REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
10-07-2018 Final Report 2-Jan-2017 - 1-Oct-2017
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Final Report: How complex systems cope with noise: Balancing |[W911NF-17-1-0070

centralized and decentralized control 5b. GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER
611102

6. AUTHORS 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT

University of Utah NUMBER

75 South 2000 East

Salt Lake City, UT 84112 -8930
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS 10. SPONSOR/MONITOR'S ACRONYM(S)
(ES) ARO

U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT

P.O. Box 12211 NUMBER(S)

Research Triangle Park, NC 27709-2211 70640-MA-I1.3

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF [15. NUMBER [19a. NAME OF RESPONSIBLE PERSON
a. REPORT [b. ABSTRACT [c. THIS PAGE |ABSTRACT OF PAGES  |Frederick Adler
uu uUu UU uu 19b. TELEPHONE NUMBER
801-581-6848

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18



RPPR Final Report
as of 10-Jul-2018

Agency Code:

Proposal Number: 70640MAll Agreement Number: W911NF-17-1-0070
INVESTIGATOR(S):

Name: Frederick R Adler
Email: adler@math.utah.edu
Phone Number: 8015816848
Principal: Y

Organization: University of Utah
Address: 75 South 2000 East, Salt Lake City, UT 841128930

Country: USA
DUNS Number: 009095365 EIN: 876000525
Report Date: 01-Jan-2018 Date Received: 10-Jul-2018

Final Report for Period Beginning 02-Jan-2017 and Ending 01-Oct-2017
Title: How complex systems cope with noise: Balancing centralized and decentralized control

Begin Performance Period: 02-Jan-2017 End Performance Period: 01-Oct-2017
Report Term: 0-Other
Submitted By: Frederick Adler Email: adler@math.utah.edu

Phone: (801) 581-6848
Distribution Statement: 1-Approved for public release; distribution is unlimited.

STEM Degrees: STEM Participants:

Major Goals: We investigated two complementary topics: how living things respond to stochasticity and how we
as modelers do the same. In particular, we examined the strategies organsism use for maintaining and enhancing
function in unpredictable environments, and the strategies used to model complexity in the face of stochasticity.

Accomplishments: Through extensive review and synthesis of the literature, we developed the first
comprehensive outline of the theme of stochastic dynamics in biological systems. Our literature review and
framework provides the foundation for a review paper. We here present our detailed outline of this work and a
selected bibliography of papers we synthesized.

A. Deterministic vs. stochastic processes in biological systems

i. Broad examples of mechanisms dominated by deterministic processes
ii. Broad counter-examples of mechanisms in which stochasticity plays an
important role

ii. Challenges to expanding our view of the world to include

stochasticity and why doing so is vitally important.

iv. Brief description of the role of math modeling in understanding
biological systems.

B. Coping with stochasticity

i. Scales of stochasticity: noise vs catastrophic events

ii. Realized overcapacity: Lung tissues, genetic redundancy/degeneracy,
futile cycling, large broods.

iii. Potential overcapacity:

iv. Dangers of overcapacity:

C. Capitalizing on stochasticity

i. Trial and Error (Developmental Selection): neural Development, angiogenesis, oogenesis, T cells, Rag
transposons/affinity maturation.

ii. Genetic Regulation: delayed reinitiation (ATF4), gene duplication(K3L),

iii. Ploidy Changes: liver, fungi, C. neoformans
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iv. Resource Acquisition: ant foraging
v. Noise in protein production: peptide fragments as an immune signal
vi. Binding Promiscuity: detoxification and immune response

D. Communication in a stochastic world

i. Stochastically established coordination: Neural growth

ii. Regulation of capacity

iii. Recognition of environmental state

iv. Robustness: maintaining a phenotype despite environmental/cellular stochasticity
v. Stochastically established coordination: immune system

E. The role of mathematical modeling in understanding stochastically
driven systems

i. History and classic examples
ii. Challenges in determining when and how to use stochastic modeling
iii. Call for future work

Training Opportunities: Two graduate students were trained. Laura Strube greatly advanced her thesis work on
the integrated stress response in cells, and will be completing her dissertation in October 2018 based on that
research. Emerson Arehart used this opportunity to build his knowledge of complex systems and will be writing a
thesis proposal based on that work to be defended in September, 2018.
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Statement of the problem studied

We investigated two complementary topics: how living things respond to
stochasticity and how we as modelers do the same. In particular, we examined the
strategies organsism use for maintaining and enhancing function in unpredictable
environments, and the strategies used to model complexity in the face of
stochasticity.

Summary of the most important results

Through extensive review and synthesis of the literature, we developed the first
comprehensive outline of the theme of stochastic dynamics in biological systems.
Our literature review and framework provides the foundation for a review paper. We
here present our detailed outline of this work and a selected bibliography of
papers we synthesized.

A. Deterministic vs. stochastic processes in biological systems

i. Broad examples of mechanisms dominated by deterministic processes

ii. Broad counter-examples of mechanisms in which stochasticity plays an
important role

iii. Challenges to expanding our view of the world to include
stochasticity and why doing so is vitally important.

iv. Brief description of the role of math modeling in understanding
biological systems.

B. Coping with stochasticity

i. Scales of stochasticity: noise vs catastrophic events

ii. Realized overcapacity: Lung tissues, genetic redundancy/degeneracy,
futile cycling, large broods.

iii. Potential overcapacity:

iv. Dangers of overcapacity:

C. Capitalizing on stochasticity

i. Trial and Error (Developmental Selection): neural Development, angiogenesis,
oogenesis, T cells, Rag transp osons/affinity maturation.

ii. Genetic Regulation: delayed reinitiation (ATF4), gene duplication(K3L),
iii. Ploidy Changes: liver, fungi, C. neoformans

iv. Resource Acquisition: ant foraging

v. Noise in protein production: peptide fragments as an immune signal

vi. Binding Promiscuity: detoxification and immune response

D. Communication in a stochastic world

i. Stochastically established coordination: Neural growth

ii. Regulation of capacity

iii. Recognition of environmental state

iv. Robustness: maintaining a phenotype despite environmental/cellular
stochasticity

v. Stochastically established coordination: immune system

E. The role of mathematical modeling in understanding stochastically
driven systems

i. History and classic examples
ii. Challenges in determining when and how to use stochastic modeling
iii. Call for future work
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