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1. Introduction 

The Human Research and Engineering Directorate of the US Army Research 
Laboratory is developing a robotics control system called the Symbolic and Sub-
symbolic Robotics Intelligence Control System (SS-RICS) (Kelley 2006). The 
system is based on the Adaptive Character of Thought-Rational cognitive 
architecture, which was designed to mimic the human thought processes (Anderson 
and Lebiere 1998). SS-RICS incorporates cognitive modelling algorithms from 
traditional cognitive architectures (production utility, spreading activation) with 
traditional artificial intelligence techniques (Principal Component Analysis [PCA]) 
for robotics processing. This report describes a facial recognition algorithm 
comparison as part of the ongoing development of SS-RICS. 

The ability to recognize a face is fundamental to the cognitive abilities of humans 
and many other mammals, particularly primates. Human beings appear to have a 
robust facial-recognition system that uses a variety of techniques for identifying 
faces (Young and Ellis 1989). The system appears to be localized in the brain in the 
fusiform gyrus area (George et al. 1999). However, for a computer, tracking and 
recognizing a face can be difficult. Almost as soon as the instance of a face is 
presented for an algorithm to learn, the instance can change in the next frame of the 
image due to lighting, occlusion, or changes in perspective. This continuously 
changing representation presents a problem for object-tracking and facial-
recognition algorithms. Humans overcome these challenges by using pupil dilation 
to compensate for lighting changes and background knowledge of likely object 
shapes and sizes to estimate the features of occluded objects.   

Because SS-RICS is being developed with an emphasis on human interaction, it is 
then only natural that it include the ability to detect people’s faces, track them, and 
re-recognize them at a later time. This is useful if the robot is meant to be operated 
by a select few individuals. These people’s faces can be learned by the robot and 
serve as a gating mechanism to prevent unauthorized use.  

2. Algorithm Comparison 

Face detection and recognition can be accomplished in a few different ways. One 
way is to use a Haar cascade feature detector (Viola and Jones 2001) for the initial 
face detection and EigenFace PCA for identification of a specific face (Kirby and 
Sirovich 1990). The Haar features are actually Haar wavelets that have been crafted 
to detect certain “face-like” areas in a region of interest. For example, the features 
of a face (the eyes being darker than the cheeks) are used to determine if a face is 
present in the region of interest. The collection of faces is then transformed into an 
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Eigenspace from which the PCA vectors are obtained for processing a candidate 
face. Note that this vector space needs to be calculated each time a new face is 
added. This is useful enough for a limited set of faces; however, for the continuous 
learning of new faces in real time, a different approach is needed. This led us to 
develop a hybrid EigenFace ARTMAP approach. 

2.1 Hybrid EigenFace ARTMAP (EA) Algorithm 

For the hybrid EA approach we used a three-element methodology that included 
the addition of an Adaptive Resonance Theory (ART) neural network (Carpenter 
and Grossberg 2003). This network allowed the learning of individual faces. An 
ART neural network allows for continuous learning and does not suffer from 
catastrophic forgetting (French 1999) as is the case with some other more 
traditional neural networks. The ARTMAP neural network is an improved version 
of the original ART neural network, in which a superior error correction 
methodology for the learning of weights is used (Carpenter et al. 1991). The hybrid 
EA algorithm used the following three elements: 

1) Haar Cascade feature detectors trained to identify frontal faces. 

2) EigenFace facial discrimination code, which extracts salient features from 
hundreds of random sample faces into an average face for comparison with 
the features extracted from an unknown face identified by the Haar 
classifiers. 

3) ARTMAP neural network, which takes the data from the EigenFace 
recognition process and uses it to learn individual facial signatures. This 
step allows for the continuous learning of faces. 

Element 2 uses a variety of sample faces across a spectrum of types and instead of 
including known candidates for identification (something that would require 
periodic updating and regeneration of the Eigenspace). The resulting Eigenspace is 
averaged to compute a mean value. Then the PCA values of the target face are 
compared using a Mahalonobis distance computed from the difference between the 
PCA values of the target and the mean of the Eigenspace. This was done to obtain 
a vector to be fed into the ARTMAP (Element 3). This approach allows any new 
face to be learned without recomputing the Eigenspace. 
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2.2 Tracking-Learning-Detection (TLD) Algorithm  

The TLD algorithm developed by Kalal et al. (2010) is a general-purpose tracker 
that can be used to follow many different kinds of targets. The TLD algorithm is a 
combination of three processes, as its name implies. First, the algorithm will track 
an object in the current region of interest (ROI). Next, the algorithm will learn the 
object as the object changes from occlusion and viewpoint specific lighting. Finally, 
the algorithm will detect the object once it is shown again as a brand new instance. 

The original TLD algorithm has since been augmented by the original authors to 
include face detection and tracking. In order for us to allow the original TLD 
algorithm to track and identify faces, we added a traditional Haar classifier to find 
an ROI where a candidate face might be located. This candidate was then passed to 
the TLD tracker to follow and identify.  

The TLD uses a short-term tracker based on the Lucas-Kanade (LK) method (Lucas 
and Kanade 1981). The object is tracked by the LK method, and patches close to 
the trajectory are used to update the detector with positive exemplars. The object is 
detected using a randomized forest detector using a feature set developed by the 
authors based on local binary features called 2bitBP features. The algorithm uses 
errors from positive and negative examples to partially cancel each other out and 
allow for a convergence on the best candidate. Initially, the target is tracked using 
a matrix of points garnered from within the user-specified bounding box, which is 
then passed to the LK tracker. As the object is tracked, patches along the trajectory 
are used to update the detector using the positive–negative learning strategy, which 
reduces them to 15 × 15 gray-scaled normalized snippets. These snippets are then 
added to the list of positive examples. The algorithm also uses a random sampling 
of surrounding images (a grid of bounding boxes that covers the entire image is 
generated during initialization) and uses them as negative examples. These positive 
and negative examples have their eigenvalues extracted and are projected into a 
space wherein nearest neighbors can be determined. Tracking of the object using 
LK is continued until the tracker loses the object due to a lack of forward–backward 
consistency. To improve learning, the TLD algorithm uses a new sampling strategy 
Kalal et al. define as “quasi-random weighted sampling with trimming (QWS+)”. 
This approach “minimizes the error estimate” leading to improved results over 
more-traditional sampling methodologies (i.e., bootstrapping; Kalal et al. 2009). 
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3. Procedure 

The evaluation was conducted using images from the sitcom The IT Crowd (first 
season, first episode, as was reported in Kalal et al. 2010). From the episode we 
extracted the frames (at 424 × 283 resolution) containing a specific character 
(“Roy”), which amounted to 10,982 frames. We then split the frames into two 
sections (as was done in Kalal et al. 2010), part one being 5,648 frames and part 
two being 5,334. The 10,982 frames of the episode lasted for approximately  
23 min, which we used for testing both approaches. However, the Hybrid EA 
algorithm used 9,252 during processing due to dropped frames. 

We trained the hybrid EA algorithm with 300 faces from the FERET face database 
(Phillips et al. 1998). The hybrid EA data set was trained initially using carefully 
sculpted subject images, all sampled at the same resolution and normalized. 
Additional care was taken to make sure the main facial features were all lined up in 
the same position in each image. This created a “space” for comparing candidate 
faces as they were detected by the Haar classifiers. Training files had a resolution 
of 120 × 120 pixels.  

Once a face was detected and the eigenvalues representing its difference from the 
mean of the training set were obtained, they were truncated to the first 10 PCA 
elements and fed to the ARTMAP to learn as a particular face. 

Additionally, we used a method of filtering out false positive faces from the Haar 
classifier. The candidate faces were compared using a cross correlation algorithm. 
Scores above a threshold were accepted and those below were considered false 
positives. We used a cross correlation of 0.47 to reduce the false positives (a value 
we found to be consistently a good balance between rejecting bad detections while 
preserving good ones). This setting represented a correlation value threshold that 
was compared with the score that an average face image (generated by the 
EigenFace training process) and a candidate face must exceed. The positive 
candidates were then passed on to the classification function. 

At the beginning of the segment, the Haar classifier detected the face of a specific 
character (Roy), and was trained using the ARTMAP as a classifier. For each face 
in each frame detected, if the patch was classified as Roy, it was written to a 
directory named Roy; if the detection said “Unknown”, the patch was saved to a 
separate directory. If no face was detected, that entire scene was saved to another 
directory. The contents of each directory were examined visually and a count of 
how many hits were accurate for both Roy and Unknown was tallied. Total 
accuracy of Roy classifications was the number of times the character was 
successfully identified divided by the 9,252 frames containing Roy.  
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For the TLD algorithm, a bounding box was drawn around the character Roy’s face 
using the first frame of the 10,982 available frames. As Roy was detected, the patch 
identified by the tracker was saved to disk and the total number of accurate 
classifications was determined by examining them visually and counting the 
number of correct classifications. Thus, total accuracy of Roy detections was how 
many times the character was successfully classified divided by the total number of 
frames. 

4. Results 

We found similar results to those reported by Kalal et al. (2010) for the original 
TLD algorithm. The character (Roy) was tracked throughout the entire episode for 
a total of 10,982 frames for the TLD algorithm. Of those frames, the TLD algorithm 
was able to correctly identify the subject 31.16% of the time, with a false positive 
rate of 5.1%. This is in comparison with the subject being correctly tracked 37% of 
the time as reported by Kalal et al. (2010). We also found, as mentioned by the 
authors, that the TLD algorithm functioned better in the first half of the frames used 
than in the second half of the show (48.99% and 12.28%, respectively). This could 
be because during the first half of the show there was more character development 
and more close-ups of the actors’ faces, while in the last half of the show there were 
more characters together in each frame, and the camera locations were further away 
showing groups of actors together.  

By comparison, our Hybrid EA algorithm performed somewhat worse over the 
entire set of frames used but better than the TLD in the second half of the frames 
used. As Table 1 shows, the Hybrid EA algorithm correctly found and tracked the 
subject 18.3% of the time for the entire frames used. In the second half of the frames 
used, the Hybrid found the character 14.87% of the time compared with 12.28% for 
the TLD. 

Table 1 Hybrid EA algorithm compared with TLD algorithm for detecting one character 
for the first and second half of the episode, plus the overall results 

Algorithm 
Percent  Correct Detection 

First half Second half Overall 

Hybrid 20.95% 14.87% 18.30% 

TLD 48.99% 12.28% 31.16% 
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5. Conclusions 

Our research confirmed the accuracy of the original TLD algorithm using the same 
data set (a sitcom episode) for comparison. We also found that the TLD algorithm 
performed better than our Hybrid EA algorithm for the entire episode, but the 
Hybrid EA algorithm did slightly better than the TLD during the second half of the 
episode. We are not exactly sure why there were such differences between the first 
and second halves of the episode.  One speculation would be that there might have 
been differences in plot and character development in the episode that made the 
first half somehow different from the second. The Hybrid EA, while performing at 
a lower rate, was more consistent across both halves of the video. One possible 
problem with the Hybrid EA algorithm was that the vectors returned from the 
EigenFace code were not unique enough to present the ARTMAP with disparate 
enough data to keep the vector delineated for accurate classification. The Hybrid 
EA also does not include any tracking per say, as it only uses the Haar classifier to 
acquire a possible face prior to classification. So while it is acquiring faces it is not 
tracking them in the same way that the TLD algorithm is tracking an instance of a 
specific ROI.  
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