows the comparison on improvements in histograms, 
from which we can clearly see that except for the improvement on output1, BCM outperforms the 
other two learning rules and Anti-Oja gives the worst results. 

 
 

 
Figure 53 The Best Improvements of All Learning Rules 

 

4.4.3 Interpretive Reservoir: A Preliminary Study on The Association Between 
Artificial Neural Network and Biological Neural Network 

4.4.3.1 Experiment Setup 
In this section, we used data from another project to simulate the brain activities in the form 

of ERP brainwaves based on a customized ESN and estimate the parameters using VAR model. 
ESN is usually created with fixed sparse internal connections. However, in our case, we don’t want 
to limit the network structure to some specific topology. For this reason, we initialized the network 
with a fully connected reservoir. 

In the past study, the subjects were shown 5 categories of image stimuli. Based on the EEG 
brain waves collected during the stimulation process, ERPs were calculated as the average of 20 
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EEG trials to provide a more reliable measurement. For each type of stimuli presented to each 
subject, 80 EEG trials were collected over all 30 channels. Among them, different combinations 
were randomly chosen and 10 ERPs (on 30 channels) were generated per person per stimulus. 
Based on the ERP clips calculated, we tried to model the brain activities in three scenarios. 1) 
Scenario I: we focused on the same subject stimulated by the same type of images. Consequently, 
10 networks can be evolved based on 10 ERP episodes in each case. 2) Scenario II, distinct neural 
networks were established and compared based on the ERP data from different subjects with the 
same stimuli. 3) Scenario III: models were built upon a single subject under diverse stimuli. By 
involving the three scenarios, we expected that the different memories of people, rooted in their 
biological brain and captured by EEG or ERP signals, could be measured and reflected on the 
topology of artificial neural networks. Ultimately, correlation of networks’ connections is going to 
be analyzed to compare between different models generated and to interpret the characteristics of 
memory representation in artificial neural networks. 

4.4.3.2 Results 
In consideration of all three scenarios, overall 10 network models were estimated for each 

subject with each type of stimulus. The correlation coefficients of input term 𝒄𝒄  and internal 
weights W pairwise between different networks were then calculated to compare the similarities 
according to the needs of each scenario.  

For Scenario I, where the models of a single individual who was given the same categories of 
stimuli are investigated, the results are carried out for each subject independently based on “C 
Food” stimuli. Figure 54 and Figure 55 present the average values of correlation coefficients 
computed over 10 networks on the input term and internal weight matrix. When concerning the 
same person, all models hold high correlations on the estimations of both the input term and the 
internal weights. This meets our expectation, because for a single individual, his/her brain structure 
is unlikely to be changed dramatically in the short term. Therefore, its simplified model, the 
network connections, should also be relatively stable. Moreover, because of being shown with 
images of the same kind, a subject should have certain areas or certain signal conduction pathways 
activated in the brain, so the input term which combines both the input signal and the input 
pathways should be steady in this case. 

 
 

 
Figure 54 The Avg. Correlation Coefficients on Input Term (Scenario I) 

 



 

Approved for Public Release; Distribution Unlimited.  
79 

 

 

 
Figure 55 The Avg. Correlation Coefficients on Internal Weights (Scenario I) 

 
 
For Scenario II, the average coefficients calculated pairwise between different subjects with 

stimuli “C Food” are provided in Figure 56 and Figure 57. Note that in this scenario, the value of 
each subject in the figures is provided based on the correlation coefficients between this subject 
and all others. It is noted that the models generated for different people are diverse from each other, 
no matter for the input part or for the internal configurations, which is consistent with our 
expectations. Despite broad similarities, everyone’s brain is unique. Influenced by our past 
experiences, the biological connections inside the brain (synapses) evolve slowly, shaping our 
unique memories. As a result, when given the same stimulus (for example, seeing the same picture), 
despite of some general common feelings we may have on it (for some specific food or people), 
people are excited with diverse activations and pathways. 

 
 

 
Figure 56 The Avg. Correlation Coefficients on Input Term (Scenario II) 
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Figure 57 The Avg. Correlation Coefficients on Internal Weights (Scenario II) 

 
We further drew the probability density functions (PDFs) of the correlation coefficients in 

Scenario I and II together. The left plot in Figure 58 shows the coefficients for the input term in 
both scenarios and the right in Figure 58 indicates the coefficients for the similarity of the internal 
weights. It is clearly shown that the correlation coefficient distribution of the same person’s models 
differs significantly from the one across different subjects. 

 
 

 
Figure 58 PDF of Correlation Coefficients for Input Term (left) and Internal Weights (right) (Scenario I & II) 

 
 
As for Scenarios III, as shown in Figure 59 and Figure 60, the network models were compared 

between different categories of stimuli on the same subject, utilizing the data from all participants. 
We are pleased to find that even presented with different stimuli, the similarity of internal network 
connections maintains at the same level as in Scenario I. The variation of input stimuli doesn’t 
affect the network models’ internal structure much, while resulting in the slight drop of input 
correlations. This interesting finding verifies that neural network has similar characteristics with 
biological brain regarding the memory and topology: for one person, diverse stimuli only arouse 
his/her different reactions, but do not lead to great changes of internal connections within a short 
period of time. 
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Figure 59 Avg. Correlation Coefficients for the Input Term (Scenario III) 

 
 

 
Figure 60 Avg. Correlation Coefficients for the Internal Weights (Scenario III) 
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5.0 CONCLUSIONS 

In this study, we investigated several emerging, neuromorphic computing paradigms that may 
play key roles in supporting next-generation autonomy. In accordance with the planned tasks, 
several objectives have been achieved. 

We first systematically created a general picture of cognitive architecture and processing flow 
of autonomous systems for real-time and adaptive problem solving, through an extensive literature 
survey. Then, we focused on the autonomous target tracking problem utilizing multiple 
computational intelligence approaches including ANNs, deep learning and reservoir computing. 
Accordingly, the performance metrics of those solutions were assessed, in terms of accuracy, speed, 
and energy consumption. Reservoir computing was further investigated and optimized with the 
bio-inspired concepts of dynamic ensembles of reservoir networks and neuronal plasticity. Based 
on this, evolutionary and adaption methods for reservoir networks are proposed from structural 
and synaptic level. Finally, some fontal issues related to biological cognition and intelligence were 
discussed through the exploration of human category learning inspired classification network and 
the association between ANNs and biological neural networks.  
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7.0 LIST OF ACRONYMS 

Acronym Expansion 
ACS Action-Centered Subsystem  
ACT-R Adaptive Control of Thought – Rational  
AE Auto Encoder 
ANN Artificial Neural Network 
BCM Bienenstock, Cooper and Munro Rules 
CEREBRE  Cognitive Event RElated Biometric REcognition  
BOLD Blood Oxygen Level Dependent 
CNN Convolutional Neural Network 
DESN Decoupled Echo State Networks  
DEWP Daily Mean Dew Point 
DIVA Divergent Auto-Encoder  
DL Deep Learning 
DLPFC Dorsolateral Prefrontal Cortex  
DNN Deep Neural Network 
DoD Department of Defense 
DRE Dynamic Reservoir Ensemble  
EEG Electroencephalography  
EOG Electrooculogram 
ERP Event Related Potential 
ESN Echo State Network 
fMRI functional Magnetic Resonance Imaging  
GA Genetic Algorithm 
GRN Gene Regulatory Network  
GRN-SO-RC GRN-Self-Organizing Reservoir Computing  
LSM Liquid State Machine 
LTM Log Term Memory 
LTP-IE Long Term Potential of Intrinsic Excitability  
MCS Metacognitive Subsystem 
MS Motivational Subsystem 
MSO Multiple Superimposed Oscillator  
NACS Non Action-Centered Subsystem  
NARMA Non-linear Auto Regressive Moving Average  
NN Neural Network 
NRMSE  Normalized Root Mean Square Error  
PNR Principle Neuron Reinforcement 
PSA Particle Swarm Algorithm 
RC Reservoir Computing 
RCT Reservoir Computing Tracker 
SAR Search and Rescue 
SDAE Stacked Denoising Autoencoder 
SRE Static Reservoir Ensemble  
STP Daily Mean Station Pressure 
UAV Unmanned Aerial Vehicle 
VAR Vector Autoregressive 
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VLPFC  Ventrolateral Prefrontal Cortex  
WDSP Daily Mean Wind Speed 
WU Working Memory 
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