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Major Goals:  We investigated two complementary topics: how living things respond to stochasticity and how we 
as modelers do the same. In particular, we examined the strategies organsism use for maintaining and enhancing 
function in unpredictable environments, and the strategies used to model  complexity in the face of stochasticity.

Accomplishments:  Through extensive review and synthesis of the literature, we developed the first 
comprehensive outline of the theme of stochastic dynamics in biological systems.  Our literature review and 
framework provides the foundation for a review paper. We here present our detailed outline of this work and a 
selected bibliography of papers we synthesized.



A. Deterministic vs. stochastic processes in biological systems 



i. Broad examples of mechanisms dominated by deterministic processes 

ii. Broad counter-examples of mechanisms in which stochasticity plays an

important role 

iii. Challenges to expanding our view of the world to include

stochasticity and why doing so is vitally important. 

iv. Brief description of the role of math modeling in understanding

biological systems. 



B. Coping with stochasticity 



i. Scales of stochasticity: noise vs catastrophic events 

ii. Realized overcapacity: Lung tissues, genetic redundancy/degeneracy,

futile cycling, large broods. 

iii. Potential overcapacity: 

iv. Dangers of overcapacity: 



C. Capitalizing on stochasticity 



i. Trial and Error (Developmental Selection): neural Development, angiogenesis, oogenesis, T cells, Rag 
transposons/affinity maturation. 

ii. Genetic Regulation: delayed reinitiation (ATF4), gene duplication(K3L), 

iii. Ploidy Changes: liver, fungi, C. neoformans 
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iv. Resource Acquisition: ant foraging 

v. Noise in protein production: peptide fragments as an immune signal 

vi. Binding Promiscuity: detoxification and immune response 



D. Communication in a stochastic world 



i. Stochastically established coordination: Neural growth 

ii. Regulation of capacity 

iii. Recognition of environmental state 

iv. Robustness: maintaining a phenotype despite environmental/cellular stochasticity 

v. Stochastically established coordination: immune system 



E. The role of mathematical modeling in understanding stochastically

driven systems 



i. History and classic examples 

ii. Challenges in determining when and how to use stochastic modeling 

iii. Call for future work
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Training Opportunities:  Two graduate students were trained.  Laura Strube greatly advanced her thesis work on 
the integrated stress response in cells, and will be completing her dissertation in October 2018 based on that 
research.  Emerson Arehart used this opportunity to build his knowledge of complex systems and will be writing a 
thesis proposal based on that work to be defended in September, 2018.
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Statement of the problem studied

We investigated two complementary topics: how living things respond to 
stochasticity and how we as modelers do the same. In particular, we examined the 
strategies organsism use for maintaining and enhancing function in unpredictable 
environments, and the strategies used to model  complexity in the face of 
stochasticity.

Summary of the most important results

Through extensive review and synthesis of the literature, we developed the first 
comprehensive outline of the theme of stochastic dynamics in biological systems.  
Our literature review and framework provides the foundation for a review paper. We 
here present our detailed outline of this work and a selected bibliography of 
papers we synthesized.

A. Deterministic vs. stochastic processes in biological systems 

i. Broad examples of mechanisms dominated by deterministic processes 
ii. Broad counter-examples of mechanisms in which stochasticity plays an
important role 
iii. Challenges to expanding our view of the world to include
stochasticity and why doing so is vitally important. 
iv. Brief description of the role of math modeling in understanding
biological systems. 

B. Coping with stochasticity 

i. Scales of stochasticity: noise vs catastrophic events 
ii. Realized overcapacity: Lung tissues, genetic redundancy/degeneracy,
futile cycling, large broods. 
iii. Potential overcapacity: 
iv. Dangers of overcapacity: 

C. Capitalizing on stochasticity 

i. Trial and Error (Developmental Selection): neural Development, angiogenesis, 
oogenesis, T cells, Rag transp osons/affinity maturation. 
ii. Genetic Regulation: delayed reinitiation (ATF4), gene duplication(K3L), 
iii. Ploidy Changes: liver, fungi, C. neoformans 
iv. Resource Acquisition: ant foraging 
v. Noise in protein production: peptide fragments as an immune signal 
vi. Binding Promiscuity: detoxification and immune response 

D. Communication in a stochastic world 

i. Stochastically established coordination: Neural growth 
ii. Regulation of capacity 
iii. Recognition of environmental state 
iv. Robustness: maintaining a phenotype despite environmental/cellular 
stochasticity 
v. Stochastically established coordination: immune system 

E. The role of mathematical modeling in understanding stochastically
driven systems 

i. History and classic examples 
ii. Challenges in determining when and how to use stochastic modeling 
iii. Call for future work 
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