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1. SUMMARY

This work has culminated in 4 publications concerning Time-Frequency 
Representations of seismic data and resulted in experimental software that has been 
delivered to AFRL.  The basic idea behind all techniques involves manipulation of a two-
dimensional mapping where the location of a “signal” is discriminated from “noise” on a 
plane consisting of complex amplitudes determined from the transform of a short time 
window of seismic data. A common transform is the short time window Fourier 
transform (STFT) but other transforms, such as the continuous wavelet transform (CWT) 
and the synchrosqueezed CWT may represent the time series data in more compact form 
(Figure 1). The STFT is the basis for the common spectrogram where short running time 
windows of the data are Fourier transformed and then the amplitude or power spectra are 
plotted as a function of time. The CWT may be implemented with a choice of different 
wavelet functions and is computed in a similar manner to the STFT in which a short time 
window is transformed with wavelet coefficients at different scales being plotted against 
time. The synchrosqueezed CWT (SS-CWT) represents another processing step where, as 
shown in Figure 1, the CWT is modified by assigning the energy of closely adjacent 
wavelet coefficients to ridges in the CWT time-scale map. Both the CWT and the SS 
CWT attempts to represent the seismic signal (and the noise) by the smallest number of 
coefficients. 

The transformed signal can be manipulated by a number of techniques to 
characterize both signal and noise and then remove either. Once a quantitative 
characterization is obtained for properties of the noise, it can be removed by applying a 
threshold criterion to sections of the Time-scale map. The processed Time-scale map is 
then inverse transformed to obtain the denoised signal. 

In Mousavi et al. (2016a), an algorithm was developed around the SS-CWT for 
the purpose of detecting microtremors within noise. In this algorithm, the time-scale 
CWT map for small events embedded in noise was partitioned based on the character of 
high scale (low frequency) background noise and low scale (high frequency) 
microtremors. This part is most analogous to highpass filtering where the higher 
frequency part of the map is treated separately from the low frequency part. Assumptions 
involve considering an event to be localized at small scales and in time and to have larger 
wavelet coefficient amplitudes. Noise is characterized by low values of wavelet 
coefficients but by larger numbers of coefficients. After determining the boundary of the 
high scale noise and low scale signals, the map is split and synchrosqueezed to reduce the 
number of wavelet coefficients needed to describe both the noise and the signal. Using a 
pre-event time window, the statistics of the noise in the signal and noise parts of the map 
is determined. Using these statistics, “soft-thresholding” is applied to the high scale noise 
segment and the noise attenuated across scale by dividing by the high amplitude wavelet 
coefficients. A detection function is then constructed to detect the high amplitude signal 
components by computing the energy from a Parseval-type computation of the wavelet 
coefficients as a function of time. 

Block thresholding was explored by Mousavi and Langston (2016a) incorporating 
only the signal’s CWT. First the CWT time-scale map is computed for a time series. 
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Gaussian noise is then detected in the CWT through computation of the kurtosis (HOS or 
higher order statistics). This noise is then removed from the CWT map by a statistical 
test. The data are then processed scale by-scale as a function of time by determining an 
optimum time block length using an estimate of the strength of the signal’s wavelet 
coefficients compared to the noise. The “hybrid” aspect of this process is having different 
block lengths for the coefficients at each scale and attenuating wavelet coefficients based 
on adaptive parameters that change with time and scale. The attenuated noise coefficients 
are then subject to an additional Weiner filter and transformed back into the time domain. 
Remarkably, all of these wavelet coefficient manipulations preserve relative amplitudes 
and particle motions of seismic phases in the three component data. Use of the CWT is 
relatively computationally intensive in these previous techniques compared to a STFT. 

Mousavi and Langston (2016b) incorporated the STFT to compute the time-
frequency map and then applied an adaptive block size and threshold value to remove the 
noise. Noise level is estimated by assuming that the signal is larger than the noise and by 
tracking minima on the time-frequency plane. There is an arcane recursive process for 
determining the noise variance in one section of the plane compared to adjacent sections. 
Once the statistics of the noise is known, the Fourier coefficients of the noise in one 
block can be attenuated by using the noise estimates in adjacent blocks. The denoised 
STFT is then transformed back into the time domain. Although this method does not 
preserve waveform as well as the previous methods, it is almost 2 orders of magnitude 
faster in computation time and is appropriate for fast detection algorithms. 

The remainder of this annual report concerns our work in putting together many 
of the previously explored techniques in the first 3 papers with the idea of general-cross-
validation thresholding (GCV).   GCV takes advantage of the distilling effect of the SS-
CWT to reduce the areal density of CWT coefficients on the complex time-frequency 
plane.  Using these techniques one can then remove noise from signal or signal from 
noise.  This latter characteristic offers a way to pre-process ambient seismic noise to 
remove unwanted impulsive earthquake signals before applying correlation to obtain the 
Green’s function between 2 seismic stations. 

2. INTRODUCTION

During the acquisition process, seismic data are often corrupted by noise. Seismic 
denoising aims at increasing the signal-to-noise ratio (SNR) by eliminating this additive 
noise through some signal processing steps, while preserving important features of the 
seismic signal. Spectral filtering, as a common approach for improving the SNR, is not 
effective for suppressing noise that has the same frequency content as the signal. 
Moreover, it can distort the signal (Douglas 1997) and/or generate artifacts prior to 
impulsive arrivals (Scherbaum 2001).  

A more effective noise suppression can be achieved through thresholding methods 
in time-frequency domains; such as using the S-transform (Pinnegar and Eaton, 2003; 
Schimmel and Gallart, 2007; Parolai 2009; Ditommaso et al., 2010, 2012; Tselentis et al., 
2012), radon transform (Sabbione et al., 2013, 2015; Zhang et al., 2015), the wave packet 
transform (Galiana-Merino et al, 2003; Shuchong and Xun, 2014), f-x or f-k filtering 
(Bekara and van der Baan, 2009; Naghizadeh 2011; Naghizadeh and Sacchi, 2012; Chen 
and Ma, 2014), singular spectrum analysis (Oropeza and Sacchi, 2011), sparse transform 
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based denoising (Chen et al., 2016), a mathematical morphology based denoising 
approach (Li et al., 2016), reduced-rank filtering (Velis et al., 2015), damped 
multichannel singular spectrum analysis (Huang et al., 2016), the non-local means 
(NLM) algorithm (Bonar and Sacchi 2012) or the continuous wavelet transform (Pazos et 
al., 2003; Sobolev and Lyubushin, 2006; Mousavi and Langston, 2016a, 2016c).   

Bekara and van der Baan, (2009), Han and Van Der Baan, (2015), Gomez and 
Velis (2016) showed that seismic noise can be removed effectively using empirical mode 
decomposition (EMD). EMD (Huang et al. 1998) is a data driven time-frequency analysis 
technique that adaptively decomposes a signal into a set of localized, modulated 
oscillations termed intrinsic mode functions (IMFs). 

Recently, a new reassignment technique termed synchrosqueezing (SS) was 
introduced as a powerful alternative to EMD (Daubechies et al 2011). SS produces a 
sharpened time-frequency representation (TFR) of the signal that highly localizes 
modulated oscillations. It has better mathematical support, and adaptability properties 
compared to EMD (Thakur et al. 2013; Herrera et al. 2014; Herrera et al. 2015).  

Meignen et al. (2012) and Ahrabian and Mandic, (2015) have introduced 
denoising techniques based on synchrosqueezing for univariate and multivariate signals 
respectively. These methods are based on identifying common modulated oscillations in 
elements of data. They outperformed wavelet and EMD based methods. Mousavi et al., 
(2016a) showed that a simple normalization step in the synchrosqueezed domain can 
improve the SNR of microseismic events. 

Here we introduce an adaptive and fast algorithm for automatic noise or signal 
removal based on the synchrosqueezed-continuous wavelet transform (SS-CWT), 
incorporating higher-order statistics (HOS), general cross validation (GCV), and wavelet 
hard-thresholding (WHT) for seismic data. The proposed method takes advantage of the 
mode decomposition property of the SS-CWT. Major components present in recorded 
data are thresholded separately based on data characteristics. Synthetic and real 
simulations show that the proposed method is effective for accurate denoising and 
increasing the SNR of microseismic and OBS data, as well as filtering out the seismic 
signal in the case of noise studies.  

3. TECHNICAL APPROACH

3.1. Theoretical Background

3.1.1. Time-Frequency Representation (TFR)

We assume that real signals can be modeled by time-varying oscillatory 
components defined as (Herrera et al. 2014):  

 , (1) 

where and A(t) are the instantaneous phase and amplitude of a time series s(t) 
respectively. The derivative of the instantaneous phase is referred to as instantaneous 
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frequency . In order to identify the associated A(t) and  for a given 

signal y(t), the Hilbert transform can be used to generate the analytic signal (Gabor 1946).  
 

 ,                                          (2) 
 

where H[ ] is the Hilbert transform. The analytic signal is complex and can be used to 
find the A(t) and . 

However, real-world signals like seismic traces usually consist of many 
components and are generally contaminated with noise. Hence, the recorded signal can be 
represented as a combination of components plus some additive noise : 

 

  ,           (3) 

 
where, K is the number of components in the recorded signal and is the noise level. 
Therefore the analytic signal represents a mixture of the amplitudes and phases of 
individual components of the observed seismic traces. Time-frequency transforms (TFT) 
aim to localize individual oscillatory components of the recorded signals. The non-
stationary nature of seismic signals indicates that instead of considering a signal in the 
frequency or time domain (one dimensional), it is often more informative to study their 
TFR. The two dimensional evolution of the spectral content of the seismic data can be 
tracked in a TFR.  

The advantage of denoising in a time-frequency domain over traditional spectral 
filtering is that it allows for separating the noise from the signal even in the same pass 
band as long as they are temporally separated.  

Many TFTs exist for this purpose such as short time Fourier transform (STFT) 
and continuous wavelet transform (CWT). A comprehensive review and comparison of 
application of different TFTs on seismic data can be found in Tary et al. (2014). Here, we 
just give a short description of STFT, and CWT to briefly address resolution problems 
and the enhancement achieved by the synchrosqueezing step.  

 
3.1.2.  Short Time Fourier Transform (STFT)  

The Fourier transform decomposes a signal into sine and cosine basis functions. 
The most common TFT used for time–frequency analysis is the STFT (also known as the 
windowed Fourier transform) (Gabor 1946; Allen and Rabiner 1977). Indeed, the STFT 
is the Fourier transform of successive windows of the signal: 

 

    ,                        (4) 
 

where, t is the time,  is angular frequency,  is time delay, and G(t) is a chosen window 
function which is usually either a Gaussian or Hann function. The sliding window is held 
constant during the analysis irrespective of investigated frequencies. Thus, both time and 
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frequency resolutions are kept constant and depend directly on the window size (Reine et 
al. 2009). Tary et al. (2014) define time and frequency resolutions as the ability to 
distinguish two wavefronts and two spectral peaks respectively. However, these 
resolutions are always limited by the Heisenberg/Gabor uncertainty principle (Gabor 
1946; Mallat 1999) i.e.   where  represents the time resolution and  
stands for the frequency resolution.  

TFR resolution obtained from any transform depends on both intrinsic 
characteristics of the analyzed signal and on specific properties of the chosen transform, 
hence the TFT should be viewed as a measurement device (Auger et al. 2013). 

This time-frequency trade off and the fixed resolution of the STFT imply that one 
will lose time resolution (accurate timing of frequency changes) if one wants to 
accurately identify spectral peaks (high-frequency resolution) (Tary et al., 2014).  

 
3.1.3.  Continuous Wavelet Transform (CWT)  

Multi-resolution transforms such as the CWT (Daubechies and Heil (1992) can 
obtain a better TFR for signals with both low and high frequency content, since the signal 
is analyzed under different resolutions (or scales) at different frequencies. CWT is 
accomplished through a prototype analyzing function known as the mother wavelet , 
which can be interpreted as a bandpass. The CWT of  in equation (5.3) at scale  and 
time shift is given by: (Daubechies and Heil (1992); Mallat, 1999) 

 

        ,                     (5) 

 
in which, * denotes the complex conjugate,  is the inner product, and is the 
coefficient representing finite energy of the signal y in a concentrated time–frequency 
picture. The mother wavelet , should be a square integrable function in which its 
Fourier transform , should vanish at zero frequency: 

 
     .                                  (6) 

 
This is called the admissibility condition (Farge, 1992; Daubechies and Heil, 1992). According to Plancherel’s theorem, equation (5) can be written in the frequency domain 
as: (Daubechies et al. 2011; Herrera et al. 2014) 

 

  ,                       (7) 

 
where,  is the Fourier transform of the signal. The inversion of the CWT can be 
expressed as:  
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 ,                                  (8) 

 
where, the constant is given by: (Thakur et al. 2013) 

 

         .                                (9) 
 

The CWT can be thought of as the cross–correlation of y with stretched (or 
compressed) and shifted mother wavelets, to capture oscillatory features of the signal at 
different frequencies. The variable length of  leads to a flexible trade-off between 
frequency and time-localization compared to the STFT (Tary et al., 2014). However, it 
still displays spectral smearing due to the finite size of the operator (Hall 2006). 

 
3.1.4.  Synchrosqueezing   

Synchrosqueezing (SS) is a relatively new technique introduced by Daubechies 
and Maes (1996) and Daubechies et al. (2011) as a powerful tool for precisely 
decomposing and analyzing a signal. It can be classified as a time-frequency 
reassignment method aiming at a sharpened TFR by applying a post-processing 
reallocation on the original time-frequency representation. However, unlike classical 
reassignment methods (e.g. Auger and Flandrin 1995; Chassande-Mottin et al. 1997), SS 
is adaptive to different types of data, visually informative, and enjoys a simple and 
efficient reconstruction formula (Yang 2015).  

At each time or space location, the SS process reassigns values of the TFR based 
on their local oscillation. The idea behind SS is that concentrating a spectrogram’s energy 
around instantaneous frequencies will decrease spectral smearing, and thus sharpening 
the TFR, while still allowing its reconstruction. SS can be used to enhance many classical 
TFRs e.g. the synchrosqueezed continuous wavelet transform (SS-CWT) as in 
(Daubechies et al. 2011; Thakur et al. 2013; Iatsenko et al. 2015), the synchrosqueezed 
short time Fourier transform (SS-STFT) as in (Thakur and Wu 2011; Iatsenko et al. 
2015), the synchrosqueezed wave packet transform (SS-WPT) as in (Yang 2015), the 
synchrosqueezed curvelet transform (SS-CT) as in (Yang and Ying 2014), and the 
synchrosqueezed S-transform (SS-ST) as in (Huang et al. 2015). 

It has been shown that compared to the STFT and CWT, the SS-CWT has 
superior frequency resolution for distinguishing oscillatory components of complicated 
signals (Thakur et al. 2013). Rigorous analysis has proven the stability and robustness of 
synchrosqueezing for analyzing 1D signals corrupted by noise or perturbations in the 
signal (Thakur et, al., 2013). 

Following Daubechies et al. (2011) the SS-CWT is performed in three steps. First, 
wavelet coefficients , of the recorded signal y, are calculated i.e. using (5) or (7). 

In the next step, a candidate instantaneous frequency   can be computed for 

wavelet coefficients of y at any point as: 
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 , for  .             (10) 

 
The instantaneous frequencies are known as ridges in the TFR (Auger et al. 

2013). In practice the very small wavelet coefficients  need to be removed to 
make the division operator numerically stable. SS squeezes the energy around these 
ridges (condensing the CWT coefficients at each time point along the scale axis) to 
decrease the smearing. To do this, in the last step, the information from the time-scale 
plane is transformed to the time-frequency plane, . This operation is 
called synchrosqueezing and has been shown to improve the concentration of energy and, 
as a result, readability of the TFR (Daubechies et all. 2011). If the number of scales used 
in the CWT and the sampling frequency are N and sf respectively, frequencies on the SS-
CWT would be ,  because is calculated at discrete values 

. The CWT coefficients within the frequency range , will be 
added up to the center frequency  to construct each instantaneous frequency. Hence, 
the synchrosqueezed transform is defined as: 

 
  ,                   (11) 

 
where is the th discrete frequency, is the k th scale, and . We can 
recover individual components , from the  by integrating the coefficients over 
frequencies , that correspond to the kth component. Following (Thakur et al. 2013) let 
the  a small frequency band around the ridge of kth component in the SS-CWT. 
This band can be estimated using a standard least-square ridge extraction method (e.g. 
Carmona, et al., 1997)  or defined manually. Because is real, then we will have: 

 

 
.                                  (12) 

 
Doing so, one can decompose a signal into its constituent components. It is clear 

that the highly structured TFR provided by synchrosqueezing (Figure 1) can be exploited 
for classical signal processing applications such as the denoising (Auger et al. 2013).  
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Figure 1. The top panel shows a high SNR vertical component accelerogram for a M3.5 
event recorded at station HALT, TN, in the New Madrid Cooperative Seismic Network.  
The next panels downward show the STFT, CWT, and SS-CWT, respectively, 
representing TFRs of the same signal. The variable length of  leads to a relatively 
higher time-frequency resolution of CWT (c) compared to the STFT (b). However, it still 
displays spectral smearing due to the finite size of the operator. Note the sharpened TFR 
obtained by the SS-CWT (d). 

 

 3.1.5.  Time-Frequency Denoising  
Recalling the model in (3) for the recorded data (observation) y, the goal of 

denoising is to remove as much of the additive noise  as possible, while preserving the 
main features of the signal of interest s where, for arguments sake, we have dropped the 
subscript k. Hence, the denoising problem can be viewed as a nonparametric regression 
problem and any denoising algorithm can be thought of as an operator D that maps the 
noisy data y onto an estimate of the signal of interest . The precision of the 
estimate is measured by the expected squared error: 

 

  ,                                         (13) 
 

Donoho and Johnstone, (1994, 1995) in their pioneering work showed that 
nonlinear thresholding estimators operating in the wavelet domain achieve nearly 
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minimax risk  over a  large class of  functions that cannot be improved upon over an 
order of magnitude by any other estimator (Johnstone and Silverman, 1997). This is 
based on the energy compaction or the sparsity property of the wavelet transform, which 
can concentrate the signal’s energy into a few large magnitude coefficients, while the 
small coefficients are more likely to be associated with the noise. Hence, noise power can 
be suppressed by selecting a suitable threshold level , and thresholding rule . The 
simplest but still most popular thresholding rules are hard and soft thresholding, 
respectively, given by:  

 
      ,                                      (14) 

 
and  
 

       ,                                 (15) 

 
where sgn(.) is the sign function and Wy are the wavelet coefficients of observation y. 

 
3.2. The Proposed Method 

In our previous study (Mousavi and Langston, 2016a), we showed that the 
efficiency of denoising for seismic data can be significantly improved by hybrid 
approaches that incorporate pre-processing, thresholding and post-processing steps. 
Following this strategy our denoising approach in the SS-CWT domain is proposed as 
follows.  

 
3.2.1. Pre-Processing 

In this step, after transforming the observed data y, into the CWT domain, scales, 
which purely consist of coefficients associated to the Gaussian noise, are detected and 
removed from the TFR using the HOS and Kurtosis criteria, leaving the scales with a 
combination of noise and signal. The kurtosis, kurt, of N observed coefficients Wy, is 
calculated by: (Bickel and Doksum, 1977)  

 

 ,                                    (16) 

 
where  and  are, respectively, the estimated standard deviation and mean of 

wavelet coefficients Wy. The HOS criterion for distinguishing a Gaussian distribution 
from a non-Gaussian distribution then is defined by:  

 

,                                           (17) 
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where α is the level of confidence. Ravier and Amblard, (2001) numerically estimated an 
optimum value for α, as 90%. This process acts as the equivalent of an automatic band-
pass filter and removes noise with lower and higher frequency content compared to the 
frequency range of seismic signals. This step improves wavelet thresholding results by 
removing high-power coherent noise (usually associated with colored noise), outside of 
the frequency range of the seismic signal, from the time-frequency representation of data.  

 
3.2.2.  General Cross Validation Thresholding 

The pre-processed coefficients then are processed to obtain SS-CWT coefficients 
Ty using (11). Major oscillatory components of the signal represented by coefficients in a 
narrow frequency band along the ridges are then thresholded using Donoho’s hard-
thresholding scheme, (14). This is based on the widely accepted idea that noise is best 
characterized across the instantaneous frequencies (Ahrabian and Mandic 2015). The 
optimal threshold level  is automatically determined using the general cross validation 
(GCV) approach, proposed and developed by Nason (1996), and Weyrich and Warhola 
(1995), for each component (ridge). General cross-validation (GCV) is used in the 
statistics as an automatic procedure for selecting optimal smoothing parameters. In the 
GCV procedure, a data point is systematically excluded from the construction of an 
estimate, and then the value of excluded data point is predicted and compared with the 
true value. Following Jansen et al., (1997) the GCV function is defined as:  

 

   ,                                             (18) 

 
where, the are thresholded coefficients using a threshold value of  , and N0 is the 
number of coefficients that would be zeroed using the threshold value  . This function 
mimics the errors between the estimation and true signal hence its minimum can be used 
to select an optimal threshold value. The equation (18) is only a function of , and does 
not rely on any noise level estimation, which is not a trivial task in the synchrosqueezed 
domain. Jansen et al., (1997) showed that threshold values determined by finding the 
minimum of the GCV, are asymptotically optimal and minimize the mean square error R. 
A grid search or minimization procedure such as Fibonacci search then can be used to 
find the optimal threshold  producing a minimum GCV. Thresholding major 
components of the signal in this manner provides a fast and effective method for 
increasing the localization of the TFR and obtains an initial estimate of the signal using 
the inverse transform in (12).  

 
3.2.3.  Post-Processing 

Similar to (Ghael et al. 1997) signal estimation is improved with a post-
processing step by applying a simple level-dependent, wavelet threshold on the signal 
obtained from the previous step. For this, the initial estimate of the seismic signal is CWT 
transformed again and coefficients at all scales are thresholded using the hard-
thresholding rule, scale-by-scale. In this step the threshold value is estimated using the 
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universal threshold of (Donoho and Johnstone 1994): 
 

   ,                                             (19) 
 

where the variance of the noise,  , is estimated in each scale from the median of 

wavelet coefficients prior to the signal’s arrival  . The 

final estimate of the denoised seismic signal, , is obtained by applying the inverse CWT 
transform, i.e. (8), over the thresholded coefficients.  

Using the hard thresholding scheme makes it easy to implement the method in a 
reverse manner to remove the signal’s energy and keep the noise. 

 
   .                                    (20) 

 
The latter will have application in the ambient noise studies.  

 
 

4. RESULTS AND DISCUSSION 

The algorithm is applied to one synthetic and three field seismograms. In our 
implementation of the CWT and SS-CWT, we use a Morlet wavelet as the mother 
wavelet with 100 scales. Approximate arrival times are determined manually. However 
this can be automated using any automatic onset picker in the wavelet domain such as 
those proposed by Karamzadeh et al, (2013), Bogiatzis and Ishii, (2015) or Mousavi et al. 
(2016a). SNR is measured as the root mean square amplitude in a time window around 
the signal to a same length window of preceding noise.  

 
4.1. Synthetic Data  

A local synthetic seismogram and its contaminated versions with random and real 
seismic noise (Figure 2) with a SNR of 2.5 are used for the synthetic test. The synthetic 
seismogram is calculated using the frequency wavenumber method (Zhu and Rivera, 
2002). A point source was located at a depth of 12 km, and three component 
seismograms were computed for a receiver located  \on the surface at an epicentral 
distance of 80 km. Real seismic noise recorded by the New Madrid Cooperative Seismic 
Network was added to the synthetic seismogram in a way to yield to SNR of 2.5 for the 
resulting seismogram (Figure 2). 

 

Approved for public release; distribution is unlimited.
11



 
 
Figure 2.  This figure illustrates the process of adding noise to the synthetic seismogram. 
Each panel shows the annotated time series with its associated SS-CWT. The resulting 
noisy seismogram contains both long-period and broadband stochastic noise signals. 

 
Effects of each step on the noisy trace are presented in Figure 3. The pre-

processing step removes those decomposition levels that purely consist of the noise. 
Hence, it acts like an automatic band pass filtering (Figure 3a). In the GCV thresholding 
step noisy coefficients are attenuated and a more distinct representation of noise and 
signal is provided (Figure 3b). In the post-processing step, the isolated noisy coefficients 
remaining after the previous steps are cleaned up (Figure 3c). The denoised and original 
signal are presented in Figure 4. 

The method was successful in removing the random noise and improving the 
SNR. The denoised and synthetic signals match very well over the entire waveform 
(Figure 4a) except at the very beginning of the P arrival and end of the P coda. Polarity 
and amplitude of the first two cycles of the P arrival are preserved very well, however, a 
very small time shift (less than one sample interval) exists between the denoised and 
synthetic signals (Figure 4a). The P wave arrival which was buried under the noise 
became clear after the denoising. This can improve arrival time picking and as a result the 
source location estimation. However, P coda is smoothed at the very end. The algorithm 
is also very successful in removing the seismic energy from the waveform (Figure 4b). 
Comparing scalograms in Figures 4a and 4b, the seismic energy between 30 to 50 s has 
been removed from the data without changing the time-frequency structure of the 
background noise in the surrounding areas.  
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Figure 3. This figure illustrates the noisy synthetic after the pre-processing (a), GCV-
thresholding (b), and post-processing (c) steps. 
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Figure 4. a) Denoised seismogram and its associated SS-CWT. b) Extracted noise and its 
SS-CWT found by removing the signal using a reverse approach. 

 
Wavelet power spectra for the denoised (CWTd) and original data (CWTo) are 

shown in Figure 5. To compare the time-frequency structure of these two spectra we 
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construct a cross-wavelet spectrum (XWT), which highlights regions in time-frequency 
space where the two spectra have high common power and represents their local relative 
phase (Figure 6a). To find regions where the two spectra co-vary (but do not necessarily 
have high power) we used wavelet squared coherency (WSC) (Figure 6b). WSC is 
equivalent to localized correlation in time-frequency space.  The equations for XWT and 
WSC are given in appendix A and B, respectively. 

 

 
 

Figure 5. a) Wavelet spectrogram of synthetic data before adding noise (CWTo). b) The 
same for denoised data (CWTd). 

 
High power areas in Figure 6a indicate the correlation of high magnitude 

coefficients in the denoised and original CWT spectrums. High-power regions within 
CWTo and CWTd coincide for arrival times between 30 and 40s, indicating preservation 
of P and S energy after denoising. The two waveforms are in-phase for all sectors with 
significant common power (Figure 6a) but the phase relationship becomes mostly anti-
phase outside the common power areas. The cross-wavelet power indicates a strong link 
between the two spectra.  
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Figure 6. a) Cross-wavelet spectrum (XWT). The XWT finds regions in time frequency 
space where two wavelet representations (CWTo and CWTd) show high common power. 
b) Wavelet squared coherency (WSC).  The WTC finds regions in time frequency space 
where the two representations co-vary (but do not necessarily have high power). 

 
The WSC of denoised and original data is presented in Figure 6b. Compared with 

the XWT in addition to the high-power region in lower periods, a relatively large high-
power section is present at higher period. An in-phase relationship exists in high-power 
areas. Low-power regions coincide with low wavelet powers in the original and denoised 
scalograms.  

To investigate denoising effects on wave polarization, we perform hodogram 
analyses of the P-wave and S-wave windows using three component data before and after 
the denoising (Figure 7). The particle motions cannot be exactly the same since the 
amplitude of the denoised and synthetic signals do not remain the same after modification 
of CWT coefficients during the thresholding. However, the overall direction of motions 
shown by dashed lines, which represent the average of relative directions of motion for P 
and S, are quite similar. The relative motions (angles between dashed lines) remained 
approximately the same after the denoising.  
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Figure 7. Hodograms for particle motion in the radial-transverse plane (R-T), radial-
vertical plane (R-Z) and transverse-vertical plane (T-Z) for the synthetic seismogram 
without noise (a) and the processed noisy synthetic seismogram (b).  P-wave (red) and S-
wave (green) are displayed.  Dashed lines show the average particle motions as 
computed using principle component analysis.  The P-wave, S-wave polarization 
azimuths, and the angle between P-wave and S-wave particle motions for the seismogram 
before the denoising are measured as 0, -79, and 94 degrees, respectively.  They change 
to 359, -90, and 88 degrees for the denoised seismograms. 

 
The proposed algorithm has a better performance compared to band-pass filtering, 

hard-thresholding, soft-thresholding, and hybrid block-thresholding (Figure 8). Bandpass 
filtering removes noise with frequencies higher and lower than the signal’s frequency 
range but noise within the same frequency range of the signal remains untouched (Figure 
8b). Poor performance of soft and hard thresholding (Figure 8c and d) is due to the 
presence of high-power features at high scales. These high-power features can be due to 
either ground-roll (e.g. Chen et al., 2015), tilt (e.g. Crawford and Webb, 2000) noise in 
marine experiments, strong electrical noise (e.g. Castellano and van der Baan 2013), long-
period-long-duration (LPLD) signals (e.g. Zoback et al. 2012; Caffagni et al. 2015; 
Zecevic et al. 2016) in microseismic monitoring, or very-long-period (VLP) signals in 
mining-induced microearthquakes (e.g. Mousavi et al. 2015) or volcano seismology. 
These types of features cannot be affected by either a global or level-dependent 
thresholding. However, their existence can affect severely the performance of denoising in 
removing high-frequency components of the noise. This is because that assumption of 
sparsity is the key point in wavelet thresholding, since the threshold level is set to separate 
small magnitude coefficients, which are assumed to be due to the noise, from high-power 
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coefficients, which are assumed to be due to the signal. Thresholding uses the data itself to 
decide which coefficients are significant and which are not. Best results were obtained by 
hybrid block-thresholding (Figure 8e) and the GCV-thresholding method of this study 
(Figure 8f). In both methods, high-power long-period features have been removed from 
TFR by implementing the pre-processing step. However, GCV-thresholding obtains much 
higher SNR (136.17) compared to hybrid block-thresholding (42.83) in addition to higher 
cross correlation with the original data (0.945), lower root mean squared error (0.025), and 
reduced computational time (3.38 second). Moreover, fewer coda waves were attenuated 
in the GCV-thresholding compared to the block-thresholding method. Quantified 
comparisons of the proposed algorithm with other methods are presented in Table 1. 
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Figure 8. a) Waveforms and CWT spectrogram of synthetic data. b) Waveforms and 
CWT spectrogram after band-pass filtering between 20 and 40 Hz. C) Waveforms and 
CWT spectrogram of data after Hard-thresholding. d) Waveforms and CWT spectrogram 
of data after Soft-thresholding.  e) Waveforms and CWT spectrogram of data after hybrid 
block-thresholding. f) Waveforms and CWT spectrogram of data after denoising using the 
GCV-thresholding of this study. 
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Table 1.  Root-mean-square error (RMSE), signal-to-noise ratio (SNR), and maximum 
correlation coefficients between denoised and original signal (CC) from the synthetic test 
using bandpass filtering between 5 and 20 Hz, Hard and Soft Thresholding (Donoho and 
Johnston, 1994), Neighboring Thresholding (Mousavi and Langston, 2016b) and Hybrid 
Block-Thresholding (Mousavi and Langston, 2016a). 

 
Method RMSE SNR CC Time (s) TFT 

      
Bandpass Filtering 0.063 5.441 0.683 0.19 - 
Hard Thresholding 0.061 2.864 0.796 0.50 CWT 
Soft Thresholding 0.048 3.457 0.833 0.51 CWT 
Neighboring Thresholding 0.060 750.5 0.721 0.87 STFT 
Hybrid Block-Thresholding 0.027 42.831 0.935 9.23 CWT 
CGV Thresholding 0.025 136.174 0.945 3.38 SS_CWT 

      

 
 
4.2.  Field Seismic Data 

Background noise is a challenging problem encountered in surface monitoring of 
microseismic events. We have applied the algorithm to real seismic data including two 
microseismic data sets induced during wastewater injection in central Arkansas (Horton 
2012) and an underground collapse of a cavern in Bayou Corne, Louisiana (Mousavi et 
al. 2016b). Another group of seismic experiments typically known to have high 
background seismic-noise levels concerns seismic measurements made at the seafloor. 
Seismic noise at the seafloor is usually long period with frequencies below 1 Hz. Hence, 
we have also tested the algorithm on one M4.3 earthquake on the west coast recorded on 
an OBS during the Cascadia initiative experiment (Toomey et al, 2014). The selected 
station for OBS data (7D.FS15B) is the shallowest OBS deployed during the Cascadia 
initiative experiment, hence, resembling the worst-case scenario (personal comment: 
Andrew Barclay and Spahr Webb). 

In addition to high-magnitude noise at very low frequency, some high-frequency 
noise components are present around scale 40 in the OBS data (Figure 9). This high-
frequency noise is stronger on horizontal components. The proposed hybrid scheme was 
successful in attenuating coherent and high-power noise at the higher and lower scales 
and increasing the SNR from 2.7 to 165.5. Moreover, our method was able to 
automatically remove noise within the same frequency band as the signal and 
significantly improve the SNR for all three components. We note that the P, S, and 
surface waves are preserved. However, some coda are removed from S and surface 
waves.   

In the case of the microearthquakes induced by wastewater injection (Figure 10), 
noise with higher and lower frequency content compared to the signal frequency was 
attenuated from the time-frequency representation of data with the SNR increasing from 
1.3 to 303.7 (Figure 10a) and from 5.1 to 28.19 (Figure 10b). For the first event, high-
energy noise components at 19, 27, 30, 33, 38, and 43 Hz were attenuated from the 
spectra in addition to some low frequency components. In the second example (Figure 
10b), the dominant energy of the noise is concentrated between 34 and 40 Hz. The 
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denoising algorithm improves the SNR by removing the dominant noise energy and 
modifying the spectral content of the signal. P and S arrivals are much clearer after 
denoising. This can help phase arrival time picking and improve source location 
estimates.  

 

 
 
Figure 9. Denoising OBS data of M 4.3 earthquake occurring offshore of Petrolia, CA, in 
May 2013 recorded by an OBS (7D.FS15B) from the Cascadia initiative experiment 
From left to right each column shows the original time series data and associated CWT 
of raw data, denoised data using proposed method, and zoomed windows around the 
event on denoised data respectively. a) Is the vertical and b) and c) are horizontal 
components of motion. 
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Figure 10. Denoising of two microseismic events induced by wastewater injection in 
central Arkansas (in 2010).  For each event (a and b) time series and associated CWT 
representation and a single side amplitude spectra are presented on the left and denoised 
results are shown on the right. There are high power bursts at 19, 27, 30, 34, 38, and 44 
Hz in the spectra of raw microseismic data that could be associated with electronic noise. 
The proposed method removed these noises. 

Our fourth example concerns a case of mining-induced microseismic events 
recorded on a 7.5 minute long vertical component data trace, recorded on 1 November 
2013 at Bayou Corne, Louisiana. Seven events associated with an underground collapse 
of a cavern can be observed on the top seismograms recorded by a three-component, 2-
Hz geophone (LA17.01) at the bottom of a borehole (~287 m deep) located at 30.0134° 
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N, 91.1439° W (Figure 11). However, these events are not clear on other raw data (left 
column) recorded by two other sensors, one is a 3C broadband sensor in the same 
borehole near the surface (LA17.2 at ~ 190 m deep) and another a 3C broadband sensor 
at the surface (LA14) located at 30.0087° N, 91.1398° W (1 km south east of LA17). 
From the left panel in Figure 10 we can see that the noise level increases as sensors 
become closer to the surface. In addition to coherent and strong long period noise, some 
high-frequency noise exists within the surface data. SNR for the near surface data was 
improved after band-pass filtering between 2 and 15 Hz (middle panel in Figure 11). This 
is because most of the noise recorded by LA17.02 has lower-frequency compared to the 
microseismic events. Hence, simple spectral filtering helps to reveal most of the events 
that were covered by background noise. However, filtering does not improve the SNR of 
LA14 data because of the presence of some high-frequency noise within the same 
frequency band as the seismic events. In the right panel (Figure 11) the data are presented 
after denoising using our method. Significant improvement of the SNR occurs in all three 
cases indicating that our proposed method is not just limited to random noise, but is 
effective for removing colored noise. By applying the method on single channel data, 
noise that is not coherent across an array can be detected and attenuated. This SNR 
enhancement has special importance for microseismic detection, which is a challenging 
problem in surface monitoring of microseismic events. However, some isolated noise was 
left even after processing. Such noise can be removed by block-thresholding. Zoomed 
windows around each event are presented in Figure 12. Revealing the P wave arrival that 
was buried under background noise can facilitate the picking of first arrival times that 
will improve source location estimates and fracture imaging. 
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Figure 11. 7.5 minutes long vertical seismograms passively recorded in November 1st 
2013 at Bayou Corne, Louisiana. a) A three-component 2-Hz geophone (LA17.01) at the 
bottom of a borehole (~287 m deep) located at 30.0134° N, 91.1439° W. b) A three-
component broadband sensor (Trillium-compact) (LA17.02) at the top of the same 
borehole (~ 190 m deep).  c) A three-component broadband sensor (Trillium-compact) 
(LA14) at the surface located at 30.0087° N, 91.1398° W (1 km south east of LA17). The 
left panel are raw data recorded in these stations and their continuous wavelet 
transforms (CWT). 7 microearthquakes induced by underground collapse of the cavern in 
the area are observable on the borehole data (LA17.01), while near surface (LA17.02) 
and surface (LA14) data are much noisier. Middle panel are the same traces after band-
pass filtering between 2 and 15 Hz. As most of the noise in LA17.02 (b) has lower-
frequencies compared to microseismic events, spectral filtering helps reveal most of the 
events that were covered under background noise. However, filtering does not improve 
SNR at LA14 because of presence of some high-frequency noise within the frequency 
range of the seismic events. In the right panel data are presented after denoising by the 
proposed method of this study. Denoising is successful in removing the noise and results 
in significant improvement in the SNR in b and c. However, some isolated noise was left 
in b. Zoomed windows around each events are presented in Figure 12. 
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Figure 12. Zoomed windows around each microseismic events presented in continues 
record of Figure 11. In each panel from top to bottom are raw data recorded on LA17.01 
(bottom of the borehole), denoised data recorded on LA17.02 (same location, near the 
surface), and denoised data recorded on LA14 (at the surface one kilometer south-east of 
the LA17). 

In Figure 13 we present results of applying the algorithm in the reverse manner 
using the OBS and Arkansas microearthquake data to remove the signal’s energy and 
preserve the noise. As one can see from Figure 13 the algorithm is successful in removing 
the signal even when it is completely buried under the background noise (Figure 13a-3).  
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Figure 13. OBS (a) and microearthquake (b) data as presented in Figures 9 and 10. Left 
column shows raw data and the right column are data after removing the signal’s energy 
(de-signaling) from traces.  As you can see the algorithm is successful in removing the 
signal from waveform event in the case that signal is completely buried under the 
background noise (Figure 13a-3) and it is hard to identify the presence of the signal and 
removing it using the commonly used time normalizations in ambient noise studies. 
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4.3.  Discussion 
It is well-known that the typical background seismic noise level is much higher at 

the seafloor than on land, especially for frequencies below 1 Hz (e.g. Sutton and Barstow 
1990; Webb et al. 1994; Romanowicz et al. 1998). Efforts have concentrated on 
attenuating some specific types of noise that have strong effects on the SNR of data in 
seafloor seismic measurements. Some examples include the proposed method of 
Crawford and Webb, (2000) for identifying and removing tilt noises with frequencies less 
than 0.1 Hz from vertical data, the proposed method of Webb (1998) for removing 
compliance noise from OBS data, or the proposed method of Chen et al., (2015) for 
attenuating ground-roll noise. The effectiveness of our hybrid algorithm for denoising 
OBS data has been shown in the previous section. Our proposed method is not limited to 
any specific type of noise but can effectively identify and then remove noise from data.    

Comparing our denoising method with common methods used for microseismic 
denoising, the proposed method does not need coherent arrivals in an array, a master 
event with high SNR, or parameters that need to be tuned manually. It is adaptive to data 
type and can effectively attenuate the background noise through an automatic procedure. 
This method can be applied to single channel data more appropriately for noise that is not 
coherent within an array and consequently improve source detection and location, which 
are crucial goals in microseismic monitoring. Moreover, although the analyses performed 
in this study were limited to microearthquake and earthquake seismograms this method 
can be applied to typical reflection data. The single channel approach of this method 
makes it possible to combine it with other array-based denoising techniques.  

In ambient noise studies, broad-band ambient noise needs to be accentuated by 
attenuating or removing earthquake signals that tend to dominate. This is usually done by 
band-pass filtering the raw data followed by a temporal normalization to reduce the effect 
of cross-correlating earthquakes. Time normalization is one of the most important steps 
in data preparation and can be done by one-bit normalization, clipping, automatic event 
detection and removing, running-absolute-mean normalization, or water level 
normalization (Bensen et al., 2007). The first three methods are based on simplified 
assumptions and remove a large amount of information from the waveform. The last two 
methods are known to be more effective but they rely on more parameters that need to be 
tuned for optimal performance (Bensen et al., 2007). However, the signal removal 
approach proposed in this paper can be an effective procedure. The data can be processed 
automatically with high flexibility and adaptability. It can find buried signals and remove 
them from the waveform without affecting the time-frequency structure of the original 
data. Moreover, after cross-correlation the denoising scheme can be also used to improve 
the SNR of recovered Green's functions. In ambient cross-correlation, the input time 
series are often very long. This makes it hard to recover high-fidelity signals. Baig et al., 
(2009) showed that time-frequency denoising of correlograms can alleviate this problem. 
Hence, the proposed method can be used again in a straightforward way (removing the 
noise from correlation results) to improve the SNR of Green's functions and making it 
possible to construct high-fidelity Green’s functions from shorter time series. This will be 
the subject of a future study. 

This method has many different applications. For instance, in attenuation 
estimation, it can assemble the spectral content of the phase of interest more precisely and 
decrease the uncertainties (McNamara et al., 2012; Mousavi et al., 2014; Tary et al., 
2016). 
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5. CONCLUSIONS

We have proposed a new and fast algorithm for accurate noise-removal/signal-
removal based on higher order statistics (HOS), general cross validation (GCV), and 
wavelet hard thresholding (WHT) in the synchrosqueezed domains. Performance of the 
proposed algorithm was tested using synthetic and real seismic data and showed 
improvements over our previous method. The denoising procedure proposed here is a 
powerful, data driven method that can significantly improve SNR and lower the detection 
threshold for small seismic events. This automatic algorithm can remove both high and 
low frequency seismic noise and retrieve the seismic signal with full features such as 
dominant phases, polarity and spectral content. The method can be used for single 
component data and is applicable to land and ocean bottom data processing. 
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APPENDIX A 
The XWT is constructed from the wavelet coefficients of the original signal 

(CWTo) and the denoised signal (CWTd) and will expose their common power and 
relative phase in time-frequency space. The XWT measures the similarity of the wavelet 
representations of two signals and provides the ability to account for temporal (or spatial) 
variability in spectral character. Following (Torrence and Compo 1998) the cross-wavelet 
transform is defined as: 

(A-1) 

where * denotes complex conjugation. The cross-wavelet power is defined as |XWTa,d|, 
and the complex argument arg(XWTa,d) can be interpreted as the local relative phase 
between denoised and original seismograms (Grinsted et al. 2004).  

APPENDIX B 
The coherency between two CWTs can be measured by wavelet coherency. The 

wavelet squared coherency is defined as the absolute value squared of the smoothed 
cross-wavelet spectrum, normalized by the smoothed wavelet power spectra: (Torrence 
and Webster 1999) 

   , (B-1) 

where indicates smoothing in both time and scale. The factor is used to convert to 
an energy density. The wavelet-coherency phase difference is given by: 

    , (B-2) 

where is smoothed imaginary part and is smoothed real part of cross-wavelet 
coefficients. The smoothing is done using a weighted running average (or convolution) in 
both the scale and time. The time smoothing uses a filter given by the absolute value of 
the wavelet coefficient at each scale, normalized to have a total weight of unity. For the 
Morlet mother wavelet this is just a Gaussian . For scale smoothing of 
the Morlet wavelet a boxcar filter of width  (from Torrence and Webster, 
1999) was used.  
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CC Correlation Coefficient 
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EMD Empirical Mode Decomposition 
GCV General Cross Validation Thresholding 
HOS Higher Order Statistics 
IMF Intrinsic Mode Function 
NLM Non Local Means 
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