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ABSTRACT

Rendezvous and proximity operations are an essential component of both military
and commercial space missions and are rising in complexity. This dissertation presents an
applied reachability analysis and develops a computationally feasible autonomous
guidance algorithm for the purpose of spacecraft rendezvous and proximity maneuvers
around a tumbling object. Recent advancements enable the use of more sophisticated,
computation-based algorithms, instead of traditional control methods. These algorithms
are desirable for autonomous applications due to their ability to optimize performance
and explicitly handle constraints (e.g., safety, control limits). In an autonomous setting,
however, some important questions must be answered before an algorithm
implementation can be realized. First, the feasibility of a maneuver is addressed by
analyzing the fundamental spacecraft relative dynamics. Particularly, a set of initial
relative states is computed and visualized from which the desired rendezvous state can be
reached (i.e., backward reachability analysis). Second, with the knowledge that a
maneuver is feasible, the Model Predictive Control (MPC) framework is utilized to
design a stabilizing feedback control law that optimizes performance and incorporates
constraints such as control saturation limits and collision avoidance. The MPC algorithm
offers a computationally efficient guidance strategy that could potentially be
implemented in real-time on-board a spacecraft.
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CHAPTER 1

Introduction

Spacecraft Rendezvous and Proximity Operations (RPO) have become a critical component
across the spectrum of space activities. Applications of RPO range from the nowadays
routine docking to the International Space Station (ISS), to spacecraft formation flying,
servicing and inspection, on-orbit assembly, and even asteroid missions. Specifically, the
problem of conducting RPO around an object that is tumbling, or uncontrolled, has been
gaining research interest over the past two decades, primarily for applications of servicing
and inspecting non-functioning satellites. In previous literature, the problem is addressed
from a guidance and control perspective, with the focus of devising algorithms to conduct
such maneuvers. However, a more fundamental analysis, not specific to a certain algorithm,

is lacking.

Generally, spacecraft relative translational and rotational dynamics are treated separately.
Traditional equations of motion for relative translation treat the spacecraft as a point mass,
while a rigid body assumption is imposed for rotational motion. It has been shown, however,
that when considering relative motion between two rigid bodies coupling of translational
and rotational motions exists [1], [2]. In the problem of docking with, or maneuvering
close to, a tumbling object where both position and attitude requirements are imposed
simultaneously, the inherent coupling would affect maneuver execution. Therefore, it is
important to accurately represent the relative motion between the two spacecraft in order to
account for the tumbling motion in a guidance and control scheme. This spacecraft relative

motion dynamical framework has not been fully analyzed in literature.

There is a rich history of spacecraft rendezvous and docking missions starting as early as
1966 with the Gemini program, and continuing with the Apollo program, Russian modules,
Space Shuttle missions to the ISS, and the European Automated Transfer Vehicle (ATV) [3].
The earliest U.S. on-orbit rendezvous and repair missions occurred in 1973 when Skylab was
repaired by the crew during a series of space walks [4] and in 1984, when astronauts on-board
the Space Shuttle retrieved, repaired, and redeployed the Solar Maximum satellite [5]. In
these early missions, crew involvement in the rendezvous and docking phases was necessary.

Technology developments in autonomous rendezvous and docking capabilities have been
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demonstrated in a series of experimental missions over the last decade, nicely summarized
by Nolet [6] as well as Boyarko [7]. These experimental missions have greatly contributed to
the technological advancements required for autonomous rendezvous and docking; however,
from a guidance and control aspect, trajectory generation still required the involvement of

mission planners [8].

In 2011, the results of a decadal study completed by the National Research Council urged the
National Aeronautics and Space Administration (NASA) to assess the technology needs in
order to meet the requirements of future planetary missions [9], [10]. Within those studies,
NASA reported that the Guidance, Navigation & Control (GNC) area is one of the highest
technical priorities, given the rising complexity of space missions. Specifically, the need for
autonomous trajectory generation was highlighted. The on-board algorithms to perform this
task must offer optimality when possible, robustness, and most importantly, safety [9], [10].
The need for safety in autonomous spacecraft operations is also highlighted by the rare, but
detrimental, mishaps that have occurred. The prime example is the collision between the
Iridium and Cosmos satellites, in 2009, which resulted in a significant debris cloud threaten-
ing many Low Earth Orbit (LEO) spacecraft [11]. Although the Iridium-Cosmos incident is
not related to rendezvous operations, it highlights the severity of the consequences resulting
from a collision. NASA’s Demonstration of Autonomous Rendezvous Technology (DART)
mission also experienced a collision during close proximity maneuvers [12], although not as
severe as the Iridium-Cosmos incident. As space missions become more complex, and the
environment more congested, constraint handling must be one of the main characteristics
of an on-board GNC algorithm. A recent survey of spacecraft formation-flying missions

highlights the need for autonomous GNC to meet future challenges [13].

With this mindset, the aerospace research community is experiencing a trend toward
iterative-based on-board guidance methods, a term coined Computational Guidance &
Control (CG&C) [14]. Advancements in computing technology enable application of such
algorithms to systems for on-board computation of reliable, and safe, control actions [14],
[15].



1.1 Research Questions

Implementation of an autonomous GNC algorithm raises some important questions. First,
before even trying to iteratively solve a control problem, can one be certain that the maneuver
is feasible (i.e., does a solution exist)? Second, if the problem is feasible, does the algorithm
ensure convergence to a solution and can one know a priori if the problem can be solved
within the allotted time? Finally, assuming the problem can be repeatedly solved in a
feedback control framework, is the resulting system response stable? These questions were

the motivating elements for this research.

Research Objectives

With inspiration from recent advancements in CG&C, this research analyzed the problem
of conducting autonomous RPO maneuvers around a tumbling satellite. A spacecraft in an
arbitrary Earth orbit, referred to as the chief, in a tumbling state of motion is considered.
A controlled spacecraft, referred to as the deputy, is tasked with approaching the tumbling
chief and reaching a desired relative state (e.g., docking), as depicted in Figure 1.1. The
focus of this research was to analyze the 6-Degrees of Freedom (DOF) relative dynamics
of this scenario and assess its reachability characteristics. Before any control method was
applied, a fundamental question was answered to determine if a maneuver is feasible within
predefined constraints. Among the many control methods that can be used in scenario,
Model Predictive Control (MPC) stands out due to its inherent ability to enforce constraints
while optimizing performance. In this research, MPC methods were leveraged to design
and implement an algorithm to conduct these RPO maneuvers, taking into account control
and collision avoidance constraints. More specifically, the following research questions

were answered:

1. Reachability Analysis Objective: Given a desired final relative state, and bounded
control input, what are the possible initial conditions from which a maneuver can be
successfully completed in a given amount of time?

2. Guidance and Control Objective: Assuming the desired relative state is reachable,
how can the MPC framework be used to generate a stabilizing feedback control law
in the presence of constraints, and how does this solution compare to an optimal

solution?



Cstart Deputy in nearby orbit

t > lstare
tend
tend
t > lstare
Tumbling chief in arbitrary orbit
tstart

Figure 1.1. Depiction of research objective.

1.2 Research Scope and Assumptions
In order to accomplish the research objective, the following research tasks were defined:

1. Formulation of spacecraft relative roto-translational kinematics and dynamics.
2. Reachability analysis of relative roto-translational motion.

3. Autonomous guidance algorithm development for relative roto-translational control.

The focus of the first task was on modeling of spacecraft relative roto-translational motion,
leveraging existing models and methods published in literature. In particular, this task
aimed to formulate simplified models, well-suited for reachability analysis. The second task
applied reachability analysis techniques to the resulting dynamic models to answer the first
research objective. Using results and insights gained from the first two tasks, an autonomous
guidance algorithm was developed for constrained roto-translational maneuvers. Following
the recent trends in CG&C algorithms, the focus of this task was on MPC-based approaches.

In accomplishing the research objectives, the following main assumptions were made:

1. The chief and deputy spacecraft are rigid bodies in Keplerian restricted two-body

orbital motion; perturbing forces and torques are neglected.
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2. The chief spacecraft is uncontrolled, while the deputy is fully actuated with the ability
to create a force and torque vector in any direction.

3. There is no interaction between control forces and torques.

4. The deputy has full knowledge of the relative state and the chief’s orbital and tumbling
motion; i.e., the relative navigation problem is considered a priori solved and is not

treated in this research.

In addition to the assumptions above, some parts of the dissertation required further as-

sumptions, which are detailed in the appropriate sections.

1.3 Dissertation Outline
The dissertation comprises four parts, and eight chapters. The contents of each part and

chapter are summarized below.

 Part I: Introductory Material

— Chapter 1: Introduces and motivates the research topic.

— Chapter 2: Reviews relevant literature and presents the 6-DOF spacecraft relative
motion model that is used for this research.

 Part II: Applied Reachability Analysis

— Chapter 3: Introduces the reachability concepts used herein and describes the
methodology used to conduct the analysis and visualize results.

— Chapter 4: Presents analysis for the case of the chief in circular orbit, rotating
on the orbit plane about its z body axis at a constant rate. First, simplified
kinematic and dynamic models for this case are introduced through appropriate
assumptions. Reachability analysis of the simplified models is then conducted
and results are presented.

— Chapter 5: Extends the analysis from Chapter 4 to study the reachability char-
acteristics of the full 6-DOF relative dynamics for cases where the chief, in
circular orbit, is rotating on the plane about its z body axis at a constant rate or
is rotating about an off-principal axis (i.e., tumbling).

 Part III: Autonomous Guidance and Control Algorithm Development
— Chapter 6: Introduces the MPC framework, and presents an autonomous guid-

ance algorithm for rendezvous with a tumbling object. An applied reachability



concept is defined to analyze reachability characteristics of a closed-loop sys-
tem, culminating in the closed-loop reachability analysis of the developed MPC
algorithm.

— Chapter 7: Presents numerical simulation results from specific test scenarios
comparing the performance of the developed MPC algorithm to minimum time
optimal solutions.

e Part IV: Concluding Material
— Chapter 8: Summarizes the contributions and results of this research and offers

recommendations for future work in this field.

1.4 Summary

This chapter introduced the topic that was studied in this dissertation. After identifying the
research gap, the research objectives were defined in terms of questions that were answered
by the work herein. The scope of this research and the underlying assumptions were stated.
The chapter closed with an outline of the dissertation. A complete list of the different

rendezvous scenarios studied during this research is included in Chapter 8.



CHAPTER 2:
Derivation of 6-DOF Relative Roto-Translational

Dynamics

This chapter lays the foundation for this research. Relevant literature on the topic of
RPO with a tumbling object is discussed, and the gaps addressed by this dissertation are
illustrated. The specific problem at hand is defined in detail, and different ways that have
been used in literature to represent roto-translational motion are discussed. Finally, the

derivation of the spacecraft relative motion model used in this research is provided.

2.1 Previous Literature

The problem of autonomous rendezvous and docking with a tumbling object has only been
the subject of publications over the past two decades. The earliest work on this topic was
published in 2003 by Henshaw [16], who studies optimal trajectory planning approaches
for docking with an uncontrolled spacecraft. In 2006, Ma et al. [17] approach the problem
from an optimal control perspective, and show numerical results for a planar case study.
Nolet [6] presents an overarching GNC framework for docking with a tumbling object,
along with experimental demonstrations through the Synchronized Position Hold Engage
and Reorient Experimental Satellites (SPHERES) facility on the ISS. In this work, the
coupling between translational and rotational dynamics is not considered. Additionally,
the path-planning and control tasks are separated, and a glideslope approach is used for
on-board trajectory generation. Similarly, Fejzic [18] develops a spline-based path planning
method to handle obstacle avoidance, which is also validated on the SPHERES testbed. This
algorithm is limited to a single stationary spherical obstacle. As in Nolet’s work, the control
task is separated from the path planning task. In parallel to Nolet and Fejzi¢, McCamish
[19] presents a Linear Quadratic Regulator (LQR)/Artificial Potential Function (APF)-
based algorithm for translational control of multiple spacecraft in close proximity, which
is experimentally validated through hardware-in-the loop facilities at Naval Postgraduate
School (NPS), and through the SPHERES testbed. A few years later, Boyarko [7], [20]
extends the work in [17] by presenting the optimal control formulation, and numerical

solution, for close-range rendezvous and docking with a tumbling satellite in a 6-DOF
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environment. The proposed dynamic model includes 20 states, and the rotational motion
is not formulated as a relative state. Additionally, a rapid trajectory generation method is
proposed based on an Inverse Dynamics in the Virtual Domain (IDVD) approach, which
requires the off-line solution to a Nonlinear Programming (NLP) problem. The IDVD
algorithm solves for both attitude and translational trajectories [7]. The dimensionality of
the problem considered makes the IDVD algorithm computationally expensive, and since a
NLP solver is required, there is no convergence guarantee. A closed-loop implementation
of the IDVD algorithm for docking to a tumbling target is later implemented by Ventura et
al. [21] and experimentally characterized by Wilde et al. [22] on an air-bearing testbed at
NPS. The experimental validation of the IDVD algorithm demonstrates the applicability
of a computation-based guidance and control method on a real system. Michael et al. [23]
follow a similar dynamic modeling approach to Boyarko’s in order to formulate and solve an
optimal control problem for docking with an uncontrolled spacecraft, but without discussing
the feasibility of on-board computation. Notably, both Boyarko and Michael use linearized
relative translation models, restricting their work to a chief spacecraft in circular orbit.
More recently, Sternberg and Miller [24] present a parametrization technique to generate
fuel-optimal trajectories for a spacecraft to rendezvous with a tumbling object, but only

consider the translational aspect of the maneuver.

The work summarized above shows an extensive interest in the development of autonomous
computational guidance methods for RPO with a tumbling spacecraft, but without studying
or exploiting the inherent coupling between translational and rotational motions. Literature
on the coupled control problem, specifically for RPO with a tumbling object, is not nearly
as expansive and focuses mainly on feedback control approaches. Lu et al. [25] present an
integrated coupled dynamics formulation, through the assumption that body-fixed thrusters
provide coupled control forces and torques. Within this integrated dynamics scheme, they
develop a robust sliding mode control method, based on two sliding surfaces. A related
publication shows a robust sliding mode control approach applied only to the attitude
synchronization aspect for docking with a tumbling satellite [26]. These applications
of sliding mode control, however, do not incorporate control or state constraints. Sun
and Huo [27] present a similar coupled motion model, but using Modified Rodrigues
Parameters (MRP) for attitude parametrization instead of quaternions. They then develop a

nonlinear adaptive controller for the coupled dynamics, but without incorporating control

10



or state constraints.

Previous literature in this subject area does not offer any insights on the relative roto-
translational dynamics, and this is one of the gaps addressed by this research. Additionally,
coupled control methods that have been previously developed are classical feedback con-
trollers, which offer robustness to uncertainties but do not directly handle constraints.
Constraint handling capability is an important consideration for autonomous systems with

implementations of CG&C algorithms.

2.2 Problem Definition

Consider a chief spacecraft in arbitrary Earth orbit, in a tumbling state of motion, and
a deputy spacecraft in a nearby orbit, as depicted in Figure 2.1. The deputy is tasked
with approaching the chief, and achieving a desired relative state. An Earth Centered
Inertial (ECI) Cartesian Coordinate System (CCS), I, is defined with its origin at the
center of the Earth, x-axis pointing towards the vernal equinox, z-axis pointing towards
the North Pole, and y-axis completing the right-handed coordinate system. Although the
Earth’s equatorial plane changes slightly over time, the ECI CCS is commonly treated as a
Newtonian inertial reference frame by referring to the equator and equinox at a particular
point in time [28]. The vectors 7. and 7; define the inertial positions of the chief and
deputy spacecraft, respectively. Note that an unresolved geometric vector is denoted by an
arrow over the variable (@), while a resolved vector in a specified CCS is denoted by a bold
symbol with the CCS indicated as a superscript on the right side (a®). A superscript on the
left side of a variable accompanies a time derivative, indicating the reference frame with
respect to which the differentiation is performed (Cd). As perturbing forces are neglected,
the orbital motion of the chief and deputy can be expressed by the Keplerian restricted

two-body equations [28],

|5 _ _ﬁﬁ
c = Rg”c, 2.1
. 1 >
If‘)d = —ﬁfd + —Fy, (22)
R} my

where u is the Earth’s gravitational constant, R, = ||F¢||, Rz = ||Fall, ﬁd is the control force

acting on the deputy, and m, is the deputy’s mass.
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The relative motion between the two spacecraft is derived by defining the relative position

vector, p = Py — I, and taking its time derivative with respect to | twice,

= —-= — T+ —Fy. .
Y R;p RE,RZ c my d

Traditionally, the relative motion is written with respect to a chief orbit-fixed Local Vertical
Local Horizontal (LVLH) CCS, L, with origin at the chief’s center of mass, its x-axis
pointing radially outward, z-axis perpendicular to the orbit plane, and y-axis completing
the right-handed coordinate system. Expressing derivatives and resolving (2.3) in L leads to
the well-known nonlinear relative motion models, as well as approximate linearized models
after making appropriate assumptions (e.g., the Clohessy-Wiltshire (CW) model) [2]. A
body-fixed CCS is defined for the chief and deputy spacecraft, with origin at the respective

center of mass, denoted by C and D, respectively.

Figure 2.1. Depiction of coordinate systems and vectors for the problem of
rendezvous with a tumbling object.

Traditional relative motion models only account for relative translation between the two
spacecraft’s centers of mass. With the chief in a tumbling state, the relative attitude

between the two spacecraft must also be incorporated. As a result, this research considers
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relative roto-translational motion models, combining relative translation and rotation states,

that incorporate the chief’s tumbling motion into the equations of motion.

2.3 Representations of Roto-Translational Motion

In classical mechanics, the translational and rotational equations of motion for a rigid body
are decoupled and derived independently. The translational equations describe the motion
of the rigid body center of mass, while rotational motions describe the orientation of a body-
fixed CCS with respect to an inertial CCS. In this manner, the full 6-DOF motion model is
reduced to two 3-DOF models. Much of the previous literature presented roto-translational
dynamic models by combining the two 3-DOF models (see for example [20], [29]), or by
introducing dynamic coupling between translational and rotational motions due to thrust
alignment or gravity gradient considerations (see for example [25], [27], [30]-[32]). These
types of models are effective and use intuitive states (e.g., position, velocity), but they are
often derived with respect to the chief’s LVLH CCS. As aresult, when the chief is tumbling,

the desired relative state becomes time-varying.

Another approach for deriving coupled relative motion models is presented by Segal and
Gurfil [1], where a kinematic coupling between translational and rotational states is intro-
duced by considering the relative motion between off-center of mass points on the chief
and deputy rigid bodies (i.e., relative motion between the two docking ports) . Their results
show that the kinematically coupled model is a more accurate representation of relative
motion between two rigid spacecraft, than the widely used CW model [1], [2]. It is assumed
that the deputy body-fixed coordinate system is always aligned with the chief orbital frame,
and relative attitude control is not considered. This assumption is later removed to allow
for a relative motion model that can be used for precise rendezvous maneuvers with a tum-
bling chief [33], [34]. The kinematically coupled model is useful for precision close-range

maneuvers, but is not widely applicable in the context of RPO maneuvers.

Arguably the most elegant way to express roto-translational motion is to represent the relative
state as a general rigid body screw displacement (translation + rotation). Similar to the
way rigid body rotational kinematics can be expressed through a variety of representations
(Direction Cosine Matrix (DCM), Euler Angles, Quaternions, etc.) [35], there exist different

schemes to express general screw displacements. In this manner, translational and rotational
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kinematics can be combined into one state variable, leading to a compact expression of the
6-DOF dynamics.

The topic of general screw displacement representation has been popular in literature from
the early 1970s, especially in the computer graphics and robotics communities. Rooney
[36] presents a comprehensive comparison between two classes of screw displacement
representations: point transformations and line transformations. The former defines 3-
dimensional space as a collection of points and screw representations operate on those points
through homogeneous coordinates. The latter defines 3-dimensional space as a collection
of lines and screw representations involve dual numbers. Amongst the three different
representations of point transformations considered in this paper, Rooney claims that the real
4-by-4 homogeneous transformation matrix is the best and most widely used [36]. Amongst
four different representations of line transformations, Rooney claims that the unit dual
quaternion is the best [36]. A direct comparison between the two “winners” is not included,
however. A similar comparison is presented by Funda and Paul [37]. The authors compare
four different representations in terms of compactness and computational efficiency, also
offering a comparison between the homogeneous transformation matrix and the unit dual
quaternion. Their concluding remarks indicate that the unit dual quaternion is the most

compact and efficient representation of general rigid body screw displacements [37].

Compact representations of rigid body motion have been used in literature for spacecraft
applications. Holguin et al. [38] present a geometric mechanics-based guidance approach
for spacecraft rendezvous, by formulating the spacecraft dynamics in the special Euclidean
configuration space SE(3) . In this work, the guidance and control schemes are treated
separately by first solving for a reference trajectory and using a tracking controller to
follow the prescribed trajectory. However, no considerations on constraints are included
in the formulation. Similarly, Lee and Vukovich [39] present a robust adaptive sliding
mode controller on SE(3) for spacecraft rendezvous, including higher-order gravitational
perturbations and a rigorous Lyapunov stability analysis. Geometric mechanics offers a
compact representation of the 6-DOF relative dynamics, through the configuration manifold
SE(3); however, special considerations must be taken in order to perform integrations on
the geometric manifold, as well as in the formulation of optimal control problems [40], [41].
Another application of an SE(3)-based control scheme is presented by Misra et al. [42], for

the problem of soft landing on an asteroid.
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Literature on the theoretical aspects of dual quaternions dates back to the late 1800s, but
their use for spacecraft applications is fairly recent. A good overview of the mathematical
preliminaries behind modeling of rigid body motion using dual quaternions is included
in [43], [44]. Wang et al. [45] present the coupled 6-DOF dynamics for spacecraft relative
motion in terms of dual quaternions, and a Proportional-Derivative (PD)-type coupled
control law along with a rigorous stability analysis. More generally, Price [43] presents the
problem of nonlinear dual quaternion-based tracking of rigid body motion using a sliding
mode control method. Filipe [44] studies the problem of spacecraft relative pose control and
estimation using dual quaternions. Specifically, a dual quaternion-based adaptive control
approach, along with stability analysis, is presented for coupled attitude and position tracking
which requires no prior knowledge of the spacecraft’s mass and inertia properties [44],
[46]. Additionally, a pose estimation approach is presented through a dual quaternion-
based multiplicative Extended Kalman Filter [44]. Finally, Lee and Mesbahi [47], [48]
present a dual quaternion-based MPC approach for constrained precision landing, showing

a capability for on-board, optimization-based, 6-DOF guidance and control.

Although compact representations of rigid body screw displacements offer elegant ways
to write the roto-translational dynamic equations, these states are not necessarily intuitive.
The dual quaternion, for example, is quite difficult to visualize. Since the main goal of
this dissertation is to analyze the roto-translational dynamics, the relative motion equations
are derived using the traditional states (e.g., position, velocity) while taking into account
the chief’s tumbling motion. As mentioned at the beginning of Section 2.3, traditional
models are derived with respect to the LVLH CCS. In the following section, a derivation
of the 6-DOF relative roto-translational dynamics is presented with respect to the chief’s

body-fixed CCS, in order to incorporate its tumbling motion into the equations of motion.

2.4 Chief Perspective Model

The content of this section was published at the 2018 Science and Technology Forum

(American Astronautical Society Spaceflight Mechanics Meeting) [49].
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2.4.1 Relative Translational Motion

The general relative translation dynamic equation was shown in (2.3). The transport theorem
allows for time derivatives to be taken with respect to non-inertial reference frames [50].
Invoking the transport theorem and taking the time derivative of the relative position vector

twice with respect to C yields,

Iﬁz Cﬁ+$c/|Xﬁ+2ﬁc/|X C[L))+a_))C/IX((DC/IX,5), (2.4)

Cc

where &g is the angular velocity of C with respect to I, and (,L.—))C/| = 'dc Nn= cf)cﬂ.

Combining (2.3) and (2.4) results in the following expression,

Cc5 /’l—>+'u(R?1_Rg)—>+ lﬁ AN < 3
= TSPt ——5 5Tt —la—wcy

~2dcp % Cp = @eyr X (Gep X B) - (2.5)
Finally, resolving (2.5) in C gives the following translational equation of motion,

R3—R3)

..C H c /“‘( d c)_C l ¢ -C 1% -C
= ——p°+———"r1'+—F; - [0z,]

? BT TRR T g T e P

2w, "p° - [wg, 1 (o, 1*p°). (2.6)

where []* is the skew-symmetric matrix representing the vector cross-product operator. It
is evident that the translational relative equation in (2.6) is coupled to the chief’s tumbling

motion, governed by the rotational equation of motion (Euler’s equation) [35],
wg/l = Jc_l (_[wgﬂ]x-]cwg”) s (27)

where J, is the chief’s inertia matrix. Equation (2.6) is also a function of the chief’s orbital
motion (R, rS). It is important to note that for an arbitrary chief orbit, the variable R, is

not constant.
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2.4.2 Relative Rotational Motion

In order to describe the orientation of the deputy with respect to the chief, an attitude
parametrization scheme must be selected. Unit quaternions are often preferred, from a
numerical perspective, as a singularity-free representation of attitude. The unit quaternion,

gp,c describes the orientation of the deputy with respect to the chief and is comprised of

a vector part and a scalar part, gp;c = [ q4]T =[q1 ¢2 ¢3 q4]T, and satisfies ||gp,c|| = 1.
The quaternion kinematic equation is [35],
. I~ p
go/c = EQwD/C, (2.8)
where
g4 —q3 Q2
= q3 g4 —q1
0= . 2.9
—q2 qi1 q4
—q1 —q92 —q3

Although the unit quaternion offers a singularity-free representation, it requires four pa-
rameters to describe the 3-DOF orientation. As a result, the four parameters must adhere
to the unit constraint: q% + q% + qg + ‘142, = 1. It may be desirable to use a minimal attitude
representation (i.e., orientation represented by three parameters). MRPs are often used
as an alternative to quaternions as they allow representation of large attitude maneuvers
that are less than a full 360 degree rotation. The MRP vector, o0 = [0], 07, o3], is a
stereographic projection of the set of unit quaternions (four-dimensional unit sphere) onto

a particular hyperplane [50]. The three parameters are given by,

o= 2
ol

,i=1,2 3. (2.10)
The MRP can also be expressed in terms of the principal rotation by,
o= étan%, 2.11)

where ¢ is the Euler axis of rotation, and ¢ is the rotation angle. It is evident in (2.11) that
the singularity occurs at ¢ = +27. Additionally, the “shadow” MRP, o3, corresponding to

the orientation given by —¢g (which is equivalent to the orientation given by g), is a distinct
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set of parameters representing the same orientation. This characteristic allows to switch
between o and o® at ¢ = & (i.e., orientations with ¢ < r are represented by o, while
orientations with ¢ > 7 are represented by o-5). As a result, the magnitude of the MRP
vector is bounded, 0 < o7 < 1 [50].

Let o represent the relative attitude of the deputy with respect to the chief, andlet o> = o7 0.

The MRP kinematic equation is [50],

14
o= wg)c: (2.12)

where
B=0-0)hL+2[c]+2007 (2.13)

and /3 is the 3-by-3 identity matrix.

The relative angular velocity is defined by the following equation,
@p/c = Bp)1 — We)I- (2.14)
The relative dynamic equation can then be derived by taking the time derivative of (2.14),
[ |

@pjc = '@pp— '@eop = Pidpy— Cédp. (2.15)

The attitude dynamic motion of the deputy and chief with respect to the inertial frame
(D(f)D ;1 and Ccﬁc ;1 respectively) are defined by Euler’s equation [35]. Using the transport
theorem, the following equation can be written,

| >

&pc = Pdpjc + @pji X @pjc. (2.16)

Combining (2.15) and (2.16), and plugging in Euler’s equation for the deputy rotational

motion provides the following equation for the relative rotational motion,

Péoc = I3 [Ma = (@oje + dep) X Ja(@ojc + dop)|

~ Cée) — dep x Boje, (2.17)

where M, is the control torque applied to the deputy, and J; is the deputy’s inertia matrix.
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Let Cp,c be the DCM corresponding to the unit quaternion gp,c, which transforms a resolved
vector from the C CCS to the D CCS. As a proper DCM, Cp,¢ belongs to the group, SO(3),
of three by three orthogonal matrices with determinant equal to one. The mapping from a

unit quaternion to the corresponding DCM is shown in (2.18) [35], [50],

1-2(¢5+4q3) 2(q192 + q3q4)  2(q193 — 9244)
Coic = |2(q2q1 — @394) 1 -2(¢7 +q3) 2(q2q3 + q194) | - (2.18)
2(qg3q1 + 294) 2(@3q2 — q1qs) 1 —2(q% + ¢3)

Finally, (2.17) can be resolved in D,

d’g/c = chl [MEJ) - [‘UB/C + CD/ng/I]XJd(wB/C + CD/ng/I)]

_CD/Cd)g/I - [CD/ng/I]XwB/C' (2.19)

As with the translational equation, the attitude equation is a function of the chief’s tumbling
motion defined in (2.7).

2.4.3 6-DOF Relative Roto-Translation Model

For notational compactness, the following variables are defined:

e p = pC; relative position vector resolved in C
« v = pC; relative velocity vector resolved in C

* g = gp/c; relative attitude unit quaternion

o ; relative attitude MRP vector
D_,D .

= Wpcs
F, = FS; control force vector acting on the deputy resolved in C

*w relative angular velocity vector resolved in D

MB; control torque vector acting on the deputy resolved in D

* W, = a)g I chief angular velocity vector resolved in C

The full 6-DOF model describing the relative roto-translational motion of the deputy with
respect to the chief is written by (2.6), (2.8) or (2.12), and (2.19), and shown for completeness
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in (2.20):

p =V (2.20a)
3 3

. H H (Rd B RC) c, | -1 X X

v = _R_fzp + TR;rC + m—dFd - [Jc (~lw] chc)] p
=2[w )V = [we]* ([w]*p) (2.20b)
1 1 -

g = 500° or ¢ =2Bw° (2.20c)

& = J;' [M] - [0° + Cpcwel* Ja(wP + Cojcoe) |

—~Cosc [I7! (Hlwel* Jewe) | - [Cojowe]*w®. (2.20d)

The above 6-DOF model is advantageous because the chief’s tumbling motion is explicitly
incorporated, a consequence of the original choice in this research of resolving all vectors
in the chief’s body CCS. The dynamic system in (2.20) is quite complex. The system
is comprised of 13 (or 12) states and the equations of motion are nonlinear, coupled, and
time-varying. By defining the state vector x = [p, v, ¢ (or o), wP]’ € R332 and control
vector u = [Fg, MD]" € R, the system can be written in control-affine form,

X = f(x,t) + Gu, 2.21)
where f € R13U2X1 i5 the drift vector field from equations (2.20a) - (2.20d),

v

Pt %ro - [I! (ClwdTewd) | p = 2wV = [0 ([w1*p)

%Qa)D (or %BwD)
[~J; ' [wP + Cojcwe*Ja(wP + Cojcwe) = Cosc [Jc_l (_[wc]xjcwc)] — [Cpjcw " wP]
(2.22)
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and G € R13U2x6 js the constant control vector field,

03x3 033

|
w033

G = (2.23)

043)x3  04(3)x3
O3 J3!

Although time does not explicitly appear in these equations, it is implicitly incorporated
c

J» w¢). In some cases, closed form solutions for these

into the chief’s parameters (R, r
parameters are known, and a simplified model can be derived. For the most general cases,
values for these parameters can be obtained via numerical integration. This dissertation
treats both of these instances. In Chapter 4, simplified models are derived, and used
for reachability analysis, under specific assumptions on the chief’s orbital and tumbling
motions. In Chapter 5, reachability analysis is presented for the more general cases, where

the dynamics remain in its unsimplified form.

2.4.4 Maintaining an Arbitrary Desired State

Generally, the goal of the rendezvous problem is to reach a desired relative state, x4. In
some applications, it may be required that the deputy spacecraft be able to maintain this
state (e.g., for inspection or servicing purposes). By inspecting the 6-DOF relative roto-
translational dynamics for rendezvous with a tumbling object in (2.20), it is clear than an
arbitrary desired state is not an equilibrium state of this system (i.e., a control input would
be required to maintain this condition). Assume that the desired condition x, is reached at

time 7. In order to maintain the rendezvous condition, the following must hold,
0= f(xa1)+ Guy, fort = [tf,00) (2.24)

where u; is the steady-state control input required to maintain rendezvous. From (2.24), the

required control input is then,

ug = =G f(xg,1), fort = [ty,0), (2.25)
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where G™ is the Moore-Penrose pseudoinverse of G given by,

_|03x3 mal3 0s3)x3 O3x3

G* (2.26)

033 O3x3s Ouyxs  Ja |

Given a specific scenario, this analysis allows for a quick assessment of the deputy space-

craft’s capability to maintain a rendezvous condition within its control authority limits.

2.5 Summary

This chapter discussed relevant literature on the topic of RPO around a tumbling chief
spacecraft, and laid the foundation for building a mathematical model for the 6-DOF
relative motion. The original contribution presented in this chapter was the derivation of
the roto-translational relative motion model, using the chief’s body CCS as the frame of
reference. This model is similar to traditional relative motion models but explicitly accounts
for the chief’s tumbling motion, which is important in this work. The resulting model
enables further analysis, specifically for the reachability question posed in this dissertation.
The research contributions offered in this chapter are shown in Table 2.1, mapped to the

corresponding research objectives.

Table 2.1. Research contributions in Chapter 2.

Contribution Objective
Derivation of chief perspective 6-DOF relative dynamics model 1,2
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CHAPTER 3:
Reachability Theory

This chapter introduces the topic of reachability. First, some key terms are defined and
relevant literature is discussed. Then, the relationship between reachability, controllability,
and optimal control is explained, culminating in the methodology proposed in this research to
conduct the reachability analysis for the problem of rendezvous with a tumbling spacecratft.
Parts of this chapter were published in [49], [51], [52].

3.1 Reachability Notions

If one were asked to define reachability, without knowing the precise mathematical meaning
of this term, the answer would likely be more or less correct by intuition: Can a particular
state be reached? In the context of dynamical systems, answering this seemingly simple
question can be quite complicated. The topic of reachability is motivated by the need
to verify control system behavior and safety. As such, the main question posed by a
reachability problem is one of control verification, rather than synthesis [53]. Consider a

general control-affine system, X,

X x(1) = f(x(@), 1) + g(x(0), Du(r), 3.1

where x € R” is the n-dimensional state vector, u € R™ is the m-dimensional control input,
f is the drift vector field and g is the control vector field. The control input is constrained to
lie within a set, u(t) € U < R™. The set U is referred to as the set of admissible controls
and is assumed to be proper, compact, and convex. The control input, u(¢), is assumed to
be a measurable function. Finally, the functions f and g are assumed to be Lipschitz, in
order for the dynamics to have a unique solution. The time span of interest is defined as
t € [0,T]. Let xo = x(0) and xr = x(T'). The following definitions are written (adapted
from [54], [55]).

Definition 3.1 An admissible trajectory, ys(0,T), is a trajectory of the system, %, starting

from initial condition x, ending at x s, under admissible control actions u(t) € U.
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Now, given a particular initial state, x¢, the following reachable set is defined.

Definition 3.2 The forward T-reachable set, Rr(T), from the initial condition x is the set
of states, x(t), that can be reached by admissible trajectories ys(0,T) in time T > 0 or less:

Re(T) = {x(@®)| Ju(t) € U and y=(0,1), x(0) = x0, 0 <t < T} (3.2)

Conversely, given a particular final state, x s, the following reachable set is defined.

Definition 3.3 The backward T-reachable set, Rg(T), from the final condition x s is the set

of states, x(0), from which admissible trajectories ys(0,T) reach xy in time T > 0 or less:

Rp(T) = {x(0)] Ju(t) € U and ys(0,1), x(t) =xp, 0 <t <T} (3.3)

Definitions 3.2 and 3.3 are illustrated in Figure 3.1.

Admissible
trajectories

Re(T)
(a) Forward T-reachable set (b) Backward T-reachable set

Figure 3.1. lllustration of forward and backward T-reachable sets.
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Although the definitions above do not explicitly include state constraints, they could in
theory be incorporated by enforcing an admissible set of states x(¢) € X in addition to the
set of admissible controls. The focus of this dissertation is on backward reachability, since
the research question aims to find a set of feasible initial conditions, but the methodology

herein is also applicable to a forward reachability analysis.

Computing these reachable sets is a complicated matter and still an active research topic.
The reachability problem can be posed as an optimal control problem through a Hamilton-
Jacobi (HJ) formulation [56], [57]. By Definition 3.3, an admissible control input u(#) to
the system 3.1 exists on the interval [z, T]. Assume that this control input minimizes the

value function,

T
Vix,t) = / [(x,u, T)dt + Ve(x(T)), 3.4)

where [(x, u, ) is the stage cost (or running cost) and V;(x(T')) is the terminal cost related
to the target state. Since the reachability problem is only concerned with reaching the target

state, the running cost is omitted, /(x, u, t) = 0. The optimal value function is,
V*(x,t) = min {V¢(x(T))¢. 3.5
(60 = min {V;(x(T))} (3.5)

The principle of optimality states that since the control u(#) is optimal on the interval [z, T'],

it is necessarily optimal over any subinterval [z, + Af] [58]. As a result,
V*(x,t) = min {V*(x(t + At),t + At)}. (3.6)
u(t)eld

Expanding 3.6 in a Taylor series about (x, t) yields,

* =T
Vi(x,t) = (n}n}u {V*(x, 1) + 6(,; (t+Ar—1t)+ Fy (x(t+ A1) —x) + O(At)},
u(r)e
= in {V*(x, 1)+ 8V*At + *T[ (x, ) + g(x,t)u(t)] + o(Atr) 3.7
T (V0 A Ty D gl o, G

where o(At) are higher order terms in At. Removing from the minimization the terms
that do not depend on u(?), dividing by A¢, and then letting A+ — 0 yields the HJ Partial
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Differential Equation (PDE) [58],

ovixt) . [ovinnT _
y +uf31§%1{ " [f(x, 1) +g(x,Hu@®)]; =0, (3.8)
with boundary condition V*(x,T) = V;(x(T)). Solving the HJ PDE above yields the

function V (x,1). By defining a terminal set as the zero level set of the implicit function V/,
Xy = {xV;(x) < 0}, (3.9)

the HJ PDE can be solved using the terminal set as the boundary condition. As proven

in [57], the zero level set of the solution represents the backward reachable set,

Rp(T) = {x|V(x,1) <0}. (3.10)
The question then remains, how does one compute these sets?

3.1.1 Methods and Tools for Computing Reachable Sets

As mentioned earlier, computing reachable sets is a complex process. Simulation of
trajectories is a commonly used approach for system verification, but the main drawback is
that only a single point within a set can be simulated, and computing the entire reachable
set would require an exhaustive search of the state space [53]. The desired result is the
computation of all possible cases within the set. A variety of methods have been presented in
literature to compute reachable sets that can be divided in two major categories: numerical
computation of the exact reachable set, and approximate geometric methods. Related work
from each category is briefly discussed below. In addition to computational complexity,
visualization of the set becomes challenging especially for systems of more than three
dimensions. This problem is common among all methods for computing reachable sets. In

these cases, only specific projections (or slices) of the set can be meaningfully depicted.

Numerical Computation of Exact Reachable Sets
Exact computation of a reachable set requires solving the HJ PDE, shown in (3.8). Although

classical solutions to the HJ PDE are not generally attainable, unique viscosity solutions are
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available and have been well studied [59]. A toolbox of algorithms, referred to as Level-Set
methods, was designed to numerically compute viscosity solutions of the HJ PDE [57],
[59]. The toolbox is MATLAB-based and publicly available [60], and has been used for
a variety of applications. Although accuracy of the results obtained through Level-Set
methods is high, the computational complexity of the algorithms limits their applicability
only to low-dimensional systems [59]. Specifically, the computational complexity of the
HIJ reachability problem is known to be exponential in relation to dimensionality, and is

intractable for systems of more than five dimensions [61].

Mitchell et al. [57] apply the HJ formulation to compute the reachable set for a two-
player differential game, representing an aircraft collision avoidance scenario. Oishi et
al. [62] use a reachability computation, through the HJ PDE framework, to synthesize a
controller that simultaneously satisfies state constraints, and stabilizes the system under input
saturation. They present results of their technique applied to two different scenarios. Ding
et al. [63] use HJ PDE reachability calculations to design switching conditions for a hybrid
system representing maneuvers of unmanned aerial vehicles under human supervision. In
overcoming the dimensional limitations of Level-Set methods, Stipanovic et al. [64] present
a method of decomposing the problem into computing reachable sets for a series of lower-
dimensional subspaces, providing over-approximations of subsystem level-set functions.
Another approach to alleviate the curse of dimensionality for reachability computations
is presented by Chen et al. [65], where the authors propose using decoupled dynamic
subsystems to compute conservative approximations of full reachable sets. Although these
methods of decomposing the system are innovative, the problem of 6-DOF spacecraft
rendezvous is difficult to decompose into subsystems of low dimensions, especially when

the chief spacecraft is tumbling.

Approximate Geometric Methods

More popular methods for computing reachable sets in literature involve approximating a
convex set by a geometric shape (i.e., ellipsoid, polytope), and propagating the set according
to the system dynamics. These approaches require set-based computations, which can be
computationally expensive depending on the geometry of the approximate sets [53], [66].
One of the drawbacks of these methods is that as the set grows at each iteration of the

algorithm, computations such as the Minkowski sum become more expensive. Additionally,
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depending on the geometry chosen to represent the sets, the Minkowski sum results in an
over-approximation at each step, and the propagation of those errors could cause a dramatic
over-approximation of the complete set (known as the wrapping effect) [67]. Girard et
al. [67] present an algorithm for computing reachable sets of Linear Time-Invariant (LTT)
systems based on zonotopes (centrally symmetric polytopes), which is not subject to the

wrapping effect.

An application to nonlinear systems is presented by Greenstreet and Mitchell [68], where a
reachability analysis tool (Coho) is developed for reachability computations using projection
of high-dimensional objects onto planes. Kurzhanskiy and Varaiya [69] present a technique
based on ellipsoidal approximation of convex sets, for discrete-time linear systems. The
main advantage of ellipsoidal approximations is lower computational complexity, compared
to polytopes. Makhouf et al. [66] present a comparison of reachability calculation meth-
ods using zonotopes, support functions, and invariant sets as approximations, applied to
LTI systems. Reachability analysis for LTI systems through polytopic approximation is
implemented in the MATLAB-based Multi-Parametric Toolbox (MPT), which is publicly
available [70].

Some blends of exact and approximate methods have also been presented in literature.
Varaiya [71] presents a method for computing reachable sets through an optimal control
formulation. The method involves approximating the true set using a set of support hyper-
planes, which provide an inner and outer approximation. The normal vectors of the support
hyperplanes are then used to initialize the costates. This results in a polytopic approxima-
tion of the reachable set. Hwang et al. [72] use polytopic approximations combined with
dynamic optimization to compute reachable sets for linear systems and a class of nonlinear

systems.

The reachability problem for spacecraft applications has been investigated but is limited to
translational reachability analysis. Holzinger and Scheeres [73] present a HJ PDE based
reachability analysis to study safety in spacecraft proximity operations. Duerietal. [74] usea
convex optimization technique to generate reachable sets through a simplex growth method,
applied to a spacecraft docking problem with a line-of-sight constraint. A similar method is
used by Eren et al. [75] applied to a precision planetary landing problem. HomChaudhuri
et al. [76] use a polytopic approximation method, combined with HJ theory to propagate
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only the usable faces of the polytope in order to compute reach-avoid sets for a spacecraft

docking scenario with a line-of-sight constraint.

3.1.2 Limitations and Challenges for Spacecraft Rendezvous with
Tumbling Object
The reachability problem posed in this dissertation is a challenging one due to the dimen-
sionality and nonlinearity of the roto-translational dynamics shown in (2.20). Application
of numerical methods, such as the Level-Set toolbox, is not possible due to the dimen-
sionality of the problem. Geometric methods, such as polytopic approximation via MPT,
pose limitations due to the nonlinearity of the dynamics. Visualization alone is a challenge,
assuming one could compute a set. However, a common denominator seen across much of
the relevant literature is the relationship between reachability and optimal control. In this
research, this relationship is examined and exploited in order to devise a method for the

reachability analysis of this complex dynamic system.

The relationship between reachability and optimal control is further explained in the next
subsection, followed by a discussion on the relationship between reachability and control-

lability concepts.

3.1.3 Relating Reachability and Optimal Control Concepts

Per Definition 3.2, reachability analysis shows that if a particular state, x 7, is reachable from
X0, then at least one admissible trajectory exists between the two states. In fact, it is likely
that multiple trajectories exist. It follows, then, that one of these trajectories minimizes a
particular performance index. In other words, an optimal trajectory must also exist. The
Minimum Time Optimal Control Problem (MT-OCP) is of particular importance. Assume

that the set of admissible controls, 9/, is an m-dimensional cube of semi-side u,,,,. For the
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control-affine system, X, the MT-OCP is formulated as,

minimize : J = /tf 1dt (3.11a)
subjectto :  X(?) :Of(x(t),t) + g(x(t), t)u(t) (3.11b)
ut) e U = |lu@®)llo < Umax (3.11¢)
x(0) = x¢ (3.11d)
x(tf) = xy. (3.11e)

Equation (3.11a) is the optimization performance index, minimizing the value of 7¢. Equa-
tion (3.11b) enforces the dynamic constraints, (3.11c) is the cubic control constraint, and

equations (3.11d) and (3.11e) enforce the initial and final states.

Using the classical variational approach [58], the system Hamiltonian is written as,
Hx, Au,t) =1+ AT @Of(x,0) + g(x, Du)], (3.12)

where A is the n-dimensional costate. Through Pontryagin’s minimum principle it is known

that an optimal control, u*(¢), will satisfy the following necessary conditions [58]:

x(t) = %%uﬁaimJ) (3.13a)

A@) = —%g@ifﬂtﬂ (3.13b)
H(*A%5u 1) < H&SA5u,t), Yu(t) e U (3.13¢)
0 = H("(ty), X(ty),u*(ty),t)0ts (3.13d)

The Hamiltonian minimization condition implies that,

L+ 2TOF D + g, Dut ()] < 1+ 2T@OLF (x5 1) + g(x*, Du(r)]
Tgx*, Du*(t) < 2T @0)g(x*, Dulr), (3.14)

which highlights that the optimal controls will be determined by the sign of the costate
vector [58].

32



Comparing the minimized function of the HJ reachability problem in (3.8) with the Hamil-
tonian in (3.12), it is clear that the costate solution of the MT-OCP is related to the reachable

set.

W £y + g u()] © ATOLf (6 1) + g (x, ()]
A(r) = 2o (3.15)

With this insight, it becomes evident that the reachable set is related to the existence of a

time optimal control solution.

Before trying to solve the MT-OCP formulated in (3.11), one could try to visualize the time
optimal solution through reachability notions, as shown in some optimal control textbooks
(e.g., [58], [77]). First, assume that the following conditions hold [77]:

* xy is reachable from x in finite time; otherwise, the problem is infeasible.
* Rr(T) is a closed and bounded set for any 7 > 0.

0<T) <T, <--- < Ty, for some finite k.

xo € int(Rg(T1)), i.e., the system is locally controllable.
» Forward reachable sets for increasing time values grow outward, such that Rr(T7) C
Re(T2) C - C Re(Ty).

As the reachable sets grow with increasing time, the desired state will eventually be included
in a set. As illustrated in Figure 3.2, the time optimal solution can be visualized as the
earliest time instant, 7", at which the reachable set includes x ¢ [58], [77]. More precisely,

one can assert that x » will lie on the boundary of Rr(T™),

x; € ORp(TY) (3.16)

Now, using the backward reachability notion (Definition 3.3), the time optimal solution can

be visualized in a similar fashion. Assume that the following conditions hold:

* xy is reachable from x( in finite time; otherwise, the problem is infeasible.
* Rp(T) is a closed and bounded set for any 7" > 0.
e 0<Ty <1 <---< Ty, for some finite k.

* xr €int(Rp(T1)), i.e., the system is locally controllable.
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Rr(T7)

Figure 3.2. Visualization of time optimal solution through notions of forward
reachable sets.

* Backward reachable sets for increasing time values grow outward, such that Rz (77) C
Rp(T2) C -+ € Rp(Th).

As illustrated in Figure 3.3, the time optimal solution can be visualized as the earliest time
instant, 7%, at which the backward reachable set includes xy. More precisely, one can assert
that x¢ will lie one the boundary of Rp(T™),

x0 € ORB(T™) (3.17)

With this insight in mind, the following remarks are offered.

Remark 3.1 The boundary of Rr(T) is made up of all final states that can be reached by

time optimal admissible trajectories in time T,

ORFp(T) = {xz| y=(0,T), x(0) = xo, T = minimum time to reach xr}. (3.18)
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Figure 3.3. Visualization of time optimal solution through notions of back-
ward reachable sets.

Remark 3.2 The boundary of Rp(T) is made up of all initial conditions from which time

optimal admissible trajectories reach the desired state in time T,

ORB(T) = {x0l y=(0,T), x(T) = x¢, T = minimum time to reach xs}. (3.19)

The concept in Remarks 3.1 and 3.2 is also referred to as a minimum isochrone [77], and

can be useful in cases where computing reachable sets may be difficult or impossible.

Singular Extremals in Minimum Time Optimal Control Problems

As previously discussed, the minimum time optimal controls shown in (3.11c¢) for a general
control-affine problem are dictated by the sign of the costate. Specifically, each con-
trol element u;(t), for i = 1,...,m, is determined by the sign of the switching function
A2T()gi(x*, 1), where g; is the i-th column of the control vector field. A singular extremal
exists if for a finite period of time, [z1, 2], the switching function is equal to zero (i.e.,
AT (t)gi(x*, 1) = 0) [58]. In these cases, the Hamiltonian minimization condition does not

provide any information about the optimal control value.

The existence of completely singular extremals for a control-affine system can be investigated
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by evaluating the following Lie bracket conditions [78]:

1. Ly,g; =0, fori,j=1,...,m,
2. {91,---+9m Lyg1,...,Lygn} are linearly independent,

dg
dx
to the problem of rendezvous with a tumbling chief, with dynamics shown in (2.21). Since

- g_f:g, The above conditions are applied

where the Lie brackets are computed by L rg =

the control vector field in this case is constant, the first condition is automatically met.
The second condition is evaluated by computing the appropriate Lie brackets through the
MATLAB Symbolic Toolbox, and computing the rank of the distribution.

Remark 3.3 The minimum time optimal control solution for the problem of rendezvous
with a tumbling chief does not exhibit any completely singular extremals (i.e., at least one

of the six control variables will be bang-bang), since,

Lyg; =0, fori,j=1,...,6, (3.20)
rank[gl, s Gms Lfgl, ey Lfgm] =12. (3.21)

3.1.4 Relating Reachability and Controllability Concepts

The research question posed in this research is a backward reachability question. In some
literature, backward reachable sets are referred to as controllable sets (e.g., [55], [74]),
highlighting a relationship between the concepts of reachability and controllability. Gen-
erally, the controllability property answers whether a control input can drive the state xg
to a specified location x; in finite time [54]. This question is similar to the reachability
question. It is clear that if the state x s is reachable (i.e., there exists an admissible trajectory
from x( to xr) then the system must be controllable at xo. The following definitions are
offered to show the connection between reachability and controllability, adapted from Bullo

and Lewis [54]. Consider, again, the general control-affine system X in (3.1).

Definition 3.4 The system X is accessible from xq if there exists T > 0 such that
int(Rp(1)) # 0 for v = (0, T].
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The concept of accessibility essentially means that from a particular initial condition x,
the system can move in more than a single direction. Thus, the forward reachable set for
some finite time (7) will have a nonempty interior. Accessibility, however, does not imply

controllability.

Definition 3.5 The system X is locally controllable from x is there exists T > 0 such that
xo € int(Rp(1)).

In contrast to the concept of accessibility, local controllability means that from an initial
condition xg the system can move in any direction. Clearly, local controllability also implies
accessibility. These notions are depicted in Figure 3.4. Since the value of 7 can be arbitrarily
small, a system meeting the local controllability condition is often referred to as a Small
Time Locally Controllable (STLC) system [54].

Finally, the strongest controllability notion is defined as follows.

Definition 3.6 The system X is controllable from x if, for every x € R", there exists T > 0
and ys(0,T) such that x(T) = x.

Definition 3.6 implies that if £ is controllable, then for any x( there must exist a time 7'
such that Rr(T) = R" [55] (i.e., the entire state space is reachable). For general nonlinear
systems, it may be quite difficult to establish this property. Traditionally, controllability
analysis of nonlinear systems is performed by examining the Lie structure of the vector fields
f and g. The controllability condition boils down to checking the linear independence of
the system’s Lie brackets [79],

rank{g, Lyg, L3g,...,L} 'g} = n. (3.22)

This condition essentially checks the directions in which the system is allowed to move,
thus establishing local controllability. For linear systems, in particular, since the vector
fields are constant, and not state or time dependent, the concepts of local controllability and
controllability coincide. In this case, (3.22) yields the well-known controllability matrix

rank condition for linear systems [54], [80].
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(a) Accessible but not controllable (b) Accessible and locally controllable

Figure 3.4. Depiction of controllability notions. Adapted from [54].

Controllability analysis can be a useful tool in analyzing how choice of actuators could affect
the dynamics [81], how disturbances affect orbital and attitude motion [31], or investigating
control of an underactuated system [82]. However, controllability analysis alone does not
completely answer the research question posed in Section 1.1. To answer this question, a

backward reachable set must be computed.

3.2 Proposed Methodology

The previous sections highlighted the important relationship between reachability and time
optimal control. In order to analyze the backward reachability for the problem of rendezvous
with a tumbling chief spacecraft, this relationship is exploited. Based on Remark 3.2, a
family of time optimal solutions can be used to visualize the boundary of the reachable
set. This family of MT-OCPs can be solved using existing techniques and tools, such
as the MATLAB-based General Purpose OPtimal control Software (GPOPS)-II software
package [83]. The GPOPS-II software can be used to solve a variety of optimal control
problems using a Gaussian quadrature collocation method coupled with a NLP solver; the

Interior Point OPTimizer (IPOPT) solver [84] is used in this research. Computing the
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solutions to these MT-OCPs on a user-defined subspace (e.g., vary relative positions while

holding other states constant), makes reachability analysis of this complex system tractable.
Backward reachability analysis is conducted in the following sequential steps.

1. Step 1: Generate a set of test points, xo, on the subspace of interest.

2. Step 2: Given x 7, maximum allowable time (7,4,), and control constraints, attempt
to solve the MT-OCP for each test point.

3. Step 3: Plot contours of minimum time to reach xy on the user-defined subspace.
Note that MATLAB built-in commands for plotting contours include interpolation

between grid points.

The proposed methodology provides an alternative to computing the full reachable set,
which is advantageous for the problem of rendezvous with a tumbling chief. Since the roto-
translational system (2.20) studied in this dissertation is comprised of at least 12 states, and
nonlinear, available reachability analysis tools are not applicable. Additionally, computation
and visualization of a 12-dimensional set is challenging, since maneuver times of interest for
this problem could be large. Although the proposed method is computationally intensive,
it provides a path to accomplish the research objectives. Although the concept of using
minimum time contours to visualize a reachable set has been mentioned in literature (e.g.,
see [85], or the isochrone concept in [77]), it has not been exploited for analysis of a complex

system as shown in this dissertation.

3.2.1 Validation of Proposed Method

The proposed method was validated by showing two example reachability computations:
one for a linear system and one for a nonlinear system. The backward reachable sets were
computed using available tools, as well as through the proposed method, and results are
compared. These examples were selected to be simple enough so that analytical solutions
to the MT-OCP could be found.
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Double Integrator Example
The first example is the double integrator. The system is comprised of two states (x; and

x2) and one control variable («), with the following dynamics.

fCl = X3, (3.23)
X = u. (3.24)

The control variable is bounded, —1 < u < 1, and the desired final state is the origin,
xr=[0, 0]”. The MT-OCP is formulated as follows:

minimize : J = /zf 1dt (3.25a)
subjectto : x| = )(c)z (3.25b)
X2 =u (3.25¢)
lul <1 (3.25d)
x(ty) = xy. (3.25¢)

The solution to the MT-OCP for the double integrator is well studied, as it is one of the few
optimal control problems that yields an analytical solution. The optimization problem in

3.25 can be solved as shown in [58]. First the Hamiltonian is written as,
H=1+ A1x; + A,u. (3.26)

Applying the necessary conditions shown in (3.13), the costate solution is derived,

. 0H
Ai=——=0 = A1=nqc, (327)
5)61
. 0H
Ab=———=A1==-cy = Ay =-cit+cy (3.28)
(9)62

where ¢ and ¢; are constants of integration. The Hamiltonian minimization is then used to
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derive the optimal control,
L+ A7x5+ Au" < 1+ 2A7x5+ A,
Asu” Asu,

u* —sign(43). (3.29)

IA

The optimal control solution in (3.29) reveals the well-known bang-bang structure, where
the control will always take its maximum value with only one switching point in this case
due to the linear nature of A, in equation (3.28). Integrating the dynamic equations with

the knowledge that u = +1 yields segments of the optimal trajectories,

Xp=+1 = xp ==+f+c3, (3.30)

1
Xi=Xxp=%xt+c3 — X| = iitz + c3t + ¢y, (3.31)

where c¢3 and ¢4 are constants of integration. Eliminating time from the above equations,
and evaluating at the origin (xs) yields the well-known switching curve for the double
integrator system,

X1 = —%lele. (3.32)
Backward reachable sets for this system were computed through a polytopic approximation
method using the MPT software [70]. A grid of 900 test points was created in the subspace
-2 < x1, x2 < 2x, and the corresponding MT-OCPs were solved through GPOPS-II [83].
For comparison, the backward T-reachable sets were plotted for T = 3, 5, 7,10, 13, 15
seconds. Figure 3.5 shows the resulting plots, with the MPT result on the left (Figure 3.5a),
and the minimum time contour visualization on the right (Figure 3.5b). The switching

curve shown in 3.32 is also plotted on these plots as a dotted line.
It is evident that the minimum time contours resemble the shape of the backward reachable

sets computed via MPT, thus representing an accurate approximation of the set boundaries.

Nonlinear System Example
For further validation, the proposed method is applied to a slightly more complicated

example. This example was created specifically for this validation and does not have a
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(a) MPT Backward Reachable Sets (b) Minimum Time Contours

Figure 3.5. Comparison of backward reachable sets computed via MPT to
proposed minimum time contour approach for the double integrator example.

physical meaning. The system is comprised of two states (x; and x;) and one control

variable (u), with the following dynamics.

X1 = sinxp, (3.33)
X = u. (3.34)

The control variable is bounded, —1 < u < 1, and the desired final state is the origin,

x¢ = [0, 0]". The MT-OCP is formulated as follows.

minimize : J = /[f 1dt (3.35a)
subjectto : x| = s?in X2 (3.35b)
X2=u (3.35¢)
lul <1 (3.35d)
x(ty) = xy (3.35¢)

This MT-OCP also yields an analytical solution. The system Hamiltonian is written as,

H =1+ A;sinxy + Aou. (3.36)
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The costate solution is derived by applying the necessary conditions in (3.13),

. o0H

Al =— = 0 = A1 = (3.37)
6x1

. 0H

Ay = ——— = —]11C08Xxy = —C] COS X7, (3.38)
0x>

where c; is a constant of integration. The Hamiltonian minimization is then used to derive

the optimal control,

* . * * ok k . * *
1+ Aysinx, + A,u” < 1+ A7sinx; + Asu,
Lut < A,

—sign(43). (3.39)

*

u

As with the double integrator example, the optimal control in this case will also be bang-
bang, but there is no certainty on the number of switches since A, is a nonlinear function

of the trajectory. Knowing that u = +1, the dynamics can be integrated as follows,

Xo==x1 = xp==f+ (3.40)
= Ay = Fcicos(xt+cp) +c3 3.41)
Xp =sinxy =sin(xt + ) = x; = Fcos(xt + ) + ¢4, (3.42)

with ¢7, 3, and ¢4 being constants of integration. Eliminating time from the above equations
and evaluating at x s yields the switching curve for this system,

x| = M(cos xo —1). (3.43)
X2

Backward reachable sets for this system were computed through the Level-Set toolbox [60].
A grid of 900 test points was created in the subspace —8 < x1, xo < 8, and the corresponding
MT-OCPs were solved through GPOPS-II [83]. For comparison, the backward 7T-reachable
sets were plotted for 7 = 3, 6, 9, 12, 15 seconds. Figure 3.6 shows the resulting plots, with
the Level-Set result on the left (Figure 3.6a), and the minimum time contour visualization
on the right (Figure 3.6b). The switching curve shown in (3.43) is also plotted on these
plots as a dotted line.
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(a) Level-Set Backward Reachable Sets (b) Minimum Time Contours

Figure 3.6. Comparison of backward reachable sets computed via Level-
Set methods to proposed minimum time contour approach for the nonlinear
system example.

As with the double integrator example, Figure 3.6 shows that the proposed method provides

an accurate approximation of the backward reachable sets.

3.2.2 Visualization of Relative Attitude Sets

Visualization of translational states is fairly intuitive. Attitude states are more challenging
due to the non-Euclidean nature of the rigid body orientation parameters. To the best of the
author’s knowledge, visualization of a reachable set of attitude has not been discussed in

literature. In this research, a method is proposed to visualize a set of attitudes using MRPs.

Recall that MRPs are a minimal representation of attitude, made up of three parameters,
o = [0y, 02, 03]7. As noted in Chapter 2 the magnitude of the MRP vector is bounded.
The MRP magnitude (or norm) is given by,

T 2 2 2 _ 2
o o=0]+0;,+035=Cc, (3.44)

where c is a variable representing the numerical result. Geometrically, (3.44) represents a

sphere of radius ¢ on the MRP subspace. The MRP vector definition in terms of a principal
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rotation in (2.11) reveals that the magnitude is only a function of the rotation angle, ¢,

oo = tan’ (%) . (3.45)
It follows that all MRP vectors representing relative attitudes of equal rotation angle will

have equal magnitudes.

Reachable relative attitudes can be visualized by using the MRP magnitude as a spherical
projection surface. Minimum time data, computed by scattered test points within the
subspace, can be projected onto the spherical surface for visualization. The spherical
projection surface represents orientations of equal angular displacement. A particular
point on this sphere represents the direction of the Euler axis, while the contour (or color)

represents the minimum time to reach the desired attitude from this point.

An example is used to illustrate this method. Begin with two relative attitudes represented
by principal rotations of ¢ = 90 degrees about the Euler axes, é; = [0,0,1]7, and é; =
[—1/v3, =1/v3, 1/v3]T. The corresponding MRPs are

0 —-0.2391
o= 0 |, 02=1-0.2391]. (3.46)
0.4142 0.2391

Note that both of these MRP vectors have equal magnitude, a'lTa'l = a'g oy = 0.4142.
Figure 3.7 illustrates the visualization of these two attitudes. The sphere represents the
90-degree angular displacement in this case. The two Euler axes are plotted to illustrate
their direction. The two red dots, on the surface of the sphere, are the two sets of MRPs

considered in this example.

3.2.3 Limitations of Proposed Method

As with any approximation, the proposed method exhibits some limitations that must be
highlighted. The minimum time contour method is dependent on the ability to compute a
minimum time solution. The majority of practical minimum time optimal control problems
do not have analytical solutions, and numerical methods must be utilized. There exists a

variety of numerical techniques that can be used; a comprehensive survey was published
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Figure 3.7. lllustration of visualization of attitudes on the MRP subspace;
red dots represent the two sets of MRPs considered in this example.

in [86]. The GPOPS-II software package was selected in this research due to its user-friendly
MATLAB interface, and applicability to a wide variety of problems.

All numerical methods, however, have some drawbacks. The solution will only be as
accurate as the solver’s tolerance. The GPOPS-II software has a number of user-defined
parameters that will affect the accuracy of the solution, and depending on the problem, the
solver may exhibit sensitivities to those parameters [83]. Aninvestigation into the sensitivity
of the GPOPS-II software to these parameters was outside the scope of this research. In
this research, the GPOPS-II parameters were selected based on trials for a limited number

of cases. The parameters used for specific scenarios will be specified where appropriate.

In addition to the solver parameters, the accuracy of the solution will also depend on the
density of the selected test points on the subspace of interest. Clearly, there is a trade-off
between number of test points and computational complexity. In this research, the number of
test points was selected to be high enough to sample the desired subspace, while attempting

to keep the amount of time required to run all cases to a reasonable limit.

An intensive computational effort is required to produce these results. The available
computing architecture may be a limiting factor in applying the proposed method. For

this research, the High Performance Computing (HPC) cluster, code named ‘“Hamming,” at
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NPS was used to run the desired simulations.

3.3 Summary

This chapter focused on the theoretical concepts used throughout this research. The notions
of reachability were formally defined and existing methods for solving reachability prob-
lems were discussed, while highlighting the challenges involved in solving the backward
reachability problem posed in this dissertation. Specifically, the backward reachability
problem answers the question of finding initial conditions from which the rendezvous
maneuver is feasible. The relationships between reachability, time optimal control, and
controllability were explained. By exploiting the relationship between reachability and
time optimal control, a methodology was proposed for performing reachability analysis
of complex dynamical systems and visualizing the sets through minimum time contours.
This method was validated using two sample problems. Finally, a technique was proposed
for visualizing backward reachable sets of relative attitudes using MRPs. The research
contributions offered in this chapter are shown in Table 3.1, mapped to the corresponding

research objective.

Table 3.1. Research contributions in Chapter 3.

Contribution Objective
Methodology for applied reachability analysis via minimum time contours 2
Method for visualization of reachable attitudes on the MRP subspace 2
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CHAPTER 4
Derivation and Reachability Analysis of Simplified

Relative Motion Models

In this chapter, the general problem of RPO around a tumbling chief spacecraft is simplified.
First, it is assumed that the chief spacecraft is in a circular orbit rotating on the orbit plane
(about its z body axis) at a constant rate, and relative distances are small in comparison to the
chief’s orbit radius. These assumptions are traditionally made in deriving the well-known
CW equations [2]. Secondly, it is assumed that the deputy is on the same orbit plane as the
chief. Backward reachable sets are computed using the resulting simplified models. The

results presented in this chapter were published in [49], [52].

4.1 Simplified Relative Motion Models

In Chapter 2, the relative roto-translational equations of motion were derived, using the
chief’s body frame as the frame of reference. The general 6-DOF model was shown in
(2.20). Recall the problem setup from Chapter 2 depicted again in Figure 4.1. To simplify

the roto-translational dynamics model, the following assumptions are made:

1. Chief is in a circular orbit with mean motion n = R%, and relative distances are
small compared to the chief’s orbit radius (||g]| << [|7]]).

2. Chief and deputy body CCSs are aligned with their respective principal axes. This
implies that J. and J; are diagonal matrices with the principal moments of inertia
(Jey,,.. and Jg

3. The chief and deputy spacecraft are spherically symmetric (J., = J., = J., and
de = de = sz).

4. The chief body CCS is initially aligned with the LVLH CCS.

5. The chief is rotating on the orbit plane, about its z body axis, at a constant rate (£2).

) on the diagonals.

X, Y,2

With the above assumptions, the chief’s orbital and attitude motion is known. The chief’s
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Figure 4.1. Depiction of general setup for the problem of rendezvous with a
tumbling object.

position vector (7,) is constant when resolved in the LVLH CCS (L) and is written as
rt=1o]. 4.1)
0

The chief’s position vector can be resolved in the chief’s body CCS (C) by
r¢ = Cop(nrt, (4.2)

where C¢/ is the DCM representing the chief’s attitude with respect to L. Since the chief’s
body CCS is initially aligned with L, and it is rotating about the z axis at a constant rate (£2),

cos(Qt) sin(Q) O
Ce/L(t) = |—sin(Qt) cos(Qr) Of. 4.3)
0 0 1
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The chief’s position vector resolved in C is therefore written as

R, cos(Q)
= [-R,sin(Q¢)| . “4.4)
0

C
re

The chief’s angular velocity includes a component due to the motion of the chief with

respect to L, and a component due to the orbital motion,
(,BC/| = CL_))C/L + (3|_/|. (4.5)

Since it is assumed that the chief is rotating at constant rate about its z body axis, and is in

a circular orbit the following equations hold:

0 0
wg, =|0|, and @}, = |0]. (4.6)
n

©)

The chief’s angular velocity, resolved in C, is then
_,.,C L
We = g, + CC/L(t)wL/l. “4.7)
Plugging in (4.3) into (4.7) yields the chief’s constant angular velocity,

W, = 0 4.8)
Q+n

It is simple to show that this angular velocity is constant by applying Euler’s equation,
0 = I (oI Jewe) = 05, (4.9)

since it is assumed that the chief’s body frame is aligned with its principal axes.

Defining the state components as p = [px, py» o7, v = [vy, Vy, v 1", 9 = [q1, ¢, 3, q4]”,
P = [w,, wy, wz]T, control components ¥y = [Fy, F, FZ]T, MB =[M,, My, MZ]T, and
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expanding (2.20a) - (2.20d), yields the simplified relative roto-translation model:

Px
Py
Pz

Uy

q1
9
q3

g4

Uy (4.10a)
vy (4.10b)
v (4.10¢)
R Qt

B /21,0x 2 . o +%COS(Qt)_ . C§08(2 : 27

[(Re + px)? + py + 31> R? [(Re + px)? + py + pz] 72

1

+—F +2(Q + n)v, + (Q +n)?p, (4.10d)

mgy

R, sin(Qr

B /;Py 2 22 iz sin() + £ ZSIH( 2 ) o3D)

[(Re + px)? + py + I R; [(Re + px)? + py + p7]7?

1

+—F, = 2(Q+n)v, + (Q +n)p, (4.10e)

my

HPz

- + — (4.10f)

[(Re + po)? + piy + p2I7 - ma
1
5(6]40);; - By + Qw;) (4.10g)
1
5 (Bwx + quwy — qwz) (4.10h)
1 .
5(—612a)x + qwy + qaw;) (4.101)
1 .
5(_611(1))6 — Wy — q3wz) (4.10j)

1
M+ Qe+l - 2(q1 + g)lwy, = 2(Q+ n) (g3 + 1ga)w,  (4.10K)

dy

1
My - (Q+ )1 - 2(g7 + g)]wx +2(Q+n)(q1g3 — ag1)w,  (4.101)

Y

1
J_Mz +2(Q+n)(@q3 + q1qa)wyx — 2(Q + n)(q193 — pga)w,.  (4.10m)

dy

Since the relative translational and relative rotational states are decoupled, the relative roto-

translation model can be decomposed into two subsystems that can be studied independently.

52



4.1.1 Relative Translational Subsystem

The relative translational dynamics are shown in equations (4.10a)-(4.10f). Let the trans-
lational state vector be defined as x7 = [px py, p; Ux Uy vZ]T € R®, and the translational
control vector as ur = [Fy F, FZ]T € R3. The translational subsystem can be written in

control affine form as
xr = fr(xr,t) + Grur, 4.11)

where fr € RO is the drift vector field from (4.10a)-(4.10f) and Gy € R® is

Gr = (4.12)

€
Wld3

03x3 ]

The subsystem in (4.11) can be further simplified by applying the assumption that relative
distances are small compared to the chief’s orbit radius. The system can be linearized about

the origin (x, = Ogx1), to yield the Linear Time-Varying (LTV) system

fCT = AT(t)xT + BTMT, (413)
where
0 0 0 1 0 0
0 0 0 0 1 0
o fr 0 0 0 0 0 1
Ar() = ——| =1, , 5
dxrl,  |3ncos(Qr) + Q* +2Qn 0 0 0 2Q+n) 0
0 Q2+20n 0 -2(Q+n) 0 0
0 0 —n? 0 0 0
and BT = GT.

Notably, the translational out-of-plane motion (p,, v;) is decoupled from the in-plane motion
as seen in traditional relative motion models. The out-of-plane motion is not affected by the
chief’s rotation, since the rotation is occurring on the orbit plane. As a sanity check, it can
be seen that when the chief is not rotating (i.e., Q = 0 degrees per second), (4.13) yields
the well-known CW LTI model [2].

53




Relative Rotational Subsystem

The relative rotational dynamics are shown in equations (4.10g)-(4.10m). Let the rotational
state vector be defined as xg = [q1 2 ¢3 g4 W, Wy, w;]T € R’, and the rotational control
vector as ug = [My M, MZ]T € R3. The rotational subsystem can be written in control

affine form as
Xr = fr(xR,t) + GRuRg, (4.14)

where fr € R is the drift vector field from (4.10g)-(4.10m) and Gg € R is

Ggr = 4.15
R s (4.15)

04><3]

Further simplification of the rotational subsystem is possible but would require restrictive
assumptions (e.g., small angular maneuvers, or negligence of orbital motion). In the
following section, a simplified system is presented for a close proximity planar scenario
where these assumptions would be appropriate. In general, however, these assumptions
would not be beneficial in reachability analysis since they would limit the operating region

of the system.

Simplified Dynamics for Planar Docking in Close Proximity to Rotating Chief
In simplifying the problem further, a close proximity planar maneuver is examined. In

addition to the previous assumptions, the following are assumed:

1. The chief and deputy are in close enough proximity, and maneuver times are short
enough, that the relative orbital motion is negligible.

2. The deputy remains on the chief’s orbit plane; reducing the translational motion to
2-DOF, and rotational motion to 1-DOF.

This scenario was previously examined by Ma et al. [ 17] from an optimal control perspective.
This scenario is depicted in Figure 4.2. The angles 6. and 8, define the attitude of the chief
and deputy spacecraft, respectively, with respect to the inertial CCS.

Since the chief is initially aligned with | and rotates about its z principal axis, it follows that

6.=0,60, =Q,and 6,.(¢t) = Qt. The deputy’s rotational motion is also a principal rotation
M.

about its z principal axis, therefore 6, = T The relative attitude is defined as 8, = 6, — 0.,
Z
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Figure 4.2. Depiction of planar spacecraft docking with chief rotating at a
constant rate.

and relative angular velocity w, = 6,. The relative rotational dynamics are then written in

double integrator form,

0, = w, (4.16)
M,

D = ——. 4.17

w 7 ( )

The relative dynamics of this system were derived in [17], in nonlinear control-affine
form. However, choosing the chief body CCS as the frame of reference results in an LTI
system [51], [52].

Defining the rotational state vector xz = [6, w,]' € R? and rotational control vector

ugr = Mz/j,, € R, the simplified rotational subsystem can be written as

in =1 aes [la (4.18)
o ol ™" 1| ™* '
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The translational system can be simplified by modifying (4.13) to ignore the out-of-plane
states (p;, v;), and by neglecting the orbital dynamics (n = 0). Defining the translational
state vector x7 = [px py Ux vy]T € R*, and translational control vector uy = [Fx/my Fu/maq]? €

R2, the simplified translational subsystem can be written as,

0 0 1 0 0

0 O 0 1 0

= o 0 0 20 xT + | ur. (4.19)
0

0 Q2 20 0

- o O O

The simplified dynamics for the planar docking scenario reduces the dimensionality of the
problem and offers decoupled LTI subsystems describing the rotational and translational
motions. This formulation is advantageous as it enables reachability computations via

polytopic approximation methods (e.g., MPT [70]).

4.2 Reachability Analysis: Planar Docking in Close Prox-
imity to Rotating Chief

The reachability analysis of the simplified planar docking scenario is presented in this

section. The dynamics of the rotational and translational subsystems were shown in (4.18)

and (4.19). Given control constraints of the form —u,,, < u; < U4, backward reachable

sets for the two subsystems were computed through a polytopic approximation method.

The MPT software [70] was used to perform the reachability computations of interest. MPT
is an open source, MATLAB-based, toolbox that enables reachability computations for
LTI systems through polytopic approximation methods. Following the example scenario
presented in [17], the desired state (docking), was defined as x7 = [1, 0, O, 017, and
xg = [0, 0]7. The parameters of interest in this case were the chief’s rotation rate (Q), the

control bounds (1, ), and allotted time (7).

Backward reachable sets were computed for Q = 0, 5, 10, 15, and 20 deg/sec, uyqx =
1, 0.7, 0.5, and 0.1, and T = 5, 10, 15, and 20 sec. The control bounds, u,,,, represent
different levels of force-to-mass (translational acceleration in units sﬂz) and torque-to-inertia

(angular acceleration in units 51—2) ratios.
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Figure 4.3 shows the backward reachable set for the rotational states. It can be seen clearly
that the size of the reachabe set increases proportionally to the spacecraft’s torque-to-inertia

level. Additionally, as the allotted time is increased the size of the reachable set increases

significantly.
T = 5 sec
61 :
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Figure 4.3. Backward reachable sets of rotational subsystem for simplified
planar docking scenario.

In order to visualize the 4-dimensional translational sets, slices of the sets were plotted
along the position variables at specific velocity values, and vice versa. The rows of Figures
4.4-4.7 show the slices of the backward reachable sets at different chief rotation rates, while
the columns show different values of final time. When the chief is not rotating (Q2 = 0),
the translational dynamics have a double-integrator form. Non-zero rotation rates, however,

induce more complex behavior.

It can be clearly seen in Figures 4.4 and 4.5 that the translational backward reachable set
decreases in size as the chief rotation rate is increased, and alloted time is decreased. As

with the rotational sets, the size of the translational sets also increase proportionally to
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Figure 4.4. Slices of backward reachable sets of translational subsystem at
vo = [0,0] m/s.

the spacecraft’s force-to-mass ratio. From the second plot in the top row of Figure 4.5,
it is evident that when u,,,, = 0.1, and with initial relative velocity [1, 1] m/s, the set
vanishes (i.e, the spacecraft does not have enough control authority to complete the docking
maneuver). Examining the other plots in the second column of Figure 4.5 shows that the
set corresponding to u,,,x = 0.1 becomes non-empty for faster chief rotation rates, which
is somewhat unintuitive. In this case, the higher rotation rate serves to place the chief in a
position where the deputy is able to reach it within the alloted time. Likewise, increasing

the value of the final time can make the maneuver feasible with u,,,, = 0.1.
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Figure 4.5. Slices of backward reachable sets of translational subsystem at
vo =[1,1] m/s.

Figures 4.6 and 4.7 show some additional characteristics of the considered maneuver.
Particularly, it can be seen that when the deputy is further away from the origin, and the
chief’s rotation rate increases, a higher initial velocity is required to successfully dock with
the rotating chief. For example, the sets depicted in the bottom right hand plot of Figure 4.7
are shifted in comparison to the same plot in Figure 4.6. It is also evident in Figure 4.7
that as the allotted time is decreased, lower values of u,,,, make the maneuver infeasible
when the initial position is [10, 10] m. The first column of the figure shows that the only

non-empty sets correspond to u,,,, = 1, and all other sets are empty. Conditions improve
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Figure 4.6. Slices of backward reachable sets of translational subsystem at
oo = [2,2] m.

as the alloted time is increased, with the last column of the figure (7 = 20 seconds) showing

non-empty sets for all cases.

The insight gained through reachability analysis is valuable, even for the simplified example
of planar docking. The results showed that as the chief’s rotation rate increases and control
authority decreases, docking becomes more difficult, if not infeasible. It was also shown

that, in some cases, a higher rotation rate may help achieve a feasible condition.
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Figure 4.7. Slices of backward reachable sets of translational subsystem at
00 = [10,10] m.

4.3 Reachability Analysis: 6-DOF Rendezvous with Ro-
tating Chief

After studying the reachability characteristics of the simplified planar docking problem, the
more complicated scenario of a 6-DOF rendezvous with a chief in circular orbit, rotating on
the orbit plane, is considered. The chief and deputy are defined as one meter homogeneous
cubes (i.e., dimensions of 1 X 1 X 1 m), resulting in spherically symmetric inertia properties.

The polytopic approximation method that was previously used is not tractable in this case
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due to the dimensionality of the problem and complexity of the dynamics. The minimum
time contour approach, described in Section 3.2, is used to analyze the backward reachability
characteristics of this scenario. The parameters of the scenario studied during this phase of
research are shown in Table 4.1. For the purpose of this analysis, a failure is defined as a
simulation in which the GPOPS-II solver did not converge to a solution within the desired

tolerance.

Table 4.1. Scenario parameters for 6-DOF rendezvous with chief in circular
orbit, rotating on the orbit plane at a constant rate.

Chief Orbit Altitude (km) 400
Chief Mass (kg) 100
Deputy Mass (kg) 100
Chief Inertia (kg-m?) diag(16.67, 16.67, 16.67)
Deputy Inertia (kg-m?) diag(16.67, 16.67, 16.67)
Finax (N) 1
Myax (N-m) 1
Tax (5) 1000
Desired final condition pr=110,0" m
v; =10,0,01" m/s
qr =10,0,0,11", or o4 = [0,0,0]"
wy = [0,0, 01" rad/s

4.3.1 Analytical Limit of Chief Rotation Rate for Maintaining Ren-
dezvous
Consider the simplified problem of rendezvous with a chief in circular orbit, rotating on the
orbit plane at a constant rate, with simplified dynamics given in (4.10). It is clear that the
rendezvous condition p = [1,0,0]7, v = [0,0,0]7, ¢ = [0,0,0, 1]” (or o = [0,0,0]7), and
D = 10,0,0]7, is not an equilibrium of this dynamic system. Applying (2.25), it can be
seen that

“mg (e + 2 cos(@) - “ fm cos(Q) + (Q +n) )

my (R_§ sin(Qr) — (R +1)3 sm(Qt)) ) (4.20)
0

03><1

Ug =
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Looking at the individual control components in (4.20), it is clear that the first component
will dominate. In the second component, the two terms including sin(€2¢) are almost equal,
and that term will be very close to zero. In the first component, likewise, the cos(€2¢) terms
will be about equal and the first fractional term will be very small (on the order of 107°),

leaving the dominant term (€2 + n)z. Therefore, it follows that
et loo ~ ma(Q + n)? (4.21)

Given a maximum available control input (u,,,,), the chief rotation rates for which the

rendezvous condition can be maintained is then upper-bounded by

Q< [Hmex 4.22)
mgq

Applying (4.22) to the scenario in Table 4.1, it can be seen that the highest chief rotation

rate that can be maintained is about 5.67 degrees per second.

4.3.2 Analysis of Translational Backward Reachability

The translational subsystem is the 6-dimensional system shown in (4.13). The GPOPS-II
parameters used for this scenario are shown in Table 4.2. In addition to computing the
minimum time to achieve the desired relative state, the control effort required was also

computed by
Iy
ce :/ [lurll dt. (4.23)
0

Table 4.2. GPOPS-II parameters used to solve the MT-OCP for the trans-
lational subsystem.

Parameter Value
Mesh tolerance le-6
Max mesh refinements 10
Min collocation points 4
Max collocation points 10
Max NLP iterations 2000
Initial Guess Endpoints (zero control)

63



Analysis of Out-of-Plane Subspace

Since the out-of-plane motion (p,, v;) is decoupled, it was analyzed independently from
the planar motion. The two-dimensional out-of-plane motion is time-invariant and not
dependent on the chief’s rotation rate. A set of 1,000 test initial conditions was created
in the following subspace: —100 m < p, < 100 m, and -1 m/s < v, < 1 m/s. The
control constraint on this subspace was —1 < F; < 1. The MT-OCP was attempted from
each of the conditions. Of the 1, 000 test cases, 6.1% failed to solve to within the desired
tolerance. The resulting minimum time contours are shown in Figure 4.8. The approximate
shape of the backward reachable sets becomes apparent, and it can be seen that the sets

grow proportionally with time.

Figure 4.8. Out-of-plane slice of backward T-reachable set for chief pla-
nar rotation; color bar indicates minimum time values corresponding to the
contours.

Figure 4.9 shows the correlation between the minimum time and control effort for the 1, 000
test cases. The plots on the diagonal show histograms of the minimum times and control
effort, respectively. The off-diagonal plots show the two data sets plotted with respect to

each other. From the histogram of minimum times, it is clear that the majority of the cases
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completed the maneuver in 120 to 140 seconds, with the maximum time being around 340
seconds in this sample. The control effort histogram shows a very similar trend. The linear
relationship between minimum time and control effort is expected since this is a bang-bang
maneuver with one control variable (F;). This expectation is depicted by the black line
shown on the off-diagonal plots. The data follows the linear trend exactly in this case.

Figure 4.9. Minimum time and control effort histograms and correlation for
out-of-plane subspace.

Three cases were selected in order to show a sampling of these minimum time trajectories.
The first case was selected from the middle of the distribution (i.e., the largest bin in the
minimum time histogram), the second one was selected from the low end of the distribution,
and the third from the high end. For these samples, the optimal solution from GPOPS-II
was applied to the out-of-plane dynamics independently, to serve as a validation of the

optimal solution. Results from the three cases are shown in Figure 4.10. The circles on the
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plots indicate the solution provided by GPOPS-II, while the lines indicate the integrated
state trajectory after applying the optimal control. The first two cases (Figure 4.10a and
4.10b) seem accurate, however, the third case (Figure 4.10a) shows a deviation between the
GPOPS-II and integrated trajectories toward the end of the maneuver. This is an indication
that a higher tolerance, or larger number of collocation points, is needed to get a more

accurate result.
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(c) Sample case # 3

Figure 4.10. Sample out-of-plane minimum time maneuvers.
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Analysis of Planar Position Subspace

The four-dimensional planar motion poses a dimensionality problem for visualization. In
this case, subspaces were created representing slices of the four-dimensional sets. The first
subspace investigated reachability from different initial relative positions, at specific initial
relative velocities. Two slices were created in this subspace. The first slice was defined
by 2,500 test initial conditions in the following subspace: =100 m < (p,, p,) < 100 m,
at v = [0,0]7. Recall that the relative velocity is resolved in the chief’s rotating body
frame; as such, zero relative velocity imposes an initial inertial velocity on the deputy due
to the chief’s orbital and rotating motion. The control constraint on this subspace was
-1 < (Fy, Fy) < 1. The MT-OCP was attempted for each test point with chief rotation
rates of Q = 0, 2, 4,and 6 degrees per second (total of 10,000 runs). Figure 4.11 shows
the resulting minimum time contours. The contours increase proportionally with time and
shrink as the target’s rotation rate increases. As the chief’s rotation rate is increased, the
maneuver becomes more difficult. The percentage of failed cases is reported in Table 4.3.
When the chief is not rotating, backward T-reachable sets have a rectangular shape as shown
in Figure 4.11a. This is expected since the force constraint is cubic. As the chief’s rotation
rate is increased, the sets take an oval shape as shown in Figure 4.11b-Figure 4.11d. On this
subspace, when the chief rotation rate is 2 deg/s, the minimum time to reach the desired
rendezvous point from the edge of the subspace approaches the maximum 1, 000 seconds.
At the higher rotation rates of 4 and 6 deg/s, the rendezvous point becomes unreachable
from the edges of the subspace, in the alloted amount of time. Figure 4.12 shows a scatter
plot of the test points and the corresponding minimum time solution. The minimum time
contours plotted in Figure 4.11 were derived from this set of data and the resemblance is
clear. The uncolored circles in these scatter plots indicate that the solver did not converge
to a solution from that particular test point. In Figure 4.12b a small number of uncolored
circles is visible (0.68% as reported in Table 4.3). These cases failed to converge due to the
sensitivity of the solver, but are likely within the reachable set since the surrounding test
points solved successfully. In Figure 4.12¢ a larger number of failures is seen (79.2% as
reported in Table 4.3). These failed cases, especially toward the edges of the subspace, are

truly not reachable within the allotted time.

Figure 4.13 shows the correlation between minimum time and control effort for the 2,500

cases, for each scenario. The histograms on the diagonals of each subfigure show the range
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(a) Q=0deg/s (b) Q=2 deg/s

(c) Q=4 deg/s (d) Q=6 deg/s

Figure 4.11. Translational backward T-reachable set slices at zero initial
relative velocity at different chief rotation rates; color bar indicates minimum
time values corresponding to the contours.

of minimum times and control effort from the sampled data, while the off-diagonals show
the correlation between minimum time and control effort. For the case of Q = 6 deg/s,
the amount of data available is very limited since less than 2% of the cases were solved
successfully. The linear correlation between minimum time and control effort, apparent
in all of the four subfigures, is an indication that for these minimum time maneuvers both
control variables (F, and F,) are bang-bang. The black lines plotted on the off-diagonal
plots represent the expected linear relationship, assuming both control variables will exhi