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Space Weather

Intelligent Sampling of Hazardous Particle Populations
in Resource-Constrained Environments

J. P. McCollough1 , J. M. Quinn1, M. J. Starks1, and W. R. Johnston1

1Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM, USA

Abstract Sampling of anomaly-causing space environment drivers is necessary for both real-time
operations and satellite design efforts, and optimizing measurement sampling helps minimize resource
demands. Relating these measurements to spacecraft anomalies requires the ability to resolve spatial
and temporal variability in the energetic charged particle hazard of interest. Here we describe a method
for sampling particle fluxes informed by magnetospheric phenomenology so that, along a given trajectory,
the variations from both temporal dynamics and spatial structure are adequately captured while minimizing
oversampling. We describe the coordinates, sampling method, and specific regions and parameters
employed. We compare resulting sampling cadences with data from spacecraft spanning the regions
of interest during a geomagnetically active period, showing that the algorithm retains the gross features
necessary to characterize environmental impacts on space systems in diverse orbital regimes while
greatly reducing the amount of sampling required. This enables sufficient environmental specification
within a resource-constrained context, such as limited telemetry bandwidth, processing requirements,
and timeliness.

1. Introduction

Space systems suffer from anomalies induced by a variety of environmental conditions (e.g., Baker, 2000).
While there may be straightforward causal relationships in many cases, this is not always true. For example,
Baker et al. (2009) showed that greater geomagnetic disturbance could lead to improved operations of the
Aeronomy of Ice in the Mesosphere mission via an inadvertent floating input on the spacecraft receiver. Thus,
it often requires significant effort to translate environmental conditions into meaningful hazard indicators.
O’Brien (2007, 2009) provided a statistical framework by which these connections can be used to produce rela-
tive probabilities of four different hazards: single event effect and event total dose hazards driven by energetic
protons and heavy ions, the internal charging hazard due to relativistic electrons, and surface charging driven
by plasma-energy electrons. While much work has been done toward computing these hazards at Geosyn-
chronous Equatorial Orbit (GEO) (O’Brien, 2009; Su et al., 2014), other considerations become significant in
other orbit regimes.

We review these considerations so that needs in various orbit regimes can be defined. There are trade-offs
between sampling the environment at high and low cadence. The ability to relate anomalies to postulated
environmental drivers requires a knowledge or estimate of that driver at a cadence sufficient to capture
changes between driving and nondriving environments. These changes may be temporal in general (e.g., time
evolution of flux levels in a solar particle event) or merely due to spacecraft motion through spatial structure
(e.g., Low Earth Orbit (LEO) satellite passage through the auroral zone).

This narrow objective of monitoring environmental drivers of anomalies does not require measurements of
the highest science quality. Relative to science-quality measurements (as by missions such as the Van Allen
Probes), such measurements may be relaxed in terms of energy coverage, energy/time/directional resolution,
and flux dynamic range coverage. This limited scope enables use of smaller, cheaper sensors such as the
Compact Environmental Anomaly Sensor (CEASE) (Dichter et al., 1998) or its follow-on, CEASE-Risk Reduction
(CEASE-RR) (Lindstrom et al., 2017).

With this in mind, operational or resource constraints may demand lower cadence: minimizing telemetry
demands; time integration commensurate with instrument capabilities; or, in the case of using model data,
minimizing computationally intensive queries. Cadence also needs not be higher than the timescale of the
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anomaly (which includes development, persistence, and recording of the anomalous state). Here we describe
a method for sampling particle fluxes so that, along a given satellite trajectory, the variations from both tem-
poral dynamics and spatial structure are largely captured, while significantly reducing the number of samples
taken. The sampled fluxes may come from either on board measurements or from a model.

Sampling algorithms are defined for the three broad classes of particles mentioned above: energetic protons
(5–100 MeV), energetic electrons (0.1–5 MeV), and plasma electrons (1–100 keV). Each of these classes
includes multiple physical populations with distinct sources and characteristics (e.g., untrapped solar ener-
getic particles (SEPs) and trapped protons are simply “energetic protons”)

The energy boundaries of each class are somewhat arbitrary. There may be cases where a single hazard
involves two particle classes. For example, shallow subsurface discharges may be driven by electrons at ener-
gies within both the “plasma” and “energetic” classes. In such a case the results of the two sampling algorithms
must be reconciled to ensure that both sets of cadences are met (e.g., by sampling at the most rapid cadence
of the two).

Our approach defines a small set of spatial regions for each particle class that, together, fully contain the
locations where hazards from those particles may be encountered. Within each region, spatial lengths and
time intervals are defined to establish the appropriate sampling intervals along a trajectory. That is, a sample is
required whenever either of two things happens: the vehicle moves by an amount equal to a specified length
or the elapsed time since the previous sample exceeds the specified time interval.

The remainder of this report is organized as follows: Section 2 describes the coordinates, sampling method,
and specific regions and parameters employed for this study. Section 3 compares resulting sampling cadences
with data from spacecraft spanning the regions of interest. Finally, section 4 provides conclusions and
prospects for further development.

2. Methodology
2.1. Definitions and Assumptions
Spatial sampling requirements are driven by the spatial variability of the hazardous populations, the mor-
phology of which is dictated primarily by the geomagnetic field. Consequently, we define spatial sampling
requirements in magnetic coordinates: L (McIlwain, 1961) (L value), 𝜑 (magnetic longitude), and 𝜆 (magnetic
latitude), except in some low-altitude regions where altitude, H, is used instead of L. A tilted, offset dipole
(i.e., eccentric dipole) magnetic field model is used everywhere. The applicability of this model will be
addressed in section 2.4, but we note here that high model accuracy is not required for our purposes that are
limited to defining broad sampling regions and determining approximate gradients.

Region boundaries are specified as subscripted coordinates, e.g., LA1, LA2, 𝜆A1, and 𝜆A2. The sampling scales
within a region are denoted by Δ: ΔL, Δ𝜑, Δ𝜆, ΔH, and Δt. The values provided are provisional; specific values
may vary with application and resources.

Locations not included in one of the defined regions are places where significant hazards from that particle
class are not expected. The sampling in these places is determined by generic rules that are applicable for all
particle classes, e.g., with a fixed 15 min cadence. This choice is driven by the characteristic timescales of the
most dynamic populations: SEPs and energetic electrons. This sampling timescale also functions as an upper
limit for the defined regions.

The method of producing a “sample” differs somewhat for on board data and model representations. For on
board data it will often be desirable to average data close to the requested time in order to improve counting
statistics and integrate rapid temporal fluctuations. For a model, the sample would represent the model’s best
estimate of the flux at exactly the requested location and time.

2.2. Sampling Method
To characterize convective changes to populations of interest, we need to determine magnetic ephemeris
and gradients. We first compute the transformed locations and velocities from Cartesian Geographic (GEO)
coordinates into a Cartesian eccentric dipole (ED) frame (see equations (A10) and (A11), and Table A1). In this
“primed” frame, the magnetic coordinates can be written as (all units are Earth radii and radians):

L = r′3

𝜌′2
, (1)
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Figure 1. (left to right) Spatial regions for the three populations of interest: energetic protons, energetic electrons, and plasma electrons. Tables 1–4 provide full
definitions and sampling parameters.

𝜆 = arcsin
z′

r′
, (2)

𝜑 = atan2
(

y′, x′
)
, (3)

where 𝜌′2 = x′2 + y′2 and r′2 = x′2 + y′2 + z′2.

The magnetic gradients can then be written as
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The other spatial coordinate, altitude H, needs to be computed in the GEO (unprimed) frame:

H = r − RE , �⃗�H =
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. (7)

Table 1
Energetic Proton (5–100 MeV) Sampling Parameters

Region ΔL Δ𝜆 Δ𝜑 ΔH Δt Notes

A ΔLA Δ𝜆A — N/A ΔtA SEPs

3 < L ≤ 9 0.25 1∘ single 15 min (may be above cutoff)

H > 2, 000 km 𝜑 cell

B ΔLB Δ𝜆B Δ𝜑B N/A ΔtB trapped protons

L ≤ 3 0.1 2∘ 5∘ 15 min and possible SEPs

H > 2, 000 km to L ≈ 2.4

C ΔLC Δ𝜆C Δ𝜑C ΔHC ΔtC SAA and

|𝜆| ≤ 70∘ N/A 2∘ 5∘ 50 km 15 min low altitude

H ≤ 2, 000 km structure

MCCOLLOUGH ET AL. INTELLIGENT REAL-TIME PARTICLE SAMPLING 3
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Table 2
Energetic Electron (0.1– 5 MeV) Sampling Parameters

Region ΔL Δ𝜆 Δ𝜑 ΔH Δt Notes

D N/A Δ𝜆D Δ𝜑D ΔHD ΔtD low-altitude structure

L ≤ 8 2∘ 5∘ 50 km 15 min

H ≤ 2, 000 km

E ΔLE Δ𝜆E Δ𝜑E N/A ΔtE inner zone of

L ≤ 3 0.1 2∘ 15∘ 15 min the radiation belts

H > 2, 000 km

F ΔLF Δ𝜆F Δ𝜑F N/A ΔtF outer zone of

3 < L ≤ 8 0.1 2∘ 15∘ 15 min the radiation belts

H > 2, 000 km

To avoid the computational burden of explicitly calculating magnetic coordinates along a large number of
trajectory points, and then differencing them to identify “delta” changes, each subsequent sampling step is
directly calculated from the current location and velocity at a corresponding time ti as follows. The elapsed
times at which the various convective criteria would be met are defined to be

ΔTL =
ΔL|||v⃗′ ⋅ �⃗�L|||

, (8)

ΔTH = ΔH|||v⃗ ⋅ �⃗�H|||
, (9)

ΔT𝜆 =
Δ𝜆|||v⃗′ ⋅ �⃗�𝜆|||

, (10)

ΔT𝜑 = Δ𝜑|||v⃗′ ⋅ �⃗�𝜑|||
. (11)

The time of the next sample, ti+1, is set by the first of the various criteria to be met. That is, it is the minimum
of the three region-specific convective criteria along with the temporal criterion Δt. For the case considered
here, with low-altitude regions defined in terms of H and other regions in terms of L, two expressions for
ti+1 emerge:

ti+1 = ti + min
(
Δt,ΔTL,ΔT𝜆,ΔT𝜑

)
or ti+1 = ti + min

(
Δt,ΔTH,ΔT𝜆,ΔT𝜑

)
. (12)

2.3. Specific Regions and Parameters
For the purposes of this study, we have defined spatial regions dictated by appropriate local sampling for
each population of interest (see Figure 1). Tables 1–4 define the region boundaries and sampling rules, along
with notes on the hazards and rationales informing the rules. For trapped particles, the relative frequency of
required sampling in different directions (e.g., in 𝜆, 𝜑, and H) parallels sampling scales in the AE9/AP9/SPM

Table 3
Plasma Electron (1–100 keV) Sampling Parameters

Region ΔL Δ𝜆 Δ𝜑 ΔH Δt Notes

H ΔLH Δ𝜆H Δ𝜑H N/A ΔtH plasma sheet and

L ≤ 15 0.25 10∘ 10∘ 15 min inner quasi-equatorial region

|𝜆| ≤ 50∘

J ΔLJ Δ𝜆J Δ𝜑J N/A ΔtJ auroral zone and high-

L ≤ 20 1 0.1∘ 5∘ 15 min latitude extent of

|𝜆|> 50∘ plasma sheet

MCCOLLOUGH ET AL. INTELLIGENT REAL-TIME PARTICLE SAMPLING 4
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Table 4
Locations Not Defined in Tables 1–3

Region ΔL Δ𝜆 Δ𝜑 Δt Notes

X ΔLX Δ𝜆X Δ𝜑X ΔtH Region may contain trapped

L ≤ 10 1 10∘ 15∘ 15 min populations.

Y ΔLY Δ𝜆Y Δ𝜑Y ΔtY outside trapped populations;

L> 10 — 5∘ — 15 min single L and 𝜑 cells to avoid

single L cell single 𝜑 cell oversampling near magnetic poles

Note. Regions x and y only apply in locations that are not covered by another defined region for a given
particle class.

climatological model. For example, the model developers found a separate low-altitude grid was required to
represent particle gradients in LEO (Ginet et al., 2013) and recommend that model queries use different sam-
pling timescales for different orbit regimes (Roth, 2014). Accordingly, energetic populations (Tables 1 and 2)
have regions characterized by a boundary at 2,000 km separating high- and low-altitude areas. We define
low-altitude regions with H as a spatial parameter in lieu of L, since L and𝜆become degenerate at low altitudes.

For energetic protons, Region A corresponds to the region outside the trapped populations and may be
exposed to SEPs; Region B includes trapped radiation belt protons and possibly SEPs at higher latitudes; and
Region C is the low-altitude region characterized by localized structure such as the South Atlantic Anomaly
(SAA). Similar to this region, energetic electrons are covered by Region D at low altitudes (e.g., where the
low-altitude “horns” of the outer zone are encountered). At higher altitudes, Regions E and F encompass
the inner and outer zone of the electron radiation belt, respectively. Plasma electrons are represented by
two regions: Region H characterizes the plasma sheet in the magnetotail as well as near-equatorial inner
magnetosphere, and Region J corresponds to the auroral population (although resolving auroral structures
will not be necessary for all applications) and high-latitude extent of the plasma sheet. Untrapped auroral
particles require finer latitudinal sampling due to the fine spatial structure associated with discrete aurorae.
To complete the picture, we define Regions X and Y as regions that may contained trapped populations and
those that do not, respectively.

Spatial and temporal scales are specified for each region. These are meant to be adjustable and are context
dependent. For example, in this particular case, note that Regions E and F have identical scales. Given that
those regions distinguish the inner and outer zones of the radiation belt, which are subject to different pro-
cesses and dynamics, it is useful to be able to adjust the parameters for each zone independently. Note also
that while the gradient of the magnetic longitude (𝜑) is needed for these calculations, the coordinate itself
(and thus the atan2 function) is not required given the regions and scales in this work.

While specific values are listed in Tables 1–4, they are adjustable within the constraints of climatology.
The general approach outlined above can be applied to a different set of regions designed for a particular
application. For example, one could define local time-dependent regions (e.g., dawn, dusk, the midnight
sector, etc.) as a function of 𝜑. The remainder of this study will employ the regions defined in Tables 1–4.

Figure 2 shows how the algorithm samples a representative highly elliptical orbit (HEO). With the exception
of the third panel showing orbit projections, the x axis for the panels is time in seconds. Figure 2 (top three
panels) shows orbit parameters in the course of one orbit. Perigee can be easily identified near 9,000 s of
elapsed time.

In Figure 2 (bottom three panels), blue denotes energetic protons, red denotes calculations for energetic
electron, and green indicates plasma electrons. The first of these shows, for each population, which regions
the orbit intersects. It should be no surprise that this inclined HEO orbit traverses every region. The penulti-
mate panel shows the sampling criterion that determines the time cadence for each population as the orbit
is executed. This can be key to assessing the suitability of the parameters chosen for each region. Finally,
bottom panel shows the resulting sample times for each population. The most visible feature is a general
trend aligned with orbital velocity (low cadence at apogee, higher cadence approaching perigee) for all
populations. Energetic electrons exhibit finer resolution away from perigee, corresponding to their most
dynamic region.

MCCOLLOUGH ET AL. INTELLIGENT REAL-TIME PARTICLE SAMPLING 5
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Figure 2. Sample algorithm results for a specific HEO orbit. The x axis for the panels is time in seconds with the
exception of the third panel showing orbit projections. (top two panels) Orbit parameters in the course of one orbit.
(bottom three plots) Orbit projections in three orthogonal planes. In Figure 2 (bottom three panels), blue denotes
energetic protons, red denotes calculations for energetic electron, and green indicates plasma electrons. The first
of these shows which region the satellite is in over the course of the orbit; next, the criterion determining sample
cadence; and last, the sample times (squares) and relevant ΔT (lines).

2.4. Suitability of Approach
As noted above, the nominal boundary and sampling rule definitions for the regions are intended to be
adjustable according to the user application and resource constraints. The values presented here are designed
to be conservative, preferring more stringent sampling at transitions between hazard regions. An example
is the fine latitudinal sampling in region J for plasma electrons, which applies down to 50∘ magnetic lati-
tude even though extreme geomagnetic storms are required for aurora to reach this latitude. The rules and
region definitions therefore lead to high variability in sampling rates for LEO polar satellites. Figure 3 illus-
trates how the requirements combine in this orbit regime. The most stringent sampling requirements for such

MCCOLLOUGH ET AL. INTELLIGENT REAL-TIME PARTICLE SAMPLING 6
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Figure 3. North/south sampling length scales versus magnetic latitude for polar circular orbits at (top row) 840 km and (bottom row) 2,000 km. Red lines are
derived from the Δ𝜆 parameter, and blue from the ΔL parameter. Thick segments are the ones that drive the sampling cadence. The latitudinal extent of
hazardous populations for these orbits is indicated with gray bars.

satellites are driven by (magnetic) north-south gradients in hazardous populations, represented by sampling
requirements in both Δ𝜆 and ΔL.

Thus, as a function of magnetic latitude, Figure 3 shows how the north/south distance derived from region-
specific parameters varies with magnetic latitude along polar circular orbits at 840 km (top row) and 2,000 km
(bottom row). Of particular interest is the boundary between Regions H and J. This is characterized by a
marked change (factor of 100) in the Δ𝜆 parameter. While the change in length scale might seem particularly
abrupt when examining Table 3, it is not as severe in practice (indicated by the change from thick red to thick
blue lines in Figure 3, right column).

The choice of ED as the geomagnetic field is driven by computational simplicity, efficiency, and sufficiency for
this application. In particular, it offers analytic expressions for the magnetic coordinates and their gradients,
greatly reducing resource requirements by eliminating the need for computationally intensive magnetic field
calculations. At lower altitudes, the model differs notably from the geomagnetic field (seen, e.g., by compar-
ison to the full International Geomagnetic Reference Field (IGRF) model (IAGA, 2010)), and at high altitudes
or latitudes the externally driven magnetic field is significant. However, it proves sufficient for the purposes
of region identification and gradient calculation. The relationship of the sampling rules to 𝜆 and L values is
continuous within regions, such that the ED approximation has little impact on sampling. The largest possible
effect results from differences in assigning a region for a given location. Consequences for sampling in such
cases is minimized by our definitions of regions and sampling rules: region assignment differences either lead
to higher cadence sampling or are addressed by generously placed boundaries.

3. Assessment With POES and Van Allen Probes Data

We chose a particularly active day, 22 June 2015, to assess algorithm performance against data from polar
LEO orbit and Geosynchronous-Transfer Orbit (GTO). All of the hazards were dynamic in this time period, so
the possibility of undersampling is explored for each. For more details on this event, see section 4 of Baker
et al. (2016).

3.1. Comparison With Data From the Van Allen Probes
The Van Allen Probes are a pair of spacecraft (denoted Radiation Belt Storm Probes-A (RBSP-A) and RBSP-B)
in GTO orbit (600 × 30, 600 km, 10∘ inclination) that were launched on 30 August 2012 (Mauk et al., 2012).
The Van Allen Probes transit through Regions A–C for protons, D–F for energetic electrons, and H for plasma
electrons. Figure 4 shows data from RBSP-A separated by population from 11:37 UT to 20:38 UT, spanning
one orbit during the active period. Diamonds indicate averaged values over the sample window for each
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Figure 4. Data from RBSP-A from 11:37 UT to 20:38 UT. Diamonds indicate averaged values over the sample window for
the corresponding species. Regions are indicated by species-specific background colors corresponding to the colors
used in Figure 1.

corresponding species. The energetic electron and proton panels show Level 2 spin-averaged flux measure-
ments from the Relativistic Electron Proton Telescope (REPT) instrument (Baker et al., 2013), and the plasma
electron panel shows Level 3 omnidirectional flux data from the Helium Oxygen Proton Electron (HOPE)
instrument (Funsten et al., 2013) and Level 2 spin-averaged flux data from the Magnetic Electron Ion Spec-
trometer (MagEIS) (Blake et al., 2013) instrument. Regions are indicated by species-specific background colors
corresponding to the colors used in Figure 1.

Inspection of Figure 4 suggests that in all parts of the orbit, the diamonds corresponding to sample values
closely track the observed values. Therefore, the sample cadence is sufficient to resolve significant changes
in flux level. Whereas the native time series for MagEIS had over 8,000 data points, the sample algorithm
produced 141 points for energetic electrons and 58 points for plasma electrons. This indicates a signifi-
cant reduction in data volume. Similarly, REPT and HOPE data saw reductions of 98% and 96%, respectively.
Some of the high-frequency fluctuations in energetic electrons near apogee may be missed, but the small
amplitude points to little impact on cumulative effects of exposure to this population (e.g., internal charging).
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Figure 5. Data from the POES spacecraft NOAA-18 from 18:00 UT to 20:00 UT. Diamonds indicate averaged values over the sample window for the corresponding
species. Regions are indicated by species-specific background colors corresponding to the colors used in Figure 1.

The sample rate increases as the vehicle nears perigee. This aligns well with the shape of the proton pop-
ulation (a locally confined, trapped proton belt at lower altitudes and a broad, untrapped population at
higher altitudes) and the plasma population (notable decreases in the higher-energy channels near perigee).
The possibility of proton contamination at lower altitudes in the energetic electron channels precludes assess-
ment of the finer sample period there. For the MagEIS instrument, analysis suggests that below L=2.5, all
energy channels are contaminated (Claudepierre et al., 2015).
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3.2. Comparison With POES Data
The Polar-Orbiting Operational Environmental Satellites (POES) are a constellation of spacecraft in Polar LEO
Sun-synchronous orbits (∼840 km circular, 98∘ inclination). They include the Space Environment Monitor
(SEM-2) suite that senses the populations of interest (Rodger et al., 2010). Due to their high inclination, the
POES spacecraft transit through Regions C, X, and Y for protons; D, X, and Y for energetic electrons; and H, J,
and Y for plasma electrons.

Figure 5 shows data from the POES NOAA-18 spacecraft separated by population from 18:00 UT to 20:00 UT,
spanning approximately 1.25 orbits during the active period. Diamonds indicate averaged values over the
sample window for the corresponding species. The energetic electron (Figure 5, first panel) and proton
(Figure 5, second and third panels) contain measurements from the Medium Energy Proton and Electron
Detector (MEPED) instrument, and the plasma electron shows data from the MEPED (Figure 5, fourth panel)
and Total Energy Detector (TED) (Figure 5, fifth panel) instruments. Regions are indicated by species-specific
background colors corresponding to the colors used in Figure 1. The channel energy labels for the MEPED data
follow CDAWeb convention and are derived from the bow-tie analysis described in Green (2013). These chan-
nel energies (and associated conversions from counts to fluxes) consequently differ slightly from the nominal
energies frequently reported for these standard channels. This does not affect our discussion, as our concern
is with the variability of hazardous populations over broad energy ranges.

It is important to note the apparent prevalence of cross-species contamination. This is acknowledged in
section 2.2.1 of Green (2013) and suggests that the MEPED electron fluxes poleward of the auroral region
are actually untrapped protons, and the flux enhancement colocated with the trapped proton belt is indeed
protons. Additionally, the > 6 MeV proton channels likely exhibit electron contamination.

Inspection of Figure 5 suggests that for almost the entirety of the orbit, the diamonds corresponding to
sample values closely track the observed values. Therefore, the sampling algorithm performed well. The pole-
ward edge of Region J near 18:50 UT misses the onset of auroral plasma by approximately 1 min. This is
likely due to Region J not encompassing the entire auroral oval at that time, which is the subject of ongoing
study. Whereas the native time series for MEPED had over 36,800 data points, the sample algorithm produced
184 points for energetic electrons and 1,151 points for plasma electrons. This indicates a significant reduc-
tion in data volume. Similarly, MEPED Proton and TED data saw reductions of 99.5% and 97%, respectively.
The energetic channels only deviate from the low-altitude high-resolution cadence near the poles, where the
only population of interest is the isotropic untrapped proton population. The sample rate increases as the
vehicle nears the auroral region, aligning well with the shape of the plasma population including notable
enhancements and localized structure.

4. Conclusion

A method for intelligent sampling of hazardous particle populations informed by magnetospheric consid-
erations has been developed. This should be thought of as a general framework; specific choices of region
boundaries and sampling scales should be made with particular applications and constraints in mind. These
constraints could include orbit characteristics, spacecraft susceptibility, bandwidth, and timeliness. Other
considerations, including instrument limitations such as geometric factor, field of view, integration time, etc.
should also be taken into account. With appropriate assumptions, eccentric dipole coordinates are suitable for
determining sampling cadence. Defining static regions in this coordinate system based on known population
climatology enabled lean implementation of the sampling algorithm.

The algorithm performed favorably against relevant satellite data spanning the defined regions. While
undoubtedly “lossy,” it captures the gross features necessary to assess environmental impacts on space
systems in all orbital regimes with a significant reduction in samples needed. This enables adequate environ-
mental specification within a resource-constrained context.

An immediate next step is to incorporate a more sophisticated picture of the auroral oval in the definition
of Region J. Further work includes assessment and tailoring of the algorithm for use with global models, a
sensitivity study of the energy bounds on the particle populations, and examination of other hazard-driving
populations.
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Appendix A: Eccentric Dipole (ED) Coordinate System

Following Usoskin et al. (2010) and Fraser-Smith (1987), we define an offset vector d⃗ and dipole axial vector p⃗
in the GEO noninertial frame using appropriate IGRF coefficients (gm

n and hm
n are of degree n and order m):

d⃗ =

⎛⎜⎜⎜⎜⎜⎝

L1−g1
1E

3B2
0

L2−h1
1E

3B2
0

L0−g0
1E

3B2
0

⎞⎟⎟⎟⎟⎟⎠
, p⃗ =

⎛⎜⎜⎜⎜⎜⎝

− g1
1

B0

− h1
1

B0

− g0
1

B0

⎞⎟⎟⎟⎟⎟⎠
, (A1)

where the units are Earth radii. The parameters used above are defined as
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Figure A1. Contours of constant L in GEO coordinate planes. The dipole center is indicated with a cross.
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Figure A2. Contours of constant L at an altitude of 600 km in geographic latitude and longitude.

E =
L0g0

1 + L1g1
1 + L2h1

1

4B2
0

. (A6)

To transform positions, a translation from the origin along d⃗ is performed followed by two rotations to get to
the ED frame. Velocities only need rotations applied. For the first rotation, we rotate about the GEO z axis an
angle 𝜃1:

A1 =
⎛⎜⎜⎝

cos 𝜃1 sin 𝜃1 0
− sin 𝜃1 cos 𝜃1 0

0 0 1

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎝

px

p𝜌

py

p𝜌
0

− py

p𝜌

px

p𝜌
0

0 0 1

⎞⎟⎟⎟⎠
. (A7)

Figure A3. Contours of constant L at an altitude of 2,000 km in geographic latitude and longitude.
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Table A1
Definitions of GEO and ED Coordinate Systems

System Origin z axis x axis y axis

GEO Earth’s center Earth’s rotation axis orthogonal to z axis orthogonal to x and
and intersecting the z axes such that they form

Prime Meridian a right-handed set

ED dipole center Earth’s dipole axis orthogonal to z axis, in orthogonal to x and
the plane of the rotation and z axes such that they

dipole axes, chosen such form a right-handed set
that +x is in the half-plane

containing +z

where p𝜌=
√

p2
x + p2

y is the 𝜌 component of p, in the cylindrical coordinate sense. For the second rotation, we

rotate about the new y axis, which should lie perpendicular to the 𝜌direction (note that the z axis is unchanged
and p⃗ is a unit vector):

A2 =
⎛⎜⎜⎝

cos 𝜃2 0 − sin 𝜃2

0 1 0
sin 𝜃2 0 cos 𝜃2

⎞⎟⎟⎠ =
⎛⎜⎜⎝

pz 0 −p𝜌

0 1 0
p𝜌 0 pz

⎞⎟⎟⎠ . (A8)

We can thus write the rotation matrix A = A2 ⋅ A1 as

A =
⎛⎜⎜⎜⎝
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This allows definition of transformations from GEO (unprimed) to ED (primed) positions and velocities as

r⃗′ = A ⋅
(

r⃗ − d⃗
)
, (A11)

v⃗′ = A ⋅ v⃗. (A12)

We include the following figures to provide verification checks on implementing the transformations
described above, using the IGRF 2015 parameters with no secular variation. Figure A1 shows how contours of
constant L appear in the GEO frame. Figures A2–A3 show contours of constant L in geographic latitude and
longitude at altitudes of 600 km and 2,000 km, respectively.
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