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A Coherent Structure Dynamics Model for 
Non-Equilibrium Turbulence 

Jay Boris, U.S. Naval Research Laboratory 

Abstract: 
This paper introduces a computational model that computes the time-dependent evolution of a 
non-equilibrium turbulence spectrum from the system size down to the viscous dissipation scale. 
Turbulence models for use with Computational Fluid Dynamics (CFD) have at best treated the 
inertial-range below the CFD resolution as if obeying a renormalizable or scale-similar equilibrium 
described by the Kolmogorov spectrum with a spectral energy density that scales as k–5/3.  The 
“Coherent Structure Dynamics” (CSD) model introduced here addresses situations where the time-
scale for changes in the macroscopic fluid dynamics is short and thus the resulting turbulence is 
far from an equilibrium cascade because the turbulent small scales that drive the dissipation will 
not have had time to equilibrate.  Such circumstances can be caused, for example, by strong shocks 
passing through passive density gradients or fuel injection into supersonic flows.  Mixing on the 
molecular scale and thus chemical reactions will be delayed until the short scales in the velocity 
spectrum are energized. 

 The CSD model is not derived from the Navier-Stokes equations.  It is constructed to satisfy 
the important physical conditions of the problem including scale consistency of the inviscid, 
nonlinear, fluid-dynamic interactions between the coherent structures that actually comprise 
turbulence.   In addition to treating the kinetic energy density as a function of scale size down to 
the Kolmogorov dissipation scale, a number density of coherent structures at each scale is 
introduced to account for the fact that the relative spacing of the structures comprising turbulence, 
particularly away from equilibrium, may not be the same at all scales.  This dynamic system relaxes 
to the Kolmogorov spectrum with a definite pre-dissipative bump (the bottleneck).  Two scale-
independent parameters in the model are calibrated using the Taylor-Green vortex problem. 
Examples are presented and tests of the model are discussed. 
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Glossary: 
𝜌 mass density of the fluid (gm/cc). 
𝜈 Kinematic viscosity of the fluid (gm/(sec cm) ). 
𝐿%&% System scale length, 10 m in examples following.  

𝑅(  Length scale (cm) of the rotors in scale size bin k. 

The following variables change in time due to the stiff evolution equations . . . 
𝐸( Energy density (ergs/cc) of rotors of size Rk (k = 0, kmax). 
Nk Number density of rotors (#/cc) of scale size Rk. 
𝜀( Energy in a single rotor of size Rk.      𝜀( = 	3𝜋𝜌𝑅(.𝑉(0 = 	𝐸(/𝑁( 

The following derived quantities are also used . . . 

𝑃(
4 Packing fraction for rotors of size Rk (dimensionless). 

𝑃(
4 ≡ 3𝜋𝑅(.	𝑁(.  Thus 𝐸( 	≡ 3𝜋𝜌𝑅(.𝑉(0𝑁( = 𝜌𝑃(

4𝑉(0

𝑃(  Packing fraction temporary.   𝑃( 	≡ (𝑃(
4)0/. 	= (3𝜋𝑅(.𝑁()0/.

𝑉(  Characteristic average velocity (energy weighted) of rotors of size	𝑅( . 

𝑉( 	≡ 8𝐸(/(𝜌𝑃(
4)

Sk Typical separation distance (cm) of rotors of size 𝑅( . 
9:
.
𝑆𝑘
3𝑁𝑘 = 1	 → 𝑆𝑘 ≡ 	 𝑅𝑘/?𝑃𝑘

𝑓A
1/3

𝑉(
BCD Rotor precession velocity, 𝑉(

BCD ≡ 	𝑉(𝑅(/𝑆( , decreases with separation

𝜏( Interaction time (sec) of rotors of size 𝑅(  with each other.  𝜏( = 2𝜋𝑆(/𝑉(
BCD

1. Introduction
This paper introduces a computational model that computes the time-dependent evolution of a 
non-equilibrium turbulent spectrum from the system size down to the viscous dissipation scale. 
Turbulence models for use with Computational Fluid Dynamics (CFD) have generally treated the 
inertial-range below the CFD resolution as if obeying a renormalizable [Yakhot and Orszag, 1986] 
or scale-similar equilibrium described by the Kolmogorov spectrum with a spectral energy density 
that scales as k–5/3.  The “Coherent Structure Dynamics” (CSD) model introduced here addresses 
situations where the time-scale for changes in the macroscopic fluid dynamics is short and thus 
the resulting turbulence can be far from an equilibrium cascade because the turbulent small scales 
that drive the dissipation will not have had time to equilibrate.  Such circumstances can be caused, 
for example, by strong shocks passing through passive density gradients (Boris & Picone, 1980; 
Picone, et al., 1981,1984; Grinstein, et al., 2018), or combustion in supersonic flows (Goodwin 
and Oran, 2018) or rapid, energy-releasing chemical reactions in nearby pockets of previously 
mixed fluid (Hamlington, et al., 2011; Gamezo, et al., 2014; Poludnenko, 2015, Towery, et al., 
2016).  When the small scales in the turbulence spectrum have too little energy, it often means that 
mixing has not yet occurred on the molecular scale and thus chemical reactions will be delayed. 
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Figure 1.1 Illustrates detailed numerical simulations of the small-scale structure of turbulent 
flows. Left: a simulation of flow structure in a square jet using Flux-Corrected Transport 
(FCT) performed by Fernando F. Grinstein, now at LANL.  Right: A simulation of 
compressible turbulence in a periodic box using the Piecewise Parabolic Method (PPM) 
courtesy of Paul Woodard and colleagues at the University of Minnesota. 

The CSD model is based on the time-dependent nonlinear fluid-dynamic interaction of the 
“coherent structures” that actually comprise turbulence (Brown & Roshko, 1974).  Figure 1.1 
presents two flow visualizations from detailed large-eddy simulations (LES) approximating high 
Reynolds-Number flow conditions.  The panel on the left above is a rendering of the vorticity in a 
spatially evolving square jet (Grinstein, 2001) and the panel on the right is vorticity magnitude 
observed during turbulence decay in a triply periodic box.  This latter case is the idealized system 
often treated in high-resolution Direct Numerical Simulation (DNS) (e.g. Moin and Mahesh,1998; 
Moser, et al., 1999; A. Kajzer, et al.,2014). The resolution possible in today’s simulations, though 
greater than the pace-setting computations in Fig. 1.1, is still far from adequate to treat airflow on 
an urban scale and yet resolve the strong, intermittent eddies on scales of five to ten centimeters 
that will affect small UAVs and drones.  The turbulence below the macroscopic scales is dominated 
by filamentary vortex structures, as seen above.  Brown and Roshko observed the same behavior 
in experiments, calling these filaments “coherent structures.”  They distinguished between these 
coherent structures and the view of turbulence as a mishmash of small scale random flows as had 
previous been thought.  The model being described here evolves these coherent structures 
throughout the inertial range and down into the dissipation range and thus has been named 
Coherent Structure Dynamics (CSD).   

In Fig. 1.1 the coherent structures appear as relatively isolated filaments whereas the larger 
scales do not appear to show correspondingly coherent, or at least visible, structures.  Vortex 
dynamics models, pursued for decades for vortex filament problems like this, are deterministic and 
Lagrangian in representation.  They are based on solving the motion of vortex filaments composed 
of a number of line segments or spherical vortex cores coupled by velocities that can be computed 
from the Biot-Savart law, e.g. Knio and Ghoneim (1990) or Pullin and Saffman (1998).  Only one 
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realization of the complex flow field is computed at a time and the computational cost for this one 
realization becomes prohibitive when multiscale complexity in the flow approaching turbulence is 
considered.  Here I am describing a more statistical treatment of the interaction and dynamics of 
these coherent structures to expose important, more generic behaviors.  Therefore, CSD, by itself, 
does not seek to compute one particular deterministic turbulent realization, but rather expresses 
the coupling of turbulent kinetic energy between the different spatial scales comprising the 
turbulence.  The determination of specific realizations will be determined after CSD has calculated 
the non-equilibrium, time-varying energy spectrum from which spatial and temporal correlated 
realizations must be drawn.   

 The CSD model is not derived from the Navier-Stokes equations.  It is constructed to 
satisfy the important physical requirements of the problem including inviscid kinetic energy 
conservation, scale consistency of the inviscid, nonlinear, fluid-dynamic interactions between the 
coherent structures that actually power turbulent cascade, and properly scaled viscous damping 
acting at all scales (Sections 2 and 3).   Because the nonlinear interactions between adjacent scales 
in the spectrum are all represented identically, the spectrum can be resolved far beyond where CFD 
has the ability to resolve.  In addition to treating the kinetic energy density as a function of scale 
size down to the Kolmogorov dissipation length, a number density of coherent structures at each 
scale has been introduced to account for the fact that the relative spacing of the coherent structures, 
particularly away from equilibrium, will not be the same at all scales Section 3).  This number 
density is coupled to the energy spectrum but evolves according to a different equation set. 

The coupled CSD system of kinetic energy densities and number densities relaxes to the 
Kolmogorov spectrum with a definite pre-dissipative bump, also called the bottleneck.  The two 
scale-independent parameters governing cascade in the CSD model are calibrated using the 
Taylor-Green vortex problem (Section. Examples are presented and tests of the model are 
discussed. 

The coupling of energy between turbulent scales has been studied extensively in the Fourier 
viewpoint e.g., (Brasseur and Corrsin, 1987; Brasseur, 1991; Brasseur and Wei, 1994).  Triads of 
wavelengths interact nonlinearly to move energy to longer and shorter wavelength.  This Fourier-
based approach is mathematically tractable and yields some insights but essentially ignores the 
coherent structures known to make up a turbulent flow.  It certainly does not provide an efficient 
way to approximate the small-scale, time-dependent flows that will buffet a small UAV. 

2. The Coherent Structure Dynamics Model 
The coupling of energy between adjacent wavelength scales is treated here by computing energy-
conserving fluid dynamic interactions between short segments of the filamentary coherent 
structures which I will call rotors.  These rotor interactions are not integrated deterministically as 
done in vortex dynamics but the energy transfer between rotors in adjacent scale-size bins is treated 
statistically by integrating a set of coupled ordinary different equations for the summed energy 
density and average number density of the rotors at each of a number of discrete scales.  These 
different scales are distributed logarithmically so turbulent cascade can be approximated over 
many orders of magnitude.  Energy conservation is enforced in detail and the required scale-
similarity in the behavior of the rotor interactions at different scales is maintained. 

The rotor sizes in the CSD model are assumed discretized into bins separated by a factor of 
two in size.  This allows us to represent the spectrum down to the dissipation scale with a few tens 
of bins and independent variables.  It also allows a particularly simple representation of the 
coherent-structure interactions.  The grid in wave number, or scale space, used to represent the 
rotor sizes is shown schematically in Figure 2.1 below.  The red lines in each size bin above show 
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a decreasing energy density Ek on a log-log scale and the brown lines show an increasing rotor 
number density Nk. This compact representation provides a fast evaluation of the evolving non-
equilibrium turbulence spectrum that can be evaluated at a number of separate locations in space.  
This speed will be used to estimate the high-resolution turbulence, for example, within a number 
of spatial cells in a small region of a CFD computation.  The goal is an ongoing estimation of the 
turbulence at spatial scales well below those that could possibly be resolved by a macroscopic 3D 
CFD model.   

 
Figure 2.1. Schematic of the logarithmic k-space grid used in the Coherent Structure 
Dynamics model.  The wavenumber increases and the corresponding turbulent scale size 
decreases to the right.  The turbulent energy density (red) decreases from bin to bin with k, 
the bin index, while the rotor number density (brown) increases.  The local effects of rotor 
merging and rotor shredding interactions is shown. 

The vortex filaments, the coherent structures of turbulence, are divergence free and should 
close, at least at infinity.  Here we will be concerned with idealized, localized coherent vortex 
structures which are being called rotors.  The turbulent flow field is thought to be a superposition 
of rotors of many different scales and strengths that interact among themselves locally producing 
nonlinear turbulent behavior that is controlled, overall by the Navier-Stokes equation, and thus the 
fluid dynamics that we know.  This is, I suppose, a kind of wavelet representation.  Here the rotor 
scales are discretized into logarithmic bins, each a factor of two in scale different from the next 
longest and the next shortest wavelength as shown above.  With 30 bins, a turbulent spectrum can 
span 9 orders of magnitude. 
 Rotors at a given scale can all have different strengths and orientations but it is dynamically 
interesting to simplify all rotors in a local volume as having a single kinetic energy at each scale.  
There clearly has to be some consideration given for nearby rotors having different energies but, 
for now, we consider this distribution to be a delta-function at the average energy density.  The 
average energy varies as it enters and leaves a given bin during nonlinear fluid dynamic 
interactions.  Another assumption we are making is that interactions between rotors of different 
scales occurs between adjacent bins only.  Brasseur and colleagues have shown that most of the 
energy transfer in turbulent cascade occurs locally in k space. 

 Two nonlinear rotor interactions (processes) are considered: 
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Rotor Shredding/Forward Cascade generates new rotors (vortices) of size Rk+1 from interactions 
of the rotors at the next larger size Rk.  We can think of shredding as two rotors tearing at each 
other until their energy has all be transfers to rotor filaments of half the scale size.  In principle, 
there can be may forms of shredding depending on rotor alignment and separation, etc.  Here they 
are all lumped into one generic nonlinear interaction whose strength will be calibrated. 
Rotor Merging/Inverse Cascade generates rotors of size Rk-1 by merging two rotors of the next 
smaller size Rk.  Inverse cascade is expected to be much weaker than forward cascade in nearly all 
situations. 

The CSD representation, with grid sizes varying by a factor of two, facilitates a very simple 
treatment of the merging and shredding operations.  The merging and shredding operations at each 
scale will be assumed to proceed at a rate equal to the precession time 𝜏( of two rotors about each 
other with average energy Ek and average separation Sk.  This time depends on the average 
characteristic rotor velocity Vk and a non-dimensional packing fraction expressing how fully the 
volume is full of rotors at each scale k.  Certainly the absolute strength of these interactions can be 
calibrated by DNS but that is not necessary at this stage because any multiplicative factor can be 
absorbed by rescaling the time.  Further, a whole range of different interactions could be defined 
including non-local interactions connecting distant bins.  However, these two interactions, merging 
and shredding, suffice.  Further, for the two interactions identified, when distributions of rotor 
properties in each bin are admitted, much more detailed dynamics and varied rotor end states could 
be included in the model.  

A third process, viscous rotor decay is also important, particularly at small scales. Rotor Decay 
reduces the kinetic energy Ek of rotors of size Rk diffusively due to viscosity without changing the 
number of rotors Nk or the packing fraction Pfk.  Thus viscous dissipation terminates the 
Kolmogorov cascade.  The resultant heating is not tracked in this model. 

The total turbulent kinetic energy per unit volume in the system is 𝐸GHG = 	∑ 𝐸((JKL
M .  There 

may be external energy sources, for example at long wavelengths, but the total energy is generally 
conserved in the so-called “inertial range.”  This means that energy leaving one scale is exactly 
added to the next larger or next smaller scale in this model.  These rates are proportional to 𝜏(, the 
rotor interaction time defined above. 

The non-dimensional packing fraction mentioned above, 𝑃(
4 , is defined in Eq. 3.6 below to 

show how much of the volume actually has rotors of scale k in it.  Rotors of all different scales 
may overlap but when the rotors of a particular scale are close together they must interact strongly 
and thus cannot overlap appreciably without either merging or shredding.  If they are far apart they 
will interact at most weakly.  When the packing fraction becomes small, the rotors are farther apart 
but they are also stronger because there are fewer of them to share the kinetic energy density Ek.  
As a result, the characteristic velocity of each rotor will be larger and the interaction times 𝜏( 
become smaller. 

3. The Structure of a Rotor 
Figure 3.1 shows the structure of a representative rotor of size R.  Rotors are conceptualized as 
coherent vortex structures with a fixed vorticity strength 𝜔 which is constant inside radius R and 
zero outside.  The azimuthal velocity associated with this rotor is  

    𝑣P(𝑟) =
CR
S
	inside	𝑅			𝑎𝑛𝑑			𝑣P(𝑟) =

RS
C
	outside	𝑅.   Eq. 3.1  



 7 

 
Figure 3.1. Structure of a rotor of size (scale) R.  Vorticity is uniform inside R and zero outside. 
The corresponding azimuthal velocity profile is shown in green.  The velocity field is cut off at 
radius e1/2R due to shielding from the composite “turbulent” flow field. 

These rotors are ascribed a finite length in the axial (Z) direction.  It is reasonable to choose 
this length to be 4R to define a relatively compact structure.  There is nothing driving these choices 
other than common sense and a desire to keep the model computable.  These choices have little 
computational import since the parameters scaling the strength of the rotor interactions can absorb 
different choices of these rotor parameters.  As with wavelets, there is great freedom possible in 
choosing a complete basis, so these choices can be made for convenience and simplicity.  As these 
rotors are localized vorticity structures, the vortex lines must form closed loops with no 
divergence.  This necessary “cladding” of the bare rotor core is not shown in Fig. 3.1 but is 
assumed.  The main consequence for this model is that the velocity field of each rotor drops off 
more quickly than indicated in Eq. 3.1 and thus distant interactions of rotors, when their separation 
is large, become smaller.  This effect can be incorporated in the model and will be described below. 

Because vorticity and turbulence are closely related, the simple properties of a rotor have to 
be constrained by momentum and energy conservation.  Energy conservation is treated explicitly 
in the governing equations.  Momentum conservation is treated implicitly in the sense that each 
rotor induces a velocity fleld that has no net momentum.  As a result, the aggregate momentum 
associated with each bin is zero.  Any net momentum is assumed contained in the macroscopic 
flow that drives the CSD model.  The vorticity associated with 𝑣P(𝑟) above is given by 𝜔 ≡
	1𝑟
𝑑
𝑑𝑟 `𝑟𝑣P(𝑟)a = 2 R

S
	.  This is constant when	𝑟 < 𝑅 and zero otherwise.  Circulation is a concept 

often used: the integrated vorticity piercing an area or equivalently, the line integral of the velocity 
along the periphery of that area.  For the rotor defined above, this line integral is 
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    𝐶 = 2𝜋𝑅𝑉.             Eq. 3.2 
C has units of cm2/sec.  Circulation, as a defined quantity, has limited use here since the velocity 
line integral around a volume of isotropic turbulence is expected to be about zero due to 
cancellation of fluctuation velocities associated with a whole distribution of rotors. 
 The kinetic energy of a single rotor is a volume integral over the square of the velocity 
multiplied by 4R, the nominal extent of the rotor in the Z direction: 

    𝜀 = 4𝑅∫ 1

2
𝜌

∞

0
𝑣P0(𝑟)	2𝜋𝑟𝑑𝑟         Eq. 3.3  

Using Eq. 3.1 above, the integral in Eq. 3.3 is broken into two pieces to be integrated analytically. 

    𝜀 = 2𝜌𝑅 ∫ `𝑟𝑉
𝑅
a
2𝑅

0
2𝜋𝑟𝑑𝑟 + 	2𝜌𝑅 ∫ `𝑉𝑅

𝑟
a
2𝑅∞

𝑅
2𝜋𝑟𝑑𝑟 

     = 	𝜋𝜌𝑅.𝑉0 + 4𝜋𝜌𝑅.𝑉0𝑙𝑛 `𝑅∞𝑅 a        Eq. 3.4 

Most of the contribution to the kinetic energy of a rotor comes from the flow outside the vorticity-
containing core. In Eq. 3.4, 𝑅j is a radius larger than Rk beyond which the rotor fluid velocity at 
scale k is smaller than other contributions.  Using a finite value of 𝑅j is one manifestation in the 
model of the required divergence-free cladding of the rotor core mentioned above.  This radius 
cutoff keeps the single rotor kinetic energy finite.  When 𝑅j =	√𝑒 ≅ 1.649𝑅, for example, the 
average rotor kinetic energy at scale k is  

     𝜀( ≡ 𝐸𝑘/𝑁𝑘 = 3𝜋𝜌𝑅𝑘
3𝑉𝑘

2         Eq. 3.5 

where Nk is the number of scale-k rotors per unit volume.  This equation gives a way to calculate 
the characteristic rotor velocity at scale k from the primary variables Ek and Nk.  

It is useful to define the packing fraction of these rotors as 

      𝑃(
4 ≡ 3𝜋𝑅(.	𝑁(.          Eq. 3.6 

The packing fraction is a non-dimensional number that describes how isolated the coherent 
structures at each scale are from each other.  A small packing fraction means that the rotors are far 
apart relative to the characteristic radius Rk.  When the packing fraction is constant over all bins, 
scale similarity, in the sense usually meant, is possible.  In terms of the this packing fraction and 
the bin kinetic energy, the characteristic velocity of a rotor at the edge of its core is 

     𝑉( 	≡ 8𝐸(/(𝜌𝑃(
4).          Eq. 3.7 

Equation 3.7 shows that the characteristic velocity of rotors of scale k becomes large when the 
number density is small, for a given energy density, i.e. when the packing fraction is small. 

When Rk is very small (large k), Nk will usually be correspondingly large as long as the relative 
separation of the rotors, given by 

     𝑆( ≡ 	𝑅(/?𝑃(
4A
M/.

 ,          Eq. 3.8 

 is of order Rk.  When the separation between rotors is comparable to their size, the packing fraction 
will be near 1.  This is considered to be a very limiting condition as it means that all rotors are 
overlapping and should no longer be treated as separate as they will be in the latter stages of 
merging or shredding. 
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3.1. Rotor Number Density 
The number of rotors per unit volume Nk, which appears in Eqs. 3.5 and 3.6 above, is unknown 
and will also have to be part of the solution.  Nk is in no way conserved.  This number density will 
be allowed to vary along with the distribution of rotor velocities and energies between the various 
wavelengths.  This is a significant extension relative to most theories leading to the Kolmogorov 
spectrum.  Allowing Nk the freedom to evolve means that different scales in the inertial range are 
not necessarily scale similar.  The number of rotors Nk per unit volume is coupled to the total 
energy Ek in that bin.  Any interaction that creates a new rotor must necessarily reapportion the 
conserved energy to ensure that the new rotor actually has some energy.  This could be an issue 
since the new rotors might not necessarily be created at the current average rotor energy for that 
bin.  Interactions between rotors that create new ones will create them at a particular energy 
determined by the energy available from the rotors of smaller or larger scale that are being 
destroyed or created.   

If we postulate that each interaction that creates or destroys rotors does this in a scalable 
manner that depends only on the relative geometrical configuration and the rotor energies, it is 
possible to define rate equations for the process.  Fortunately, the rate equations postulated for the 
rotor number density mirror the form required by the stiff equation integrator to be used.   An 
approach coupled to the calculated changes in bin energy is presented in which, the overall energy 
conservation is enforced.  We will assume that the average rotor energy at scale k is the same for 
all these rotors so this average energy can be computed including conservation. 
 This model currently considers only binary interactions describing two rotors merging to form 
a larger one and two rotors shredding to form a number M of smaller rotors.  This number need 
not be integral since a range of fluid dynamics shedding behaviors would seem to be possible and 
should be the same nondimensionally for all bins due to scale independence of the interactions in 
the inertial range.  M is non-dimensional input parameter of this model and can in principal also 
be calibrated from DNS.  These changes in rotor number density will still conserve rotor energies 
between the adjacent bins in k-space.   

The viscous damping interaction, which extracts energy from a given scale, while possibly 
reducing the number of rotors at that scale, will be treated separately.  Viscous damping will also 
be cast in the form of conservation rate equations.  However, energy is extracted and converted to 
heat by viscous damping so this appears in the equations as an overall energy sink.  Many 
additional types of interactions could be considered.  However, only Navier-Stokes-Equation 
solutions are likely to give accurate, or at least defensible, results for any of the possible postulated 
interactions, so the current approach is to keep things as simple as possible.  There will be a few 
non-dimensional parameters for these interactions that must be the same from bin to bin.  These 
can be treated as calibration parameters. 

During rotor merging, two rotors of like sign precess around each other several times while 
their mutual shear flow gradually smears them into each other.  The simplest assumption is that 
after some number of precessions we will say the original rotors of scale Rk are gone and a new 
one of twice the size, 2 Rk = Rk-1, replaces them.  The number of new rotors is half the number of 
original rotors, though the new rotor is nominally twice as long as the originals so a factor of two 
may still be in question. 

It is important to stress that the CSD model is postulated, not derived here.  It is designed to 
exhibit important physical properties and constraints throughout the range of scales represented 
but is not derived in any direct way from the Navier-Stokes Equations.  Therefore, it is ultimately 
dependent on calibration for its quantitative relevance, as other models “derived” from experiment.  
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4. The Coherent Structure Dynamics Rate Equations 
A simple conservation equation for turbulent energy cascade into bin k from the next larger scale 
k-1 (i.e. rotor shredding or forward cascade) is: 

             pqr
pG

= 	𝛾
℧ruv	
wruv

𝐸𝑘−1 − 	𝛾
℧r	
wr

𝐸𝑘          Eq. 4.1 

where  ℧( ≡ 	𝑉(y𝑃(
4z
M/.

 is the characteristic rotor velocity at the average rotor separation distance.  
This is the velocity with which typical nearby rotors will precess around each other.  𝛾 is a number, 
which can be calibrated, expressing how fast rotor merging occurs in terms of the precession 
velocity and distance.  In this paper 𝛾 is set to 3.0 as determined by comparison with detailed 
simulations of the Taylor-Green Vortex (TGV) problem in the literature.  This sets a scale for the 
time variable. 

The full energy density equation, accounting also for rotor merging (inverse cascade) and 
viscous damping is 

 
pqr
pG

= 	𝛾
℧ruv	
wruv

𝐸𝑘−1 − 	𝛾
℧r	
wr

𝐸𝑘 + 	𝛿
℧r|v
wr|v

𝐸𝑘+1 − 	𝛿
℧r
wr

𝐸𝑘 − 	𝜈
M
Sr
} 𝐸𝑘  Eq. 4.2 

This equation is a rate equation whose form is dictated by dimensional considerations as well 
as physical arguments.  The coefficient 𝛿, analogous to 𝛾, expresses how fast inverse cascade 
occurs. 𝛿 Is given the value 0.2	𝛾 = 0.6 in the examples following as we expect inverse cascade 
to be weaker than forward cascade.  The scale factors 𝛾 and 𝛿 are constant across all rotor size 
bins as required by scale independence of the inviscid aspects of the fluid dynamics.  Being 
constant also ensures rigorous energy conservation summed over all scales.  What leaves one scale 
must enter the next smaller (or larger) scale, with the exception of viscous damping and energy 
cascade beyond the largest and smallest rotor sizes, these latter becoming “boundary” conditions 
for the model.  Both 𝛿 and 𝛾 are possible candidates for future detailed calibration. 

 ℧(/𝑆( , appearing in the first four terms of Eq. 4.2, has units of sec-1, as demanded to match 
the time derivative on the left.  The velocity and distance variables ℧( and 𝑆(  are Vk and Rk adjusted 
for the current rotor separation at scale k, and thus depend on the rotor packing fraction.  The term 
𝑅(~0 in the viscous term relates the dissipation rate, which should not depend on the rotor 
separation, to the bin rotor scale. 
The full Eq. 4.2 can be rewritten in terms of the basic CSD variables as: 

 
pqr
pG

= 	
pqr

���

pG
+ 𝛾

𝑉𝑘−1
𝑅𝑘−1

(𝑃𝑘−1
𝑓 )2/3𝐸

𝑘−1
+ 𝛿

𝑉𝑘+1
𝑅𝑘+1

(𝑃𝑘+1
𝑓 )2/3𝐸

𝑘+1
 

         −(𝛾 + 𝛿) 𝑉𝑘𝑅𝑘
(𝑃(

4)0/.𝐸( − 𝜈
1
𝑅𝑘
2 𝐸( .   Eq. 4.3 

 The first term on the right hand side of Eq. 4.3 is an external energy source/stirring term, 
which will typically be applied only at the longest wavelengths.  The next two terms on the right 
side of Eq. 4.3 are production terms for larger rotors and smaller rotors respectively based in scale-
k interactions.  These are followed by a combined destruction term from rotor shredding and 
merging at scale k.  Finally, on the right, is the viscous rotor dissipation term.  These production 
and destruction terms can be evaluated given the principal quantities at any time but their sum, 
external to the numerical integration, will not necessarily coincide with the effective values 
actually applied by the stiff equation integrator CHEMEQ2.  
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In addition to the nonlinear energy cascade governed by Eq. 4.3 above, we also need an 
equation to advance the rotor number density.  This version of CSD will use 

   
p�r
pG

= p�r
���

pG
+	�

�

0
𝛾
Rruv
Sruv

(𝑃𝑘−1
𝑓 )2/3𝑁𝑘−1 +

M
9
𝛿
R𝑘+1
S𝑘+1

(𝑃𝑘+1
𝑓 )2/3𝑁𝑘+1 

     −𝛾
𝑉𝑘
𝑅𝑘
(𝑃(

4)0/.𝑁( − 𝛿
𝑉𝑘
𝑅𝑘
(𝑃(

4)0/.𝑁( − 𝜈
𝐹𝑘
𝜈𝑑

𝑅𝑘
2 𝑁(.    Eq. 4.4 

The first term on the right is an external source of rotors which will be present if, for example, the 
external energy source is provided by stirring.  This equation is also in the form that can be 
integrated using CHEMEQ2 although it is explicitly not conservative.  The factor ½ in the second 
term on the right indicates that one rotor is formed from two during merger.  The term 𝜂%/2 in the 
third term on the right indicates that two rotors shred each other to form 𝜂%	rotors in the next 
smaller-scale bin.  These 𝜂%  new rotors will share the energy cascading down from the next larger 
scale with the already existing rotors at the smaller scale.  𝜂%	must be at least 8 or the packing 
fraction will tend rapidly to zero at small scales.  In the examples below the value 𝜂% = 14.4 is 
used, ensuring enough rotors to make up for merging, particularly at small scales.  Appreciably 
larger values cause an instability as the energy of the individual rotors must decreases to counteract 
the extra rotors.  

The viscous term in Eq. 4.4 is included to allow the removal of rotors that have become 
dynamically insignificant in time due to viscous decay.  The viscous decay factor 𝐹(�p for each 
scale has yet to be determined.  Here 1.0E-9 is used for all bins, indicating essentially no reduction 
in rotor number due to viscous dissipation.  Viscosity here causes only a loss of average energy. 

Consistency of Eqs. 4.3 and 4.4 can be shown.  The destruction of rotors due to shedding at 
scale k has a rate of energy transfer to the scale k+1 equal to 𝛾 𝑉𝑘𝑅𝑘

(𝑃(
4)0/.𝐸(  from Eq. 4.3.  In a 

small interval of time ∆𝑡 this corresponds to an energy transfer of 𝛾∆𝑡 𝑉𝑘𝑅𝑘
(𝑃(

4)0/.𝐸( .  This, in turn, 

corresponds to a number of rotors being destroyed,  

  ∆𝑁( = 	−𝛾∆𝑡
𝑉𝑘
𝑅𝑘
(𝑃(

4)0/.𝐸(/𝑒𝑘 	= 	−𝛾∆𝑡
𝑉𝑘
𝑅𝑘
(𝑃(

4)0/.𝑁(,     Eq. 4.5 

as appears directly in Eq. 4.4.  Here 𝑒( ≡ 𝐸(/𝑁( = 3𝜋𝜌𝑅(.𝑉(0 is used from Eq. 3.5 above. 

5. Solving the Energy and Number Density Equations 
The CSD model is advanced in discrete, macroscopic time steps 𝑑𝑡, which may contain many 
smaller steps as determined by the CHEMEQ2 algorithm.  The changes in the set of rotor energy 
densities {𝐸(}, rotor number densities {𝑁(}, and their corresponding packing fractions �𝑃(

4� are 
determined using the stiff equation integrator CHEMEQ2 because the shortest wavelength, largest 
k, bins are mathematically stiff and thus demand an impractically short explicit time step.  This 
integration will be highly nonlinear so care must be taken to ensure that energy conservation is 
preserved acceptably well - with the exception of viscous damping at short wavelengths.   

The set of rotor energy densities {𝐸((𝑡)} will be known at the beginning and the end of the 
step from time 𝑡J to 𝑡J�M so the integrated energy density change during the time step due the 
numerical integration is easily calculated. 

  𝑑𝐸(y𝑡J�M/0z = 	𝐸((𝑡J�M) −	𝐸((𝑡J).        Eq. 5.1 
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In order that the values of the independent variables and the derived quantities can be 
synchronized, both Eqs. 4.3 and 4.4 must be integrated together.  Thus 2kmax equations are solved 
simultaneously. 

Equation 4.3 appears to be linear in the energies, with coefficients suggested by scaling and 
scale similarity arguments, even though the rotor interactions are being considered to be binary.  
Nonlinearity enters through the Vk terms. Any two rotors can interact, creating smaller rotors and 
merging to create larger rotors.  This suggests that the number of interactions each rotor undergoes 
should be proportional to the density of rotors.  However, the total number of binary interactions 
at each size scales as N2.  
 The apparent linear dependence shown reflects an additional consideration: the strength of 
these interactions varies greatly with distance.  Nearby rotors interact much more strongly than 
widely separated rotors whose interactions will also statistically tend to cancel.  This distance 
shielding effect means that there will be a finite number of the closest rotors whose interactions 
matter most.  Here this number, call it M, is taken as constant independent of the average separation 
of the rotors, which is captured by the packing fraction 𝑃(

4 .  M might be estimated from Monte 
Carlo sampling or even “measured” from detailed numerical simulations (DNS).  M is subsumed 
in the coefficients 𝛾 and 𝛿 in Eqs. 4.3 and 4.4. Thus the number of meaningful rotor interactions 
per unit volume is expected to be linear in the number of rotors per unit volume even though the 
number of interactions at any one time might appear to be mathematically quadratic.  The strength 
of the meaningful interactions increases when the packing fraction is larger and this 
correspondingly increases the shredding rate and merging rates.  These dependences are taken into 
account in the equations above by the interaction velocity and distance, ℧( and 𝑆( . 

6. The Kolmogorov Energy Spectrum and Viscous Dissipation 
The Kolmogorov energy spectrum for the steady-state cascade of turbulent kinetic energy from 
large scales to smaller scales can be derived from dimensional considerations, a very strong 
argument.  It has been demonstrated and verified in a number of ways including direct numerical 
simulations (DNS) and experiments.  One way to derive this in CSD is to consider detailed balance 
in equilibrium.  This requires the time derivative in Eq. 4.3 to be zero: thus 

  
Rruv
Sruv

?𝑃𝑘−1
𝑓 A

2/3
𝐸𝑘−1 =

Rr
Sr
?𝑃𝑘

𝑓A
2/3
𝐸𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.         Eq. 6.1 

This can be written as 𝑉(?𝑃(
4A
0/.
𝐸( = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝑅(.  Using Eq. 3.7, this can also be written as 

 𝑉(?𝑃(
4A
0/.
𝐸( = 𝐸(

�
}?𝑃(

4A
0/.
/81/(𝜌𝑃(

4) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝑅( . which in turn yields 

  𝐸(
./0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	8𝜌𝑃(

4	𝑅(
./0.           Eq. 6.2 

Since the rotor scale 𝑅( as proportional to the inverse wavenumber k–1, Eq. 6.2, is the usual 

Kolmogorov inertial range spectrum with 𝜀( =
𝐸𝑘
𝑘 ~	𝑘−5/3 when the packing fraction is constant.  

In simulations, as we will see, 𝑃(
4  decreases throughout the inertial range but very slightly 

compared to the orders of magnitude variations in the rotor velocities, number density, and energy 
density. 



 13 

Every rotor decays by viscous dissipation.  This is unimportant at long wavelengths, i.e. large 
Rk.  However, when Rk is small enough, viscous decay becomes important and we have left the 
inertial range.  Viscous decay becomes faster than the rotor turn-over time which has the 
characteristic rate 𝑉(/𝑅(.  In CSD, Eq. 4.3 has a term of the form 𝜈/𝑅𝑘2 where the viscosity 𝜈 has 
units of cm2/sec. 

           pqr
pG

= 𝛾
Rruv
wruv

𝐸𝑘−1 − 	𝛾
Rr
wr

𝐸𝑘 − 	𝜈
M
Sr
} 𝐸𝑘      Eq. 6.3 

Equation 6.3 is still in canonical form for integration as a stiff rate equation but now has another 
term that can be stiff, viscous dissipation, when the scale approaches the Kolmogorov scale.   
 Rotors at a given scale can all have different strengths and orientations.  Fossil turbulence 
(Woods,1969; Gibson,1999) is very weak compared to other active nearby structures (rotors) of 
the same scale that may be inhabiting the system.  The energy at each scale is nominally shared 
among all of the rotors but the fossil rotors may be large in number and yet not contributing to the 
fluid dynamics substantially.  This situation suggests considering a distribution of rotor energies – 
or at least considering two classes, those that are dynamically significant and those that are not.  
The available energy would only be shared among the dynamically significant rotors.  These 
considerations can play into how we should treat the packing fraction. 

7.  Calibrating CSD Using the Taylor-Green Vortex Problem 
The two independent parameters for shredding and merging, 𝛾 and 𝛿, apply to all scales but their 
values do not come from theoretical analysis.  A program of detailed numerical simulation could 
provide answers, in principle, but first ‘shredding’ and ‘merging’ would have to be defined in an 
analyzable scale-independent manner.  An approximate calibration can be provided using work 
already performed by researchers who have published detailed CFD solutions the Taylor-Green 
Vortex (TGV) problem (Drikakis, et al., 2007; Adams, et al., 2007; DeBonis, 2013; Kajzer, et 
al.,2014; Diosady and Murman, 2015; G. Giangaspero, et al., 2015; Grinstein, et al., 2018).  The 
TGV problem is a triply periodic fluid-dynamic problem with a precisely defined, smooth initial 
condition that transitions to turbulence.  In the detailed numerical simulations, the total energy in 
the system dissipates due to a combination of viscous and numerical dissipation at and near the 
spatial grid scale.  The overall system dissipation rate is small for a time as the largest scale TG 
vortices interact but the rapidly peaks as shorter scales with faster interaction rates are energized.  
The total system energy then decays as a combination of cascade below the CFD grid scale 
physical viscous dissipation, if included, and any numerical dissipation present to provide stability 
and/or monotonicity. 
 The TGV problem can also be applied a good test of CSD energy conservation.  During the 
first few seconds, before the forward cascade of energy reaches beyond the inertial range, the total 
energy is being reapportioned between the inviscid rotor scales but viscous dissipation, or cascade 
off the small-scale end of the grid, has yet to occur.  When the viscosity is finite, some small 
dissipation of even the largest scales occurs but this can be made quite small when 𝜈 is small.  
Unlike CFD, the CSD model does not need numerical diffusion for stability.  Taking the initial 
vortex (rotor) size and velocity to be 324 cm and 100 cm/sec respectively, and using the viscosity 
of water, 𝜈 = 0.01 cm2/sec, gives a baseline Reynolds number of  

      𝑅D =
𝑉2𝑅2
𝜈 ≈ 3𝑥10�.         Eq. 7.1  
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 The dissipation rate for the CSD system is the rate of change of the total turbulent kinetic 
energy.  When the nonlinear cascade reaches the dissipation zone where the spectrum begins to 
fall off quickly, the viscous dissipation increases rapidly, peaks, and then begins to drop as the 
total energy in the system is being drained away at the short wavelength end of the spectrum.  Since 
the inviscid cascade continues feeding the dwindling kinetic energy down to the viscous zone even 
after the dissipation peaks, the time that the dissipation peak is reached and the rate of decrease of 
the global dissipation after the peak are good measures of the choice of the parameters 𝛾 and 𝛿. 

The CSD model, programmed in Fortran 90, is currently being run on an iMac with a four 3.5 
gigahertz cores. The numerical solution is advanced using CHEMEQ2 (Mott and Oran, 1991 and 
references therein) to integrate the stiff dynamic rate equations.  The performance and convergence 
is considered further in Section 8.  There are several parameters in the model that affect the 
performance and testing has been, by no means, completed although several scenarios including a 
number of parameter variations have been performed.  Several of the obvious calibrations and tests 
are described in this section and the next. 

 A short series of CSD computations was performed varying 𝛾 and 𝛿 to match the curves in 
Figs. 4a.4 and 4a.5 of Drikakis, et al., 2007.  The initial conditions for CSD were taken as V2 = 
100 cm/sec with a system size of 628 cm (~ 100 x 2p).  These choices, with a packing fraction of 
0.9 initially, allows the appropriate non-dimensional time t* to be measured in seconds.  
Initializing energy only in bin 2 corresponds approximately to the 8 counter-rotating vortices of 
the Taylor-Green problem.  A number of runs showed that 𝛾 = 3.0 and 𝛿 = 0.6 give reasonably 
close agreement with the late time dissipation rate – making the time scale for CSD evolution agree 
closely with the fluid dynamic simulations. 

The smooth initial conditions of the Taylor-Green problem undergo a period of laminar 
instability before nonlinear cascade can truly be said to begin.  This growth period is not included 
in the CSD model but the effect can be approximated by an initial delay followed by a ramp up of 
the coefficients 𝛾 and 𝛿 to their calibrated values.  A “linear growth” delay of 3 seconds followed 
by an 8 second linear ramp-up of 𝛾 and 𝛿 places the dissipation peak at about 9 seconds as seen in 
the table below, in close agreement to the CFD results.  This calibration is at least semi-
quantitative, let’s say at the 10% level, but not too much should be made of the quality of 
agreement with the detailed simulations, which even differ appreciably among themselves.  As an 
added note, other problems may need to be initialized in different ways for different driving terms 
or boundary conditions. 

Table 7.1 Dissipation Rates at Selected Times 
dt = 1.0 second dt = 0.5 second dt = 0.25 second dt = 0.1 second 

time dEtot/dt time dEtot/dt time dEtot/dt time dEtot/dt 
9.0 s 844.995 8.50 s 901.225 8.75 s 957.067 8.80 s 966.895 

10.0 s 849.651 9.00 s 936.937 9.00 s 963.453 8.90 s 969.748 
11.0 s 766.365 9.50 s 932.932 9.25 s 959.642 9.00 s 969.571 
20.0 s 158.079 20.0 s 157.851 20.0 s 158.306 20.0 s 157.200 
30.0 s 60.362 30.0 s 59.373 30.0 s 58.667 30.0 s 58.656 
40.0 s 29.753 40.0 s 29.307 40.0 s 29.194 40.0 s 29.153 

Table 7.1 above presents dissipation rates from four CSD runs of the TGV problem performed 
with 𝛾 = 3.0 and 𝛿 = 0.6 and 30 bins performed with four different timesteps.  The dissipation 
rates here are simply the time rate of change of the total integrated system energy.   No attempt 
has ben made to normalize these rates to any of the detailed simulations.   The nominal Reynolds 
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number for all four cases in Table 7.1 is ~3x106.  The timestep used appears above the two-column 
table of data associated with each of the four runs.  The three shaded rows display the dissipation 
rates for the three timesteps straddling the peak dissipation, which occurs at slightly different times 
in each case.  The shortest timestep run, the last two columns in the table, shows the highest peak 
dissipation and the most rapid kinetic energy drop off thereafter.  The decay phase is illustrated 
for each case, i.e. each different CSD integration timestep, by the global dissipation results at 20 
seconds, 30 seconds, and 40 seconds.  Remember, these times in seconds are also numerically 
equivalent to the non-dimensional time due to the choice of initial conditions. 

 Figure 7.1 below shows the time evolution for four CSD runs, each at the shortest 0.1 second 
timestep, with different values of viscosity 𝜈 spanning a range of one million.  The values used 
were 𝜈 = 100 (Re ~ 300), 𝜈 = 1.0 (Re ~ 30,000), 𝜈 = .01 (Re ~ 3 million), and 𝜈 = 10-4 (Re ~ 300 
million).  The two highest Reynolds number curves in the figure, red and lavender, are virtually 
identical because they are essentially inviscid.  Even the Re ~ 30,000 run, displayed as the blue 
markers every fifth timestep, gives essentially the same result.  There is no indication of the peak 
becoming progressively sharper, however, as seems to occur in Figs. 4a.4 and 4a.5 of Drikakis, et 
al.  Regardless of where the dissipation zone, is the global dissipation rate is controlled by how 
fast the kinetic energy cascades through the inertial range. 

 
Figure 7.1. Dissipation rate of the turbulent kinetic energy for the Taylor-Green transition to 
turbulence problem. Three CSD solutions for different Reynolds numbers are compared to 
ILES and DNS solutions presented by Grinstein, et al.  This comparison was used to set the 
free g parameter in CSD.  For Re ~ 1500 (green) and smaller, viscous dissipation begins 
immediately and lowers the peak dissipation rate. 
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7.1 Energy Conservation in Coherent Structure Dynamics 

The discussion of energy conservation in CSD should be continued.  The CHEMEQ2 integrator 
does not necessarily conserve the summed dependent variables exactly even when the underlying 
equations are in explicit conservation form.  The current formulation (Mott and Oran) uses a 
predictor-corrector formulation but the algorithm is asymptotic when it detects mathematically 
stiff terms.  These asymptotic formulae deal with the near cancellation of the mathematically stiff 
terms quite accurately but they do not necessarily conserve.  This is a price paid for time steps 
appreciably longer than the stability limit. 
 Conservation can be guaranteed, in principle, by a fully implicit formulation but the numerical 
precision may have to be very high and the computational cost is extreme when the number of 
equations is large.  CSD has about 50 nonlinear equations to be solved for a ratio of scales from 
longest to smallest of abut 108.  The fully implicit approach requires multiple 50x50 matrix 
inversions within each iteration at each time step.  The numerical community has expended a lot 
of effort to reduce the cost of such implicit computations but the expense is still very large.  Further, 
in the end analysis, the accuracy is not high.  The implicit approximation is stable but the 
characteristic time scales are greatly in error when the time step is larger than the explicit stability 
limit (Oran and Boris, 2001, Chapter 4).  An asymptotic approach such as CHEMEQ2 limits the 
production and destruction evaluations to just the nonzero elements and does not do this a large 
number of times.  The asymptotic formulae are actually more accurate, excepting the problem with 
exact energy conservation.  In any case, external energy source terms at large scale and viscous 
damping at small scale are non-conservative terms that will effectively mask all but very large 
errors.  

Since conservation cannot be strictly enforced, it must be checked.  The total energy at the 
beginning and end of the step can be evaluated using ℰ(𝑡J) ≡ ∑ 𝐸((𝑡J)(JKL

(�M .  Without external 
sources adding energy, the difference, ℰ(𝑡J�M) − 	ℰ(𝑡J), should be attributable to viscous 
damping added up over all bins.  The total kinetic energy going from one step to the next step 
should be conserved when taking proper account of the source and the dissipation terms, both of 
which should ensure that the bin energies affected stay positive.  Conservation is seen for the high 
Reynolds-number cases in Fig. 7.1 as evidenced by the zero dissipation values out to about 6 
seconds on the left-hand side of the plot. 

 ℰ(𝑡J�M) = 	ℰ(𝑡J) + 𝑑𝑡 ∑
𝑑𝐸𝑘

𝑒𝑥𝑡

𝑑𝑡 y𝑡J�M/0z − 𝑑𝑡 ∑
𝑑𝐸𝑘

𝑣𝑖𝑠𝑐

𝑑𝑡 y𝑡J�M/0z(JKL
(��

(JKL
(��   Eq. 7.2 

Ensuring positivity of the individual bin energies is a possible problem when any of the terms in 
Eq. 7.2 have the wrong sign.  Negative external sources would be unusual but, if present, should 
not scavenge energy that is not there.  The viscous terms are negative and they are large at short 
wavelength.  Fortunately, CHEMEQ2 will prevent negative values with even the fastest damping 
terms although conservation may suffer.  In the viscous case, however, the bin energies at high 
wavenumber are small so the non-conservation errors that occur will also be small. 
 Further numerical checks on non-conservation could be constructed but involve estimating 
the source terms and viscous damping terms exterior to the integrator.  These estimates will not be 
exactly equivalent to what the integrator does except possibly for explicit sources at large scale. In 
any case, these estimates will be unable to cast much light on non-conservation caused by the stiff 
nonlinear cascade terms coupling the differing-scale bins.  The simpler approach to study non-
conservation is to do it empirically by running additional test cases.   The Taylor-Green problem 
used to calibrate the primary parameters of the model is also a good test case for checking 
conservation in the nonlinear “cascade” terms governing shredding and merging of rotors.  As can 
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be seen in Fig. 7.1, the essentially identical global dissipation values of the three high Reynolds-
number cases as a function of time is some evidence that non-conservation of energy in the 
integration has been controlled. 

A second case, similar to the TGV problem was initialized with no energy in the longest 
wavelengths, i.e. smallest k, nor in the shortest wavelengths k near kmax, and with zero external 
sources.  Moving the bin with initial energy to bin 6 allows a glimpse of the effects of inverse 
cascade.  Again, for some number of time steps the initialized energy will remain in the inertial 
range where viscous damping may also be neglected.  For this test, a velocity of 5 cm/s was 
initialized in bin 6 with rotors of size 31.25 cm.  Values of with 𝛾 = 1.0 and 𝛿 = 0.2 were used 
for this run to spread out the time scale.  This corresponds to an initial total system energy density 
of 10.0 gm-cm/sec2 (Eqs. 3.5 – 3.7), all in one rotor-size bin.  Table 7.2 is a map of how the 
conserved energy cascades up and down the spectrum from the initial delta function (red block at 
t = 0 s) in bin 6.  Red indicates a rotor energy density greater than 1.0.  Orange indicates bin 
energies between 0.1 and 1.0.  Yellow indicates bin energies between 0.01 and 0.1.   Green 
indicates bin energies between 10-3 and 0.01.  Light blue indicates bin energies between 10-4 and 
10-3.  Even lighter blue indicates bin energies in the range between 10-5 and 10-4 and clear indicates 
a bin energy less than 10-5.  The letter s is entered in each bin where the characteristic precession 
time, characterizing the interaction rate between rotors, is shorter than the 1-second timestep, i.e. 
where the equations are stiff.   

Table 7.2.  Energy Conservation Map: No Viscosity or External Driving Terms 
time Sum Ek 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
0 s 10.0000                               
1 s 10.0000                               
2 s 10.0000                               
3 s 10.0000                               
4 s 10.0000                               
5 s 10.0000                               
6 s 10.0001                               
7 s 10.0001                               
8 s 10.0001                               
9 s 10.0001                               
10 s 10.0001                               
11 s 10.0001                               
12 s 10.0001                               
13 s 10.0001                               
14 s 10.0001                               
15 s 10.0001                               
16 s 10.0001                          s s s s s 
17 s 9.99657                   s s s s s s s s s s s s 
18.s 9.97274                  s s s s s s s s s s s s s 
19 s 9.92240                 s s s s s s s s s s s s s s 
20 s 9.83360                 s s s s s s s s s s s s s s 

Table 7.2.  Map of the initial spread of a local energy spike at bin 6 throughout the turbulent 
distribution.  Viscosity and driving terms are switched off to highlight energy 
conservation/non-conservation.  Red = bins with Ek > 1.0.  Orange = Ek between 0.1 and 1.0.  
Yellow = Ek between 0.01 and 0.1.  Green = Ek between 10-3 and 10-2.  Blue = Ek between 10-4 
and 10-3.  Pale blue = Ek between 10-5 and 10-4.  Clear = Ek< 10-5.  “s” indicates mathematically 
stiff bins. 

By 20 seconds elapsed time, when significant energy first begins to cascade off the short-
wavelength end of grid, the three bins 6, 7, and 8 still contain nearly 70% of the system energy.  
As can be seen in Table 7.3, essentially none of the energy has reached to longest-wavelength bin 
due to inverse cascade, which is relatively weak.   E1 is still 4.0E-13 and E2 has increased only to 
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4.95E-12.  The increase in total energy by one part in 105, evident first between 5 and 6 seconds 
in the table above before the energy spread has reach either boundary of the scale-space grid, can 
be attributed to the finite error tolerance for convergence of the predictor-corrector algorithm in 
CHEMEQ2.  Until 15 seconds, energy has not even begun to reach the short-wavelength end of 
the spectrum.  CSD allows energy cascade smoothly off of the spectral grid, even in the absence 
of viscosity.  The power law spectra are followed closely up through the last bin without any 
dissipation zone so the solutions are not exactly the same as in the previous figures.  The point is, 
however, that the equation set and the numerical solution are well behaved. 
 Once energy conservation of the solution procedure has been established, a second test 
involves measuring the effects of viscous dissipation.  This effect, summed over all bins using Eq. 
7.1, will become dominant eventually with or without external source or driving terms.  When 
viscosity is turned back on, with a value of 0.01 cm2/sec, approximately the viscosity of water at 
72 0F, much greater energy non-conservation in the grid is seen.  The following values of the total 
energy per centimeter3 are observed at 0, 2, 4, 6, 8, 10, 12, and 14 seconds into the run:  10.0000, 
9.99974, 9.99936, 9.99878, 9.99784, 9.99619, 9.99280, and 9.98376 erg/cc.  Energy conservation 
is still observed to 2 parts per 1000 at the end of the 14 seconds but energy loss from the system is 
increasing rapidly.  As the short-wavelength end of the spectrum becomes excited, where viscous 
dissipation is strongest, energy conservation on the grid decreases quickly.  In the next six seconds, 
the energy cascade reaches to and through the dissipation zone.   

At 15 through 20 seconds the summed energy densities, with viscosity active, are: 9.97299, 
9.95269, 9.91708, 9.86154, 9.78268, and 9.68476 erg/cc.  3.02% of the energy is lost after 20 
seconds due to viscosity and cascade, as opposed to 1.7% due to nonlinear cascade alone.  This 
viscous energy is being lost from the bins that are on the grid with the effect of reducing the on-
grid values and thus reducing the energy available to forward cascade off the spectral grid. 

8. Non-Equilibrium Turbulent Evolution Using the CSD Model 
Coherent Structure Dynamics was developed to afford a view into the time evolution of turbulence 
without the need for expensive time-dependent CFD simulations.  The spectrum is computed 
directly without the need to post process individual 3D flow fields.  Further, the CSD model is 
designed so the development of the spectrum of an ensemble of turbulent flow realizations could 
be approximated with one fast computation.  Necessarily some detail will not be available.  This 
section provides computations of the evolution of a completely non-equilibrium turbulent scenario 
in which an initially quiescent fluid is stirred continuously at the system size holding the energy 
density at this largest scale constant. 

8.1.  An Equilibrating Non-Equilibrium Turbulence Spectrum 
For this problem, the model treats a single spatially homogeneous domain with only the 10-meter 
rotor size externally energized with a fixed characteristic rotor velocity of 2.0 m/s.  This is the 
largest scale (bin 1) in the system.  The variables, with the exception of the rotor number density 
and the packing fraction, are scaled by their values in the first bin, which are held fixed in this 
problem.  Figure 8.1 below depicts this initial condition, which is as far from an equilibrium, 
Kolmogorov-like spectrum as possible.  Essentially all of the energy is in the longest wavelength. 

The equations are being solved with 0.1-second timesteps for this problem on a grid of 26 bins 
whose smallest scale is about 3x10-5 cm.  The tests reported in Table 7.1 indicated that 0.25 and 
0.1 second integrations were almost identical.  For this problem, the equations for all rotors with 
sizes less than 1 or 2 cm, that is, bins 11 through 26, are mathematically stiff once the turbulent 
cascade is established.  
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Figure 8.1. Initial condition for a CSD run demonstrating the transient equilibration of a 
highly non-equilibrium spectrum to a Kolmogorov-like steady state.  The rotor velocity 
(lavender), energy density (cyan/light blue), spectral energy density (orange/red) and rotor 
number density (grey/light green) are shown on logarithmic scales. 

Most curves in the figures to follow are normalized to 1.0 on the logarithmic y-axis.  The 
logarithmic x-axis ranges from 1000 cm, the largest scale, down past 10-4 cm, which, for this 
problem, is below the dissipation scale.  The ideal, theoretical, power-law curves are shown as 
straight lines on this plot.  Lavender is used for the rotor velocity, initialized to 2.0 m/s in bin 1 
and maintained constant for this case.  The ideal, steady solution scales as 𝑉(~𝑘~M/9. The actual 
rotor velocity values at t = 0.0 sec are shown as lavender squares on the lavender curve.  With the 
exception of bin 1 these values are all initially below 10-7 of the driving 2 m/s value.  The velocities 
in bins 2 through 26 evolve according to the equation set as the system is constantly being “stirred” 
in bin 1 at 2 m/s.  Light blue is used for the  power law rotor energy density, which scales 
asymptotically as 𝐸(~𝑘~0/..  The numerical values of 𝐸(  are plotted in a darker color, cyan in 
subsequent figures, with black squares at the computed bin values to show up better.  𝐸(does not 
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appear in the initial condition because all bin values other than the first, normalized to 1.0 are 
below 10-10 at the bottom of the plot. 

The rotor energy density 𝐸(  is not the usual spectral energy density, which is defined to be 
𝜀( ≡ 𝐸( 𝑘⁄ ~𝑘~�/..  The extra factor of k is required because the bin size is proportional to k. 𝜀( 
ideally satisfies the -5/3 law, which is drawn in orange and is also normalized to 1.0 at the left.  
The rotor number density 𝑁(~𝑘.~� is draw in grey.  It increases rapidly to the right with 
decreasing rotor size.  It is normalized to 10-10 on the y-axis so the curve will appear on the same 
plot as the other variables.  When the packing faction is constant, 𝑁(	must scale as 𝑅(~. because 
halving the rotor size allows eight times as many rotors to fit in the same volume while maintaining 
the same relative separation.  The approximate asymptotic rotor number density is plotted in light 
green and scales as ~𝑘.~�.  The actual time-dependent packing fraction is plotted in darker green 
with black squares at the bin data points.  In the initial condition of Fig. 7.1 the packing fraction is 
everywhere 0.9 and plotted on a linear scale whose y-axis values are shown at the right side of 
each plot. The packing fraction evolves in time and is observed empirically (computationally) to 
approach 𝑃(

4~𝑘~M/� in time, an approximate power law, which is shown by the cyan squares in 
the lower part of each figure. 

 
Figure 8.2. Left: After 5 seconds the cascade has spread down to the 10-cm scale and velocities 
have reached the 1-mm scale. Right: After 10 seconds the energy cascade has moved to 1-mm 
scales and a transient dissipation scale seems to have formed. 

Figure 8.2 shows the variables of the CSD model at 5 seconds (on the left) and 10 seconds (on 
the right) after starting the run.  At these early times the solution is effectively zero below a scale 
that decreases rapidly from 1000 cm at time zero.  The packing fraction drops immediately to a 
value less than 0.1 in the small turbulence scales that have not yet been excited.  At 5 seconds 
elapsed time, a foot of small but increasing rotor velocities has advanced down to the 0.1 cm scale 
and the velocity values at longer wavelength are increasing.  By 10 seconds, the right-hand panel 
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in Fig. 7.2, a fledgling dissipation region has formed near 0.1 cm and advances to the right as the 
total energy in the spectrum continues to increase from the steady driving term. 

Figure 8.3 shows the primary model variables at 20 seconds (left) and 30 seconds (right). The 
velocity and energy density profiles are beginning to approach the classical Kolmogorov spectrum 
dependence but the profiles still lie below the power-law curves.  A vertical bar (yellow bordered 
by black) is drawn by the plotting program at the beginning of the dissipation zone where the 
viscous damping rate first exceeds the rotor-interaction rate.  By 20 seconds the dissipation range 
for this problem is well established.  By 30 seconds the maximum in the packing fraction, near bin 
3 at 20 seconds, has moved to bin 1 leaving a monotonically decreasing profile into the dissipation 
zone.  The grey rotor number density curve is also approaching its nominal, light green power-law 
curve.  A pre-dissipation bump (also called the bottleneck) is beginning to form. 

 
Figure 8.3. Left: After 20 seconds the spectrum is beginning to approach an equilibrium 
Kolmogorov spectrum with enough energy at short wavelengths to have established a 
dissipation scale.  After 30 seconds the velocity and energy spectra are approaching power-
law profiles throughout the inertial range although the pre-dissipative bump has not yet 
formed. 

 Figure 8.4 shows the equilibrating spectrum at 60 seconds after the run began.  A well 
developed dissipation range begins at the vertical bar near 0.01 cm and extends for several bins to 
the right where the bin energy density Ek (cyan to black in the dissipation zone), spectral energy 
density 𝜀( (red to purple), and rotor characteristic velocity Vk drop off the bottom of the plot scale.  
Although the predissipative bump appears, Fig. 7.4 is still not fully equilibrated.  The packing 
fraction, which is a non-dimensional variable, is not driven by the same dimensional arguments 
that constrain the spectral energy density and velocity and takes much more time than the velocity 
and energy density to relax to equilibrium.  In fact, it takes another four minutes, until 300 seconds, 
for the computed spectrum to approach the “equilibrium” shown in Fig. 7.5. most notably, the 
packing fraction has now approached the power law approximation, which is plotting on a linear 
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scale by light green squares in the figures.  The packing fraction is hard to define beyond the 
dissipation region and has been pegged at a fixed value of 0.09, a factor of 10 below the initial 
value.  The pre-dissipative bump is well formed by 300 seconds and arises here because the 
viscosity reduces the energy in the short wavelengths to the extent that they become relatively 
ineffective at shredding the rotor energy into smaller scales so the energy can pile up. 

 
Figure 8.4.  Left: After 60 seconds the transient turbulence spectrum calculated by the CSD 
model is approaching a Kolmogorov spectrum extending well into the dissipation scale at 
about 0.01 cm.  The wavenumber increases and the corresponding turbulent scale size 
decreases to the right.  The turbulent spectral energy density ek (red & blue) decreases from 
bin to bin with k, the bin index, while the rotor number density Nk (grey) increases.  The 
packing fraction Pfk (green) and the average rotor velocity Vk (violet) are also shown. Right: 
The fully equilibrated Kolmogorov-like spectrum at 300 seconds. The dissipation scale, where 
viscous damping of rotors exceeds their generation rate, is marked in both panels by the 
vertical yellow bar near 0.01 cm.    

When viewed as a movie, the equilibrated spectrum on the right of Fig. 8.4 is seen to fluctuate in 
and beyond the dissipation zone by a couple of percent.  This is the action of the integrator, working 
with a finite error tolerance, to treat the extremely stiff equations near the right edge of each of the 
plots.  At the 10-4 cm scale, the equation characteristic time scales at 106 to 107 times shorter than 
the timestep. 

8.2 Using Coherent Structure Dynamics in a CFD Code 
The CSD model was designed to be fast enough to be run for many contiguous cells in one or more 
regions of a CFD computation without significantly impacting the execution of the CFD.  
Alternatively, a macroscopic CFD region could be pre-computed and stored for later processing 
with multiple dynamic realizations of highly resolved subgrid turbulence provided by Coherent 
Structure Dynamics for the same macroscopic CFD solution.  In Subsection 8.3 below, the 
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performance and speed of CHEMEQ2 in executing CSD is discussed.  Figure 8.5 shows one frame 
of a run with 64 separate non-equilibrium turbulent spectra being computed at once.  Each separate 
computation is intended for a particular macroscopic CFD cell and was driven by a differently 
phased fluctuating rotor velocity in bin 1.  These mimic a turbulent wake sweeping back and forth 
across the CFD cells of interest.  The range of these excursions is shown by the width of the energy 
and velocity bands at the left edge of the figure.  The characteristic rotor velocity in bin 1 varies 
by over one order of magnitude and the energy varies by over two orders of magnitude. 

 
Figure 8.5. CSD run solving 64 separate turbulence evolutions simultaneously using a 
correlated random driver in each cell.  

The bands in the figure display the range of velocity and spectral energy values taken on by the 64 
separately evolving spectra over the entire scale range of ten orders of magnitude.  Only one of the 
64 packing fractions 𝑃(

4and energy densities Ek are displayed to reduce clutter.  To complete this 
application, the driving terms for each CSD spectrum would be coupled to a different CFD cell.  
Further, a model to lay down a consistent subgrid flow realization would be needed so a realistic 
higher-resolution flow field could be laid down in a spatially localized area such as a complex 
boundary layer or a region around a small UAV flying through the large-scale CFD flow computer. 
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8.3 The Execution Speed and Performance of CSD 
The version of CHEMEQ2 used in the CSD program was programmed by Dr. Brian Taylor from 
the routines in Mott and Oran (2001).  CHEMEQ2 contains a significant generalization and 
upgrade of the original CHEMEQ routine (Young and Boris, 1973,1977; Young, 1980).   

 
Figure 8.6. Instantaneous CSD spectrum with 14 bins, 18 bins, and 22, 26, and 30 bins 
displayed after 300 seconds has elapsed.  The spectra resolved with 22, 26, and 30 bins have 
nearly identical values in common bins.  Although the 18-bin solution barely reaches the 
dissipation zone, its larger-scale solution is quite close the converged result of the more finely 
resolved cases. 

Figure 8.6 above and Table 8.1 below summarize several runs solving the equilibrating 
spectrum problem using different numbers of CSD spectral bins, specifically 14, 18, 22, 26, and 
30 bins.  This is a form of grid convergence appropriate to the CSD representation.  These runs 
terminate the logarithmic spectral grid before, during, and after the dissipation scale, which can be 
seen to occur between bins 18 and 23 in Fig, 8.6.  The program has drawn a vertical bar (black and 
yellow) just after bin 18 indicating where the viscous damping rate first exceeds the coherent 
structure interaction rate.  The CSD model degrades gracefully when the spectrum is under 
resolved.  With 22 bins, the result is nearly identical to the converged solution in Fig. 8.4 even 
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though the dissipation zone is truncated.  Even when truncated near the beginning of the dissipation 
zone, as with the 18-bin case, the solution at larger scales is very close to the complete solution.  
The solutions with 26 bins are shown in earlier figures and the solution with 30 bins is in no 
demonstrable way different from the 26-bin solution.  However, the solution with only 14 bins is 
not a useful approximation, as clearly indicated by Fig 8.6. 
 Table 8.1 captures some of the performance figures as a function of time during the 
equilibration process.  Only the runs with 18 through 30 bins are included in the table and the time 
step was fixed at 1 second.  This is the longest timestep and somewhat reduces the overall running 
time of the model but this may be the way CSD would be used within a larger CFD model.  For 
the different number of bins in the scale-size grid, the cumulative number of derivative evaluations 
used by CHEMEQ2 is presented at each of the times and the number of derivative evaluations per 
step is calculated for the 20- or 40-second time intervals indicated.  This table gives a coarse picture 
of how the integration is proceeding for each size of spectrum.   

Table 8.1. CHEMEQ2 Performance as the Spectrum Equilibrates 

Relax 18 bins 22 bins 26 bins 30 bins 
 time 
(sec) 

# function 
calls 

# 
derivative 
calls/step 

# function 
calls 

# 
derivative 
calls/step 

# function 
calls 

# 
derivative 
calls/step 

# function 
calls 

# 
derivative 
calls/step 

20 1697 84.9 2298 115 2303 115 2711 135.6 
40 1891 9.7 2602 15.2 2521 10.9 3067 17.8 
60 2071 9.0 2802 10.0 2693 8.6 3257 9.5 
80 2241 8.5 2964 8.1 2919 11.3 3453 7.8 
100 2417 17.3 3212 12.4 3143 11.2 3599 7.3 
140 2773 8.9 3530 8.0 3545 10.1 3950 9.2 
180 3035 6.6 3906 9.4 3899 8.9 4292 8.0 
220 3317 7.1 4185 7.0 4211 7.8 4572 9.8 
260 3645 8.2 4499 7.9 4559 8.7 4980 8.2 
300 3955 7.8 4833 8.4 4891 8.3 5262 8.5 

Table 8.1.  Performance of CHEMEQ2 as the turbulent spectrum equilibrates during the 
300-second runs.  Initial non-equilibrium transients  

During the first 20 timesteps all four runs require a number of extra derivative function 
evaluations to establish an efficient internal time step allowing adequate accuracy (about three or 
four figures).  The number of derivative calls within each CHEMEQ2 call is larger when the 
number of bins is increased because the shortest scales (smallest rotor sizes) also have the stiffest 
equations.  This trend is generally continued later in time when the time-step interval is increased 
from 20 to 40 integration steps.  However, once the spectrum approaches its limiting form and 
significant adjustments are over, the number of derivative function calls per integration step 
becomes nearly constant regardless of the number of bins in the spectral grid.  This is almost 
certainly because the asymptotic algorithm used for stiff equations does not gain accuracy by 
shortening the time step. 
 Using the 26-bin grid employed for Figs. 7.1 to 7.5, the external timestep was varied over four 
values, 1, 0.5, 0.25, and 0.1 second.   Thus, CHEMEQ2 was called 300, 600, 1200, and 3000 times 
to reach the equilibrated spectrum after 300 seconds real time.   The comparisons in Table 7.2 
show timings for the calls to CHEMEQ2 and to the derivative evaluation subroutine that is called 
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by CHEMEQ2.   The actual execution time per call to CHEMEQ2 (column 3) decreases with the 
timestep because the interval being integrated in each step is decreasing.  The total time (last 
column) has increased in each case, however, because more total work is being done to obtain the 
solutions with higher time resolution.  The total run time is seen to be almost directly proportional 
to the number of derivative subroutine evaluations (column 4).  The integration subroutine does, 
however, consume between 10 and 20 microseconds per call outside of the derivative evaluation 
for error checking, algorithm selection, and result computations. 

Table 7.2.  CHEMEQ2 Execution Timing with Varying Timestep 
dt # 

CHEMEQ2 
calls 

Time per 
call to 

CHEMEQ2  

# Derivative 
evaluations 

Time per 
evaluation 

# Deriv evals 
/ CHEMEQ2 

Run time to 
300 sec 

1 sec 300 117 µsec 4891 5.56 µsec 16.3 3.52x10-2 sec 
0.5 sec 600 70.8 µsec 6254 4.78 µsec 10.4 4.25x10-2 sec 
0.25 sec 1200 51.6 µsec 8364 5.24 µsec 7.0 6.19x10-2 sec 
0.1 sec 3000 31.3 µsec 11999 5.59 µsec 4.0 9.39x10-2 sec 

Table 7.2.  Performance of CHEMEQ2 as the turbulent spectrum equilibrates during the 
300-second runs.  Initial non-equilibrium transients  

 Table 7.3 presents the computed rotor velocities for three different times at four different scale 
sizes (bins) , namely Rk = 62.5, cm, 1.953 cm, 0.0610 cm and 0.0019 cm, which correspond to bins 
5, 10, 15, and 20 of the standard 26-bin test problem.  The three comparison times are 20 seconds, 
60 seconds, and 300 seconds, shown in Figs. 7.3, 7.4, and 7.5 respectively.  The “correct” answer 
to this problem is not known but is best approximated by the most accurate solution computed, 
which is should be the case with the shortest timestep, 0.1 second.   

Table 7.3.  Convergence of Computed Rotor Velocities 

time bin Rk dt = 1.0 sec dt = 0.5 sec dt = 0.25 sec dt = 0.1 sec 

20 sec k = 5 62.5000 cm 71.19105 cm/s 71.18890 cm/s 71.50863 cm/s 72.00640 cm/s 

20 sec 10 1.9531 cm 23.59149 cm/s  24.78943 cm/s 26.03320 cm/s 27.72695 cm/s 

20 sec 15 0.0610 cm 10.88231 cm/s 11.99042 cm/s 13.21630 cm/s 14.60028 cm/s 

20 sec 20 0.0019 cm 0.31108 cm/s 0.36999 cm/s 0.41300 cm/s 0.44015 cm/s 

60 sec k = 5 62.5000 cm 80.53612 cm/s 84.22991 cm/s 86.40725 cm/s 88.14985 cm/s 

60 sec 10 1.9531 cm 35.72012 cm/s 38.81041 cm/s 40.53890 cm/s 41.78087 cm/s 

60 sec 15 0.0610 cm 18.81766 cm/s 20.97994 cm/s 22.01114 cm/s 22.82320 cm/s 

60 sec 20 0.0019 cm 0.61200 cm/s 0.64492 cm/s 0.66731 cm/s 0.67674 cm/s 

300 sec k = 5 62.5000 cm 104.0118 cm/s 104.4158 cm/s 104.4352 cm/s 104.5995 cm/s 

300 sec 10 1.9531 cm 50.92868 cm/s 51.23068 cm/s 51.25111 cm/s 51.35862 cm/s 

300 sec 15 0.0610 cm 27.64371 cm/s 27.79647 cm/s 27.82880 cm/s 27.88997 cm/s 

300 sec 20 0.0019 cm 0.75048 cm/s 0.75312 cm/s 0.75280 cm/s 0.75386 cm/s 

Table 7.3.  The computed rotor velocities at three times and four different scales are 
compared as a function of the CHEMEQ2 integration timestep dt.  Comparing dt = 1.0 sec, 
0.5 sec, and 0.1 sec to the run with dt = 0.1 sec, the differences are color coded as follows: 
clear = 2% or better, light yellow = 2 – 5%, light orange = 5 – 20%, light red = >20%. 

The difference between the dt = 0.1 s solution and each of the dt = 1.0 s, 0.5 s, and 0.25 s 
solutions recorded in the table for the same elapsed time and bin is color coded in Table 7.3.  Clear 
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cells indicated results that are within 2% of the dt = 0.1 s result.  Light yellow shading indicates 
results between 2% and 5%, light orange between 5% and 20%, and light red indicates differences 
larger than 20%.  The results for each of the three integration times are blocked together by bolder 
borders in the table.  After 300 seconds, the turbulence spectrum has equilibrated with very little 
change likely but with residual small fluctuations, apparently associated with the extreme stiffness 
at the smallest scales.  Essentially all the results of the three larger timesteps are within a percent 
of the dt = 0.1 s solution after 300 seconds.  At 20 seconds and 60 seconds, the shorter timestep 
solutions are generally closer to the dt = 0.1 s solution with the biggest difference occurring where 
the solutions are changing most rapidly.  The largest differences are generally observed in bins 
just before and within the dissipation zone in the period before the spectrum has equilibrated.  The 
closer to equilibrium the turbulent spectrum is, the longer the CSD timestep can be.  This would 
allow greater runtime efficiencies when CSD is being used wherever the CFD solution is evolving 
rather slowly. 

The rotor velocity was chosen as the variable to compare in Table 7.3 because it also affords a 
look at the effect of viscous decay at short wavelength and at the relative importance of rotor 
velocity and scale.  The bin 20 velocities, generally well down in the dissipation zone, are all small.  
However, when divided by the scale size Rk, which decreases faster than the velocity, the 
corresponding interaction rates are large.  Bin 20 is well into the dissipation zone where the rotor 
velocities are being strongly damped.  Nevertheless, the ratio of velocity to scale size is nearly 
400, indicating may rotor precession/interaction times per second.  Even in bin 15, which lies just 
before the dissipation zone in the pre-dissipation bump or bottleneck zone, this ratio is more than 
450, indicating very stiff equations. 

9. Discussion 
Coherent Structure Dynamics (CSD) was developed to study the rapid time evolution of turbulent 
cascade without the need for expensive time-dependent CFD simulations.  It focuses on the fluid-
dynamic interactions of the coherent flow structures, called “rotors” here, that comprise 
turbulence.   The evolution of the turbulence spectrum is simulated directly without the need to 
compute and post process individual 3D flow fields.  The CSD representation is designed so the 
spectral evolution of an ensemble of turbulent flow realizations can be approximated with one fast 
computation.  Necessarily some detail is not available in this representation.  Nevertheless, 
behavior of the non-equilibrium evolution of turbulence can now be simulated over a range of 
scales far exceeding what can be studied with CFD.  The Taylor-Green Vortex problem was used 
in Section 7 (Table 7.1 and Figure 7.1) to calibrate the free parameters in the CSD model.  The 
resulting time-dependent system dissipation rate compares quite well quantitatively with CFD 
computations of the problem taking orders of magnitude more memory and time to compute.  The 
Re ~ 1 million solution shown in Fig. 7.1 would take a number of months with a 1 million cubed 
effective grid on an exascale computer. 
 Turbulence models for use in CFD have generally treated the inertial-range below CFD 
resolution as if obeying a renormalizable or scale-similar equilibrium described by the 
Kolmogorov spectrum with a spectral energy density that scales as k–5/3.  CSD is a reduced-order 
computational model that computes an evolving turbulent energy spectrum from the system size 
down to and beyond the viscous dissipation scale.  It is based on simple models of the nonlinear 
fluid dynamic interactions of the coherent structures “rotors” that actually comprise turbulence.  
These structures, also sometimes called filaments or “worms,” are seen in a range of experiments 
and simulations.  In addition to solving for the turbulent kinetic energy density as a function of 
scale size, CSD introduces a number density of coherent structures at each scale to account for the 
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fact that the relative spacing of these structures need not be the same at all scales.  The spacing 
differences at each scale are non-dimensionalized in terms of a “packing fraction” that is related 
directly to the coherent structure number density as it evolves. 

CSD addresses situations where changes in the driving fluid dynamics are fast and thus the 
resulting unresolved turbulence can be far from an equilibrium cascade because the small scales 
will not have time to populate or adjust.  There are a number of situations where turbulence out of 
equilibrium may be important.  For example, mixing on the molecular scale and thus chemical 
reactions can be significantly delayed while the short scales in the turbulent energy spectrum are 
being energized by an immature cascade.   This has always been a primary concern in combustion 
research where non-equilibrium mixing actually empowers the turbulence at small scale.  The CSD 
model was used to predict the evolution of a highly non-equilibrium initial condition spectrum in 
Section 8.  This driven turbulence problem and the Taylor-Green vortex decay problem provided 
a number of checks on convergence with timestep and spectral resolution, energy conservation, 
and computational performance.   

It is physically significant that the Kolmogorov Cascade establishes itself quickly, in a few 
large-scale turnover times (seconds), but the non-dimensional packing fraction takes minutes to 
relax to an equilibrium, non-constant dependence on rotor scale.  Thus turbulence seems to 
“remember” information from a non-equilibrium initial condition long after the energy cascade is 
well established.  It is also important to note that this dynamic, reduced-order CSD model predicts 
a pre-dissipation bump, or bottleneck, in the spectrum just before and entering the dissipation zone.  
Though well-established now by detailed simulations and experiments, this small deviation from 
Kolmogorov Cascade at the end of the inertial range was, at one time, attributed to numerical error 
in CFD. 
 The CSD model has been shown to work well, stably and efficiently.  The model was 
constructed to reflect important fluid dynamic considerations: identical treatment of all scales from 
the system size down to below the viscous dissipation scale, positivity of the kinetic energy density 
and rotor number density, conservation of turbulent kinetic energy throughout the inertial range, 
viscous dissipation at all scales, and scale similarity in the interaction rates between the coherent 
structures (rotors).  These physical requirements appear to be enough to give reasonable physical 
results for the implied fluid dynamic and turbulence behavior.  This seems to say that fluid 
dynamics is a more robust process in our universe than necessarily captured by the Navier-Stokes 
equations. 

The CSD model was not derived directly from the Navier-Stokes equations.  It would be nice 
to be able to do this but the author has not been able to see how.  Perhaps this is work for the future.  
It would also be instructive to generalize the model to allow for bin spacing other than a factor of 
two.  Direct Numerical Simulation could do a better job of solving non-equilibrium problems such 
as the Re = 106 example presented here – if we could do simulations with a 106 x 106 x 106 grid.  
Even exascale may not get us there. 

There are a number of input parameters in CSD and the interactions between all of them 
should be subjects for continuing research. Specifically, the number of rotors from a shredding 
interaction and the relative strengths of shredding and merging could be tied down more precisely 
by an extensive program of numerical simulation.  This line of endeavor is open-ended, however, 
and beyond the scope of this paper.  New issues arise such as how to measure the number of shred 
structures and even more fundamentally, when should merging or shredding of two rotors be 
considered to be complete to set the parameters g and d? 
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As mentioned above, the packing fraction does not approach a constant value as would be the 
case if all scales in the inertial range were self-similar.  “Snapshots” of the flow fields at different 
scales will evidence identifiably different flow patterns even though there is no direct indicator of 
scale in the snapshot.  Because of the insensitivity of the model results in the inertial range to the 
details below the dissipation scale, little attention has been paid to this region so the packing 
fraction is simply pegged to a representative small value.  Clearly more work is suggested here 
since the packing fraction is a new feature with relatively little impact on the cascade of energy. 

A major encouraging result was also noted above.  This dynamic, mathematically stiff system 
relaxes to the Kolmogorov spectrum quickly in time and develops a definite pre-dissipative 
“bump” or “bottleneck.”   This phenomenon certainly is not arising in CSD from non-local triadic 
interactions, as they are not recognizably a part of this model.  It also does not seem to be caused 
by the backscatter or inverse cascade that is included in CSD through the rotor-merging 
interactions.  In fact, reducing the value of d in the dissipation zone actually enhances the 
bottleneck bump slightly.  CSD can be argued to support the simplest bottleneck explanation. 
Viscosity reduces the kinetic energy at each scale but does not move it along to smaller scales.  As 
a result, reduction of the energy available at each scale in the dissipation zone below the 
Kolmogorov level cannot provide enough forward cascade to move the energy away from the pre-
dissipation (mostly inertial) zone fast enough.  In this view, the energy density therefore builds up 
a bit above the Kolmogorov level to enhance the cascade into the dissipation zone. 

There seems to be a complicating factor.  The packing fraction is getting smaller in the pre-
dissipation zone but begins increasing again on entering the dissipation zone, as seen in Figure 7.5.  
In the bottleneck, therefore, the rotors will have their maximum relative separation near the peak 
of the bump entering the dissipation zone.  At this scale the rotors are filling about 1/64 of the 
available space, which is roughly consistent with Figure 1.1.  The smaller the packing fraction, for 
a given energy density, the larger is the rotor velocity from Eq. 3.7.  In this case Vk is 8 times larger 
than it would be with a packing fraction near 1.0.  It seems quite possible that the packing fraction 
minimum is therefore helping the energy cascade out of the bottleneck region to offset the blockage 
due to the viscosity. 

The remaining areas of principal activity for CSD are:  
1. Build a computationally tractable model driven by CSD to generate spatially correlated 
realizations of turbulent subgrid flow that can be integrated into an engineering-scale CFD model 
to enhance effective resolution locally by one or two orders of magnitude.  It is entirely possible 
that an optimized version of CSD, with perhaps fewer bins than used in the examples above, could 
be introduced at every relevant element in an expensive finite-element model to give a time-
resolved subgrid model of the local, non-equilibrium turbulent spectrum.  Such a capability may 
provide a boost to reactive flow computations by modeling how quickly subgrid-scale mixing 
actually occurs.  In the reactive flow case, the additional cost of this CSD modeling may not even 
approach the cost of the chemistry. 
2.  In one-way coupled systems with a single engineering CFD simulation providing the driving 
terms, numerous separate small-scale realizations from CSD could be used to develop, test and 
exercise control algorithms for small UAVs and drones in affordable ensembles of more realistic 
turbulent conditions. 
3.  Determine the source of the small numerical fluctuations seen in CHEMEQ2 as it approaches 
equilibrium and how to better optimize it while controlling error for these non-equilibrium 
turbulence problems.  It appears that more than half of the integration effort, in terms of derivative 
evaluations is expended in integrating past these fluctuations. 
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3.   Develop a way to restart the integrations for different, but simultaneous CFD cell conditions, 
by saving intermediate integration temporaries for each separate integration, to save time in 
restarting. 

Research in the immediate future involves merging a fluid-like mixing algorithm driven by 
CSD to study the effects that non-equilibrium turbulence has on micro-scale (molecular) mixing.  
The issue here is to express a high-resolution model of multi-scale turbulent convection which has 
no numerical diffusion – so the mixing observed is a result of applied diffusion at the smallest 
resolved scale and not numerical diffusion at all larger scales.  A “cookie-cutter” model is being 
used in which fluid convection is being simplified to shifts of columns of data in a Cartesian grid 
by integer numbers of cells parallel to grid axes.  These shifts cause no diffusion or numerical 
mixing but large local gradients ae built up.  The last step of this process, each timestep, is to 
diffuse the values in adjacent cells.   
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