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1 Introduction 
This repott covers the final phases of the SCoPE2 project. The goal of SCoPE2 was to predict 
mission plan performance, taking into consideration mission plan characteristics as well as 
cognitive and environmental factors influencing the plan. Given the large number of features that 
go into any one pa1ticular mission, the team proposed to use a conceptual spaces based model to 
identify features spaces that correspond to successful missions. To test proposed algorithms, the 
project initially aimed to use datasets related to HADR missions. An HADR simulation model 
was created using AnyLogic for the OtK program, and this model was used to generate datasets 
for the SCoPE2 program. Developing a validated simulation model, capable of generating large 
sets of simulation runs, proved challenging and largely unsuccessful. Highlights of the work with 
the HADR simulation model are presented first, including lessons learned from working with 
complex simulation models. 

To be able to try our methodology on a larger dataset we turned to using sports data as a 
surrogate. Section 3 discusses our initial SCoPE2 methodology, including the spo1ts dataset 
chosen for study. Lessons learned are highlighted. Section 4 discusses results of our revised 
SCoPE2 methodology, and resultant performance, taking into consideration the need to capture 
non-linear relationships between features. With the revised methodology we were able to predict 
spo1t game outcomes with an accuracy up to 73%. Results on feature sensitivity to predicted 
outcome are presented in Section 4 as well. The rep01t is concluded in Section 5 with a 
discussion of potential future work. 

2 HADR Simulation Final Results 
The number of weather related disasters has increased in the most recent decade versus the 
decade before. These disasters on average affected over 435,000 people per event. With such 
large number of affected human lives, it is imperative to have the ability to quickly and 
efficiently respond to the affected area in order to supply food and water, provide first aid, and 
retum the region to self-sufficiency. Critical to these tasks is the routing of supply vehicles and 
the collection of intelligence infotmation. This work used an agent based simulation of a 
hurricane hitting New Orleans to evaluate the effects of intelligence gathering tasks on mission 
perfo1mance measures. The results show that when intelligence tasks are coordinated with 
supply vehicle routing that improvements to food supply, travel times, and road network 
knowledge can be observed. 

One of the challenges of operating efficient HADR missions is that communication between 
operational and intelligence tasks is often hampered. Tasks such as delivering and disttibuting 
food and water, repairing infrastructure, providing first aid, and keeping law and order are often 
executed in parallel with, but not coordinated with, intelligence gathering tasks such as 
identifying damaged roads, tracking thieves, and rep01ting distribution centers' food status 
(Howden, 2009). Each operational task and each intelligence gathe1ing task is often optimized 
independent of the other task's needs. Using a hurricane disaster relief scenario several 
intelligence gathe1ing approaches were analyzed. Results suggest there exists a benefit to 
integrating operational and intelligence tasking. 
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2.1 Simulation Details 
An agent based simulation framework was used to evaluate the emergency response to a 
hurricane event. This section provides details on the simulation framework developed for use in 
this study. 

The simulation scenario takes place 6 days after a simulated (fictitious) hmTicane has hit the 
coastal region of a country. The hurricane has simultaneously destroyed buildings, facilities and 
numerous roads, making travel difficult and leaving hundreds of thousands of people without 
food, water and electricity. A humanitarian aid base, located near five population centers, has 
been set up and stocked with food and water by two air assets which fly constantly, 
uninterrupted, between the base and an offshore aircraft cani.er. There are five population centers 
and each may experience various amounts of damage from the hurricane, and thus require 
different types and amount of assistance. The locations of the five population centers and HADR 
base can be seen in Figure 1. The goal of the simulation is to retmn the population centers to 
self-sufficiency by repairing critical infrastructure. During the repair period food and water must 
be delivered to the population centers to prevent hunger and dehydration in the vulnerable 
population. 

Various HADR units are tasked with delivering food and water, identifying, tracking, and 
detaining criminals, finding and repairing broken roads, and repairing critical infrastructm·e. 
These units include maintenance teams, supply vehicles, aerial surveillance assets, security teams 
and ground intelligence units. Maintenance teams are assigned to repair critical facilities such as 
hospitals, power plants, water treatment plants and roads. Supply vehicles transport food and 
water from the main HADR base to the five population centers. An unmanned aircraft systems 
(UAS) ( e.g., a small tactical unmanned aircraft systems (STU AS)) fly over the area of operations 
to identify damaged roads and track criminals. Secmity teams actively track and capture 
criminals. Once captured, criminals are neutralized for a period of time. Finally, ground 
smveillance teams provide intelligence from the ground and report on the state of roads and 
facilities as well as on the supply levels of distribution centers. Reports from the ground 
smveillance teams are considered 100% accurate. 

' 
. . 

l1,;nl \lM lt.•..,..,...-.1 

,uOr 3 •e ® I , . 

'-Co!or l cg~nd 
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While the main mission of the HADR units is to provide food and water to the local population 
and return the region to self-sufficiency by repairing critical infrastrncture, there are several 
challenges that make these tasks more difficult. Firstly, a significant number of roads are 
damaged by the hun'icane, and the locations of these damaged roads are unknown at the staii of 
the simulation. If a vehicle encounters a damaged road the vehicle will travel 10 times slower 
than n01mal, therefor avoiding damaged roads is significantly advantageous for HADR units. 
Damaged roads can be discovered by aerial surveillance assets, and repaired by maintenance 
crews. In addition to a highly unce1tain road network, HADR units face criminal elements that 
traverse the network and steal from supply vehicles and distribution centers. These criminal 
elements can be spotted and tracked by the aerial surveillance assets, ground surveillance teams, 
and security agents, and can be detained for a period of time by security forces. Finally, HADR 
units face the impact of corruption: reports received from NGOs on the state of supply levels at 
distribution centers are plagued with inaccuracy. 

The main simulation engine is built using the AnyLogic agent based modelling tool (AnyLogic, 
2017). The simulation component models asset dynamics and their interaction with the viitual 
environment. For example, making sure vehicles travel along roads. Logic to control the tasking 
of individual HADR assets is external to the simulation, and comprises optimization algorithms 

· to assign tasks and routes to assets throughout the duration of the simulation. Once tasking is 
dete1mined, the assignments are communicated to the simulation and distributed to the various 
HADR units that then execute the plans. The optimization algo1ithms used were developed 
outside of this work. 

The architecture allows for the testing of two capabilities central to this cmTent study: the ability 
of unmanned aircraft systems (UAS) to optimally select routes that maximize information gain, 
and the ability of supply vehicles to efficiently determine routes in the presence of a constantly 
changing road network and distribution center supply levels. The UAS route optimization 
algorithm can either route UAS to survey locations that will maximize information gain or route 
UAS in a static race track pattern that will ensure the entire area is surveyed in a periodic 
manner. Figures 2(a) and 2(b) illustrate the difference in UAS routing patterns over the course of 
a seven day pe1iod when inf01mation gain routing versus race track routing is employed. The 
information gain route optimization algorithm is discussed in detail in O1tiz-Pefia et al. (2015). 
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This study adds to previous research by statistically evaluating the benefit of inf01mation gain 
based routing using a simulation framework. The information gain based routing algorithm is 
expected to prioritize surveillance areas such that the value of inf01mation gained is maximized 
for the other HADR mission assets. One benefit of such routing is that damaged roads may be 
discovered before a supply vehicle is forced to traverse one. If a damaged road is discovered 
before a supply vehicle arrives to it, the supply vehicles can be dynamically rerouted, potentially 
reducing significantly travel times. Supply vehicles that encounter an undiscovered damaged 
road are forced to remain on their path and move slowly through the damaged area. 

Arguably, one of the most impottant tasks of a humanitarian assistance mission is the supply of 
both food and water to the impacted regions. In order to control the assignment of supply trucks, 
a mathematical model was developed for optimizing supply truck assignments under variable 
mission objectives, road network uncertainty, and distribution center supply level uncertainty. 
Since the algorithm developed was to be used in a simulation context, the speed of algorithm 
execution was of utmost imp01tance, but this speed would also be beneficial in a live HADR 
scenario. A two-phase approach was taken to route supply ttucks throughout the regions. The 
first phase assigned supply truck routes at the stait of the simulation, or iteration 0, or whenever 
a full supply buck requested a new route. The second phase was used after a supply truck made a 
delivery and was empty. The second phase ensured vehicles stop by the HADR base to resupply 
before making a subsequent delivery. A trip-wire system was used to trigger the use of the 
models. The two trip wire conditions beyond initial assignments were: i) a truck successfully 
made a delivery and needed a new assignment, or ii) a buck encountered a damaged road along 
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its predefined route. The ability to reroute supply truck assets mid-route allowed ttucks to avoid 
damaged road segments and speed up their deliveries. Trucks could only request to be rerouted if 
the road they encountered had already been identified as damaged by the intelligence assets. To 
facilitate the fast rerouting of vehicles, a k-sh01test path cache was maintained for the road 
network, and was updated as road network information came in from the intelligence assets. 

2.2 Experiment Details 

Using the HADR simulation described in the previous sections, a full factorial experiment design 
was conducted to understand the impact of info1mation gain based intelligence collection and 
tasking operational assets with intelligence collection. The experiment manipulated three factors, 
each at 2 levels, for a total of 8 simulation runs per replication. The factors manipulated and their 
experiment levels can be seen in Table 2. The simulation was mn over a period of 7 days. Three 
total replications were completed, where the damaged road network was changed for each 
simulation replication. The road damage was set at thirty percent. Each run contained one UAS 
(aerial surveillance asset), two ground surveillance teams, two supply vehicles for food, two 
supply vehicles for water, two security teams, two road maintenance teams, and four criminals. 

Table I-Factors and Their faperi111e11t Levels 

Factor 
UAS Routing 
Ground Surveillance Teams Rep01t Roads 
Ground Surveillance Teams Report Distribution Centers 

Level(s) 
Race Track / Info Gain 
Yes / No 
Yes / No 

For each run several performance measures were captured relating to the state of the road 
network, the ability of HADR assets to tt·avel the road network efficiently, criminal activity, and 
population well-being. While thousands of statistics were captured for each run, only a few will 
be reviewed here. Table 3 contains a description of each of the four categories of perf01mance 
measures. An analysis of vmiance (AN OVA) was completed against each of these performance 
measw-es to dete1mine which factors had significant impacts on results. All statistical tests are 
rep01ted at a confidence interval of 95%. When performance measures vmied over time, 
statistical tests were computed at daily increments and at the end of the simulation period. 
Statistical significance found at any of the daily increments is rep01ted in the results. 
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Table 2-Erperime11t Pe,formm,ce Measures 

Performance Measure Description 
Total Roads Discovered • The total number of roads detected in the 

~ network over time. 
0 f/) Partially Passable Roads • The total number of partially passable roads t -~ 
Q) t:: discovered over time. z ·.a Discovered "O ~ 
(,:I CZ) 

~ Roads Repaired • The total number of partially passable roads 
reoaired over time. 

# Ground surveillance teams • The cumulative number of times Ground 
f/) Vehicles Slowed surveillance team vehicles have been delayed 
0 by partially passable roads over time. ·.p 
f/) 

# Maintenance Vehicles Slowed The cumulative number of times maintenance ·.o • (,:I - vehicles have been delayed by partially CZ) -~ passable roads over time. 

~ # of Supply Vehicles Slowed • The cumulative number of times supply 

~ vehicles have been delayed by partially 

J passable roads over time. 
Max Travel Time to Distribution • The maximum amount of time a delivery took 
Center 3 to reach distribution center 3 (the farthest 

distribution center from the HADR base). 
# of Times Criminals Captured • The number of criminals captured over time . 

- f/) 
Food Stolen • The number of food units stolen by the cs, 0 s ·.a criminals ·@·E Hostile Incidents • The number of times criminals stole food. • (,:I 

u~ The percent of time criminals • -The amount of time intelligence assets are 
tracked. actively tracking the location of criminals. 
Percent of Time Population is Well • The percent of time the distribution centers 
Fed have 3 days of food supplies on hand for 90 % 

of their population. 

bl) Percent of Time Population is • The percent of time the distribution centers can 
.s Hungry feed greater than 50% of their population for Q) 

l:Q three days, but less than 90%. -- Percent of Time Population is The percent of time the distribution centers can Q) • ~ Starving feed less than 50% of their population for three A 
-~ days. 
~ Min Distribution Center Food Level The minimum food level observed across all ~ • 
g. distribution centers over the course of the 

p.. 
simulation. 

Max Difference Across Distribution • The maximum difference in food levels 
Centers observed at any point in time across distribution 

centers. 
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2.3 Resu lts 
The UAS routing algorithm had significant impacts on road network, travel and criminal 
statistics. With respect to improving road network knowledge and state using the Info1mation 
Gain routing algorithm outperfo1med using a race track routing algorithm. Figure 5(a) illustrates 
the impact on road network discovery when the inf01mation gain algorithm is used. Initially both 
algorithms discover a similar amount of roads, but beyond the first 24 hours the information gain 
algotithm begins to see and maintain an advantage over the race track algorithm. A similar 
pattern can be seen in Figure 5(b) with regards to the number of damaged roads discovered 
although this effect was not significant in the runs completed. Finally, the number of roads 
repaired when using the information gain algorithm was significantly higher than using the race 
track algorithm as illustrated in Figure 5(c). 

The improved road network as a result of the information gain algorithm resulted in 
improvements to vehicle travel throughout the simulation run as well. The inf01mation gain 
algorithm had a significant effect on reducing the number of times ground surveillance teams and 
maintenance vehicles were slowed down by damaged road. Supply vehicles also showed less 
slow downs although the UAS routing factor was not statistically significant in this case. Figure 
6 shows the number of slowed vehicles over time using both the inf01mation gain algorithm and 
the race track routing algorithm. Finally, when the info1mation gain algorithm was used, the 
maximum time to deliver supplies to distribution center 3, the farthest disttibution center, was 
significantly reduced over the race track routing algorithm. 

Finally, the UAS routing algorithm had significant effects associated with some criminal related 
statistics. When the info1mation gain algorithm was used the number of hostile attacks by 
criminals decreased while the percent of time spent tracking criminals increased. Figure 7(a) 
shows that on average when using the info1mation gain algorithm slightly more criminals were 
captured, however this result was not statistically significant. 
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Table 3-ANOVA Results for sig11!ficant single factor effects. A11 H represents a strong sig11ijica11ce wit/, p-value < 0.05, while a11 
L represents a weak effect, wit/, p-value <=0.1. 

Road 
Network 
Statistics 

Network 
Travel 
Statistics 

Criminal 
Statistics 

Population 
Well Being 

80 

l 60 
(I) 

"O 40 ~ 
Cl'. 

20 

0 

Performance Measure 
UAS 
Routing 

Total Roads Discovered H 
Partially Passable Roads Discovered 
Roads Repaired H 
# Ground Surveillance Teams Vehicles L 
Slowed 
# Maintenance Vehicles Slowed H 
# of Supply Vehicles Slowed 
Max Travel Time to Distribution Center 3 H 
Number of Time Criminals Captured 
Food Stolen H 
Hostile Incidents H 
The percent of time criminals tracked. L 
Percent of Time Population is Well Fed 
Percent of Time Population is Hungry 
Percent of Time Population is Starving 
Min Distribution Center Food Level 
Max Difference Across Distribution Centers 

(a) Roads Discovered 

_,-

lnfogain 
Racetrack 
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Time (hours) 

(b) Damaged Roads Discovered 

200 

(I) 150 
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lnfogain 
Racetrack 
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Time (hours) 

Ground Ground 
Surveillance Surveillance 
Teams Teams 
Roads Distribution 

H 

H 
H 

H 
H 

H 
H H 

H 
L H 

H 
L 

(c) Roads Repaired 

30 

20 

10 

0 

,,," 
/ 

, -
,', , , 

/ lnfogaln 
-' Racetrack 
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Figure 3-Al'ernge road 11elll'ork statistics ol'er time l'ersus UAS routing algoritl,111/or: (a) the total 1111111ber of roads discol'ered i11 
tire 11e/ll'ork, (b) the number of partially passable roads disco l'ered, a11d (c) the total 1111111ber of roads repaired. 
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(a) Ground Surveillance Teams (b) Maintenance (c) Supply 
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Figure 4-Numberof limes HADR mission vehicles are slowed by parlial/y passable roads versus UAS routing algorithm for: (a) 
Ground Sur1'eil/a11ce Teams, (b) Mai11le11a11ce Vehicles, (c) Supply Vehicles. 
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Figure 5-Criminal s/a/islics for (a) average 1u1111ber of criminals captured over lime ve1:ms tire UAS rouling algorillrm, (b) !Ire 
average number of food 1mils stolen over lime ve1:rns Ground Surveillance Teams reporting 011 dislribulio11 centers, and (c) !he 
a11101111/ of 

When ground surveillance teams report partially passable roads they discover while traversing 
the network effects on vehicle movements, criminal activities, and population food levels can be 
observed. As the ground surveillance teams report on the road network, the number of supply 
vehicles and ground surveillance teams that are slowed by damaged roads decreases. Similar to 
the inf01mation gain algorithm for UAS routing, the number oftimes that criminals steal food 
decreases, but the amount stolen actually increases as ground surveillance report roads. Finally, 
as ground surveillance teams report on the road network, the average amount of time that the 
population is in the well fed state increases. 

The ground surveillance teams reporting on distribution center food levels had the most 
significant impacts to the population well-being of all factors evaluated. Interestingly, the ground 
surveillance teams' reports on distribution centers also had significant impacts to criminal 
tracking and travel times as well. Figure 8 highlights the impact of ground surveillance teams 
rep011ing on distribution centers. As distribution center statuses are known with more ce11ainty, 
the supply vehicles are better able to prioritize their deliveries, resulting in a larger percent of the 
population being well fed, and a smaller p011ion of the population starving. In addition to 
improving the number of people well fed, the ground surveillance teams rep011ing on distribution 
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centers also reduced the variability seen between distribution centers. As ground surveillance 
rep011ed on distribution centers there was a significantly lower maximum food level difference 
across the distribution centers, indicating distribution centers were more evenly supplied with 
food. As ground surveillance reported on distribution centers the minimum amount of food 
available at any distribution center also increased, indicating that not only were distribution 
centers more evenly supplied, they were more evenly supplied consistently over time such that 
their food supply levels remained at consistently higher levels. 

(a) Well Fed (b) Hungry (c) Starving 

70 
-eJ. 60 
C 50 
~ 40 
[ 30 
fr. 20 

10 
0 

-
-
-
-
-
-
-
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0 
1ij 1.0 -
"5 
a. 
tr. 0.5 -
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70 -

?J. 60 -
C 50 -
.2 
.1ii 40 -
::, 30 -
C. 
0 20 -ll. 
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Figure 6-Effect of populatio11 h1111ger versus grou11d s11r11eilk111ce teams reports 011 distrib11tio11 centers. (No is 110 reports 011 
distribution ce11ters, while Yes is when SUl"l'eilla11ce teams reported 011 distribution centers.) 

When ground surveillance teams reported on distribution centers a few unexpected results 
occutl'ed. Firstly, when ground surveillance teams repo11ed on distribution centers, the percent of 
time criminals were tracked increased significantly. While tracking criminals may seem 
completely unrelated to distribution center reporting, the results make sense when looked into 
fa11her. When ground surveillance teams rep011 on distribution centers, they spend several hours 
at the distribution centers performing inventory tasks. During this long window as they remain in 
one place, the likelihood that they encounter a c1iminal increases because criminals target the 
distribution centers. Secondly, when ground surveillance teams repo11ed on disttibution centers, 
the maximum time to deliver supplies to distribution center 3 went down. On the surface this too 
seems unrelated to ground surveillance teams rep011ing on distribution centers, but when ground 
surveillance teams rep011 on disttibution centers, they often travel similar routes to get to the 
distribution centers as supply vehicles. While traveling these roads, they can identify road 
damage that the supply vehicles can then avoid. 

2.4 Lessons Learned and Publications 
Insights gained from the simulation model developed were valuable in that they 1 )validated the 
use of information gain based routing algorithms, and 2) provided previously undiscovered 
relationships between mission features and perfmmance measures. For example, having ground 
teams rep011ing on distribution supply levels increases the number of criminals captured while at 
the same time decreasing the travel time to distribution centers. While the simulation model was 
able to provide valuable insights, gaining those insights by successfully developing and mnning 
a valid simulation model was extremely difficult. The validation process was fu11her hampered 
by the long simulation times, so improvement cycles took roughly 1-2 weeks each to accomplish. 
Figure 7 shows the simulation modeling, analysis and validation cycle used. Of note in this cycle 
is that for a given set of mns, all mns needed to be completed, representing days of processing 
time, before results could be analyzed, only to find out that the simulation model was invalid. 
Additionally, the process of actually figuring out what was wrong was also challenging. For 
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example, the data may show that as more delivery trucks were added, less food was being 
delivered. Based on this odd finding, the analysts at RIT would need to dig into the raw second 
by second simulation data in order to identify that in fact trucks were getting stuck at a certain 
spot in the road network and were unable to move for long durations of the simulation. This 
detective work process could itself take hours, and then actually fixing the problem again took 
more time. 

Simulation Modeling, Analysis and Validation Cycle Used 

Generate runs for 
specific experiment 

design. 
(~3 days) 

Fix simulation model. 
(1 day- 2 weeks) 

No 

Gather and send 
results to RIT. 

(~1 day) 

Dowe have 

Stop ] 

Yes 
+--

Figure 7- Si11111latio11 Modeli11g, Analysis and Validation C)IC/e Used 

RIT Process and 
Analyze Results 

(~lhr) 

' 
Do results 

Figure out what Is 
going wrong and 

Inform developers. 
(~6-12 hrs) 

Figure 8 below is our proposed simulation modeling, analysis and validation cycle for future 
endeavors. Prior to the completion of any simulation runs, a validation plan needs to be created 
and maintained. This step could take a significant amount of time initially, but will pay off in the 
end because less detective work will be needed to identify issues, and less time will be spent 
generating useless simulation runs. The validation plan needs to be turned into validation 
software that will run in conjunction with the simulation model, validating the perfo1mance of 
the model as it runs in real time. If the simulation results do not pass validation checks, the runs 
can be immediately ab01ted, and the specific validation requirement can be immediately 
addressed. 

Simulation Modeling, Analysis and Validation Cycle Proposed 

Create validatlon plan j 
(-1 month) 

Develop necessary 
scdpts lo validate 

simulation runs whll• 
simulation Is running. ,-1 month) 

Address and fix falling 
val idation 

rtquirement. 
II day - 2 wrrksJ 

Did runs 
e)lecute 

complotely7 

ldontlly falling 
validation 

requirement. 
(~30 seconds) 

Figure 8-Simulation Modeling, Analysis and Vafidatio11 Cycle Proposed 
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Table 4 contains a summary of the main lessons learned regarding generating large scale datasets 
via simulation. 

Table 4 - Lessons learned regarding si11111/ation modeling 

Lesson Learned 
Simulation models of HADR or other 
missions can provide valuable insights into 
the mission planning process. Simulation 
can highlight unanticipated relationships 
between mission plan characteristics and 
perf 01mance measures. 
Simulation Models requiring the use of 
Optimization Models are difficult to run in 
short time frames. Example - simulating 1 
week ofHADR eff01t required 5 hours of 
simulation time. 

Simulating road network damage needs to 
be done thoughtfully, as it is easy to damage 
a road network in such a way as to make a 
mission infeasible. 

Validation is time consuming and 
challenging. 
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Recommended Future Action 
• Continue to supp01t simulation modeling, 

especially ways to develop and validate 
models faster. 

• When planning to use simulation to develop 
large scale datasets, limit the use of 
optimization models. If optimization models 
must be used, try using approximation 
heuristics instead. 

• Alternatively, explore using Generative 
Adversarial Networks (GANs), to produce 
sun·ogate simulation data when provided 
small sample datasets of actual simulation 
results. 

• Design a road damage algorithm that will 
ensure feasible paths. 

• Design the routing algorithms to more 
intelligently deal with infeasible situations, so 
vehicles do not remain motionless or stuck for 
extended periods of simulation time. 

• A specific simulation validation strategy 
needs to be developed. This strategy should 
encompass every aspect of the simulation 
model, and should design specific tests for 
each simulation component. Physical systems 
(do cars stay on roads) and algorithmic logic 
(is my optimization algorithm producing 
reasonable results) must both be accounted for 
in test procedures. 

• A validation strategy should be similar to unit 
testing in software products. It should be 
automated, and done in real time as 
simulation results are being generated. 
Significant time was wasted running 
simulations that ended up needing to be 
thrown out due to e1rnrs that would have been 
obvious at the beginning of the runs had a 
system been in place to look for them. 



The following publications and conference proceedings were generated from this work: 

Conference Proceedings: 
McConky, K., Ortiz-Pena, H., Poe, C., and Sudit, M. Evaluating the integration of operations tasks 
while optimizing ISR activities, Proceedings of SPIE: Defense and Commercial Sensing, Anaheim, Ca, 

April 2017. 

Ortiz-Pena, H., Sudit, M ., Coles, J., Poe, C., McConky, K. Automated Tracking and Assessment of 
Measures of Performances and Effectiveness for HADR Efforts, INFORMS International Meeting, 

Waikoloa Village, Hawaii, June 2016 

Katie McConky, Hector Ortiz-Pena, and Moises Sudit. A Framework Supporting the Separation of 
Cognition Performance from Execution Environment. 2015 INFORMS Annual Meeting. INFORMS. 

Philadelphia, PA, 1 November 

Pending Journal Publications: 
McConky, K., Ortiz-Pena, H., Poe, C., Saxena, H., Sudit, M. Integration of Distribution and 

Intelligence Tasking for Efficient Supply Routing 

3 SCOPE Initial Methodology 

The SCoPE2 project involved several hypotheses that built on one another. The goal was to 
systematically test these hypotheses using large scale datasets generated via simulation. The 
hypotheses were as follows: 

Hypothesis 1: Mission plans can be characterized using conceptual spaces, and that concepts 
(groups of feature values) corresponding to different performance levels will be separable from 
one another. 

Hypothesis 2: The separable concepts can be used to predict mission performance when given a 
plan. 

Hypothesis 3: The separable concepts can be used to enable simple distance measure based 
approaches to mission optimization. 

As discussed in section 2, the large scale simulation data set never materialized, so the team 
looked to existing datasets to test the above hypothesis. In lieu of milita1y simulation data, sports 
data was used as a sun-ogate and will be discussed in section 3.1. 

Figure 9 highlights the high level methodology that was initially proposed for the SCoPE2 

project. Figure 9 demonstrates the methodology, where the following three steps would be 
completed: 
1) Cluster the data based on pe1formance measures; 
2) If separable performance clusters exist, generate feature spaces con-esponding to concepts 
(mission spaces) that sre co1Telated with those performance clusters. 
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3) Analyze and optimize the performance measures of a given specific mission plan (see Figure 
10). 

Performance Measure Clustering Feature Space clustering Mission Optimization and Analysis 

~ ~~w .. ,~::;"'• ~ ~ 
® 

(luu,,rs L.l) 

1, What Is the predicted performance 
of a feature configuration? 

2. What is the min cost way to achieve 
each performance cluster? 

3, What Is the minimum change 
required to meet certain measures e cOl(tSpondto 

• •• • f,o,m~oc, 
e r/mln\ 

C4 ••• c3 ~ 

Performance Measure 1 ,/ L._J) 
Feature 2 

Figure 9- !11ilial SCOPE Methodology 

Domain 2 

You are here 

___leature of performance given a starting 
---,, 1 point? 

4, What are the tradeoffs between 
performance measures? 

Domain 3 

Highest Probability of 
success for lowest cost 
is here 

Figure I 0- Ca11 disla11ce measures be used lo reco111111e11d plan cha11ges? 

Due to a lack of a significantly large dataset to learn from, it was impossible to create 
performance clusters using all performance measures at once. For this reason, the initial 
methodology was revised to look at all combinations of 1, 2 or 3 performance measures in order 
to cluster, predict, and optimize individual subsets of perfo1mance measures. The following 
optimization model was proposed to minimize the cost of moving from a provided plan to a plan 
providing acceptable pe1formance levels. The model allows for features spaces to be modelled 
using a probabilistic approach, such that cluster outliers could be ignored. The two constraints of 
the model require the model to choose just one cluster to move towards: 

Sets: 
CLUSTERS= set of clusters 1 to j (only acceptable clusters, not poor clusters) 
INPUTS= set of dimensions for each cluster 1 to i 

Parameters: 
avgi/ = average of input if or cluster j 
stdDeviJ = standard deviation of input if or cluster j 
startinglnputi = starting value of input i 
costi = cost to change input i by 1 unit 
Mi= appropriately large M for input i 
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leewayt = how much variablity we accept in an input ( # standard deviations) 

Variables: 
changetolnputij = change needed to input i to get into cluster j 

l t Ch {
i if we choose cluster j, where j E clusters 

c us er osen1 = 0 h . ot erwise 

Minimize Cost = L L costt * changetolnputiJ 
}ECLUSTERSiEINPUTS 

Subject To: 

L clusterC hosen1 = 1 
}ECLUSTERS 
startinglnputi + changetolnputu - avg11 - leewaYi * stdDeviJ :s;; M1(1- clusterChosen1) 

Vi E INPUTS, j E CLUSTERS 
-startinglnput1 - changetolnputu + avgiJ - leewayi * stdDeviJ :s;; M1(1 - clusterChosenJ 

Vi E INPUTS, j E CLUSTERS 

3.1 Surrogate Datasets 

Spo11s data was chosen as a smrngate data set to military missions. Sports data was chosen due 
to its parallels to military missions and relative abundance of data available. Specifically NFL 
data for the 2009-2017 seasons was curated, representing 2304 individual games. Similar to 
military missions that have a large variety of measures of perf01mance, so do NFL games. Table 
5 highlights some of the perfo1mance measures captured for each NFL game. The featmes listed 
in Table 6 provide a sample of the types of features that were used to predict the perfo1mance 
measures in Table 5. Of note is that many of the features could be observed over different time 
frames, such as at the end of the cmTent season, at the end of the previous season, the average of 
the cunent season leading up to the game in question, or the average of the last N games. Also of 
note, is that each of the features in Table 6 could be collected for both teams involved in the 
game. 

Table 5- Pe1for111a11ce Measures 

Performance Measure Description 
lstDown Number of first downs obtained in a game 
TotYd Number of total yards obtained in a game 

PassY Number of passing yards obtained in a game 

RushY Number of rnshing yards obtained in a game 

ToP Time of possession during game 
TO Number of turnovers in a game 

Skd Number of times quru1erback was sacked in a game 

Pen Number of penalties against the team in a game 

3DC Percentage of 3rd Down Conversions 

Win Whether the team won the game 
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Table 6 - Features 

Type Field Description <1) 
0 z 

<1) § ..... 
.§ @ "' 

~ ~ ro "' ~ <1) 

"O (I f-< ~ r ~ 
~ ~ ~~ <C., 

RushR.k Ranking based on total number of rushing yards X 

per season 
PassRk Ranking based on total number of passing yards X 

per season 
YrdRk Ranking based on total number of yards gained X 

per season 
rn DRushRk Ranking based on total number of rushing yards X 

f allowed per season 
DPassRk: Ranking based on total number of passing yards X 

allowed per season 
t::z::: DYrdRk Ranking based on total number of allowed yards X 

per season 
Ovr Team overall rating out of 100 X 

Off Team overall offensive rating out of 100 X 

Def Team overall defensive rating out of 100 X 

PwrRk ESPN' s end of season power ranking X 

QBRk ESPN' s end of season qua1terback rating X 

rn FirstDown Number of first downs X X X 

1a TotYd Total yards gained offensively X X X 
~ 

r./1 PassYd Total yards gained via passing X X X 
Q) 

RushYd Total yards gained via rushing u X X X 

§ TO Total tum overs X X a ToP Time of possession per game X X X 

~ Pen Number of penalties X X X 

Q) 3DC Percentage of third down conversions X X X 

~ Skd Number of times quarterback was sacked X X X 

Temp Average temperature at the time and location of X 

~ 
the game 

,£1 Wtype Cloud coverage (overcast, clear, paitly cloudy, X 

('j etc ... ) 
Q) 

Wind Average wind speeds in miles per hour ~ 
X 

Prep Accumulated rain in inches X 

Snow Accumulated snow in inches X 

] Sh·eak+ Number of consecutive wins X 

0 Streak- Number of consecutive losses X 
~ Rest How many days since the last game X 
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A survey of 128,980 NFL game predictions listed by professional handicapper services in the 
National Sports Monitor found that on average they were correct at predicting a game's winner 
only 50.39% of the time, or right around pure chance (Fox and Mayer, 2007). This suggests that 
predicting NFL game outcomes is difficult, even for the so called expe11s. 

3.2 Initial Methodology Resu lts 

A number of experiments were set up to test the proposed framework and hypothesis using the 
surrogate sp011s data. However, we were never able to validate Hypothesis 1, such that separable 
feature spaces were created. Figure 11 shows what we expected to find versus what we largely 
found within our sports data. 

What we wanted: 

Pcrform:mce 
Mc,uurc2 

~ .,..- ~Ultt'\\ltil 

~ 

Performance Measure 1 

What we found: 

Performance 

Me.nuro 2 

0 ._"'"""'"'"' <---=---
Perform .1 n rn Me.isurn 1 

Figure I I -U11separablefeat11respaces 

h-,1tu,c 2 

)UUf'\\ 

✓ /Ml'\ ........ 

fo,tu,cl~ ~ B 
L_J) lJmm<r:~"lul 

E('''~·•r=o 
.,/ 

feature l 

fc.1turc 1 

Feature 3 

Eff011s to make reasonable perfo1mance predictions using the non-separable feature spaces 
proved largely futile as well. Figure 12 demonstrates typical prediction perfo1mance where the 
red line was our performance prediction for a ce11ain perfo1mance measure, and the blue line was 
the actual perfo1mance. You can see that the predictions fail to capture the varied perfmmance 
level of the actual data, This was typical across all experiments perfo1med with perfo1mance 
prediction accuracies typically no better than 50% MAPE. 
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Figure 12- Pe1for111a11ce predictio11s based 0 11 feature spaces (red line = p,··edictio11s, blue fi11e = actuals) 

We confitmed our findings by using simple linear regression models to predict performance 
measures. Using linear regression models we looked at all NFL teams individually, and tried to 
predict ce11ain performance measures given the complete set of features. Our hypothesis was that 
if linear regression models were similar across teams, we could expect the feature spaces 
developed to be linearly separable, However, when predicting a perfmmance measure each team 
generated a regression model that used a different set of features. This suggested that a single 
model for all NFL teams may be difficult to create using our proposed methodology as we were 
assuming a single model for all teams could be created. Figure 13 visually displays the disparity 
between the developed models. Figure 13 shows for 4 teams which features were relevant 
towards predicting 8 perfmmance measures of interest when using linear regression. The 
columns highlighted in red are indicating the models used to predict the number of first downs 
scored in a game for each of the four teams. One can see that the relevant features to this 
performance measure vary widely across the different teams. 
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Figure 13- linear regression results of predicting pe1for111a11ce measures for individual teams. Green indicates highly relel'(111t 
features, yellow mildly re!el'a11tfeatures, and red are features wit/, low re/e1•a11ce. 

In summary we have the following results from our 3 initial hypothesis: 

Hypothesis 1: Mission plans can be characterized using conceptual spaces, and that concepts 
(groups of feature values) corresponding to different performance levels will be separable from 
one another. 

• Largely unsuppo1ted. Separable concepts could not be found for perf01mance clusters for 
the NFL dataset. 

Hypothesis 2: The separable concepts can be used to predict mission performance when given a 
plan. 

• Largely unsupported. When the inseparabl~ clusters were used to predict mission 
performance, predictions were not accurate. 

Hypothesis 3: The separable concepts can be used to enable simple distance measure based 
approaches to mission optimization. 

• Due to inseparability of the mission spaces, these algorithms went untested. 

3.3 Lessons Learned 

A few lessons could be leamed from our initial experiments. Using these observations a new 
methodology was developed and tested. Firstly, the hypothesis that linearly separable clusters 
could be obtained by first clustering data by performance was largely unsupported. Despite 
extensive eff01ts, no linearly separable clusters were ever identified. Secondly, in the process of 
trying to improve our models, significant amounts of time was spent in the feature engineering 
process. Approximately 70-80% of our time was spent curating features that we thought may 
improve performance. This time could be reduced by automating the feature engineering process 
and efficiently searching the feature engineering space for useful feature transformations and 
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combinations. A process such as Kaizen Programming or Genetic Programming could be useful 
in reducing the time taken for feature engineering. The focus of the revised methodology shifted 
from predicting specific game performance measures, such as number of offensive yards, to 
predicting the success or failure of a game (win vs loss). 

4 SCOPE Revised Methodology 

To continue to make progress, once the initial methodology proved unsuccessful on the NFL 
data, we shifted to predicting game success (win vs loss) and using non-linear models to extract 
feature relationships. While many machine learning algorithms were examined, the most 
consistent performance was seen from decision trees, and those results are presented here. 

4.1 Non-Linear Feature Space Model Performance 

Starting with over 100 potential features, feature selection methods were used to identify the top 
18 features that could be used to predict game success. The features and Gini-imp01tance are 
outlined in the table below. Using 10-fold cross validation the average performance of these 
models for predicting game success was between 65 and 73%_accuracy. __ . 

Table 7 - Decision Pores/ Model Pea111res and Re/alive !111por/a11ce 

_F_e_a_t_u_re ___ D_e_s_cr_iP-_ti_on ________________________ _ G_in_i_-I_n_d_e_x_ 
BRushDef On average how many rushing yards did Team B allow the other team to get in 0.11 

one game? Averages week 1 up to that game. 
AWins 
BWins 
ARushDef 

ARushOff 

APassDef 

BRushOff 

B-QB 
A- B 
APassOff 

BPassOff 

BPassDef 

BTeam 
BDef 
ATeam 
AOff 
ADef 
BOff 
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Team A win percentage 
Team B win percentage 
On average how many rushing yards did Team A allow the other team to get in 
one game? Averages week 1 up to that game. 
On average how many rushing yards did Team A get in one game? Averages 
week 1 up to that game. 
On average how many passing yards did Team A allow the other team to get in 
one game? Averages week 1 up to that game. 
On average how many rushing yards did Team B get in one game? Averages 
week 1 up to that game. 
Team B quarter back rating out of 100 
Team A uarter back rating out of 100 
On average how many passing yards did Team A get in one game? Averages 
week 1 up to that game. 
On average how many passing yards did Team B get in one game? Averages 
week 1 up to that game. 
On average how many passing yards did Team B allow the other team to get in 
one game? Averages week 1 up to that game. 

0.1 
0.1 
0.09 

0.08 

0.08 

0.07 

0.07 
0.06 
0.05 

0.05 

0.05 

Team B overall rating~o_u_t_o_f_l_00 _ _________________ 0_.0_4 _ _ _ _ 
Team B defensive rating~o_u_t_o_f _l0_0 _________________ 0_.0_4 ___ _ 
Team A overall rating out of 100 0.03 
Team A offensive rating out of 100 0.03 
Team A defensive rating out of 100 0.03 
Team B offensive rating out of 100 0.02 



4.2 Feature Sensitivity 
One question that may be of concern to mission planners is: "How ce1tain does my data need to 
be, in order to be able to make a good prediction?" Using the decision forest models described in 
section 4.1 we set out to answer the following questions: 

1. Given a training dataset of 100% accuracy, which features are most sensitive to 
uncertainties when maldng predictions? 

2. At what level of uncertainty does performance begin to diminish for each feature? 

To answer these questions the following procedure was followed. Given a dataset representing 
249 NFL games (1 season with ties removed), the data set was randomly split into a training set 
and test set with 75% of observations belonging to the training set. A decision forest model was 
then trained on the test data. Fifteen sets of predictions were then made. One set of predictions 
was made with the 100% certain test data. For the remaining 14 sets of predictions, given an 
uncertainty level of a, one feature was first made more unce1tain by augmenting the original 
observation by a percentage factor of a random number chosen between (100- a) to (100+ a.). 
One hundred replications were completed for each feature for each level ofunce1tainty. Fifteen 
uncertainty levels were evaluated including:5,10,15,20,25,30,35,40,45,50, 100,150,200,250,300. 

For these initial uncertainty tests, when the value of a feature was changed, it had equal 
probability of being increased or decreased in value. When the feature values in the test set had 
equal probability of being increased or decreased by a certain uncertainty factor, prediction 
perf01mance remained relatively unchanged. Across all features as uncertainty for a single 
feature was changed from 5 to 300%, the impact to performance was only +/-3%. Across all 
features there were only a few features that had marked detriments to pe1f01mance when their 
values became more unce1tain. These features were A Team, ADef, BDef, and AOff at low 
levels of unce1tainty and A Team, ADef, BDef, and BRushOff at more extreme levels of 
unce1tainty. Figure 14 and Figure 15 highlight these results. 
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Figure 15-High /epef u11cer/ai11ty impact lo prediclion accuracy 

Initial results indicated if any one feature was uncertain impact to the overall model prediction 
performance was negligible for most features, however a few features saw a decrease ofup to 
3% in prediction accuracy. Since initial experimentation provided an equal probability of over or 
underestimating a feature, it makes sense that on average the prediction results would not change 
significantly as one direction of change might increase prediction accuracy while the other 
direction of change might decrease accuracy. The experiments were then repeated first by 
overestimating features by a specific uncertainty level, and then by underestimating features by a 
certain uncertainty level. These experiments help identify specific features that may be 
patticularly sensitive to movement in a pmticular direction. 

Figure 16 highlights the effects of overestimating individual feature values on prediction 
accuracy at high levels of unce1tainty. Two features stand out: BDef and BRushDef. While most 
features are relatively insensitive to overestimation, when BDef is overestimated, prediction 
accuracy on average decreases by 4%. The opposite is true for BRushDef. When BRushDef is 
overestimated, prediction accuracy actually improves at high levels of uncertainty. Results such 
as these suggest that for these experiments, if the probability of overestimating BDef is high, 
spending more time refining the estimate will serve to improve prediction performance. 
Analogously, if the probability of overestimating any other features is high, spending more time 
refining those estimates would not result in improved predictive performance. 
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Figure 17 illustrates the impacts of underestimating feature values on prediction perfmmance. Of 
pat1icular note is that underestimating the ATeam feature is detrimental to prediction accuracy, 
while underestimating BTeam and BOff may actually improve perfo1mance. Results such as 
these could be interpreted for real world application by considering being more conservative 
with ce11ain feature estimates (BTeam and BOff), and potentially spending more time 
perfmming data collection on the ATeam attribute if it is likely to be underestimated. 
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Figure 17- Effects of U11deresti111ati11g Feature Values 011 Prediction Accuracy 

These sensitivity results lead to additional questions. One investigation completed was to 
dete1mine the impact of changing feature values on the predicted outcomes. Essentially we 
wanted to determine the range in which you could change a feature's value and be able to impact 
predictions. To do this, a single decision forest was trained with a training set containing 75% of 
available data. The remaining 25% was used as a test set. Predictions were made for the original 
data, and the accuracy was recorded. Then for intervals of 5% from -200 to +200 a single feature 
was changed by that percentage, and predictions were made. The intervals over which the 
prediction accuracy changed was then recorded. Results highlighted the differences between 
features with regards to the interval over which changes occurred, the directionality of change, 
and the magnitude of the change. 
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Figure 18 illustrates how the pe1formance accuracy changes as each feature was adjusted by a 
ce11ain percentage. Interestingly, decreasing some features results in improvements to accuracy 
while the opposite is tiue for other features. Also of interest in Figure 18 is the range of changes 
over which features are sensitive. These ranges are further highlighted in Figure 19 where 
BRushDef has one of the smallest ranges of impact and ARushOff has one of the largest ranges 
of impact. Features with larger ranges of impact indicate that the feature can take on a larger 
range of values without changing predicted outcomes than features with smaller ranges. In 
addition to ranges of impacts Figure 19 also lists the impact to accuracy over the range of the 
change. Features with large accuracy impacts indicate that more observations switch predictions 
over the impact range than those with smaller accuracy impacts. So for example, ARushOffhas 
one of the largest impact ranges, meaning the feature can take on a large range of values from its 
stai1ing value and have impacts to predictions. Simultaneously, ARushOffhas the largest 
accuracy impact indicating that over the course of the impact range more predictions are changed 
than for other features. Conversely ARushDef has one of the smallest impact ranges and one of 
the smallest accuracy impacts. This would suggest that predictions change when ARushDef is 
changed only by a small amount, but that not many predictions actually change. 

The warfighter could use similar analysis on mission data to understand the range over which 
features could be changed before impacting predictions, and how likely changes will actually 
result in a changed prediction. 
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Percentage Feature Change 
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A_RUSH OFF -17.46% 
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A_Team 14.29% I 
B Off I -11.11% 

B Def -6.35% 

A Off 4.76% 

A RUSH DEF 4.76% 

A PASS OFF 3.17% 

B_PASS DEF 3.17% I 
B_RUSH DEF I 3.17% I I 
A Def I 1.59% 

A PASS DEF -1.59% 

BRUSH OFF -1.59% I I 
B PASS OFF 0.00% 

Fig11re 19-Feature Se11sitivity to C/ra11ge (Slraded regions correspo11d to c/ra11ges i11 predictio11, perce11tages listed represent tire 
clra11ge ill predictio11 accumcy, larger values i11dicate/eat11res //rat /rave more impact 011 predictio11s ll'lre11 c/ra11ged) 

5 Conclusions and Future Work 

This work explored the use of a large scale detailed HADR simulation model for the generation 
of machine learning datasets. Small experiments conducted using the HADR simulation model 
were able to validate the functionality of infotmation gain based routing algorithms, as well as 
identify non-intuitive relationships between mission characteristics and performance measures. 
However, the development oflarge scale datasets was hampered by the lengthy validation cycle 
and the long simulation run times. Future effo11s utilizing simulation should have a validation 
functionality running in real time with the simulation. Efforts to reduce simulation runtime 
should be pursued, or effo11s such as the use of Generative Adversarial Networks could be 
explored as a way to ai1ificially produce large datasets at a faster rate than simulation alone. 

This work fu11her evaluated algorithms to efficiently predict mission performance measures 
using a conceptual spaces based approach. The study found that despite being able to form 
performance clusters, that feature space clusters were still largely non-linearly separable, 
preventing solid predictions of performance measures. This study found that by using non-linear 
models, such as decision trees the same data could be used to make reasonable perfmmance 
predictions. Future work should look to augment the conceptual spaces based modeling approach 
with non-linear feature space development. 

Finally this work began to investigate the impacts of feature unce11ainty to prediction 
performance. Experiments were able to show that prediction pe1fo1mance was affected 
differently depending on which feature was unce11ain, and that some features had larger impacts 
to performance than others. Additionally, the range for each feature's values was identified that 
had an impact on perfmmance, and the magnitude of this performance impact was also captured. 
This type of analysis could be used by the warfighter in the future in order to infmm intelligence 
collection plans or prioritize effo11s to obtain better estimates of features. Future work should 
endeavor to use these feature sensitivities when suggesting revised mission plans. 
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