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1.0 ABSTRACT  
 

In this three-year effort we have made significant progress in understanding how to engineer 
novel phases of matter with atoms in optical lattices. Optical lattices applied to trapped atomic 
gases offer considerable versatility in engineering quantum states. Recent advances in optical 
control have taken exploration of quantum degenerate matter in an exciting new direction: band 
engineering with synthetic fields. In this context, synthetic fields act as effective magnetic and/or 
electric fields on neutral quantum gases. Our work models how novel quantum states derive from 
engineered bands because tailored bases emphasize interaction effects. Novel quantum states we 
studied include: Wigner crystals, emergent Luttinger liquids, many-body localization, the Bose-
Glass, as well as other. Our methods include numerical simulations of models constructed to 
capture effects in ongoing experiments. Specific methods include numerical diagonalization, the 
time evolving block-decimation algorithm, and mean-field theories. Our work fosters the 
identification of novel states of matter with ultracold atomic gases derived from band 
engineering of importance to ongoing Air Force research efforts to build such experiments.  
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2.0 SUMMARY 
 
Experiments with ultracold atoms in optical lattices demonstrate strongly correlated states, 
including superfluids and Mott insulators.   But further progress in realizing novel strongly 
correlated states has been hindered.  For example, strict temperature requirements prevent the 
realization of antiferromagnetic states via super-exchange. Also, Raman lasers used to 
implement spin-orbit coupling lead to considerable losses and heating near Feshbach resonances 
where strong interactions are expected to reveal intriguing strongly correlated states.  
Nonetheless optical lattices offer very precise control over weakly correlated states, i.e., single-
particle band structure.  Straightforward extensions of optical lattice technology can be used to 
engineer different single-particle band structures.  Our work proposed experiments designed to 
use the tunability of band structures to avoid obstacles in realizing novel many-body states with 
optical lattices.   

Novel phases of matter derived from strong interactions are possible, but challenges remain. 
Increasing lattice depth to favor interactions tightly localizes particles in optical lattice sites. The 
resulting interactions are purely local and limit possibilities. Proposed methods to extend the 
range of interaction include: virtual processes, i.e., superexchange; promotion of particles to 
higher bands; placing dipoles in optical lattices; and others.  

The following outlines mathematical and numerical methods we constructed and employed: 

Exact Diagonalization: The set of flat band problems we tackled are inherently non-perturbative. 
To study the low energy physics of interactions in flat bands our primary tool was exact 
diagonalization and related methods, i.e., Lancozs and Arnoldi methods. By studying the low 
energy states of interacting models, we identified lattice models with stable (gapped) ground 
states. The following formalism is designed to rigorously identify novel states in non-
perturbative flat band models:  

i) Model the band structure of a flat band lattice 
ii) Identify and project into flat bands 
iii) Compute the interaction matrix elements 
iv) Diagonalize the many-body model to obtain the low energy Hilbert space 
v) Compare states of physical model with effective models using overlap, 

energetics 
vi) Identify and compute relevant observables  
 

Variational Wavefunctions and Effective Models: Our group has pioneered a new technique to 
construct wavefunctions for flat bands. This method allows direct construction of wavefunctions 
(e.g., Jastrow-correlated BCS states, Jastrow-correlated Fermi liquid states, etc.) in second 
quantization. Direct evaluation of wavefunction amplitudes is generated by a matrix product 
formulation.  

DISTRIBUTION A: Distribution approved for public release.
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We also constructed effective models to validate and test our proposed emergent states. In 1D we 
have constructed an effective extended Hubbard model. Variations on this effective Hubbard 
model allowed us to explore other densities. Diagonalization for the realistic and effective 
models will allow direct comparison and rigorous interpretation of the results from exact 
diagonalization.  

Mean Field Methods: Mean field numerical methods were used, which include Gutzwiller 
variational methods for bosons in optical lattices.  This method was extended to tackle dynamics 
in trapped optical lattice systems.   

Exact dynamics using Time-Evolving-Blocking-Decimation (TEBD) algorithm: We also used the 
TEBD algorithm to study exact quantum states and their dynamics in 1D systems. It was 
generalized to spin-orbit coupled systems to study dynamics of spin flip tunneling. 

The projects described in this proposal significantly advanced our understanding of atoms in 
optical lattices.  These systems are of direct interest to AFOSR initiatives that are currently under 
study.  The models and simulations guided experiments towards realization of novel states of 
matter and thereby established new platforms for fundamental science and technological 
development. The band engineering ideas we discus here have the potential to establish new 
paradigms in the way we understand the interplay of quantum mechanics and many-body 
systems.  
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3.1 TRANSPORT OF HUBBARD-BAND QUASIPARTICLES IN DISORDERED 
OPTICAL LATTICES 

V. W. Scarola and B. DeMarco Phys. Rev. A 92, 053628 (2015) arXiv:1503.07195 
 

Recent experiments use transport of degenerate Fermi gases in optical lattices (Kondov et al. 
Phys. Rev. Lett. 114, 083002 (2015)) to probe a particularly extreme regime of strong interaction 
in what can be modeled as an Anderson-Hubbard model. These experiments find evidence for an 
intriguing insulating phase where quantum diffusion is completely suppressed by strong disorder. 
Quantitative interpretation of these experiments remains an open problem that requires inclusion 
of non-zero entropy, strong interaction, and trapping. We argue that the suppression of transport 
can be thought of as localization of Hubbard-band quasiparticles. We construct a theory of 
transport of Hubbard-band quasiparticles tailored to trapped optical lattice experiments. We 
compare the theory directly with center-of- mass transport experiments of Kondov et al. with no 
fitting parameters. The close agreement between theory and experiments shows that the 
suppression of transport is only partly due to finite entropy effects. We argue that the complete 
suppression of transport is consistent with Anderson localization of Hubbard-band quasiparticles. 
The combination of our theoretical framework and optical lattice experiments offers an important 
platform for studying localization in isolated many-body quantum systems.  
 
 

 
 
 
 
Left: Schematic showing disordered lattice sites in a parabolic trapping potential.  The site 
coloring represents a dense core that gives way to zero density at the edges.  The system studied 
here can be thought of as a strongly interacting high temperature paramagnet with a density less 
than one at the center.   
 
Top Right: Disorder averaged center-of-mass velocity as a function of the disorder strength for 
two different entropies. Right Bottom: The circles plot the same as the top panel and the 
diamonds plot experimental data from DeMarco’s group for comparison.  The lines are a guide 
to the eye.   
 
  

Transport of Hubbard-Band Quasiparticles in Disordered Optical Lattices

V. W. Scarola1 and B. DeMarco2

1Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA and
2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Dated: March 26, 2015)

Quantum degenerate gases trapped in optical lattices are ideal testbeds for fundamental physics because
these systems are tunable, well characterized, and isolated from the environment. Controlled disorder can be
introduced to explore suppression of quantum diffusion in the absence of conventional dephasing mechanisms
such as phonons, which are unavoidable in experiments on electronic solids. Recent experiments use transport
of degenerate Fermi gases in optical lattices (Kondov et al. Phys. Rev. Lett. 114, 083002 (2015)) to probe a
particularly extreme regime of strong interaction in what can be modeled as an Anderson-Hubbard model. These
experiments find evidence for an intriguing insulating phase where quantum diffusion is completely suppressed
by strong disorder. Quantitative interpretation of these experiments remains an open problem that requires
inclusion of non-zero entropy, strong interaction, and trapping. We argue that the suppression of transport can be
thought of as localization of Hubbard-band quasiparticles. We construct a theory of transport of Hubbard-band
quasiparticles tailored to trapped optical lattice experiments. We compare the theory directly with center-of-
mass transport experiments of Kondov et al. with no fitting parameters. The close agreement between theory
and experiments shows that the suppression of transport is only partly due to finite entropy effects. We argue that
the complete suppression of transport is consistent with Anderson localization of Hubbard-band quasiparticles.
The combination of our theoretical framework and optical lattice experiments offers an important platform for
studying localization in isolated many-body quantum systems.

PACS numbers: 03.75.Ss, 67.85.-d

I. INTRODUCTION

Understanding the motion of a quantum particle in an oth-
erwise isolated lattice under the influence of an applied field
is central to our understanding of conductivity in electronic
solids. The theory of Anderson localization [1, 2] predicts
that quantum diffusion of a single particle can fail in a dis-
ordered lattice. Above a critical disorder strength, for which
the mobility edge encompasses all states participating in trans-
port [3, 4], strong interference forbids quantum diffusion. An-
derson’s mechanism of localization was first discussed in the
context of as a simplified model designed to treat the propa-
gation of highly excited states of nuclear spin systems but is
has since been applied to a wide variety of other systems [2],
including quantum degenerate atomic gases [5–10]. Disorder-
induced localization is also believed to play a key role in
metal-insulator transitions in a wide-range of materials [2–4].

Subsequent theoretical studies of Anderson localization
found that inclusion of realistic effects, specifically inter-
particle interactions and non-zero temperature [2, 11–15],
pose prominent problems. The competition between Ander-
son localization and strong interaction effects have been stud-
ied with a variety of methods, e.g., quantum Monte Carlo [16],
dynamical mean field theory [14, 17, 18], and related quantum
cluster methods [19]. Refs. [14] and [18], for example, found
a correlated Anderson insulator ground state for large disor-
der strengths indicating that Anderson localization persists in
a strongly interacting limit. A more complete understanding
of the interplay of strong inter-particle interactions and disor-
der is urgently needed to enhance our knowledge of strongly
correlated materials such as high-temperature superconduc-
tors.

Related work by Basko et al. [20] has triggered consider-

FIG. 1. (Color online) Schematic showing disordered lattice sites in
a parabolic trapping potential. The site coloring represents a dense
core that gives way to zero density at the edges. The system stud-
ied here can be thought of as a strongly interacting high temperature
paramagnet with a density less than one at the center. An applied
shift of the external trapping potential along the x-direction for a time
⌧ = ⌧P forces center-of-mass motion along the x direction only if
the atoms are mobile. ⌧P is chosen to be short on the time scale of
the inverse trapping frequency.

able interest in the interplay between interactions, tempera-
ture, and Anderson localization. Their work indicates that a
correlated Anderson insulator is stable at non-zero tempera-
tures and corresponds to a many-body localized state. This is
surprising because one might expect that interactions lead to
dephasing effects that mimic the effects of heat and particle
number reservoirs [21] that are known to lead to conduction
via variable range hopping in certain solids [4]. Interactions
would be expected to lead to effective reservoirs even in the
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FIG. 6. (Color online) Top: Disorder averaged center-of-mass veloc-
ity as a function of the disorder strength for two different entropies.
Here the initial state correlation functions are estimated in the lo-
cal density approximation (using Eqs. (28) and (29) in combination
with a high temperature series expansion) and time evolved in the
trap (using Eqs. (13) and (15)). Model parameters are taken from the
6ER data in Table I. The S/N = 1.5kB results are plotted only for
large disorder strengths because here adiabatic heating allows access
to temperatures high enough to be consistent with the approxima-
tions made in preparing the initial state. Bottom: The circles plot
the same as the top panel and the diamonds plot experimental data
from Ref. [39] for comparison. The lines are a guide to the eye. The
error bars on the numerical simulations are the standard error found
from disorder averaging, while the experimental error bars are the
standard error in the mean for 7-9 measurements averaged for each
point.

potentials according to Eq. (3). 3) We then self-consistently
adjust µ0 and T so that the particle number and entropy match
the values set in step 1. This is done using a high temperature
series expansion in the local density approximation. The se-
ries expansion is controlled a these temperatures because we
can check higher orders [53, 54]. We find that 8th order in the
expansion is sufficient for parameters considered here. The
Hubbard approximation gives identical results for thermody-
namic functions. 4) We then use Eqs. (28) and (29) to compute
the initial state correlation functions. 5) We then return to step
1 to repeat the process with a smaller trap frequency.

We find that adiabatic heating in the initial state increases
the temperature by no more than a factor of 2. For all sys-
tem sizes studied we find that the temperature remains nearly
constant as function of system size. At the largest disorder
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FIG. 7. (Color online) The same as Fig. 6 but for the 7ER data in
Table I. Here the comparison between theory and experiment is better
because U/t is larger.

strengths, �E ⇠ 1.5ER, we still find kBT < 4t. We con-
clude that adiabatic heating increases the temperature but the
temperature is still well below the bandwidth, 12t.

Given the initial state, we numerically time evolve correla-
tion functions according to Eqs. (13) and Eqs. (15), extrapo-
late to the thermodynamic limit, and disorder average. Figs. 6
and 7 plot VC.O.M. versus disorder strength for the 6 ER and
the 7 ER parameters, respectively. The data result from time
evolving the initial correlators, Eqs. (28) and (29). The top
panels show results for two different entropies. The larger en-
tropy leads to temperatures with T & t. The approximations
made here (paramagnetic order, no spin correlations, and the
local density approximation) are therefore valid at all disorder
strengths for the higher entropy. The top panels also compare
low entropy data that is consistent with the entropies used in
experiments (see Table I). Here adiabatic heating increases the
temperature to T & t only for �E & 0.2ER. Below these
disorder strengths the approximations made here break down
because the temperatures are low enough to introduce poles
in thermodynamic functions using either the high temperature
series expansion (even out to 10th order) or the Hubbard ap-
proximation.

The top panels of Figs. 6 and 7 clearly show a suppres-
sion of the center-of-mass velocity with disorder. The map-
ping to quasiparticles in the lowest Hubbard band allows de-
lineation of the sources of the suppression: 1) As exponen-
tially distributed disorder is increased, the bias in the distri-

DISTRIBUTION A: Distribution approved for public release.
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3.2 STABILITY OF EMERGENT KINETICS IN OPTICAL LATTICES WITH 
ARTIFICIAL SPIN-ORBIT COUPLING 

M. Chen and V.W. Scarola Phys. Rev. A 94, 43601 (2016). 
 
 

Artificial spin-orbit coupling in optical lattices can be engineered to tune band structure into 
extreme regimes where the single-particle band flattens leaving only inter-particle interactions to 
define many-body states of matter. Lin et al. [Phys. Rev. Lett 112, 110404 (2014)] showed that 
under such conditions interactions lead to a Wigner crystal of fermionic atoms under approximate 
conditions: no bandwidth or band mixing. The excitations were shown to possess emergent 
kinetics with fractionalized charge derived entirely from interactions. In this work we use 
numerical exact diagonalization to study a more realistic model with non-zero bandwidth and band 
mixing. We map out the stability phase diagram of the Wigner crystal. We find that emergent 
properties of the Wigner crystal excitations remain stable for realistic experimental parameters. 
Our results validate the approximations made by Lin et al. and define parameter regimes where 
strong interaction effects generate emergent kinetics in optical lattices. 

 

 
Left: Many-body energies versus total wavevector obtained from diagonalization. The gap shows 
stability of a Wigner crystal.  The dispersive excitation shows emergent kinetics.  The data collapse 
shows that the ground and first excited states are already in the thermodynamic limit.  Right: 
Stability phase diagram of the Wigner crystal with emergent kinetics plotted as function of both 
the single-particle band gap and the bandwidth.  The color coding plots the size of the many-body 
gap obtained from diagonalization.  The circles plot the points where the many-body gap vanishes 
and the line is a guide to the eye.  The Wigner crystal is stable within the lobe.  Outside the lobe 
we have a conventional Luttinger liquid with a gap set by finite-size effects. 
 
  

6

FIG. 7. Characteristic many-body spectrum of Eq. (5) com-
puted for a weakly interacting case (left panel, U = t/2) and
the non-interacting case (right panel, U = 0). We have also
set N = 6, L = 12, Ω = 2.5t, and kR = kL/2. These pa-
rameters lead to a flatness ratio used in the other figures as
well, F ≈ 7. A comparison of both panels shows that the
spectra are qualitatively similar, i.e., states occur at the same
wavevectors and nearly the same energies. We can therefore
think of the ground state in both cases as a partially filled
band of weakly interacting fermions. The weakly interacting
case conforms to conventional Luttinger liquid theory.

IV. PHASE DIAGRAM AND STABILITY

We now map out the stability phase diagram of the
interaction-only spinor Wigner crystal phase of Eq. (5).
Instabilities arise as we increase the single-particle band-
width. For large W the particles gain in energy by nest-
ing in the single-particle band minima. There is therefore
a transition from the interaction-dominated regime (with
emergent kinetics) to a weakly interacting state (a con-
ventional Luttinger liquid) as the bandwidth is increased.
Increasing the single-particle band gap also drives a tran-
sition. At first we expect that increasing ∆s might favor
the approximation that led to emergent kinetics. But
note that large F implies that the lowest-band Wannier
functions have little overlap between nearest neighbor
sites [24]. As a result, increasing F decreases density
assisted hopping terms between neighbors and therefore
suppresses emergent kinetics. We thus expect a transi-
tion to a weakly interacting regime as ∆s and therefore
F is increased.

We increase W and diagonalize Eq. (5) to find the low-
est energy eigenstates. Note that increasing W impacts
H0 directly and Hint indirectly through the change in
basis states χkα. Fig. 6 plots the many-body gap as a
function of the bandwidth. We see that the many-body
gap starts from zero at W = 0. For W → 0 we have
F → ∞ and Eq. (6) is a good approximation to Eq. (5).
But in this limit the are essentially no nearest neighbor
terms to lift the massive degeneracy of spinless particles
in the lowest flat band. Here the flat band remains gap-
less. As we increase W nearest neighbor terms interac-
tion terms (not single-particle terms) drive the formation

FIG. 8. Stability phase diagram of the Wigner crystal
with emergent kinetics plotted as function of both the single-
particle band gap and the bandwidth. The color coding plots
the size of the many-body gap obtained from diagonalization
of Eq. (5) for N = 6, L = 12, and kR = kL/2. The circles
plot the points where the many-body gap vanishes and the
line is a guide to the eye. The Wigner crystal is stable within
the lobe. Outside the lobe we have a conventional Luttinger
liquid with a gap set by finite-size effects.

of a spinor Wigner crystal with emergent kinetics and the
many-body gap opens.

Upon increasing W further the many-body gap closes
and a new state arises in Fig. 6. Here the Wigner crys-
tal destabilizes to a more conventional state where H0

and interactions compete in Eq. (5). Conventional Lut-
tinger liquid theory can be used to show that the particles
tend to sit about the single-particle band minimum. The
ground state in the large W regime can be understood
by filling the lowest single-particle band with weakly in-
teracting fermions. Characteristic spectra that arise for
large W are shown in the left panel of Fig. 7. The right
panel shows that non-interacting spectra give nearly the
same results. In both panels the gaps are due to finite-
size effects and there is no ground state degeneracy since
filling of the lowest single-particle band leads to a unique
K. We can therefore understand the large W limit in
a weakly interacting picture of band filling of spinless
fermions.

We culminate our findings in a phase diagram that
plots the stability of the Wigner crystal and its emer-
gent kinetics. The shading in Fig. 8 plots the size of the
many-body gap as a function of both the single-particle
bandwidth and band gap. The circles denote critical
points where the many-body gap closes and the ground
state degeneracy changes from two (Wigner crystal with
emergent kinetics) to one (conventional Luttinger liquid
regime). Inside the lobe nearest neighbor interactions es-
tablish the many-body gap but outside the lobe the gap
is, for our finite size simulations, set by the finite size of
the system.

5

FIG. 5. The same as Fig. 3 but for the full physical model,
Eq. (5), where the squares (diamonds) are for N = 6 (N = 8)
particles on L = 12 (L = 16) sites. The data collapse shows
that the ground and first excited states are already in the
thermodynamic limit.

crystal of spinors that can be generated by just the diag-
onal density-density interaction term in Eq. (6). The two
degenerate states arise because of the sublattice degen-
eracy for the two ways of placing the crystal on the one-
dimensional lattice. There is a gap to the lowest band of
excitations. Ref. [24] pointed out that these states show
emergent kinetics due to the finite many-body bandwidth
driven entirely by off-diagonal terms in Eq. (6). The fo-
cus of our work here is to probe the stability of this low-
energy structure as we introduce a second band and allow
non-zero bandwidth.
The top-right and bottom-left panels of Fig. 3 show

the result of adding finite bandwidth (ε = 1) and band
mixing (η = 1), respectively. Here we see that setting
ε = 1 does very little to the many-body spectrum at low
energies. For F = 7 the band is so flat that the small
but finite single-particle dispersion does not perturb the
large interaction much. But for ε = 0 and η = 1 we see
that bringing two flat bands relatively near each other
causes the many-body gap, ∆m, to decrease by a factor
of ≈ 20 while keeping the structure of the low energy
states qualitatively the same.
The bottom-right panel of Fig. 3 shows the spectrum

for the full model, H . Here we see that including both fi-
nite bandwidth and band mixing not only lowers the gap
appreciably but the many-body excited states are shifted
in K-space so that the many-body dispersion has a min-
imum at K = 0 instead of K = ±π/2. Here the non-zero
single-particle dispersion mixed the lowest energy many-
body excited states. Otherwise the qualitative features
of the low energy states remains the same as we go from
ε = η = 0 to ε = η = 1.

The top panel of Fig. 4 shows the decrease in the many-
body gap as the single-particle band gap is lowered. Here
we keep a non-zero single-particle dispersion (ε = 1) but

FIG. 6. The many-body energy gap plotted as function of
bandwidth. The parameters are the same as Fig. 3 but for
the full physical model, Eq. (5), with the band gap held con-
stant, ∆s = 0.08U . Here we see that at zero bandwidth the
single-particle basis states have no spread and, as a result,
the interaction remains onsite and cannot lift the degeneracy.
But as the bandwidth increases, the nearest-neighbor inter-
action terms lift the degeneracy to reveal the Wigner crystal
ground state and opens a gap to a set of emergent excita-
tions captured by an effective Luttinger liquid theory. But as
the bandwidth increases further the gap closes as the Wigner
crystal transitions to a conventional Luttinger liquid regime.

we tune the single-particle gap from infinity to ∆s. The
gap never drops to zero thus signaling that the low en-
ergy states in the full Hamiltonian, H , are adiabatically
connected to the those of the projected Hamiltonian, HP .

The mixing of the many-body excited states drives the
lowering of the gap. To see this we plot the overlap of the
lowest two many-body states in the lowest panel of Fig. 4.
Here we see that the ground state remains unperturbed
but the mixing of the excited states somewhat lowers the
overlaps from the single-band (η = 0) limit. Nonetheless
we see that the overlap remains large and does not show
any cusps. There are therefore no transitions as we lower
the band gap for F = 7. In the following sections we will
vary F to find transitions (where the many-body gap
vanishes).

We have checked that our results presented here do not
change as we increase particle number and are therefore
valid in the thermodynamic limit. Fig. 5 shows data
collapse in the spectrum. The low energy states fall on
one another indicating a consistency in scaling to the
thermodynamic limit. This was also found for HP in
Ref. [24] further showing that the low energy eigenstates
of both H and HP are in the same universality class.
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3.3 SUPERFLUIDITY IN THE ABSENCE OF KINETICS IN SPIN-ORBIT-COUPLED 
OPTICAL LATTICES 

Hoi-Yin Hui, Y, Zhang, C. Zhang, and V. W. Scarola Phys. Rev. A 95, 33603 (2017). 
 
 

At low temperatures bosons typically condense to minimize their single-particle kinetic energy 
while interactions stabilize superfluidity. Optical lattices with artificial spin-orbit coupling 
challenge this paradigm because here kinetic energy can be quenched in an extreme regime 
where the single-particle band flattens. To probe the fate of superfluidity in the absence of 
kinetics we construct and numerically solve interaction-only tight-binding models in flat bands. 
We find that novel superfluid states arise entirely from interactions operating in quenched kinetic 
energy bands, thus revealing a distinct and unexpected condensation mechanism. Our results 
have important implications for the identification of quantum condensed phases of ultracold 
bosons beyond conventional paradigms. 

 
 

 
  

 
 

 
 
 
 

 
 
 
 
Left: Single particle energy versus wave vector for the lowest two energy bands of (a) the one-
dimensional model and (b) the two-dimensional model of spin-orbit coupled atoms in optical 
lattices.  Flat bands are found at low energies.  
 
Right: The magnitude of the superfluid order parameter against chemical potential and effective 
tunneling obtained from mean field theory. The superfluid (SF) and Mott insulator (MI) derive 
entirely from interactions. The inset shows the spin texture in a unit cell for the 2D system.  
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Figure 2. Energy versus wave vector for the lowest two
energy bands of Eq. (2) with kR = 2⇡/a, Vlat = ER, for (a)
the one-dimensional system, with ⌦⇤ = 8.88ER, and (b) the
two-dimensional system, with ⌦⇤ = 8.31ER.

an ordinary optical lattice with kinetics). We also go be-
yond mean-field to probe the role of quantum fluctuations
by using density matrix renormalization group (DMRG)
[20–22] to show that the SF survives quantum fluctua-
tions. Our central finding is that interactions themselves
define an effective band structure in which bosons con-
dense to reveal a new type of SF derived entirely from in-
teractions that is fundamentally different from SFs in the
presence of SOC (See, e.g., Refs. [23–30]). The new type
of interaction-only SF has distintive excitations which
can be used to discern it from ordinary SFs.
Continuum Model: We consider a two-component
spin-orbit-coupled Bose-Einstein condensate in a d-
dimensional optical lattice, described by the Hamiltonian

Ĥ =

ˆ
drb̂† (r)H0 (r) b̂ (r)

+
U0

2

ˆ
dr

X

��0

b̂
†
� (r) b̂

†
�0 (r) b̂�0 (r) b̂� (r) (1)

H0 =
~2k2

2m
+

~kR
m

F · � + ⌦�z

+Vlat

dX

i=1

sin2
⇡r · ei

a
, (2)

with b̂
† =

⇣
b̂
†
", b̂

†
#

⌘
where b̂

†
� (r) creates a particle with

spin � 2 {", #} at position r (with unit vectors ei defin-
ing chain and square lattices for d = 1 and 2, respec-
tively), and U0 is the s-wave interaction strength. In the
single-particle Hamiltonian, H0, m is the mass of each
particle, k is the momentum operator, kR characterizes
the strength of the SOC induced by the Raman lasers, ⌦
is the Rabi frequency which acts as the Zeeman field, and
Vlat is the depth of the optical lattice. In one dimension:
k = F = �i@x and � = �x, while in the two dimensions:
k = (�i@x,�i@y), F = (i@y,�i@x) and � = (�x,�y),
in which the Pauli matrices � act on the spin sectors of
b
†. For convenience, we define the lattice recoil energy
ER ⌘ (⇡/a)2~2/(2m) to express some of the parameters.
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Figure 3. (a) The flatness ratio (defined as the ratio of the gap
between the two lowest bands to the width of the lowest band
[18]) versus Rabi frequency for kR = 2⇡/a and Vlat = ER in
one dimension. (b) The hopping parameters t and t0 against
the Rabbi frequency. (c) The ratio of interaction parameters
V , P and A to U . The right column (d-f) plots the same
quantities for a two-dimensional system (with the same kR
and Vlat). Choosing ⌦ to lie at the peak leads to Eq. (3).

Tight-binding Model: We reduce the above continuum
model to a tight-binding model and project the interac-
tions to the flat Bloch band. In the absence of interac-
tion, the Bloch functions  k (r) = uk (r) eik·r are found
by expanding uk (r) in plane waves with periodicity com-
mensurate with that of the lattice. For given kR and Vlat,
an optimal value of ⌦, ⌦⇤, produces a lowest band with
the highest flatness ratio [18]. Fig. 2 shows the band
structures in d = 1 and 2 where ⌦ = ⌦⇤, with kR = 2⇡/a
and Vlat = ER. The dependence of F on ⌦ for the same
parameters is plotted in Figs. 3(a) and (d), which shows
that a high flatness ratio [the large peaks in Figs. 3(a) and
(d)] is achievable with moderate parameter strengths.

We construct the Wannier functions to ob-
tain the tight-binding model. We define a two-
component Wannier function localized at cell Ri,
w (r �Ri) = [w" (r �Ri) , w# (r �Ri)]

T , with
w� (r �Ri) =

P
k e

ik·(r�Ri)u�k (r), where u�k (r)
are the Bloch functions for the lowest band. The
phases of the Bloch functions are fixed by requiring
the spread of the Wannier function,

⌦
r2

↵
� hri2 (where⌦

rl
↵

⌘
P

�k hu�k| (irk)
l |u�ki), to be minimized [31].

The tight-binding model is constructed by effecting
the transformation to the flat-band spinor basis states:
â
†
i = ⌃�

´
drw� (r �Ri) b̂†� (r) onto Eq. (1), with

which the tight-binding parameters can then be readily
computed by taking the overlaps of w (r) [32].

The non-interacting part of the Hamiltonian leads to
hopping terms (�t

P
hiji â

†
i âj + h.c., where hiji denotes

nearest-neighbors, and �t
0 P

hhijii â
†
i âj + h.c., where

3

hhijii denotes next-nearest-neighbors) and the chemical
potential term (�µ

P
i â

†
i âi). For a range of parameter

values, we have numerically computed t, t0 and µ and ver-
ified that the band dispersion resulting from these terms
agrees very well with the band structure obtained directly
from the plane-wave expansion of Eq. (2) (to within 5%),
indicating the adequacy of our tight-binding approxima-
tion. At kR = 2⇡/a and Vlat = ER, the values of t and t

0

are plotted against ⌦ in Figs. 3(b) and 3(e). Since at the
optimal flatness point (⌦ = ⌦⇤) t and t

0 are vanishingly
small

�
< 10�4

ER

�
, we drop the hopping terms in the ef-

fective tight-binding model to thus arrive at a flat band
model.

When truncated to the nearest-neighbor terms, the in-
teraction [U0 in Eq. (1)] in general leads to four terms
in the tight-binding model, which are the on-site inter-
action (U/2)

P
i n̂i (n̂i � 1) (where n̂i = â

†
i âi), nearest-

neighbor interaction V
P

hiji n̂in̂j , density-assisted hop-

ping �A
P

hiji

h
â
†
j (n̂i + n̂j) âi + h.c.

i
and pair hopping

P
P

hiji

⇣
â
†
i â

†
i âj âj + h.c.

⌘
. Their dependencies on ⌦ for

kR = 2⇡/a and Vlat = ER are plotted in Figs. 3(c) and
3(f). Since P is much smaller than V or A near ⌦⇤, we
drop the pair-hopping term in the tight-binding model.

The nearest-neighbor interaction V term is a diagonal
term (in the site basis) in the Hamiltonian matrix. It
therefore does not induce entanglement in the system.
The V term is well known to lead to additional phases:
charge-density wave and supersolids [21, 33, 34] near half
integer densities. In the following we exclude the nearest-
neighbor interaction term which is a good approximation
near integer densityies. We will include it in future work
when studying other densities [35].

We focus our analysis to the most sizable off-diagonal
term, the density-assisted hopping term, which leads to
our interaction-only tight-binding model:

ĤTB = �µ

X

i

n̂i +
U

2

X

i

n̂i (n̂i � 1)

�A

X

hiji

h
â
†
j (n̂i + n̂j) âi + h.c.

i
, (3)

where A ⇡ 0.01U for the parameters we have chosen
(see Fig. 3). A can be varied with Vlat and kR, and the
corresponding optimal value of ⌦, in Eq. (2).

We have derived this model by projecting the interac-
tion into the lowest flat band and focusing on the domi-
nate off-diagonal terms. Eq. (3) is valid for both one and
two dimensional models with isotropic (Rashba) SOC
near integer densities, and it defines the focus of the rest
of our study.
Mean-field Phase Diagram: We now turn to an analy-
sis of the phases of Eq. (3). We first adopt a mean-field
approach which ignores quantum fluctuations. Quantum
fluctuations become more important in low-dimensions.
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Figure 4. The magnitude of the SF order parameter, |hâi|,
against µ and A in the model Eq. (3). z = 2 (z = 4) is the
coordination number in one (two) dimensions. The MI phase
has |hâi| = 0 and the SF phase has |hâi| 6= 0. The inset shows
the SF spin texture [32] in a unit cell for the two-dimensional
system in the SF phase at its optimal flatness point as in
Fig. 2b, leading to A ⇡ 0.01U .

In the following section we shall examine the role of quan-
tum fluctuations using DMRG in one dimension. We will
show that the mean-field approach presented in this sec-
tion gives qualitatively correct results.

We construct the mean-field phase diagram of Eq. (3)
using the Gutzwiller ansatz wavefunction, | i =Q

i

P
n f

i
n |nii (where |nii is the Fock state with n bosons

at the i
th site) [6, 36]. We obtain the mean-field ground

state by minimizing h | ĤTB | i with respect to f
i
n. Sim-

ilar to the conventional Bose-Hubbard model, we com-
pute hâi for the ground state to distinguish between the
MI phase (with hâi = 0) and SF phase (with hâi 6= 0).

The resulting phase diagram (Fig. 4), with a MI lobe
at low A and SF at large A, closely resembles that of
the conventional Bose-Hubbard model [37]. This can
be understood in a mean-field decoupling of the density-
assisted hopping term [proportional to A in Eq. (3)]:

â
†
i n̂iâj ! hn̂i â†i âj .

Here the density-assisted hopping plays the role of con-
ventional hopping to yield an effective band structure
(with an effective hopping of strength hn̂iA). The mean-
field phase diagram indicates that bosons still condense
and form a SF phase even in the absence of kinetics. Af-
ter condensing into the band minimum of the effective
band, the residual interactions support the formation of
a SF.

There are similarities and differences between the SF
discussed here and the SFs typically discussed in the
ordinary Bose-Hubbard model of optical lattices with
SOC. The mean-field SF order parameter hâi defines
a spinor when decomposed in terms of the original
spinful bosons since hâii =

´
dr[w" (r �Ri) hb̂" (r)i +

w# (r �Ri) hb̂# (r)i]. The SF discussed here therefore
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3.4 THERMOMETRY FOR LAUGHLIN STATES OF ULTRACOLD ATOMS 
 

P.T. Raum, V.W. Scarola Phys. Rev. Lett. 118, 115302 (2017)  
 

Cooling atomic gases into strongly correlated quantum phases requires estimates of the entropy 
to perform thermometry and establish viability. It is currently unknown how cold chiral spin 
liquids and other topological phases need to be in order to be realized.  The chiral spin liquid 
maps directly onto Laughlin states of bosons. We construct an ansatz partition function for 
models of Laughlin states of atomic gases by combining high temperature series expansions with 
exact diagonalization. Using the ansatz we find that entropies required to observe Laughlin 
correlations, and therefore chiral spin liquids, with bosonic gases are within reach of current 
cooling capabilities. 
 
 
 

 
 
Left: Energy of 8 fermions (bosons) as a function of total wavevector in the lowest Landau level.  
The ground state is the k=0 Laughlin state set to zero energy.  The schematic depicts example 
excitations.  The bosonic Laughlin state can be thought of as one filled level of CFs (bosons 
attached to one flux quantum).  Low energy excitations are CF particle-hole pairs. The 
histograms show nearly Gaussian state counting.  
 
Right: The main panels plot the entropy per particle versus temperature for bosons.  The solid 
lines are obtained from our ansatz. The symbols are other exact results. The agreement between 
the symbols and the lines shows that the ansatz accurately captures the low and high T limits. 
The inset plots the heat capacity from the ansatz in the thermodynamic limit.  The number 
S/N~0.8 indicates the first calculation of the entropy needed to realize a Laughlin state with cold 
atoms.   
 
  

degeneracy g we have C=N ∼ ½gðΔT=TÞ2 þ OðT3Þ%e−ΔT=T .
We also find [48] that increasing N trends the peak from
diagonalization toward the thermodynamic limit of the
ansatz.
We also test ZA in the thermodynamic limit. We study the

entropy because of its importance in atomic gas thermom-
etry. We use exact diagonalization at finite N. We fix T and
use finite size scaling to obtain the entropy at very low T
and very high T [48]. For T ∼ ΔT we cannot predict an N
scaling function.
The top panel of Fig. 3 plots a comparison between the

entropy obtained from ZA and the exact results for finite-
size scaling of the entropy. Here, we see that the ansatz
agrees well with the extrapolations at low and high T.
But the symbols are not accurate for T ∼ ΔT because N
scaling breaks down here. The bottom panel of Fig. 3 plots
a comparison between the entropy obtained from ZA and
two limits: the low T limit obtained from the naive model
[48] and the high T limit from the first term of the cumulant
expansion (S ¼ κ0). The deviation between the dashed
and solid lines shows the importance of incorporating

excitations beyond the naive model even for T ∼ ΔT=5
[48]. In both panels we see that the ansatz extrapolates
between both low and high T limits thus allowing pre-
dictions for thermodynamic functions even for T ∼ ΔT.
Laughlin entropy.—We use the validated ansatz to

predict the entropy at which Laughlin correlations set in.
We consider a characteristic temperature TL defined as the
temperature at which the heat capacity peaks due to the
energy gap. The corresponding entropy is SL.
The inset of Fig. 3 plots the ansatz heat capacity versus

temperature to reveal the location of the peak and therefore
TL. The bottom panel of Fig. 3 shows that we find
SL=N ≈ 0.799ð2Þ, where the error propagates from uncer-
tainty in the ansatz fitting parameters. We have checked that
artificial errors in the cumulants have linear impact on
entropy; e.g., a 5% variation of κ0 led to a 5% variation in
SL. The SL we find is much larger than the naive estimate
therefore showing the cooling effect of the continuum. The
entropy found here establishes a goal for experiments to
reliably cool below TL.
Experimental implications.—We can compare our esti-

mate for the entropy needed to cool into FQH states with
bosons with current capabilities. Evaporative cooling can
reach entropies as low as S=N ≈ 0.35 [8] which, according
to the ansatz, corresponds to T ≈ 0.5TL. We have therefore
found that the entropy per particle required to lower the
system temperature below TL is within reach.
Our estimates here only apply to neutral excitations

within the bulk in the thermodynamic limit whereas edge
effects can lower T at fixed S (adiabatic cooling) in finite
sized systems. Introducing edges in a finite sized experi-
ment should make the entropy budget more favorable [2].
For Ω ≠ ω, edge states interplay with parabolic trapping.
The (nearly) gapless edge states accommodate more
entropy than the bulk [an Oð

ffiffiffiffi
N

p
Þ impact on the entropy

for a small number of edge modes]. Introducing edges
should therefore adiabatically lower temperature. SL should
then increase once trap effects are included in modeling.
Moving the filling away from 1=ð1 þ pÞ introduces

quasiparticles to allow additional cooling. The topological
nature of Laughlin states implies that the total entropy
includes a factor due to quasiparticle degeneracy, yielding
SD þ S, where SD ¼ Nq logðdÞ, d ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
p þ 1

p
is the quan-

tum dimension, and Nq is the number of additional
quasiparticles causing deviation from filling 1=ð1 þ pÞ
[21]. The T-independent SD term allows adiabatic cooling
via quasiparticles [75].
Summary.—We have constructed and validated a

Laughlin state ansatz partition function for atomic gases.
Using our ansatz we find that the continuum of excited
states alters the entropy-temperature relationship (in com-
parison to that of a naive gapped model) to reveal that
currently attainable entropies with bosons are low enough
to cool below the heat capacity peak. Further work would
allow thermometry on small system sizes by including edge

FIG. 3. Top: entropy per particle versus temperature for bosons.
The solid line is obtained from the ansatz (2), with parameters
derived from the cumulants in Table I. The circles (crosses) are
obtained from finite N extrapolations of the entropy at fixed low
(high) T [48]. The agreement between the symbols and the lines
shows that the ansatz accurately captures the low and high T
limits. Top inset: low temperature enlargement. Bottom: the same
but the dashed line plots the entropy per particle for the naive
model [48]. The dot-dashed line plots the high T limit from the
first term of the cumulant expansion (S ¼ κ0). Bottom inset: heat
capacity from the ansatz in the thermodynamic limit. The vertical
dotted line denotes the temperature TL. The horizontal dotted line
in the main panel plots the corresponding entropy SL determined
from the ansatz.
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gases [8] are low enough to cool below the heat capacity
peak. Remarkably, the energy distribution of the excited
states effectively lowers the temperature of the Schottky-
type peak at fixed entropy in comparison to the naive
estimate. Our method can be used to construct thermody-
namic functions of other FQH states.
Model.—We consider a Hamiltonian of N particles of

mass M in two-dimensions subjected to an artificial
magnetic field oriented perpendicular to the x-y plane:

H ¼
XN

i¼1

!
jpi − q"Ai=cj2

2M
þ Mðω2 −Ω2Þ

2
r2i

"

þ bn
XN

i<j

∇2nδðri − rjÞ; ð1Þ

where pi is the planar momentum, Ai ¼ ðB" × riÞ=2 is
the vector potential in the symmetric gauge,Ω≡ q"B"=2M
[22,56], ri ¼ ðxi; yiÞ, and B" (q") is the artificial magnetic
field (charge). The effective magnetic length is l0 ¼
ðℏc=q"B"Þ1=2. In this gauge the concentric ringlike basis
states define the disk geometry. We assume a strong trap
along the z direction and an external parabolic confinement
in the x-y plane with a trapping frequency ω. To focus
on bulk states we set ω ¼ Ω where the field cancels the
effect of the trap [22,56] and discuss edge effects at the end.
We work in units of l0 ¼ kB ¼ 1. The s-wave (p-wave)
interaction for n ¼ 0 (n ¼ 1) generates repulsion and
equates to the pseudopotential formulation [59]. Setting
bn ¼ 1 defines our energy unit.

The magnetic field must be large enough to restrict states
to the lowest Landau level. In this approximation the
Laughlin state is the exact ground state [59,60] of
Eq. (1) for bosons (fermions) with n ¼ 0 (n ¼ 1) at
ν ¼ 1=2 ð1=3Þ, where ν is the filling factor, the number
of particles per flux quanta. In the following, when
referring to bosons and fermions, we imply results at
ν ¼ 1=2 and ν ¼ 1=3 with n ¼ 0 and n ¼ 1, respectively.

H approximates several physical systems proposed for
realizing FQH states with ultracold atoms. We consider
an atomic gas with a known entropy that is adiabatically
loaded into a setup designed to generate q"B". For example,
rotation generates q"B" from the Coriolis effect [22,61–66].
Artificial gauge fields in lattices offer another example. H
becomes accurate even in lattices when the flux through
each unit cell is small (see, e.g., Ref [67]).
The Laughlin states form a subset of a larger class of

states, the CF states, that accurately capture the low energy
physics. We think of a CF as a weakly interacting
quasiparticle defined by attaching flux quanta to the
original particles. The Laughlin ground state becomes a
filled effective level of CFs. Low energy excitations are
then particle-hole pairs of CFs which are Oð1Þ different in
energy from the ground state (see the schematic inset to
Fig. 1) and proliferate as temperatures increase to the heat

capacity peak. Near or above the peak, distinct excitations
[OðNÞ different from the ground state] start to dominate.
To study thermodynamics over the entire temperature

range we use Eq. (1) to compute the energy in the
spherical geometry, the geometry we use throughout.
The spherical geometry maps to the disk geometry in the
N → ∞ limit [59,68,69] and allows us to focus on bulk
states. Figure 1 shows a gap to a set of low energy
modes, CF particle-hole pairs. But the high energy states
form a continuum, which, as we will see, distinguishes
the thermodynamics of Laughlin states from the naive
model [48].
We take a statistical approach to incorporating the high

energy continuum into the thermodynamics. The histo-
grams in Fig. 1 plot the distribution of energies. We will
rely on the observation that the continuum forms a nearly
Gaussian distribution. (Note that work in Ref. [70] implies
that large vortices lead to the histogram peaks for bosons
in Fig. 1.)
Figure 1 shows only the excitations at fixed N. In solids

nearby particle reservoirs lead to the addition or subtraction
of additional particles (charged excitations) but in trapped
atomic gases particle number is essentially fixed. We
therefore focus our analysis to fixedN (neutral excitations).
We will also focus on uniform bulk states, which implies
that our results are relevant for systems with a small number
of occupied edge states.
H separates into relative and center of mass coordinates

allowing us to focus on excitations in the relative coor-
dinates. The total partition function in the canonical
ensemble becomes ZTOT ¼ ZCM × Z, where ZCM (Z) is

FIG. 1. Energy of N ¼ 8 fermions (bosons) at ν ¼ 1=3
ðν ¼ 1=2Þ as a function of total wave vector for n ¼ 1 (n ¼ 0)
in Eq. (1) in the lowest Landau level. The ground state is the
k ¼ 0 Laughlin state set to zero energy. ΔT is the transport gap.
The schematic depicts example excitations. The bosonic Laugh-
lin state can be thought of as one filled level of CFs (bosons
attached to one flux quantum). Low energy excitations are CF
particle-hole pairs modeled as excitations with energy E1 ∼ΔT.
We consider additional excitations at higher energies, e.g., E2,
where bosons are not necessarily bound to flux quanta. The
histograms show nearly Gaussian state counting.
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3.5 CHIRAL TOPOLOGICAL PHASES IN OPTICAL LATTICES WITHOUT 
SYNTHETIC FIELDS 

Hoi-Yin Hui, Mengsu Chen,  Sumanta Tewari, V. W. Scarola 
Phys. Rev. A 98, 023609 (2018).  arXiv: 1712.10238  

 
Synthetic fields applied to ultracold quantum gases can realize topological phases that transcend 
conventional Bose and Fermi-liquid paradigms. Raman laser beams in particular are under 
scrutiny as a route to create synthetic fields in neutral gases to mimic ordinary magnetic and 
electric fields acting on charged matter. Yet external laser beams can impose heating and losses 
that make cooling into many-body topological phases challenging. We propose that atomic or 
molecular dipoles placed in optical lattices can realize a topological phase without synthetic 
fields by placing them in certain frustrated lattices. We use numerical modeling on a specific 
example to show that the interactions between dipolar fermions placed in a kagome optical 
lattice spontaneously break time-reversal symmetry to lead to a topological Mott insulator, a 
chiral topological phase generated entirely by interactions. We estimate realistic entropy and 
trapping parameters to argue that this intriguing phase of matter can be probed with quantum 
gases using a combination of recently implemented technologies.  

 

 

Left: Plot of a kagome optical lattice potential (as implemented in the Stamper-Kurn group) as a 
function of position in the x-y plane. The two particles represent schematics of dipoles separated 
in the plane by |r − r′| with moments oriented perpendicular to the plane to ensure mutual 
repulsion.  

Right: The mean-field phase diagram of dipoles in a kagome optical lattice obtained by plotting 
the magnitude of the current against temperature and interaction strength. The white line uses the 
density difference between sites, δn, to plot the boundary between the charge density wave (δn > 
0) and the normal phase (an absence of order with δn = 0).   This phase diagram shows that there 
is a topological phase accessible with dipoles in optical lattices that does not rely on synthetic 
fields. 
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FIG. 1. Plot of a kagome optical lattice potential [38] (see Ap-

pendix A for the explicit formula) as a function of position in the x-y

plane. The two particles represent schematics of dipoles separated

in the plane by |r − r ′| with moments oriented perpendicular to the

plane to ensure mutual repulsion.

quantum degeneracy, e.g., 161Dy [47]. We estimate that the
entropy required to reach the topological phase is ∼ 0.15kB

per particle, potentially within reach of cooling capabilities
with atomic gas microscopes [61]. Our work therefore shows
that a combination of recently implemented technologies with
atomic and molecular condensates can be used to realize and
observe a topological Mott insulator.

This paper is organized as follows. In Sec. II, we set
up the problem and describe our ED and MFT methods. In
Sec. III, we present the results of our analysis, demonstrating
the emergence of the TMIP under suitable conditions. Finally,
in Sec. IV, we summarize our findings with a discussion of
prospects for experimentally realizing the TMIP with ultracold
atoms in optical lattices. The appendices discuss the explicit
formula of the optical lattice potential, the effects of finite
spread of Wannier functions on the dipolar interaction, and
the role of finite-size effects in the calculation of current.

II. MODEL AND METHODS

We consider an optical lattice defined by three bichromatic
laser beams intersecting at 120◦ to define a kagome pattern
[38] (Fig. 1). For a sufficiently deep optical lattice, we may
safely assume that all particles reside in the lowest three Bloch
bands. If the optical lattice is loaded with fermionic dipoles
(with their dipolar moment aligned perpendicular to the plane),
we may model the dipoles with the following tight-binding
Hamiltonian:

H = −t
∑

⟨r,r ′⟩
(c†

rcr ′ + H.c.) + V1

2

∑

r ̸=r ′

nrnr ′

|r − r ′|3
, (1)

where cr (c
†
r ) annihilates (creates) a spinless fermion at the

site r and nr = c
†
rcr . The first term is the single-particle

tunneling between neighboring sites. In the following, we work
in units with t = kB = 1. We also set the nearest-neighbor
lattice spacing to unity.

The last term in Eq. (1) approximates the dipolar interaction.
The prefactor V1 is the interaction energy between nearest

FIG. 2. (a) Single-particle energies as a function of wave vector on

a kagome lattice with only nearest-neighbor tunneling. At a density of

2/3, the bands marked with solid (dashed) lines are filled (empty), and

the red arrow shows where the Fermi surface touches the empty band

at the quadratic band crossing point. The inset shows the definition

of various high-symmetry points in the first Brillouin zone. (b) The

charge density wave pattern obtained from Eq. (1) with V1 = 2. The

sizes of the dots are proportional to the average occupation number.

(c) The chiral current pattern in a topological Mott insulator phase

with a quantum anomalous Hall effect obtained from Eq. (1) with

V1 = 1.8. Exact diagonalization and mean-field theory obtained the

same patterns found in both (b) and (c).

neighbors. The interaction is written in the limit of infinitely
narrow Wannier functions. Corrections to this interaction
derived from the finite spatial extent of the Wannier functions
are discussed in Appendix B. We find that realistic corrections
to the interaction term do not significantly impact our findings.

To numerically study Eq. (1), we truncate the interaction
when the interaction strength becomes weak so that the
truncation does not significantly impact our results. In our
mean-field results carried out in the thermodynamic limit,
the interaction includes all pairs of sites with |r − r ′| < 5.
In our finite-size studies (where we compare MFT and ED),
the interaction includes pairs only up to |r − r ′| < 2 to avoid
finite-size effects.

The noninteracting part of Eq. (1) can be solved for the
energy eigenvalues. For physically realistic negative tunneling
energies (i.e., t > 0), there are three bands, as shown in
Fig. 2(a). The highest band is flat (dashed line). At a density
of 2/3, we fill the lowest two bands (solid lines). Here the
noninteracting Fermi surface touches the empty flat band at a
QBCP [red arrow in Fig. 2(a)]. We will see that the dipolar
interaction opens a gap at the QBCP.

To construct the phase diagram of Eq. (1) with V1 > 0, we
use two complementary methods: MFT and ED. ED includes
all quantum fluctuations but applies only to small system sizes.
Specifically, we use the Krylov-Schur algorithm [62] which
allows us to handle degenerate eigenvalues. This method is
essentially exact because it is unbiased and gives the same
results as other unbiased methods on small lattices. With ED,
we work on a finite system size, 27 sites (3 × 3 unit cells)
and N = 18 fermions, with periodic boundaries to obtain the
lowest-energy states.

The MFT we use, in contrast, applies to either finite or
infinite system sizes. It excludes quantum fluctuations due to
our choice for decoupling of the interactions. The following
Hartree-Fock decoupling turns out to be surprisingly accurate
in comparison to ED:

nrnr ′ → n̄rnr ′ + nr n̄r ′ − n̄r n̄r ′

−ψr ′,rc
†
rcr ′ − ψr,r ′c

†
r ′cr + |ψr ′,r |2, (2)
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FIG. 4. (a) The mean-field phase diagram of Eq. (1) obtained

by plotting the magnitude of the current against temperature and

interaction strength. The white line uses the density difference be-

tween sites, δn, to plot the boundary between the charge density wave

(δn > 0) and the normal phase (an absence of order with δn = 0).

(b) Current and entropy per particle plotted against temperature where

the quantum anomalous Hall effect is strongest, V1 = 1.33. The kink

in the entropy shows a first-order phase transition from the topological

Mott insulator to a charge density wave.

IV. DISCUSSION

We propose that the TMIP in the kagome optical lattice
arises from just dipolar interactions. We argue that even in
the absence of applied fields, it should display a QAH effect
as a result of spontaneous time-reversal symmetry breaking.
Prospects for realizing the TMIP therefore offer a key advan-
tage over other proposals to realize topological phases based
on applied synthetic fields because the TMIP will not have as
much heating or losses due to these additional fields. Further-
more, the crucial ingredients to realizing TMIP have already
been experimentally implemented: a dipolar interaction and
a deep kagome optical lattice. Yet there are other potential
experimental challenges. The small gap of the TMIP leaves it
somewhat sensitive to trapping and heating. Using MFT, we
can estimate the impact of these realistic effects.

We must first estimate the gap in a realistic setting to
establish the overall stability of the TMIP. In the grand-
canonical ensemble, the chemical potential may then vary
within the gap while preserving the QAH effect. The gap is in
turn set by the ratio of the tunneling and interaction strength.

To estimate the gap, we first model the optical lattice poten-
tial to accurately obtain the Wannier functions and the tunnel-
ing. For a kagome lattice generated by three pairs of long- and
short-wavelength lasers [38] with lattice length 355 nm and
depth (defined in Appendix A) 7.8ER , the nearest-neighbor
tunneling can be estimated using a Gaussian approximation for
the Wannier functions. We find t ∼ 0.009ER . We have verified
the Gaussian approximation at these lattice depths by comput-
ing the band dispersion through a plane-wave expansion and
comparing with the bandwidth of a tight-binding model on a
kagome lattice with only nearest-neighbor tunneling.

To estimate the nearest-neighbor interaction, we consider
an example atom with a strong dipolar moment which has
already been cooled to quantum degeneracy: 161Dy [47]. At
the lattice length of 355 nm, we find V1 ≈ 0.012ER , assuming
perfectly localized Wannier functions (the correction due to
the finite spreads of Wannier functions is small; see Appendix
B). Therefore, the lattice depth of 7.8ER gives V1/t ∼ 1.3,
which is the optimal point for the TMIP in the mean-field phase

diagram since the TMIP has the highest gap here. Using MFT,
we find a gap of ! ≈ 0.46t at these lattice depths.

The gap determines the robustness against perturbations
such as confinement. Assuming parabolic confinement, of
strength M (ωr )2/2, where ω is the trapping frequency and
M is the mass of 161Dy, we can estimate the spatial extent of
the TMIP by assuming that the TMIP survives until the trap
strength equals the gap, i.e., M (ωr )2/2 = !. A gap ! ≈ 0.46t
with trap strength ω ∼ 2π × 10 Hz leaves a TMIP about 20
sites in diameter.

The size of the gap also sets the thermal stability of the
TMIP. Conventional evaporative cooling in a harmonic trap
can cool to entropies per particle as low as ≈0.25 (≈0.75)
for bosons (fermions) or possibly lower [63,64], whereas
more recent results with atomic gas microscopes cooling into
the antiferromagnetic phase of the two-dimensional Hubbard
model have reached entropies per particle lower than 0.75
for fermions [61]. The entropies per particle required to
reach the TMIP (≈0.15) with dipolar fermions are therefore
potentially within reach of current experiments with atomic gas
microscopes. Nonetheless, careful preparation of a reservoir
[61] will be needed to reach these low entropies.

Once prepared, the topological phase can be detected by
its chiral edge currents. A number of proposals have been put
forth for the direct detection of topological properties [7,65–
71] with several successful experimental implementations
[18,24,25,27,72– 74]. For example, recent experiments with
atomic gas microscopes have been able to directly observe
chiral edge states in a Hofstadter band, thus offering a direct
route to detecting the QAH effect derived from the TMIP [27].
Once established, a TMIP would set the stage for possible
detection of anyons in fractional TMIPs [75].
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APPENDIX A: KAGOME OPTICAL LATTICE POTENTIAL

We use the kagome optical lattice potential implemented in
Ref. [38]. The potential experienced by atoms is given by

VL(r) = V0

3∑

n=1

[
sin2

(
2π√
3a

r · dn

)
− sin2

(
π√
3a

r · dn

)]
,

(A1)

where a is the distance between adjacent sites, dn =
cos 2nπ

3
x̂ + sin 2nπ

3
ŷ , and V0 is the lattice depth.

APPENDIX B: DIPOLAR INTERACTION

The model Hamiltonian, given by Eq. (1) of the main text,
implies that the interaction strength decays with respect to
distance r as r−3. This is not strictly true for a realistic system
at short range since the Wannier functions have a finite spread.
For the lattice depth of 2.3ER , as discussed in the main text,
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3.6 QUANTUM ANOMALOUS HALL STATE FROM SPATIALLY DECAYING 
INTERACTIONS ON THE DECORATED HONEYCOMB LATTICE 

 
Mengsu Chen, Hoi-Yin Hui, Sumanta Tewari, V. W. Scarola 

Phys. Rev. B 97, 035114 (2018).  arXiv:1705.05829 
 

Topological phases typically encode topology at the level of the single particle band structure. But 
a remarkable new class of models shows that chiral quantum anomalous Hall effects can be driven 
exclusively by interactions, while the parent non-interacting band structure is topologically trivial. 
Unfortunately, these models have so far relied on interactions that do not spatially decay and are 
therefore unphysical. We study a model of spinless fermions on a decorated honeycomb lattice. 
Using complementary methods, mean-field theory and exact diagonalization, we find a robust 
quantum anomalous Hall phase arising from spatially decaying interactions. Our finding paves the 
way for observing the quantum anomalous Hall effect driven entirely by interactions. 
 

 
 
 
 
 
 
 
 
 
 
Left: Schematic of chiral currents circulating a topological Mott insulator.   
 
Center: Chiral bond currents in the quantum anomalous Hall phase computed using exact 
diagonalization 
 
Right: (a) Phase diagram obtained using exact diagonalization on the decorated honeycomb 
lattice.  The symbols are results from calculations and the lines are a guide to the eye.  The chiral 
quantum anomalous Hall phase arises in the center.   (b) The same as (a) but the lines plot 
transitions obtained from self-consistent mean field theory. The agreement between panels (a) 
and (b) shows strong evidence for a robust chiral state.  
 
 

2

Figure 2. Density patterns for the Nematic Insulator (NI),
Stripe, and Charge Density Waves (CDWs). The QAH pat-
tern draws bond currents computed with arrows indicating
the direction of the currents Imhc†i cji. All plots are the result
of mean field calculations but exact diagonalization produced
the same configurations where comparisons could be made
[34].

but there are exceptions. Studies of spinless fermions
on certain lattices with a quadratic band crossing points
(QBCP) as the non-interacting Fermi surface o↵er a
di↵erent starting point [7–9, 23]. One example is the
checkerboard lattice [8]. An ED study [28] found a QAH
phase arising from spatially decaying interactions but
long-range hopping was needed to stabilize the phase
[28]. MFT studies on a di↵erent lattice with a QBCP, a
decorated honeycomb (or star) lattice, indicate that spa-
tially decaying interactions might support a robust QAH
phase [7] even with just nearest neighbor interactions.
But MFT is notoriously susceptible to quantum fluctua-
tions that can significantly impact phase diagrams.

In this paper, we investigate the prospect of generating
interaction-driven QAH states on a decorated honeycomb
lattice at half filling. Our principal objective is to inves-
tigate if the QAH state occurs for physically realizable
interaction parameters that can be used to model realis-
tic systems, e.g., electrons in solids or dipolar fermions
in optical lattices. We present ED results which incor-
porate quantum fluctuations but are applicable only to
small system sizes, as well as mean-field results [7] which
are approximate but apply in the thermodynamic limit.
The complementary nature of the two approaches, cou-
pled with qualitatively very similar phase diagrams ob-
tained from both of them, gives us confidence about the
reliability of our calculations. Remarkably, in both ED
and MFT, we find that a QAH state occurs on the deco-
rated honeycomb lattice at the QBCP, for interaction pa-

Figure 3. (a) Phase diagram obtained using exact diagonal-
ization on Eq. (1). The symbols are results from calculations
and the lines are a guide to the eye. The bond ordered (BO)
phase is a uniform phase that results from the superposition
of bond-ordered crystal configurations. [34] (b) The same as
(a) but the lines plot transitions obtained from self-consistent
mean field theory on an infinite lattice. The dashed lines indi-
cate second order phase transitions. The agreement between
panels (a) and (b) shows strong evidence for a robust QAH
phase. The QAH order appears to survive in non-interacting
limits near the origin but here the QAH gap vanishes [34].

rameters that progressively decrease with separation. The
agreement between MFT and ED implies that quantum
fluctuations allow a robust QAH phase in this lattice.
Our work sets the stage for observations of QAH under
realistic conditions of spatially decaying interactions.

Model: We consider a tight-binding Hamiltonian,

H = �t

X

hi,ji

c
†
i cj + V1

X

hi,ji

ninj + V2

X

hhi,jii

ninj , (1)

where c
†
i creates a spinless fermion on site i. The sum-

mation is over nearest- (hi, ji) or next-nearest- (hhi, jii)
neighbors on a decorated honeycomb lattice [Fig. 1(b)].
Henceforth we consider V1, V2 � 0 and set t = 1 as the
energy scale.

6

Figure 6. Bond currents computed from exact diagonaliza-
tion on one of the two QAH states at V1 = 4 and V2 = 3.
Arrows indicate the direction of the bond currents Imhc†i cji,
in agreement with mean field results plotted in Fig. 2.

SUPPLEMENTAL MATERIAL

Currents and density calculations within ED: Within
ED ground states are often degenerate. Within the QAH
phase arbitrary superpositions of the time reversal pairs
of QAH states appear to prevent us from directly com-
puting currents. But we can compute current by solving
for a superposition of the two degenerate ground states
which maximizes the expectation value of the current op-
erator.

We consider the current J↵� = h ↵|Ĵ | �i and de-
note by | A/Bi the pair of degenerate ground states. In
this subspace we compute the 2 ⇥ 2 matrix J↵� . Since

Ĵ anticommutes with the time-reversal operator T and
T | Ai = | Bi, it is straightforward to show that the
two eigenvalues of J↵� are ±�J and their eigenstates
are also time-reversal pairs. Taking one of the eigen-
states and computing is current pattern and magnitude,
we find qualitative agreement with that obtained from
MFT. Fig. 6 shows the results from an ED calculation
of the current patterns for the QAH phase which agrees
with MFT patterns presented in Fig. 2.

To demonstrate the adequacy of �J as an order pa-
rameter in the QAH phase, the top panel of Fig. 7 plots
�J against V1 along the V1 = V2 line. We see a sharp
transition from finite and stable values of �J to �J = 0
at around V1 = V2 ⇡ 2.7, indicative of a phase transition.

In the case of ED with multiple degenerate ground
states we can apply a similar method to compute �n.
It is computed as the di↵erence between the maximum
and minimum eigenvalues of the matrix of a single-site
number operator acting on the ground state subspace,
similar to the procedure of computing �J . As an exam-
ple, we plot this order parameter along a transition line
from QAH to NI in the bottom panel of Fig. 7. The
jump in the order parameter is at the same location as
the jump in QAH order parameter, consistent with the

Figure 7. Top: Exact diagonalization calculation of the QAH
order parameter measuring loop current as a function of in-
teractions strength with V1 = V2. The sudden vanishing of �J

indicates a transition from QAH (�J 6= 0) to CDW (�J = 0)
along the V1 = V2 line in the phase diagram. Bottom: The
same but for the CDW order parameter measuring the maxi-
mum density di↵erence to show a phase transition from QAH
(uniform, �n = 0) to CDW (nonuniform, �n > 0) along the
V1 = V2 line in the phase diagram.

Figure 8. Left: The density-density correlations, hninji �
hnii hnji, obtained from exact diagonalization and plotted as
a function of the position of site j for the NI at V1 = 0.8 and
V2 = 2.4, where the size of the dots represents the magnitude
of the correlation and blue (orange) indicates positive (nega-
tive) sign. The reference site at i is indicated by a red cross.
The NI breaks C6 rotation symmetry down to C3, while pre-
serving translational symmetry. Right: The same but for the
stripe phase at V1 = 20 and V2 = 14. The stripe phase breaks
translational symmetry by doubling the unit cell along the
direction of unit vectors.

QAH-NI transition.

Density-density correlations in the NI and stripe

phases: Density-density correlations can also be used
to reveal ordered phases. Fig. 8 plots the density-density
correlation function for the NI and stripe phases obtained
from ED. Here we see agreement with the MFT calcula-
tion plotted in Fig. 2.

Bond ordered phase: The low V2 part of the ED phase
diagram, labeled BO in Fig. 3a, is distinct from MFT
which instead finds a stripe phase. Within ED, the
ground state here is non-degenerate and uniform with
a massively degenerate excitation space. We also find no
currents in the ground state. An example bond-average

Mott Chiral Edge 
Current 
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3.7 EQUILIBRATION DYNAMICS OF STRONGLY INTERACTING BOSONS IN 2D 
LATTICES WITH DISORDER 

 
Mi Yan, Hoi-Yin Hui, Marcos Rigol, Vito W. Scarola arXiv:1606.08439 

Phys. Rev. Lett. 119, 073002 (2017) 
Motivated by recent optical lattice experiments in Immanuel Bloch’s group [Choi et al., Science 
352, 1547 (2016)], we study the dynamics of strongly interacting bosons in the presence of 
disorder in two dimensions. We show that Gutzwiller mean-field theory (GMFT) captures the 
main experimental observations, which are a result of the competition between disorder and 
interactions. Our findings highlight the difficulty in distinguishing glassy dynamics, which can 
be captured by GMFT, and many-body localization, which cannot be captured by GMFT, and 
indicate the need for further experimental studies of this system. 

 
 
 
 
 

 
Left: Results from atomic gas microscope experiments in Immanuel Bloch’s group.  The strong 
disorder prevents thermalization.   
 
Center: Our theory calculations for the same parameters as experiments in Choi et al. 
 
Right: Imbalance as function of time for both theory (lines) and experiments (symbols).  The close 
comparison shows that mean field theory is a good approximation.  The assertion that many-body 
localization was observed therefore requires further experiments probing the difference between 
mean field and experiment since mean field theory does not have many-body localization.  
 
 
 
 
 
 

J. Choi, et. al.,  

Science ’16 

M. Yan, H. Hui, M.  Rigol, V.W. Scarola  

Phys. Rev. Lett. 119, 073002 (2017) 

 

Experiment
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