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1.0 SUMMARY

Multiagent systems have found a wide range of potential applications in surveillance and recon-
naissance, cooperative exploration for search and rescue missions, environmental sensing and mon-
itoring, and cooperative transportation. It has been long recognized that multiagents may exhibit
emergent dynamic behaviors due to local and intermittent interactions among individual agents.
Unfortunately, the study of dynamic behaviors of multiagent systems poses significant challenges
due to the fact that complex system behaviors emerge as a result of their individual self-operating
(sensing and actuating) capability, as well as of the interactions among agents. Some of those chal-
lenges include the comprehensive understanding of interaction mechanism among agents and the
development of distributed resilient algorithms for detecting, designing, and controlling interaction
dynamics and interaction topologies of multiagents.

To address these challenges, we assembled a multi-investigator team from two universities and car-
ried out research on fundamental issues from distributed estimation to distributed control of mul-
tiagent emergent behaviors. This multiple-year project leads to training of a number of graduate
and undergraduate students and results in twenty-three research publications in the internationally
refereed journals and conferences. Specifically, the highlights of the research outcomes include
the following developments: 1) Designed a distributed estimation algorithm for the detection of
certain global characteristic signals in multiagent systems, which can serve as feature indicators
for the group collective behaviors. The event-triggering mechanism for information transmission
was further employed to reduce the communication load. 2) Designed a distributed sensor fu-
sion algorithm for environmental monitoring by wireless sensor networks (WSNs) with limited
communication. The proposed algorithm relies on local information exchange among neighboring
sensor nodes and estimation for a key left eigenvector of the communication matrix. The algorithm
convergence can be ensured under the assumption that the communication topology among sen-
sors is directed and strongly connected. 3) Developed a resilient distributed detection algorithm
for multiple targets. 4) Designed adaptive cooperative control for a class of uncertain nonlinear
multiagent systems. 5) Developed an approximate distributed gradient estimation method for net-
worked system optimization. 6) Conducted extensive simulation and experimental validation on
the proposed distributed algorithms by using Q-Bot2 mobile robots, Kilobots, AgentFly simulator,
and Crazyflie Quadrotors.

2.0 INTRODUCTION

With the rapid development of computing, communication and sensing technology, recent years
have seen an ever increasing research interest in the study of distributed multiagent systems. In
particular, multiagent systems have found a wide range of potential applications in surveillance
and reconnaissance, cooperative exploration for search and rescue missions, environmental sens-
ing and monitoring, and cooperative transportation. One of the salient characteristics of multiagent
systems is that local behaviors of individual agents may lead to certain emergent global behaviors
through intermittent interactions among agents. These ubiquitous phenomena are often observed
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in biological swarms, such as flocks of birds, schools of fish, herds of animals, and colonies of bac-
teria [19, 23, 20]; in social networks, such as rhythmic applause, opinion dynamics, and decision
making in animal groups [6]; in engineered systems, such as robotic networks [10, 2, 21], power
grids [15], computer networks [17], and sensor networks [14], to name but a few.

In this project, the overall objective is to enhance the understanding of emergent behaviors in
distributed multiagent systems through rigorous analysis and design for modeling, detection, esti-
mation, and control of interaction dynamics and interaction topologies.

By focusing on this overall objective, we developed an integrated model-based approach for dis-
tributed detection and control of unexpected/emergent behaviors in multiagent systems. Specifi-
cally, we studied multiagents that are modeled as a network of dynamical systems, and through
inter-agent sensing/communication, the multiagent systems exhibit emergent behaviors (by nature
or by design) and accomplish coordinated tasks as a group. Such a problem setting fits into many
realistic safety-critical multiagent systems, such as coordination of multiple UAVs. While signif-
icant progresses have been made in the design and analysis of multiagent systems under limited
sensing/communication topologies [18, 7, 22, 11, 10, 1, 12], there are very limited results available
in the literature to address issues on how collective behaviors emerge as well as on how to ensure
the desired multiagent system behaviors through design and control. With the aid of rigorous tools
from systems and controls theory as well as learning and adaptation methods, we studied the result-
ing emergent behaviors of multiagent systems by considering effects of both interaction dynamics
and interaction topologies, and developed an efficient, predictable, and safe detection and control
scheme to deal with unexpected/emergent behaviors in distributed multiagent systems.

This multiple-year project has rendered significant research outcomes from three main aspects: (1)
development of distributed estimation algorithms for multiagent interaction topologies and mul-
tiagent dynamical behaviors; (2) development of distributed optimization and control algorithms
for multiagent systems under limited information exchange and modeling uncertainties; (3) Imple-
mentation and validation of the proposed distributed algorithms through computer simulations and
experimental testing on UAV and UGV platforms. The project also leads to training of a number
of graduate and undergraduate students and results in twenty-three research publications in the
internationally refereed journals and conferences.

The rest of this report is organized as follows. Section 3.0 presents the basic methods, assumptions
and procedures in this research, and formulates the distributed estimation and control problem.
Sections 4.0, 5.0, and 6.0 present the technical results and discussions on three sets of results
in term of distributed estimation algorithms, distributed optimization and control algorithms, and
experiments, respectively. Section 7.0 concludes the report.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

The research in this project was carried out based on the assumption that the prototype multiagent
systems are defined by a set of dynamical equations given below

żi = Fi(zi, vi) + ∆Fi(zi), yi = Hi(zi), (1)
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where i ∈ {1, · · · , N} is the index for agent i and there are N agents in the group, zi ∈ <ni is the
state, vi ∈ <m is the control (interaction rule) to be designed, and yi ∈ <m is the output. The term
∆Fi denotes the unknown agent dynamics.

Under this multiagent model, the distributed detection and control techniques to be developed
will be rigorous, theoretically sound and practically feasible. Indeed, many practical multiagent
systems, such as UAVs, are well described using the dynamical model in (1).

The (desired or emergent) group behaviors of multiagents are generated through modeling or
design of local interaction rules based on sensing/communication-enabled local information ex-
change among agents. The interaction topology or sensing/communication structure can be repre-
sented by a digraph {V , E(t)}, where {V} denotes the set of N nodes and {E} is the set of directed
edges. Accordingly, the local information flow among agents can be embedded into the following
N ×N binary sensing/communication matrix

Sn(t) =
[
Snij(t)

]
, Snii = 1, (2)

where Snij = 1 if {j → i} ∈ E(t), and Snij = 0 if otherwise.

To this end, the key research problems are (i) to analyze the overall behavior of the dynamic
networked multiagent system in (1) through modeling and design of different local interaction rules
vi ; (ii) to analyze the unexpected/emergent behaviors of the dynamic networked multiagent system
in (1) by conducting the estimation of interaction topologies Sn(t) and the corresponding redesign
of cooperative interaction control laws vi(t). Figure 1 illustrates the overall project architecture for
addressing those research problems.

Figure 1: Project Architecture
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In this project, by using approaches from systems and control theory, optimization and estimation,
and adaptive learning and controls, the research on detection and control of emergent behaviors in
multiagent systems was performed based on analysis and design of interaction dynamics. Specifi-
cally, we followed the following procedures to carry out research tasks.

• Perform model-based design, estimation, and control of multiagent interaction dynamics in
the presence of uncertainties

• Design local algorithms for estimation of multiagent interaction topologies and emergent
behavior detection

• Conduct simulation and experimental validation using AgentFly, UAV, and UGV platforms
for multiagent emergent behavior control algorithms

In what follows, we report the obtained major research outcomes on distributed estimation algo-
rithms, distributed optimization and control algorithms, and simulation and experiments in details.

4.0 RESULTS AND DISCUSSION: DISTRIBUTED AND RESILIENT ES-
TIMATION ALGORITHMS

The emergent behaviors in multiagent systems depend on the local interactions among agents [18,
7, 22, 11, 10, 1, 12]. We have studied the fundamental problems related to interaction topologies
and interaction dynamics in multiagent systems, and obtained several results on detection of feature
indicators for global behaviors, estimation of interaction topologies, and estimation of agents states
using a limited number of sensors.

4.1 Distributed estimation of collective behaviors in multiagent systems

We proposed a distributed estimation algorithm for the detection of collective behaviors in multia-
gent systems [J3]. We assume that the collective behaviors of multiagent systems can be character-
ized by certain global characteristic signals such as network moments which may include centroid
of the whole group, group polarization, group momentum, and so on. The accurate estimation of
those global signals will enable us to detect the collective behaviors in multiagent systems. Ap-
parently, in order to compute those global signals, it would be easier to use a central computer
to collect and process state information of all agents in the group. However, such a method is
not realistic if the number of agents is large. We provide a distributed solution for the estimation
of those global time-varying signals, which is motivated by the distributed consensus algorithms
[12]. Specifically, we design a local distributed estimator for each agent, and through information
exchange with neighbors in its communication range, all the distributed estimators will reach con-
sensus about the estimation of the group signals. To this end, by monitoring the estimate of any
individual agent, we are be able to predict the group collective behaviors. The proposed design
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relies on the communication network among agents. By imposing information transmission when-
ever necessary, an event-triggering mechanism is adopted to further reduce the communication
load. The convergence of the proposed algorithm is rigorously analyzed. A case study is given
to study the collective behaviors of multiagent systems with unicycle models. Simulation exam-
ples verified the proposed method for collective behavior detection. Compared with the results
such as in [16, 3], the proposed algorithm handles the estimation of time-varying signals, and the
convergence is rigorously proved. In addition, an event-triggering strategy is proposed for ease of
implementation of the proposed algorithm.

Specifically, the distributed estimation problem is formulated as follows. Consider a group of N
agents, and agent i has the measurement of a time-varying signal ri(t). The objective is to find the
value of average of all ri(t), i = 1, · · · , N , that is, r(t) =

∑N
i=1 ri(t)

N
. We designed a distributed

estimator to find r(t). Let xi(t) be the estimate of r(t) by agent i, and the distributed estimation
algorithm is given by

ẋi(t) =
∑
j∈Ni

cij(xj(t)− xi(t)) + ṙi(t) (3)

where cij > 0 if agent i can receive information from agent j. It follows from (3) that the overall
closed-loop system dynamics are

ẋ(t) = −Lx(t) + ṙ(t) (4)

where x = [x1, · · · , xn]T , ṙ = [ṙ1, · · · , ṙn]T , and

L =


∑

j 6=1 c1j −c12 · · · −c1n
−c21

∑
j 6=2 c2j · · · −c2n

...
... . . . ...

−cn1 −cn2 · · ·
∑

j 6=n cnj


It is apparent that for the directed communication graph, the Laplacian matrix L is not symmet-
rical. If L is strongly connected, we have that corresponding to the eigenvalue λ1 = 0, the right
eigenvector is 1, and the left eigenvector is w1 = [p1, p2, · · · , pN ]T with pi > 0, ∀i. In what fol-
lows, we first show that the algorithm (4) renders the weighted average of time-varying signals. It
follows from (4) that

wT1 ẋ = −wT1 Lx+ wT1 ṙ = wT1 ṙ (5)

Thus, if the initial conditions satisfy wT1 x(0) = wT1 r(0), then

wT1 x(t) = wT1 r(t) =
N∑
i=1

piri(t)

and if consensus is reached, we have

lim
t→∞

xi(t) =

∑N
i=1 piri(t)∑N
i=1 pi

(6)
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The Proposed Distributed Estimation Algorithm: The algorithm in (4) leads to the estimation
of the weighted average of signals ri(t). in order to obtain the estimation of the average of signals
ri(t), we may consider to use the following modified distributed estimator

ẋi =
∑
j∈Ni

cij(xj − xi) +
ṙi(t)

Npi
(7)

It then follows

wT1 ẋ = −wT1 Lx+ wT1


ṙ1(t)
Np1

...
ṙN (t)
NpN

 =
N∑
i=1

p1
ṙi(t)

Npi
=
ṙi(t)

N

To this end, we can see that if the consensus is reached, then

lim
t→∞

xi(t) =
ṙi(t)

N
(8)

However, in the algorithm (7), pi is needed, which requires the information on communication net-
work topology and in general agent i may not know it. To solve this problem, we propose the dis-
tributed estimation algorithm based on the estimation of left eigenvector. Let ŵi = [p̂i1, p̂

i
2, · · · , p̂iN ]T

be the estimate of wi by agent i, and

˙̂wi =
∑
j∈Ni

cij(ŵ
j − ŵi) (9)

with the initial value ŵi(0) = [0, · · · , 1, · · · , 0]T . To this end, the proposed distributed estimation
algorithm is given by

ẋi =
∑
j∈Ni

cij(xj − xi) +
ṙi(t)

Np̂i
(10)

˙̂pii =
∑
j∈Ni

cij(p̂
j
i − p̂ii) (11)

Simulation: The proposed algorithms (10) and (11) were simulated to estimate the average of
time-varying signals r1(t) = 1 + e−0.2t, r2(t) = 5 + e−0.3t, r3(t) = 3 + e−0.4t. We assume that the
communication topology among three agents renders to the following Laplacian matrix

L =

 1 −1 0
0 1 −1
−1 −1 2


and its left eigenvector is

w1 = [0.2500, 0.5000, 0.2500]T

Simulation results are shown in figures 2 and 3. It can be seen that all agents converge to the true
average of signals.
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Figure 2: Estimates of the signal average by three agents
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The main results are reported and proved in Theorem 1 [J-3]. Effects of communication jamming
was also studied with distributed estimation of global features.

The published work in the above area is listed below.

[J-3] J. Wang, I.S. Ahn, Y. Lu, T. Yang, and G. Staskevich, “A Distributed Estimation Algorithm
for Collective Behaviors in Multiagent Systems with Applications to Unicycle Agents”, In-
ternational Journal of Control, Automation and Systems, Springer, vol.15, no.6, pp. 2829-
2839, 2017.

[C-11] Z. Fu, T. Yang, and J. Wang, Effects of Jamming on a Multi-agent Flocking Model with
Distributed Estimation of Global Features, SAI Intelligent Systems Conference 2016, San
Francisco, CA, Dec 6-7, 2016.

[C-12] J. Wang, I. S. Ahn, Y. Lu, and T. Yang, A distributed detection algorithm for collective behav-
iors in multiagent systems, the 12th World Congress on Intelligent Control and Automation,
Guilin, China, June 12-15, 2016.

[C-13] T. Yang, Z. Fu, and J. Wang, Application of an even-triggered distributed estimation algo-
rithm in a simple multiagent flocking model, 2016 IEEE SoutheastCon, Norfolk VA, March
30-Apr 3, 2016.

[C-14] T. A. Khan and J. Wang, “On formalization of emergent behaviors in multiagent systems with
limited interactions”, 2016 IEEE International Conference on Electro Information Technol-
ogy (EIT), Grand Forks, ND, May 19-21, 2016.

4.2 Distributed estimation with limited and unknown communications

The emergent behaviors of a large scale multiagent systems such as power grids can be monitored
using wireless sensor networks (WSNs) with a limited number of low cost sensor nodes. One of the
key issues in the application of WSNs is how the measurements by individual sensor components
in the network can be effectively processed and utilized, the so-called sensor fusion problem.
The common way of addressing this problem is to make individual sensors communicate their
measurement data back to a central computer, and accordingly the combined information can be
analyzed. However, this method may not be feasible in the situation with a large number of sensor
nodes due to the inherent limitations on communication ranges, power supplies, memory, and
computation power within sensor components.

To solve this challenge, we propose a new distributed least-squares estimation algorithm to de-
tect the behaviors of the multiagent systems. We assume that the sensor network satisfies a general
kind of network observability condition, that is, each sensor can take the measurements of a limited
number of agents but the complete multiagent systems are covered under the union of all sensors
in the network. In addition, we consider the limited communication among sensors and assume
the communication topology among sensors is strongly connected. Each sensor is endowed with

8
Approved for Public Release; Distribution Unlimited. 



a distributed least-squares estimator. Through local information exchange with its communication
neighbors, the estimation consensus can be reached for all sensors, and the state vector of all agents
can be recovered by any individual sensors. Compared with the existing results such as those in
[8, 5, 13, 4, 9], the proposed distributed least-squares algorithms can handle the directed communi-
cation network by explicitly estimating the left eigenvector corresponding to the largest eigenvalue
of the system matrix. In addition, by introducing an elegantly structured observation matrix for
each sensor, the possible singularity problem can be avoided even the number of sensors are sig-
nificantly smaller than that of agents. The convergence of the proposed algorithm is analyzed, and
simulation results further illustrate its effectiveness.

4.2.1 Distributed Least-Square Algorithm

In the proposed distributed least-square algorithm, we assume that each agent has a measurement
model of the form

yi(k) = Hi(k)x+ vi(k)

where x = [x1, x2, · · · , xN ]T is an unknown vector representing the states of a number of N
targets. The algorithm is summarized below in Algorithm 1, and details and simulation results
can be found in [J-2].

4.2.2 Distributed Kalman Filtering Algorithm

The proposed distributed sensor fusion algorithm was further extended to multiagents with possibly
unknown dynamics. Accordingly, a new distributed Kalman filtering algorithm was reported in
[C-4]. We consider the detection of emergent behaviors of a group of n moving agents with the
following dynamics

xi(k + 1) = φixi(k) + γiwi(k) (12)

where i = 1, · · · , n, xi ∈ <ni and φi is a ni × ni system matrix, γi is an ni × mi matrix, and
wi ∈ <mi is the process noise with zero mean and diagonal, positive-definite covariance matrix
Rwi

(k). Assume that there are L sensors (detectors) which are employed to monitor the behaviors
of all agents, and each sensor can only monitor the agents in its sensing range. Assume also
L � n (that is, the number of sensors is far more less than that of agents) and each sensor has a
measurement model of the form

yi(k) = Hi(k)X + vi(k) (13)

where k = 0, 1, · · · is an integer, yi is a pi × 1 measurement vector, X = [xT1 , x
T
2 , · · · , xTn ]T is

an
∑

i ni × 1 unknown vector representing the overall states of all agents, vi is a pi × 1 white
measurement noise vector with zero mean and diagonal, positive-definite covariance matrix Ri(k),
Hi ∈ <pi×q is the matrix relating the measurements to the unknowns, and p =

∑N
i=1 pi ≥ n. The

dimension parameter pi for sensor i depends on the number of agents in its range.

9
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Algorithm 1 Distributed Algorithm

1: Initialization: ŵi(0), H̄i(0) = HT
i (0)R−1i (0)Hi(0), Ȳi(0) = HT

i (0)R−1i (0)yi(0), H̃i(0) = 0,
Ỹi(0) = 0, Pi(0) = (Ĥi(0))−1, X̂i(0) = Pi(0)Ŷi(0), where X̂i is the estimate of x by sensor i.

2: while with new samples at time instant k ≥ 1 do
3: Update ŵi(k) using

ŵi(k + 1) = ŵi(k) +
1

1 + di

∑
j∈Ni

aij(ŵj(k)− ŵi(k))

4: Update Ĥi(k) using

H̃i(k + 1) = H̃i(k) +
1

1 + di

∑
j∈Ni

(H̃j(k)− H̃i(k) + H̄j(k)− H̄i(k))

Ĥi(k) = H̃i(k) + H̄i(k)

5: Update Ŷi(k) using

Ỹi(k + 1) = Ỹi(k) +
1

1 + di

∑
j∈Ni

(Ỹj(k)− Ỹi(k) + Ȳj(k)− Ȳi(k))

Ŷi(k) = Ỹi(k) + Ȳi(k)

6: Compute Pi(k) using

Pi(k) = (Pi(k − 1)−1 + Ĥi(k))−1

7: Compute X̂i(k) using

X̂i(k) = X̂i(k − 1) + Pi(k)(Ŷi(k)− Ĥi(k)X̂i(k − 1))

8: end while

10
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Assume that each sensor can communicate wirelessly with other sensors in its communication
range rc. We use a matrix to capture the communication topology within the sensor network. Let
the adjacency matrix be

A(k) =


0 a12(k) · · · a1L(k)

a21(k) 0 · · · a2L(k)
...

... . . . ...
aL1(k) aL2(k) · · · 0

 (14)

where aij(k) > 0 denotes that sensor j can transmit data to sensor i, otherwise aij(k) = 0.

The objective is to design a distributed estimation algorithm so that the estimation of all agents’
states X can be done by individual sensors through information exchange.

Centralized Kalman Filtering Design: If measurements from all sensors are available, a central-
ized Kalman filter can be designed as follows. It follows from (12) and (13) that the overall agent
dynamics and measurement model are

X(k + 1) = ΦX(k) + ΓW (k) (15)
Y (k) = H(k)X(k) + V (k) (16)

where Y (k) = [yT1 (k), yT2 (k), · · · , yTL(k)]T ∈ <p×1, W (k) = [wT1 (k), wT2 (k), · · · , wTn (k)]T ∈
<

∑
imi×1, V (k) = [vT1 (k), vT2 (k), · · · , vTL(k)]T ∈ <p×1, and

Φ =


φ1

φ2

. . .
φn

 , Γ =


γ1

γ2
. . .

γn

 , H(k) =


H1(k)
H2(k)

...
HL(k)


For the overall dynamical systems (15) and (16), the Kalman filtering algorithm can be designed
as follows

• Measurement update (at the measurement time k = 1, 2, · · · ,)

X̂(k) = X̄(k) + P (k)

[
L∑
i=1

HT
i (k)R−1i (k)yi(k)−

L∑
i=1

HT
i (k)R−1i (k)Hi(k)x̄(k)

]
(17)

P (k) =

[
M(k)−1 +

L∑
i=1

HT
i (k)R−1i (k)Hi(k)

]−1
(18)

• Time update (between the measurements)

X̄(k) = ΦX̂(k − 1) (19)
M(k) = ΦP (k − 1)ΦT + ΓRwΓT (20)
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where X̄(k) is the estimate at time instant k given the data up through k − 1, X̂(k) is the state
estimate at time instant k given the data up through k, M(k) is the error covariance of the state
estimate X̄(k) before the measurement at k, P (k) is the error covariant of the state estimate X̂(k)
after the measurement at k, and the initial conditions are given by

x̂(0) = P (0)

(
L∑
i=1

HT
i (0)R−1i (0)yi(0)

)

and P (0) =
(∑L

i=1H
T
i (0)R−1i (0)Hi(0)

)−1
.

In the implementation of (17) to (20), the computation of terms

L∑
i=1

HT
i (k)R−1i (k)Hi(k) and

L∑
i=1

HT
i (k)R−1i (k)yi(k)

requires all sensors to send their measurements matrices Hi(k), covariance matrices Ri(k), and
raw measurements yi(k) to a fusion center, which is not realistic due to the issues with scalability,
fault tolerance, and communication constraints. In what follows, we present a distributed Kalman
filtering algorithm.

Distributed Kalman Filtering Algorithm: Let X̂i be the estimate of X by sensor i, Ĥi(k) be the
estimate of

∑L
i=1H

T
i (k)R−1i (k)Hi(k) and Ŷi(k) be the estimate of

∑L
i=1H

T
i (k)R−1i (k)yi(k) by

sensor i, respectively. The proposed distributed Kalman filtering algorithm is given by

• Measurement update (at the measurement time k = 1, 2, · · · ,)

X̂i(k) = X̄i(k) + Pi(k)
[
Ŷi(k)− Ĥi(k)x̄(k)

]
(21)

Pi(k) =
[
Mi(k)−1 + Ĥi(k)

]−1
(22)

Ĥi(k + 1) = Ĥi(k) +
1

1 + di

∑
j∈Ni

aij(Ĥj(k)− Ĥi(k))

+βi[H
T
i (k + 1)R−1i (k + 1)Hi(k + 1)−HT

i (k)R−1i (k)Hi(k)], (23)

Ŷi(k + 1) = Ŷi(k) +
1

1 + di

∑
j∈Ni

aij(Ŷj(k)− Ŷi(k))

+βi[H
T
i (k + 1)R−1i (k + 1)yi(k + 1)−HT

i (k)R−1i (k)yi(k)], (24)

• Time update (between the measurements)

X̄i(k) = Φ̂i(k − 1)X̂i(k − 1) (25)
Mi(k) = Φ̂i(k − 1)Pi(k − 1)Φ̂T

i (k − 1) (26)

Φ̂i(k) = Φ̂i(k − 1) +
1

1 + di

∑
j∈Ni

(Φ̂j(k − 1)− Φ̂i(k − 1)) (27)
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where Φ̂i(k) is the estimate of Φ by agent iwith the initial conditions Ĥi(0) = βiH
T
i (0)R−1i (0)Hi(0),

Ŷi(0) = βiH
T
i (0)R−1i (0)yi(0),

Φ̂i(0) = βi


0

. . .
φi

. . .
0


and βi = 1

ŵii
with ŵii being updated by

ŵi(k + 1) = ŵi(k) +
1

1 + di

∑
j∈Ni

aij(ŵj(k)− ŵi(k)) (28)

where ŵi = [ŵi1, ŵi2, · · · , ŵiN ] ∈ <N is an estimation vector generated by sensor i, ŵi(0) =

[0, · · · , 1, · · · , 0]T with its ith element being 1, di =
∑

j 6=i aij , and Ni
4
= {j|aij > 0} defines the

neighboring set for agent i.

We also developed a strategy to handle the unpredictable changes of communication topologies.
In such a case, the estimation of the corresponding left eigenvector under the new topology has to
be redone to capture the unexpected change of link connectivity. To do so, we let the estimators
in (28) periodically reset their initial values to ŵi(0) = [0, · · · , 1, · · · , 0]T . In other words, the
following eigenvector estimator will be used

ŵi(k + 1) = ŵi(k) +
1

1 + di

∑
j∈Ni

aij(ŵj(k)− ŵi(k)), for k ∈ [τT, (τ + 1)T ) (29)

ŵi(τT ) = [0, · · · , 1, · · · , 0]T (30)

where the integer τ = 0, 1, · · · , and the integer T is the period of resetting. Below is an example
to illustrate the estimate of communication topology changes.

Example 1 Assume that four agents switch their communication topologies according to the fol-
lowing graphs. The corresponding adjacency matrices are

A1 =


0 0 1 0
1 0 0 0
0 1 0 1
1 0 0 0

 , A2 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ,
and the system matrices are

F1 =


0.5000 0 0.5000 0
0.5000 0.5000 0 0

0 0.3333 0.3333 0.3333
0.5000 0 0 0.5000

 , F2 =


0.5000 0.5000 0 0

0 0.5000 0.5000 0
0 0 0.5000 0.5000

0.5000 0 0 0.5000
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Figure 4: Communication topologies: (A1: Left, A2: Right)

The left eigenvectors to be estimated for F1 and F2 are

w1,F1 =


0.3636
0.1818
0.2727
0.1818

 , w1,F2 =


0.25
0.25
0.25
0.25


In the simulation, for k ∈ [0, 100), four agents assume communication topology A1; for k ∈
[100, 200), four agents assume communication topology A2; and for k ≥ 200, four agents assume
communication topology A1 again. The period for resetting initial values of estimators in (29) is
T = 50. The estimation results are depicted in figures 5 to 8. It can be seen from Figure 5 that for
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1
Estimates of w1 by four agents

Figure 5: Estimates of w11 by four agents

k ∈ [0, 100), the estimates of w11 by four agents converge to 0.3636, which is the first component
of w1,F1; for k ∈ [100, 200), the estimates of w11 by four agents converge to 0.25, which is the first
component of w1,F2; and k ∈ [200, 300), the estimates of w11 by four agents converge to 0.3636,
which is the first component of w1,F1 . It should also note that every 50 steps, the initial values
of estimators are reset no matter whether there is a change of communication topology or not.
However this is necessary to capture communication changes sooner or later.
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Figure 6: Estimates of w12 by four agents
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Figure 7: Estimates of w13 by four agents
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Figure 8: Estimates of w14 by four agents
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The published work in the above area is listed below.

[J-2] J. Wang, I. S. Ahn, Y. Lu, T. Yang, and G. Staskevich, “A distributed least-squares al-
gorithm in wireless sensor networks with limited and unknown communications”, Inter-
national Journal of Handheld Computing Research, vol.8, no.3, pp. 15-36, 2017. (DOI:
10.4018/IJHCR.2017070102)

[C-4] J. Wang, “Distributed estimation of moving targets with unknown dynamics ”, 2018 IEEE
Aerospace Conference, Big Sky, MT, March 3-10, 2018.

[C-7] J. Wang, I. S. Ahn, Y. Lu, T. Yang, and G. Staskevich, “A distributed least-squares algo-
rithm in wireless sensor networks with limited communication”, 17th IEEE International
Conference on Electro Information Technology (EIT), Lincoln, Nebraska, May 14-17, 2017.

[C-9] M. Imtiaz and J. Wang, “A multiagent reinforcement learning control approach to environ-
ment exploration”, 2017 IEEE SouthEastCon, Charlotte NC, Mar 30-Apr. 2, 2017.

[C-10] J. Wang, I. S. Ahn, Y. Lu, and G. Staskevich, A New Distributed Algorithm for Environ-
mental Monitoring by Wireless Sensor Networks with Limited Communication, 2016 IEEE
Sensors, Orlando, FL, Oct 30 Nov 2, 2016.

4.3 Resilient detection of multiple targets

We have also studied the resilience and robustness of the proposed distributed estimation algo-
rithm (Algorithm 1) in the presence of jamming, limited sensing/limited communication, unex-
pected agent failure, unexpected communication link dropout, and the situation with intermittent
communications. We assume that there are M agents (detectors/sensors), which will be used to
collaboratively detect the behaviors of N targets. The number of agents is much smaller than that
of targets (i.e., M � N ). Targets are assumed to be located in a 2D environment. Each agent has
a limited sensing/communication range and can only detect a small group of targets in its sensing
range. Agents maintain a strongly connected communication topology and each agent can com-
municate with its neighboring agents about their situation of target detection. Below are several
scenarios we studied for the illustration of algorithm resilience.

Scenario #1: Limited sensing/Limited communication; measurement noises

As shown in figure 9, there are five agents (green circles) used for detection of 20 target (magenta
circles). Targets are randomly placed in a region of dimension [−10, 10]2. The sensing range of
agent is R = 5

√
2. The communication topology of 5 agents is given in figure 10. The estimation

noise is Gaussian noise with zero mean and variance 0.25.

Apparently, each agent can only detect a limited number of targets. By using the proposed dis-
tributed estimation algorithm, each agent will be able to estimate the positions of the total 20
targets. The performance of the algorithm is measured using the position root mean square error

16
Approved for Public Release; Distribution Unlimited. 



-15 -10 -5 0 5 10 15

Simulation Setup

-15

-10

-5

0

5

10

15
5 agents (green), 20 targets(magenta), sensing range (red)

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18
19

20

1

23

4 5

Figure 9: Simulation Setup

Figure 10: Communication Topology among Agents
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value (RMSE) computed using the following formula.

RMSE(k) =
20∑
i=1

√
(x̂i(k)− xi)2 + (ŷi(k)− yi)2

where (xi, yi) is the position of the ith target, (x̂i(k), ŷi(k)) is the position estimate of the ith target
by agents at time step k. The RMSE values for all agents are depicted in figure 11, which converge
to a small region of zero.
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Figure 11: The Position RMSE Values for all targets by all agents

Figure 12 and 13 show the performance of estimation with a large measurement noise variance,
that is, σ = 5. It can be seen the proposed algorithm still works as expected.

Scenario #2: Agent failure

In this case, we consider the scenario with blind agents or unexpected agent failure. We use the
similar simulation setup as scenario 1, but assume that Agent 1 has failure and does not provide
any measurements. But it can still communicate with other agents based on the topology in figure
10.

Figure 14 and 15 show the performance of estimation with a measurement noise variance 0.5. It
can be seen the proposed algorithm still works as expected even there is failure with agent 1.

Scenario #3: Unexpected communication link dropout: switching topologies

In this case, we consider the scenario that the communication topologies among agents periodically
switch between two patterns showing in figure 16. In other words, every 500 steps, the topology
switches.

Figure 17 and 18 show the performance of estimation with a measurement noise variance 0.5. It
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Figure 12: Simulation Setup (noise variable = 5)
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Figure 14: Simulation Setup (noise variable =0.5)
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Figure 16: Communication Topologies

can be seen the proposed algorithm still works as expected under the switching communication
topologies.
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Figure 17: Simulation Setup (noise variable =0.5)

Scenario #4: Unexpected communication link dropout: with not strongly connected topolo-
gies

In this case, we assume the communication topologies switch between patterns showing in figure
19. It can be seen that the left hand one is not strongly connected.

Figure 20 and 21 show the performance of estimation with a measurement noise variance 0.5. It
can be seen that the estimation error bounds are still in the acceptable range.

The published work in the above area is listed below.

[C-1] J. Wang, I. S. Ahn, Y. Lu, T. Yang, and G. Staskevich, “Resilient detection of multiple
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Figure 19: Communication Topologies
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Figure 20: Simulation Setup (noise variable =0.5)
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targets using a distributed algorithm with limited information sharing”, 2018 SPIE Defense
Conference, Orlando, FL, April 16 – April 19, 2018.

[C-5] H. Liu, R. Cheng, T. Yang, and J. Wang, “Modeling and verifying the communication and
control of a fleet of collaborative autonomous underwater vehicles,” 43th Annual Conf. of
the IEEE Industrial Electronics Society (IECON17), Beijing, Oct. 29-Nov.1, 2017.

[C-11] Z. Fu, T. Yang, and J. Wang, Effects of Jamming on a Multi-agent Flocking Model with
Distributed Estimation of Global Features, SAI Intelligent Systems Conference 2016, San
Francisco, CA, Dec 6-7, 2016.

5.0 RESULTS AND DISCUSSION: DISTRIBUTED OPTIMIZATION AND
CONTROL

Distributed control of agent behaviors and networked optimization are of paramount importance
in the study of multiagent system emergent behaviors. One of the fundamental issues is how to
design local and distributed control to coordinate the individual agent’s behavior such that the
desired group behavior emerges. Following this line of research, we have developed adaptive
cooperative control algorithms for multiagents with uncertainties and an approximated distributed
gradient estimation algorithms for networked system optimization.

5.1 Distributed coordinated tracking of multiagents

We have studied the distributed coordinated tracking control for multiagent systems with model
uncertainties. Both unknown model parameters and unknown system dynamics are considered.
It is assumed that there exist parametric uncertainties and unknown dynamics with the informed
agent as well, and only the state value of the informed agent can be accessed by a limited number
of agents. With the utilization of neural network approximation and adaptive estimation, a new
distributed adaptive tracking control is proposed to make all agents cooperatively follow the desired
trajectory specified by the informed agent. The control design is first presented for the first-order
multiagent systems, and then extension is made to the second-order multiagent systems using
backstepping. A unique feature of the proposed control is that the unknown bounds of neural
network approximation errors are also estimated online. Using Lyapunov stability theorem, it is
rigorously proved that asymptotically cooperative tracking can be achieved under the assumption
that the sensing/communication topology among agents is connected. Simulation results illustrated
the effetiveness of the proposed control.

Specifically, consider a multiagent system defined by a set of scalar differential equations given
below

ẋi = fi(xi) + ui, (31)
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where i ∈ {1, · · · , N} is the index for agent i and there are N agents in the group, xi ∈ < is
the state, ui ∈ < is the control to be designed, and fi(xi) is a smooth function of its argument
with f(0) = 0 representing the unknown system dynamics. We assume that there is an informed
agent (leader) whose dynamics are described by ẋ0 = a0x0 + r0(t), where constant a0 < 0, and
r0(t) is a piecewise-continuous bounded function of time. We further assume that a0 and r0(t) are
completely unknown to all agents, and x0(t) may be sensed or communicated to some agents in the
group. The objective is to design a control input ui(t), t ≥ t0 based on the information exchange
among agents so that all the signals in the multiagent system remain bounded and

lim
t→∞
|xi(t)− x0(t)| = 0, ∀i. (32)

Control ui relies on the information exchange among agents, which can be described using the
sensing/communication matrix defined below

S = [sij] , (33)

where sii = k for all i with some constant k > 0, sij = sii > 0 if the ith agent can obtain
the information from the jth agent, and sij = 0 if otherwise. We assume that all agents have
equal sensing/communication capabilities, that is, sij = sji and S is symmetric. Accordingly, the
Laplacian matrix L induced by S is defined as

L = diag

{
n∑
j=1

sij

}
− S. (34)

We also assume that the informed agent state x0(t) is available to at least one agent through sens-
ing/communication detection, and this is described by a diagonal matrix B given below

B = diag {bi0} . (35)

where bi0 > 0 means that agent i has the information x0(t).

Proposed Adaptive Neural Control for Multiagent Systems: To facilitate the design, suppose
that fi(xi) is parameterized using a linearly parameterized neural network as fi(xi) = ψTi (xi)θi +
εi, and r0(t) is parameterized as r0(t) = φT (t)w, where basis functions ψi(xi) = [ψi,1, · · · , ψi,ni

] ∈
<ni , φ(t) = [φ1(t), φ2(t), · · · , φl(t)]T ∈ <l are known, and parameters θi = [θi,1, · · · , θi,ni

]T ∈
<ni , w = [w1, w2, · · · , wl]T ∈ <l are unknown constants, and εi is the neural network approxima-
tion error. Based on the universal approximation result for neural network, we assume that εi is
bounded by an unknown constant δi, that is, |εi| ≤ δi.

Let θ̂i,j be the estimate of θi,j for j = 1, · · · , ni, âi be the estimate of a0 by agent i, ŵij be
the estimate of wj by agent i, and δ̂i be the estimate of δi. Let θ̂i = [θ̂i,1, · · · , θ̂i,ni

]T and ŵi =
[ŵi1, · · · , ŵil]T .

Define ei =
∑

j∈Ni
sij(xi − xj) + bi0(xi − x0) with Ni = {j|sij = 1} denoting the neighboring

set of agent i. The control input for agent i is chosen to be of the form

ui = âixi − ψTi (xi)θ̂i − sgn(ei)δ̂i + φT (t)ŵi, (36)
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where sgn(x) is defined as sgn(x) =

{
+1, if x ≥ 0
−1, if x < 0.

Define the tracking error X̃ = [x̃1, · · · , x̃N ]T = [x1−x0, · · · , xN −x0]T , the parameter estimation
errors ãi = âi − a0, θ̃i = θ̂i − θi = [θ̃i,1, · · · , θ̃i,ni

]T , w̃i = ŵi − wi = [w̃i1, · · · , w̃il]T , and
δ̃i = δ̂i − δi. It then follows from (31) and (36) that

˙̃xi = a0x̃i + ãixi − ψTi θ̃i + φT w̃i + εi − sgn(ei)δ̂i, (37)

and the overall N system error equation can be derived as

˙̃X = a0X̃ + X ã−Ψ +
l∑

j=1

Φjw̃∗j + ε−∆ (38)

where ã = [ã1, · · · , ãN ]T , Ψ = [θ̃T1 ψ1, · · · , θ̃TNψN ]T , w̃∗j = [w̃1j, · · · , w̃Nj]T ,X = diag [x1, · · · , xN ],
ε = [ε1, · · · , εN ]T , ∆ = [sgn(e1)δ̂1, · · · , sgn(eN)δ̂N ]T , and Φj = diag [φj(t), · · · , φj(t), · · · , φj(t)],
j = 1, · · · , l. The adaptive laws for âi, θ̂i, ŵi, and δ̂i are given by

˙̂ai = −Γ−1ai xiei, (39)
˙̂
θi = Γ−1θi ψiei, (40)
˙̂wij = −Γ−1wij

φjei, (41)
˙̂
δi = Γ−1δi sgn(ei)ei, (42)

where i = 1, · · · , N , j = 1, · · · , l, Γai > 0, Γθi > 0, Γwij
> 0, and Γδi > 0. The following

theorem presents one of the main results of the paper.

Theorem 1 Consider the multiagent system in (31). If the sensing/communication topology S
is connected, and B has at least one entry being nonzero, then the distributed adaptive neural
tracking control in (36) together with the adaptive laws in (39), (40), (41), and (42) guarantee
the boundedness of all signals of the closed-loop system and achieve asymptotical tracking in the
sense of (32).

Extension to Second-Order Multiagent Systems: We further extend the proposed distributed
adaptive neural control to the second-order multiagent systems. Consider the second-order multi-
agent systems of the following form{

ẋi1 = aixi1 + xi2
ẋi2 = fi(xi1, xi2) + ui, i = 1, · · · , n (43)

where ai is an unknown constant, fi(xi1, xi2) is an unknown smooth nonlinear function, xi =
[xi1, xi2]

T ∈ <2 is the state of agent i, and ui ∈ < is the control input of agent i. The objective is
to design a distributed adaptive control to make every agent i follow the informed agent, that is,

lim
t→∞
|xi1(t)− x0(t)| = 0, ∀i. (44)
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The control design details can be found in our recent paper.

Simulation: A simulation example is given to illustrate the proposed adaptive neural tracking
control for multiagent systems. Consider a group of 3 agents with the following dynamics{

ẋ11 = 2x11 + x12
ẋ12 = 0.2e−x12 + x11 sin(x12) + u1

,{
ẋ21 = x21 + x22
ẋ22 = 0.6 sin(x22)x21 + u2

, (45){
ẋ31 = 5x31 + x32
ẋ32 = 0.5(x231 + x232) + u3

,

and the informed agent is ẋ0 = −x0+r(t), with r(t) = 2 cos(0.5t). Systems in (45) are in the form
of (43) with a1 = 2, f1(x11, x12) = 0.2e−x12 +x11 sin(x12), a2 = 1, f2(x21, x22) = 0.6 sin(x22)x21,
and a3 = 5, f3(x31, x32) = 0.5(x231 + x232). For the informed agent, we have a0 = −1, w = 2, and
φ(t) = cos(0.5t). We assume that the sensing/communication matrix S is given by

S =

 k k 0
k k k
0 k k

 ,
and agent 1 receives the information of x0(t), i.e., B = diag{k, 0, 0}, where constant k > 0. The
parameters ai, a0, w and functions fi(xi1, xi2) are assumed to be unknown in the simulation. We
use RBF neural networks to approximate fi(xi1, xi2), i.e., fi(xi1, xi2) = ψTi (xi1, xi2)θi + εi, where
|εi| ≤ δi, and ψi = [ψi,1, · · · , ψi,ni

]T , with ψi,j being chosen as the commonly used Gaussian func-
tions, which have the form ψi,j = e−(xi−µi,j)

T (xi−µi,j)/η2i,j , j = 1, · · · , ni, where µi,j is the center
of the receptive field and ηi is the width of the Gaussian function. For the design of distributed
adaptive neural control, let âi, ŵi, â0i, δ̂i, θ̂i be the estimates of unknown parameters a0− ai, w, a0,
δi, and θi, respectively.

The performance of the adaptive neural control relies on the selection of the centers and widths of
RBF. For Gaussian RBF NNs, it was shown in that the centers can be arranged on a regular lattice
on <n to uniformly approximate smooth functions. Accordingly, we select the widths and centers
as: ηi,j = 1,∀i, j, every neural network ψTi θi contains 121 nodes, with center µi,j(j = 1, · · · , 121)
evenly spaced in [−10, 10] × [−10, 10]. The following initial conditions and design parameters
are used in the simulation: x1(0) = [0.5, 0]T , x2(0) = [−0.2, 0]T , x3(0) = [0.3, 0]T , x0(0) = 0,
âi(0) = 0, ŵi(0) = 0, â0i(0) = 0, δ̂i(0) = 0, θ̂i(0) = 0, Γai = Γwi

= Γa0i = Γθi = Γδi = 5, and
k = 30.

Simulation results in figures 22-25 validate the effectiveness of the proposed distributed adaptive
neural control. Figure 22 shows that all three agents follow the desired trajectory specified by
the informed leader x0(t). The boundedness of the corresponding control inputs and âi is shown
in figure 23. The boundedness of parameter estimates ŵi,â0i, δ̂i as well as NN weights ‖θ̂i‖ are
illustrated in figures 24 and 25.

A list of published work in this area is given below.
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5.2 Distributed gradient estimation for networked system optimization

We have also studied the distributed algorithm to address the optimization problem in multiagent
systems. The aim is to find fundamental solutions to solve the problems of optimal deployment
of sensor networks for distributed detection of behaviors in multiagent systems as well as dealing
with complicated machine learning problems in multiagent systems.

We proposed a new distributed gradient algorithm to address the optimization problem in multi-
agent systems. Without loss of generality, the problem is formulated to address a general type
of convex network cost function by cooperatively finding an approximately optimal solution via
local computation and information exchanges among agents in the network. For practical network
applications, as long as the network utility functions are properly designed via either forward or
reverse engineering, the proposed distributed optimization algorithm is directly applicable to some
concrete network optimization problems such as sensor network resource allocation, network flow
control, TCP congestion control, and virtual network embedding. Different from most of the ex-
isting multiagent optimization results, in which the subgradient of the local cost function is the
additive term in the consensus protocol, the proposed algorithm is based on the distributed estima-
tion of the gradients of the overall network cost function. In other words, a local gradient descent
algorithm is adopted by each node in the network, and the sum of gradient terms of individual cost
functions is distributedly estimated via a consensus-type coordination algorithm. The proposed
algorithm only requires limited communication among neighboring agents. In addition, via the
estimation of the left eigenvector of a key eigenvalue of the graph Laplacian matrix, the directed
communication graph can be addressed. The convergence of the proposed algorithm is rigorously
analyzed under the assumption that the communication graph in the network is strongly connected.
For switching communication topologies, the proposed algorithm still works by introducing a sim-
ple mechanism of periodically resetting the estimate of the left eigenvector that characterizes the
communication topology. Though the proposed algorithm is an approximate one due to the use
of an estimate in the gradient descent algorithm, the advantage of this algorithm is that it can be
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easily scaled up to address the optimization problem of very-large-scale networks with minimal
increase of the computational burden and communication price because of the distributed nature
of the design. Using the same framework, the constrained optimization problem is also solved by
converting it into an unconstrained approximation problem via the penalty function method.

The proposed approximate distributed gradient estimation algorithm can be summarized as fol-
lows. Consider a network of n agents with the objective of finding the solution of the following
optimization problem {

minimize
∑n

i=1 fi(x)
subject to x ∈ <n (46)

where xi ∈ < is the variable associated with agent i, x = [x1, · · · , xn]T , and fi : <n → < is a
smooth convex function that is available only to agent i. When xi is a vector, the treatment can be
done in a similar manner. The proposed distributed gradient algorithm is of the form

xi(k + 1) = xi(k)− αŶii(k) (47)

in which Ŷii(k) is the estimate of
∑n

l=1
∂fl(x(k))
∂xi

, given by

Ŷiq(k + 1) = Ŷiq(k) +
1

1 + di

∑
j∈Ni

aij

[
Ŷjq(k)− Ŷiq(k)

]
+βi(k) [yiq(k + 1)− yiq(k)] (48)

where βi(k) = 1
ŵii(k)

, with ŵii(k) being the estimate of wi by agent i, which is updated as follows

ŵii(k + 1) = ŵii(k) +
1

1 + di

∑
j∈Ni

aij [ŵji(k)− ŵii(k)] (49)

where ŵji(k) is the estimate of wi by agent j and the values are initialized as ŵii(0) = 1 and
ŵji(0) = 0, ∀j 6= i.

The details of the proposed distributed optimization algorithm can be found in [J-1], in which
the convergence proof was given. With little modification, the proposed distributed gradient
estimation-based optimization algorithm can be used to solve the following optimization problem
over networks {

minimize
∑n

i=1 fi(x)
subject to x ∈ <m (50)

in which n agents wish to determine an optimal consensus value x∗ ∈ <m, while each agent i only
knows its own cost fi(x). This setup is slightly different from the problem in (46), where each
agent has a state variable xi. Nonetheless, the distributed solution can be developed following a
similar procedure. If all fi(x) were available to a central node, the following centralized gradient
descent algorithm could be used.

x(k + 1) = x(k)− αk
∂
∑n

i=1 fi(x)

∂x

∣∣∣∣
x=x(k)

(51)
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We design a distributed algorithm based on the estimation of ∂
∑n

i=1 fi(x)

∂x
. The following theorem

states the result. Detailed proof can be found in [J-1].

Theorem 2 Consider the distributed optimization problem in (50) over networks. Let xi(k) ∈ <m

be the estimate of optimal value x∗ by agent i at the iteration step k. Define yi(k) = ∂fi(x
i(k))

∂x
, and

let Ŷi(k) be the estimate of
∑n

i=1 yi(k). Let the update law of Ŷi(k) be

Ŷi(k + 1) = Ŷi(k) +
1

1 + di

∑
j∈Ni

[
Ŷj(k)− Ŷi(k)

]
+βi[yi(k + 1)− yi(k)] (52)

where βi = 1
ŵii(k)

, with ŵii(k) given by (49). Then, problem (50) can be approximately solved
using the following distributed optimization algorithm

xi(k + 1) = xi(k)− αkŶi(k) (53)

where αk is an appropriately chosen step length.

[J-1] J. Wang and K. Pham, “An Approximate Distributed Gradient Estimation Method for Net-
work Optimization with Limited Communications”, IEEE Trans. on SMC: Systems, to ap-
pear, Digital Object Identifier 10.1109/TSMC.2018.2867154, Aug., 2018.

The following example illustrate the proposed algorithm in solving the resource allocation problem
in multiagent systems.

Example:

Figure 26: A simple network with three sources

As shown in figure 26, the example considers a network with three sources s1, s2 and s3 competing
for resources, There are three flows with the corresponding date rates x1, x2 and x3. Link L12

between router 1 and router 2 has a capacity of 2 units per second, and link L13 between router 1
and router 3 has a capacity of 1 unit per second. The resource allocation problem is formulated as
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finding the optimal data rates such that the following utility function is maximized while satisfying
the link constraints. That is,{

max
∑3

i=1 log(xi)
subject to x1 + x2 ≤ 2, x1 + x3 ≤ 1, x ≥ 0

(54)

The problem can be solved by defining the Lagrangian

L(x, λ) = log x1 + log x2 + log x3 − λ1(x1 + x2)− λ2(x1 + x3)

where λ1, λ2 are Lagrange multipliers. Based on the necessary condition for optimality and setting
∂L
∂xi

= 0, the optimal solution can be found as follows

x∗1 = 0.422, x∗2 = 1.577, x∗3 = 0.577

In the following, we will show how the proposed distributed optimization algorithm can be used
to solve the problem in (54). We assume that the three sources exchange information according to
the connectivity topology defined in figure 27. The adjacency matrix, degree matrix and Laplacian
matrix are

A =

 0 1 1
1 0 0
1 0 0

 , D =

 2 0 0
0 1 0
0 0 1

 ,
and

L = D − A =

 2 −1 −1
−1 1 0
−1 0 1


respectively. The corresponding F matrix is

F = I − (I +D)−1L =

 0.3333 0.3333 0.3333
0.5000 0.5000 0
0.5000 0 0.5000


and its left eigenvector, corresponding to the eigenvalue of 1, is

w =
[

0.4286 0.2857 0.2857
]T

Although w is unknown to all sources, its estimate can be obtained using (49).

Using the penalty function method, the maximization problem in (54) can be recast as the uncon-
strained approximation problem defined below

minimize
n∑
i=1

fi(x) (55)

where f1(x)
4
= − log(x1), f2(x)

4
= − log(x2) + γ

(2−x1−x2) , and f3(x)
4
= − log(x3) + γ

(1−x1−x3) ,

where γ > 0 is a small constant. In the simulation, αk = 10−3/
√
k, γ = 10−4, x1(1) =
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Figure 27: Information exchange topology
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Figure 28: Convergence of x1
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0.1, x2(1) = 0.1, x3(1) = 0.1, and Ŷiq(1) = 0, i = 1, 2, 3, q = 1, 2, 3. Figures 28, 29, 30 depict the
updates of x1(k), x2(k), and x3(k), respectively. Figure 31 shows the corresponding estimation
errors. It can be seen that those values converge to the true optimal data rates.

The convergence rate and estimation error are dependent on the step length αk as well as the
parameter γ in the use the penalty function method. In general, a too small or a too large step
length may render slow convergence and large estimation error. Specifically, if bounds of the
eigenvalues of the Hessian matrix ∇2

∑
i fi(x(k)) is known as Lk, then the step length can be

selected as αk ≤ 1
Lk

. In addition, αk needs to be diminishing in order to ensure the convergence of
(47). However, if αk is diminishing too fast, the convergence speed may become slow. Figure 32
shows the objective function value resulting from the first 2000 iterations under different step sizes
given γ = 10−4. It can be seen that the medium step length α2 = 10−3 produces the best result in
terms of convergence rate and estimation error.

Simulation was also conducted for the case of different γ. Generally, for small γ the solutions to
the constrained optimization problem in (54) and the unstrained optimization problem in (55) will
be nearly equal. However, as illustrated in figure 33 for the objective values resulting from the first
2000 iterations under the same αk = 10−3 and different γ, the medium γ2 = 10−4 produces the
best result. Shown in Table 1 are the results of employing several sets of different αk and γ, where
RMSE(k) is the root mean square estimation error value (RMSE) for all agents at step k defined
as

RMSE(k) =

√√√√ 3∑
i=1

(xi(k)− x∗i )2
3

Interestingly, we can see that the combination of αk = 2 × 10−3 and γ = 10−4 produces the best
result.
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Figure 33: Objective values resulting from different γ

Table 1: RMSE value at step k = 2000

RMSE αk = 5× 10−4 αk = 10−3 αk = 2× 10−3

γ = 10−4 0.1852 0.0164 0.0106
γ = 10−3 0.1901 0.0367 0.0317
γ = 10−5 0.2802 0.7616 0.9935
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6.0 RESULTS AND DISCUSSION: SIMULATION AND EXPERIMENTS

The developed distributed estimation, control and optimization algorithms out of this research
project have been validated through extensive software simulations and experimental tests using
mobile robots and quadrotor UAVs. We first applied AgentFly software platform developed by
Czech Technical University (CTU) to illustrate the UAV emergent behaviors. Matlab and Java
simulation results were also developed for formation navigation of multiagents with unicycle dy-
namics. Experimental tests were further conducted using a number of different robot platforms
including UGVs (Kilobots and Q-Bot2s at Bradley Univ.), UUVs (Eco-Dolphin at Embry-Riddle
Univ.), and UAVs (Crazyfiles at Bradley Univ.).

Particularly, the distributed algorithm was implemented using several nano quadcopters called
Crazyflies (Fig. 34) to control their flying behaviors. The control system contains two mod-
ules. The high-level control module is applied to generate the desired way-points for individual
Crazyflies, and the low-level control module is used for stabilizing control of Crazyflies to fol-
low trajectories formed by the way-points. The overall control algorithms were implemented with
the aid of a python-based library developed by Bitcraze. Specifically, localization of Crazyflies
was handled by an anchor-tag system known as the Loco Positioning System (LPS). A remote
computer was used to run the high-level control laws and to transmit control signals to Crazyflies
through a Crazyradio PA dongle. The radio has the ability to send multiple radio control signals
to several Crazyflies at once, which allows us to update each Crazyflie’s position individually. The
on-board microcontroller of the Crazyflie handles the low-level PD and PID control algorithms for
quick response and stabilization. Experiments including hovering control, trajectory following,
and formation control were successfully conducted in an indoor environment.

Figure 34: A Crazyflie 2.0 Quadrotor UAV

The nano Crazyflie quadrotor is selected over the others on the market for experiments because
of its high quality components. This quadrotor is open source, and we are able to program and
control it using and adapting its python API. In addition, it is agile and safe to fly indoor. It has
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5-10 minutes of flight time with less than an hour charge time. Bitcraze also produces its own
Crazyradio which can be used to control multiple Crazyflies at once. Its specifications are given
below.

• Weight: 27g

• Size (WxDxH): 92x92x29mm (motor-to-motor and including motor mount feet)

• 20 dBm radio amplifier tested to more than 1km range LOS with Crazyradio PA

• STM32F405 main application MCU (Cortex-M4, 168MHz, 192kb SRAM, 1Mb flash)

• nRF51822 radio and power management MCU (Cortex-M0, 32Mhz, 16kb SRAM, 128kb
flash)

• IMU: 3-axis gyro, accelerometer, and magnetometer

• Max recommended payload weight: 15g

While the on-board MCU is handling the local low-level feedback control of the Crazyflie, the
high-level control strategy can be programmed and implemented through a remote computer, and
then the input command can be transmitted to Crazyflie through the Crazyradio PA module. This
hardware/software architecture allows us seamlessly implement the proposed distributed hierar-
chical control strategy.

Quadrotor Dynamics

The dynamics of quadrotor UAV has been well documented in literature. A simple model is given
as follows

ẍ = (cosφ sin θ cosψ + sinφ sinψ)
U1

m

φ̈ = θ̇ψ̇(
Iy − Iz
Ix

)− JR
Ix
θ̇ΩR +

L

Ix
U2

ÿ = (cosφ sin θ sinψ + sinφ cosψ)
U1

m

θ̈ = φ̇ψ̇(
Iz − Ix
Iy

)− JR
Iy
φ̇ΩR +

L

Iy
U3

z̈ = −g + (cosφ cos θ)
U1

m

ψ̈ = φ̇θ̇(
Ix − Iy
Iz

) +
1

Iz
U4

(56)

where x, y, z are the position of the center of the mass in the inertial frame; φ, θ, ψ are the Euler
angles, which describe the orientation of the body-fixed frame with respect to the inertial frame;
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m, Ix, Iy, and Iz are the mass and moments of inertia of the quadrotor, respectively; L is the length
from the rotors to the center of mass; and JR and QR are the moments of inertia and angular
velocity of the propeller blades. U1, U2, U3, and U4 are the collective, roll, pitch, and yaw forces
generated by the four propellers.

The desired position and orientation (pose) of a quadrotor is hovering. Accordingly, a linearized
model can be obtained through Jacobian linearzation using small angle approximations. Let U 1 =
mg + ∆U 1. Under these approximations, equation (56) becomes

ẍ = gθ, φ̈ =
L

Ix
U2, ÿ = −gφ

θ̈ =
L

Iy
U3, z̈ =

∆U1

m
, ψ̈ =

1

Iz
U4

(57)

The low-level control can be done based on the linearized model in (57).

Distributed Hierarchical Control Design

To facilitate the control design, we propose a distributed hierarchical control strategy. In other
words, the desired flight patterns (trajectories) for individual UAVs are generated by a high-level
controller, and a low-level control is used to generate roll, pitch and yaw input commands. The
low-level control is based on linearized model in (57), which is a typical double integrator model,
and its control can be done using a linear controller such as a PID controller. A simulink model for
PID hovering control is given in Figure 35.

Figure 35: Hovering Control Using PID

In what follows, we focus on the design of a high-level controller. For a single UAV, it is straight-
forward to specify way-points and/or flight trajectories in the high-level controller. For formation
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flying of multiple UAVs, the desired trajectories and flight patterns will be generated through in-
formation sharing among UAVs.

Let xi(k), yi(k), zi(k) be the current position of UAV i at the time instant k, which is obtained
through a localization system (the LOCO position system to be described in section III). Let
xdi (k), ydi (k), zdi (k) denote the desired position of UAV i at the time instant k. The high-level
distributed control algorithms for generating xdi (k), ydi (k), zdi (k) are given below

xdi (k + 1) =
N∑
j=1

cij(k)(xj(k)− dxj − xi(k) + dxi ) (58)

ydi (k + 1) =
N∑
j=1

cij(k)(yj(k)− dyj − yi(k) + dyi ) (59)

zdi (k + 1) =
N∑
j=1

cij(k)(zj(k)− zi(k)) (60)

where (dxi , d
y
i ) are some given constants which define the formation shape, and cij(t) > 0 denotes

that UAV j can transmit data to UAV i, otherwise cij(t) = 0.

LOCO Positioning System

The LOCO Positioning System is used for acquiring xi(k), yi(k) and zi(k). It was developed
by Bitcraze to act as a sort of indoor GPS system for the Crazyflie. There are six anchors that
are placed throughout the space as shown in Figure 36. In addition to the anchors is a LOCO
Deck, which sits on top of the Crazyflie. This deck communicates with the anchors via 2.4 GHz
radio waves. From this communication, the Crazyflie is able to estimate its position in a 3D
space. Bitcraze provides a Python API Library which can be applied in algorithms development
of controlling Crazyflies. This library is developed to take care of the low-level control of the
Crazyflie, and allowing for easier implementation of custom control algorithms.

Square Pattern Flight

Desired set-points were input to the sequence. Each set-point was sent every 0.1 seconds for 5
seconds, then the next set-point was sent. The set-point needed to be sent every 0.1 seconds so that
the watchdog timer did not disable the motors.

For each test run, the actual x, y, and z values were output to the screen and to a csv file twice a
second. The csv file was imported into MATLAB for analysis. These values were used to compare
the desired path to the actual path the Crazyflie took. We conducted around 50 runs for a Monte-
Carlo analysis. The 3D plot of all the testing flights are overlaid as shown in Figure 37. A quite
robustness performance can be observed.
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Figure 36: LOCO Positioning System Setup

Figure 37: MATLAB Plot of the Square Trajectory Data

Circle Pattern Flight

The circle pattern was also tested The desired circular trajectory was generated and new coordi-
nates were sent to the Crazyflie every 0.25 seconds. The circular flight was certainly more stable
than the square flight because consecutive set-points were much closer together. During the square
flight, set-points were a meter apart, which resulted in significant overshoot during each transition
of the sequence. With the new set-points being roughly 3 centimeters apart, the Crazyflie moves
much more stably and smoothly.
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Figure 38: MATLAB Plot of the Circle Trajectory Data

After every flight, square and circular, measurements were taken to determine the landing error.
The measurements were the distances between the desired landing point and the actual landing
point in both the x and y directions.

Formation Flying

We have also conducted simulation for formation flying. Five crazyflies are coordinated to move
into a pyramid formation while circling around the same center. Videos for experiment results can
be found at our project web-page at http://ee.bradley.edu/projects/proj2018/
crazy/videos/videos.html.

The relevant publications are listed below.

[J-5] G. Bock, R. Hendrickson, J. Lamkin, B. Dhall, J. Wang, and I. S. Ahn, “Experiments of dis-
tributed control for multiple mobile robots with limited sensing/communication capacity”,
International Journal of Handheld Computing Research, vol. 8, no. 2, pp.19-40, April-June
2017.

[C-2] A. Le, R. Clue, J. Wang, and I. S. Ahn, “Distributed vision-based target tracking control
using multiple mobile robots”, 18th IEEE International Conference on Electro Information
Technology (EIT), Rochester, Michigan, May 3-5, 2018.

[C-3] Bryce Mack, Chris Noe, Trevor Rice, J. Wang, and I. S. Ahn, “Distributed Hierarchical Con-
trol of Quadrotor UAVs: designa and experimental validation”, 2018 IEEE SouthEastCon,
Tampa, FL, April 19 - April 22, 2018.
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[C-5] H. Liu, R. Cheng, T. Yang, and J. Wang, “Modeling and verifying the communication and
control of a fleet of collaborative autonomous underwater vehicles,” 43th Annual Conf. of
the IEEE Industrial Electronics Society (IECON17), Beijing, Oct. 29-Nov.1, 2017.

[C-9] M. Imtiaz and J. Wang, “A multiagent reinforcement learning control approach to environ-
ment exploration”, 2017 IEEE SouthEastCon, Charlotte NC, Mar 30-Apr. 2, 2017.

[C-14] T. A. Khan and J. Wang, “On formalization of emergent behaviors in multiagent systems with
limited interactions”, 2016 IEEE International Conference on Electro Information Technol-
ogy (EIT), Grand Forks, ND, May 19-21, 2016.

[C-15] G. Bock, R. Hendrickson, J. Lamkin, B. Dhall, J. Wang and I. S. Ahn, “Experiments of dis-
tributed control for multiple mobile robots with limited sensing/communication capacity”,
2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks,
ND, May 19-21, 2016.

[C-17] H. Liu, T. Yang, and J. Wang, “Model checking for the fault tolerance of collaborative
AUVs”, 17th IEEE Int. Symposium on High Assurance Systems Engineering, Orlando, FL,
Jan 7-9, 2016.

7.0 CONCLUSIONS

In this report, we summarized the major research outcomes obtained through this grant. By seeking
the deep understanding of interaction mechanism in multiagent systems, we developed a number
of sound results in terms of distributed detection and control of emergent behaviors in multiagent
systems. Particularly, we presented key components of the proposed distributed estimation, con-
trol, and optimization algorithms for multiagent systems as well as examples and simulation results
to illustrate the effectiveness of the proposed designs. More details, convergence analysis, proofs,
simulations, and experimental results related to the developed results are well documented in our
published papers, which are submitted together with this report for ease of references.
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

UAV Unmanned Aerial Vehicle
UGA Unmanned Ground Vehcle
RMSE Root Mean Square Estimation Error
WSN Wireless Sensor Network
PID Proportional-Integral-Derivative
RBF NN Radial Basis Function Neural Network
4
= defined as
< (>) less (greater) than
≤ (≥) less (greater) than or equal to
∀ for all
∈ belongs to
→ tends to∑

summation⋃
union

‖x‖ the norm of a vector x
max maximum
min minimum
<n the n−dimensional Euclidean space
diag[x1, · · · , xn] a diagonal matrix with diagonal elements x1 to xn
ẋ the first derivative of x with respect to time
ẍ the second derivative of x with respect to time
AT (xT ) the transpose of a matrix A ( a vector x)
argmin the argument of the minimum
L2 the space defined based on 2−norm
L∞ the space defined based on∞−norm
sgn(·) the signum function
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