

AFRL-RH-FS-TR-2018-0025

Simulated Supercontinuum Generation in the Human Eye from 1200 nm to 1400 nm

Christopher B. Marble Consortium Research Fellows Program

Andrew W. Wharmby 711th Human Performance Wing Airman Systems Directorate Bioeffects Division Optical Radiation Bioeffects Branch

October 2018

Interim Report - April 1, 2018 to October 15, 2018

<u>DESTRUCTION NOTICE</u> - Destroy by any method that will prevent disclosure of contents or reconstruction of this document.

Distribution A: Approved for public release; distribution unlimited. PA Case No: TSRL-PA-2019-0114 Air Force Research Laboratory 711th Human Performance Wing Airman Systems Directorate Bioeffects Division Optical Radiation Bioeffects Branch JBSA Fort Sam Houston, Texas 78234

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

"Simulated Supercontinuum Generation in the Human Eye from 1200 nm to 1400 nm"

(AFRL-RH-FS-TR- 2018 - 0025) has been reviewed and is approved for publication in accordance with assigned distribution statement.

Digitally signed by SHORTER.PATRICK.D.1023156390 Date: 2018.11.19 14:17:26 -06'00'

PATRICK SHORTER, Major, USAF Chief, Optical Radiation Bioeffects Branch

PUTNAM.CHRISTOP Digitally signed by PUTNAM.CHRISTOPHER.M.127395876 HER.M.1273958769 9 Date: 2018.12.03 14:11:18 -06'00'

CHRISTOPHER M. PUTNAM, Lt Col, USAF, BSC Deputy Chief, Bioeffects Division Airman Systems Directorate 711th Human Performance Wing Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute an official position of the U.S. Government.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704–0188

The public reporting maintaining the data suggestions for reduct Suite 1204, Arlington of information if it do	burden for this collecti needed, and completin ing this burden to Dep , VA 22202–4302. Res pes not display a currer	ion of information is es ng and reviewing the co partment of Defense, W spondents should be av ntly valid OMB contro	timated to average 1 hour per re ollection of information. Send co /ashington Headquarters Services vare that notwithstanding any ot I number. PLEASE DO NOT F	sponse, including the mments regarding thi , Directorate for Infor her provision of law, r RETURN YOUR FOR	time for revi s burden estin rmation Oper no person sha RM TO THE	ewing instructions, searching existing data sources, gathering and mate or any other aspect of this collection of information, including ations and Reports (0704–0188), 1215 Jefferson Davis Highway, all be subject to any penalty for failing to comply with a collection ABOVE ADDRESS.			
1. REPORT DA	TE (DD-MM-	YYYY) 2. REPO	RT TYPE		_	3. DATES COVERED (From — To)			
10/01/2018	D/01/2018					April 1 2018 to October 15 2018			
4. TITLE AND	TITIE AND SUBTITIE				5a. CON				
					FA8650	0-14-D-6519			
					5b. GRA	NT NUMBER			
Simulated S	Supercontin	uum Gener	ation in the Hum	an Eye					
from 1200	nm to 1400	nm			5c. PRO	GRAM ELEMENT NUMBER			
6. AUTHOR(S)					5d. PROJECT NUMBER				
					5e. TAS	K NUMBER			
			_						
Christopher I	B Marble, An	drew W. Wha	rmby						
					5f. WORK UNIT NUMBER				
					HORY				
7. PERFORMIN	IG ORGANIZAT	ION NAME(S)	AND ADDRESS(ES)		110101	8. PERFORMING ORGANIZATION REPORT			
Air Force Re	search Labor	atory	()			NUMBER			
711th Human	n Performance	e Wing							
Airman Syste	ems Directora	ite							
BIOEffects Di	V1S101 stion Disaffa	ata Dranah							
9. SPONSORIN	G / MONITOR	ING AGENCY N	AME(S) AND ADDRES	SS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)			
Air Force Ro	ooreh Loboro	tory	()	()					
711th Humar	Performance	Wing			711 HPW/RHDO				
Airman Syste	ems Directora	te			11 SPONSOR/MONITOR'S REPORT				
Bioeffects Division						NUMBER(S)			
Optical Radiation Bioeffects Branch						AFRL-RH-FS-TR-2018-0025			
12 DISTRIBUT		BILITY STATEM	IFNT						
Distribution	A. Approved	for public role	age, distribution unl	imited DA (Jaga Mar	TCDI DA 2010 0114			
Distribution .	A: Approved	for public rele	ase; distribution uni	limited. PA (Jase No:	15RL-PA-2019-0114			
13. SUPPLEME	NTARY NOTES	5							
		-							
14. ABSTRACT									
To understan	d the possible	e eye safety in	plications of superc	ontinuum gei	neration	in the human eye, a one-dimensional			
simulation wa	as created by	extending a fe	emtosecond wave pro	pagator prev	viously u	used by the Air Force Research Lab to			
incorporate p	hase-modulat	ion and self-fo	ocusing effects. Simu	ilation of fem	tosecon	d MPE limit pulses propagating in the			
human eye de	emonstrate m	ultiple hazard	s not anticipated fro	om longer pul	lse durat	tion studies including: a hazard from the			
broad pulse b	andwidth req	uired to form	temtosecond pulses.	, self-phase m	nodulatio	on generating shorter frequency light,			
and self-focus	sing generatin	g plasma near	the retina. These r	esults provid	e guidan	ice for future experimental studies of			
retinal exposition	ure to femtose	econd pulses a	nd lay the foundation	on for future	two-dim	ensional modeling of nonlinear effects in			
the numan ey	/e.								
15. SUBJECT 1	ERMS								
			1						
16. SECURITY	CLASSIFICATIO	ON OF:	17. LIMITATION OF	18. NUMBER	19a. NA	ME OF RESPONSIBLE PERSON			
a. REPORT b. ABSTRACT c. THIS PAGE			PAGES	Andrey	w wharmby				
U	U	U	U	95	19b. TE	LEPHONE NUMBER (include area code) 9-8284			

210-539-8284

This Page Intentionally Left Blank

Section	1	Page			
List of	Figures	. 3			
List of	Tables	. 4			
List of	Equations	. 5			
ACKN	OWLEDGEMENTS	. 6			
1.0	SUMMARY	. 1			
2.0	INTRODUCTION	. 2			
2.1	Nonlinear Optical Properties	. 4			
2.2	The Reduced Eye Model	. 5			
2.3	Phase Modulation and Supercontinuum Generation	. 6			
2.4	Self-Focusing	. 7			
2.5	Simulation Background	. 9			
2.6	Simulation Theory	. 10			
2.7	Thermal Lensing	. 12			
2.8	Nonlinear Effects Not Simulated	. 13			
2.9	Retinal Damage Risks	. 14			
3.0	METHODS AND PROCEDURES	. 15			
3.1	Simulation Setup	. 15			
3.2	Simulation of Previous Water Experiment	. 15			
3.3	Simulation of Reduced Eye Model	. 17			
3.4	Simulation of Chirped Pulses	. 18			
3.5	Interpreting Retinal Exposures	. 18			
3.6	Convergence Tests of Eye Simulation	. 19			
4.0	RESULTS AND DISCUSSION	. 19			
4.1	Simulation of Water Experiment	. 19			
4.2	Simulation of Human Eye	. 27			
4.3	Results of Convergence Tests	. 33			
5.0	CONCLUSION	. 34			
6.0	REFERENCES	. 35			
APPENDIX A - Tabulated Results from Eye Simulation					
APPEN	NDIX B - Simulation Code	. 67			
LIST C	DF SYMBOLS, ABBREVIATIONS, AND ACRONYMS	. 91			

TABLE OF CONTENTS

LIST OF FIGURES

		Page
Figure 1	Set-up of Water Experiment	. 3
Figure 2	Visible Light Generation Due to Supercontinuum in Water	. 3
Figure 3	ANSI MPE Limits Versus Experimental Supercontinuum Thresholds	. 4
Figure 4	Beam Radius in Water Experiment	. 21
Figure 5	Comparison of "1200 nm" Experimental Run with a 1185 nm Simu-	
	lated Beam	. 22
Figure 6	Comparison of "1250 nm" Experimental Run with a 1225 nm Simu-	
	lated Beam	. 23
Figure 7	Comparison of "1300 nm" Experimental Run with a 1310 nm Simu-	
	lated Beam	. 24
Figure 8	Comparison of "1350 nm" Experimental Run with a 1350 nm Simu-	
	lated Beam	. 25
Figure 9	Comparison of "1400 nm" Experimental Run with a 1400 nm Simu-	
	lated Beam	. 26
Figure 10	Spectral Distribution of 50 fs, 1375 nm Unchirped Pulse Propagated	
	Through the Eye	. 28
Figure 11	Intensity of 50 fs, 1375 nm Unchirped Pulse Propagated Through the	
	Eye	. 28
Figure 12	ANSI MPE Limits Versus Simulated Eye Hazards for 100 fs MPE	
	Pulses	. 30
Figure 13	ANSI MPE Limits Versus Simulated Eye Hazards for 35 fs MPE Pulse	es 30
Figure 14	Intensity of 50 fs, 1375 nm Negatively Chirped Pulse Propagated	
	Through the Eye	. 32
Figure 15	Convergence Test for Different Step Sizes	. 33
Figure 16	Convergence Test for Different Maximum Simulated Times	. 34

LIST OF TABLES

	ł	'age
Table 1	Water Simulation Parameters for Each Wavelength	16
Table 2	Eye Simulation Parameters for Each Wavelength	17
Table 3	Assumed Retinal Energy Exposure Limits Per Wavelength	18
Table 4	Hazards at MPE Limit Without Self-Focusing	29
Table 5	Hazards at MPE Limit With Self-Focusing	29
Table 6	First Point of Plasma Generation in Simulation	29
Table 7	Change in Area at Retinal Plane from Self-Focusing	29
Table 8	Hazards at MPE Limit For Pre-Focused Pulses (With Self-Focusing) .	31
Table 9	Hazards at MPE Limit For Negatively Chirped Pulses (With Self-	
	Focusing)	31
Table 10	First Point of Plasma Generation in Chirped Pulse Simulation	32
Table 11	Change in Area at Retinal Plane from Self-Focusing of Chirped Pulse .	32
Table A-1	Time Domain Characteristics of Eye Simulation Without Self-Focusing	39
Table A-2	Spectral Characteristics of Eye Simulation Without Self-Focusing	41
Table A-3	Energy Distribution as a Function of Wavelength for Eye Simulation	
	Without Self-Focusing	44
Table A-4	Time Domain Characteristics of Eye Simulation with Self-Focusing	46
Table A-5	Spectral Characteristics of Eye Simulation with Self-Focusing	48
Table A-6	Energy Distribution as a Function of Wavelength for Eye Simulation	
	with Self-Focusing	51
Table A-7	Time Domain Characteristics of Pre-Focused Eye Simulation with	
	Self-Focusing	53
Table A-8	Spectral Characteristics of Pre-Focused Eye Simulation with Self-	
	Focusing	55
Table A-9	Energy Distribution as a Function of Wavelength for Pre-Focused Eye	
	Simulation with Self-Focusing	58
Table A-10	Time Domain Characteristics of Chirped Eye Simulation with Self-	
	Focusing	60
Table A-11	Spectral Characteristics of Chirped Eye Simulation with Self-Focusing	62
Table A-12	Energy Distribution as a Function of Wavelength for Chirped Eye	
	Simulation with Self-Focusing	65

LIST OF EQUATIONS

		Page
Equation 1	ANSI MPE for 100 fs to 10 ps Pulses from 1200 nm to 1400 nm	. 2
Equation 2	Approximate Index of Refraction of Water	. 4
Equation 3	Approximation of Absorption in Water	. 4
Equation 4	Focal Length of Eye as a Function of Wavelength	. 5
Equation 5	Phase of Pulse	. 6
Equation 6	Pulse Frequency	. 6
Equation 7	Pulse Frequency Shift	. 6
Equation 8	Maximum Frequency Shift	. 7
Equation 9	Maximum Wavelength Shift	. 7
Equation 10	Radial Phase of Pulse	. 7
Equation 11	Critical Power (SI Units)	. 8
Equation 12	Beam Width at Focal Point with Self-Focusing	. 8
Equation 13	Self-Focusing Angle	. 8
Equation 14	Total Focusing Angle	. 8
Equation 15	Distance to Self-Focusing Point	. 9
Equation 16	Distance to Filamentation Point	. 9
Equation 17	Two-Dimensional Pulse Propagation using Fourier Optics	. 10
Equation 18	One-Dimensional Pulse Propagator	. 11
Equation 19	One-Dimensional Pulse Propagator with Operator Notation	. 11
Equation 20	Symmetric Decomposition of the Exponential Operator	. 11
Equation 21	One-Dimensional Nonlinear Pulse Propagation	. 11
Equation 22	Electric Field of a Gaussian Pulse in the Time Domain	. 12
Equation 23	Pulse Intensity	. 12
Equation 24	Beam Width of a Focusing Gaussian Pulse	. 12
Equation 25	Characteristic Time for a Thermal Lens to Dissipate by Conduction	. 13

ACKNOWLEDGEMENTS

The authors thank Dr. Benjamin Rockwell, Dr. Robert Thomas, and Mr. Gary Noojin for their helpful comments and advice. Christopher Marble thanks his advisor at Texas A&M University, Dr. Vladislav Yakovlev, for his guidance on this project.

This research was supported by the Consortium Research Fellows Program, Texas A&M University and the United States Air Force Research Laboratory.

1.0 SUMMARY

The American National Standards Institute (ANSI) Z136.1-2014 eye safety standards have been determined from experimental studies of laser exposure with pulse durations ranging from 100 femtosecond (fs) to several seconds [1]. A previous experimental study propagated 35 fs, 1200 to 1400 nanometer (nm) pulses with pulse energies under the ANSI Maximum Permissible Exposure (MPE) limit in water [2]. The propagated pulses were observed to undergo supercontinuum generation including a visible wavelength component. Since the aqueous and vitreous humors of the eye are, to a first approximation, water this experiment raised concerns that supercontinuum generation could occur in the eye for infrared pulses under the MPE limit. To understand the possible eye safety implications of supercontinuum generation in the human eye, a one-dimensional simulation was created by extending a femtosecond wave propagator previously used by the Air Force Research Laboratory (AFRL) to incorporate phase-modulation and selffocusing effects. By incorporating these nonlinear optical effects, it was found that the strong visible light generation reported in the water experiment was a result of the pulse self-focusing until ionizing the water into plasma. Simulation of femtosecond MPE limit pulses propagating in the human eye demonstrate multiple hazards not anticipated from longer pulse duration studies including: a hazard from the broad pulse bandwidth required to form femtosecond pulses, self-phase modulation generating shorter frequency light, and self-focusing generating plasma near the retina. These effects result in hazardous retinal exposures for 35 fs to 100 fs pulses with wavelengths from 1350 nm to 1399 nm. MPE pulses from 1200 nm to 1300 nm are not observed to be retinal hazards for pulse durations as small as 35 fs. Pre-focusing the pulse resulted in worse retinal exposures including plasma generation near the retinal plane for 100 fs pulses from 1300 nm to 1399 nm. Negatively chirping the pulse to correct for chromatic dispersion did not result in an increased retinal hazard. These results will provide guidance for future experimental studies of retinal exposure to femtosecond pulses and lay the foundation for future two-dimensional modeling of nonlinear effects in the human eye.

In Section 2, the current MPE limits under the ANSI standard are discussed and results of the previous water experiment summarized. The nonlinear optical properties of water are briefly introduced in Section 2.1. In Section 2.2, the reduced eye model is introduced and the importance of the chromatic aberration in understanding infrared pulse focusing in the eye is discussed. In Section 2.3, phase modulation and supercontinuum generation are outlined and the expected frequency broadening is solved for a simplified analytical case. Self-focusing and plasma generation are the subject of Section 2.4 which becomes relevant when interpreting the water experiment and reduced eye model in the results section. Sections 2.5 and 2.6 outline the previous pulse propagation model and current model respectively. The sections that follow discuss effects that are not simulated such as thermal effects (Section 2.7) and other nonlinear effects (Section 2.8). The introduction then concludes with a review of eye safety hazards (Section 2.9). The methods section is separated into sub-sections discussing general propagation methods (Section 3.1), simulation set-up for comparison against the water experiment (Section 3.2), and the re-

duced eye model using unchirped and chirped pulses (Sections 3.3 and 3.4). A method to "score" eye hazards from the simulation is presented in Section 3.5. The methods section concludes with the description of two convergence tests performed to determine the sensitivity of the simulation results to a change in simulation parameters (Section 3.6). The results are similarly divided into sub-sections regarding simulation of the water experiment (Section 4.1), simulation of a MPE pulse entering the eye (Section 4.2), and the results of the convergence tests (Section 4.3). The overall report concludes with further discussion of the risks of unexpected eye hazards from ultrashort, femtosecond pulses and proposes areas of interest for future experiments and simulation. Tables documenting the pulse characteristics at the retinal plane under different simulated conditions are provided in Appendix A. The MATLAB simulation code for the water experiment and human eye are provided in Appendix B.

2.0 INTRODUCTION

The laser eye safety standard ANSI Z136.1 was updated in 2014 in response to experimental studies of retinal hazards ranging from continuous wave exposures of multiple seconds to ultrashort 100 fs pulses [1]. In these studies, the minimum exposures for visible lesions to appear in retinal tissues were measured. One result of the 2014 update was the increase in minimum permissible exposures in the 1300 nm to 1400 nm region by as much as three orders of magnitude. This decision was based on studies of nanosecond to second pulses in the 1300 nm to 1400 nm region [1]. Shorter pulse duration studies were limited to wavelengths less than or equal to 1064 nm and have not been studied in the 1300 nm to 1400 nm region [3]–[17]. Intense, ultrashort (< 100 ps) pulses can undergo nonlinear processes resulting in unanticipated retinal hazards [18]. Due to the high pulse intensities required for nonlinear processes to occur, concerns about nonlinear effects have been raised for wavelengths above 1200 nm. Wavelengths above 1200 nm have higher MPEs in nanosecond to second studies due strong absorption by the aqueous and vitreous humors of the eye [2]. Of concern are nonlinear processes such as supercontinuum generation and harmonic generation where an incident infrared pulse can be converted into a visible pulse that can reach the retina without being absorbed. A preliminary study of supercontinuum generation in water was conducted (Figure 1) [2] in response to this concern. Results from this study suggested that laser pulses in the 1200 nm to 1400 nm region (Figure 2 top) could be spectrally broadened into visible pulses (Figure 2 bottom) resulting in retinal damage. The supercontinuum threshold reported was far below the ANSI MPE for 100 fs pulses (Equation 1) in the near-infrared (near-IR) (Figure 3). The study was complicated by the effects of other nonlinear processes in the media, particularly self-focusing which will be addressed in section 2.4.

$$MPE = 0.1 * (8 + 10^{0.04(\lambda - 1250)}) \ uJ/cm^2, 1200 \ nm \le \lambda < 1400 \ nm$$
(1)

Equation 1. ANSI MPE for 100 fs to 10 ps Pulses from 1200 nm to 1400 nm

Figure 1. Set-up of Water Experiment. Figure 7.1 from [2].

Figure 2. Visible Light Generation Due to Supercontinuum in Water [2]. The top graph shows the pulse spectra prior to entering the water medium. The bottom graph shows the spectra after passing through the water medium.

Figure 3. ANSI MPE Limits Versus Experimental Supercontinuum Thresholds. The ANSI-Z136.1-2007 and -2014 MPE limits for 100 fs pulses compared to the supercontinuum generation thresholds for 35 fs pulses. Figure is a reprint of Figure 9.15 in [2].

2.1 Nonlinear Optical Properties

Nonlinear optical effects such as supercontinuum generation and harmonic generation are byproducts of the dependence of the optical properties of media on the electric field strength of the pulse propagating through the medium. For a pulse propagating in a centrosymmetric medium like liquid water, the index of refraction and absorption coefficient can be approximated by [19]

$$n(I) \approx n_0 + n_2 I \tag{2}$$

Equation 2. Approximate Index of Refraction of Water

$$\alpha(I) \approx \alpha_0 + \beta I \tag{3}$$

Equation 3. Approximation of Absorption in Water

using linear refractive index (n_0) , linear absorption (α_0) , nonlinear refractive index (n_2) , and nonlinear absorption (β) .

The linear optical properties of water (n_0 and α_0) have been well studied in the 1200 nm – 1400 nm region [20]. In a previous report, the authors measured the nonlinear optical properties of water (n_2 and β), in the 1150 nm – 1400 nm region using 90 fs to 120 fs pulses [21].

2.2 The Reduced Eye Model

The human eye is a complex organ. To make computer simulations feasible the structure of the human eye must be simplified. The reduced eye model (REM) approximates the focusing components of the eye using a hemi-spherical lens with a radius of curvature (r_c) of 0.61 cm [22]. The REM reduces the tissues in the path length to four layers: the cornea (0.05 cm), aqueous humor (0.31 cm), lens (0.36 cm), and vitreous humor (1.72 cm) with the retinal layer located 2.44 cm [22].

To use the REM model to simulate near-IR light propagation to the retina, we must account for pulse dispersion, chromatic aberration, and absorption. A Sellmeier equation fit for the refractive index of REM tissues has been made that includes the wavelengths of interest [23]. To a reasonable approximation, the refractive index of the REM tissues can be estimated to be the refractive index of pure water [24]. The focal length of the eye is then be estimated to be

$$f_{lens} \approx r_c \frac{n(\lambda)}{n(\lambda) - 1}$$
 (4)

It is critical to account for chromatic aberration in the eye since nonlinear optical processes are dependent on the beam intensity through the beam path. The human eye brings light with wavelength of 589 nm to a focus at the retinal plane. Chromatic aberration results in infrared pulses being focused beyond the retinal plane [23]. The resulting correction to the focusing geometry increases the beam diameter at the retinal plane. For example, assuming no aberrations for a 589 nm pulse with an initial diameter of 4.24 mm, the 589 nm pulse would focus to a beam diameter of 4.3 μ m at the retinal plane. A 1400 nm pulse would only focus to a beam diameter of 190 μ m before reaching the retinal plane as the focal point for mid-IR radiation is behind the retina. Failure to account for chromatic aberration would result in a three order of magnitude overestimate of beam intensity at the retinal plane.

Absorption in the REM tissues prior to the retina transitions from negligible to strong in the 1200 nm to 1400 nm region. The absorption coefficients of the cornea, aqueous humor, lens and vitreous humor have been measured in the 1200 nm to 1400 nm range [25]. Like the refractive index, the absorption coefficients of the cornea, aqueous and vitreous humors can be approximated to be water's absorption coefficient for all wavelengths of interest. The exception is the lens of the eye which is less strongly absorbing than other

REM tissues [20], [24], [25].

2.3 Phase Modulation and Supercontinuum Generation

The absorptive nature of the eye above 1200 nm reduces the beam power by orders of magnitude prior to reaching the retina. This fact underlies the generally higher MPE for near-IR pulses than visible pulses of equivalent pulse duration. Self-phase modulation (SPM) and cross-phase modulation (XPM) are nonlinear processes than can convert near-IR radiation to shorter, less strongly absorbed, wavelengths. In the case of SPM, a high intensity pulse modifies the refractive index of the media it is passing through (neglecting absorption for simplicity). The time varying refractive index of the media then in turn modifies the constituent frequencies of the pulse resulting in frequency broadening [26].

For a pulse propagating through a medium with a uniform linear and nonlinear refractive index we recall the phase of the pulse (ϕ) with a central frequency (ω_0) (and central wavelength (λ_0)) to be

$$\phi(t,L) = \omega_0 t - kL = \omega_0 t - \frac{2\pi}{\lambda_0} n(t)L$$
Equation 5. Phase of Pulse
(5)

where L is the distance to the point in the medium you are observing and k is the wavenumber. Hence the instantaneous frequency shift $(\Delta \omega)$ can be calculated from

$$\omega(t) = \frac{d\phi}{dt} = \omega_0 - \frac{2\pi L}{\lambda_0} \frac{dn}{dt}$$
Equation 6. Pulse Frequency
(6)

For an oversimplified example of the effect, we can assume a Gaussian intensity distribution $I(t) = I_0 Exp[-\frac{t^2}{\tau^2}]$ where τ is determined by the time duration. From this assumption and Equation 2 the frequency shift can be calculated

$$\Delta\omega(t) = \omega(t) - \omega_0 = -\frac{2\pi L n_2 I_0}{\lambda_0} Exp[-\frac{t^2}{\tau^2}]$$
(7)

Equation 7. Pulse Frequency Shift

The maximum frequency shift occurs at $t = \pm \frac{\tau}{\sqrt{2}}$. We observe from equation Equation 7 that the frequency shift broadens the pulse frequency towards longer and shorter wavelengths. The maximum frequency shift would be

$$\Delta \omega_{max} = \frac{4\pi L n_2 I_0}{\lambda_0 \sqrt{2}} Exp[0.5] \tag{8}$$

Equation 8. Maximum Frequency Shift

This would result in a shift in wavelength toward the visible spectrum of

$$\Delta \lambda_{max} = \frac{2\pi \Delta \omega_{max}}{\omega_0 (\omega_0 + \Delta \omega_{max})}$$
Equation 9. Maximum Wavelength Shift
(9)

As previously stated, the calculation greatly oversimplifies the problem. For femtosecond pulses group velocity dispersion (GVD) alters the intensity distribution of the pulse as it propagates through media [27]. If this dispersion is combined with SPM, the resulting broadband pulse can separate into distinct visible and near-IR pulses. At this point, the pulses would propagate independently. This is not true for high intensity pulses due to their influence on the refractive index of the media allowing for interaction between pulses. This interaction between two co-propagating pulses is called cross-phase modulation and results in additional frequency broadening beyond the anticipated SPM broadening [26].

2.4 Self-Focusing

Self-focusing can be viewed as a spatial analogue of SPM. In the case of SPM, the pulse frequency is modified due to the change in refractive index as a function of time. In contrast, self-focusing alters the beam width and focal point due to change in refractive index as a function of radial distance from the center of the pulse [19]. Consider a radial cross-section of a pulse propagating a length through water

$$\phi(r) = \frac{2\pi}{\lambda_0} n(r)L = \frac{2\pi}{\lambda_0} n_0 L + \frac{2\pi}{\lambda_0} n_2 I(r)L.$$
(10)
Equation 10. Radial Phase of Pulse

We can compare this radial phase to the radial phase imparted by a lens $(\phi_{lens}(r) = \frac{2\pi}{\lambda_0}n_{lens}L(r) + \frac{2\pi}{\lambda_0}(L-L(r)))$. Rewriting the radial phase of the lens to isolate the radially dependent term $(\phi_{lens}(r) = \frac{2\pi}{\lambda_0}L + \frac{2\pi}{\lambda_0}(n_{lens} - 1)L(r))$. Neglecting the constant phase terms, we observe the $\frac{2\pi}{\lambda_0}n_2I(r)L$ phase shift is mathematically equivalent to light propagating through a lens with a pathlength of $L(r) = \frac{n_2}{n_{lens}-1}I(r)L$.

We previously noted that chromatic dispersion results in near-IR pulses having much larger beam widths at the retina compared to visible pulses. Additionally, chromatic dispersion results in the beam not reaching its focal point where the beam would be more intense (resulting in more SPM). Hence, it is crucial to determine if self-focusing alters the beam path. The importance of self-focusing in the eye for ultrashort pulses has been the subject of previous research [28], [29]. Self focusing will also need to be considered when simulating the previous water study as the input pulse power in the study was above the critical power that is defined as

$$P_{crit} = \frac{\pi (0.61)^2 \lambda_0^2}{8n_0 n_2} \tag{11}$$

Equation 11. Critical Power (SI Units)

Unfortunately for numerical simulation, self-focusing is an unstable phenomenon which cannot be easily controlled and is susceptible to random defects in the beam profile [26]. Calculations of self-focusing are limited in nature and simulations of laser pulse propagation can deviate from experimental studies where small irregularities in the beam are magnified through nonlinear processes [19].

The relationship between the beam power (*P*) and the critical power dictates which of three cases the beam path will follow. If the beam power is less than the critical power, the beam width at the focus (w_0) is decreased by [30]

$$w_{sf} \approx w_0 \sqrt{1 - P/P_{crit}} \tag{12}$$

Equation 12. Beam Width at Focal Point with Self-Focusing

The focusing angle from self-focusing ($\theta_{nonlinear}$) can be estimated [19]

$$\theta_{nonlinear} = \sqrt{2n_2 I/n_0} \tag{13}$$

Equation 13. Self-Focusing Angle

and the combined focusing angle from linear focusing (θ_{linear}) and self-focusing can also be estimated [19]

$$\theta_{total} = \sqrt{\theta_{nonlinear}^2 + \theta_{linear}^2}.$$
 (14)

Equation 14. Total Focusing Angle

In the second case, $P \approx P_{crit}$, the beam initially focuses like case one but eventually becomes self-trapped. In this case, upon reaching a critical beam width (w_{crit}), the beam will propagate forward with a constant beam width. Self-focusing can move the focal point of the beam forward if $z_{sf} < z_{focus}$. Here, the position of the focus can be calculated using the beam width entering the media (w) and beam width at the low intensity focus (w_0) to be [19]

$$z_{sf} = \frac{0.5kw^2}{\sqrt{P/P_{crit} - 1} + z_{focus}/(0.5kw_0^2)}, P > P_{crit}$$
(15)
Equation 15. Distance to Self-Focusing Point

In the third case, $P >> P_{crit}$, irregularities in the beam profile are amplified by nonlinear processes such as four wave mixing which results in the beam breaking up into small, high intensity regions (filaments). This process is very dependent on the beam quality as a "clean" beam will have a much higher threshold to filament compared to a "dirty" beam resulting in an inherent beam factor (*G*) with values commonly between 3 and 10. The threshold for filamentation occurring prior to self-trapping is then $P/P_{crit} = 4G^2$ and the distance to the filamentation point is [19]

$$z_{fil} = \frac{G}{n_2 k_0 I}, \ P \gg P_{crit} \tag{16}$$

Equation 16. Distance to Filamentation Point

Despite the filamentation threshold, in water in the near-IR, experimental observations support plasma clamping as the dominate mechanism halting beam collapse with filamentation being only a minor contributor. These observations suggest plasma formation due to multi-photon ionization occurs when the pulse intensity reaches $2 \times 10^{17} W/m^2$ to $3 \times 10^{17} W/m^2$ consistent with Keldysh theory [31].

2.5 Simulation Background

The standard approach to simulating supercontinuum generation is to propagate the laser pulse using the nonlinear Schrödinger equation (NLSE) or, if necessary, the generalized nonlinear Schrödinger equation (GNLSE). The NLSE and GNLSE assume that the pulse can be represented using a slowly evolving envelope function or by taking the paraxial approximation [32]. The slowly varying envelope approximation holds for pulse durations much longer than an optical cycle ($t = \frac{2\pi}{\omega}$), an assumption that ceases to be valid for pulse durations under 100 fs [32]. The paraxial approximation is also problematic for simulating the human eye since the paraxial approximation results in errors for waves propagating at large angles with respect to the propagates and affect both the spatial [33] and temporal [34] properties of the pulse. Neglecting the issues inherent with a slowly evolving envelope approximation, strong absorption in the infrared and substantial dispersion due to the wide bandwidth of ultrashort pulses would require use of a more numerically complex GNLSE model over the NLSE which assumes negligible absorption and limited pulse bandwidth [32].

Recognizing the difficulties of ultrashort pulse propagation, a method based on the principles of Fourier optics was proposed that incorporated absorption and group velocity dispersion and higher order dispersion effects [24]. This method allowed for a twodimensional ultrashort pulse propagation that incorporated focusing and aberrations. The propagator solves the scalar wave equation in two dimensions. Pulse propagation is performed in five steps. In Equation 17a, the pulse's electric field (*E*) is brought into the frequency domain via Fourier transform. In Equation 17b, a Hankel transform is used to replace the radial coordinate (*r*) with *v* which is related to *r* through the Bessel function solution to the scalar wave equation $J_0(vr)$. In the transformed $\Psi(\omega, v, z_0)$ space, the scalar wave equation is a second order constant coefficient differential equation whose solutions are known, hence in Equation 17c the pulse can be propagated forward directly using the complex refractive index $n^*(\omega)$ via $k^*(\omega) = n^*(\omega)\omega/c$ where *c* is the speed of light in vacuum. In Equation 17d and Equation 17e the pulse is converted back into the time-space domain at a coordinate Δz deeper in the medium [24].

$$E(\boldsymbol{\omega}, \boldsymbol{r}, \boldsymbol{z}_0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} E(\boldsymbol{t}, \boldsymbol{r}, \boldsymbol{z}_0) Exp[-i\boldsymbol{\omega}\boldsymbol{t}] d\boldsymbol{t}$$
(17a)

$$\Psi(\boldsymbol{\omega}, \boldsymbol{v}, z_0) = \int_0^\infty E(\boldsymbol{\omega}, r, z_0) J_0[\boldsymbol{v}r] r dr$$
(17b)

$$\Psi(\boldsymbol{\omega}, \boldsymbol{\nu}, z_0 + \Delta z) = \Psi(\boldsymbol{\omega}, \boldsymbol{\nu}, z_0) \times Exp[-i\sqrt{[k(\boldsymbol{\omega})]^2 - \boldsymbol{\nu}^2}\Delta z]$$
(17c)

$$E(\boldsymbol{\omega}, r, z_0 + \Delta z) = \int_0^\infty \Psi(\boldsymbol{\omega}, \boldsymbol{\nu}, z_0 + \Delta z) J_0[\boldsymbol{\nu} r] r dr$$
(17d)

$$E(t, r, z_0 + \Delta z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} E(\omega, \nu, z_0 + \Delta z) Exp[+i\omega t] dt$$
(17e)

Equation 17. Two-Dimensional Pulse Propagation using Fourier Optics [24].

Despite the success of this method, this type of simulation incorporates only linear optical effects and incorporating nonlinear optical effects was not explored.

2.6 Simulation Theory

Extending prior work on the ultrashort pulse propagator, a simple method to incorporate SPM and XPM into the one-dimensional propagator is devised. From Equation 17c above, one observes that for one-dimensional propagation in the frequency domain the linear propagator equation simplifies to

$$\Psi(\boldsymbol{\omega}, z_0 + \Delta z) = \Psi(\boldsymbol{\omega}, z_0) \times Exp[-ik(\boldsymbol{\omega})\Delta z]$$
(18)

Equation 18. One-Dimensional Pulse Propagator

To incorporate the nonlinear effects, one must now simply include the nonlinear refractive index and absorption coefficient as $n^*(\omega,t) = n_0^*(\omega) + \Delta n^*(t)$ for intense pulses. The problem with this approach is handling $\Delta n^*(t)$. By the same logic employed to solve the NLSE via the split-step Fourier method [32], the split step method is used to separate the nonlinear and nonlinear effects. If we view this problem in terms of operators we have

$$\Psi(\boldsymbol{\omega}, z_0 + \Delta z) = \Psi(\boldsymbol{\omega}, z_0) \times Exp[\widehat{D} + \widehat{N}]$$
(19)

Equation 19. One-Dimensional Pulse Propagator with Operator Notation

where $\widehat{D} = -in_0^*(\omega)\omega\Delta z/c$ and $\widehat{N} = -i\Delta n^*(t)\omega\Delta z/c$. The propagator is then divided up with an error of $O(\Delta z^3)$ to be [32], [35]

$$Exp[\widehat{D} + \widehat{N}] = Exp[\widehat{N}/2]Exp[\widehat{D}]Exp[\widehat{N}/2] + O(\Delta z^3)$$
(20)

Equation 20. Symmetric Decomposition of the Exponential Operator

The linear operator \widehat{D} is applied in the frequency domain such as in Equation 17c; however, the nonlinear operator \widehat{N} should be applied in the time domain. Using the split-step approach:

$$\tilde{E}(t,z_0) = E(t,z_0) \times Exp[-(i\frac{\omega_0}{c}n_2(z_0) + \frac{1}{2}\beta(z_0))I(t,z_0)(\frac{\Delta z}{2})]$$
(21a)

$$\Psi(\omega, z_0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{E}(t, z_0) Exp[-i\omega t] dt$$
(21b)

$$\Psi(\boldsymbol{\omega}, z_0 + \Delta z) = \Psi(\boldsymbol{\omega}, z_0) \times Exp[-(i\frac{\omega_0}{c}n_0(\boldsymbol{\omega}, z_0) + \frac{1}{2}\alpha_0(\boldsymbol{\omega}, z_0))\Delta z]$$
(21c)

$$\tilde{E}(t, z_0 + \Delta z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(\omega, z_0 + \Delta z) Exp[+i\omega t] dt$$
(21d)

$$E(t, z_0 + \Delta z) = \tilde{E}(t, z_0 + \Delta z) \times Exp[-(i\frac{\omega_0}{c}n_2(z_0) + \frac{1}{2}\beta(z_0))I'(t, z_0)(\frac{\Delta z}{2})]$$
(21e)

Equation 21. One-Dimensional Nonlinear Pulse Propagation

The methods section discusses the process in which Equation 21a-e is numerically solved. By solving the one-dimensional case, the pulse is propagated using a single machine instead of a computational cluster. In exchange for discarding the radial coordinate, one must make simplifying assumptions about the radial pulse distribution as well as add in the focusing behavior of the pulse. These assumptions and their validity are addressed in the methods section. This section concludes with observing three details that will be applied in addressing these issues. The first is how the profile of the Gaussian laser pulse is initialized. For a Gaussian pulse with a time duration of τ_p and chirp b the electric field is [33]

$$E(t,x_0) = Constant \times Exp[-(\frac{2ln(2)}{\tau_p^2} - ib)t^2] \times Exp[i\omega_0 t]$$
(22)

The constant represents the amplitude of the electric field and is discussed in section 3.1. The second is that the pulse intensity is calculated from the electric field by [36]

$$I(t, x_0) = \frac{cn_0\varepsilon_0}{2} |E(t)|^2$$
(23)

Equation 23. Pulse Intensity

where ε_0 is the permittivity of vacuum. Lastly, the beam width of a Gaussian beam focusing into a medium, neglecting self-focusing, is calculated with [36]

$$w(z) = w_0 \times \sqrt{1 + \frac{(z - z_{focus})^2}{(z_{Rayleigh})^2}}$$
 (24)

Equation 24. Beam Width of a Focusing Gaussian Pulse

where $w_0 = \frac{2\lambda_0 f_{lens}}{\pi (2w_{lens})}$, $z_{Rayleigh} = \pi w_0^2 / \lambda_0$, w_{lens} is the beam width at the lens and f_{lens} is the focal length of the lens.

2.7 Thermal Lensing

In the previous sections, we neglected the temperature dependence of n and α which can complicate pulse simulation. For a long duration, spatially Gaussian laser pulse, the temperature at each point in the medium will be dependent on the radial distance of that point from the pulse resulting in a radially dependent refractive index change. By the same argument as self-focusing, the radially dependent refractive index causes beam focusing or defocusing called thermal lensing. The rise time of a thermal lens can be calculated

based on the ratio of beam radius to velocity of sound in the medium. For water, assuming a worst-case beam radius of 5 μ m provides a rise time on the order of nanoseconds [37]. Since this report focuses on pulse durations of 100 fs or less we conclude that the thermal lens generated by a femtosecond pulse can be neglected.

Thermal lensing for multi-pulse exposures cannot be neglected as the thermal lens created by one pulse may alter the propagation of later pulses. Multi-pulse exposures are beyond the scope of this report; however, the minimum repetition rate for the thermal lens of one pulse to affect later pulses can be estimated by finding the characteristic time. The characteristic time depends on the thermal conductivity, density, specific heat capacity and beam radius (K_{therm} , ρ , C_p , and w(z)) of the media by [38], [39]

$$t_c = \frac{[w(z)]^2}{4} \frac{\rho C_p}{K_{therm}}$$
(25)

Equation 25. Characteristic Time for a Thermal Lens to Dissipate by Conduction

For further discussion of the retinal safety implications of thermal lensing see [24].

2.8 Nonlinear Effects Not Simulated

There are other nonlinear effects that affect pulse propagation beyond SPM, XPM, and self-focusing. These effects fall outside the capabilities of the one-dimensional wave propagator and will require different simulation approaches outside the scope of this project. Stimulated inelastic scattering processes such as stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) fall outside of the propagator model. Both processes can transfer pulse energy to other wavelengths and create co-propagating pulses that interact with the original pulse through XPM resulting in further broadening. SBS can be ignored since SBS occurs via acoustic vibrations which occur at the speed of sound in the media, which is slower than the femtosecond pulse timescale [32]. SRS is a much faster process and will broaden the pulse further into the IR regime [32]. Previous authors have argued that for water in the near-IR the Raman effects of the stretch resonance of the OH bond are weak enough to justify neglecting SRS [31].

A separate concern is harmonic generation at the interfaces between the different layers of the eye (air-cornea, cornea-aqueous humor, aqueous humor-lens, etc.). Harmonic generation poses similar retinal safety hazards as supercontinuum generation since harmonic generation also converts near-IR pulses to shorter wavelengths that can propagate to the retina with negligible absorption. Harmonic generation in REM tissues is not speculation, harmonic generation at the interface of biological tissues is the basis of biological imaging techniques such as multiphoton microscopy [40]–[42]. Second and third harmonic generation has been used to image the cornea of the eye [43] and second harmonic generation in the eye has been achieved using nanosecond near-IR laser pulses [44].

2.9 Retinal Damage Risks

As discussed previously, retinal damage of sub-100 fs pulses have not been studied in the 1200 nm - 1400 nm region. Multiple damage mechanisms such as photo-thermal, microcavitation, and laser induced breakdown (LIB) can occur at the retinal epithelium layer [29]. In this report, an attempt to simulate these damage mechanisms is not made. An effort is instead made to determine if nonlinear effects modify the pulse properties prior to reaching the retinal epithelium and the pulse characteristics at the retinal plane are reported.

Four risks with femtosecond pulses that are atypical of longer pulse durations are identified. The first risk is referred to as "bandwidth risk." Gaussian pulses 1 ps or longer have narrow transform-limited bandwidths of 1 nm or smaller. Shortening the pulse width to 100 fs, the transform-limited bandwidth broadens to 20 nm - 30 nm for 1200 nm -1400 nm pulses. For pulses in the 1300 nm - 1400 nm region, the shorter wavelength components of the pulse are much less strongly absorbed than the longer wavelength components. The longer wavelengths will be absorbed in the aqueous humor of the eye, but the remaining shorter wavelengths will propagate to the retinal plane possibly with energies per area above the energy per area MPE limit set using visible pulses which propagate the retina with little absorption. For this risk, the ANSI MPE limit in the visible of $0.1 \ \mu J/cm^2$ (corresponding to 38 *nJ* for a pulse with an initial radius of 3.5 mm) is considered to be the retinal injury threshold since it is (a) lower than the infrared threshold, (b) is based on the assumption that almost the entire pulse reaches the retina, and (c) visible eye safety limits have been more thoroughly studied at femtosecond time scales.

The second risk is broadband SPM converting the pulse from a strongly absorbed near-IR pulse to shorter wavelength weakly absorbed near-IR and/or visible pulses. Much like the case with bandwidth risk, the concern is that the energy per unit area at the retinal plane will exceed the threshold to cause eye injury via the effects discussed above. This risk is considered for supercontinuum generation with and without self-focusing since self-focusing can reduce the area of the pulse at the retinal plane as well as indirectly enhance the supercontinuum by raising the pulse intensity (via reducing the pulse area during propagation).

The third risk factor is self-focusing until plasma generation occurs. As discussed in section 2.2, the eye focuses near-IR pulses behind the retinal plane, which greatly reduces the pulse intensity at the retinal plane compared to comparable visible pulses. However, if the pulse power exceeds the critical power, self-focusing becomes dominant resulting in critical beam collapse. If beam collapse occurs, the pulse will continue to focus until it reaches the critical intensity needed for plasma formation (see section 2.4). Reaching the plasma generation threshold near the retina is believed to correspond with LIB injury (see Fig. 5 in [29] for a histopathology of a probable LIB injury).

The fourth risk is exclusive to wavelengths near the 1400 nm limit of our study. In a prior study conducted by the authors [21], nonlinear absorption transitioned to saturable

absorption between 1350 nm and 1400 nm. The intensity threshold for absorption saturating at 1400 nm is expected on the order of $10^{16} W/m^2$; however, saturable absorption could become problematic to simulate at intensities as low as $10^{15} W/m^2$ if the pulse is broad enough to include wavelengths below 1350 nm. If this occurs in the human eye, a pulse near the 1400 nm limit could propagate to the retinal plane exceeding the ANSI limit by orders of magnitude.

3.0 METHODS AND PROCEDURES

3.1 Simulation Setup

For both simulation of pulse propagation in water and the human eye, temporally Gaussian pulses were initialized using Equation 23. For numerical simulation a discrete space/time step (dx/dt) had to be chosen. Spatial steps were chosen to be 50 nm, one-tenth of the smallest wavelength of interest (500 nm) as recommended by reference [24]. The time step was then set to be consistent with the spatial step dt = dx/c (also recommended for the SPLIT propagator [24]). Due to the limitations of one-dimensional simulation, the pulse was treated as a spatially flat top pulse (pulse intensity is a Heaviside function to a beam width w) where the beam width is calculated using Equation 24. The initial pulse intensity was calculated from the input pulse energy, time duration and pulse area and used to determine the constant in Equation 22. In both the water and human eye simulations, a look-up table was used for the linear refractive index/absorption coefficient of water where values for each simulated wavelength were interpolated from adjacent wavelength values in the same table. The nonlinear refractive index/absorption coefficients were taken from reference [21] for the central wavelength being simulated.

The pulse was propagated through the simulated water medium using Equation 21 with fast Fourier transform/inverse transform functions acting in place of Equation 21b and d respectively. At each step the pulse intensities were found using the pulse areas calculated from Equation 24. At the end of simulation, the output intensities and spectral powers were returned as data files for each wavelength of interest.

In both the water and eye simulations, a second set of simulations were run with self-focusing effects. For the self-focusing simulation, the beam width w(z) was computed at each step from the previous beam width $w(z - \Delta z)$ using the focusing angle (Equation 14) where the nonlinear angle (Equation 13) was computed using the maximum pulse intensity at the previous step and the linear angle $\theta_{linear}(z) = \arctan\left(\frac{w(z)-w(z-\Delta z)}{\Delta z}\right)$ was computed from the original beam widths found from Equation 24. To prevent the beam width from collapsing to zero in the strong focusing case of self-focusing, a minimum radius (r_{min}) was specified (the procedures used to find r_{min} is discussed in the following sections).

3.2 Simulation Of Previous Water Experiment

In the water experiment, 35 ± 5 fs pulses were focused into a quartz cuvette of water (10.0 mm path length) and the resulting was spectra measured. For the simulation, Gaussian

near-IR pulses with central wavelengths consistent with the input wavelengths reported in the experiment were propagated through 10.0 mm of water. The original spectra from the experiment were recovered; however, the spectra were not intensity calibrated in the original report (see Figure 2 for uncalibrated spectra) preventing comparison with the numerical simulation. A relative intensity calibration of the NIR-512 and USB-2000+ spectrometers was performed by coupling an LS-1 light source into the NIR-512 and USB-2000+ with an optical fiber. After calibration, the central wavelength for each input pulse was determined and used as the central wavelength in the simulation (see Table 1). Simulated beam parameters reported from the original experiment were used for the pulse duration, pulse energy, beam width (beam radius), distance to the focus, and Rayleigh range (see Table 1 for parameters).

Central Wavelength (nm)	1185	1225	1310	1350	1400
Pulse Time (fs)	35	35	35	35	35
Pulse Energy (µJ)	1.928	1.653	1.616	1.994	1.956
$n_2(10^{-20}\ m^2/W)$	4.5	9.3	6.8	9.0	7.5
$egin{array}{c} eta(10^{-14}~{ m m/W}) \end{array}$	9.3	12.9	8.2	15.8	-7.7 or 0.0
Beam Radius at Focus (μ m)	34.1	34.1	34.1	34.3	34.3
Distance to Focus (mm)	7.781	7.103	7.273	5.918	7.442
Rayleigh Range (mm)	3.049	2.927	2.814	2.731	2.634

 Table 1. Water Simulation Parameters for Each Wavelength

After simulating pulse propagation in water using Gaussian beam focusing, self-focusing needed to be incorporated into the model to determine if it affected supercontinuum broadening. A simplified simulation was ran where only self-focusing and absorption were included. From this simulation, a study of worst-case self-focusing was conducted with the self-focusing contribution added to the Gaussian focusing using Equation 14. In this worst-case study, the beam propagates without dispersion, SPM, or nonlinear absorption. From this study, we see that the pulse is prone to self-focusing until reaching the plasma generation threshold discussed in section 2.4. The beam widths corresponding to plasma generation according to Keldysh theory were estimated from this worst-case simulation [31].

After estimating the minimum beam widths, the full beam propagation in water simulation was repeated with self-focusing included. At each propagation step, the beam width was checked against the minimum beam width found in the simplified simulation. If the beam width was found to be less than the allowed minimum value, the beam width was replaced with the minimum value, effectively acting in place of the plasma clamping process discussed in [31].

3.3 Simulation Of Reduced Eye Model

To simulate supercontinuum generation in the human eye, 1200 nm - 1400 nm pulses with pulse durations from 10 fs to 1 ps were propagated through a REM model of the eye. In place of the five layers of the eye (including the retinal tissue), the simulation incorporated four layers with pathlengths of 4.0 mm, 4.0 mm, 16.4 mm and 1.6 mm representing the aqueous humor, lens, vitreous humor, and post retinal epithelium region respectively. The first, third, and fourth layers were given the optical properties of water. In the second layer, the absorption coefficient was reduced to 40% of the absorption of water similar to the absorption reported in the lens of the eye [25]. Since the nonlinear properties of the lens are unknown, we choose to treat the nonlinear properties of the lens to be the same as water. The fourth layer was included in the simulation so that it could simultaneously be used to study the case of pre-focused pulses (where the pulse is deliberately focused in front of the retinal plane to maximize harm to retinal tissues). The linear focusing behavior of the beam was modeled using Equation 24. The beam width and focal length for each wavelength were calculated using the Sellmeier equation and assuming that the eye is a hemi-spherical lens using as discussed in [23]. The pulse was propagated 24.4 mm through the model to the simulated retinal plane (and then 1.4 mm beyond the retinal plane) using the parameters in Table 2. The pulse intensity as a function of time and pulse spectra at the retinal plane and 1.4 mm beyond the retinal plane were recorded for analysis. In the case of a MPE 1399 nm pulse, it was observed that the propagation method could result in unphysical energy generation (due to the high MPE and β being negative) so the 1399 nm pulses were simulated with β at its experimentally measured value [21] and β set to zero. Energy generation was observed not to be an issue for 1400 nm pulses since the MPE is orders of magnitude lower.

Central Wavelength (nm)	1200	1250	1300	1350	1375^	1399	1399*	1400
Pulse Energy (µJ)	0.305	0.346	4.16	385	3849	38485	38485	38.5
Refractive Index at λ_0	1.317	1.316	1.315	1.314	1.314	1.313	1.313	1.313
$n_2(10^{-20}m^2/W)$	4.45	9.26	6.8	9.0	8.3	7.5	7.5	7.5
$eta(10^{-14}\mathrm{m/W})$	9.26	12.9	8.2	16	0	0	-7.7	-7.7
Beam Radius at Focus (µm)	2.77	2.89	3.01	3.13	3.19	3.25	3.25	3.26
Distance to Focus (cm)	2.53	2.54	2.55	2.55	2.55	2.56	2.56	2.56
Rayleigh Range (mm)	20.0	21.0	21.9	22.8	23.3	23.8	23.8	23.8

Table 2. Eye Simulation Parameters for Each Wavelength

^ Nonlinear properties estimated based on wavelengths measured in [21].

* Propagated with the saturable absorption reported in [21].

As discussed above for the simulation of the water experiment, self-focusing effects must be considered. Repeating the same simulation parameters in Table 2, pulses at the MPE limit were propagated for each wavelength tested. Full simulations including self-focusing and plasma generation were also performed to determine if self-focusing or plasma effects could result in eye hazards.

3.4 Simulation Of Chirped Pulses

While the main study was of the retinal hazard of unchirped Gaussian pulses, real world pulses can be chirped. If negatively chirped, the chirp can correct for the dispersive effects of the water medium resulting in a more intense pulse at the retinal plane. To study the effect of chirp on the pulse properties, the simulation was repeated using pulses with a pre-computed chirp chosen to cancel the dispersion observed as the pulse propagates to the retinal plane.

3.5 Interpreting Retinal Exposures

The retinal hazards are "scored" for each simulated run in terms of six risk factors. Risk factors one through four will be based on the total energy at the retinal plane between (1) 400 nm - 700 nm, (2) 700 nm - 1000 nm, (3) 1000 nm - 1200 nm, and (4) 1200 nm to 1400 nm. Three hazard levels are defined for this report. The lowest level labeled as "concern", is used for runs that are believed to be eye safe, but may be worth further study. Runs where wavelengths below 1000 nm reach the retinal plane are automatically defined as "of concern" as well as any exposure above the 38 nJ limit for wavelengths above 1000 nm. The concern limit is set low for pulses under 1000 nm to highlight the threshold where supercontinuum broadening becomes measurable. The second hazard level labeled as "hazard" is reserved for runs that likely represent a retinal hazard. For wavelengths under 1200 nm, 38 nJ is used as the hazard threshold (to be consistent with the current ANSI MPE limit of 0.1 $\mu J/cm^2$ for a 3.5 mm radius pulse). For wavelengths above 1200 nm, it is observed (through simulation) that exposures using 1300 nm, 1 ps pulses are allowed up to 210 nJ. Therefore, this is used as a probable damage threshold. The third damage threshold labeled as "severe" is artificially set two orders of magnitude above the hazard threshold to highlight simulated exposures well above current ANSI MPE limits. These thresholds are tabulated in Table 3.

Risk	(1) 400 nm	(2) 700 nm	(3) 1000 nm	(4) > 1200 nm
	to 700 nm	to 1000 nm	to 1200 nm	
Concern	Any	Any	38 nJ	38 nJ
Hazard	38 nJ	38 nJ	38 nJ	210 nJ
Severe	4 μJ	4 μJ	4 μJ	20 µJ

 Table 3. Assumed Retinal Energy Exposure Limits Per Wavelength

The fifth and sixth risk factors are calculated differently. The fifth factor is the total pulse energy per unit area at the retinal plane. Unfortunately, the current ANSI standard provides very different limits for different pulse wavelength. According to the standard, a 589 nm pulse at the MPE limit would result in a retinal exposure of $6.7 kJ/m^2$ while a 1050 nm pulse would result in an exposure of only $1.1 J/m^2$. To compare to the simulation, the $1.1 J/m^2$ restriction is treated as the concern threshold for infrared pulses and the $6.7 kJ/m^2$ as the threshold for a hazard. Again, any exposure more than 100

times the MPE limit is listed as severe. This fifth risk factor is important for interpreting pre-focused runs where the beam area can be greatly reduced by self-focusing.

The sixth risk factor is plasma generation prior to reaching the retina. While plasma beam propagation is beyond the scope of this simulation, the production of a plasma beam prior to the retinal plane should be treated as a probable retinal injury. For this report, reaching the plasma generation threshold prior to the retina will be treated as a severe LIB injury.

3.6 Convergence Tests Of Eye Simulation

In section 3.1, the spatial step was chosen to be 50 nm. The effect of changing the spatial step size was studied for a 50 fs, 1375 nm pulse using step sizes of 40 nm, 50 nm, 80 nm, 100 nm, and 160 nm. This pulse duration/wavelength combination was chosen since that pulse was found to be an eye hazard that did not self-focus into a plasma unless pre-focused. The resulting total energy, beam radius, and pulse energy in the visible, 700 nm - 1000 nm, 1000 nm - 1200 nm, and > 1200 nm regions was recorded every four millimeters of propagation and at the retinal plane (24.4 mm). Since an analytical solution was not known, the error between each run and the 40 nm run was measured to determine the convergence of the method with respect to set size.

A second set of simulations were performed using a 50 fs, 1375 nm pulse where the total simulated time (T) was reduced to less than the total time of propagation in the eye. The simulations of pulses in the water cuvette and reduced eye model had a total simulated time that was always greater than the time required for the pulse to propagate to the end of the simulated pathlength. Reducing the total simulated time poses risks with the Fast Fourier Transform function in that the waves could "wrap around" from the end of the simulation back to the beginning of the simulation (in the time domain) causing unphysical behavior. Reducing the total simulated time would greatly accelerate computation and will be of interest in future, more computationally intensive, two dimensional simulations. For this study the convergence of pulse properties (energy, radius, and energy fraction by wavelength) were studied for total simulated times of T/2, T/4, T/8, and T/16 to study the effect of allowing the pulse to "wrap around" the simulation.

4.0 RESULTS AND DISCUSSION

4.1 Simulation Of Water Experiment

Simulated pulses were propagated through 10.0 mm of water and the resulting spectra compared to the intensity calibrated, experimentally measured spectra. The experimental calibrations were relative calibrations, therefore the experimental and simulated spectra differ by a numerical scaling factor. The numerical scaling factor for the infrared measurement was estimated by overlapping the experimental and simulated input spectra (Figure 5 - Figure 9). That scaling factor was then used to scale the simulated output spectra (Figure 5 - Figure 9 middle). The visible output spectra was scaled using the same factor since there was no visible input light to scale. It is important to note that the accuracy of the scaling is suspect since it is dependent on the collection efficiency of the

experimental fiber alignments and the correlation between the calibration measurement taken by directly coupling the LS-1 into a collection fiber and collection of light focused in the experiment (refer to Figure 1 for the experimental diagram).

It is also important to note that the spectra of the experimental pulses used in the experiment were not transform-limited Gaussian pulses. The experimental pulses at 1225 nm and 1350 nm are approximately Gaussian while pulses at 1185 nm, 1310 nm and 1400 nm are not (Figure 5 - Figure 9 top). When the output spectra was compared to the simulation without self-focusing it was seen that the simulation and experiment are in agreement to within an order of magnitude near the original IR peak; however, simulation underestimates the amplitude of continuum generation for wavelengths approaching the visible region (Figure 5 - Figure 9 middle).

Figure 4 shows the results of the worst-case self-focusing study. It was seen that the pulse inevitably self-focuses to the plasma generation limit. Shown in Figure 5 - Figure 9 bottom are the output spectra plotted against the simulation with self-focusing incorporated. Improvements in matching the supercontinuum generation trend are seen; however, the simulation with self-focusing appears to underestimate the exiting pulse intensity by roughly one order of magnitude. The simplest explanation for this difference is that the scaling factor computed using the input spectra is not usable for the output spectra since self-focusing enhanced the output beam coupling with the collection optic (see Figure 1 for collection optic placement). Note that in Figure 9 bottom, we replaced the nonlinear absorption with zero since the (negative) nonlinear absorption at 1400 nm was stronger in the simulation than the linear absorption leading to unphysical energy generation.

Neither simulation explained the experimentally measured peaks in the 400 nm to 500 nm region though many possible explanations exist. For example, the peaks may be an artifact of the relative intensity calibration which is less precise at shorter wavelengths since the light source was approximated as a black body. Alternatively, the peaks could instead be real peaks from a nonlinear effect at the water/cuvette interface such as harmonic generation which was not simulated. The generation of light at 400 nm to 500 nm may be explained by plasma effects in the water or an SRS generated infrared pulse interacting with the main pulse as it propagates as well.

Figure 4. The beam radius as a function of distance into the water media. The blue line shows the radius for Gaussian beam focusing based on parameters in Table 1. The red line shows the result of a simplified simulation of self-focusing where only linear absorption was considered. The black line (between the red and blue lines) shows the radius in the full simulation. The minimum radii of the red and black lines was set to prevent the pulse intensity from exceeding the plasma generation threshold.

Figure 5. Comparison of "1200 nm" experimental run with a simulated beam at 1185 nm. The top graph compares input beam spectra. The middle graph compares beam spectra after passing through 10.0 mm of water assuming Gaussian beam focusing. The bottom graph compares beam spectra after passing through 10.0 mm of water with Gaussian beam focusing and self-focusing.

Figure 6. Comparison of "1250 nm" experimental run with a simulated beam at 1225 nm. The top graph compares input beam spectra. The middle graph compares beam spectra after passing through 10.0 mm of water assuming Gaussian beam focusing. The bottom graph compares beam spectra after passing through 10.0 mm of water with Gaussian beam focusing and self-focusing.

Figure 7. Comparison of "1300 nm" experimental run with a simulated beam at 1310 nm. The top graph compares input beam spectra. The middle graph compares beam spectra after passing through 10.0 mm of water assuming Gaussian beam focusing. The bottom graph compares beam spectra after passing through 10.0 mm of water with Gaussian beam focusing and self-focusing.

Figure 8. Comparison of "1350 nm" experimental run with a simulated beam at 1350 nm. The top graph compares input beam spectra. The middle graph compares beam spectra after passing through 10.0 mm of water assuming Gaussian beam focusing. The bottom graph compares beam spectra after passing through 10.0 mm of water with Gaussian beam focusing and self-focusing.

Figure 9. Comparison of "1400 nm" experimental run with a simulated beam at 1400 nm. The top graph compares input beam spectra. The middle graph compares beam spectra after passing through 10.0 mm of water assuming Gaussian beam focusing. The bottom graph compares beam spectra after passing through 10.0 mm of water with Gaussian beam focusing and self-focusing.

4.2 Simulation Of Human Eye

For all wavelengths studied, reducing the pulse duration resulted in a greater pulse energy reaching the retinal plane. Plotting the evolution of a 50 fs, 1375 nm pulse in the spectral domain as it propagates through the eye shows a shift in central wavelength from 1375 nm toward 1300 nm due to strong absorption and SPM (see Figure 10). Plotting the same pulse in the time domain (see Figure 11) shows the effect of dispersion causing the Gaussian pulse to break apart as it propagates, emphasizing the importance of using an envelope model. In Table 4 and Table 5 we list hazards using the system outlined in section 3.5 with the numbers (1) - (4) standing for energy exposure hazards for visible, 800 nm to 1000 nm, 1000 nm to 1200 nm, and 1200+ nm radiation respectively. (5) references the total energy per unit area limits discussed in section 3.5 and (6) references a probable LIB event due to plasma generation prior to the retina (Table 6). Pulses simulated at 500 fs and 1 ps were uniformly under the risk limits set in Table 3 both for simulated runs without and with self-focusing included in the simulation (Table 4 and Table 5 respectively). At 100 fs, it seen that wavelengths between 1300 nm and 1399 nm can reach the retinal plane with energies exceeding the MPE exposures for longer pulse durations (Table 4). Further reducing the pulse duration broadens the pulse bandwidth and increases the maximum intensity resulting in a greater fraction of the pulse energy reaching the retina increasing the severity of the exposure. For 1399 nm pulses with $\beta < 0$, unphysical energy generation occurred (shown as the following tables); however even setting $\beta = 0$ resulted in a severe retinal hazard in all cases of interest. Wavelengths away from the higher ANSI MPE remain retinal safe for simulated wavelengths as short as 35 fs, only becoming hazardous at 10 fs where the broad bandwidth results in some of the initial pulse energy being distributed below 1100 nm (Table 4).

It was observed that self-focusing does not change the retinal hazard designation of any of the simulations. It instead shows that plasma generation will also occur in some of the already severe retinal exposure simulations (Table 5). The location in the eye where plasma generation first occurs is noted in Table 6. In most simulations, plasma generation occurs 1 mm after the retinal plane which is unphysical unless the pulse is pre-focused. In addition to plasma generation risks, self-focusing also changes the pulse area at the retinal plane. The percent change in the pulse area on the retinal plane is shown in Table 7. From Table 7 we observed that the change in area is negligible for most wavelength/time duration combinations that have not already reached the plasma formation threshold prior to the retinal layer. Using the data in Table 5, the hazards simulated against the current ANSI standard for 100 fs pulses (Figure 12) and for 35 fs pulses (Figure 13) are compared.

Figure 10. Spectral Distribution of 50 fs, 1375 nm Unchirped Pulse Propagated Through the Eye

Figure 11. Intensity of 50 fs, 1375 nm Unchirped Pulse Propagated Through the Eye

Wavelength (nm)	1200	1250	1300	1350	1375	1399	1399*	1400
10 fs	Haz 3	Con 2,3	Haz 3	Haz 3,4	Sev 2,3	Sev 1-3	X	Haz 3,4
35 fs	Safe	Safe	Con 4,5	Haz 4	Haz 4	Sev 1-4	Х	Safe
50 fs	Safe	Safe	Con 4,5	Haz 4	Haz 4	Sev 1-4	X	Safe
100 fs	Safe	Safe	Con 4,5	Haz 4	Con 4,5	Haz 4	Haz 3,4	Safe
500 fs	Safe	Safe	Con 4,5	Con 4	Safe	Safe	Safe	Safe
1000 fs	Safe	Safe	Con 4,5	Con 4	Safe	Safe	Safe	Safe

Fable 4. Hazards at MPE Limit Without S	Self-Focusing
--	---------------

* Propagated with the saturable absorption reported in [21].

Abbreviations: Concern (Con), Hazard (Haz), Severe (Sev) and Not Simulated (X).

Table 5. Hazards at MPE Limit With Self-Focusing

Wavelength (nm)	1200	1250	1300	1350	1375	1399	1399*	1400
10 fs	Haz 3	Con 2,3	Haz 3	Haz 3,4	Sev 2,3	Sev 6	Х	Haz 3,4
35 fs	Safe	Safe	Con 4,5	Haz 4	Haz 4	Sev 6	Х	Safe
50 fs	Safe	Safe	Con 4,5	Haz 4	Haz 4	Sev 6	Х	Safe
100 fs	Safe	Safe	Con 4,5	Haz 4	Con 4,5	Haz 4	Haz 3,4	Safe
500 fs	Safe	Safe	Con 4,5	Con 4	Safe	Safe	Safe	Safe
1000 fs	Safe	Safe	Con 4,5	Con 4	Safe	Safe	Safe	Safe

* Propagated with the saturable absorption reported in [21].

Abbreviations: Concern (Con), Hazard (Haz), Severe (Sev) and Not Simulated (X).

Wavelength (nm)	1200	1250	1300	1350	1375	1399	1399*	1400
10 fs	NA	NA	25.46	25.45	24.90	23.94	X	25.56
35 fs	NA	NA	NA	25.48	25.42	24.14	X	NA
50 fs	NA	NA	NA	25.49	25.48	24.48	X	NA
100 fs	NA	NA	25.48	25.52	25.56	25.53	25.34	NA
500 fs	NA	NA	NA	NA	NA	NA	NA	NA
1000 fs	NA	NA	NA	NA	NA	NA	NA	NA

Table 6. First Point of Plasma Generation in Simulation

All distances in mm.

Table 7. Change in Area at Retinal Plane from Self-Focusing

Wavelength (nm)	1200	1250	1300	1350	1375	1399	1399*	1400
10 fs	0 %	0 %	0 %	1 %	47 %	Plasma	X	0 %
35 fs	0 %	0 %	0 %	1 %	3 %	Plasma	X	0 %
50 fs	0 %	0 %	0 %	0 %	2 %	Plasma	X	0 %
100 fs	0 %	0 %	0 %	0 %	1 %	4 %	8 %	0 %
500 fs	0 %	0 %	0 %	0 %	0 %	1 %	1 %	0 %
1000 fs	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %

Figure 12. ANSI MPE Limits Versus Simulated Eye Hazards for 100 fs MPE Pulses. The results of the simulation are overlayed on Figure 6.3 in [2].

Figure 13. ANSI MPE Limits Versus Simulated Eye Hazards for 35 fs MPE Pulses. The results of the simulation are overlayed on Figure 9.15 in [2]. Note that the experimentally reported supercontinuum thresholds (red circles) are orders of magnitude below the hazards found by simulation. Recall this is most likely due to self-focusing in the water experiment.

The appearance of plasma generation in the post-retinal plane generally occurs near the linear focal point for the wavelength of interest. This suggests that LIB can be induced in the retina if the pulse is pre-focused. Taking the results 1.4 mm behind the retinal plane, Table 8 shows that pre-focusing the pulse so that the focal point is at or near the retinal plane results in more wavelength/time duration combinations where LIB injury is possible. Wavelength/ time duration combinations that do not undergo plasma generation are more intense at the retinal plane resulting in reclassification of risks. For example, 1300 nm exceeds the MPE of a narrowly focused, visible pulse at the retina if it is prefocused.

Wavelength (nm)	1200	1250	1300	1350	1375	1399	1399*	1400
10 fs	Haz 3	Con 2,3,5	Sev 6	Sev 6	Sev 6	Sev 6	Х	Sev 6
35 fs	Con 5	Con 5	Haz 5	Sev 6	Sev 6	Sev 6	Х	Con 5
50 fs	Con 5	Con 5	Haz 5	Sev 6	Sev 6	Sev 6	Х	Con 5
100 fs	Con 5	Con 5	Sev 6	Sev 6	Sev 6	Sev 6	Sev 6	Safe
500 fs	Con 5	Con 5	Haz 5	Con 4,5	Con 5	Safe	Safe	Safe
1000 fs	Con 5	Con 5	Haz 5	Con 4,5	Con 5	Safe	Safe	Safe

Table 8. Hazards at MPE Limit For Pre-Focused Pulses (With Self-Focusing)

* Propagated with the saturable absorption reported in [21].

Abbreviations: Concern (Con), Hazard (Haz), Severe (Sev) and Not Simulated (X).

Plotting a chirped pulse simulation verifies that the negative chirp given to the pulse at the beginning of the simulation results in the pulse becoming approximately unchirped at the retinal plane (see Figure 14). Unlike pre-focusing the pulse, negatively chirping the pulse to compensate for pulse dispersion at the retinal plane does not enhance the retinal hazard for any time duration/wavelength combination (see Table 9). For wavelengths between 1200 nm and 1300 nm, the low MPE limit precludes supercontinuum generation or self-focusing prior to or at the retinal plane even when the pulse is chirped to compensate for dispersion. For 1375 nm - 1400 nm wavelengths, strong absorption makes the pulse intensity in the cornea, aqueous humor and lens more significant than the pulse intensity near the retinal plane. Chirping the pulse lowers the initial maximum intensity of the pulse which makes long wavelength pulses less likely to undergo SPM and delays plasma generation to a point behind the retinal plane which could only be reached if the pulse was also pre-focused (see Table 10 and Table 11).

Table 9. Hazards at MPE Limit For Negatively Chirped Pulses (With Self-Focusing)

Wavelength (nm)	1200	1250	1300	1350	1375	1399	1399*	1400
10 fs	Haz 3	Con 2,3	Haz 3	Haz 2-4	Sev 2-4	Sev 1-4	X	Haz 3,4
35 fs	Safe	Safe	Con 4,5	Haz 4	Haz 4	Sev 4	X	Safe
50 fs	Safe	Safe	Con 4,5	Haz 4	Haz 4	Haz 4	Х	Safe
100 fs	Safe	Safe	Con 4,5	Haz 4	Con 4,5	Con 4	Con 4	Safe
500 fs	Safe	Safe	Con 4,5	Con 4	Safe	Safe	Safe	Safe
1000 fs	Safe	Safe	Con 4,5	Con 4	Safe	Safe	Safe	Safe

* Propagated with the saturable absorption reported in [21].

Abbreviations: Concern (Con), Hazard (Haz), Severe (Sev) and Not Simulated (X).

Figure 14. Intensity of 50 fs, 1375 nm Negatively Chirped Pulse Propagated Through the Eye

Wavelength (nm)	1200	1250	1300	1350	1375	1399	1399*	1400
10 fs	25.33	25.40	25.42	25.37	25.04	24.70	X	24.70
35 fs	NA	25.41	25.45	25.45	25.38	25.38	X	NA
50 fs	NA	25.42	25.45	25.48	25.48	24.49	X	NA
100 fs	NA	NA	25.46	25.51	25.55	NA	25.56	NA
500 fs	NA							
1000 fs	NA							

Table 10. First Point of Plasma Generation in Chirped Pulse Simulation

All distances in mm.

Table 11. Change in Area at Retinal Plane from Self-Focusing of Chirped Pulse

Wavelength (nm)	1200	1250	1300	1350	1375	1399	1399*	1400
10 fs	0 %	0 %	0 %	5 %	24 %	56 %	Х	0 %
35 fs	0 %	0 %	0 %	1 %	2 %	6 %	Х	0 %
50 fs	0 %	0 %	0 %	0 %	1 %	3 %	Х	0 %
100 fs	0 %	0 %	0 %	0 %	1 %	1 %	2 %	0 %
500 fs	0 %	0 %	0 %	0 %	0 %	1 %	1 %	0 %
1000 fs	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %

4.3 Results Of Convergence Tests

The total energy, beam radius, and energy in the four wavelength ranges of interest were compared between simulated runs using of a 50 fs, 1375 nm beam. The fractional error was calculated as $|1 - \frac{ErrorRun}{ErrorBestRun}|$ for all runs plotted. In Figure 15, the effect of varying the step size was studied by comparing 50 nm, 80 nm, 100 nm, and 160 nm runs against a "best" run using a 40 nm step size. Comparing the step sizes shows that the total energy, beam radius, and energy at wavelengths above 1000 nm deviate less than 1% from the values reported in the 40 nm run. The energy at wavelengths below 1000 nm was observed to deviate for longer step sizes consistent with expectations that the simulation will fail to simulate wavelengths much shorter than ten times the step size. The plasma generation threshold was reached for all runs at the same point in simulation (to within 1 μ m precision) suggesting that changing the step size did not affect self-focusing.

Figure 15. Convergence of Different Step Sizes Compared to a 40 nm Baseline.

The same convergence test was performed where the total simulated time was reduced (see Figure 16). The initial simulated time of T = 175 ps was more than sufficient to simulate pulse propagation through the eye. The eye simulation was repeated using a maximum simulated time of T/2, T/4, T/8, and T/16. It was noted that reducing the maximum simulated time results in a greater reported error. The largest error is consistently reported for T/16 and an error reduction of one order of magnitude is seen by increasing the simulated time to T/2. Like the step size study, the plasma generation threshold was consistently reached at the same point in the simulated eye (to within 1 μ m precision).

Figure 16. Convergence Test for Different Maximum Simulated Times. Each time plotted is compared to a baseline of maximum time *T*.

5.0 CONCLUSION

In this report, a one-dimensional nonlinear, femtosecond wave solver was formulated to propagate pulses through a simulated eye. Using the solver, the unusually strong visible light generation reported in [2] was observed to be a result of supercontinuum generation and self-focusing until the water ionized into plasma. Due to limited knowledge of the experimental setup and the absence of plasma propagation calculations in the simulation model, agreement between the simulation and experimental data was not achievable. By applying the simulation to a reduced eye model, it was shown that < 100 fs, 1350 nm to 1399 nm pulses are hazardous to the human eye based on current eye safety standards (see Figure 12 and Figure 13). Increasing the pulse duration to 500 fs decreases the pulse bandwidth resulting in retinal safe pulses consistent with ANSI expectations. Pre-focusing 100 fs, 1300 nm to 1399 nm pulses to focus at the retinal plane results in plasma generation near the retinal plane which poses a severe retinal hazard. Negatively chirping the pulse to correct for dispersion did not appear to increase the risk of a retinal hazard. This study highlights the importance of considering self-focusing effects when considering retinal hazards and provides guidance for future experimental studies of retinal hazards from femtosecond pulses.

6.0 REFERENCES

- 1. ANSI, American National Standard for Safe Use of Lasers, Z136.1-2014, Laser Institute of America, 2014 1, 2.
- F. J. Echeverria, "Nonlinear optical effects on retinal damage thresholds in the 1200 – 1400 nm wavelength range," PhD thesis, Texas A&M University, May 2015 1–4, 30, 34.
- A. Bruckner, J. Schurr, and E. Chang, "Biological damage threshold induced by ultrashort 2nd and 4th harmonic light pulses from a mode-locked Nd:glass laser," USAF School of Aerospace Medicine, Brooks AFB, TX 78235, Tech. Rep., 1980, AL-TR-1992-0174 2.
- C. Cain, G. Noojin, D. Stolarski, R. Thomas, and B. Rockwell, "Near-infrared ultrashort pulse laser bioeffects studies," Optical Radiation Branch, Brooks AFB, TX 78235, Tech. Rep., 2003, AFRL-HE-BR-TR-2003-0029 2.
- C. Cain, G. Noojin, D. Stolarski, C. Toth, C. DiCarlo, W. Roach, and C. Stein, "Ultrashort pulse laser effects in the primate eye," Optical Radiation Branch, Brooks AFB, TX 78235, Tech. Rep., 1994, AL/OE-TR-1994-0141 2.
- C. Cain, C. Toth, G. Noojin, V. Carothers, D. Stolarski, and B. Rockwell, "Thresholds for visible lesions in the primate eye produced by ultrashort near-infrared laser pulses," *Investigative Ophthalmology and Visual Science*, vol. 40(100), pp. 2343–2349, Sep. 1999 2.
- C. Cain, C. Toth, C. DiCarlo, C. Stein, G. Noojin, Stolarski, and W. D. Roach, "Visible retinal lesions from ultrashort laser pulses in the primate eye," *Investigative Ophthalmology and Visual Science*, vol. 36(5), pp. 879–888, Apr. 1995 2.
- C. Cain, C. Toth, R. Thomas, G. Noojin, V. Carothers, D. Stolarski, and B. Rockwell, "Comparison of macular versus paramacular retinal sensitivity of femtosecond laser pulses," *Journal of Biomedical Optics*, vol. 5(3), pp. 315–320, Jul. 2000 2.
- 9. C. Cain, C. Toth, G. Noojin, D. Stolarski, R. Thomas, and B. Rockwell, "Thresholds for retinal injury from multiple near-infrared ultrashort laser pulses," *Health Physics*, vol. 82(6), pp. 855–862, Jun. 2002 2.
- 10. A. Goldman, W. Ham Jr., and H. Mueller, "Mechanisms of retinal damage resulting from the exposure of rhesus monkeys to ultrashort laser pulses," *Experimental Eye Research*, vol. 21(5), pp. 457–469, Nov. 1975 2.
- 11. A. Goldman, W. Ham Jr., and H. Mueller, "Ocular damage thresholds and mechanisms for ultrashort pulses of both visible and infrared laser radiation in the rhesus monkey," *Experimental Eye Research*, vol. 24(1), pp. 45–56, Jan. 1977 2.

- 12. J. Taboada and W. Gibbons, "Retinal tissue damage induced by single ultrashort 1060 nm laser light pulses," *Applied Optics*, vol. 17(18), pp. 2871–2873, Sep. 1978 2.
- R. Thomas, G. Noojin, D. Stolarski, R. Hall, C. Cain, C. Toth, and B. A. Rockwell, "Comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers," *Lasers in Surgery and Medicine*, vol. 31(1), pp. 9–17, Jun. 2002 2.
- 14. C. Toth, C. Cain, C. Stein, G. Noojin, D. Stolarski, J. Zuclich, and W. Roach, "Retinal effects of ultrashort laser pulses in the rabbit eye," *Investigative Ophthalmology and Visual Science*, vol. 36(9), pp. 1910–1917, Aug. 1995 2.
- J. Zuclich, W. Elliott, C. Cain, G. Noojin, W. Roach, B. Rockwell, and C. Toth, "Ocular damage induced by ultrashort laser pulses," USAF Armstrong Laboratory Occupational and Environmental Health Directorate, Brooks AFB, TX 78235, Tech. Rep., 1993 2.
- J. A. Zuclich, D. J. Lund, and B. E. Stuck, "Wavelength dependence of ocular damage thresholds in the near-IR to far-IR transition region: Proposed revisions to MPEs," *Health Physics*, vol. 92(1), pp. 15–23, Jan. 2007 2.
- R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, "Trends in retinal damage thresholds from 100 millisecond near-infrared laser radiation exposures: A study at 1,110, 1,130, 1,150, and 1,319 nm," *Lasers in Surgery and Medicine*, vol. 41, 382–390, Jul. 2009 2.
- B. Rockwell, W. Roach, M. Rogers, M. Mayo, C. Toth, C. P. Cain, and G. D. Noojin, "Nonlinear refraction in vitreous humor," *Optics Letters*, vol. 18, pp. 1792–1794, Nov. 1993 2.
- 19. R. Boyd, *Nonlinear Optics*, 3rd ed. The Institute of Optics at the University of Rochester, Rochester, NY USA, 2008, pp. 207–213, 329–369 4, 7–9.
- 20. G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-μm wavelength region," *Applied Optics*, vol. 12(3), pp. 555–563, Mar. 1973 5, 6.
- 21. C. B. Marble, J. E. Clary, G. D. Noojin, S. P. O'Connor, D. T. Nodurft, A. W. Wharmby, B. R. Rockwell, M. O. Scully, and V. V. Yakovlev, "Z-scan measurements of water from 1150 nm to 1400 nm," *Optics Letters*, Accepted 5, 14, 15, 17, 29, 31, 39, 46, 53, 60.
- 22. R. L. Vincelette, R. J. Thomas, B. A. Rockwell, C. D. Clark III, and A. J. Welch, "First-order model of thermal lensing in a virtual eye," *Journal of the Optical Society of America A*, vol. 26(3), pp. 548–558, Mar. 2009 5.

- 23. R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, "Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: The 1150- 1350-nm region," Journal of Biomedical Optics, vol. 13(5), 054005, Nov. 2008 5, 17.
- 24. C. D. Clark III, "Modeling laser damage to the retina," PhD thesis, University of Texas at San Antonio, Aug. 2011 5, 6, 10, 13, 15.
- 25. E. F. Maher, "Transmission and absorption coefficients for ocular media of the rhesus monkey," USAF School of Aerospace Medicine, Brooks AFB, TX 78235, Tech. Rep., 1978, SAM-TR-78-32 5, 6, 17.
- 26. R. R. Alfano, The Supercontinuum Laser Source. Springer-Verlag, New York, NY USA, 1989 6-8.
- 27. A. W. Weiner, Ultrafast Nonlinear Optics. John Wiley and Sons, Hoboken, NJ USA, 2009 7.
- 28. B. A. Rockwell, P. K. Kennedy, R. J. Thomas, W. P. Roach, and M. E. Rogers, Eds., Effect of Nonlinear Optical Phenomena on Retinal Damage, vol. 2391, SPIE, San Jose, California: Proceedings of the 1995 SPIE, May 1995 8.
- 29. B. A. Rockwell, R. J. Thomas, and A. Vogel, "Ultrashort laser pulse retinal damage mechanisms and their impact on thresholds," Medical Laser Application, vol. 25(10), pp. 84–92, Apr. 2010 8, 14.
- 30. G. M. Zverev and V. A. Pashkov, "Self-focusing of laser radiation in solid dielectrics," Soviet Physics JETP, vol. 30(4), pp. 616–621, Apr. 1970 8.
- 31. J. A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D. Mathur, and A. K. Dharmadhikari, "Femtosecond supercontinuum generation in water in the vicinity of absorption bands," Optics Letters, vol. 41(15), pp. 3475–3478, Aug. 2016 9, 13, 16.
- 32. G. Agrawal, Nonlinear Fiber Optics, 5th ed. Academic Press, Kidlington, UK, 2013 9–11, 13.
- 33. A. E. Siegman, *Lasers*. University Science Books, Sausalito, CA USA, 1986 9, 12.
- 34. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses. Kluwer Academic Publishers, 2001 10.
- 35. G. Dattoli, L. Giannessi, M. Quattromini, and P. L. Ottaviani, "Symmetric decomposition of exponential operators and evolution problems," Physics Letters A, vol. 247, pp. 191-197, Oct. 1998 11.
- 36. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. John Wiley and Sons, Hoboken, NJ USA, 2007 12.

- 37. M. Sheik-Bahae, T. Said, and E. Van Stryland, "High-sensitivity, single-beam *n*₂ measurements," *Optics Letters*, vol. 14(17), pp. 955–957, Sep. 1989 13.
- J. Hayes, "Thermal blooming of laser beams in fluids," *Applied Optics*, vol. 11(2), pp. 455–461, Feb. 1972 13.
- A. Novoa-Lopez J., E. Lopez Lago, M. Dominguez-Perez, J. Troncoso, L. M. Varela, R. de la Fuente, O. Cabeza, H. Michinel, and R. Rodriguez J., "Thermal refraction in ionic liquids induced by a train of femtosecond laser pulses," *Optics and Laser Technology*, vol. 61, pp. 1–7, Sep. 2014 13.
- R. M. Williams, A. Flesken-Nikitin, L. H. Ellenson, D. C. Connolly, T. C. Hamilton, A. Y. Nikitin, and W. R. Zipfel, "Strategies for high-resolution imaging of epithelial ovarian cancer by laparoscopic nonlinear microscopy," *Translational Oncology*, vol. 3(3), pp. 181–194, Jun. 2010 13.
- N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Dóbarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, "Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy," *Science*, vol. 329, 5994, Aug. 2010 13.
- 42. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," *Nature Methods*, vol. 2(12), pp. 932–940, Nov. 2005 13.
- 43. F. Aptel, N. Olivier, A. Deniset-Besseau, J. M. Legeais, K. Plamann, M. C. Schanne-Klein, and E. Beaurepaire, "Multimodal nonlinear imaging of the human cornea," *Investigative Ophthalmology and Visual Science*, vol. 51(5), pp. 2459–2465, May 2010 13.
- 44. Q. Zaidi and J. Pokorny, "Appearance of pulsed infrared light: Second harmonic generation in the eye," *Applied Optics*, vol. 27(6), pp. 1064–1068, Mar. 1998 13.

APPENDIX A - TABULATED RESULTS FROM EYE SIMULATION

A.1 Unchirped Pulse Simulation Without Self-Focusing

In the following tables, X notes unmeasurable values for pulses that have been totally absorbed in simulation. The 1399* simulations are propagated with the saturable absorption reported in [21] while the 1399 simulations are propagated without nonlinear absorption.

	In	put Pulse		Output Pulse			
	Pulse			Pulse			Energy /
Wavelength	Duration	Energy	Power	Duration	Energy	Power	Area vs
	2 41 40 10 11			2 41 40101			Limit
(nm)	(fs)	$(\mu \mathbf{J})$	(MW)	(fs)	$(\mu \mathbf{J})$	(MW)	(%)
10 fs							
1200	9.8	0.306	30.6	49.7	0.0566	0.0733	0.016
1250	9.8	0.346	34.6	18.5	0.0370	0.0479	0.009
1300	9.8	4.16	416	622	0.252	0.326	0.056
1350	9.8	385	38515	1271	10.4	13.6	2.10
1375	9.8	3848	3.85E5	70.7	129	145	24.9
1399	9.8	38485	3.85E6	217.1	4166	2146	767
1400	9.8	38.5	3848	1271	0.726	0.952	0.134
35 fs							
1200	34.9	0.306	8.73	654	0.0221	0.0274	0.006
1250	34.9	0.346	9.90	791	0.0274	0.0359	0.007
1300	34.9	4.16	119	125	0.201	0.247	0.045
1350	34.9	385	1.10E4	91.1	3.04	3.95	0.616
1375	34.9	3849	1.10E5	92.7	14.4	18.7	2.77
1399	34.9	38485	1.10E6	391	1875	1595	345
1400	34.9	38.5	1100	91.1	0.0159	0.0226	0.003
50 fs	1		I				
1200	49.9	0.306	6.11	659	0.0205	0.0268	0.006
1250	49.9	0.346	6.927	799.4	0.0290	0.0371	0.007
1300	49.9	4.16	83.1	119	0.205	0.253	0.046
1350	49.9	385	7703	90.7	1.54	2.16	0.342
1375	49.9	3849	7.70E5	90.1	3.46	4.83	0.668
1399	49.9	38485	7.70E6	333.4	602	576	111
1400	49.9	38.5	770	163	0.00157	0.00220	0.000
100 fs							
1200	99.9	0.306	3.06	1045	0.0198	0.0255	0.006
1250	99.9	0.346	3.46	1187	0.0302	0.0373	0.008
1300	99.9	4.16	41.6	132	0.205	0.348	0.046
1350	99.9	385	3852	198	0.366	0.764	0.074
1375	99.9	3849	38488	838	0.192	0.260	0037
1399	99.9	38485	384848	52.4	0.874	1.15	0.161
1399*	99.9	38485	384848	50.0	15.1	20.9	2.776
1400	99.9	38.5	385	315	3.0E-5	5.1E-5	0.000
500 fs					1		

Table A-1. Time Domain Characteristics of Eye Simulation Without Self-Focusing

	l In	put Pulse			Outpu	t Pulse	
Wavelength	Pulse Duration	Energy	Power	Pulse Duration	Energy	Power	Energy / Area vs Limit
(nm)	(fs)	(μ J)	(MW)	(fs)	(µ J)	(MW)	(%)
1200	499.9	0.306	0.611	715	0.019	0.023	0.005
1250	499.8	0.346	0.693	617	0.031	0.053	0.008
1300	499.8	4.156	8.313	504	0.201	0.400	0.045
1350	499.8	385	770	564	0.078	0.145	0.016
1375	499.8	3849	7698	503	0.037	0.07	0.007
1399	499.8	38484	76970	379	3.96E-7	3.92E-7	0.000
1399*	499.8	38484	76970	372	5.80E-7	6.23E-7	0.000
1400	499.8	38.5	77.0	2311	8.37E-13	1.88E-13	0.000
1 ps					1		
1200	999.8	0.306	0.306	1079	0.0193	0.0167	0.005
1250	999.8	0.346	0.346	1012	0.0308	0.0308	0.008
1300	999.8	4.16	4.16	1002	0.201	0.201	0.045
1350	999.8	385	385	1005	0.0776	0.0776	0.016
1375	999.8	3849	3849	1019	0.0326	0.0318	0.006
1399	999.8	38485	38485	X	X	X	Х
1399*	999.8	38485	38485	X	X	X	Х
1400	999.8	38.5	38.5	Х	X	X	Х

Table A-1 – Continued from previous page

		Input	Pulse		Output Pulse				
Wave-	FWHM	RMS	10-3	10 ⁻⁵	FWHM	RMS	10^3	10 ⁻⁵	
length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max	
	Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)	
(nm)	(nm)	(nm)			(nm)	(nm)			
10 fs		. ,			. ,	. ,			
1000	1102-	1047-	000 1 (()		1064-	1021-			
1200	1316	1405	938-1664	882-1874	1142	1297	929-1340	8/3-13/3	
1050	1145-	1085-	0.00 1.00		1079-	1036-			
1250	1377	1474	969-1/62	909-2000	1275	1314	957-1345	893-1377	
1200	1186-	1123-	000 10/0	025 0101	1094-	1053-	077 1265	012 1200	
1300	1438	1544	998-1862	935-2131	1301	1324	9//-1365	913-1380	
1250	1228-	1238-	1160-	0(1.00(0	1238-	1093-	002 12(4	021 1510	
1350	1499	1294	1615	961-2268	1294	1325	983-1364	831-1510	
1275	1249-	1178-	1042-	074 2240	776 707	712 1200	(70 1702	565 2220	
15/5	1530	1651	2020	974-2540	//0-/9/	/13-1309	0/8-1/23	303-2330	
1200	1268-	1196-	1056-	095 2410	450 810	421 017	206 2120	266 2505	
1399	1560	1686	2073	985-2410	439-819	421-917	390-2128	500-2595	
1400	1269-	1196-	1056-	096 2412	1237-	1096-	1021-	072 1607	
1400	1561	1687	2075	980-2415	1306	1331	1368	9/5-109/	
35 fs	•	•							
1200	1170-	1145-	1111-	1088-	1168-	1130-	1099-	1078-	
1200	1231	1261	1304	1338	1235	1265	1301	1325	
1250	1218-	1190-	1154-	1129-	1224-	1194-	1155-	1121-	
1230	1284	1316	1363	1400	1282	1304	1332	1349	
1200	1265-	1236-	1197-	1170-	1259-	1233-	1198-	1179-	
1300	1337	1371	1423	1463	1306	1328	1347	1374	
1350	1313-	1281-	1239-	1210-	1279-	1258-	1226-	1173-	
1330	1389	1427	1483	1527	1323	1340	1372	1382	
1375	1336-	1303-	1260-	1239-	1272-	1231-	1171-	1069-	
1375	1416	1455	1513	1559	1315	1339	1375	1415	
1300	1359-	1325-	1280-	1249-	738 802	560 1271	527 1830	470 2341	
1399	1441	1482	1542	1590	730-002	500-1271	527-1059	470-2341	
1400	1360-	1326-	1281-	1250-	1299-	1275-	1249-	1223-	
1400	1442	1483	1543	1591	1336	1367	1381	1385	
50 fs									
1200	1179-	1160-	1137-	1119-	1179-	1159-	1129-	1113-	
1200	1222	1243	1271	1293	1223	1245	1273	1293	
1250	1227-	1206-	1181-	1163-	1231-	1208-	1183-	1164-	
1250	1273	1297	1327	1351	1274	1294	1317	1334	
1300	1276-	1253-	1226-	1206-	1270-	1249-	1225-	1206-	
1500	1325	1351	1384	1410	1306	1327	1343	1367	
1350	1324-	1299-	1270-	1249-	1297-	1276-	1244-	1216-	
1550	1377	1405	1440	1469	1332	1344	1375	1384	
1375	1384-	1322-	1292-	1270-	1279-	1258-	1224-	1162-	
	1403	1432	1469	1499	1336	1368	1381	1399	
1399	1371-	1344-	1314-	1291-	712-795	677-1374	644-1791	502-2341	
1.577	1428	1458	1496	1527	12,75				

 Table A-2. Spectral Characteristics of Eye Simulation Without Self-Focusing

		Input Pulse Output Pulse						
Wave-	FWHM	RMS	10^{-3}	10^5	FWHM	RMS	10^-3	10^{-5}
length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max
	Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)
(nm)	(nm)	(nm)			(nm)	(nm)		
1400	1372-	1345-	1314-	1292-	1319-	1300-	1280-	1259-
1400	1429	1459	1497	1528	1366	1376	1385	1385
100 fs								
1200	1190-	1178-	1167-	1158-	1189-	1178-	1167-	1158-
1200	1211	1223	1234	1245	1211	1223	1235	1245
1250	1239-	1226-	1215-	1205-	1240-	1227-	1215-	1205-
1230	1262	1275	1287	1299	1262	1275	1287	1298
1200	1288-	1274-	1262-	1251-	1285-	1272-	1260-	1250-
1500	1313	1327	1340	1353	1307	1320	1332	1341
1250	1337-	1322-	1309-	1297-	1323-	1310-	1294-	1272-
1330	1364	1379	1394	1407	1340	1365	1374	1381
1375	1361-	1346-	1332-	1321-	1358-	1305-	1284-	1251-
1375	1389	1405	1420	1434	1368	1378	1385	1385
1300	1385-	1369-	1355-	1343-	1299-	1271-	1229-	1187-
1577	1414	1430	1446	1460	1368	1378	1385	1385
1399*	1385-	1369-	1355-	1343-	1275-	1230-	1184-	1099-
1577	1414	1430	1446	1460	1310	1371	1380	1431
1400	1386-	1370-	1356-	1344-	1362-	1352-	1339-	1326-
1400	1415	1431	1447	1461	1376	1385	1385	1389
500 fs								
1200	1198-	1195-	1193-	1191-	1198-	1195-	1193-	1191-
1200	1202	1205	1207	1209	1202	1205	1207	1209
1250	1248-	1245-	1243-	1241-	1248-	1245-	1243-	1241-
1250	1252	1255	1257	1259	1252	1255	1257	1259
1300	1298-	1294-	1292-	1290-	1297-	1294-	1292-	1290-
1500	1302	1306	1308	1310	1302	1306	1308	1310
1350	1347-	1344-	1342-	1339-	1347-	1343-	1341-	1337-
1000	1353	1356	1359	1361	1352	1356	1358	1361
1375	1372-	1369-	1366-	1364-	1371-	1367-	1363-	1358-
	1378	1382	1384	1386	1376	1380	1382	1385
1399	1396-	1392-	1390-	1387-	1383-	1374-	1370-	1363-
	1402	nm)(nm) 372 - 1345 - 1314 - 429 1459 1497 190 - 1178 - 1167 - 211 1223 1234 239 - 1226 - 1215 - 262 1275 1287 288 - 1274 - 1262 - 313 1327 1340 337 - 1322 - 1309 - 364 1379 1394 361 - 1346 - 1332 - 389 1405 1420 385 - 1369 - 1355 - 414 1430 1446 385 - 1369 - 1355 - 414 1430 1446 386 - 1370 - 1356 - 415 1431 1447 198 - 1195 - 1193 - 202 1205 1207 248 - 1245 - 1243 - 252 1255 1257 298 - 1294 - 1292 - 302 1306 1308 347 - 1344 - 1342 - 353 1356 1359 372 - 1369 - 1390 - 402 1406 1408 396 - 1392 - 1390 - 402 1406 1408 396 - 1392 - 1390 - 402 1406 1408 396 - 1392 - 1390 - 402 1406 1408 396 - 1392 - 1390 - 402 1406 1408 396 - 1392 - 1	1411	1385	1385	1394	1398	
1399*	1396-	1307^{-} 1307^{-} 1307^{-} 1307^{-} 1217^{-} 4 1430 1446 1460 1310 5- 1370- 1356- 1344- 1362- 5 1431 1447 1461 1376 3- 1195- 1193- 1191- 1198- 2 1205 1207 1209 1202 3- 1245- 1243- 1241- 1248- 2 1255 1257 1259 1252 3- 1294- 1292- 1290- 1297- 2 1306 1308 1310 1302 7- 1344- 1342- 1339- 1347- 3 1356 1359 1361 1352 2- 1369- 1366- 1364- 1371- 8 1382 1384 1386 1376 5- 1392- 1390- 1387- 1383- 2 1406 1408 1411 1385 5- 1392- 1390- 1387- 1383- <td>1374-</td> <td>1369-</td> <td>1362-</td>	1374-	1369-	1362-			
	1402	1406	1408	1411	1385	1385	1392	1398
1400	1397-	1393-	1391-	1388-	X	X	X	Х
	1403	1407	1409	1412				
1 ps	1100	1107	1107	1100	1100	1107	1107	1106
1200	1199-	119/-	119/-	1190-	1199-	119/-	119/-	1196-
	1201	1203	1203	1204	1201	1203	1203	1204
1250	1249-	124/-	1240-	1243-	1249-	124/-	1240-	1245-
	1201	1255	1204	1205	1200	1255	1254	1205
1300	1299-	129/-	1296-	1295-	1299-	129/-	1296-	1295-
	1301	1303	1304	1303	1301	1303	1304	1303
1350	1549-	134/-	1340-	1545-	1349-	134/-	1340-	1344-
	1551	1555	1554	1555	1551	1555	1554	1555

Table A-2 – Continued from previous page

		Input	Pulse			Outpu	t Pulse	
Wave-	FWHM	RMS	10^{-3}	10 ⁻⁵	FWHM	RMS	10^{-3}	10^{-5}
length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max
	Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)
(nm)	(nm)	(nm)			(nm)	(nm)		
1375	1374-	1372-	1371-	1369-	1373-	1371-	1370-	1367-
1375	1376	1378	1379	1381	1376	1378	1379	1381
1300	1398-	1395-	1394-	1393-	v	v	v	v
1399	1400	1403	1404	1405		Λ	Λ	Λ
1200*	1398-	1395-	1394-	1393-	v	v	v	v
1399	1400	1403	1404	1405		Λ	Λ	Λ
1400	1399-	1396-	1395-	1394-	v	v	v	v
1400	1401	1399	1405	1406		Λ	Λ	Λ

Table A-2 – Continued from previous page

Wave- length (nm)	Energy 400 nm to 700 nm (nJ)	Energy 700 nm to 1000 nm (nJ)	Energy 1000 nm to 1200 nm (nJ)	Energy 1200 nm (nJ)	Energy 400 nm to 700 nm (%)	Energy 700 nm to 1000 nm (%)	Energy 1000 nm to 1200 nm (%)	Energy 1200 nm (%)
10 fs	(- /			I	. ,	. ,		
1200	< 5E-7	0.545	48.2	7.79	0	0.964	85.3	13.8
1250	< 5E-7	0.113	26.4	10.5	0	0.305	71.3	28.4
1300	< 5E-7	0.218	134	118	0	0.087	53.1	46.7
1350	4E-6	12.6	2640	7717	0	0.122	25.5	74.4
1375	421	1.09E5	6621	12781	0.327	84.6	5.14	9.92
1399	3.07E6	1.03E6	42012	19473	73.7	24.8	1.01	0.467
1400	< 5E-7	0.0302	164	562	0	0.004	22.6	77.4
35 fs		I						I
1200	< 5E-7	< 5E-7	11.5	10.7	0	0	51.8	48.2
1250	< 5E-7	< 5E-7	0.733	26.6	0	0	2.68	97.3
1300	< 5E-7	< 5E-7	0.0464	201	0	0	0.023	99.977
1350	< 5E-7	< 5E-7	0.138	3038	0	0	0.005	99.995
1375	< 5E-7	1.59E-4	33.0	14334	0	0	0.230	99.770
1399	7.42E5	1.08E6	32847	24172	38.6	57.4	1.8	1.3
1400	< 5E-7	< 5E-7	5E-6	15.9	0	0	0	100
50 fs		I		I			I	I
1200	< 5E-7	< 5E-7	10.2	10.3	0	0	49.8	50.2
1250	< 5E-7	< 5E-7	0.0891	28.9	0	0	0.308	99.7
1300	< 5E-7	< 5E-7	3.47E-5	204	0	0	0	100
1350	< 5E-7	< 5E-7	6.47E-4	1541	0	0	0	100
1375	< 5E-7	< 5E-7	0.146	3462	0	0	0.004	99.996
1399	61210	4.50E5	32026	59206	10.2	74.7	5.32	9.83
1400	< 5E-7	< 5E-7	< 5E-7	1.57	0	0	0	100
100 fs				I				
1200	< 5E-7	< 5E-7	9.88	9.94	0	0	49.8	50.2
1250	< 5E-7	< 5E-7	1E-6	30.2	0	0	0	100
1300	< 5E-7	< 5E-7	< 5E-7	205	0	0	0	100
1350	< 5E-7	< 5E-7	< 5E-7	366	0	0	0	100
1375	< 5E-7	< 5E-7	< 5E-7	192	0	0	0	100
1399	1E-6	1E-6	6.93E-3	874	0	0	0.001	99.999
1399*	1E-6	2E-6	65.1	15010	0	0	0.432	99.568
1400	< 5E-7	< 5E-7	< 5E-7	0.0300	0	0	0	100
500 fs								
1200	< 5E-7	< 5E-7	9.71	9.69	0	0	50.1	49.9
1250	< 5E-7	< 5E-7	< 5E-7	30.8	0	0	0	100
1300	< 5E-7	< 5E-7	< 5E-7	201	0	0	0	100
1350	< 5E-7	< 5E-7	< 5E-7	78.0	0	0	0	100
1375	< 5E-7	< 5E-7	< 5E-7	37.2	0	0	0	100
1399	< 5E-7	< 5E-7	< 5E-7	3.95E-4	0.047	0.057	0.049	99.8
1399*	< 5E-7	< 5E-7	< 5E-7	5.79E-4	0.032	0.039	0.033	99.869
1400	X	x	x	x	X	X	x	x

Table A-3. Energy Distribution as a Function of Wavelength for Eye Simulation Without Self-Focusing

Wave- length (nm)	Energy 400 nm to 700 nm (nJ)	Energy 700 nm to 1000 nm (nJ)	Energy 1000 nm to 1200 nm (nJ)	Energy 1200 nm (nJ)	Energy 400 nm to 700 nm (%)	Energy 700 nm to 1000 nm (%)	Energy 1000 nm to 1200 nm (%)	Energy 1200 nm (%)
1 ps								
1200	< 5E-7	< 5E-7	9.71	9.64	0	0	50.2	49.8
1250	< 5E-7	< 5E-7	< 5E-7	30.8	0	0	0	100
1300	< 5E-7	< 5E-7	< 5E-7	201.1	0	0	0	100
1350	< 5E-7	< 5E-7	< 5E-7	77.6	0	0	0	100
1375	< 5E-7	< 5E-7	< 5E-7	32.6	0	0	0	100
1399	X	X	X	X	Х	Х	X	Х
1399*	X	X	X	X	Х	Х	X	Х
1400	X	X	X	X	Х	Х	X	X

Table A-3 – Continued from previous page

A.2 Unchirped Pulse Simulation With Self-Focusing

In the following tables, X notes unmeasurable values for pulses that have been totally absorbed in simulation. The 1399* simulations are propagated with the saturable absorption reported in [21] while the 1399 simulations are propagated without nonlinear absorption.

	Input Pulse				Outpu	it Pulse	
Wavelength	Pulse Duration	Energy	Power	Pulse Duration	Energy	Power	Energy / Area vs Limit
(nm)	(fs)	(<i>u</i> . I)	(MW)	(fs)	(<i>u</i> . I)	(MW)	(%)
10 fs	()	(1.0)	()	()	(7.0)	()	()
1200	9.8	0.306	30.6	49.7	0.0566	0.0733	0.016
1250	9.8	0.346	34.6	18.5	0.0370	0.0479	0.009
1300	9.8	4.156	416	622	0.252	0.326	0.056
1350	9.8	385	38515	1271	10.4	13.6	2.13
1375	9.8	3849	384876	84.6	130	146	46.9
1399	9.8	38485	3.85E6	Plasma	Plasma	Plasma	Plasma
1400	9.8	38.5	3848.5	1271	0.726	0.952	0.134
35 fs	I						
1200	34.9	0.306	8.73	654	0.0221	0.0274	0.006
1250	34.9	0.346	9.90	791	0.0274	0.0360	0.007
1300	34.9	4.16	119	125	0.201	0.248	0.045
1350	34.9	385	11000	91.1	3.04	3.95	0.619
1375	34.9	3849	110000	92.6	14.4	18.7	2.87
1399	34.9	38485	1.10E6	Plasma	Plasma	Plasma	Plasma
1400	34.9	38.5	1100	91.1	0.0159	0.0226	0.005
50 fs							
1200	49.9	0.306	6.11	659	0.0205	0.0268	0.006
1250	49.9	0.346	6.927	799	0.0290	0.0371	0.007
1300	49.9	4.16	83.1	119	0.205	0.253	0.046
1350	49.9	385	7703	90.7	1.54	2.16	0.314
1375	49.9	3849	7.70E5	90.7	3.46	4.83	1.90
1399	49.9	38485	7.70E6	Plasma	Plasma	Plasma	Plasma
1400	49.9	38.5	770	163	0.00157	0.00220	0.000
100 fs	-						
1200	99.9	0.306	3.06	1045	0.0198	0.0255	0.006
1250	99.9	0.346	3.46	1187	0.0302	0.0373	0.008
1300	99.9	4.16	41.6	131.8	0.205	0.348	0.046
1350	99.9	385	3852	198	0.366	0.764	0.074
1375	99.9	3849	38488	838	0.192	0.260	0.037
1399	99.9	38485	384848	52.4	0.877	1.16	0.168
1399*	99.9	38485	384848	49.7	15.3	21.2	3.06
1400	99.9	38.5	385	315	3.00E-5	5.09E-5	0.000
500 fs		1					
1200	499.9	0.306	0.611	715	0.019	0.023	0.005
1250	499.8	0.346	0.693	617	0.031	0.053	0.008

 Table A-4. Time Domain Characteristics of Eye Simulation with Self-Focusing

	In	put Pulse			Outpu	t Pulse	
Wavelength	Pulse Duration	Energy	Power	Pulse Duration	Energy	Power	Energy / Area vs Limit
(nm)	(fs)	(μ J)	(MW)	(fs)	(μ J)	(MW)	(%)
1300	499.8	4.156	8.313	504	0.201	0.4	0.045
1350	499.8	385	770	564	0.078	0.145	0.016
1375	499.8	3849	7698	503	0.037	0.070	0.007
1399	499.8	38484	76970	379	3.96E-7	3.93E-7	0.000
1399*	499.8	38484	76970	371.7	5.80E-7	6.23E-7	0.000
1400	499.8	38.5	77.0	Х	X	X	Х
1 ps							•
1200	999.8	0.306	0.306	1079	0.0193	0.0167	0.005
1250	999.8	0.346	0.346	1012	0.0308	0.0308	0.008
1300	999.8	4.16	4.16	1002	0.201	0.201	0.045
1350	999.8	385	385	1005	0.0775	0.0775	0.016
1375	999.8	3849	3849	1019	0.0326	0.0318	0.006
1399	999.8	38485	38485	X	X	Х	Х
1399*	999.8	38485	38485	Х	X	X	Х
1400	999.8	38.5	38.5	Х	X	Х	Х

Table A-4 – Continued from previous page

		Input	Pulse		Output Pulse			
Wave-	FWHM	RMS	10-3	10 ⁻⁵	FWHM	RMS	10-3	10^5
length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max
8	Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)
(nm)	(nm)	(nm)			(nm)	(nm)		
10 fs								
1015	1103-	1047-			1064-	1021-		
1200	1316	1405	938-1664	882-1875	1143	1297	929-1340	873-1373
	1145-	1085-			1079-	1036-		
1250	1377	1474	969-1762	909-2000	1275	1314	957-1345	893-1377
	1186-	1123-			1094-	1053-		
1300	1438	1544	998-1862	935-2131	1301	1324	977-1365	913-1380
	1228-	1160-	1028-		1238-	1093-		
1350	1499	1615	1967	961-2268	1294	1325	983-1364	831-1510
	1249-	1178-	1042-		8 1238- 1294 1093- 1325 983-1364 8 0 757-1271 712-1337 655-1828 5 0 Plasma Plasma Plasma 3 1237- 1306 1096- 1331 1021- 1368 9 1 168- 1235 1265 1301 1224- 1282 1304 1332 1259 1233 1108			
1375	1530	1651	2020	974-2340	757-1271	712-1337	655-1828	542-2488
	1268-	1196-	1056-					
1399	1560	1686	2073	985-2410	Plasma	Plasma	Plasma	Plasma
	1269-	1196-	1056-		1237-	1096-	1021-	
1400	1561	1687	2075	986-2413	1306	1331	1368	973-1697
35 fc	1501	1007	2013		1500	1551	1500	
55 15	1170-	1145-	1111_	1088-	1168-	1130-	1099-	1078-
35 fs 1200 1250	1231	1261	1304	1338	1235	1265	1301	1325
	1231	1190-	1154-	1129-	1233	1194-	1155-	1121-
1250	1210	1316	1363	1400	1224	1304	1332	1349
	1265-	1236-	1197-	1170-	1259-	1233-	1198-	1170-
1300	1337	1371	1423	1463	1306	1328	1347	1374
	1313-	1281-	1239-	1210-	1279-	1258-	1226-	1173-
1350	1389	1427	1483	1527	1323	1340	1372	1382
	1336-	1303-	1260-	1230-	1272-	1231-	1171-	1069-
1375	1416	1455	1513	1559	1315	1339	1375	1416
	1359-	1325-	1280-	1249-	1010	1557	1575	1110
1399	1441	1482	1542	1590	Plasma	Plasma	Plasma	Plasma
	1360-	1326-	1281-	1250-	1299-	1275-	1249-	1223-
1400	1442	1483	1543	1591	1336	1367	1381	1385
50 fc	1442	1405	1545	1371	1550	1507	1501	1505
50 15	1179-	1160-	1137-	1110_	1179-	1159-	1129-	1113-
1200	1222	1243	1271	1293	1223	1245	1273	1293
	1222	1245	1181-	1163-	1225	1245	1183-	1164-
1250	1273	1200	1327	1351	1274	1200	1317	1334
	1275	1253-	1226-	1206-	1274	1204	1225-	1206-
1300	1325	1351	1384	1410	1306	1327	1343	1367
	1324-	1200_	1270-	1240-	1207_	1276-	1244-	1216-
1350	1324-	1405	1440	1460	1332	1344	1375	1384
	1384-	1322	1202	1270-	1270_	1258-	1224-	1162
1375	1403	1432	1460	1400	1336	1368	1381	1400
	1371	13//	131/	1701	1550	1300	1501	1700
1399	1428	1458	1496	1527	Plasma	Plasma	1099- 1301 1155- 1332 1198- 1347 1226- 1372 1171- 1375 Plasma 1249- 1381 1129- 1273 1183- 1317 1225- 1343 1244- 1375 1244- 1375 1244- 1375 1244- 1381 Plasma	Plasma

Table A-5. Spectral Characteristics of Eye Simulation with Self-Focusing

Wave- length FWHM RMS 10 ⁻³ 10 ⁻⁵ FWHM RMS 10 ⁻³ 10 ⁻⁵ Max Max Max Spectral (nm) Range (nm) Max Spectral (nm) Max Max Max Range (nm) Max Max Range (nm) Max Max Range (nm) Max Max Range (nm) Max Max Max Max Range (nm) Range (n			Input	Pulse		Output Pulse				
length (nm) Spectral (nm) Spectral (nm) Max (nm) Max (nm) Spectral (nm) Spectral Range (nm) Max (nm) Max isso	Wave-	FWHM	RMS	10^{-3}	10^5	FWHM	RMS	10^-3	10^{-5}	
Range (nm) Range (nm) Range (nm) Range (nm) Range (nm) Range (nm) Range (nm) (nm) (nm) 1400 1372- 1322 1345- 1429 1314- 1497 1528 1366 1376 1280- 1376 1280- 1385 1280- 1385 1280- 1385 1280- 1385 1280- 1385 1280- 1282 1211 1223 1244 12445 1211 1223 1245 1200 1211 1223 1234 12445 1211 1223 1245 1250 1262 1275 1287 1299 1262 1277 1215 1205- 1262 1275 1287 1298 1300 1313 1327 1340 1335 1307- 1320 1334 1321- 1340 1346 1378 1385 1341 1350 1336- 1346 1379 1340 1340 1365 1374 1385 1385 1399 1444 1430 1446 1460 1310 1370 1380 1432 13	length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(nm)	(nm)	(nm)			(nm)	(nm)			
14.00 1429 1459 1497 1528 1366 1376 1385 1385 100 fs	1400	1372-	1345-	1314-	1292-	1319-	1300-	1280-	1259-	
100 fs 1190 1178 1167 1158 1189 1178 1167 1158 1200 1211 1223 1234 1245 1211 1223 1235 1245 1250 1239 1226 1215 1205 1220 1227 1215 1205 1300 1288 1274 1262 1275 1287 1299 1262 1275 1287 1298 1300 1313 1327 1340 1353 1307 1320 1332 1341 1350 1337 1322 1327 1340 1365 1374 1381 1375 1361 1346 1332 1313 1327 1343 1297 1323 1314 1385 1385 1399 1414 1430 1446 1460 1368 1378 1385 1385 1399* 1385 1369 1355 1343 1275 1230 1184 1099	1400	1429	1459	1497	1528	1366	1376	1385	1385	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 fs						1	1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1200	1190-	1178-	1167-	1158-	1189-	1178-	1167-	1158-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1200	1211	1223	1234	1245	1211	1223	1235	1245	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1250	1239-	1226-	1215-	1205-	1240-	1227-	1215-	1205-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1230	1262	1275	1287	1299	1262	1275	1287	1298	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1200	1288-	1274-	1262-	1251-	1285-	1272-	1260-	1250-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1300	1313	1327	1340	1353	1307	1320	1332	1341	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1350	1337-	1322-	1309-	1297-	1323-	1310-	1294-	1272-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1550	1364	1379	1394	1407	1340	1365	1374	1381	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1375	1361-	1346-	1332-	1321-	1358-	1305-	1284-	1251-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1575	1389	1405	1420	1434	1368	1378	1385	1385	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1300	1385-	1369-	1355-	1343-	1299-	1271-	1229-	1187-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1577	1414	1430	1446	1460	1368	1378	1385	1385	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1399*	1385-	1369-	1355-	1343-	1275-	1230-	1184-	1099-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1377	1414	1430	1446	1460	1310	1370	1380	1432	
1400 1415 1431 1447 1461 1376 1385 1385 1389 500 fs 1200 1198- 1202 1205 1207 1209 1202 1205 1207 1209 1250 1248- 1252 1245- 1255 1247 1241- 1259 1248- 1252 1255 1257 1259 1252 1257 1259 1300 1298- 1302 1306 1308 1310 1302 1306 1308 1310 1350 1347- 1353 1356 1359 1361 1352 1356 1358 1361 1375 1372- 1378 1366- 1364- 1371- 1363- 1363- 1358 1361 1352 1363- 1380 1382 1385 1399 1396- 1402 1406 1408 1411 1385 1385 1394 1398 1399* 1396- 1392- 1390- 1387- 1383- 1385 1374- 1385 1369- 1362- 1398 1362- 1362- 1398 1392- 1398 1392- 1398 1392- 1398 139	1400	1386-	1370-	1356-	1344-	1362-	1352-	1339-	1326-	
500 fs 1200 1198 - 1195 - 1193 - 1191 - 1198 - 1195 - 1193 - 1191 - 1202 1202 1205 1207 1209 1202 1205 1207 1209 1250 1248 - 1245 - 1243 - 1241 - 1248 - 1245 - 1243 - 1241 - 1250 1252 1255 1257 1259 1252 1255 1257 1259 1300 1298 - 1294 - 1292 - 1290 - 1297 - 1294 - 1292 - 1290 - 1300 1306 1306 1308 1310 1302 1306 1308 1310 1302 1306 1308 1310 1302 1306 1308 1310 1353 1356 1359 1361 1352 1356 1358 1361 1375 1372 - 1369 - 1366 - 1364 - 1371 - 1363 - 1358 - 1399 1396 - 1392 - 1390 - 1387 - 1383 - 1374 - 1370 - 1363 - 1399 1396 - 1392 - 1390 - 1387 - 1383 - 1374 - 1369 - 1362 - 1399 1396 - 1392 - 1390 - 1387 - 1383 - 1374 - 1369 - 1362 - 1399 1396 - 1392 - 1390 - 1387 - 1383 - 1374 - 1369 - 1362 - 1400 1402 1406 1408 1411 1385 1385 <t< td=""><td>1100</td><td>1415</td><td>1431</td><td>1447</td><td>1461</td><td>1376</td><td>1385</td><td>1385</td><td>1389</td></t<>	1100	1415	1431	1447	1461	1376	1385	1385	1389	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	500 fs									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1200	1198-	1195-	1193-	1191-	1198-	1195-	1193-	1191-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1200	1202	1205	1207	1209	1202	1205	1207	1209	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1250	1248-	1245-	1243-	1241-	1248-	1245-	1243-	1241-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1252	1255	1257	1259	1252	1255	1257	1259	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1300	1298-	1294-	1292-	1290-	1297-	1294-	1292-	1290-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1302	1306	1308	1310	1302	1306	1308	1310	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1350	1347-	1344-	1342-	1339-	1347-	1343-	1341-	1337-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1353	1356	1359	1361	1352	1356	1358	1361	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1375	1372-	1369-	1366-	1364-	1371-	1367-	1363-	1358-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1378	1382	1384	1386	1376	1380	1382	1385	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1399	1396-	1392-	1390-	1387-	1383-	13/4-	1370-	1363-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1402	1406	1408	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1394	1398			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1399*	1396-	1392-	1390-	138/-	1383-	13/4-	Actral Max (nm) i00- 1280- 376 376 1385	1362-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1402	1400	1408	1411	1385	1385	1392	1398	
1403 1407 1409 1412 Image: Constraint of the state of the	1400	1397-	1393-	1391-	1388-	X	X	X	Х	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 ng	1403	1407	1409	1412					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 ps	1100	1107	1107	1106	1100	1107	1107	1106	
1201 1203 1203 1201 1201 1203 1204 1201 1203 1205 1204	1200	1201	119/-	119/-	1204	1201	119/-	119/-	1204	
1240 1247 1246 1245 1240 1247 1246 1245		1201	1203	1203	1204	1201	1203	1203	1204	
1250 1247 1257	1250	1249-	1247-	1240-	1245	1249-	1247-	1240-	1245	
1201 1205 1205 1205 1205 1205 1205 1205		1201	1207_	1204	1205	1201	1207_	1204	1205	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1300	1301	1303	1304	1305	1301	1303	1304	1305	
1349- 1347- 1346- 1345- 1349- 1347- 1346- 1344-		1349_	1347_	1346-	1345-	1349_	1347_	1346-	1344-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1350	1351	1353	1354	1355	1351	1353	1354	1355	

Table A-5 – Continued from previous page

		Input	Pulse			Outpu	t Pulse	
Wave-	FWHM	RMS	10^{-3}	10 ⁻⁵	FWHM	RMS	10^{-3}	10 ⁻⁵
length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max
	Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)
(nm)	(nm)	(nm)			(nm)	(nm)		
1375	1374-	1372-	1371-	1369-	1373-	1371-	1370-	1367-
1375	1376	1378	1379	1381	1376	1378	1379	1381
1300	1398-	1395-	1394-	1393-	v	1371- 1378 X	v	v
1399	1400	1403	1404	1405	Λ	Λ	Λ	Λ
1300*	1398-	1395-	1394-	1393-	v	v	v	v
1399	1400	1403	1404	1405	Λ	Λ	Λ	Λ
1400	1399-	1396-	1395-	1394-	v	v	v	v
1400	1401	1399	1405	1406		Λ	Λ	

Table A-5 – Continued from previous page

Waya	Energy	Energy	Energy	Fnoray	Energy	Energy	Energy	Fnorgy
longth	400 nm	700 nm	1000 nm	1200 nm	400 nm	700 nm	1000 nm	1200 nm
(nm)	to 700	to 1000	to 1200	(nI)	to 700	to 1000	to 1200	1200 IIII (Ø.)
(IIII)	nm (nJ)	nm (nJ)	nm (nJ)	(IIJ)	nm (%)	nm (%)	nm (%)	(70)
10 fs								
1200	< 5E-7	0.545	48.2	7.79	0	0.964	85.3	13.8
1250	< 5E-7	0.113	26.4	10.5	0	0.305	71.3	28.4
1300	< 5E-7	0.218	134	118	0	0.087	53.1	46.8
1350	4.0E-6	12.6	2639	7715	0	0.122	25.5	74.4
1375	737	110226	5522	13500	0.567	84.8	4.25	10.4
1399	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1400	< 5E-7	0.0302	164	562	0.000	0.004	22.6	77.3
35 fs								
1200	< 5E-7	< 5E-7	11.5	10.7	0	0	51.8	48.2
1250	< 5E-7	< 5E-7	0.733	26.6	0	0	2.68	97.32
1300	< 5E-7	< 5E-7	0.0464	201	0	0	0.023	99.977
1350	< 5E-7	< 5E-7	0.137	3038	0	0	0.005	99.995
1375	< 5E-7	1.60E-4	33.0	14300	0	0	0.230	99.770
1399	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1400	< 5E-7	< 5E-7	4.7E-6	15.9	0	0	0	100
50 fs								
1200	< 5E-7	< 5E-7	10.2	10.3	0	0	49.8	50.2
1250	< 5E-7	< 5E-7	0.089	28.9	0	0	0.308	99.692
1300	< 5E-7	< 5E-7	3.48E-5	205	0	0	0	100
1350	< 5E-7	< 5E-7	6.47E-4	1541	0	0	0	100
1375	< 5E-7	< 5E-7	0.147	3463	0	0	0.004	99.996
1399	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1400	< 5E-7	< 5E-7	< 5E-7	1.57	0	0	0	100
100 fs					-	-		
1200	< 5E-7	< 5E-7	9.88	9.94	0	0	49.8	50.2
1250	< 5E-7	< 5E-7	1.13E-6	30.2	0	0	0	100
1300	< 5E-7	< 5E-7	< 5E-7	205	0	0	0	100
1350	< 5E-7	< 5E-7	< 5E-7	366	0	0	0	100
1375	< 5E-7	< 5E-7	< 5E-7	192	0	0	0	100
1399	< 5E-7	1.06E-6	0.00704	8//	0	0	0.001	99.999
1399*	1.02E-6	1.86E-6	68.32	15243	0	0	0.446	99.554
1400	< 5E-7	< 5E-7	< 5E-7	0.0300	0	0	0	100
500 fs			0.71	0.00	0	0	50.1	40.0
1200	< 5E-7	< 5E-7	9.71	9.69	0	0	50.1	49.9
1250	< 5E-7	< 5E-7	< 5E-7	30.8	0	0	0	100
1300	< 3E-7	< 3E-7	< 3E-7	201	0	0		100
1350	< 3E-7	< 3E-7	< 3E-7	/8.0	0	0		100
13/5	< 3E-7	< 3E-7	< 3E-7	37.2	0.047		00.40	100
1399	< 3E-7	< 3E-7	< 3E-7	5.95E-4	0.047	0.057	0049	99.8
1399*	< 3E-7	< 3E-7	< 3E-7	5./9E-4	0.032	0.039	0.033	99.869 V
1400	X	X	X	X	X	X	X	X
1 ps								

Table A-6. Energy Distribution as a Function of Wavelength for Eye Simulation with Self-Focusing

Wave- length (nm)	Energy 400 nm to 700 nm (nJ)	Energy 700 nm to 1000 nm (nJ)	Energy 1000 nm to 1200 nm (nJ)	Energy 1200 nm (nJ)	Energy 400 nm to 700 nm (%)	Energy 700 nm to 1000 nm (%)	Energy 1000 nm to 1200 nm (%)	Energy 1200 nm (%)
1200	< 5E-7	< 5E-7	9.71	9.64	0	0	50.2	49.8
1250	< 5E-7	< 5E-7	< 5E-7	30.8	0	0	0	100
1300	< 5E-7	< 5E-7	< 5E-7	201	0	0	0	100
1350	< 5E-7	< 5E-7	< 5E-7	77.6	0	0	0	100
1375	< 5E-7	< 5E-7	< 5E-7	32.6	0	0	0	100
1399	X	X	X	X	Х	X	X	X
1399*	X	Х	X	X	Х	Х	X	Х
1400	X	X	X	X	Х	X	X	X

Table A-6 – Continued from previous page

A.3 Pre-Focused Pulse Simulation

In the following tables, X notes unmeasurable values for pulses that have been totally absorbed in simulation. The 1399* simulations are propagated with the saturable absorption reported in [21] while the 1399 simulations are propagated without nonlinear absorption.

	In	put Pulse			Outpu	t Pulse	
Wavelength	Pulse Duration	Energy	Power	Pulse Duration	Energy	Power	Energy / Area vs Limit
(nm)	(fs)	(µ .I)	(MW)	(fs)	(µ .I)	(MW)	(%)
10 fs	()	(1.0)	()	()	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	()	()
1200	9.8	0.306	30.6	145.9	0.0514	0.0643	43.8
1250	9.8	0.346	34.6	117.1	0.0330	0.0416	27.8
1300	9.8	4.156	416	Plasma	Plasma	Plasma	Plasma
1350	9.8	385	38515	Plasma	Plasma	Plasma	Plasma
1375	9.8	3849	384876	Plasma	Plasma	Plasma	Plasma
1399	9.8	38485	3.85E6	Plasma	Plasma	Plasma	Plasma
1400	9.8	38.5	3848.5	Plasma	Plasma	Plasma	Plasma
35 fs	I			L	1		
1200	34.9	0.306	8.73	789.5	0.0186	0.0230	12.5
1250	34.9	0.346	9.90	1151	0.0230	0.0280	15.0
1300	34.9	4.16	119	136.4	0.160	0.193	192
1350	34.9	385	11000	Plasma	Plasma	Plasma	Plasma
1375	34.9	3849	110000	Plasma	Plasma	Plasma	Plasma
1399	34.9	38485	1.10E6	Plasma	Plasma	Plasma	Plasma
1400	34.9	38.5	1100	94.2	0.0122	0.0159	5.95
50 fs							
1200	49.9	0.306	6.11	786	0.0172	0.0208	11.4
1250	49.9	0.346	6.927	1172	0.0245	0.0282	15.7
1300	49.9	4.16	83.1	117	0.160	0.190	226
1350	49.9	385	7703	Plasma	Plasma	Plasma	Plasma
1375	49.9	3849	7.70E5	Plasma	Plasma	Plasma	Plasma
1399	49.9	38485	7.70E6	Plasma	Plasma	Plasma	Plasma
1400	49.9	38.5	770	172	0.00106	0.00138	0.479
100 fs							
1200	99.9	0.306	3.06	1153	0.0166	0.0191	10.6
1250	99.9	0.346	3.46	1218	0.0257	0.0304	15.7
1300	99.9	4.16	41.6	Plasma	Plasma	Plasma	Plasma
1350	99.9	385	3852	Plasma	Plasma	Plasma	Plasma
1375	99.9	3849	38488	Plasma	Plasma	Plasma	Plasma
1399	99.9	38485	384848	Plasma	Plasma	Plasma	Plasma
1399*	99.9	38485	384848	Plasma	Plasma	Plasma	Plasma
1400	99.9	38.5	385	318	1.56E-5	2.51E-5	0.007
500 fs							
1200	499.9	0.306	0.611	758	0.016	0.018	10.2
1250	499.8	0.346	0.693	631	0.026	0.045	16.0

 Table A-7. Time Domain Characteristics of Pre-Focused Eye Simulation with Self-Focusing

	In	put Pulse			Outpu	t Pulse	
Wavelength	Pulse Duration	Energy	Power	Pulse Duration	Energy	Power	Energy / Area vs Limit
(nm)	(fs)	(μ J)	(MW)	(fs)	(μ J)	(MW)	(%)
1300	499.8	4.156	8.313	519	0.156	0.308	125
1350	499.8	385	770	577	0.044	0.082	25.0
1375	499.8	3849	7698	504	0.018	0.034	10.5
1399	499.8	38484	76970	406	1.55E-7	1.52E-7	0.000
1399*	499.8	38484	76970	394	2.28E-7	2.44E-7	0.000
1400	499.8	38.5	77.0	X	X	X	Х
1 ps						•	•
1200	999.8	0.306	0.306	1091	0.0162	0.0137	10.2
1250	999.8	0.346	0.346	1017	0.0263	0.0262	15.6
1300	999.8	4.16	4.16	1015	0.162	0.160	102
1350	999.8	385	385	1012	0.0445	0.0444	23.4
1375	999.8	3849	3849	1020	0.0156	0.0152	8.01
1399	999.8	38485	38485	X	X	X	Х
1399*	999.8	38485	38485	X	X	Х	Х
1400	999.8	38.5	38.5	X	X	Х	Х

Table A-7 – Continued from previous page

		Input	Pulse		Output Pulse			
Wave-	FWHM	RMS	10-3	10 ⁻⁵	FWHM	RMS	10-3	10 ⁻⁵
length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max
8	Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)
(nm)	(nm)	(nm)			(nm)	(nm)		
10 fs					()			
1015	1103-	1047-			1069-	1019-		
1200	1316	1405	938-1664	882-1875	1142	1294	925-1341	868-1543
	1145-	1085-			1085-	1034-		
1250	1377	1474	969-1762	909-2000	1273	1314	953-1342	881-1610
	1186-	1123-						
1300	1438	1544	998-1862	935-2131	Plasma	Plasma	Plasma	Plasma
1.0.50	1228-	1160-	1028-			~	~	
1350	1499	1615	1967	961-2268	Plasma	Plasma	Plasma	Plasma
	1249-	1178-	1042-			~	~	
1375	1530	1651	2020	974-2340	Plasma	Plasma	Plasma	Plasma
1200	1268-	1196-	1056-	005 0440				
1399	1560	1686	2073	985-2410	Plasma	Plasma	Plasma	Plasma
1.400	1269-	1196-	1056-	006 0440				
1400	1561	1687	2075	986-2413	Plasma	Plasma	Plasma	Plasma
35 fs	I					I	I	I
1000	1170-	1145-	1111-	1088-	1169-	1128-	1099-	1074-
1200	1231	1261	1304	1338	1234	1265	1299	1332
	1218-	1190-	1154-	1129-	1225-	1195-	1153-	1121-
1250	1284	1316	1363	1400	1282	1305	1336	1365
1200	1265-	1236-	1197-	1170-	1267-	1235-	1197-	1147-
1300	1337	1371	1423	1463	1298	1327	1365	1415
1250	1313-	1281-	1239-	1210-	DI	DI	DI	DI
1350	1389	1427	1483	1527	Plasma	Plasma	Plasma	Plasma
1075	1336-	1303-	1260-	1230-	DI	DI	DI	
1375	1416	1455	1513	1559	Plasma	Plasma	Plasma	Plasma
1200	1359-	1325-	1280-	1249-	DI	DI	DI	DI
1399	1441	1482	1542	1590	Plasma	Plasma	Plasma	Plasma
1.400	1360-	1326-	1281-	1250-	1297-	1275-	1248-	1220-
1400	1442	1483	1543	1591	1336	1365	1379	1385
50 fs			1					
1200	1179-	1160-	1137-	1119-	1179-	1158-	1128-	1113-
1200	1222	1243	1271	1293	1223	1246	1274	1298
1250	1227-	1206-	1181-	1163-	1231-	1209-	1183-	1155-
1250	1273	1297	1327	1351	1274	1293	1319	1347
1200	1276-	1253-	1226-	1206-	1270-	1248-	1220-	1182-
1500	1325	1351	1384	1410	1298	1322	1363	1400
1250	1324-	1299-	1270-	1249-	Diama	Dlasma	Dlasma	Dlasma
1550	1377	1405	1440	1469	Piasma	Piasma	Plasma	Plasma
1275	1384-	1322-	1292-	1270-	Dlacma	Diacona	Diacros	Dlacma
15/5	1403	1432	1469	1499	Piasma	Piasma	Plasma	Piasma
1200	1371-	1344-	1314-	1291-	Dlagman	Diagona	Dlasses	Diagram
1399	1428	1458	1496	1527	Plasma	Plasma	Plasma	Plasma

Table A-8. Spectral Characteristics of Pre-Focused Eye Simulation with Self-Focusing

		Input	Pulse		Output Pulse			
Wave-	FWHM	RMS	10^{-3}	10^5	FWHM	RMS	10^-3	10^{-5}
length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max
	Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)
(nm)	(nm)	(nm)			(nm)	(nm)		
1400	1372-	1345-	1314-	1292-	1318-	1299-	1279-	1257-
1400	1429	1459	1497	1528	1340	1375	1385	1385
100 fs				1		1	1	
1200	1190-	1178-	1167-	1158-	1189-	1178-	1167-	1157-
1200	1211	1223	1234	1245	1211	1223	1235	1245
1250	1239-	1226-	1215-	1205-	1240-	1227-	1216-	1205-
1230	1262	1275	1287	1299	1262	1275	1287	1305
1300	1288-	1274-	1262-	1251-	Dlasma	Dlasma	Dlasma	Dlasma
1300	1313	1327	1340	1353	1 Iasilia	1 Iasilia	1 Iasilia	1 lasilla
1350	1337-	1322-	1309-	1297-	Plasma	Plasma	Plasma	Plasma
1550	1364	1379	1394	1407	1 Iasina	1 Iasina	1 Iasina	1 Iasina
1375	1361-	1346-	1332-	1321-	Plasma	Plasma	Plasma	Plasma
1373	1389	1405	1420	1434	1 Idollid	1 Idollid	1 Idollid	1 Iusiliu
1399	1385-	1369-	1355-	1343-	Plasma	Plasma	Plasma	Plasma
1000	1414	1430	1446	1460	1 Iusinu	1 Iusiliu	1 Iusiliu	1 Iusiiiu
1300*	1385-	1369-	1355-	1343-	Plasma	Plasma	Plasma	Plasma
	1414	1430	1446	1460		1 1401114		1 1001110
1400	1386-	1370-	1356-	1344-	1362-	1352-	1338-	1325-
	1415	1431	1447	1461	1375	1385	1385	1388
500 fs								
1200	1198-	1195-	1193-	1191-	1198-	1195-	1193-	1191-
	1202	1205	1207	1209	1202	1205	1207	1209
1250	1248-	1245-	1243-	1241-	1248-	1245-	1243-	1241-
	1252	1255	1257	1259	1252	1255	1258	1259
1300	1298-	1294-	1292-	1290-	1297-	1294-	1290-	1285-
	1302	1306	1308	1310	1302	1306	1309	1314
1350	1347-	1344-	1342-	1339-	1347-	1343-	1341-	1337-
	1353	1356	1359	1361	1352	1356	1359	1363
1375	1372-	1369-	1366-	1364-	13/1-	1367-	1363-	1357-
	13/8	1382	1384	1380	13/0	1380	1382	1385
1399	1396-	1392-	1390-	138/-	1383-	13/4-	1369-	1063-
	1402	1400	1408	1411	1385	1385	1389	1397
1399*	1390-	1392-	1390-	138/-	1383-	13/3-	1308-	1302-
	1402	1400	1400	1411	1365	1365	1369	1397
1400	1397-	1393-	1391-	1300-	X	X	X	Х
1 nc	1403	1407	1409	1412				
1 h2	1100	1107	1107	1106	1100	1107	1107	1106
1200	1201	1203	1203	1204	1201	1203	1203	1204
	1201	1203	1205	1204	1201	1205	1205	1204
1250	1251	1253	1254	1255	1251	1253	1254	1255
	1299-	1297-	1296-	1295-	1299-	1297-	1296-	1293-
1300	1301	1303	1304	1305	1301	1303	1304	1307
	1349-	1347-	1346-	1345-	1349-	1347-	1346-	1344-
1350	1351	1353	1354	1355	1351	1353	1354	1356

Table A-8 – Continued from previous page

		Input	Pulse		Output Pulse				
Wave-	FWHM	RMS	10^{-3}	10 ⁻⁵	FWHM	RMS	10^{-3}	10 ⁻⁵	
length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max	
	Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)	
(nm)	(nm)	(nm)			(nm)	(nm)			
1375	1374-	1372-	1371-	1369-	1373-	1371-	1370-	1367-	
	1376	1378	1379	1381	1376	1378	1379	1381	
1300	1398-	1395-	1394-	1393-	v	v	v	v	
1399	1400	1403	1404	1405	Λ	Λ	Λ	Λ	
1300*	1398-	1395-	1394-	1393-	v	v	v	v	
1399	1400	1403	1404	1405	Λ	Λ	Λ	Λ	
1400	1399-	1396-	1395-	1394-	v	v	v	v	
1400	1401	1399	1405	1406		Λ	Λ		

Table A-8 – Continued from previous page

 Table A-9. Energy Distribution as a Function of Wavelength for Pre-Focused Eye Simulation with

 Self-Focusing

Wowo	Energy	Energy	Energy	Enorgy	Energy	Energy	Energy	Enorgy
wave-	400 nm	700 nm	1000 nm	Litergy	400 nm	700 nm	1000 nm	Ellergy
(nm)	to 700	to 1000	to 1200	1200 IIII (n I)	to 700	to 1000	to 1200	1200 mm
(1111)	nm (nJ)	nm (nJ)	nm (nJ)	(IIJ)	nm (%)	nm (%)	nm (%)	(%)
10 fs								
1200	< 5E-7	0.539	44.4	6.46	0	1.048	86.394	12.558
1250	< 5E-7	0.130	24.1	8.69	0	0.393	73.239	26.367
1300	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1350	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1375	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1399	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1400	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
35 fs								
1200	< 5E-7	< 5E-7	9.68	8.96	0	0	51.9	48.1
1250	< 5E-7	< 5E-7	0.619	22.4	0	0	2.685	97.315
1300	< 5E-7	< 5E-7	0.0859	160	0	0	0.054	99.946
1350	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1375	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1399	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1400	< 5E-7	< 5E-7	3.84e-6	12.2	0	0	0	100
50 fs								
1200	< 5E-7	< 5E-7	8.56	8.65	0	0	49.7	50.3
1250	< 5E-7	< 5E-7	0.0777	24.4	0	0	0.317	99.683
1300	< 5E-7	< 5E-7	3.00E-3	160	0	0	0.002	99.998
1350	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1375	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1399	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1400	< 5E-7	< 5E-7	< 5E-7	1.06	0	0	0	100
100 fs								
1200	< 5E-7	< 5E-7	8.28	8.33	0	0	49.8	50.2
1250	< 5E-7	< 5E-7	2.77E-5	25.7	0	0	0	100
1300	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1350	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1375	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1399	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1399*	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma	Plasma
1400	< 5E-7	< 5E-7	< 5E-7	0.0156	0	0	0	100
500 fs								
1200	< 5E-7	< 5E-7	8.13	8.10	0	0	50.1	49.9
1250	< 5E-7	< 5E-7	< 5E-7	26.2	0	0	0	100
1300	< 5E-7	< 5E-7	< 5E-7	156	0	0	0	100
1350	< 5E-7	< 5E-7	< 5E-7	44.3	0	0	0	100
1375	< 5E-7	< 5E-7	< 5E-7	18.1	0	0	0	100
1399	< 5E-7	< 5E-7	< 5E-7	1.54E-4	0.121	0.143	0.119	99.5
1399*	< 5E-7	< 5E-7	< 5E-7	2.27E-4	0.082	0.097	0.081	99.673
1400	X	X	X	X	X	X	X	X

Wave- length (nm)	Energy 400 nm to 700 nm (nJ)	Energy 700 nm to 1000 nm (nJ)	Energy 1000 nm to 1200 nm (nJ)	Energy 1200 nm (nJ)	Energy 400 nm to 700 nm (%)	Energy 700 nm to 1000 nm (%)	Energy 1000 nm to 1200 nm (%)	Energy 1200 nm (%)
1 ps								
1200	< 5E-7	< 5E-7	8.12	8.07	0	0	50.2	49.8
1250	< 5E-7	< 5E-7	< 5E-7	26.3	0	0	0	100
1300	< 5E-7	< 5E-7	< 5E-7	162	0	0	0	100
1350	< 5E-7	< 5E-7	< 5E-7	44.5	0	0	0	100
1375	< 5E-7	< 5E-7	< 5E-7	15.6	0	0	0	100
1399	X	Х	Х	Х	Х	Х	Х	Х
1399*	X	Х	Х	X	Х	Х	Х	X
1400	X	Х	Х	X	Х	Х	X	X

Table A-9 – Continued from previous page

A.4 Chirped Pulse Simulation

In the following tables, X notes unmeasurable values for pulses that have been totally absorbed in simulation. The 1399* simulations are propagated with the saturable absorption reported in [21] while the 1399 simulations are propagated without nonlinear absorption.

	In	put Pulse		Output Pulse			
Wavelength	Pulse Duration	Energy	Power	Pulse Duration	Energy	Power	Energy / Area vs Limit
(nm)	(fs)	(µJ)	(MW)	(f s)	(µJ)	(MW)	(%)
10 fs		()	. ,	~ /	(0)	()	. ,
1200	624	0.306	30.6	12.7	0.056	167.3	0.016
1250	648	0.346	34.6	12.8	0.037	104	0.009
1300	840	4.16	416	13.2	0.249	681	0.056
1350	704	385	38515	9.2	6.36	3465	1.36
1375	680	3849	384876	64.9	66.8	12313	17.0
1399	680	38485	3848482	872	573	39665	240
1400	680	38.5	3848.5	14.5	0.740	1714	0.136
35 fs							
1200	654	0.306	8.73	31.0	0.0221	16.6	0.006
1250	796	0.346	9.90	39.4	0.0273	15.5	0.007
1300	84.7	4.16	119	58.7	0.200	91.0	0.045
1350	142	385	11004	55.2	2.92	1030	0.595
1375	986	3849	109965	53	8.57	1431	1.70
1399	891	38485	1099566	251	32.4	606	6.34
1400	890	38.5	1100	60.0	0.0159	3.89	0.003
50 fs							
1200	660	0.306	6.11	47.0	0.0205	6.53	0.006
1250	798	0.346	6.93	53.4	0.0290	8.47	0.007
1300	86.9	4.16	83.1	63.2	0.204	50.8	0.046
1350	164	385	7703	70.5	1.51	264	0.307
1375	908	3849	76975	70.4	2.17	154	0.423
1399	911	38485	769696	56.5	5.29	63.4	1.00
1400	908	38.5	770	71.4	0.00157	0.122	0.000
100 fs							
1200	1047	0.306	3.06	98.7	0.0198	1.56	0.006
1250	1186	0.346	3.46	101	0.0302	2.42	0.008
1300	113	4.16	41.6	108	0.205	11.0	0.046
1350	974	385	3852	110	0.360	15.4	0.073
1375	176	3839	38488	109	0.174	4.98	0.034
1399	185	38485	384848	132	0.043	0.478	0.008
1399*	185	38485	384848	107	0.0567	0.625	0.011
1400	955	38.5	385	182	3.00E-5	9.80E-4	0.000
500 fs	1						
1200	716	0.306	0.611	499	0.0194	0.0668	0.005
1250	618	0.346	0.693	500	0.0308	0.0717	0.008

Table A-10. Time Domain Characteristics of Chirped Eye Simulation with Self-Focusing

	In	put Pulse			Outpu	it Pulse	
Wavelength	Pulse Duration	Energy	Power	Pulse Duration	Energy	Power	Energy / Area vs Limit
(nm)	(fs)	(μ J)	(MW)	(fs)	(μ J)	(MW)	(%)
1300	502	4.16	8.31	502	0.201	0.399	0.045
1350	549	385	770	490	0.0779	0.166	0.016
1375	501	3849	7698	498	0.0372	0.0700	0.007
1399	551	38485	76970	388	4.94E-8	3.77E-8	0.000
1399*	551	38485	76970	391	8.09E-8	6.91E-8	0.000
1400	552	38.5	77.0	X	X	X	Х
1 ps							•
1200	1080	0.306	0.306	999	0.0193	0.0225	0.005
1250	1012	0.346	0.346	1000	0.0308	0.0309	0.008
1300	1000	4.16	4.16	1002	0.201	0.201	0.045
1350	1001	385	385	1004	0.0776	0.0775	0.016
1375	1000	3849	3849	1018	0.0326	0.0319	0.006
1399	1002	38485	38485	X	X	X	Х
1399*	1002	38485	38485	X	X	X	Х
1400	1001	38.5	38.5	X	X	X	Х

Table A-10 – *Continued from previous page*

		Input	Pulse		Output Pulse			
Wave-	FWHM	RMS	10-3	10 ⁻⁵	FWHM	RMS	10-3	10 ⁻⁵
length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max
	Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)
(nm)	(nm)	(nm)			(nm)	(nm)		, í
10 fs					. ,			
1015	1103-	1047-			1064-	1021-		
1200	1316	1405	938-1664	882-1875	1143	1297	929-1341	875-1376
	1145-	1085-			1078-	1035-		
1250	1377	1474	969-1762	909-2000	1275	1314	957-1346	895-1382
	1186-	1123-			1093-	1053-		
1300	1438	1544	998-1862	935-2131	1302	1325	974-1367	905-1544
1250	1228-	1160-	1028-	0.61.00.60	1246-	1001-		(07.0070
1350	1499	1615	1967	961-2268	1319	1385	777-1706	697-2079
	1249-	1178-	1042-		1249-			
1375	1530	1651	2020	974-2340	1300	742-1385	675-1794	604-2398
1000	1268-	1196-	1056-	005 0440	1102-			150 2 (22
1399	1560	1686	2073	985-2410	1315	/10-1////	597-2239	470-2622
1.400	1269-	1196-	1056-	006 0440	1236-	1094-	1007-	
1400	1561	1687	2075	986-2413	1308	1333	1377	922-1707
35 fs		I		I		I	I	
	1170-	1145-	1111-	1088-	1168-	1130-	1099-	1078-
1200	1231	1261	1304	1338	1235	1265	1301	1325
	1218-	1190-	1154-	1129-	1224-	1194-	1155-	1121-
1250	1284	1316	1363	1400	1282	1304	1333	1350
1000	1265-	1236-	1197-	1170-	1259-	1233-	1197-	1169-
1300	1337	1371	1423	1463	1305	1328	1348	1374
1250	1313-	1281-	1239-	1210-	1282-	1254-	1218-	1179-
1350	1389	1427	1483	1527	1328	1340	1370	1423
1075	1336-	1303-	1260-	1230-	1290-	1256-	1203-	1164-
1375	1416	1455	1513	1559	1333	1346	1397	1459
1200	1359-	1325-	1280-	1249-	1281-	1199-	1121-	1049-
1399	1441	1482	1542	1590	1314	1364	1374	1491
1.400	1360-	1326-	1281-	1250-	1299-	1276-	1249-	1227-
1400	1442	1483	1543	1591	1336	1366	1381	1385
50 fs		1		1	1	1	1	1
1200	1179-	1160-	1137-	1119-	1179-	1159-	1129-	1113-
1200	1222	1243	1271	1293	1223	1245	1273	1293
1250	1227-	1206-	1181-	1163-	1231-	1208-	1183-	1164-
1250	1273	1297	1327	1351	1274	1294	1317	1335
1200	1276-	1253-	1226-	1206-	1270-	1249-	1225-	1205-
1500	1325	1351	1384	1410	1306	1327	1343	1367
1250	1324-	1299-	1270-	1249-	1299-	1279-	1253-	1225-
1550	1377	1405	1440	1469	1332	1344	1372	1399
1275	1348-	1322-	1292-	1270-	1309-	1283-	1253-	1214-
13/3	1403	1432	1469	1499	1337	1367	1381	1410
1200	1371-	1344-	1314-	1291-	1282-	1257-	1194-	1161-
1399	1428	1458	1496	1527	1332	1368	1385	1423

Table A-11. Spectral Characteristics of Chirped Eye Simulation with Self-Focusing

		Input	Pulse		Output Pulse			
Wave-	FWHM	RMS	10^{-3}	10 ⁻⁵	FWHM	RMS	10^3	10^{-5}
length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max
	Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)
(nm)	(nm)	(nm)			(nm)	(nm)		
1400	1372-	1345-	1314-	1292-	1319-	1300-	1281-	1265-
1400	1429	1459	1497	1528	1366	1376	1385	1385
100 fs		1				1	11	
1200	1190-	1178-	1167-	1158-	1189-	1178-	1167-	1158-
	1211	1223	1234	1245	1211	1223	1235	1245
1250	1239-	1226-	1215-	1205-	1240-	1227-	1215-	1205-
1250	1262	1275	1287	1299	1262	1275	1287	1298
1300	1288-	1274-	1262-	1251-	1285-	1272-	1260-	1250-
1300	1313	1327	1340	1353	1307	1320	1332	1341
1350	1337-	1322-	1309-	1297-	1323-	1311-	1301-	1279-
1550	1364	1379	1394	1407	1340	1364	1374	1383
1375	1361-	1346-	1332-	1321-	1355-	1325-	1306-	1276-
1375	1389	1405	1420	1434	1368	1378	1385	1385
1399	1385-	1369-	1355-	1343-	1360-	1351-	1298-	1281-
1077	1414	1430	1446	1460	1364	1385	1385	1387
1399*	1385-	1369-	1355-	1343-	1360-	1351-	1298-	1276-
	1414	1430	1446	1460	1364	1385	1385	1387
1400	1386-	1370-	1356-	1344-	1362-	1352-	1339-	1326-
	1415	1431	1447	1461	1376	1385	1385	1389
500 fs								
1200	1198-	1195-	1193-	1191-	1198-	1195-	1193-	1191-
	1202	1205	1207	1209	1202	1205	1207	1209
1250	1248-	1245-	1243-	1241-	1248-	1245-	1040 105	1241-
	1252	1255	1257	1259	1252	1255	1243=125	1259
1300	1298-	1294-	1292-	1290-	1297-	1294-	1292-	1290-
	1302	1306	1308	1310	1302	1306	1308	1310
1350	134/-	1344-	1342-	1339-	134/-	1343-	1341-	1338-
	1353	1350	1359	1301	1352	1350	1358	1301
1375	13/2-	1309-	1300-	1304-	13/1-	130/-	1302-	1358-
	13/8	1382	1384	1380	13/0	1380	1382	1385
1399	1390-	1392-	1390-	138/-	1384-	13//-	13/4-	1307-
	1402	1400	1408	1411	1383	1365	1390	1399
1399*	1390-	1392-	1390-	1367-	1304-	1370-	13/3-	1300-
	1402	1400	1400	1411	1365	1365	1390	1399
1400	1/03	1393-	1391-	1300-	X	X	X	Х
1 nc	1403	1407	1409	1412				
1 h2	1100_	1107_	1107_	1106-	1100_	1107_	1107_	1106-
1200	1201	1203	1203	1204	1201	1203	1203	1204
	1201	1203	1205	1204	1201	1203	1205	1204
1250	1251	1253	1254	1255	1251	1253	1254	1255
	1299-	1297-	1296-	1295-	1299-	1297-	1296-	1295-
1300	1301	1303	1304	1305	1301	1303	1304	1305
	1349-	1347-	1346-	1345-	1349-	1347-	1346-	1345-
1350	1351	1353	1354	1355	1351	1353	1354	1355

Table A-11 – *Continued from previous page*
	Input Pulse				Output Pulse			
Wave-	FWHM	RMS	10^{-3}	10 ⁻⁵	FWHM	RMS	10^{-3}	10 ⁻⁵
length	Spectral	Spectral	Max	Max	Spectral	Spectral	Max	Max
	Range	Range	(nm)	(nm)	Range	Range	(nm)	(nm)
(nm)	(nm)	(nm)			(nm)	(nm)		
1375	1374-	1372-	1371-	1369-	1373-	1371-	1370-	1367-
	1376	1378	1379	1381	1376	1378	1379	1381
1399	1398-	1395-	1394-	1393-	X	X	Х	X
	1400	1403	1404	1405				
1399*	1398-	1395-	1394-	1393-	X	X	Х	X
	1400	1403	1404	1405				
1400	1399-	1396-	1395-	1394-	X	v	v	v
	1401	1404	1405	1406		Δ	Λ	Λ

Table A-11 – Continued from previous page

Table A-12. Energy Distribution as a Function of Wavelength for Chirped Eye Simulation with Self-Focusing

Waxa	Energy	Energy	Energy	Fnorm	Energy	Energy	Energy	Fnorgy
longth	400 nm	700 nm	1000 nm	Litergy	400 nm	700 nm	1000 nm	Ellergy
(nm)	to 700	to 1000	to 1200	1200 IIII (n I)	to 700	to 1000	to 1200	(0/2)
(1111)	nm (nJ)	nm (nJ)	nm (nJ)	(11)	nm (%)	nm (%)	nm (%)	(%)
10 fs								
1200	< 5E-7	0.539	48.1	7.76	0	0.956	85.3	13.8
1250	< 5E-7	0.112	26.3	10.5	0	0.304	71.3	28.4
1300	< 5E-7	0.245	132	117	0	0.098	53.1	46.8
1350	0.0673	592	1866	3904	0.001	9.30	29.3	61.4
1375	282	17995	13397	35130	0.422	26.9	20.1	52.6
1399	18439	300808	126238	127833	3.22	52.5	22.0	22.3
1400	< 5E-7	0.162	175	565	0	0.022	23.7	76.3
35 fs								
1200	< 5E-7	< 5E-7	11.5	10.7	0	0	51.8	48.2
1250	< 5E-7	< 5E-7	0.731	26.6	0	0	2.68	97.3
1300	< 5E-7	< 5E-7	0.0482	200	0	0	0.024	99.976
1350	< 5E-7	< 5E-7	0.0957	2915	0	0	0.003	99.997
1375	< 5E-7	< 5E-7	0810	8570	0	0	0.009	99.991
1399	< 5E-7	6.46E-3	667	31760	0	0	2.06	97.94
1400	< 5E-7	< 5E-7	< 5E-7	15.9	0	0	0	100
50 fs								
1200	< 5E-7	< 5E-7	10.2	10.3	0	0	49.8	50.2
1250	< 5E-7	< 5E-7	0.0886	28.9	0	0	0.306	99.694
1300	< 5E-7	< 5E-7	6.35E-5	204	0	0	0	100
1350	< 5E-7	< 5E-7	3.13E-5	1508	0	0	0	100
1375	< 5E-7	< 5E-7	1.97E-3	2171	0	0	0	100
1399	< 5E-7	< 5E-7	2.24	5287	0	0	0.0423	99.958
1400	< 5E-7	< 5E-7	< 5E-7	1.57	0	0	0	100
100 fs								
1200	< 5E-7	< 5E-7	9.88	9.94	0	0	49.8	50.2
1250	< 5E-7	< 5E-7	1.07E-6	30.2	0	0	0	100
1300	< 5E-7	< 5E-7	< 5E-7	205	0	0	0	100
1350	< 5E-7	< 5E-7	< 5E-7	360	0	0	0	100
1375	< 5E-7	< 5E-7	< 5E-7	174	0	0	0	100
1399	< 5E-7	< 5E-7	< 5E-7	43.0	0	0	0	100
1399*	< 5E-7	< 5E-7	< 5E-7	56.7	0	0	0	100
1400	< 5E-7	< 5E-7	< 5E-7	0.03000	0	0	0	100
500 fs								
1200	< 5E-7	< 5E-7	9.71	9.69	0	0	50.1	49.9
1250	< 5E-7	< 5E-7	< 5E-7	30.9	0	0	0	100
1300	< 5E-7	< 5E-7	< 5E-7	201	0	0	0	100
1350	< 5E-7	< 5E-7	< 5E-7	77.9	0	0	0	100
1375	< 5E-7	< 5E-7	< 5E-7	37.2	0	0	0	100
1399	< 5E-7	< 5E-7	< 5E-7	4.94E-5	0	0	0	100
1399*	< 5E-7	< 5E-7	< 5E-7	8.09E-5	0	0	0	100
1400	X	X	X	X	Х	X	X	X

Continued on next page

Wave- length (nm)	Energy 400 nm to 700 nm (nJ)	Energy 700 nm to 1000 nm (nJ)	Energy 1000 nm to 1200 nm (nJ)	Energy 1200 nm (nJ)	Energy 400 nm to 700 nm (%)	Energy 700 nm to 1000 nm (%)	Energy 1000 nm to 1200 nm (%)	Energy 1200 nm (%)
1 ps								
1200	< 5E-7	< 5E-7	9.71	9.64	0	0	50.2	49.8
1250	< 5E-7	< 5E-7	< 5E-7	30.8	0	0	0	100
1300	< 5E-7	< 5E-7	< 5E-7	201	0	0	0	100
1350	< 5E-7	< 5E-7	< 5E-7	77.6	0	0	0	100
1375	< 5E-7	< 5E-7	< 5E-7	32.6	0	0	0	100
1399	X	Х	Х	Х	Х	Х	X	Х
1399*	X	Х	Х	X	Х	Х	X	Х
1400	X	Х	Х	X	Х	X	X	Х

Table A-12 – Continued from previous page

APPENDIX B - SIMULATION CODE

```
B.1 Simulation Of Water Experiment
1 88 Simple Nonlinear-1D Propagator Model
  % Chris Marble
  % 06/12/2018
  % Last Update: 07/09/2018
  % Simulation of Frank's water experiment
  % Only simulating 10 mm of water, no cuvette or interface effects are
     simulated
  % All units in SI (mks) unless specified otherwise (ie X nm
  % means variable X in nm units)
10 % Step 0: Initialize program parameters
  % Physical Constants
  c=2.998e8; % Speed of light (m/s)
  mu=1;
             % Permeability of free space
  epsilon0 = 8.85418782e-12; % Permittivity of free space (F/m)
15 X = 524288; % Number of time steps simulated
  dx = 50e-9; % Spatial step simulated (m)
  dt = dx/c; % Time step (s)
  % Beam parameters & Simulation parameters
20 StartDist = 0e-3; % Where to start nonlinear simulation
  Stop = 200000; % Choose how far to propagate nonlinearly
  EndDist = 0e-3;
                       % Choose how far to propagate linearly
                        % after nonlinear section
                        % (In general no distance)
25
  8{
  %lambda0 % Wavelength claimed in experiment
  lambda0
             % Actual wavelength simulated
  Tau t
             % Initial FWHM pulse duration (seconds)
              % Nonlinear refractive index (m^2/W)
30 n2
             % Nonlinear absorption coefficient (m/W)
  beta
  R0
             % Beam radius entering cuvette (meters)
             % Minimum energy for spectral broadening in
  %Energy
              % experiment
            % Energy in experiment to simulate against
35 Energy
             % Beam radius in water
  Rret
  DistRet
             % Distance to focus in water
             % Rayleigh range in water
  xR
  %Rret
             % Beam radius in air
40 8DistRet
             % Distance to focus in air
              % Ravleigh range in air
  %xR
             % n0 from Sellmeier fit from Rockwell's paper
  n0_Est
             % Minimum radius due to plasma effects
  RStop
45 || %lambda0 = 1200e-9;
  lambda0 = 1185e-9;
  Tau t = 35e - 15;
  n2 = 4.45e - 20;
 beta = 9.26e - 14;
```

Distribution A: Approved for public release; distribution unlimited. PA Case No: TSRL-PA-2019-0114

```
_{50} R0 = 363.4e-6;
   %Energy = 0.158e-6;
   Energy = 1.928e-6;
   Rret = 34.1e-6; % Focal radius in water
   DistRet = 7.781e-3; % Distance to focus in water
ss || xR = 3.049e-3; % Rayleigh range in water
   %Rret = 25.6e-6; % Focal radius in air
   %DistRet = 5.837e-3; % Distance to focus in air
   %xR = 1.716e-3; % Rayleigh Range in air
   n0_Est = 1.31699314;
60 || RStop = 7e-6;
   lambda0 = 1250e-9;
   lambda0 = 1225e-9;
   Tau_t = 35e-15;
n2 = 9.26e - 20;
   beta = 12.9e - 14;
   R0 = 331.4e-6;
   %Energy = 0.306e-6;
   Energy = 1.653e-6;
70 || Rret = 34.1e-6;
   DistRet = 7.103e-3; % Distance to focus in water
   xR = 2.927e-3; % Rayleigh Range in Water
   %Rret = 25.6e-6; % Focal radius in air
   %DistRet = 5.329e-3; % Distance to focus in air
75 %xR = 1.647e-3; % Rayleigh Range in air
   n0\_Est = 1.31606318;
   RStop = 7e-6;
   lambda0 = 1300e-9;
s_0 || lambda_0 = 1310e-9;
   Tau_t = 35e-15;
  n2 = 6.8e - 20;
   beta = 8.2e - 14;
   R0 = 339.2e-6;
85 % Senergy = 0.578e-6;
   Energy = 1.616e-6;
   Rret = 34.1e-6;
   DistRet = 7.273e-3; % Distance to focus in water
   xR = 2.814e-3; % Rayleigh Range in Water
90 %Rret = 25.6e-6; % Focal radius in air
   %DistRet = 5.456e-3; % Distance to focus in air
   %xR = 1.584e-3; % Rayleigh Range in air
   n0_Est = 1.31513385;
   RStop = 5e-6;
95
   lambda0 = 1350e-9;
   Tau_t = 35e - 15;
  n2 = 9.0e - 20;
   beta = 16e - 14;
100 || R0 = 276.0e-6;
  \$Energy = 0.404e-6;
```

```
Energy = 1.994e-6;
   Rret = 34.3e-6;
   DistRet = 5.918e-3; % Distance to focus in water
105 xR = 2.731e-3; % Rayleigh Range in Water
   %Rret = 25.7e-6; % Focal radius in air
   %DistRet = 4.44e-3; % Distance to focus in air
   %xR = 1.537e-3; % Rayleigh Range in air
   n0 Est = 1.31420093;
110 RStop = 5e-6;
   lambda0 = 1400e-9;
   Tau t = 35e - 15;
   n2 = 7.5e-20;
115 || beta = -7.7e - 14;
   R0 = 346.5e-6;
   %Energy = 1.956e-6;
   Energy = 3.661e - 6;
   Rret = 34.3e-6;
120 DistRet = 7.442e-3; % Distance to focus in water
   xR = 2.634e-3; % Rayleigh Range in Water
   %Rret = 25.7e-6; % Focal radius in air
   %DistRet = 5.583e-3; % Distance to focus in air
   %xR = 1.482e-3; % Rayleigh Range in air
125 || n0 Est = 1.31326094;
   RStop = 2e-6;
   8}
   % Choose wavelength to test here & wavelength parameteres
130 || lambda0 = 1350e-9;
   Tau_t = 35e - 15;
   n2 = 9.0e-20;
   beta = 16e-14;
   R0 = 276.0e-6;
135 \| % Energy = 0.404e-6;
   Energy = 1.994e-6;
   Rret = 34.3e-6;
   DistRet = 5.918e-3; % Distance to focus in water
   xR = 2.731e-3; % Rayleigh Range in Water
   %Rret = 25.7e-6; % Focal radius in air
140
   %DistRet = 4.44e-3; % Distance to focus in air
   %xR = 1.537e-3; % Rayleigh Range in air
   n0 Est = 1.31420093;
   RStop = 5e-6;
145
   % Now compute other values
   w0=2*pi()*c/lambda0; % Calculate central frequency
   %% Step 1. Initialize n0/k0 values
150 & Lookup Table: Look up n0, k0, for each wavelength fft
   % generates
   % Format of input: Omega, Lambda, n0, k0, n2, beta, n2_Unc, beta_Unc;
```

```
% Call data from CSV file
155 Values = csvread('LookupTable_V2.csv',1,0);
   % Pull the data we need for simulation
   Omega_V = Values(:,1);
   n0 V = Values(:,3);
160 || k0 V = Values(:, 4);
   clear Values % Don't need all these values anymore
   % Build vectors to recieve data for simulation
   Omega = transpose(2*pi()/dt*(-X/2:X/2-1)/X); % Find sim. frequencies
165
   % Note: Sim. Frequencies dictated by dt, X and FFT function (see
      MATLAB documentation on FFT for more details
   n0 = zeros(X, 1);
   k0 = zeros(X, 1);
170 % For first set of wavelengths (the negative wavelengths from the FFT)
   for i = (1:X/2)
       % Find position in table and interpolate between nearest table
       % values
       % Find position relative to tabulated frequencies
       Pos = find(abs(Omega(i)) > Omega V,1);
175
       % Interpolate between values in the table
       % Slope parameter of interpolation: m
       m(i) = (abs(Omega(i))-Omega_V(Pos))/(Omega_V(Pos-1)-Omega_V(Pos));
       % Compute n/k for each frequency of interest
       n0(i) = n0_V(Pos) + (n0_V(Pos-1) - n0_V(Pos)) * m(i); % Refractive
180
                                                         %Index
       k0(i) = k0_V(Pos) + (k0_V(Pos-1) - k0_V(Pos)) * m(i); %Extinction
                                                         %Coefficient
   end
185
    For Omega(X/2+1) -> 0 then look up value... don't really matter
      anyway since this frequency should be zero in simulation
       n0(X/2+1) = 8.8486;
       k0(X/2+1) = 6.931E-03;
       m(X/2+1) = 0;
190
   % Continue looping through the rest of the simulated frequencies
   for i = (X/2+2:X)
       Pos = find(abs(Omega(i)) > Omega_V,1);
       m(i) = (abs(Omega(i))-Omega_V(Pos))/(Omega_V(Pos-1)-Omega_V(Pos));
       n0(i) = n0_V(Pos) + (n0_V(Pos-1) - n0_V(Pos)) * m(i);
195
       k0(i) = k0_V(Pos) + (k0_V(Pos-1) - k0_V(Pos)) *m(i);
   end
   % Clear what we no longer need...
200 clear Omega_V n0_V alpha0_V m
   %% Step 2: Start with a Gaussian pulse in time, discretize it
  & Start with large vector of zeros for the electric field
```

```
Efield = zeros(X, 1);
205
   % Build a vector for all moments of time simulated
   TimeVec = transpose(0:(X-1));
   TimeVec = TimeVec*dt;
   % I have now built my initial timespace, shift it so the pulse is not
      cut off
210 TimeVec = TimeVec - 3*Tau t;
   % Now setup the initial Efield of the pulse
   Efield = exp(-2*log(2)/Tau_t^2*TimeVec.^2).*exp(li*w0*TimeVec);
215 % Step 3: Find area of the beam
   % Starting point at water/glass interface
   % And for all points in the nonlinear solver
   Area0 = pi() *R0^2; % Initial area
_{220} || R = zeros(1, Stop+1);
   % Frank's assumption:
   % Assume Gaussian beam focusing behavior at all points in the media
   for (x = 1:1:Stop+1)
       dist = StartDist + (x-1) * dx;
       R(x) = Rret * sqrt (1 + (dist-DistRet)^2/xR^2);
225
   end
   % Find area at each point in eye
   Area = pi() * R.^2;
230
   %% Step 4: Calculate intensity and normalize it to value of interest
   % Set-up step only: Normalize I to peak intensity of problem
   I = 0.5*c*n0_Est*epsilon0.*abs(Efield).^2/Area0;
235 || IPeak = Energy/Tau_t/pi()/(R0)^2;
   % Now adjust amplitude of electric field acordingly
   Efield = sqrt(IPeak)/sqrt(max(I))*Efield;
   I = 0.5*c*n0_Est*epsilon0.*abs(Efield).^2/Area0;
240
   % Save initial values for comparison
   I0 = I*Area0/Area(1); % Save for comparison
   IPeak = max(I0); % Save for self-focusing
   E0 = Efield; % Save for Comparison
245
   %% Step 6: Convert to frequency domain
   EfieldFreq = fftshift(fft(Efield));
   %% Set up graphs
250 % ____Parameters for graphs_
   Lambda_nm = 2*pi()*c*1e9./Omega;
   E0Freq = fftshift(fft(E0));
  8 Choose which frequencies you want to plot and record for analysis
```

```
255 || ViewVec = (X/2+10000): (X/2+131100);
   %pathTempOmega = ['OmegaTemp ' num2str(lambda0*1e9) 'nm.csv' ];
   %csvwrite(pathTempOmega,Omega);
260 % Constants for the for loops (improves computional speed to
      initialize here)
   IConst = 0.5*c*n0_Est*epsilon0; % Constant part of intensity calc.
   DVec = -1i*Omega.*n0*dx/c -abs(Omega).*k0*dx/c; % Constant part of
      linear propagator term
   ExpDVec = exp(DVec); % Faster to pre-compute this value
   NConst = -1i \star w0 \star n2 \star (dx/2)/c - beta \star (dx/2)/2; % Constant part of
      nonlinear propagator
265 AreaNow = AreaO; % Initialize variable here
   R4 = zeros(Stop, 1);
   R4(1) = R(1);
   % Start waitbar for user to see code is running
   %f = waitbar(0, 'Please wait...');
270
   % Save initial information
   % Path files output CSV files that can be analyzed or made into videos
   pathB = ['Spectra In ' num2str(lambda0*1e9) 'nm.csv' ];
275 csvwrite (pathB, abs (E0Freq (ViewVec) /X) .^2);
   pathD = ['Lambda.csv' ];
   csvwrite(pathD,Lambda_nm(ViewVec));
280 % Propagate forward:
   for (PositionCtrA = 1:1000) % This is the large "step"
       for (PositionCtrB = 1:Stop/1000) % This is the small "step"
           % Skip Step 0 - 2 which were only for code initialization
           % Step 3: Get the area
285
           % Find where you are in the simulation
           PositionCtr = (PositionCtrA-1)*Stop/1000+PositionCtrB;
           % Find angle of descent linear & nonlinear
           Theta Linear = abs(tan((R(PositionCtr+1) - R(PositionCtr))/dx));
290
           Theta_Nonlinear = sqrt(2*n2*IPeak/n0_Est);
           % Find self-focusing corrected radius
           if(PositionCtr == 1) % If just starting simulation
               R4 (PositionCtr) = R(1);
295
           elseif(PositionCtr*dx < DistRet)</pre>
                                                % If before focal point
               R4 (PositionCtr) = max (R4 (PositionCtr-1) - atan (sqrt (
                   Theta_Linear^2 + Theta_Nonlinear^2))*dx,RStop);
           else
                                                 % After focal point
               if (Theta_Linear < Theta_Nonlinear) % && Nonlinear focusing
                    dominates
                   R4(PositionCtr) = max(R4(PositionCtr-1) - atan(sqrt(-
300
                       Theta_Linear^2 + Theta_Nonlinear^2))*dx,RStop);
```

```
else
                                                   % && Linear de-focusing
                    dominates
                   R4(PositionCtr) = max(R4(PositionCtr-1) + atan(sqrt(+
                       Theta_Linear^2 - Theta_Nonlinear^2))*dx,RStop);
               end
           end
305
           % Find area
           AreaNow = pi*R4(PositionCtr)^2; % The self-focused area
           %AreaNow = pi*R(PositionCtr)^2; % Uncomment for simulation
              without self-focusing
           % Step 4: Calculate intensity
310
           I = IConst.*abs(Efield).^2/AreaNow;
           IPeak = max(I); % Keep to calc self-focusing next step
           % Step 5: Split-step nonlinear term
           Efield = Efield.*exp(NConst*I);
315
           % Step 6: Convert to frequency domain
           EfieldFreq = fftshift(fft(Efield));
           % Step 7: Propagate dx forward in space
320
           %EfieldFreq = EfieldFreq.*exp(DVec);
           EfieldFreq = EfieldFreq.*ExpDVec; % Faster method
           % Step 8: Convert back to time domain
           Efield = ifft(ifftshift(EfieldFreq));
325
           % Step 9: Split-step nonlinear term
           I = IConst.*abs(Efield).^2/AreaNow;
           Efield = Efield.*exp(NConst*I); % Time cost 0.02 sec
330
       end
       % Update the waitbar so the user can see progress
       %waitbar(((PositionCtrA)/1000),f);
       % Every mm plot
335
       if(mod(PositionCtrA, 100) == 0)
           pathF = ['IntensityAt_' num2str(PositionCtrA/100) ' mm_'
              num2str(lambda0*1e9) 'nm.csv' ];
           csvwrite(pathF,I);
340
           pathG = ['SpectraAt_' num2str(PositionCtrA/100) ' mm_' num2str
               (lambda0*1e9) 'nm.csv' ];
           csvwrite(pathG, abs(EfieldFreq(ViewVec)/X).^2/Area((
              PositionCtrA) *Stop/1000));
           % Plot time domain
345
           figure;
```

```
plot(TimeVec*10e12, I0, 'k')
           hold on
           plot(TimeVec*10e12, I, 'r')
           hold off
350
           title(['Intensity at ' num2str(PositionCtrA/100) ' mm for '
               num2str(lambda0*1e9) ' nm beam'])
           xlabel('Time (ps)')
           ylabel('I(t)')
           legend({'Input Pulse', 'Pulse at Position'}, 'Location','
355
               northeast')
           % Plot the frequency domain
           figure;
           semilogy(Lambda_nm(ViewVec), abs(E0Freq(ViewVec)/X).^2/Area(1)
               ,'k')
           hold on
360
           semilogy(Lambda_nm(ViewVec), abs(EfieldFreq(ViewVec)/X).^2/
               Area((PositionCtrA) * Stop/1000), 'r--')
           hold off
           title(['Power Spectral Density at ' num2str(PositionCtrA/100)
               ' mm for ' num2str(lambda0*1e9) ' nm beam'])
           xlabel('Wavelength (nm)')
           ylabel('|E|^2/Area')
365
           legend({'Input Pulse', 'Pulse at Position'}, 'Location', '
               northeast')
       end
   end
370 %% Calculate resulting pulse at end of simulation
   % Calculate I at end of simulation:
   REnd = Rret*sqrt(1+(StartDist+Stop*dx+EndDist-DistRet)^2/xR^2);
   AEnd = pi() * REnd^2;
   I = 0.5*c*n0_Est*epsilon0.*abs(Efield).^2/AEnd;
375
   % Looking in the time domain
   plot(TimeVec*10e12, I0, 'k')
   hold on
380 plot (TimeVec*10e12, I, 'r')
   hold off
   title(['Intensity at ' num2str(1000*Stop*dx) ' mm in Time Domain for '
       num2str(lambda0*1e9) ' nm beam'])
  xlabel('Time (ps)')
   ylabel('I(t)')
385 || legend({'Input Pulse', 'Pulse Exiting Simulation'}, 'Location','
      northeast')
   figure;
   % Looking in the frequency domain
390
```

```
figure;
   semilogy(Lambda_nm(ViewVec), abs(E0Freq(ViewVec)/X).^2/Area(1),'k')
   hold on
   semilogy(Lambda_nm(ViewVec), abs(EfieldFreq(ViewVec)/X).^2/AEnd,'r--')
395
   hold off
   %plot(2*pi()*c*le9./Omega,abs(EfieldFreg(1:(X/2+1))/X).^2)
   title(['Power Spectral Density out of cuvette for ' num2str(lambda0*1
      e9) ' nm beam'])
   xlabel('Wavelength (nm)')
   ylabel('|E|^2/Area')
400 legend({'Input Pulse', 'Pulse Exiting Simulation'},'Location','
      northeast')
   ylim([1e-6 1e14])
   % Plot Beam Radius
   figure;
405 plot (dx*(1:Stop), 1e+6*R4, 'k')
   %plot(2*pi()*c*le9./Omega, abs(EfieldFreq(1:(X/2+1))/X).^2)
   title(['Beam Radius ' num2str(lambda0*1e9) ' nm beam'])
   xlabel('Distance in the Material')
   ylabel('Radius (um)')
410
   % Close waitbar now that we are done
   %close(f)
415 % Save all the things we want for later analysis
   pathB = ['Efield_Out_' num2str(lambda0*1e9) 'nm.csv' ];
   csvwrite(pathB,Efield);
   %% Use same area for normalization since we are seeing output
420 % at spectrometer
   pathC = ['Spectra_Out_' num2str(lambda0*1e9) 'nm.csv' ];
   csvwrite(pathC, abs(EfieldFreq(ViewVec)/X).^2);
   % Save the calculated radius too
425 pathE = ['Radius ' num2str(lambda0*1e9) 'nm.csv' ];
  csvwrite(pathE, 1e6*R4);
```

B.2 Simulation Of Unchirped/Negatively Chirped Pulses In The Reduced **Eve Model**

```
1 %% Simple Nonlinear-1D Propagator Model
  % Chris Marble
  % 06/12/2018
  % Last Update: 07/19/2018
5 % Simulate a Gaussian laser strike to the eye
  % Treat lens like water with 40% the absorbance of water
  % Code for full eye simulation for the paper
  % Includes self-focusing effects
  % All units in SI (mks) unless specified otherwise
10 % Times of interest: 10 fs, 35 fs, 50 fs, 100 fs, 1000 fs
```

```
% Enable or disable chirping by commenting chirp section in
  % initialization oode
15 8% Step 0: Initialize program parameters
  % Physical Constants
  c=2.998e8;
  mu=1;
  epsilon0 = 8.85418782e-12;
  % Choose Number of time elements Tfinal = dt*X - Shift
20
  X = 1048576; % 26 mm propagation
  dx = 50e-9; % Choose a spatial step size less than 0.1*Lambda_min
  dt = dx/c; % "Golden Timestep"
25 % Wavelength dependent data here
  8{
  lambda0
             % Central wavelength of pulse (meters)
  MPE_H0_ANSI % ANSI MPE in uJ/cm^2 for wavelength of interest
              % Initial FWHM pulse duration (seconds)
  Tau t
              % Nonlinear refractive index (m^2/W)
30
  n2
  beta
              % Nonlinear absorption coefficient (m/W)
              % n0 from Sellmeier fit for humor from Rockwell's
  n0_Est
              % paper for focusing calcuation using reduced eye
               % model (REM)
               % Beam radius entering the eye (meters). Current
 R0
35
               % assumption: 7 mm diameter pupil
  lambda0 = 1200e-9;
  MPE_H0_ANSI = 0.794;
40 || Tau_t = 50e-15;
  n2 = 4.45e - 20;
  beta = 9.26e - 14;
  n0_Est = 1.31699314;
  R0 = 3.5e-3;
45
  lambda0 = 1250e-9;
  MPE_H0_ANSI = 0.9; % uJ/cm^2
  Tau t = 50e - 15;
  n2 = 9.26e - 20;
50 || beta = 12.9e-14;
  n0\_Est = 1.31606318;
  R0 = 3.5e-3;
  lambda0 = 1300e-9;
55 MPE_H0_ANSI = 10.8; % uJ/cm^2
  Tau_t = 50e - 15;
  n2 = 6.8e - 20;
  beta = 8.2e - 14;
  n0\_Est = 1.31513385;
60 \| R0 = 3.5e - 3;
  lambda0 = 1350e-9;
 MPE_H0_ANSI = 1000.8; % uJ/cm^2
```

```
Tau t = 50e - 15;
65 || n2 = 9.0e - 20;
   beta = 16e - 14;
   n0\_Est = 1.31420093;
   R0 = 3.5e-3;
_{70} || lambda0 = 1375e-9;
   MPE_H0_ANSI = 10000.8; % uJ/cm<sup>2</sup>
   Tau_t = 50e - 15;
   n2 = 8.3e - 20;
   beta = 0;
75 || n0_Est = 1.31373201;
   R0 = 3.5e-3;
   lambda0 = 1399e-9;
   MPE_H0_ANSI = 100000.8; % uJ/cm<sup>2</sup>
80 || Tau_t = 50e-15;
   n2 = 7.5e - 20;
   beta = 0;
   n0 Est = 1.31327983;
   R0 = 3.5e-3;
85
   lambda0 = 1400e-9;
   MPE H0 ANSI = 100.0; % uJ/cm^2
   Tau_t = 50e - 15;
   n2 = 7.5e - 20;
90 || beta = -7.7e-14;
   n0\_Est = 1.31326094;
   R0 = 3.5e-3;
   8}
95 % Choose wavelength to test here & wavelength parameteres
   lambda0 = 1375e-9;
   MPE_H0_ANSI = 10000.8; % uJ/cm<sup>2</sup>
   Tau t = 50e - 15;
   n2 = 8.3e - 20;
100 || beta = 0;
   n0\_Est = 1.31373201;
   R0 = 3.5e - 3;
   RStop = 1e-8; % Stop R from going to zero if self focusing dominates
105
   % Now compute other values of interest
   Energy = MPE_H0_ANSI*1e-6*(pi()*(100*R0)^2); % Convert MPE to pulse
       energy (Joules)
   w0=2*pi()*c/lambda0; % Find central pulse frequency
   RadCurve = 6.1E-3; % Radius of curvature of reduced eye model (REM)
100 focalLength = RadCurve*n0_Est/(n0_Est-1); % Focal length of REM
      hemisphere lens
   % Eye constants
  Rfoc = 2*lambda0*focalLength/(pi()*(2*R0)); % Find the radius at the
```

```
focal point;
  DistFocus = focalLength; % Distance to focal point
115 xR = pi()*Rfoc^2/lambda0; % Rayleigh range assuming Gaussian beam
      focusing
   % Beam parameters & Simulation parameters
   % Variables to change
   StopA = 80000;
                       % Propagate 4 mm to lens of eye (4 mm)
120 StopB =
            StopA;
                       % Propagate 4 mm of lens to vitreous humor
                       % (to 8 mm)
                       % Propagate 16.4 mm to the retina
   StopC = 328000;
                       % (to 24.4 mm)
   StopD =
             28000;
                       % Propagate beyond the retina past the
                       % nonlinear region (to 25.8 mm)
125
   StopTotal = StopA + StopB + StopC + StopD; % Total propagation
                                              % distance
   Steps_Per_100um = 2000; % Relate steps to mm in vitreous to
                           % capture images
130
   %% Step 1. Initialize n0/k0 values
   % Lookup Table: Look up n0, k0, for each wavelength fft generates
   % Lookup Table based on Segelsteins' thesis
   % Format of table: Omega, Lambda, n0, k0, n2, beta, n2 Unc, beta Unc;
135
   % Call data from CSV file
   Values = csvread('LookupTable_V2.csv',1,0);
   % Pull the data we need for simulation
140 || Omega_V = Values(:,1);
   n0_V = Values(:, 3);
   k0_V = Values(:, 4);
   clear Values % Don't need anymore
145
   % Build vectors to recieve data for simulation
   Omega = transpose(2*pi()/dt*(-X/2:X/2-1)/X); % Find simulation
                                                 % frequencies
   % Note: Sim. Frequencies dictated by dt, X and FFT function (see
      MATLAB
150 % documentation on FFT for more details)
   n0 = zeros(X, 1);
   k0 = zeros(X, 1);
   % For first set of wavelengths (the negative wavelengths from the FFT)
155 || for i = (1:X/2)
       % Find position in table and interpolate between nearest
       % table values
       % Find position relative to tabulated frequencies
       Pos = find(abs(Omega(i)) > Omega_V,1);
       % Interpolate between values in the table
160
       % Slope parameter of interpolation: m
       m(i) = (abs(Omega(i))-Omega_V(Pos))/(Omega_V(Pos-1)-Omega_V(Pos));
```

```
% Compute n/k for each frequency of interest
       n0(i) = n0_V(Pos) + (n0_V(Pos-1) - n0_V(Pos)) * m(i); % Refractive
                                                            %Index
165
       k0(i) = k0_V(Pos)+(k0_V(Pos-1)-k0_V(Pos))*m(i); %Extinction
                                                             %Coeffecient
   end
   % For Omega(X/2+1) \rightarrow 0 then look up value... don't really matter
170
       anyway
   % since this frequency should be zero in simulation
       n0(X/2+1) = 8.8486;
       k0(X/2+1) = 6.931E-03;
       m(X/2+1) = 0;
175
   % Same thing, just for the positive wavelengths
   for i = (X/2+2:X)
       Pos = find(abs(Omega(i)) > Omega_V,1);
       m(i) = (abs(Omega(i)) - Omega_V(Pos)) / (Omega_V(Pos-1) - Omega_V(Pos));
       n0(i) = n0_V(Pos) + (n0_V(Pos-1) - n0_V(Pos)) * m(i);
180
       k0(i) = k0_V(Pos) + (k0_V(Pos-1) - k0_V(Pos)) * m(i);
   end
   % Clear what we no longer need
185 clear Omega_V n0_V alpha0_V m
   %% Step 2: Start with a Gaussian pulse in time, discretize it
   % Start with large vector of zeros for the electric field
190 Efield = zeros(X, 1);
   % Build a vector for all moments of time simulated
   TimeVec = transpose(0:(X-1));
   TimeVec = TimeVec*dt;
195 % I have now built my initial timespace, shift it so the pulse is not
       cut off
   TSHIFT = 3*Tau_t; % Unchirped pulse
   %TSHIFT = 20e-12; % Negatively chirped pulse
   TimeVec = TimeVec - TSHIFT;
200 % Now setup the initial Efield of the pulse
   Efield = \exp(-2 \times \log(2) / \operatorname{Tau} t^2 \times \operatorname{TimeVec}^2) \cdot \exp(1i \times w0 \times \operatorname{TimeVec});
   %% Step 3: Find area of the beam
   % Starting point at Surface of the eye
205 % And for all points in the nonlinear solver
   Area0 = pi() *R0^2; % Initial area
   R = zeros(1,StopTotal); % Initialize
   % Assume Gaussian beam focusing behavior at all points in the eye
  for (x = 1:1:StopTotal)
210
       dist = (x-1) * dx;
       R(x) = Rfoc * sqrt (1 + (dist-DistFocus)^2/xR^2);
```

```
end
215 % Find area at each point in eye
   Area = pi() * R.^2;
   %% Step 4: Calculate intensity and normalize it to value of interest (
      and chirp the pulse if desired)
220 % Set-up step only: Normalize I to peak intensity of problem
   I = 0.5*c*n0_Est*epsilon0.*abs(Efield).^2/Area(1);
   IPeak = Energy/Tau_t/Area(1);
   % Now adjust amplitude of electric field acordingly
225 Efield = sqrt(IPeak)/sqrt(max(I))*Efield;
   I = 0.5*c*n0_Est*epsilon0.*abs(Efield).^2/Area(1);
   % Comment off if you are not chirping the pulse
   8{
230 % How to chirp the pulse:
     I chirp the pulse by shifting the constituent waves by exp(iwnz/c)
   % A side effect of chirping the pulse this way is that is in now "
     located" at a different point in time
     I then move the pulse location back in time toward t = 0 sec
   8
      without changing the pulse characteristics by multiplying by exp(iw
      (-1.3)z/c).
235 % To chirp the pulse (negatively chirped to counter GVD at retina):
   % Go to frequency domain
   EfieldFreq = fftshift(fft(Efield));
   \% Chirp and shift back in time towards the origin (t = 0)
   EfieldFreq = EfieldFreq.*exp(+1i*Omega.*(n0-1.3)*0.0244/c);
240 % Go back to time domain
   Efield = ifft(ifftshift(EfieldFreq));
   % Update intensity
   I = 0.5*c*n0 Est*epsilon0.*abs(Efield).^2/Area(1);
   IPeak = max(I);
245 8 }
   % End of pulse chirping
   % Save initial values for comparison
   I0 = I; % Save for comparison
250 E0 = Efield; % Save for Comparison
   E0Freq = fftshift(fft(E0)); % Save for comparison
   %% Set up graphs
   % ____Parameters for graphs__
255 Lambda_nm = 2*pi()*c*1e9./Omega;
   ViewVec = (X/2+20000): (X/2+275000); % Long run view from 200 nm
                                       % to 2500 nm
```

```
% Constants for the for loops (improves compuational speed to
      initialize here)
260 IConst = 0.5*c*n0 Est*epsilon0; % Constant part of intensity calc.
   DVec = -li*Omega.*n0*dx/c -abs(Omega).*k0*dx/c; % Constant part of
      linear propagator term
   DVec Lens = -li*Omega.*n0*dx/c - 0.4*abs(Omega).*k0*dx/c; % Constant
       part of linear propagator (Reduced absorption)
   ExpDVec = exp(DVec); % Faster to pre-compute this value
   ExpDVec_Lens = exp(DVec_Lens); % Faster to pre-compute this value (
      Reduced absorption)
265 NConst = -1i \star w0 \star n2 \star (dx/2)/c - beta \star (dx/2)/2; % Constant part of
      nonlinear propagator
   AreaNow = Area(1); % Initialize variable here
   R4 = zeros(StopTotal, 1);
   R4(1) = R(1);
   PlasmaFlag = 0; % No plasma generated yet
270
   %% Plot/Save initial behavior
   응 {
   % Time plot
   figure;
275 plot (TimeVec*10e12, I0, 'k')
   title(['Intensity at 0 mm for ' num2str(lambda0*1e9) ' nm beam'])
   xlabel('Time (ps)')
   ylabel('I(t)')
   legend({'Input Pulse'},'Location','northeast')
280
   % Looking in the frequency domain
   figure;
   semilogy(Lambda_nm(ViewVec), abs(E0Freq(ViewVec)/X).^2/Area(1),'k')
   title(['Power Spectral Density at 0 mm for ' num2str(lambda0*1e9)...
      ' nm beam'])
285
   xlabel('Wavelength (nm)')
   ylabel('|E|^2/Area')
   legend({'Input Pulse'},'Location','northeast')
   ylim([1e-5 1e15])
290 8}
   % Path files are output CSV files that can be analyzed
   % or made into videos
   pathA = ['Lambda.csv' ];
  csvwrite(pathA,Lambda nm(ViewVec));
295
   pathB = ['Intensity_In_' num2str(lambda0*1e9) 'nm.csv' ];
   csvwrite(pathB,I0);
300 pathC = ['Spectra_In_' num2str(lambda0*1e9) 'nm.csv' ];
   csvwrite(pathC, abs(E0Freq(ViewVec)/X).^2/Area(1));
   %% Propagate from cornea to lens through aqueous humor:
   for (PositionCtrA = 1:StopA)
      % Steps 0 - 2 are only needed for set up.
305
```

```
% Step 3: Get the area
       % Find where you are
       PositionCtr = PositionCtrA;
       % Find self-focusing corrected radius
310
       if(PositionCtr == 1)
                                            % If just starting simulation
           R4 (PositionCtr) = R(1);
       elseif((PositionCtr-1)*dx < DistFocus)</pre>
                                                 % If before focal point
           % Find angle of descent linear & nonlinear
           Theta_Linear = abs(tan((R(PositionCtr)-R(PositionCtr-1))/dx));
315
           Theta_Nonlinear = sqrt(2*n2*IPeak/n0_Est);
           R4(PositionCtr) = max(R4(PositionCtr-1) - atan(sqrt(
              Theta_Linear^2 + Theta_Nonlinear^2))*dx,RStop);
       else
                                            % If after focal point
           % Find angle of descent linear & nonlinear
320
           Theta_Linear = abs(tan((R(PositionCtr)-R(PositionCtr-1))/dx));
           Theta_Nonlinear = sqrt(2*n2*IPeak/n0_Est);
           if (Theta Linear < Theta Nonlinear) % && Nonlinear focusing
                                               % dominates
325
               R4 (PositionCtr) = max(R4 (PositionCtr-1) - atan(sqrt(-
                   Theta_Linear^2 + Theta_Nonlinear^2))*dx,RStop);
           else
                                               % && Linear de-focusing
              dominates
               R4(PositionCtr) = max(R4(PositionCtr-1) + atan(sqrt(+
                   Theta_Linear^2 - Theta_Nonlinear^2))*dx,RStop);
           end
       end
330
       % Find area
       AreaNow = pi*R4(PositionCtr)^2;
       %AreaNow = pi*R(PositionCtr)^2; % Uncomment to disable self-
          focusing
335
       % Step 4: Calc intensity
       I = IConst.*abs(Efield).^2/AreaNow;
       % Step 5: Split step nonlinear term
       Efield = Efield.*exp(NConst*I);
340
       % Step 6: Convert to frequency domain
       EfieldFreq = fftshift(fft(Efield));
       % Step 7: Propagate dx forward in space
345
       EfieldFreq = EfieldFreq.*ExpDVec;
       % Step 8: Convert back to time domain
       Efield = ifft(ifftshift(EfieldFreq));
350
       % Step 9: Split step nonlinear term
       I = IConst.*abs(Efield).^2/AreaNow;
```

```
Efield = Efield.*exp(NConst*I);
       % Step 10: Calc intensity for self-focusing in next step
355
       I = IConst.*abs(Efield).^2/AreaNow;
       IPeak = max(I);
       % Check for plamsa generation
       if(IPeak > 2e17)
360
          if(PlasmaFlag == 0)
              PlasmaFlag = 1; % Plasma has been formed
              pathP = ['PlasmaWarningAt_' num2str(PositionCtr*dx) ' mm_'
                  num2str(lambda0*1e9) 'nm.csv' ];
              csvwrite(pathP, 1e6*R4(PositionCtr));
          end
365
       end
   end
   %% Record result at lens
   pathD = ['IntensityAt_' num2str((StopA)*1000*dx) ' mm_' num2str(
370
      lambda0*1e9) 'nm.csv' ];
   csvwrite(pathD,I);
   pathE = ['SpectraAt ' num2str((StopA)*1000*dx) ' mm ' num2str(lambda0
      *1e9) 'nm.csv' ];
   csvwrite(pathE, abs(EfieldFreq(ViewVec)/X).^2/Area(StopA));
375
   % Plot values at lens (4 mm)
   8{
       I = 0.5*c*n0_Est*epsilon0.*abs(Efield).^2/Area(StopA);
       figure;
       plot(TimeVec*10e12, I0, 'k')
380
       hold on
       plot (TimeVec*10e12, I,'r')
       hold off
       title(['Intensity at ' num2str(StopA*1000*dx) ' mm for ' num2str(
385
           lambda0*1e9) ' nm beam'])
       xlabel('Time (ps)')
       ylabel('I(t)')
       legend({'Input Pulse', 'Pulse at Position'}, 'Location', 'northeast')
       % Looking in the frequency domain
390
       figure;
       semilogy(Lambda_nm(ViewVec), abs(E0Freq(ViewVec)/X).^2/Area0,'k')
       hold on
       semilogy(Lambda_nm(ViewVec), abs(EfieldFreq(ViewVec)/X).^2/Area(
          StopA), ' r - - ')
395
       hold off
       title(['Power Spectral Density at ' num2str(StopA*1000*dx) ' mm
           for ' num2str(lambda0*1e9) ' nm beam'])
       xlabel('Wavelength (nm)')
```

```
ylabel('|E|^2/Area')
       legend({'Input Pulse', 'Pulse at Position'}, 'Location', 'northeast')
400
   81
   %% Propagate through the lens
   % Let's assume that the lens acts like water but with only 40 the
405
      absorbance of water
   for (PositionCtrB = 1:StopB)
       % Step 3: Get the area
       % Find where you are
410
       PositionCtr = StopA + PositionCtrB;
       % Find angle of descent linear & nonlinear
       Theta_Linear = abs(tan((R(PositionCtr)-R(PositionCtr-1))/dx));
       Theta_Nonlinear = sqrt(2*n2*IPeak/n0_Est);
415
       % Find self-focusing corrected radius
       if((PositionCtr-1)*dx < DistFocus)</pre>
                                              % If before focal point
          R4(PositionCtr) = max(R4(PositionCtr-1) - atan(sqrt(
              Theta_Linear^2 + Theta_Nonlinear^2))*dx,RStop);
       else
                                            % If after focal point
420
           if (Theta_Linear < Theta_Nonlinear) % && Nonlinear focusing
               dominates
               R4(PositionCtr) = max(R4(PositionCtr-1) - atan(sqrt(-
                   Theta_Linear^2 + Theta_Nonlinear^2))*dx,RStop);
           else
                                                % && Linear de-focusing
               dominates
               R4 (PositionCtr) = max(R4 (PositionCtr-1) + atan(sqrt(+
                   Theta_Linear^2 - Theta_Nonlinear^2))*dx,RStop);
425
           end
       end
       % Find area
       AreaNow = pi*R4(PositionCtr)^2;
       %AreaNow = pi*R(PositionCtr)^2; % Uncomment to disable self-
430
           focusing
       % Step 4: Calc intensity
       I = IConst.*abs(Efield).^2/AreaNow;
       % Step 5: Split step nonlinear term
435
       Efield = Efield.*exp(NConst*I);
       % Step 6: Convert to frequency domain
       EfieldFreq = fftshift(fft(Efield));
440
       % Step 7: Propagate dx forward in space
       EfieldFreq = EfieldFreq.*ExpDVec_Lens;
```

```
% Step 8: Convert back to time domain
       Efield = ifft(ifftshift(EfieldFreq));
445
       % Step 9: Split step nonlinear term
       I = IConst.*abs(Efield).^2/AreaNow;
       Efield = Efield.*exp(NConst*I);
450
       % Step 10: Calc intensity for self-focusing in next step
       I = IConst.*abs(Efield).^2/AreaNow;
       IPeak = max(I);
       % Check for plamsa generation
455
       if(IPeak > 2e17)
          if(PlasmaFlag == 0)
              PlasmaFlag = 1; % Plasma has been formed
              pathP = ['PlasmaWarningAt_' num2str(PositionCtr*dx) ' mm_'
                  num2str(lambda0*1e9) 'nm.csv' ];
              csvwrite(pathP, 1e6*R4(PositionCtr));
460
          end
       end
   end
465
   %% Record the value at the vitreous humor (8 mm)
   pathD = ['IntensityAt_' num2str((StopA + StopB)*1000*dx) ' mm_'
      num2str(lambda0*1e9) 'nm.csv' ];
   csvwrite(pathD,I);
470 pathE = ['SpectraAt_' num2str((StopA + StopB)*1000*dx) ' mm_' num2str(
      lambda0*1e9) 'nm.csv' ];
   csvwrite(pathE, abs(EfieldFreq(ViewVec)/X).^2/Area(StopA + StopB));
   % Plot values at vitreous humor (8 mm)
   8{
       I = 0.5*c*n0_Est*epsilon0.*abs(Efield).^2/Area((StopA + StopB));
475
       figure;
       plot (TimeVec*10e12, I0, 'k')
       hold on
       plot(TimeVec*10e12, I,'r')
       hold off
480
       title(['Intensity at ' num2str((StopA + StopB)*1000*dx) ' mm for '
            num2str(lambda0*1e9) ' nm beam'])
       xlabel('Time (ps)')
       ylabel('I(t)')
       legend({'Input Pulse', 'Pulse at Position'}, 'Location', 'northeast')
485
       % Looking in the frequency domain
       figure;
       semilogy(Lambda_nm(ViewVec), abs(E0Freq(ViewVec)/X).^2/Area0,'k')
       hold on
490
       semilogy(Lambda_nm(ViewVec), abs(EfieldFreq(ViewVec)/X).^2/Area((
```

```
StopA + StopB)), 'r--')
       hold off
       title(['Power Spectral Density at ' num2str((StopA + StopB)*1000*
           dx) ' mm for ' num2str(lambda0*1e9) ' nm beam'])
       xlabel('Wavelength (nm)')
495
       ylabel('|E|^2/Area')
       legend({'Input Pulse', 'Pulse at Position'}, 'Location', 'northeast')
   8}
500 % Propagate from end of lens to retinal plane
   for (PositionCtrC1 = 1:StopC/Steps_Per_100um)
       for (PositionCtrC2 = 1:Steps_Per_100um)
           % Step 3: Get the area
505
           % Find where you are
           PositionCtr = StopA + StopB + (PositionCtrC1-1) *
               Steps_Per_100um+PositionCtrC2;
           % Find angle of descent linear & nonlinear
           Theta_Linear = abs(tan((R(PositionCtr)-R(PositionCtr-1))/dx));
510
           Theta_Nonlinear = sqrt(2*n2*IPeak/n0_Est);
           % Find self-focusing corrected radius
           if((PositionCtr-1)*dx < DistFocus)</pre>
                                                  % If before focal point
               R4(PositionCtr) = max(R4(PositionCtr-1) - atan(sqrt(
515
                   Theta_Linear^2 + Theta_Nonlinear^2))*dx,RStop);
                                                 % If after focal point
           else
                if(Theta_Linear < Theta_Nonlinear) % && Nonlinear focusing</pre>
                    dominates
                    R4(PositionCtr) = max(R4(PositionCtr-1) - atan(sqrt(-
                       Theta_Linear^2 + Theta_Nonlinear^2))*dx,RStop);
               else
                                                     % && Linear de-focusing
                    dominates
                    R4(PositionCtr) = max(R4(PositionCtr-1) + atan(sqrt(+
520
                       Theta Linear<sup>2</sup> - Theta Nonlinear<sup>2</sup>) *dx,RStop);
               end
           end
           % Find area
           AreaNow = pi*R4(PositionCtr)^2;
525
           %AreaNow = pi*R(PositionCtr)^2; % Uncomment to disable self-
               focusing
           % Step 4: Calc intensity
           I = IConst.*abs(Efield).^2/AreaNow;
530
           % Step 5: Split step nonlinear term
           Efield = Efield.*exp(NConst*I);
           % Step 6: Convert to frequency domain
```

```
535
           EfieldFreq = fftshift(fft(Efield));
           % Step 7: Propagate dx forward in space
           EfieldFreq = EfieldFreq.*ExpDVec;
           % Step 8: Convert back to time domain
540
           Efield = ifft(ifftshift(EfieldFreq));
           % Step 9: Split step nonlinear term
           I = IConst.*abs(Efield).^2/AreaNow;
           Efield = Efield.*exp(NConst*I);
545
           % Step 10: Calc intensity for self-focusing in next step
           I = IConst.*abs(Efield).^2/AreaNow;
           IPeak = max(I);
550
           % Check for plamsa generation
           if(IPeak > 2e17)
               if(PlasmaFlag == 0)
                    PlasmaFlag = 1; % Plasma has been formed
                    pathP = ['PlasmaWarningAt_' num2str(PositionCtr*dx) '
555
                       mm ' num2str(lambda0*1e9) 'nm.csv' ];
                    csvwrite(pathP, 1e6*R4(PositionCtr));
               end
           end
560
       end
       % Record information every 4 mm
       if (mod (PositionCtrC1, 40) == 0)
           8{
           figure;
565
           plot(TimeVec*10e12, I0, 'k')
           hold on
           plot(TimeVec*10e12, I,'r')
           hold off
570
           title(['Intensity at ' num2str((StopA + StopB + PositionCtrC1*
               Steps_Per_100um)*1000*dx) ' mm for ' num2str(lambda0*1e9) '
                nm beam'])
           xlabel('Time (ps)')
           ylabel('I(t)')
           legend({'Input Pulse', 'Pulse at Position'}, 'Location', '
               northeast')
575
           % Looking in the frequency domain
           figure;
           semilogy(Lambda_nm(ViewVec), abs(E0Freq(ViewVec)/X).^2/Area0,'k
               1)
           hold on
           semilogy(Lambda_nm(ViewVec), abs(EfieldFreq(ViewVec)/X).^2/Area
580
               ((StopA + StopB + PositionCtrC1*Steps_Per_100um)), 'r--')
```

```
hold off
           title(['Power Spectral Density at ' num2str((StopA + StopB +
               PositionCtrC1*Steps_Per_100um) *1000*dx)
           xlabel('Wavelength (nm)')
585
           ylabel('|E|^2/Area')
           legend({'Input Pulse', 'Pulse at Position'}, 'Location','
               northeast')
           8}
           pathD = ['IntensityAt_' num2str((StopA + StopB + PositionCtrC1
590
               *Steps_Per_100um) *1000*dx) ' mm_' num2str(lambda0*1e9) 'nm.
               csv'];
           csvwrite(pathD,I);
           pathE = ['SpectraAt_' num2str((StopA + StopB + PositionCtrC1*
               Steps_Per_100um) *1000*dx) ' mm_' num2str(lambda0*1e9) 'nm.
               csv' ];
           csvwrite(pathE, abs(EfieldFreq(ViewVec)/X).^2/Area((StopA +
               StopB + PositionCtrC1*Steps_Per_100um)));
595
       end
   end
   %% Calculate resulting pulse at retina
   % Calculate I at retina:
   %REnd = Rfoc*sqrt(1+((StopA+StopB+StopC)*dx-DistFocus)^2/xR^2);
600
   %AEnd = pi() *REnd<sup>2</sup>;
   AEnd = pi() * R4 (StopA+StopB+StopC)^2;
   I = 0.5*c*n0_Est*epsilon0.*abs(Efield).^2/AEnd;
605 % Save results
   pathF = ['Intensity_Retina_' num2str(lambda0*1e9) 'nm.csv' ];
   csvwrite(pathF,I);
   pathG = ['Spectra_Retina_' num2str(lambda0*1e9) 'nm.csv' ];
610 Csvwrite (pathG, abs (EfieldFreq (ViewVec) /X).<sup>2</sup>/AEnd);
   응 {
   % Looking in the time domain
   plot(TimeVec*10e12, I0, 'k')
615 hold on
   plot(TimeVec*10e12, I, 'r')
   hold off
   title(['Intensity at ' num2str(1000*Stop*dx) ' mm in Time Domain for '
       num2str(lambda0*1e9) ' nm beam'])
   xlabel('Time (ps)')
620 || ylabel('I(t)')
   legend({'Input Pulse', 'Pulse at Retina'}, 'Location', 'northeast')
   figure;
   응}
```

```
625
   % Looking in the frequency domain
   figure;
   semilogy(Lambda_nm(ViewVec), abs(E0Freq(ViewVec)/X).^2/Area0,'k')
   hold on
630 semilogy (Lambda nm (ViewVec), abs (EfieldFreg (ViewVec)/X).^2/AEnd, 'r--')
   hold off
   %plot(2*pi()*c*1e9./Omega,abs(EfieldFreq(1:(X/2+1))/X).^2)
   title(['Power Spectral Density out of cuvette for ' num2str(lambda0*1
      e9) ' nm beam'])
   xlabel('Wavelength (nm)')
   ylabel('|E|^2/Area')
635
   legend({'Input Pulse', 'Pulse at Retina'}, 'Location', 'northeast')
   ylim([1e-6 1e14])
   8}
640 8% Now propagate past nonlinear region in eye tissue. Assume
   % same linear/nonlinear properties as water.
   for (PositionCtrD = 1:StopD)
       % Step 3: Get the area
       % Find where you are
645
       PositionCtr = StopA + StopB + StopC + PositionCtrD;
       % Find angle of descent linear & nonlinear
       Theta_Linear = abs(tan((R(PositionCtr)-R(PositionCtr-1))/dx));
       Theta_Nonlinear = sqrt(2*n2*IPeak/n0_Est);
650
       % Find self-focusing corrected radius
       if((PositionCtr-1)*dx < DistFocus)</pre>
                                              % If before focal point
           R4 (PositionCtr) = max (R4 (PositionCtr-1) - atan (sqrt (
               Theta_Linear^2 + Theta_Nonlinear^2))*dx,RStop);
655
       else
                                             % If after focal point
            if(Theta_Linear < Theta_Nonlinear) % && Nonlinear focusing</pre>
                                                 % dominates
                R4(PositionCtr) = max(R4(PositionCtr-1) - atan(sqrt(-
                   Theta_Linear^2 + Theta_Nonlinear^2))*dx,RStop);
            else
                                                 % && Linear de-focusing
                                                 % dominates
660
                R4(PositionCtr) = max(R4(PositionCtr-1) + atan(sqrt(+
                   Theta Linear<sup>2</sup> - Theta Nonlinear<sup>2</sup>) * dx, RStop);
            end
       end
       % Find area
665
       AreaNow = pi*R4 (PositionCtr)<sup>2</sup>;
       %AreaNow = pi*R(PositionCtr)^2; % Uncomment to disable self-
           focusing
       % Step 4: Calc intensity
       I = IConst.*abs(Efield).^2/AreaNow;
670
```

```
% Step 5: Split step nonlinear term
       Efield = Efield.*exp(NConst*I);
       % Step 6: Convert to frequency domain
675
       EfieldFreq = fftshift(fft(Efield));
       % Step 7: Propagate dx forward in space
       EfieldFreq = EfieldFreq.*ExpDVec;
680
       % Step 8: Convert back to time domain
       Efield = ifft(ifftshift(EfieldFreq));
       % Step 9: Split step nonlinear term
       I = IConst.*abs(Efield).^2/AreaNow;
685
       Efield = Efield.*exp(NConst*I);
       % Step 10: Calc intensity for self-focusing in next step
       I = IConst.*abs(Efield).^2/AreaNow;
       IPeak = max(I);
690
       % Check for plamsa generation
       if(IPeak > 2e17)
           if(PlasmaFlag == 0)
               PlasmaFlag = 1; % Plasma has been formed
695
               pathP = ['PlasmaWarningAt_' num2str(PositionCtr*dx) ' mm_'
                    num2str(lambda0*1e9) 'nm.csv' ];
               csvwrite(pathP,le6*R4(PositionCtr));
           end
       end
700
   end
   % Calculate intensity at end of simulation
   %REnd2 = Rfoc*sqrt(1+((StopA+StopB+StopC+StopD)*dx-DistFocus)^2/xR^2);
   AEnd2 = pi() * REnd2^2;
705
   AEnd2 = pi() *R4(StopA+StopB+StopC+StopD) ^2;
   I = 0.5*c*n0_Est*epsilon0.*abs(Efield).^2/AEnd2;
   % Save values
710 pathF = ['Intensity_BeyondRetina_' num2str(lambda0*1e9) 'nm.csv' ];
   csvwrite(pathF,I);
   pathG = ['Spectra_BeyondRetina_' num2str(lambda0*1e9) 'nm.csv' ];
   csvwrite(pathG, abs(EfieldFreq(ViewVec)/X).^2/AEnd2);
715
   pathH = ['Radius_' num2str(lambda0*1e9) 'nm.csv' ];
  csvwrite(pathH, 1e6*R4);
```

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

β	nonlinear absorption
$lpha_0$	linear absorption
<i>n</i> ₀	linear refractive index
<i>n</i> ₂	nonlinear refractive index
AFRL	Air Force Research Laboratory
ANSI	American National Standards Institute
fs	femtosecond
GNLSE	generalized nonlinear Schrödinger equation
GVD	group velocity dispersion
LIB	laser induced breakdown
MPE	Maximum Permissible Exposure
near-IR	near-infrared
NLSE	nonlinear Schrödinger equation
nm	nanometer
REM	reduced eye model
SBS	stimulated Brillouin scattering
SPM	Self-phase modulation
SRS	stimulated Raman scattering
XPM	cross-phase modulation