
 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

A BLOCKCHAIN TESTBED FOR DoD APPLICATIONS 

by 

Markus R. Shaw 

September 2018 

Thesis Advisor: Cynthia E. Irvine 
Second Reader: Gurminder Singh 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
A BLOCKCHAIN TESTBED FOR DoD APPLICATIONS

5. FUNDING NUMBERS

6. AUTHOR(S) Markus R. Shaw

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School 
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT 
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES) 
N/A

10. SPONSORING /
MONITORING AGENCY 
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
 Although initially introduced to support the Bitcoin cryptocurrency, many blockchain technology 
applications have been envisioned. As a result, blockchain platforms have been created and others are under 
development. The Department of Defense (DoD) needs blockchain platform testbeds so that applications 
beyond cryptocurrency can be explored. To solve this problem, we decided to construct a small blockchain 
testbed. We developed criteria to aid in selecting a blockchain platform for use in a testbed. Then, we 
evaluated a set of blockchain platforms against our criteria, selected the highest-ranking platform, and used 
it to create the testbed. We installed and exercised applications provided by the platform’s developers to test 
its behavior. Study of the services provided by the platform allowed us to propose the design of an 
application that could be tailored for DoD use. The selected blockchain platform, Hyperledger Fabric, was 
hosted in lightweight virtual machines called Docker containers and can be used for design and 
experimentation on applications and blockchain networks. This lowered the effort and resources required to 
configure and set up blockchain networks. Hyperledger Fabric is an example of a blockchain platform that 
can support more use cases beyond cryptocurrency. 

14. SUBJECT TERMS
blockchain, blockchain network, test bed, virtual machine, Docker, blockchain selection 
criteria, Hyperledger Fabric

15. NUMBER OF
PAGES 

111
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF 
REPORT 
Unclassified

18. SECURITY
CLASSIFICATION OF THIS 
PAGE 
Unclassified

19. SECURITY
CLASSIFICATION OF 
ABSTRACT 
Unclassified

20. LIMITATION OF
ABSTRACT 

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

A BLOCKCHAIN TESTBED FOR DOD APPLICATIONS 

Markus R. Shaw 
Civilian, Scholarship for Service 

BS, California State University: Monterey Bay, 2016 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

from the 

NAVAL POSTGRADUATE SCHOOL 
September 2018 

Approved by: Cynthia E. Irvine 
 Advisor 

 Gurminder Singh 
 Second Reader 

 Peter J. Denning 
 Chair, Department of Computer Science 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 Although initially introduced to support the Bitcoin cryptocurrency, many 

blockchain technology applications have been envisioned. As a result, blockchain 

platforms have been created and others are under development. The Department of 

Defense (DoD) needs blockchain platform testbeds so that applications beyond 

cryptocurrency can be explored. To solve this problem, we decided to construct a small 

blockchain testbed. We developed criteria to aid in selecting a blockchain platform for 

use in a testbed. Then, we evaluated a set of blockchain platforms against our criteria, 

selected the highest-ranking platform, and used it to create the testbed. We installed and 

exercised applications provided by the platform’s developers to test its behavior. Study of 

the services provided by the platform allowed us to propose the design of an application 

that could be tailored for DoD use. The selected blockchain platform, Hyperledger 

Fabric, was hosted in lightweight virtual machines called Docker containers and can be 

used for design and experimentation on applications and blockchain networks. This 

lowered the effort and resources required to configure and set up blockchain networks. 

Hyperledger Fabric is an example of a blockchain platform that can support more use 

cases beyond cryptocurrency. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 

II. BACKGROUND ....................................................................................................3 
A. BLOCKCHAIN OVERVIEW ..................................................................3 

1. Decentralized Applications in General ........................................3 
2. Distributed Applications in the Context of Decentralized 

Applications ....................................................................................4 
3. The Genesis Block ..........................................................................4 
4. Consensus Mechanisms .................................................................4 

B. FORKING ..................................................................................................7 
C. SMART CONTRACTS .............................................................................9 
D. TYPES OF BLOCKCHAIN ...................................................................10 
E. HISTORY OF THE COMPONENTS IN A BLOCKCHAIN .............10 
F. HOW HAS BLOCKCHAIN TECHNOLOGY BEEN USED? ............11 

1. Cryptocurrency ............................................................................11 
2. Financial Transactions ................................................................11 

G. HOW COULD BLOCKCHAIN TECHNOLOGY BE USED? ...........11 
H. POWER CONSUMPTION OF BLOCKCHAIN ..................................11 

1. Hashing Explained .......................................................................12 
2. Power Usage in Bitcoin Mining ..................................................12 

I. SUMMARY ..............................................................................................13 

III. SELECTION CRITERIA ...................................................................................15 
A. TECHNICAL SUPPORT AND TUTORIALS .....................................15 
B. LEVEL OF PLATFORM SUPPORT ....................................................16 
C. PROPRIETARY OR FREE AND OPEN PLATFORM ......................16 
D. PLATFORM LICENSING .....................................................................17 
E. DATABASE CAPABILITY ....................................................................17 
F. OPERATIONAL MODES: PRIVATE OR PUBLIC AND 

PERMISSIONED OR NON-PERMISSIONED....................................18 
G. OPERATING SYSTEM OR SOFTWARE PLATFORM 

ENVIRONMENT .....................................................................................19 
H. SUPPORTED APPLICATION LANGUAGES ....................................19 
I. PLATFORM IMPLEMENTATION LANGUAGE .............................20 
J. DOCUMENTATION FOR CODE .........................................................21 
K. DOCUMENTATION FOR ADMINISTRATION OR 

MAINTENANCE .....................................................................................21 



viii 

L. PLATFORM MATURITY .....................................................................22 
M. COMMUNITY ACTIVITY LEVEL......................................................22 
N. SAMPLE APPLICATIONS ....................................................................23 
O. CONSENSUS ALGORITHM .................................................................24 
P. MINIMUM IMPLEMENTATION NETWORK SIZE ........................24 
Q. SUMMARY ..............................................................................................25 

IV. BLOCKCHAIN PLATFORM SELECTION....................................................27 
A. THE SELECTED BLOCKCHAIN PLATFORM: 

HYPERLEDGER FABRIC ....................................................................32 
B. PLATFORM RANKING ........................................................................33 
C. REJECTED PLATFORMS ....................................................................33 

1. Ethereum, Counterparty, Monax, and Expanse .......................34 
2. Waves ............................................................................................34 
3. NXT ...............................................................................................35 
4. Multichain .....................................................................................35 
5. Stratis ............................................................................................35 
6. Decent ............................................................................................35 
7. Factom ...........................................................................................36 
8. HydraChain ..................................................................................36 

D. SUMMARY ..............................................................................................36 

V. THE HYPERLEDGER FABRIC SOFTWARE ENVIRONMENT AND 
ARCHITECTURE ...............................................................................................37 
A. COMPONENTS OF THE HYPERLEDGER NETWORK .................37 

1. Docker ...........................................................................................37 
2. Docker Compose ..........................................................................38 
3. CouchDB .......................................................................................38 
4. Golang ...........................................................................................38 
5. Node.js ...........................................................................................39 
6. Chaincode .....................................................................................39 

B. ROLES OF ENTITIES IN THE NETWORK ......................................40 
1. Clients............................................................................................41 
2. Peers and Anchor Peers...............................................................42 
3. Membership and Organizations .................................................43 
4. Channels........................................................................................43 
5. Ordering Nodes and Ordering Service ......................................44 

C. CONSENSUS IN THE HYPERLEDGER FABRIC 
PLATFORM .............................................................................................44 

 



ix 

D. HYPERLEDGER FABRIC UTILITIES ...............................................48 
1. Cryptogen .....................................................................................48 
2. Configtxgen ...................................................................................48 
3. Peer ................................................................................................49 
4. Fabric-CA-Client and Fabric-CA-Server ..................................49 
5. Use of YAML in Configuration Files .........................................49 

E. SUMMARY ..............................................................................................50 

VI. APPLICATIONS OF HYPERLEDGER FABRIC...........................................51 
A. SAMPLE APPLICATIONS ....................................................................51 

1. Overview .......................................................................................51 
2. First Network ...............................................................................51 
3. Basic Network...............................................................................53 
4. Balance Transfer ..........................................................................53 
5. High Throughput .........................................................................56 
6. Fabric-Ca ......................................................................................57 
7. Fabcar ...........................................................................................59 

B. CHANNEL BRANCHING AND MERGING .......................................60 
1. Concept .........................................................................................61 
2. Necessary Components ................................................................62 
3. Combining the Components .......................................................63 

C. SUMMARY ..............................................................................................65 

VII. FUTURE WORK AND CONCLUSIONS .........................................................67 
A. FUTURE WORK .....................................................................................67 

1. Future Application Development ...............................................67 
2. Other Use for Hyperledger Fabric .............................................68 

B. CONCLUSIONS ......................................................................................68 

APPENDIX A.  BUILD ENVIRONMENT SETUP......................................................71 
A. VIRUALIZING THE ENVIRONMENT ...............................................71 
B. INSTALL GIT ..........................................................................................71 
C. INSTALL PREREQUISITES OF HYPERLEDGER FABRIC ..........71 

1. Required Software .......................................................................71 
2. Installing Required Software ......................................................72 

D. HYPERLEDGER FABRIC BINARIES AND SAMPLES ..................74 
1. Binaries .........................................................................................74 
2. Samples .........................................................................................75 

E. TESTING THE SYSTEM IS INSTALLATION ..................................76 



x 

APPENDIX B.  DOCKER AND DOCKER COMPOSE SETUP ...............................77 
A. DOCKER INSTALLATION INSTRUCTIONS ...................................77 
B. DOCKER COMPOSE INSTALLATION INSTRUCTIONS ..............79 

LIST OF REFERENCES ................................................................................................81 

INITIAL DISTRIBUTION LIST ...................................................................................91 

  



xi 

LIST OF FIGURES  

Figure 1. History represented as a line. Source: [13]. .................................................7 

Figure 2. A DAG representation of version tracking. Source: [13]. ...........................8 

Figure 3. The test bed software stack ........................................................................41 

Figure 4. Entities in HLF represented as Docker containers .....................................42 

Figure 5. A client initiates a transaction for two peers. Source: [77]. .......................45 

Figure 6. Client application collecting signed proposal. Source: [77]. .....................45 

Figure 7. Signatures are inspected. Source: [77]. ......................................................46 

Figure 8. Transaction data sent to ordering service for each channel. Source: 
[77]. ............................................................................................................46 

Figure 9. Ordering service delivers transaction blocks to peers. Source: [77]. .........47 

Figure 10. Peers append blocks to their copy of the ledger. Source: [77]. ..................47 

Figure 11. A YAML configuration file for cryptogen. Source: [75]. .........................50 

Figure 12. Command to register new users to organization. Source: [89]. .................54 

Figure 13. Command to create a channel. Source: [89]. .............................................55 

Figure 14. Command to install chaincode. Source: [89]. ............................................55 

Figure 15. Attribute abac.init is defined for certification. Source: [93]. .....................58 

Figure 16. Golang code to assert access to chaincode. Source: [94]. ..........................58 

Figure 17. Fabcar ledger update request. Source: [96]. .............................................60 

Figure 18. Channel merging notional diagram ............................................................62 

Figure 19. Instructions for extracting Golang files. Source: [108]. ............................73 

Figure 20. Directions for adding Golang binary directory to PATH variable. 
Source: [108]. .............................................................................................73 

Figure 21. Format of the environment variable in /etc/environment file .......73 

Figure 22. The path variable modified in the /etc/environment file ................74 



xii 

Figure 23. Dropdown menu on GitHub repository. Source: [111]. ............................75 

Figure 24. Git clone command for fabric-samples repository .....................................76 

Figure 25. Snippet of directory listing from fabric-samples directory ........................76 

Figure 26. Part 1—Setting up the repository. Source: [105]. ......................................77 

Figure 27. Part 2—Installing required software. Source: [105]. .................................78 

Figure 28. Part 3—Download Docker’s GPG key. Source: [105]. .............................78 

Figure 29. Part 3b—Verify key. Source: [105]. ..........................................................78 

Figure 30. Part 4a—Repository update instructions. Source: [105]............................78 

Figure 31. Part 4b—Linux command to setup stable repository. Source: [105]. ........79 

Figure 32. Part 5—Update command. Source: [105]. .................................................79 

Figure 33. Part 6—Docker installation command. Source: [105]. ..............................79 

Figure 34. Prerequisites for Docker Compose installation. Source: [106]. .................80 

Figure 35. Part 1a—Docker Compose download command using curl. Source: 
[106]. ..........................................................................................................80 

Figure 36. Part 1b—Notice on Docker Compose version number. Source: [106]. .....80 

Figure 37. Part 2—Changing permissions for Docker Compose binary. Source: 
[106]. ..........................................................................................................80 



xiii 

LIST OF TABLES 

Table 1. Selection matrix results ..............................................................................29 

Table 2. Continuation of selection matrix ................................................................30 

Table 3. Additional platform information and factors .............................................31 

Table 4. Continuation of additional information and factors ...................................31 

Table 5. Platforms ranked by score ..........................................................................33 

  



xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xv 

LIST OF ACRONYMS AND ABBREVIATIONS 

ABAC attribute-based access control 

API application programming interface 

BP blockchain platform 

CA  certificate authority 

CSS cascading style sheets 

DAG directed acyclic graph 

DoD Department of Defense 

FAQ frequently asked questions 

GNU GNU’s not Unix 

GPL general public license 

HLF Hyperledger Fabric 

HTTP hypertext transfer protocol 

JSON JavaScript object notation 

MIT Massachusetts Institute of Technology 

MSP membership service provider 

OS operating system 

PBFT practical Byzantine fault tolerance 

PKI public key infrastructure 

PoS proof of stake 

PoW proof of work 

SDK software development kit 

TIOBE the importance of being honest 

URL uniform resource locator 

YAML YAML ain’t markup language 

  



xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xvii 

ACKNOWLEDGMENTS 

I would like to thank my advisor, Dr. Cynthia Irvine, and my second reader, 

Dr. Gurminder Singh, for helping me through the process of writing my first academic 

thesis. I also want to thank LCDR Scott Tollefson for being someone who I could bounce 

ideas off and talk to about technical aspects of Hyperledger Fabric. 

I also thank the friends I have made at NPS, both Scholarship for Service students 

and active duty military students, who helped me feel welcome during my time here. I 

thank my parents, David and Gloria Shaw, for always believing in me and encouraging me 

to follow my dreams and aspirations. I am grateful and lucky to have a loving family that 

supports my academic and professional career aspirations. Last, but not least, I would like 

to thank Naval Support Activity Monterey Police Officer Eddie Macias for his 

professionalism, positive attitude, and daily smile. 



xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 



1 

I. INTRODUCTION 

Following the introduction of Bitcoin in 2008 [1], there has been considerable 

interest in using the blockchain technology underlying Bitcoin for other purposes. Many 

blockchain platforms now exist, and others are being developed. Cryptocurrency or token 

based transactional systems are the main use cases for blockchain platforms. The 

technology presents potential in the area of distributed application platforms. This study 

seeks to explore a small portion of that potential with a blockchain platform that is 

sufficiently versatile to allow a variety of use cases. The United States government and 

military could use applications that incorporate blockchain technologies in the future. 

Cryptocurrency and token-based applications are not likely to be pursued by this sector. It 

is important to research blockchain platforms (BPs) so that applications beyond 

cryptocurrency can be explored for use in the government and military. Testbeds for 

experimenting with blockchain technology are needed. 

This study defined criteria to evaluate blockchain platforms (BPs), then surveyed 

multiple BPs. One BP, Hyperledger Fabric (HLF) was selected and applications were 

tested. An application design using existing HLF platform behavior was proposed and 

discussed. The programmable nature of HLF smart contracts is an important feature that 

provides freedom to develop custom application solutions with this BP. 

First, in Chapter II, we give background on blockchain platforms including key 

components, history of academic development, the power usage concerns for certain 

blockchain technologies, and sample use cases. Next in Chapter III, we define selection 

criteria and metrics that we will use to choose a BP for our testbed. After that, in 

Chapter IV, we evaluate a group of blockchain platforms using the selection criteria and 

metric system to measure their level of appropriateness for the testbed. Some of these 

metrics are subjective in nature, but they aid in selecting a blockchain platform that can 

support a diverse set of use cases instead of just cryptocurrency or token exchange. The 

selection process will be discussed, providing discussion of Hyperledger Fabric (HLF), the 

selected platform, and the runner up platforms. A matrix of the selection criteria 

showing how the candidate blockchain platforms were ranked is provided in Chapter IV. 



2 

In Chapter V, Hyperledger Fabric’s architecture including the utilities that 

operators use to manage and develop applications for the platform will be discussed. In 

Chapter VI, sample applications of HLF provided by its developers will be discussed. The 

capabilities of and behavior covered by these sample applications will be the focus of the 

discussion. Also in Chapter VI, we will propose a design for an application that uses the 

capabilities provided by the HLF platform and could be useful in the context of short-term, 

limited operation. While the application is not implemented as part of this work, a 

discussion of future work and aspects of the design that can lead to a working 

implementation will be provided in Chapter VII. Also, Chapter VII will contain the lessons 

learned from reviewing different blockchain platforms and investigating the HLF platform. 

This chapter gave a brief outline of what this study will attempt to accomplish and 

gives a preview of the subsequent chapters. The next chapter will provide background on 

the components of blockchain technology, the academic history of those components, 

energy consumption concerns associated with blockchain technology, and recent use cases 

of blockchain technology. 

  



3 

II. BACKGROUND 

A. BLOCKCHAIN OVERVIEW 

Blockchain is the foundational technology for crypto currency applications. The 

data structure is, in effect, a ledger that contains data about information in use in an 

application or system [2]. A blockchain is an application that executes on machines that 

could be different platforms but are still compatible with the same application rules and 

protocols. Blockchain applications could be considered a platform themselves and will be 

referred to as blockchain platforms (BPs) for the rest of the chapter. The style of application 

that blockchain follows is as a distributed system which is a paradigm that allows different 

nodes, or computers in this case, to work together and coordinate to achieve a common 

outcome, according to Bashir [3]. This means that separate devices work together on a 

service, or problem within the blockchain application over the internet, or a network. 

The next section will include a discussion of decentralized applications, a paradigm 

used in blockchain applications.  

1. Decentralized Applications in General 

Historically, the convention for information systems has usually been centralization 

as opposed to decentralization. Returning to Bashir’s book, centralized systems contain a 

central point of authority and/or trust on the network which could be a central server, which 

follows the client—server model, or a system administrator for that system [3]. Siraj Rival, 

in the book Decentralized Applications [4], states that a centralized application network 

setup will have one specific node, a master node, that controls the operations of all other 

nodes on the network, but a decentralized network does not have a controlling node that 

the other nodes rely upon for correct operation. A failure of the master node on a centralized 

system would mean the system cannot operate. In contrast a failure of one node on a 

decentralized system will mean that the application network can still operate without it [4]. 

The computing paradigm followed by blockchain applications involves a decentralized 

network of nodes.  



4 

While these two paradigms are different, they both are capable of being distributed 

in nature. 

2. Distributed Applications in the Context of Decentralized Applications 

Centralized and decentralized applications can both be distributed. Distributed 

computing means that computation for the system or application is spread across the entire 

network of nodes to accomplish some task [4]. Depending on the implementation, 

blockchain technology is both decentralized and distributed. The cryptocurrency Bitcoin is 

distributed because of the timestamping on the ledger at the core of the Bitcoin network 

[4]. This is one example of a blockchain technology that is both distributed and 

decentralized. 

3. The Genesis Block 

The genesis block is the first entry in the chain for any blockchain [5]. The genesis 

block structure is the foundation upon which all the interactions with the blockchain [5]. 

This would be the blockchain’s 0th block on the chain with no backwards pointers and 

would contain no transactions since none have been created by users yet [5]. 

4. Consensus Mechanisms 

Blockchain applications are distributed around multiple nodes or computers [6]. 

Since the ledger is shared between them there needs to exist a way to keep those nodes on 

the same page. Consensus is the mechanism that validates the writing of information to the 

ledger for any given BP [6]. Multiple implementations of consensus exist and each of them 

contributes different attributes to the BP. A couple of consensus mechanisms are proof of 

stake (PoS) and proof of work (PoW) [6]. 

a. Proof of Work 

PoW is used by the Bitcoin network. Transactions are placed into a memory pool 

(or mempool); the first miner to solve a computational problem associated with a 

transaction is rewarded with the new bitcoin and his or her block is written to the ledger 

[6]. The bitcoin that the miner is rewarded with is the currency that is traded on the Bitcoin 



5 

platform. These computational problems are hard to solve, through a process called mining, 

which is the reason that this mechanism can promote security, at the cost of significant and 

increased energy consumption required to solve the problem [6]. The computation power 

required to create a block is hard to replicate, because it requires brute force hashing, but 

the result of the computation is easy to verify on the network [6]. Since the problems are 

hard to solve, it is not worth the time and effort for a malicious actor to repeat the brute 

force computation to try and cheat in the network.  

A known attack on this approach to consensus, however, is the “51% attack.” This 

attack works when a malicious actor or actors’ control over 51% of the computation power 

in the Bitcoin network [7]. When over half of the “hashrate” of a BP using proof of work 

is controlled by one party then the platform can be manipulated and controlled by that party 

[7]. This means that the ledger could be altered, and legitimate transactions could be 

reversed, or the ledger could be rewritten, and illegitimate transactions could be added to 

the ledger [7]. Power consumption can be a problem with BPs and will be discussed below 

in the Power Consumption of Blockchain section of this chapter. 

b. Proof of Stake 

The PoS model the algorithm attributes a new block to participants 

deterministically, without requiring a high level of computation power [6]. A participant 

stakes a claim to coins, or currency in this model, and the participant with a greater claimed 

stake has a better chance at receiving, therefore becoming the validator of, the new block, 

and subsequently the receive currency associated with the platform. [6]. This means that 

participants do not have to spend much computation power or energy on mining for blocks 

or coins, they stake a claim and “are rewarded through transaction fees” generated when a 

block is validated, and the cryptocurrency is transferred in a transaction [6]. Additionally, 

the coins or currency that participants stake a claim to are created and exist in the network 

at the start; they are not mined by any entity on the network [6]. Participants are not 

competing to mine or create new blocks or coins in this model, but rather they are 

competing to gain access to them. 



6 

c. Zero-Knowledge Proof 

The zero-knowledge proof model is an older idea that could be applied to consensus 

within BPs. First suggested by Goldwasser, Micali, and Rackoff in 1985 at Massachusetts 

Institute of Technology (MIT), zero-knowledge proofs allow for one party to prove truth 

without revealing any information about how this truth was known to a verifying party [8]. 

This concept can work with the public key cryptography, but here we give an analogue 

example. Lukas Schor gives the example of an individual trying to prove to a blind person 

that the blind person is holding two balls that are colored differently; the method of proof 

includes the blind person hiding the balls and then showing them one at a time to that 

individual for verification, and through this process it can be proved that the two balls have 

different colors [8]. This process is done repetitively because the odds of a false positive 

decrease the more times this exercise is done [8]. There are some properties that a zero-

knowledge proof must have to be considered valid: completeness, soundness, and privacy 

(or zero-knowledge) [8]. Completeness means that a correct input generates a correct input, 

soundness achieved is when the input cannot make a false positive occur in the output, and 

the privacy or zero-knowledge aspect means that input does not end up in the hands of 

anyone but verifier and the only thing that is made public is whether the output is true or 

false [3], [8]. These properties must be considered when incorporating zero-knowledge 

proof functionality into an application 

How this relates to BPs is dependent on a concept that builds on the zero-knowledge 

proof theory. Zk-Snarks is a term introduced by Bitansky, Canetti, Chiesa, and Tromer in 

2012 to define an implementation variation of zero-knowledge proofs intended to work on 

BPs [8]. This implementation adapts zero-knowledge proofs for the environment of a BP. 

The concept of zk-snarks is optimized in BPs to make sure that the fact that a valid 

transaction has occurred is the only thing other entities on the network are aware of [8].  

d. Practical Byzantine Fault Tolerance 

This consensus method is a work that builds upon Byzantine-fault-tolerant 

algorithms. Byzantine-fault tolerant systems deal with the “Byzantine Generals” problem 

described by Lamport, Shostak and Pease in 1982 [9], [10]. Description of this problem 



7 

deals in a distributed system uses the metaphor of Byzantine generals during a wartime 

operation. The generals represent different nodes in a network, in this case a blockchain 

network, and the problem is how to get the generals, or nodes, to reach consensus on a 

piece of information without having bad actors, i.e., traitorous Byzantine generals, 

influence the decision making [9]. The practical Byzantine-fault tolerance (PBFT) 

approach tries to present a solution to this problem. The algorithm presented by Castro and 

Liskov replicates a state machine across distributed nodes which “maintains service state 

and implements service operations” [11].  

B. FORKING 

Forking in a blockchain is like forking on a version control repository. Before 

explaining forking in a blockchain, it would be appropriate to explain version control 

software and a special data structure called a Directed Acyclic Graph (DAG). Version 

control software is used in collaborative development environments to save file history, 

track changes made to files, and track who made changes to files in a repository [12]. This 

type of functionality is especially useful for introducing small changes to a project with the 

ability to roll back to an earlier point in the project’s history should issues arise.  

One way to keep track history in a repository is in a straight line as represented in 

the Figure 1 in chapter four of Eric Sink’s electronic book on version control software [13]. 

 

Figure 1.  History represented as a line. Source: [13]. 

In this case versions of a repository are tracked sequentially, one after the other in 

order as changes are added as pictured in Figure 1. This linear model of version tracking 

only allows building on the latest version of the project. This can cause issues if two people 

are working on changes, and one person commits their changes before the second person; 



8 

the second person would not be able to commit their changes in this model because they 

are no longer based on the most recent version [13].  

The DAG version of history tracking allows for a non-linear progression of a 

project in a version-controlled repository [13]. Figure 2 is an example of a DAG 

representing version tracking that has a non-linear history. 

 

Figure 2.  A DAG representation of version tracking. Source: [13]. 

Collaborators are not limited to working on the most recent version and need not 

worry about their changes not being accepted because the repository has unexpectedly 

changed before making a commit [13]. In the DAG model of history tracking for a 

repository, new versions of a project can use any point in the project’s history as a 

launching point for a new version [13]. An example of this situation is given in chapter 

four of Sink’s book where a change is made to a project repository that contains nodes that 

represent points in time of the project’s history [13]. A programmer could use any of the 

nodes as a basis for updating the project instead of the last one in chronological order 

according to Sink’s description of a DAG. This would cause the repository to fork off into 



9 

a new branch of development which could merge back into the main line at any point or 

continue indefinitely [13]. 

Sometimes developers on a BP, or a group not related to the blockchain, can start a 

new project using existing project code as a starting point. Two types of forks exist for 

blockchains: hard-forks, and soft-forks [14]. A hard fork means that the BP’s ledger or 

chain branches off to form a new chain where the blocks follow different rules than the 

original chain and they will never converge in the future [14]. This is the DAG concept in 

action, except that the branch is permanent and can result in a completely new BP that was 

based on another one. A soft fork is like a hard fork, but instead of one chain always running 

parallel to another chain and never converging, this new chain supports both the original 

chain’s rules and the new chain’s rules [14]; this is treated as an update and is not 

mandatory for all nodes on this blockchain network. The soft-fork is only then used by the 

nodes that update to use the forked software [14]. If the nodes that run the software drop 

off the network, or no nodes adopt the software then the soft-fork will cease to exist on the 

blockchain network, meaning the soft fork will end, and the chain that it branched from 

will continue without that fork [14]. In a hard fork, when the platform branches out it is 

cloned, meaning in a crypto-currency use case that users on the original chain will carry 

over the amount of crypto-currency they had to the new chain [14]. This would be the 

initial values that users have on the new chain but going forward the two chains would not 

be connected, and the transactions would be different between the two [14]. 

C. SMART CONTRACTS 

Transactions that occur in blockchain networks have roots in the concept of smart 

contracts. The idea of a smart contract first appeared in the 1990s; the concept itself was 

implemented in Bitcoin with limited functionality [3]. The smart contracts in Bitcoin are 

the only used to transfer units of the Bitcoin cryptocurrency between users of the software 

[3]. In other blockchain implementations, smart contracts can become more. The actual 

definition of a smart contract is “a secure and unstoppable” program that is “executable 

and enforceable” [3]. The logic programmed into a smart contract is executed on the 

blockchain; these transactions can be customized to meet the requirements of an 



10 

application. Smart contracts act like classes in C++ or Java, their code contains variables 

and functions to execute the transaction logic [15]. 

D. TYPES OF BLOCKCHAIN 

BPs have a few attributes that govern access to the ledger: permissioned, non-

permissioned, private, and public. A public blockchain is one where anybody can 

contribute, and nobody is trusted an example of this is Bitcoin [3]. A private blockchain is 

only available to members of a group, and the ledger that records transactions on the 

network is only available to that group [3]. Both private and public blockchains can be 

permissioned if access controls are put into place [3]. This makes sense in a blockchain 

where the users are not anonymous. 

E. HISTORY OF THE COMPONENTS IN A BLOCKCHAIN 

This section will go over the history of the components of blockchain technology 

which were first widely used in the Bitcoin platform. Most of the science associated with 

Bitcoin was presented in the years prior to its launch. In Bitcoin, the data structure that 

models the ledger was borrowed from a concept that was introduced between 1990 and 

1997 by Habar and Stornetta who wrote about using timestamping to make a digital notary 

equivalent [16].  

A major data structure in used by Bitcoin is called a Merkle tree. This structure is 

a binary tree that is built from the pairs of nodes up to the root node according to 

Antonopoulos [17]. Each leaf node is a transaction, and parent nodes are created by hashing 

transaction data in pairs until the final node, or Merkle root is computed and becomes the 

digest for all the transactions in a block on the ledger [17]. If an odd number of transactions 

exist at the point the tree is constructed, the last transaction is duplicated [17]. Once the 

hash for the Merkle root has been computed it can be used to verify all of the transactions 

in a block even if the ledger was downloaded from and untrusted source [16], [17]. 

The early version of PoW includes a message transmitter that computes a function 

that is moderately expensive for deterring illegitimate transmissions like spam email [18]. 

This problem is related to the Sybil attack, in which a network is overwhelmed by 



11 

sockpuppet nodes, or multiple nodes that are controlled by an adversary, and the integrity 

of consensus in the network is compromised [16].  

F. HOW HAS BLOCKCHAIN TECHNOLOGY BEEN USED? 

This section is a sample of the use-cases and applications that BPs have been used 

for. These are among the first applications that used a blockchain. 

1. Cryptocurrency 

In the case of Bitcoin, a cryptocurrency application works by use of public key 

cryptography allowing users to send and receive units of the cryptocurrency to other users 

with no third-party intervention [2]. In public key cryptography an identity is tied to a 

public key that the public knows and has access to, and a private key that is mathematically 

linked to the public key for identity verification but kept secret from the public [19].  

2. Financial Transactions 

The transactional nature of blockchain has been applied to financial applications. 

Between 2015 and 2016 financial institutions experimented with blockchain for working 

with bonds, fixed income trading, and other facets of the financial sector [20].  

G. HOW COULD BLOCKCHAIN TECHNOLOGY BE USED? 

This section will discuss an application that could thrive in the blockchain 

application environment: chain of custody for law enforcement or item delivery. The 

definition of chain of custody from Duke Law is that all information for a file that travels 

from one destination to another must be detailed and accounted for [21]. This could be 

applied to the delivery of physical or digital items. This idea could be associated with 

internal inventory transit, or for moving items and supplies around the country. 

H. POWER CONSUMPTION OF BLOCKCHAIN 

This section provides additional detail about blockchain power consumption, using 

Bitcoin as an example. Before power usage is addressed, the concept of hashing will need 

to be discussed, as it is a big part of the computational problems Bitcoin miners must solve. 



12 

1. Hashing Explained 

A hashing algorithm takes data, operates on it, and produces an output that can be 

used for integrity in computer systems. Specifically, a hashing algorithm takes variable 

length values of text or contents of files and outputs a cryptographic sum or digest that is 

fixed in length [22]. This process is supposed to work on any data that is represented in a 

computer. The hashing process is different from the encryption and decryption process in 

a very fundamental way. Hashing is not meant to preserve information; information could 

be lost as the hashing algorithm converts the input to a fixed length value in a process that 

is not reversible like the encryption process is [22]. Hashing supports integrity of data but 

does not address confidentiality or availability of data. The mathematics behind hashing 

provides the ability to tell when a file or piece of text has changed because a hash sum or 

digest will, with reasonable assurance, be unique to the file or text that was used to produce 

it [22]. Hashing is used in Bitcoin’s consensus mechanism and is the major factor 

contributing to the substantial power usage of a machine running Bitcoin’s consensus 

algorithm [1]. 

2. Power Usage in Bitcoin Mining 

Mining is executed in a brute force manner, meaning that many values, numbers 

that are only used once and called nonces, must be put through a hash function before a 

match is found and this is where the most energy is consumed [23]. Bitcoin mining is a 

competition, and winning that competition means finding a hash that matches the in leading 

zeroes [6], [23]. Miners generated “5 quintillion 256-bit cryptographic hashes every 

second” in June of 2017, and that the estimated energy usage in that case was around 500 

megawatts; miners are simultaneously hashing nonces for the reward of cryptocurrency 

and this is where the power drain comes from [23]. Miners compute hashes until they find 

a hash digest with a specific number of leading zeroes, but if these hashes are found too 

quickly, the algorithm on the network increases the number of leading zeroes, and 

effectively the mining difficulty, required for a valid block which causes miners to try more 

and more nonces with the hash function to obtain a match [23].  



13 

I. SUMMARY 

This chapter discussed components and the history of the blockchain technology. 

Core concepts of blockchain technologies were introduced to provide a context for the rest 

of the study. A couple of use cases for blockchain technologies were introduced to 

emphasize the utility of the data structure. The next chapter will define the criteria we will 

use to select a BP for use in the rest of the study. 

  



14 

THIS PAGE INTENTIONALLY LEFT BLANK 



15 

III. SELECTION CRITERIA 

This chapter will discuss Blockchain Platform (BP) features that should be 

considered when making a platform selection. “Platform” in this case means a blockchain 

application that is machine or operating system agnostic. These criteria are meant to aid in 

choosing a versatile application platform. The following sections name the criterion that 

we looked at, and the units for those measurements. 

A. TECHNICAL SUPPORT AND TUTORIALS 

This criterion measures whether the blockchain platform has a technical support 

infrastructure, such as community forums, or a dedicated help line from the developers that 

facilitates solving technical problems. Setting up a new system can be difficult, and the 

process can present errors and problems that might not be reflected in platform 

documentation. Users can benefit from help with problems from the developers, or others 

who have more experience with the platform. The focus of this criterion is on the 

community and developer’s ability to obtain help to solve issues or answer questions. 

Tutorials on basic setup operations that quickly move the platform to a usable state are also 

valuable.  

Community and developer support platforms could take the form of a forum like 

Stack Exchange, Stack Overflow, GitHub, or social media sites. Tutorials could be either 

provided in documentation from developers or may be available from community 

members. Some platforms could include paid support options, such as the Red Hat Linux 

support subscription noted on their support page [24].  

Ease of access to and availability of a support structure for the platform will dictate 

scoring. The scale is low (1), medium (2), and high (3). Low means that the community is 

barely developed: the response rate to questions is low, allowing posts to go unanswered 

or answered very slowly. A low score could also mean that developers have offer limited 

support options, do not respond to questions aimed at them either for long periods or ever, 

and that there are few, if any, tutorials for users. High means that the community for the 

platform is mature and that users can seek help from each other in forums, or that 



16 

developers are able to take the time to answer more in-depth questions and have provided 

tutorials to cover common questions. Medium means one or two of the characteristics of 

the high rating might be present individually, but not all the characteristics are present. 

B. LEVEL OF PLATFORM SUPPORT 

Platform support corresponds to the frequency and quality of both functional and 

security updates and patches. A platform that is still receiving new features and security 

updates from its developer community is valued over one that has stagnated or might not 

be supported anymore. An example of this is the service that Ubuntu provides for its Linux 

distribution. Ubuntu releases new server and desktop versions every six months. These 

include updates to security and applications [25], thus ensuring that the platform 

incorporates desirable new features. A blockchain that has any sort of update or release 

system would be valued over one that does not have such a system, or one that has less 

frequent updates or releases. 

The level of support will be judged based on the frequency of updates that the 

platform developers report from their websites. If a release history is available, this will be 

used to score the blockchain platform. The scale is for this criterion is also represented as 

low (1), medium (2), high (3). Low means that the platform is not updated often, once 

every few months or less frequently, or it seems that development of the platform has 

stopped. Medium means that the platform is updated at infrequent intervals, but new 

features and security updates are still being made. “Infrequent” means an update to the 

platform is available between every month to every three months with no set update 

routine. High would mean that the updates to the platform are both reliable and routine or 

frequent for both security and functional updates. “Frequent” means every month an update 

is available, and “routine” means the platform developers have specified a reliable update 

schedule. 

C. PROPRIETARY OR FREE AND OPEN PLATFORM 

Are the platform source code and binaries freely usable, or, if the platform is 

proprietary, it must they be purchased. This criterion is disjoint from licensing 

considerations, which are discussed in Section D of this chapter. A platform for which code 



17 

and binaries are freely available, and that may be freely modified would be ideal for the 

testbed. This freedom would allow custom functionality to be added or for existing, but 

superfluous, functionality to be eliminated.  

This is a binary option: the platform is either free and open and does not require 

license purchases to use core functionality, or it does require a license to be purchased. 

Appropriately, the scale for this will be free and open (1) and proprietary (0). Even though 

this is a binary choice, being free and open is seen as positive when setting up the platform 

for use in this study. If a platform requires a subscription to obtain patches, updates and 

support, for example, as stated in the Red Hat subscription model page [26], then the 

platform will be rated (0) for proprietary. For our testbed, platforms that require no form 

of payment are preferred. 

D. PLATFORM LICENSING 

This criterion focuses on the kind of license associated with the platform. This is 

important because different software licenses place different requirements on the users of 

that software. Some licenses allow free use of the software and source code and allow 

developers to publish modified code [27]. Other licenses, like for proprietary software, 

require management to make sure that users are making use of the software and that the 

organization does not overpay for unused software licenses [28].  

This criteria entry is the name of the type of license for the platform. Although 

licensing will be considered when selecting a BP, it will not be used to directly select or 

rank a BP. Instead of quantifying licensing, the name of the license will be provided. For 

proprietary licenses, if the license type or name is not immediately clear, then the value 

will be “Proprietary: name of company,” thus recording that this platform has a license for 

which payment may be required. 

E. DATABASE CAPABILITY  

This criterion addresses whether a blockchain platform integrates, or can integrate 

with, a database system. “Integration” in this case means that the BP allows users to view 

contents of the ledger through a database system. This database system should contain the 



18 

ability to export data from the ledger. If storage is a limitation for a blockchain application, 

then an auxiliary database would attractive. 

Since a platform either does or does not integrate, or can integrate, a database 

system, this is a binary choice. The values will be either no (0) for not integrating a database 

system or yes (1) for having database capability or integrating a database by default. If 

database integration is a feature the developers will introduce in the future, this is 

considered equivalent to non-database integration and will receive a no (0) rating. Database 

capability is seen as a positive because it presents more application possibilities. If no 

information about database capabilities can be found from appropriate BP documentation, 

then it will be assumed that database functionality is not supported and the criterion will 

be set to no (0) for that platform. 

F. OPERATIONAL MODES: PRIVATE OR PUBLIC AND PERMISSIONED 
OR NON-PERMISSIONED 

The type of membership, or operation mode, the platform supports is important 

because it affects how the platform can be used as an application. A blockchain could 

permit users to configure the system to support various membership policy options. A 

public blockchain allows anybody to join and become a participant on the network, a 

private blockchain can only be joined by invitation [29]. A permissioned blockchain only 

allows approved entities or members to use any blockchain functionality [30]. A 

permissionless blockchain will allow anybody to join and start using the system without 

being approved and identities are not necessarily associated with participants [30]. These 

operational modes are important because they govern how the users on a system are 

represented and what powers they have. 

Two separate criteria: public-private and permissioned-permissionless, present 

binary choices. For the public-private criterion, we will determine if the BP has the 

capability of being private. For the permissioned/permissionless criterion we will see if the 

BP can be run in a permissioned mode. The values for both are either yes (1) or no (0). Yes, 

means that the platform has the capability to be run privately and permissioned for each 

criterion respectively. No means it does not have the capability for a criterion respectively. 



19 

G. OPERATING SYSTEM OR SOFTWARE PLATFORM ENVIRONMENT 

This criterion is the operating system or virtual environment that the blockchain 

platform depends upon. This criterion specifies the operating system or software suite that 

must be installed on a machine for the BP to execute correctly, or at all. This criterion does 

not address technical specifications of the BP itself. The operating system is important 

because the platform must be compatible with existing systems if it is to be used for an 

application across a network. If the blockchain technology can only run on a proprietary 

operating system such as Windows, then a license must be purchased for each node on the 

network. This will add to the cost of launching and operating a blockchain system. On the 

other end of the spectrum, if the BP runs on an open source platform such as a Debian-

based Linux distribution on bare metal, in a virtual machine or in a Docker image, 

purchases of operating system and virtual machine licenses are not required. This can 

reduce the cost of setting up a blockchain network. 

This criterion cannot be quantified numerically so we will list the operating system 

or platform environment the BP executes on. If a blockchain technology can execute on 

more than one operating system, then the value will be “multi-platform.” To be “multi-

platform,” a BP must be able to operate on Windows, Mac OS, Linux, and Docker. It is 

possible that every BP surveyed will be multi-platform. If that is the case, it will be 

mentioned in the platform selection discussion that this criterion was not used in the 

selection process but was taken into consideration. 

H. SUPPORTED APPLICATION LANGUAGES 

The application support language of a BP is an important consideration because 

choice of language could affect the developers who work on the applications. A domain-

specific language has an internal form and an external form, which are interpreted by a 

general-purpose language [31]. Internal form domain specific languages could include CSS 

and regular expressions, since they are parsed by general purpose languages [31]. An 

external form, they mention, could be like a form of application programming interface 

(API) with a specific syntax that is present in a general-purpose language [31]. In contrast, 

a general-purpose language is used in a wide variety of situations and for different 



20 

problems [32]. General purpose languages include C/C++, Java, JavaScript, and others like 

them [32]. 

We assume that a general-purpose language is more diverse in and versatile in 

application development, and that a wider range of developers will be skilled with it. Using 

a domain-specific language can increase the learning time of using a BP [33]. For 

blockchains, domain-specific languages such as Solidity on the Ethereum platform are 

designed to keep execution of smart contracts deterministic [33]. Determinism can be 

defined as being the “order-execution-architecture” of consensus where transactions are 

sent to every peer, and then executed sequentially by those peers [33]. 

The BP that we ultimately choose must support the use of one or multiple general-

purpose languages. Platforms that use domain-specific languages will be scored lower. 

This is a binary choice, so the scale will be: domain specific (0) and general-purpose (1). 

There are advantages and disadvantages for both general-purpose and domain specific 

languages, but, for this study, we prefer general purpose languages because they are more 

compatible with the software engineering process than domain specific languages and this 

is a quality we think would be valuable for government and military use [34]. 

I. PLATFORM IMPLEMENTATION LANGUAGE 

The programming language that a BP is implemented in can be different than its 

application language. The implementation language is the language that the developers 

used to build up basic features of the BP. We will avoid esoteric languages because they 

might not be practical in a production environment and could have been developed as a 

joke [35]. 

These are general-purpose languages that we would like our candidate BP to be 

implemented in. We will use the TIOBE index of computer languages to determine how 

common a language is [36]. We will interpret a higher rank to mean that a language is more 

common and in wide use. The scale is common (3), less common (2), esoteric (1). Common 

languages are C/C++, Python, Java, and Golang. They are in the top twenty on the TIOBE 

index. We will consider less-common languages to be ones that are below the top twenty 



21 

from the index, which lists one hundred languages. Esoteric languages will be any language 

not listed on the index. 

J. DOCUMENTATION FOR CODE 

Documentation for a platform is important for understanding the capabilities and 

features available when designing applications. An API is defined as a set of standard 

functionalities available to programmers and application designers so that they do not have 

to start from scratch [37]. Application developers should be able to reference functions and 

API calls so that time is not wasted recreating features that already provided by the 

platform. 

For this criterion, we will measure the availability and ease of navigation through 

the code’s documentation Key features include explanations of function or API behavior 

including data structures expected as input and output, and that there is enough 

documentation for application designers. The scale for this will be none (0), minimal (1), 

moderate (2), and high (3). It is unlikely that developers would fail to publish 

documentation for a platform that they want others to use, but if documentation cannot be 

found, the platform will be scored none. Minimal level documentation will be assigned to 

platforms that have hard-to-find or difficult to interpret documentation, or documentation 

that is hard to navigate. A moderate level of documentation will correspond to 

documentation that is easy to find and will provide coverage of important code features. A 

high score for documentation is reserved for platforms that provide easy to access and 

navigate documentation, and that covers all the features available to developers for the 

current version of the platform. 

K. DOCUMENTATION FOR ADMINISTRATION OR MAINTENANCE 

Documentation administration and maintenance is important because a BP, much 

like any other system used for a long time, requires software updates, user management, 

and administrator management. This criterion measures the quality and amount of 

documentation for those purposes.  



22 

Much like the documentation for code, ease of access, availability, and coverage of 

features factor into the scale for this criterion. The scale is none (0), minimal (1), moderate 

(2), and high (3). None means that we were unable to find documentation for managing the 

platform. Minimal means that documentation exists, but it either does not cover the features 

well or is still in development. A rating of moderate means that coverage of most features 

is provided, and that the documentation is accessible and easy to navigate. A high rating is 

given to documentation that covers all the features of the current software, and that is 

accessible and easy to navigate. 

L. PLATFORM MATURITY 

It is important to know when a platform was announced so its level of maturity can 

be considered. A maturity measure can also help to determine if a platform is still active or 

not. For example, if the platform was announced on a certain date but has not been updated 

for a long time, then this platform is probably not being supported anymore. If the platform 

is still being regularly updated, it is a better candidate for selection for the testbed. 

The maturity level will be based on the years since the announcement of the BP 

and, if available the number of years it has been active. The years in an active state will be 

determined from the update and version history of the platform. If updates have not been 

made for more than a year, the platform will be deemed inactive and it will only be as 

mature as the number of years from announcement to final update. The scale is: low 

maturity (1), medium maturity (2), and high maturity (3). A low maturity rating means that 

the platform is less than one year old since its announcement date, medium maturity applies 

to platforms one to three years old, and high maturity is assigned to platforms that are 

greater than three years old. 

M. COMMUNITY ACTIVITY LEVEL 

This criterion measures the size of the community surrounding the platform. A 

community involves communication between users and developers about platform news, 

and how they use the platform. The users could have some say in the new features to be 

developed, thus creating an aspect of user participation. Additionally, the users and 

developers might use the community to organize events based around the platform. 



23 

A platform's level of activity in the community could be an indicator of the 

platform's lifespan and status. More people using and talking about the system with each 

other and to the developers means that there is incentive to keep the platform active, and 

that its broad user base is an indicator of its stability: both positive factors for selecting a 

BP for our testbed. 

This field will report the level of activity of the community associated with the 

platform. A community could include social media platforms; exchange or forum sites, like 

stack overflow; or the platform website’s own forum. The rating scale is active (1) and 

inactive (0). Active means that the community activity indicates that the platform is still in 

use and that developers and users are in communication with each other. Inactive means 

that developers and users may have once communicated with each other, but no longer do 

so, or that a community never formed around the platform. “Inactive” for this criterion is 

defined as a platform that has not had any community updates or activity for six months or 

more. 

N. SAMPLE APPLICATIONS  

Sample applications available for the BP can be used as learning examples and 

templates for developing new applications. These would take the form of either code that 

can be modified or executables to demonstrate various features. Sample applications that 

come from users other than the platform developers could also be helpful, to see what can 

be built with the platform.  

This criterion will be measured by the volume and availability of sample 

applications for a given BP. Sample applications should be easy to find, and there should 

be a diverse set of applications in the context of the BP. The rating scale will be low (1), 

medium (2), and high (3). A low rating means that a small number of sample applications 

is available: little to none are provided by the developers or users of the platform. A 

medium rating means that the developers provide a few key sample applications and other 

users regularly create sample applications. A high rating means that diverse set of sample 

applications exists that helps drive development, and that users create and share 

applications on a centralized public forum, or on GitHub. 



24 

O. CONSENSUS ALGORITHM 

The consensus mechanism of a BP can determine the amount of computation and 

power required of nodes on the network. Because of the drawbacks of PoW consensus 

described in Chapter II, this consensus mechanism will be avoided for use in this study. 

We avoid heavy computation because we require the platform to run on machines that were 

not built specifically for cryptocurrency mining. We will focus on consensus mechanisms 

that are less computationally intense. 

For each platform surveyed, we will determine if the consensus method is heavily 

reliant on computation. At the same time, we want a platform that will validate transactions 

on the network in a satisfactory manner. This scale will measure the emphasis a BP puts 

on validation mechanisms not purely determined by brute-force computation over the 

emphasis on brute-force computation. The scale will be high (3), medium (2), and low (1). 

High means that algorithms that provide validation prioritize non-brute-force computation 

mechanisms over brute force computation mechanisms, but enough computation is present 

to validate transactions on the network. This level is the preferred because we assume less 

intense computation will result in less power consumption, which was mentioned in 

Chapter II. Medium means that non-brute force and brute-force computation mechanisms 

have an equal emphasis. Low means that the emphasis on non-brute force validation 

mechanisms is lower and the emphasis on brute force computation mechanisms is higher 

and approaches the level of PoW computation. 

P. MINIMUM IMPLEMENTATION NETWORK SIZE 

The minimum network size of a platform is important because it affects the setup 

cost of using the BP. If the number of nodes required for a network to be operational is 

very high, the platform cannot be used with small network configurations, which could be 

limiting for applications. That said, we assume that every blockchain network reviewed 

requires at least two nodes. 

It is possible that information regarding the minimum network size might not be 

available until a platform is set up for use. If any information regarding this criterion is 



25 

available, then it will be considered and documented. Otherwise, this information will not 

be included in the selection matrix in. 

Q. SUMMARY 

This chapter defined the criteria that we will use for selecting a BP. When possible, 

a metric for each criterion was introduced, and additional considerations were discussed. 

The next chapter will discuss the process of selecting the BP and will discuss the platform 

chosen as well as several strong contenders. 

  



26 

THIS PAGE INTENTIONALLY LEFT BLANK 



27 

IV. BLOCKCHAIN PLATFORM SELECTION  

The blockchain platforms (BPs) reviewed in this chapter were found on the curated 

list “awesome-blockchain” on GitHub [38]. Blockchain platforms were chosen for review 

if their descriptions indicated a relatively versatile platform rather than one that mainly 

focused on tokens or cryptocurrency. Next information relevant to the criteria from Chapter 

III was gathered about the platforms from the relevant websites. Documentation websites 

were sought out, and usually included a customized documentation site or a wiki page for 

a GitHub repository for the blockchain platform. Advertised features from the main 

websites were useful clues for digging deeper into the functionality of the blockchain 

platforms. 

The results of this process were the ranking of twelve blockchain platforms based 

on the metrics discussed in Chapter III. Numerical scores were given to the blockchain 

platforms based on the information gathered about each of them. The metrics, and 

interpretations of those metrics are particular to this study. Capabilities and features that 

were thought to be useful for the BP’s potential use were emphasized. 

This chapter discusses the selected and other high scoring BPs. The discussion of 

each blockchain platform includes a summary of the features that either contributed to its 

selection or its dismissal. In this chapter the names of criteria are written in boldface. Both 

quantitative and qualitative criteria were individually given scoring metrics in the form of 

numerical values. The rank of each blockchain platform is computed as the sum of these 

values. The numerical criteria are: Tech Support, Platform Support, Open Platform, 

Database Capability, Permissioned, Private, Application Support Language, 

Implementation Language, Documentation for Code, Documentation for 

Administration and Maintenance, Platform Maturity, Community Users and 

Developers, Sample Applications, and Consensus Mechanisms. The non-numerical 

criteria are: Licensing, and When Introduced. One criterion, Platform (OS and 

Software Environment), was a uniform “multi-platform” across all the platforms 

reviewed, so it was not regarded in the selection process and removed as a criterion. Table 1 

and Table 2 show the selection matrix for the blockchain platforms considered. 



28 

Table 3 and Table 4 contain additional information and factors that have no numerical 

values but were taken into consideration during selection.  



29 

Table 1.   Selection matrix results 

  H
yp

er
le

dg
er

 
Fa

br
ic

 

N
XT

 

W
av

es
 

Et
he

re
um

 

M
ul

tic
ha

in
 

St
ra

tis
 

Ranking 29 27 26 25 25 24 
Tech Support high (3) high (3) high (3) high (3) high (3) high (3) 

Platform Support medium 
(2) high (3) high (3) medium 

(2) high (3) high (3) 

Open Platform open (1) open (1) open (1) open (1) open (1) open (1) 

Database capability yes (1) yes (1) yes (1) no (0) no (0) no (0) 

Permissioned yes (1) yes (1) yes (1) yes (1) yes (1) yes (1) 
Private yes (1) yes (1) yes (1) yes (1) yes (1) yes (1) 

Application Support 
Language 

general 
purpose 

(1) 

general 
purpose 

(1) 

general 
purpose 

(1) 

domain 
specific 

(0) 

general 
purpose 

(1) 

general 
purpose (1) 

Implementation 
language 

common  
(3) 

common  
(3) 

less  
common  

(2) 

common  
(3) 

common  
(3) 

common  
(3) 

Documentation for 
Code 

high (3) high (3) moderate 
(2) high (3) moderate 

(2) high (3) 

Documentation for 
Administration/
Maintenance 

high (3) high (3) moderate 
(2) high (3) high (3) none (0) 

Platform Maturity high (3) high (3) medium 
(2) high (3) medium 

(2) medium (2) 

Community: Users 
and Developers 

active (1) active (1) active (1) active (1) active (1) active (1) 

Sample Applications high (3) medium 
(2) low (1) medium 

(2) 
medium 

(2) medium (2) 

Consensus 
Mechanism 

high (3) low (1) high (3) medium 
(2) 

medium 
(2) medium (2) 

 



30 

Table 2.   Continuation of selection matrix 

  

D
ec

en
t 

C
ou

nt
er

pa
rty

 

Fa
ct

om
 

M
on

ax
  

Ex
pa

ns
e 

H
yd

ra
C

ha
in

 

Ranking 24 24 23 22 21 20 
Tech Support high (3) high (3) high (3) high (3) low (1) low (1) 

Platform Support high (3) medium 
(2) high (3) high (3) high (3) medium (2) 

Open Platform open (1) open (1) open (1) proprietary 
(0) open (1) open (1) 

Database capability no (0) no (0) no (0) no (0) no (0) no (0) 

Permissioned no (0) no (0) no (0) yes (1) yes (1) yes (1) 
Private yes (1) yes (1) yes (1) yes (1) yes (1) yes (1) 

Application Support 
Language 

general 
purpose 

(1) 

domain 
specific 

(0) 

general 
purpose 

(1) 

domain 
specific 

(0) 

domain 
specific 

(0) 

general 
purpose (1) 

Implementation 
language 

common  
(3) 

common  
(3) 

common  
(3) 

common  
(3) 

common  
(3) 

common  
(3) 

Documentation for 
Code 

high (3) high (3) moderate 
(2) 

moderate 
(2) 

minimal 
(1) moderate (2) 

Documentation for 
Administration/
Maintenance 

high (3) high (3) high (3) moderate 
(2) high (3) moderate (2) 

Platform Maturity medium 
(2) high (3) low (1) medium 

(2) high (3) medium (2) 

Community: Users 
and Developers 

active (1) active (1) active (1) active (1) active (1) active (1) 

Sample 
Applications 

medium 
(2) 

medium 
(2) 

medium 
(2) 

medium 
(2) 

medium 
(2) low (1) 

Consensus 
Mechanism 

medium 
(2) 

medium 
(2) 

medium 
(2) 

medium 
(2) low (1) medium (2) 



31 

Table 3.   Additional platform information and factors  

 H
yp

er
le

dg
er

 
Fa

br
ic

 

N
XT

 

W
av

es
 

Et
he

re
um

 

M
ul

tic
ha

in
 

St
ra

tis
 

Licensing 
Apache 
License 

2.0 

Jelurida 
Public 

License 
Apache 
License 

v2.0 

GPL 
v3.0 and 

MIT 
License  

GPL v3.0 MIT License 
version 

1.1 
When 
Introduced 

12/
1/2015 

11/24/
2013 6/7/2016 7/30/

2015 9/10/2016 6/14/2016 

Table 4.   Continuation of additional information and factors 

 

D
ec

en
t 

C
ou

nt
er

pa
rty

 

Fa
ct

om
 

M
on

ax
  

Ex
pa

ns
e 

H
yd

ra
C

ha
in

 

Licensing GPL v3 MIT 
License 

MIT 
License GPL v3 GPL v3 MIT 

License 

When 
Introduced 

1/1/2016 1/2/2014 11/17/
2017 9/8/2015 6/1/2016 1/15/

2016 

  



32 

A. THE SELECTED BLOCKCHAIN PLATFORM: HYPERLEDGER 
FABRIC 

Hyperledger Fabric (HLF), from initial investigation, appears to be a versatile 

decentralized application platform. Development on this platform does not appear to be 

limited to cryptocurrency or token related blockchain operations. The architecture and 

capabilities of HLF will be discussed in Chapter V. 

Based on the considered blockchain selection criteria discussed in Chapter III, HLF 

was deemed the most appropriate choice. HLF focuses mainly on the distribution of the 

ledger, smart contracts, and membership. Several features of HLF differentiate it from 

other blockchain implementations. 

The first, public key infrastructure support, although not discussed in Chapter III 

but discovered upon further investigation, was found to be a valuable capability. The 

documentation provides instructions and details for setting up certificate authority servers 

for use within the blockchain network. Other BPs have mentioned use of private keys, but 

none of them mentioned or detailed setting up a custom CA server or using existing CA 

certificates for the blockchain network. This could be an attractive capability for U.S. 

military because it would mean that current CA systems could be integrated into the HLF 

platform. 

The second feature is HLF’s application programming language. Smart contracts 

for Hyperledger Fabric are implemented with the Go language and are called chaincode 

[39]. The Go language, and how it fits into HLF, will be discussed in Chapter V. The 

developers plan to support general purpose languages such as Java in the future [39]. This 

sets this platform apart, in that it does not require its own domain-specific language for 

transactions. Requiring developers to learn the Go language for development is acceptable 

for this testbed. The advantage here is that the language and compiler will be better 

supported. When the use of multiple languages for smart contracts is implemented, it could 

cut down on training costs and learning periods for developers.  



33 

B. PLATFORM RANKING 

Table 5 is a chart rating the blockchain platforms according to the score they were 

given during the selection process. A high score means that the platform was very 

appropriate for the testbed and is a platform that was chosen or that could be a runner up 

for installation on the testbed. Platforms rated at a score of 25 and above could be suitable 

for the testbed. Those found to be focused mainly with cryptocurrency, instead of a broader 

set of applications are ranked less favorably. Platforms with ratings of 24 or below were 

considered unsuitable for the testbed. For example, a platform may have been found to 

focus too much on tokens or cryptocurrency and mining. 

Table 5.   Platforms ranked by score 

Platform Rank 
Hyperledger 
Fabric 

29 

NXT 27 
Waves 26 
Ethereum 25 
Multichain 25 
Stratis 24 
Decent 24 
Counterparty 24 
Factom 23 
Expanse 22 
Monax (formerly 
Eris) 

22 

HydraChain 20 

 

C. REJECTED PLATFORMS 

This section discusses the platforms that were rejected. Analysis of features deemed 

unsuitable for use in the testbed is provided. 



34 

1. Ethereum, Counterparty, Monax, and Expanse 

These four platforms are mentioned together because they extend Ethereum or 

interact with it in some way. 

The Ethereum platform mainly deals with smart contracts. These contracts can be 

used to trade the cryptocurrency that the platform uses or other user-specified transactions. 

The Ethereum platform is attractive for its smart contract-oriented transactions, but, 

because it only supports programming smart contracts in Solidity, it was not selected for 

the testbed.  

Counterparty interacts with the Bitcoin and Ethereum Blockchains [40]. Monax, 

Expanse and Counterparty rated lower than Hyperledger Fabric and Ethereum overall, 

therefore we decided that they were not the best fit for the testbed. 

Monax first started as a fork of Ethereum but then pivoted into its own platform 

allowing the previous work to be converted into the Hyperledger Burrow project [41]. At 

the time of our report, the Monax platform had not yet pivoted, and the column in the 

selection matrix does not reflect its current state. Currently, Monax focuses on using 

permissioned blockchain for operations in the legal space as a contract management system 

[42]. As currently described, Monax seems to be a solution system for legal products or 

asset management. While this could be useful, it appears that the ability to develop custom 

applications with the platform is limited compared to the chosen platform of HLF  

Expanse is the first stable fork of Ethereum, and according to their introductory 

documentation, the platform was designed to be democratically controlled and more 

efficient than Ethereum [43], [44].  

2. Waves 

The interface to the Waves platform is a web API [45]. This platform can be set up 

on private nodes and accessed through the API and its command line interface; however, 

both its documentation and website indicate that cryptocurrency is its focus [46]. Although 

other applications could be developed, it would be necessary to ensure that the mechanism 

does not engage in mining. 



35 

3. NXT 

NXT is another cryptocurrency platform that offers the ability for users to develop 

other applications. This would not be a problem, but like the Waves platform, it is not clear 

how much of the development will revolve around cryptocurrency and mining. This 

platform could possibly be used for the testbed, but, to use it in a non-cryptocurrency-based 

configuration, could require more configuration effort than for other platforms. The 

website for NXT does not mention smart contracts, only asset management and monetary 

systems [47], [48]. Thus it is likely to have less utility in a government network 

environment. 

4. Multichain 

The Multichain BP has permissions, and the ability to create a private network of 

nodes. These are valued features for a blockchain for a private network, but, according to 

posts on the company’s website, this platform is does not seem to be focused on or support 

smart contracts [49]. It is likely that considerable effort would be required to set the 

platform up for ledger and transaction logic without the use of a cryptocurrency.  

5. Stratis 

This platform has been developed in C# for the .NET framework. Stratis allows 

developers to use the platform for either cryptocurrency, or smart contract-related 

applications. The platform provides an interface to Bitcoin functionality in the form of 

NBitcoin, a popular C# library for the .NET framework [50]. At the time of our evaluation, 

smart contract functionality for Stratis was an alpha release [51]. Because Stratis platform 

was not ready to support smart contracts, it is ranked below HLF and Ethereum. 

6. Decent 

The Decent blockchain advertises decentralized applications. The Decent 

documentation shows that mining is a part of the consensus algorithm for the platform, and 

anonymity is its main guarantee [52]. Anonymity and mining are not good attributes for a 

blockchain application used by the DoD. The characteristics of the platform do not make 

it suitable for selection. 



36 

7. Factom 

The Factom platform interacts with the Bitcoin blockchain to “take advantage of 

the security of Bitcoin’s hashrate” [53]. Since the platform leverages the Bitcoin 

blockchain, it is not suitable for this study. 

8. HydraChain 

This platform seems to be the least mature of those surveyed and is not appropriate 

for use on our testbed, or eventually in an operational network. The website associated with 

the platform has a brief description of HydraChain and points to a GitHub repository and 

its wiki pages [54], [55]. Technical support appears to require contact with a member of 

the HydraChain team, which may be problematic. This platform too immature for 

consideration. 

D. SUMMARY 

This chapter discussed the selection process for the BP that was used for the testbed. 

The platforms were ranked and HLF was chosen. The scores for each criterion were 

presented in a selection matrix. Factors favoring HLF was discussed. Factors that resulted 

in lower rankings for the remaining BPs were discussed. The next chapter will describe the 

architecture of HLF, the selected BP. 

  



37 

V. THE HYPERLEDGER FABRIC SOFTWARE ENVIRONMENT 
AND ARCHITECTURE 

This chapter is intended to explain the Hyperledger Fabric (HLF) environment used 

in the testbed. It includes details of the software suite in use by HLF for application 

development. The consensus method for HLF will also be discussed. The environment that 

this study uses is Ubuntu 18.04, a Linux distribution, on a virtual machine using the 

VirtualBox software. Detailed instructions for setting up the software and development 

environment on a virtual machine are provided in Appendix A. In our discussion, utility 

names in HLF will be written in italics. Entity names will be written in the boldfaced 

typewriter font. Section names will be bold and italicized. File names will be written in 

bold. 

A. COMPONENTS OF THE HYPERLEDGER NETWORK 

This section will detail the software necessary for an HLF blockchain network. The 

software required for operation includes: Docker, Docker Compose, CouchDB, the 

compiler associated with the Go language, and Node.js. 

1. Docker 

The Docker software suite provides an environment that supports lightweight 

virtual machines, called containers [56]. It is an open platform for developing and running 

applications in separated environments [57]. According to the OpenSource website [56], 

Docker containers are used by developers to bundle an application, its libraries and 

dependencies. Instead of executing applications in separate full virtual machines, multiple 

Linux-based applications can be supported in individual containers on a single Linux 

machine. The Docker design is useful for setting up nodes quickly. They can be used for 

application development and testing, especially in the early stages of development.  

In combination with Docker Compose, the Docker software is used to sets up the 

containers that will operate the blockchain network. These containers act like separate 

computers complete with their own set of associated HLF utilities. 



38 

2. Docker Compose 

Docker Compose supports the setup of multiple containers in an application 

environment. Using configuration files in the YAML format, a user can configure 

containers with environment variables, ports for services, and container names [58]. The 

YAML format will be discussed in the YAML Configuration Files section of this chapter. 

Docker Compose can be used to put together an application where the specifications for 

each container and service will dictate the overall behavior of the application. The 

configuration file format used by Docker Compose is also used by the utilities, or platform 

functionality commands, provided by the Hyperledger Project. Those utilities and the 

configuration file format will be explained in the Hyperledger Fabric Utilities section. 

3. CouchDB 

CouchDB is an Apache-based database software that can store binary and JSON 

(JavaScript Object Notation) data [59]. Couch DB is one option for maintaining state in 

the HLF network. The HLF documentation on Couch DB states that, by default, a database 

called LevelDB is used to store “key-value state” across the network [60]. This key-value 

state is any data that can be modeled in the chaincode, making these databases effectively 

storage for the ledger state. CouchDB offers the ability to store any data generated from 

chaincode that can be represented as JSON data, and to then query for that data. JSON 

according to RFC 8259, is a human-readable, language-independent file format for data 

organized in attribute-value tuples [61]. 

4. Golang  

The Hyperledger code base has been written in Golang. Development of this 

language began in 2007 to address software infrastructure issues at Google [62]. The Go 

language shares similarities with the C and C++ programming languages [62]. This high-

level language is similar enough to Python and C/C++ that the learning time is short for 

those conversant in either of those languages. 



39 

5. Node.js  

Node.js is a framework extension of the JavaScript language. The platform was 

developed as an asynchronous runtime environment for network applications; it takes 

advantage of event-driven programming, concurrency, and was influenced by the Ruby 

and Python languages [63]. A network application in this case is defined as an application 

that communicates using the network as the underlying infrastructure. How this platform 

is used in HLF will be explained in the chaincode section. 

6. Chaincode 

Smart contracts in HLF are handled with chaincode. Chaincode, HLF’s name for 

smart contracts, can be developed in Golang or Node.js, but the HLF documentation states 

that the developers, at the time of writing, will add the capability to write chaincode in 

additional general-purpose languages such as Java [39]. This design will allow developers 

to choose the programming language for chaincode application development most 

appropriate to their company or organization. 

Currently, people who use the HLF platform, must choose between Golang or 

Node.js as the language for writing chaincode. The two languages are different in design 

as well as perceived difficulty. Ease of use is a factor in language selection. The HLF 

documentation is neutral regarding these languages, but it would make sense for a 

programmer to gravitate towards whichever language seems easier to work in. Snellinckx 

argues that Node.js could be easier to use by more developers than Golang [64].  

Another factor in language selection is performance. The Go language compiles to 

machine code before execution [65]. Conversely, Node.js is an extension of JavaScript, 

and is interpreted by the Google Chrome V8 JavaScript engine [66]. Compiled interpreted 

languages represent implementation choices for programming languages. A compiled 

language is translated to machine code specific to the device it executes on [67]. Any 

machine that runs an interpreted language needs the interpreter program for that language 

installed. The interpreter translates the human readable code to an intermediate level that 

is then translated to machine code [67]. The benefits of this, are that the code is easier to 

write and modify, and it can run on any machine, albeit slower than a compiled language. 



40 

A possible drawback is the absence of a language interpreter for the target instruction set 

architecture. 

Two styles of chaincode development exist for the HLF platform. Called 

“personas,” Fabric [39] offers two perspectives: “Chaincode for Developers” as the 

application-oriented development perspective, and “Chaincode for Operators” as network 

manager and chaincode maintenance perspective. These two personas would apply to 

different sections within a department that deals with the HLF platform. The definition of 

the “chaincode for developers” persona is an application developer creating chaincode that 

runs on the peers in the network [68]. Tasks for application developers include defining 

paths to the source code, writing chaincode with either Golang or Node.js, and 

implementing functions of chaincode using available library code. The operator’s 

perspective in the HLF “Chaincode for Operators” [69] focuses on managing the chaincode 

for the nodes on the network. Tasks include installing chaincode onto peers in the 

network, upgrading the chaincode on peers, and instantiating chaincode with keys and 

values for channels. 

B. ROLES OF ENTITIES IN THE NETWORK 

This section describes the entity roles and groups on the network such as: 

clients, peers and anchor peers, the concept of membership and 

organizations, channels, and the ordering service and orderer nodes. The term 

node refers to peers, orderers, anchor peers, or any Docker container that has a 

function in the network. 

Figure 3 is a notional diagram of the basic organization of the software stack on the 

test bed developed for this study.  



41 

 

Figure 3.  The test bed software stack 

Figure 3 starts at the bottom with Virtual Box software that virtualizes Ubuntu 

version 18.0.4 for the testbed setup. Installed on the Ubuntu virtual machine is the Docker 

software and HLF software is layered on top of that. Applications reside above the HLF 

layer. These applications take the form of chaincode and interactions between peers. It 

is possible for multiple applications to be supported in one HLF network. Entities in the 

HLF platform exist within Docker containers, and will be discussed in Figure 4. 

1. Clients 

Clients are associated with the people who use the HLF network application. A 

client acts on behalf of a user and must connect to a peer to conduct read and write 

operations on the ledger [70]. A client is an application that interacts with the HLF API 

to send commands to peers and run chaincode in the HLF architecture [71]. In this model, 

the client nodes are closest logically to the people who use the network, whereas the 

peers are a bit closer logically to the architecture’s core. In the stack pictured in Figure 3, 

a client application would exist at the Ubuntu layer. The client application could 



42 

exist within a web browser, or any software that connects with the HLF API to 

communicate with peers. 

2. Peers and Anchor Peers 

A peer is any entity that has a ledger and can read and write to it, something that 

a client cannot do [72]. Anchor peers are a special type of peer on an HLF 

network. An anchor peer is a node that facilitates communication between 

organizations because a node from one organization must know the address of 

one or more nodes in another organization for communication to occur [72]. Peers 

must use their anchor peer as a middle man to talk to peers on other organizations. 

Figure 4 shows the HLF network on top of the Docker layer, this means that peers in HLF 

are represented as Docker containers. Any number of peers can exist on the network and 

execute as Docker containers. 

 

Figure 4.  Entities in HLF represented as Docker containers 

 



43 

Figure 4 is a notional diagram depicting how nodes in the HLF network are 

represented by Docker containers. This is a zoomed in view of the HLF layer just above 

the Docker layer from Figure 3. Figure 4 is an example configuration of an HLF network 

consisting of two organizations each with some number of peer nodes. Each organization 

has one anchor peer, but it is not a separate entity. One of the peers in the group 

consisting of peer0 to peern is designated to be the anchor peer for that organization 

to facilitate communication between organizations. 

3. Membership and Organizations  

An organization is a collection of peers on the HLF network for which there 

is a concept of membership. The HLF platform includes an entity called the Membership 

Service Provider (MSP). The MSP keeps track of certificate authorities (CAs) that 

define the nodes in an organization [73]. An organization can consist of any number 

of nodes: “as big as a multinational corporation or as small as a flower shop” [73]. What is 

important is that the members of that organization are managed and defined by the 

MSP in the HLF network. The peer Docker containers can be logically grouped together 

into a cohort of entities on the HLF network. Figure 4 shows this grouping of peers into 

organizations as mentioned in the Peers and Anchor Peers section of this chapter. 

4. Channels 

A channel in the HLF architecture is a private line of communication within the 

HLF application network that is composed of peers that have joined the channel, anchor 

peers, chaincode these peers use, the ledger and orderer nodes according to the 

channel documentation page [74]. A channel can be thought of as an individual 

ledger, or a separate blockchain with a finite but changeable set of participants, on the HLF 

network. There can be multiple channels comprised of any set of members of the 

particular network. Although not pictured in Figure 4, channels are represented on every 

peer. When new peers are become members of channel, a copy of the current ledger is 

shared with them and blocks that result from transactions are distributed to them from then 



44 

on [74]. The ledgers that represent the channel are installed on peers, but the 

channel itself can be thought of as a grouping of peers similar to an organization.  

5. Ordering Nodes and Ordering Service  

Ordering nodes manage an important mechanism related to the consensus in 

the HLF network. The ordering service is made up of ordering nodes that order the 

transactions on each ledger for each channel on the network in a “first-come-first-serve 

basis” [72]. When a channel is created, the user invokes one peer utility command 

options which notifies ordering system [75]. This allows the ordering service to 

handle multiple channels in one application. The ordering service is treated as a swappable 

plugin, a selection of defaults come with HLF and they can be changed to other ordering 

implementations [72]. Figure 4 shows one ordering node that communicates with the nodes 

from each organization. The anchor peers allow the organizations to talk to each other, 

but every node communicates with the orderer node. 

C. CONSENSUS IN THE HYPERLEDGER FABRIC PLATFORM 

Consensus in the HLF platform is tied to the transaction flow. Transaction flow is 

the series of events that occur when a client starts a transaction within the HLF network. 

A transaction is described in more detail in the figures below, starting with Figure 5. The 

definition of consensus, according to the HLF model page of the documentation, is the 

“full-circle verification of the correctness of a set of transactions comprising a block” [76]. 

Every portion of the transaction process contributes to consensus in the Hyperledger model. 

It does not rely solely on a specific algorithm. When a transaction is initiated by a client 

application, a request is built that must adhere to the endorsement policy as stated in the 

assumptions section of the transaction flow portion of the HLF documentation [77]. 

Figure 5 shows a client initiating a transaction that builds a request that adheres to the 

endorsement policy. When the client initiates a transaction, a proposal is sent to the peers 

that will participate in the transaction [77]. A proposal according to the HLF glossary is a 

request for reading or writing or adding new data to the ledger [72]. 



45 

 

Figure 5.  A client initiates a transaction for two peers. Source: [77]. 

The software development kit (SDK) pictured in Figure 5 is allows the client 

application to communicate with the HLF platform by taking the generated proposal and 

wrapping it in the appropriate format for the HLF application network [77]. The SDK in 

context of HLF is a set of function libraries available to Node.js, and Java that allow an 

application to interact with an HLF application [78], [79]. 

As stated in the HLF glossary, an endorsement policy contains a list of the peers 

that must provide endorsement responses to a transaction request. [72]. A transaction is 

only valid when the minimum number of endorsing peers endorse the transaction request. 

Returning to the transaction flow process from the transaction flow portion of the 

documentation [77], the client then starts the process of collecting and inspecting 

signatures from peers that endorse the transaction pictured in Figure 6 and Figure 7 

 

Figure 6.  Client application collecting signed proposal. Source: [77]. 



46 

NOTE: In Figure 6, the icon for the SDK has been given the label “App.” The 

documentation page that these figures were taken from contains this same inconsistency. 

The application interacts with the SDK to interact with HLF, so Figure 6 can be interpreted 

as the application receiving the proposals. Figure 7 can then be interpreted as the 

application using the SDK to inspect the signatures on the proposals.  

 

Figure 7.  Signatures are inspected. Source: [77]. 

Figure 6 and Figure 7 show the process of peers signing endorsements of a 

transaction request, which leads to signatures that the client application uses to verify 

and validate transaction proposals. After that, the ordering service orders the transactions 

into blocks and updates the ledger accordingly as pictured Figure 8 to Figure 10. 

 

Figure 8.  Transaction data sent to ordering service for each channel. 
Source: [77]. 

Figure 8 shows transaction data being sent to the ordering system from multiple 

channels on the HLF application network. The ordering system then outputs those 

transactions in chronological order as blocks. 



47 

 

Figure 9.  Ordering service delivers transaction blocks to peers. Source: [77]. 

After the transactions are ordered into blocks, the ordering service delivers those blocks to 

the peers on the HLF application network as pictured in Figure 9.  

 

Figure 10.  Peers append blocks to their copy of the ledger. Source: [77]. 

The transaction blocks are then appended to each peer’s ledger copy as pictured 

in Figure 10. After this process has completed, the client application will receive both a 

notification that the ledger has been updated and a notification on the validation status of 

the transaction [77]. 

HLF inherently deals with validating membership and identity as well as ordering 

the transactions on the network. Applications that use HLF do not have to rely on proof of 

work, proof of stake for consensus, they rely on a cycle of verifications and validations that 

occur during the transaction. 



48 

D. HYPERLEDGER FABRIC UTILITIES 

This section will detail the software functionality available in the HLF software 

environment for operation of HLF applications. This software is comprised of platform-

specific utilities that are used for configuration and execution of blockchain operations. 

The utilities are platform-specific because the installation script downloads the versions of 

the utility specific to the operating system that the command is executed on. Some of these 

utilities also use a specific configuration file format to generate output.  

The HLF utilities are a suite of tools used to set up an environment for the 

application network. Setting up the network involves creating communication channels, 

generating cryptographic material, and defining Docker containers as entities on the 

network. Some available utilities are: cryptogen, configtxgen, peer, fabric-ca-client and 

fabric-ca-server. These utilities are added to a directory which is exported into the PATH 

environment variable. Thus, users can reference the utilities easily, regardless of their 

current working directories. The function of each utility within the context of the HLF 

application framework is explained below. 

1. Cryptogen 

The cryptogen utility provides the ability to stand up a dummy network for testing 

functionality. This utility generates cryptographic public-private key material for the HLF 

application framework [80]. This includes certificate authority (CA) certificates, private 

and public key files for nodes in a network. According to the HLF documentation [80], 

cryptogen is used for testing the environment. This utility uses a configuration file to 

generate appropriate cryptographic material. A pre-existing PKI, or public key 

infrastructure, can also be used when setting up the HLF network. In this case, members 

use their own CA instead of relying on the one generated by cryptogen [75]. An existing 

network that uses HLF would most likely already have a CA for daily network operations.  

2. Configtxgen 

The configtxgen utility is a configuration tool for components on the HLF network. 

The user can create configuration objects such as channel creation transactions, genesis 



49 

blocks, organization definitions and anchor peer transactions [81]. The utility 

uses YAML configuration files to generate transaction files and can inspect the transactions 

that have already been generated [81]. These transaction files are not transactions that occur 

between peers on the network, they are files that specify a transaction in the blockchain 

network to create certain entities such as channels and anchor peers according to 

the configtxgen documentation. 

3. Peer 

The peer utility controls the actions of peer nodes in the HLF application network. 

The utility is used to perform peer-specific tasks [82]. These include adding a peer to a 

channel and moving chaincode onto a specific peer.  

4. Fabric-CA-Client and Fabric-CA-Server 

HLF supports CA functionality for managing identities on the HLF network. Two 

commands exist for executing this functionality: fabric-ca-client and fabric-ca-server [83]. 

The fabric-ca-client command is used to renew and revoke certificates that have been 

issued, and to manage the identities of entities on the network. The fabric-ca-server 

command is used to start and manage CA servers on the network. The commands have 

separate syntax pages within the HLF documentation. 

5. Use of YAML in Configuration Files 

The YAML format is used for configuration information files used by Docker 

Compose and by multiple HLF utilities. The YAML home page and Ansible 

documentation websites [84], [85] explain that YAML literally stands for “YAML ain’t 

Markup Language.” It is intended to be a more human- readable language than XML or 

JSON. Figure 11 depicts the crypto-config.yaml file which describes peers and 

organizations so that cryptographic material can be generated. 



50 

 

Figure 11.  A YAML configuration file for cryptogen. Source: [75]. 

E. SUMMARY 

This chapter discussed the architecture of the HLF platform. The software 

dependencies and components of the HLF platform were detailed along with the network 

entities that create the ecosystem of the network. The utilities used to manage the HLF 

platform, which are packaged with the platform, were also detailed in this chapter. We gave 

a high-level overview of how the platform operates behind the scenes when used in a 

production system. The next chapter will discuss sample applications for HLF provided by 

its developers. A design for an application that could be used by the military or government 

will also be proposed in the next chapter. 

  



51 

VI. APPLICATIONS OF HYPERLEDGER FABRIC 

This chapter will discuss the sample applications that exist for Hyperledger Fabric 

(HLF). Also discussed here will be a proposed application for HLF that could be used by 

the military. The requirements for this application and components involved with an 

implementation will be discussed as well.  

A. SAMPLE APPLICATIONS 

Sample applications are scenarios that have been configured and programmed by 

the HLF developers and packaged into a repository on the GitHub website. This section 

will describe the applications and their coverage of Hyperledger Fabric functionality. Each 

application requires similar setup steps to become operational. After that they showcase 

different functionality and behavior available to users of Hyperledger Fabric (HLF). All 

applications described here operate on the Ubuntu 18.04 Linux operating system 

distribution of our test environment. 

1. Overview 

A common sequence of events is shared by of all the applications. First the network 

of Docker containers is set up, along with channel artifacts. Channel artifacts are the 

genesis block file and channel creation transaction files, and anchor peer creation 

transaction files. Anchor peers and channels, and the creation of the genesis block were 

described in Chapter V, and the genesis block concept was described in Chapter II. The 

relevant Docker containers include: containers for peers, the orderer, and management 

nodes. Second, channels and anchor peers are created on the Docker containers. These 

represent entities in the HLF application network. Third, chaincode is installed onto the 

peers, initial values are set and the scenario for the sample application is started.  

2. First Network 

The First-Network application provides an introduction to the components 

necessary for an HLF application network. This application follows the events of the 

Overview section of this chapter closely because this application is intended for beginners 



52 

to the HLF platform. The Building your first network documentation page associated with 

this sample application instructs the user to execute the premade scenario before exploring 

the individual commands within the scenario [75].  

The scenario for this application is a basic transfer of value between two keys that 

are stored in the ledger of one channel. The first task is to generate channel artifacts, which 

were described in the Overview section of this chapter. Since this application is meant to 

be a demonstration, and is not intended for operational use, the cryptogen utility is used to 

create cryptographic material for the entities on this network. Next, the configtxgen utility 

is used to create the genesis block, and channel and anchor peer transaction files from user-

created configuration files. For these sample applications, the configuration files with 

information relevant to the sample are already provided. These configuration files specify 

attributes such as the names of channels, the hostnames of peer containers, organization 

profiles, and the peers are a part of each organization. The cryptogen and configtxgen 

utilities were described in Chapter V, under the Hyperledger Fabric Utilities section. 

The second half of the First-Network sample application involves setting up the 

Docker containers that represent the network. Docker Compose takes a configuration file 

as input and generates the peer and orderer containers, as well as a command line interface 

container that is used to manage the other Docker containers in the context of the HLF 

application [75]. The container that allows for management of the application Docker 

containers is called the CLI (Command Line Interface) container and is generated from 

the hyperledger/fabric-tools Docker image supplied alongside the sample applications by 

the developers. This container, as described in the documentation for this sample 

application, contains installed utilities to manage adding peers to channels, and for 

installing and running chaincode on specific peers. The peer utility is used in the operations 

described next. In the Create & Join Channel section of the documentation, the CLI 

container is used to add peers to channels using their cryptographic material, and 

predefined channel names as arguments to the peer utility. After the peers are joined to 

their respective channels, the anchor peer transaction files are used to designate anchor 

peers for each organization. Next, the chaincode is installed on each peer that will be 

engaging in transactions. After the chaincode is installed application-specific initial values 



53 

are set. The initial values of this the First Network application are for transferring data 

between two entities and for querying the ledger. 

All these steps are executed by the scripts available in the sample application, but 

every step can be executed manually by a user. For example, the network containers can 

be set up using the Docker and Docker Compose utilities with the provided configuration 

files. Channel transactions, the genesis block, and anchor peers for each organization can 

be created manually as well. After the containers are setup, the user uses Docker to enter a 

terminal session on CLI container. The CLI container must be attached to using the 

Docker utility command “docker exec -it <container name> bash” to see 

the terminal screen and interact with the container. The user can then execute commands 

to add peers to the channel, designate the anchor peers, and install, instantiate and execute 

chaincode. The scripts that are included in the scripts folder, found on the CLI container, 

show the commands a user could invoke to recreate this sample or execute a custom 

scenario. 

3. Basic Network 

Basic Network is a short application that shows basic peer operations in HLF. 

According to the documentation, the start.sh script begins the application, stop.sh stops 

it, and teardown.sh removes network artifacts [86]. When start.sh is executed, it creates 

Docker containers for the scenario, creates a channel and joins a peer to that channel [87]. 

In the beginning of this application, the terminal window shows that one container each is 

started for a CA server, a CouchDB instance, an orderer node, and a peer node. 

4. Balance Transfer 

The Balance Transfer application demonstrates the use of Hypertext Transfer 

Protocol (HTTP) requests to execute HLF blockchain operations such as registering 

organizations, creating channels and adding peers to those channels, and installing and 

instantiating chaincode. HTTP allows a client to request data from the server [88]. In this 

case, the application uses the curl utility to send a request in the form of the URL for the 



54 

server with parameters appended to the end of it. When the server receives the URL it takes 

an action based on the parameters and returns the data to the application.  

The Balance-Transfer application starts with the script runApp.sh which executes 

a Node.js application to listen for requests on the localhost on port 4000 [89]. The terminal 

window that this command is executed on then waits for responses from the server. The 

user then runs the testApi.sh script next with the parameter -l node for Node.js chaincode 

execution or -l golang for Golang chaincode execution. This script then sends requests to 

the server for actions such as enrolling users to organizations, creating channels, and 

installing chaincode. Examples of these command request URL strings are pictured in 

Figure 12 to Figure 14, from [89]. More examples of commands, and their output, can be 

found in the README file in the balance-transfer repository. 

 

Figure 12.  Command to register new users to organization. Source: [89]. 

Figure 12 shows the command to add a new user to a specific organization. The 

parameters include the Organization identifier, or the name of the organization as defined 

by the YAML configuration files used to start up a Hyperledger Fabric network as 

referenced in Chapter V. 



55 

 

Figure 13.  Command to create a channel. Source: [89]. 

Figure 13 illustrates a request to create a channel on the network. The channel name 

and path to the configuration file for the creation of that channel are specified in JSON 

format. JSON was discussed in Chapter V as key value pair data representation. 

 

Figure 14.  Command to install chaincode. Source: [89]. 

 



56 

Figure 14 shows the installation of chaincode onto two peers of Org1. The peers 

parameter in the URL show that they are targeting peer0 and peer1 to install a chaincode 

named mycc. The other parameters show the name of the chaincode, the version of the 

chaincode, and the directory that the source code can be found in. 

5. High Throughput 

The High-Throughput application addresses scenarios where transactions happen 

with a high frequency on the Hyperledger Fabric network. Its documentation states that 

when an update comes in for a specific key in the network, trying to update the value at 

that time could cause slowdown of the network, and could create a race condition for the 

value of that key [90]. A race condition, according to TechTarget, occurs when a shared 

resource like a file is subjected to a write operation from two different systems or devices 

at the same time [91]. The result of those operations is then ambiguous and may end up 

with incorrect output. This sample application proposes a technique of application and 

chaincode development as a solution to this issue. 

This design choice, used to manage race conditions, appears to work best with 

numerical data. Frequent write operations of numerical data are stored as a row of deltas 

for a specific key [90]. One use case describes an enterprise bank account that experiences 

high frequency deposits and withdrawals [90]. The technique describes storing the values 

of deposits and withdrawals as a series of positive and negative numbers respectively along 

with the initial value of the account. At some point, when transactions are suspended, a 

pruning operation is conducted to aggregate the deltas and update the value of the account. 

The application would process transactions and add deltas with chaincode, and after a 

certain period, invoke the pruning functions and update the ledger. There are two versions 

of a prune function: one that is safe, and one that is fast [90]. Fast pruning means that a 

delta is aggregated then deleted before moving on to the next delta, which is fast, but could 

lose data in case of error. Safe pruning means that all the deltas are aggregated, backed up, 

and then deleted, therefore trading speed for caution. 

This technique could be extended to accommodate other forms of data. 



57 

To run the High-Throughput application, the documentation instructs the user how 

to change and leverage the byfn.sh script and the Docker Compose-cli.yaml file in the 

First-Network application for use with the High-Throughput application [90]. This 

includes altering the byfn.sh script so that it stops short of executing the scenario for First-

Network and editing the configuration file so that the Docker containers use the scripts 

associated with High-Throughput. Once the application is set up, and the containers are 

executing, the user enters the CLI container to execute commands. In our tests, one of the 

CLI container scripts did not execute properly. Although the scripts channel-setup.sh and 

install-chaincode.sh execute without error, the last script, instantiate-chaincode.sh, 

results in an error with a message that the package for the chaincode bigdatacc cannot be 

found. A search through the README file, the chaincode folder for the sample 

application, the instantiate-chaincode.sh file itself, and channel-setup.sh and install-

chaincode.sh, no references to bigdatacc could be found. This error could be resolved in 

later versions of the HLF platform. The error was reported to the HLF developer 

community. 

6. Fabric-Ca  

The Fabric-ca example demonstrates the certificate authority (CA) client and 

server system available in Hyperledger Fabric. The utilities fabric-ca-client and fabric-ca-

server (or fabric-ca utilities) are used in this sample. The scenario for this example includes 

chaincode invocations and transactions between peers on the application network. 

However, the important feature that this sample application covers is the use of the fabric-

ca utilities to register and enroll identities on the application network.  

The scenario involves three organizations org1 and org2, which are for the peer 

organizations; and org0, which is the orderer [92]. Six containers are started by the startup 

script: three root CAs, and three intermediate CAs. Each of the three organizations will be 

assigned two CA containers, one root and one intermediate. The root CAs execute the 

fabric-ca-server utility and create root CA certificates and make them available to entities 

on the network. The intermediate CAs enroll their respective root CAs and create their own 

certificates and make them available on the network. Next identities of the peers are 



58 

registered and enrolled with the intermediate CA servers. When this happens, the 

administrator identity on the peer node Docker containers receives a certificate that 

provides permission for that administrator to execute chaincode on the network. The 

certificate of the administrator contains the attribute abacinit which is set to “true:ecert” 

[92]. This allows the admin user to execute chaincode. Figure 15 is a portion of the setup-

fabric.sh script and shows a snippet of the code defining the attributes of the certificate. 

Application developers can set attributes of certificates for the application network. 

 

Figure 15.  Attribute abac.init is defined for certification. Source: [93]. 

The abac.init attribute represents the “Attribute-Based Access Control (ABAC)” feature 

associated with the use of CA servers. The ability to set attributes combined with the 

assertion function in the chaincode, pictured in Figure 16 allows control to be set regarding 

who can execute chaincode in the network.  

 

Figure 16.  Golang code to assert access to chaincode. Source: [94]. 



59 

The flow of logic in Figure 16 shows that if the selected attribute does not contain the 

proper value, the chaincode ends execution and reports an error. 

After the CA operations have executed, the sample application continues with the 

scenario test case. The sample application starts with commands to bootstrap the CA 

containers [92]. All the containers are set up, the peers are joined to channels, and 

chaincode is installed, instantiated, and tested with queries. This information is relayed to 

the user through log messages through a terminal window. After the scenario completes, 

the last message points the user to the log file which contains additional details not shown 

in the terminal window. 

7. Fabcar 

The Fabcar application executes a smaller scenario but demonstrates how an 

application is built and managed using Node.js and Hyperledger Fabrics existing code 

libraries. The scenario for the Fabcar example is a database of cars that the user queries 

for information or adds information to. The main application code is written in Node.js and 

the network is set up with a script that goes through the series of steps detailed in the 

Overview and First-Network sections. The documentation states that this application 

interacts with the API of Hyperledger Fabric to update and query the ledger [95]. Two files 

query.js and invoke.js manage queries of and updates to the ledger respectively. In both 

files, the request for a query, or an update is built in the JSON format.  

Before the query.js and invoke.js files can be executed, users must enroll the 

administrator and register a non-admin user. This is done by executing the enrollAdmin.js 

and registerUser.js scripts. To show the messages that occur during CA enrollment and 

registration one can open another terminal and execute the command “docker logs -

f ca.example.com” [95]. When this command is run, the waits for input and when 

enrollAdmin.js and registerUser.js are run, the terminal prints messages confirming 

enrollment and registration.  

The script query.js returns all the entries on the ledger, but the query parameters 

can be edited to return different results. Unfortunately, the invoke.js script threw an error 

indicating that a function used in this script is no longer a part of the Node.js module 



60 

provided by the developers. Researching this problem on forums yielded no results that 

worked to fix the issue. The proposal for updating the ledger with a new car in invoke.js 

is sent successfully, but functionality of this script ends here due to the error. This error is 

something that the developers should be able to fix in later versions of the platform. This 

error was also reported to the HLF development. 

Figure 17 shows the request for updating the ledger in the Fabcar sample. The 

values in this JSON request define the function that will execute, the arguments for that 

function, and the channel or chain name. In this case the createCar function is run with 

five arguments that define the name, make, model, color, and owner of the car. 

 

Figure 17.  Fabcar ledger update request. Source: [96]. 

The CA operations for this example only include enrolling an administrator and 

non-administrator user. The two files enrollAdmin.js, and registerUser.js handle these 

operations. The admin user was registered with the CA, and the enrollAdmin.js file 

retrieves the certificate associated with that admin, which is then used to register and enroll 

the non-admin user in registerUser.js so they can interact with the ledger in this 

application [95].  

B. CHANNEL BRANCHING AND MERGING 

This section will propose an application design that uses the capabilities of a 

Hyperledger Fabric application in a way that not explicitly demonstrated in the 



61 

documentation. Only the application design is described here; its implementation is future 

work. The discussion will cover the technical aspects of the chaincode function libraries 

provided by the developers for Golang and Node.js support. 

Channels in Hyperledger Fabric are intended to be isolated from each other. The 

white paper for Hyperledger Fabric offers the idea that a blockchain can have 

confidentiality of execution of a smart contract so that only a subset of members on a 

channel can receive the results of that smart contract [33]. The documentation page for 

channels states that “no ledger data can pass from one channel to another,” which supports 

confidential communication between business partners [74]. Is there a way to merge 

information from one channel to another? Perhaps the capabilities of the HLF platform can 

be configured to make this work in theory. 

1. Concept 

The main idea is to archive transaction history data from one channel onto another 

HLF channel. In this proposed application, inventory data in key and value form, similar 

to JSON format, would be stored on the ledger for use in a short-term operation. The 

concept proposed here can work with either two channels, or one with channel and one 

database. In the scenario with two channels, one channel will contain all the keys and 

values associated with an initial inventory for the operation, and one channel will be given 

a subset of the keys and values from the first channel. In the second scenario, a database 

will be used to transfer data associated with the operation to an HLF channel in key-value 

form. The temporary channel that receives keys and values from the initial channel, or 

database in this application will be named the secondary channel and the channel or 

database that is used to initialize the secondary channel will be called primary channel. 

The secondary channel will receive inventory keys and values, execute transactions, and 

then at some point, report back to the primary channel with its history of transactions 

involving those keys and values that have occurred up to that point in time. Figure 18 shows 

a notional diagram of how the application works. 



62 

 

Figure 18.  Channel merging notional diagram 

In Figure 18 the primary channel starts at the time t0 and transfers keys and values 

of some of its inventory to the secondary channel which starts at time t1. Both channels 

continue with transactions and time passes. At time tn the secondary channel must report 

the keys and values along with its transaction history. In this example, these keys and 

values represent data stored on the ledger. The secondary channel transfers the history of 

the transactions on the channel which includes the keys the primary channel initially 

transferred to it, the values associated with those keys, and any information on the actions 

that occurred between t1 and tn. 

2. Necessary Components 

Being able to obtain the history of keys and values on the ledger requires the ability 

to extract keys from the ledger of a channel. Multiple keys can be queried from a channel 

using the chaincode function GetStateByRange. The documentation for chaincode states 

that the GetStateByRange function takes two arguments, startKey and endKey, which 

returns an object that contains access to all the keys between the first key and the end key, 

including the first key and excluding the end key, in lexical order [97]. If both parameters 

are set to the empty string, there will be an unbounded range on all the keys that are 

returned. This is interpreted to mean that every key on the channel will be returned in this 

situation. Lexical order in this case means that the keys are sorted in the same way that 

words are sorted in a dictionary [98]. The return value of this function will be a 



63 

StateQueryInteratorInterface [97]. This object contains three documented functions: 

HasNext, which will return true if there is another key in the list, Close, which must be 

called when the object is no longer needed, and Next, which will return the next key and 

value in the list. The Next call returns a KV data structure that contains the key as a string, 

and the value as an array-like data structure of bytes [99]. 

Once keys are extracted from the ledger, they can be used with a combination of 

chaincode functions that can retrieve the transaction history associated with individual 

keys. The GetHistoryForKey, as documented, takes the key as a string argument and 

returns a HistoryQueryIteratorInterface object, which in turn has the functions HasNext, 

Close, and Next which work in the same way as the functions in the 

StateQueryInteratorInterface [97]. For this function the Next function returns a 

KeyModification object which contains the transaction identifier as a string, the value 

associated with that key again as an array-like structure, a timestamp variable, and a 

Boolean value named IsDelete which indicates if the key has been deleted at this point 

[99]. 

Once the history information is returned, the transaction identifier can be used with 

the Node.js SDK to retrieve further information about a transaction associated with a 

specific key. The Hyperledger Fabric SDK for Node.js provides the queryTransaction 

function, which takes a transaction identifier as a string argument and returns a 

ProcessedTransaction object [100]. This ProcessedTransaction object itself contains a 

TransactionEnvelope object [101]. The TransactionEnvelope object contains a 

Transaction object, which is an array of actions that took place in this transaction. This 

data structure would have to be parsed further to decide what information inside of it would 

be important to report back to the primary channel. 

3. Combining the Components 

The first task is to write keys and values from the primary channel or database to 

the secondary channel. For a channel, this can be accomplished with the GetStateByRange 

function implemented in chaincode for the primary channel, allowing the application to 

collect a subset, or all the keys. For a database, keys and values can be queried and put into 



64 

the JSON format. Then these keys and values can be parsed through the chaincode into 

basic string values and written to a location on a file system that can be read later. Once 

the values are written to disk, chaincode on the secondary channel can read them to 

instantiate the initial ledger state for that channel. 

The next task is reporting the values associated with each key on the secondary 

channel at tn. At this point, the chaincode on the secondary channel can execute the 

GetStateByRange function to collect keys for the next step. To collect all the keys from the 

secondary channel, the empty string should be provided to the GetStateByRange function 

so that every key on the channel is returned. In the chaincode associated with the secondary 

channel, the next step is to iterate over the key list and use each key as an input argument 

to the GetHistoryForKey function to receive the HistoryQueryIteratorInterface object that 

contains the history associated with the key. For each key, the function will produce this 

object which should be parsed into string values that can be written to disk. In this case 

separate files for the history of each key could be created so that all data for a particular 

key is kept in. These history objects will contain a transaction identifier for each entry, 

which can be used in junction with the Node.js function queryTransaction to gain more 

information about specific transactions. A separate Node.js script would be necessary to 

access the key history files stored on disk and read transaction identifiers to use the 

queryTransaction function. The data returned from this would have to be parsed to decide 

what is important for reporting back to the primary channel. 

In the scenario containing two channels, once the information is collected from the 

secondary channel, it can be written to the ledger through chaincode installed on peers in 

the primary channel. The historical data would be written to the primary channel as new 

entries, where the key follows a naming convention for archived history, and the value is 

the collected historical data in JSON format. 

In the scenario where primary is a database, once the information has been 

collected from the secondary channel, it can be written to the database from disk. 

Chaincode on the secondary channel could directly write the historical data to the 

database, or an external script could be used to read the data from disk and enter it into the 

database. The historical data for each key would follow the format of the database. 



65 

After historical data is written to the primary channel or database, use of the 

secondary channel will be discontinued. In this model, a new channel will be created for 

each short-term operation and discarded once the operation is over. 

This describes the basic concept for this HLF application. The capabilities of HLF 

allow for transaction data to be archived. Data could also be transferred between channels, 

something the platform was not intended to do, but can be made possible through a set of 

carefully designed steps. At this stage, custom development is necessary on the part of the 

party intending to use the HLF platform for this purpose and will be discussed in 

Chapter VII. 

C. SUMMARY 

This chapter discussed the sample applications available from the Hyperledger 

Fabric developers. The six sample applications covered a set of capabilities available to 

users and demonstrated the tools available for developing custom applications. Two of the 

sample applications, however, produced errors during their scenarios. These errors may be 

fixed in later versions of the HLF platform but their status was reported to the community 

of developers in case they were not aware of them. The other applications ran without error 

and demonstrated core concepts of the HLF platform. 

Then an application concept was proposed for certain short-term operations. This 

design made use of available capabilities in the HLF platform to propose new behavior 

currently unavailable on the platform. 

The next chapter will summarize the lessons learned from researching different 

blockchain platforms, as well as provide a perspective on the Hyperledger Fabric platform. 

The parts of the short-term operation application outlined here that require more work will 

be discussed. 

  



66 

THIS PAGE INTENTIONALLY LEFT BLANK 



67 

VII. FUTURE WORK AND CONCLUSIONS 

This chapter will discuss the conclusions of reviewing blockchain platforms, 

selecting HLF from the set of BPs, and investigating the HLF platform. The results of 

setting up HLF on the testbed will also be discussed along with future work. This will 

include aspects of the proposed application discussed in Chapter VI that require more work. 

A. FUTURE WORK 

This section will discuss the areas of the proposed design from Chapter VI that need 

to be developed or developed further to make the it workable. The application may provide 

a way to transfer data between channels in HLF, something that the platform currently does 

not do. The application also will provide a way to archive the history of transactions on a 

channel. Certain chaincode and Node.js functions were identified in Chapter VI that could 

facilitate using existing HLF features to achieve the desired behavior.  

1. Future Application Development 

The proposed application from Chapter VI, channel history archiving, could work 

in theory given the capabilities and behavior allowed by the HLF platform. First, the 

application itself should be implemented in future works so that its feasibility can be 

assessed. In the Combining the Components section of Chapter VI, we noted that 

information that needs to be shared between channels should be written to disk. This step 

requires work to streamline and secure the process. An appropriate location for the 

transactional key and value information to be written to needs to be determined. The peers 

executing chaincode exist in their own containers and act like separate hosts on the 

application network. Because of this, the read and write operations for information to be 

transferred will require an appropriate protocol. The use of a database or storage server 

could support this operation. When supplied with a transaction identifier, the Node.js 

queryTransaction function returns an object that contains data about transactions. The 

returned object contains a lot of information, and more work is needed to determine much 

of the information returned is necessary to create an historical record of a transaction. If a 

channel executed many transactions on each key, the list returned from the 



68 

HistoryQueryIteratorInterface object could be long. An effective way to represent this data 

and the data returned from the queryTransaction function in human readable format must 

be developed. How data will be written back to the primary channel is a part of the 

application design that requires further analysis and development. 

An application interface will be needed for this application. Ideally, a user should 

be able to open a graphical application window, or command line terminal and specify the 

primary channel, the secondary channel to send keys and values to, and the keys 

associated with the inventory to transfer. The user should also be able to activate the 

transfer from primary to secondary and vice versa through the application interface. 

2. Other Use for Hyperledger Fabric 

Docker software allows for the creation of lightweight virtual machines. HLF can 

be deployed in these lightweight virtual machines instead of setting up distinct physical 

machines for a network. The labtainers framework provides a Docker-based environment 

for laboratory exercises for cybersecurity education [102]. The framework includes tools 

for developing new lab exercises [102]. Since HLF uses the Docker software, it should be 

possible to integrate these two entities in a future project. Exercises related to HLF 

operations could be designed for education in cybersecurity as well as the HLF platform. 

Students could then gain experience with blockchain platform techniques as well as 

cybersecurity techniques. 

B. CONCLUSIONS 

One of the lessons learned from reviewing blockchain platforms is that the 

information that developers make available about their platforms is not standardized. 

During the review process, we discovered the information we used for the metrics defined 

in Chapter III were not organized in the same way for every blockchain platform. Some 

websites provided links to community written electronic books, others provided a wiki 

page maintained by the developers, others described vague business solutions, whereas 

others provided huge documentation websites. Even though the platforms were available 

to download and use, they varied in maturity: some were started only a year ago, some had 

barely gotten past their first version 1.0 release and were still adding small features 



69 

periodically, and, in one case, the company that had developed a platform pivoted to a new 

platform. Finding a blockchain platform that can support a variety of applications and their 

development was a challenge: a lot of platforms are based around tokens, or token 

exchange.  

The testbed that we created was built on the Ubuntu 18.04 operating system hosted 

as a virtual machine on VirtualBox. The required software of Docker, Docker Compose, 

the Go language compiler, Node.js, and the HLF utilities, sample applications, and Docker 

images were installed. We were able to bring the HLF platform to a workable state so that 

the sample applications could be executed following the directions within the 

documentation for each sample application. Some of the sample applications could not be 

executed completely because of errors that arose. Specifically, the Fabcar, and High-

Throughput applications ran into errors with modules they were dependent on to complete 

their scenarios. Unfortunately, we were not able to overcome these issues in the time 

provided, even after searching forums and sample application files and code itself for 

solutions. This was the case because we were not sufficiently familiar with the backend 

code that the developers have designed. The functionality of the sample applications was 

demonstrated sufficiently by the documentation, however. The errors were reported to the 

development community for HLF so that these applications can be fixed. 

Blockchain platforms can support the development of versatile applications. The 

cornerstone data structure, the blockchain, can be applied to different use cases, including 

distributed applications. HLF was chosen as the blockchain platform for the testbed 

because uses smart contracts and is not designed to require tokens or cryptocurrency [39]. 

Instead its developers made the platform as general as possible allowing for the design of 

a variety of distributed applications. 

In closing, blockchain platforms that support smart contracts, PKI integration or 

similar capabilities have the possibility of being used by the DoD use. The DoD has already 

established a PKI that supports identification and authentication of users, as well as 

confidentiality and integrity of documents. This could be leveraged in HLF-based 

applications. The smart contract capability allows a blockchain platform to be tailored to 

the application needs of the user. However, care must be taken to select a blockchain 



70 

platform that does not include expensive startup overhead costs. Instead, a platform that 

can be seamlessly integrated into current infrastructure is preferable. 

  



71 

APPENDIX A.  BUILD ENVIRONMENT SETUP 

This appendix adapts the following documents and tutorials to set up the build 

environment for the testbed network that will run Hyperledger Fabric in this study. This 

appendix serves as instructions on how to set up the test system involved in this study. 

A. VIRUALIZING THE ENVIRONMENT 

a. Required Software: 

• VirtualBox software. 

• Latest Ubuntu OS version (At the time of writing Ubuntu 18.04). 

b. Set up by: 

• Following Appendix A or B in the Labtainers instructional document 

available from the Naval Postgraduate School [102]. 

• The testbed environment was created on an Ubuntu 18.0.4 virtual machine 

for testing purposes. 

B. INSTALL GIT 

a. Needed: 

• Git version control software. 

• Follow the instructions on the Ubuntu guide for installing Git [103]. 

• Required for downloading Hyperledger Fabric samples and utilities, and 

the project repository. 

C. INSTALL PREREQUISITES OF HYPERLEDGER FABRIC 

1. Required Software 

• Curl 



72 

• Docker and Docker Compose 

• Golang 

2. Installing Required Software 

a. Detailed instructions on prerequisites available at: 

• The prerequisites page in the Hyperledger Fabric documentation [104]. 

b. Install Curl by entering command: 

• sudo apt install curl 

c. Install docker 

• follow the Docker documentation for Ubuntu [105]. 

• Additional instructions for installing Docker are in Appendix B. 

d. Install Docker Compose 

• follow the installation guide for Linux from the Docker website [106]. 

• Additional instructions for installing Docker Compose are in Appendix B 

e. Install Golang  

• Follow the link for Linux from the Golang download page [107] 

• Note: Choose the Linux download link, 64-bit processor required. 

• Follow the installation instructions for Linux after the download link is 

clicked. Installation instructions are pictured in Figure 19 and Figure 20. 



73 

 

Figure 19.  Instructions for extracting Golang files. Source: [108]. 

 

Figure 20.  Directions for adding Golang binary directory to PATH variable. 
Source: [108]. 

f. Adding environment variables 

• Will need to create a directory to hold chaincode for Hyperledger-Fabric 

• Can be on any location on the disk, must be named ‘go’ for example: 

$HOME/go 

• Directory must be put into environment variables as $GOPATH. 

• Edit /etc/environment and add the line GOPATH = $HOME/go 

• Replace ‘$HOME’ with chosen path as below if needed. Example 

GOPATH variable in Figure 21. 

 

Figure 21.  Format of the environment variable in /etc/environment file 



74 

g. Install Node.js on Ubuntu 

• Follow the instructions from the Digital Ocean Node.js installation guide 

for Ubuntu 18.04 [109]. 

• Note: The instructions should work on later versions of Ubuntu as well. 

D. HYPERLEDGER FABRIC BINARIES AND SAMPLES 

1. Binaries 

a. Install binaries 

• Follow the Hyperledger Fabric documentation starting at the binaries 

section of the samples page [110]. 

• Updated versions of documentation might exist. If so, follow the updated 

directions. 

b. Note: modify the curl command to read:  

• sudo curl -sSL <URL> | sudo bash -s <version number> 

c. Modify PATH variable 

• Add the path to the bin directory for the binaries to the /etc/

environment file. Figure 22 shows an example of a modified PATH 

variable to include the binary directory path for the Hyperledger Fabric 

samples. 

 
Contains the absolute path to the bin directory for the Hyperledger Fabric binaries 

Figure 22.  The path variable modified in the /etc/environment file  



75 

2. Samples 

The samples are scenarios and use cases in Hyperledger fabric, follow the 

instructions below to install them: 

• Instructions available on the Hyperledger Fabric samples page of the 

documentation [110]. 

• Note: the documentation website provides directions for cloning the git 

repository 

• Alternatively, the repository can be downloaded directly from the GitHub 

page for the Hyperledger Fabric samples [111]. 

• Note: New versions may be released after time of writing, but the 

procedure to copy the repository will be the same. 

• Select the option to copy the repository so it can be cloned in a directory 

of choice 

• Figure 23 through Figure 25 show the steps to take for cloning the 

repository and verifying that the samples are in the directory. 

 
Click the clipboard icon in the circled area to copy the repository link to the clipboard. 

Figure 23.  Dropdown menu on GitHub repository. Source: [111]. 



76 

 
The hyperlink was pasted from the clipboard after being copied from GitHub. 

Figure 24.  Git clone command for fabric-samples repository 

 

Figure 25.  Snippet of directory listing from fabric-samples directory 

• After the link is copied navigate to any desired directory and execute the 

command: git clone <repository link> 

E. TESTING THE SYSTEM IS INSTALLATION 

Run through one of the scenarios provided by the Hyperledger Fabric 

documentation to make sure that everything is installed correctly.  

• A tutorial for verifying functionality can be found on the “building your 

first network” page in the Hyperledger Fabric documentation [75]. 

• Note: The tutorial only needs to be followed up to the “Bring Down the 

Network” section. 

  



77 

APPENDIX B.  DOCKER AND DOCKER COMPOSE SETUP 

This appendix will provide step by step instructions for installing Docker and 

Docker Compose. Screenshots are provided for archival purposes. The instructions 

captured from the website could become obsolete with newer updates to the software, but 

at the time of writing they are the current instructions. 

A. DOCKER INSTALLATION INSTRUCTIONS 

Figure 26 to Figure 33 show the instructions for installing Docker on an Ubuntu 

Linux system. At the time of writing the current Ubuntu version is 18.04.1, which is 

compatible with these instructions. These instructions should work on later versions of 

Ubuntu as well. If they do not, it is recommended to find an updated version of these 

instructions at the Docker website. 

 

Figure 26.  Part 1—Setting up the repository. Source: [105]. 



78 

 

Figure 27.  Part 2—Installing required software. Source: [105]. 

 

Figure 28.  Part 3—Download Docker’s GPG key. Source: [105]. 

 

Figure 29.  Part 3b—Verify key. Source: [105]. 

 

Figure 30.  Part 4a—Repository update instructions. Source: [105]. 



79 

 

Figure 31.  Part 4b—Linux command to setup stable repository. Source: [105]. 

 

Figure 32.  Part 5—Update command. Source: [105]. 

 

Figure 33.  Part 6—Docker installation command. Source: [105]. 

B. DOCKER COMPOSE INSTALLATION INSTRUCTIONS 

Figure 34 to Figure 37 show the instructions for installing Docker Compose and 

assume that Docker is already installed on the system. Again, these instructions are current 

at the time of writing, but should they become obsolete it will be necessary to find the 

updated instructions from the docker website. 



80 

 

Figure 34.  Prerequisites for Docker Compose installation. Source: [106]. 

 

Figure 35.  Part 1a—Docker Compose download command using curl. 
Source: [106]. 

 

Figure 36.  Part 1b—Notice on Docker Compose version number. Source: [106]. 

 

Figure 37.  Part 2—Changing permissions for Docker Compose binary. 
Source: [106]. 

  



81 

LIST OF REFERENCES 

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Bitcoin Project, 
31 October 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf 

[2] M. Swan, Blockchain. Sebastopol, CA, USA: O’Reilly Media, Inc, 2015. 

[3] I. Bashir, Mastering Blockchain, 2nd ed. Birmingham, UK: Packt Publishing, 
2018 

[4] S. Raval, Decentralized Applications. Sebastopol, CA, USA: O’Reilly Media, Inc, 
2016. 

[5] N. Prusty, Building Blockchain Projects. Birmingham, UK: Packt Publishing, 
2017 

[6] “Consensus mechanisms explained,” 3iQ Corp, 5 April 2018. [Online]. Available: 
https://3iq.ca/3iq-research-group/consensus-mechanisms/ 

[7] “Blockchain basics,” 3iQ Corp, 29 December 2017. [Online]. Available: 
https://3iq.ca/3iq-research-group/blockchain-basics-2/ 

[8] L. Schor, “On zero-knowledge proofs in blockchains,” Medium, 23 March 2018. 
[Online]. Available: https://medium.com/@argongroup/on-zero-knowledge-
proofs-in-blockchains-14c48cfd1dd1 

[9] L. Lamport, R. Shostak and M. Pease, “The Byzantine generals problem,” ACM 
Transactions on Programming Languages and Systems, vol. 4, no. 3, pp. 3824–
01, 1982. 

[10] G. Konstantopoulos, “Understanding blockchain fundamentals, part1: Byzantine 
fault tolerance,” Medium, 30 November 2017. [Online]. Available: 
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-
1-byzantine-fault-tolerance-245f46fe8419 

[11] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proceedings of 
theThird Symposium on Operating Systems Design and Implementation, New 
Orleans, LA, USA, 1999. 

[12] S. Chacon and B. Straub, Pro Git, 2nd ed. New York, NY, USA: Apress, 2014. 

[13] E. Sink, Version Control by Example,. Champaign, IL, USA: Pyrenean Gold 
Press, 2011. 

[14] “Blockchain forks,” 3iQ Corp, 18 February 2018. [Online]. Available: 
https://3iq.ca/3iq-research-group/blockchain-forks/ 



82 

[15] R. Modi, Solidity Programming Essentials. Birmingham, UK: Packt Publishing, 
2018. 

[16] A. Narayanan and J. Clark, “Bitcoin’s academic pedigree,” Communications of 
the ACM, vol. 60, no. 12, pp. 364–5, December 2017. 

[17] A. Antonopolous, Mastering Bitcoin, 2nd ed. Sebastopol, CA, USA: O’Reilly 
Media Inc, 2017. 

[18] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” in 
Advances in Cryptology -- Crypto ‘92, 1992. pp 139 -147. [Online]. Available: 
https://dl.acm.org/citation.cfm?id=705669  

[19] V. Beal, “Public-key encryption,” QuinStreet Inc, accessed 22 July 2018. 
[Online]. Available: https://www.webopedia.com/TERM/
P/public_key_cryptography.html 

[20] W. Mougayar and V. Buterin, The Business Blockchain. Hoboken, NJ, USA: John 
Wiley & Sons, 2016. 

[21] “Chain of custody,” Duke Law, accessed 3 July 2018. [Online]. Available: 
http://www.edrm.net/glossary/chain-of-custody/ 

[22] M. Meyers and S. Jernigan, Mike Meyers’ CompTIA Security+ Certification 
Guide, 2nd ed. New York City, NY, USA: McGraw Hill, 2017. 

[23] P. Fairley, “Feeding the blockchain beast if Bitcoin ever does go mainstream, the 
electricity needed to sustain it will be enormous,” IEEE Spectrum, vol. 54, no. 10, 
pp. 36–59, Sep. 2017. [Online]. doi: 10.1109/MSPEC.2017.8048837 

[24] “Red Hat support,” Red Hat, Inc., accessed 21 June 2018. [Online]. Available: 
https://www.redhat.com/en/services/support 

[25] Mahnke, “LTS,” Ubuntu, 17 March 2017. [Online]. Available: 
https://wiki.ubuntu.com/LTS 

[26] “Red Hat subscription model FAQ,” Red Hat, Inc., accessed 1 August 2018. 
[Online]. Available: https://www.redhat.com/en/about/subscription-model-faq 

[27] “Frequently asked questions about the GNU licenses,” Free Software Foundation, 
Inc., 17 June 2018. [Online]. Available: https://www.gnu.org/licenses/gpl-
faq.html#GPLRequireSourcePostedPublic 

[28] “Enterprise software licensing: New options, new headaches,” IDG 
Communications Inc., 16 March 2010. [Online]. Available: https://www.cio.com/
article/2419740/enterprise-software/enterprise-software-licensing--new-options--
new-headaches.html 



83 

[29] P. Jayachandran, “The difference between public and private blockchain,” IBM, 
31 May 2017. [Online]. Available: https://www.ibm.com/blogs/blockchain/2017/
05/the-difference-between-public-and-private-blockchain/ 

[30] A. Kadiyala, “Nuances between permissionless and permissioned blockchains,” 
Medium, a 4 August 2018. [Online]. Available: https://medium.com/@akadiyala/
nuances-between-permissionless-and-permissioned-blockchains-f5b566f5d483 

[31] M. Fowler and R. Parsons, Domain Specific Languages. Boston, MA, USA: 
Addison-Wesley, 2014. [Online]. Available: https://martinfowler.com/books/
dsl.html 

[32] "Definition of: General-purpose language," PCMag Digital Group, accessed 31 
August 2018. [Online]. Available: https://www.pcmag.com/encyclopedia/term/
43726/general-purpose-language 

[33] E. Androulaki, et al., “Hyperledger Fabric: A distributed operating system for 
permissioned blockchains,” in EuroSys, article no: 30, April 2018. [Online]. doi: 
10.1145/3190508.3190538 

[34] T. Kosar and e. al, "Comparing general-purpose and domain-specific anguages: 
An empirical study," ComSIS, vol. 7, no. 2, pp. 247-264, 2010. [Online]. doi: 
10.2298/CSIS1002247K 

[35] G. Tomassetti, "Discovering the arcane world of esoteric programming 
languages," Tomassetti, accessed 31 August 2018. [Online]. Available: 
https://tomassetti.me/discovering-arcane-world-esoteric-programming-languages/ 

[36] “TIOBE index,” TIOBE Software BV, accessed 4 August 2018. [Online]. 
Available: https://www.tiobe.com/tiobe-index/ 

[37] “API definition,” Sharpend Productions, 20 June 2016. [Online]. Available: 
https://techterms.com/definition/api 

[38] "Awesome-blockchain," Github, accessed 21 April 2018. [Online]. Available: 
https://github.com/imbaniac/awesome-blockchain 

[39] “Chaincode Tutorials,” Hyperledger, accessed 10 July 2018. [Online]. Available: 
https://hyperledger-fabric.readthedocs.io/en/release-1.2/chaincode.html 

[40] “Smart contracts/EVM FAQ,” Counterparty, accessed 4 August 2018. [Online]. 
Available: https://counterparty.io/docs/faq-smartcontracts/#why-would-an-
ethereum-developer-develop-on-counterparty 

[41] “Hyperledger Burrow,” The Linux Foundation, accessed 4 August 2018. [Online]. 
Available: https://www.hyperledger.org/projects/hyperledger-burrow 



84 

[42] C. Kihlman, "Monax is pivoting. Here's why!," Monax, 26 April 2018. [Online]. 
Available: https://monax.io/blog/2018/04/26/monax-is-pivoting.-heres-why/ 

[43] "What is Expanse," Expanse.tech, 9 March 2018. [Online]. Available: 
https://expanse.tech/docs/introduction/what-is-expanse/ 

[44] “Expanse,” Expanse.tech, accessed 4 August 2018. [Online]. Available: 
https://expanse.tech/ 

[45] “Waves node rest api,” Waves, 19 July 2018. [Online]. Available: 
https://docs.wavesplatform.com/en/development-and-api/waves-node-rest-
api.html 

[46] "Assets," Waves, 19 July 2018. [Online]. Available: 
https://docs.wavesplatform.com/en/platform-features/assets-custom-tokens.html 

[47] “Asset exchange,” NXT, accessed 30 July 2018. [Online]. Available: 
https://nxtplatform.org/what-is-nxt/asset-exchange/ 

[48] “Monetary system,” NXT, accessed 30 July 2018. [Online]. Available: 
https://nxtplatform.org/what-is-nxt/monetary-system/ 

[49] G. Greenspan, “Beware the impossibe smart contract,” Multichain, 12 April 2016. 
[Online]. Available: https://www.multichain.com/blog/2016/04/beware-
impossible-smart-contract/ 

[50] nopara73, “Programming the blockchain in C# community edition,” accessed 22 
June 2018. [Online]. Available: https://programmingblockchain.gitbooks.io/
programmingblockchain/content/introduction/why_c.html 

[51] I. McCain, “Stratis smart contracts in C# alpha release,” Stratis, 16 May 2018. 
[Online]. Available: https://stratisplatform.com/2018/05/16/stratis-smart-
contracts-in-csharp/ 

[52] "DCore technical description," Decent, accessed 28 August 2018. [Online]. 
Available: https://docs.decent.ch/DCoreTechDesc/
index.html#consensus_algorithm 

[53] “Frequently asked questions,” Factom, accessed 4 August 2018. [Online]. 
Available: https://www.factom.com/about/faqs 

[54] "Core building blocks," Brainbot Technologies, accessed 28 August 2018. 
[Online]. Available: http://www.brainbot.com/projects.html 

[55] "Hydrachain/hydrachain," Brainbot Technologies, accessed 30 July 2018. 
[Online]. Available: https://github.com/HydraChain/hydrachain 



85 

[56] “What is Docker?,” Open Source, accessed 5 August 2018. [Online]. Available: 
https://opensource.com/resources/what-docker 

[57] “Docker overview,” Docker Inc., accessed 22 June 2018. [Online]. Available: 
https://docs.docker.com/engine/docker-overview/ 

[58] “Overview of Docker Compose,” Docker Inc., accessed 22 June 2018. [Online]. 
Available: https://docs.docker.com/compose/overview/ 

[59] “Apache CouchDB,” Apache Software Foundation, accessed 13 July 2018. 
[Online]. Available: http://couchdb.apache.org/ 

[60] “CouchDB as the state database,” Hyperledger, accessed 13 July 2018. [Online]. 
Available: https://hyperledger-fabric.readthedocs.io/en/release-1.2/
couchdb_as_state_database.html 

[61] E. T. Bray, "The JavaScript object notation (JSON) data interchange format," 
Internet Engineering Task Force, December 2017. [Online]. Available: 
https://tools.ietf.org/html/rfc8259 

[62] R. Pike, "Go at Google: Language design in the service of software engineering," 
25 October 2012. [Online]. Available: https://talks.golang.org/2012/
splash.article#TOC_1 

[63] “About Nodejs,” Node.js Foundation, accessed 10 July 2018. [Online]. Available: 
https://nodejs.org/en/about/ 

[64] J. Snellinckx, “How to start writing your Hyperledger Fabric Nodejs chaincode,” 
Medium, accessed 5 August 2018. [Online]. Available: https://medium.com/
wearetheledger/how-to-start-writing-your-hyperledger-fabric-nodejs-chaincode-
4052393933ab 

[65] “The Go programming language documentation,” Golang, accessed 5 August 
2018. [Online]. Available: https://golang.org/doc/ 

[66] C. Tartamella, “Node.Js: Just what is it?,” Anexinet, 7 November 2016. [Online]. 
Available: https://www.anexinet.com/blog/node-js-just/ 

[67] J. Haas, “The difference between compiled and interpreted languages,” Lifewire, 
16 April 2018. [Online]. Available: https://www.lifewire.com/compiled-language-
2184210 

[68] “Chaincode for developers,” Hyperledger, accessed 10 July 2018. [Online]. 
Available: https://hyperledger-fabric.readthedocs.io/en/release-1.2/
chaincode4ade.html 



86 

[69] “Chaincode for operators,” Hyperledger, accessed 10 July 2018. [Online]. 
Available: https://hyperledger-fabric.readthedocs.io/en/release-1.2/
chaincode4noah.html 

[70] “Architecture explained,” Hyperledger, accessed 13 July 2018. [Online]. 
Available: https://hyperledger-fabric.readthedocs.io/en/release-1.2/arch-deep-
dive.html 

[71] M. Paul, “Hyperledger -- Chapter 10| blockchain application on Hyperledger 
Fabric,” Medium, accessed 6 August 2018. [Online]. Available: 
https://medium.com/swlh/hyperledger-chapter-10-blockchain-application-on-
hyperledger-fabric-2e34f3f430b 

[72] “Glossary,” Hyperledger, accessed 12 July 2018. [Online]. Available: 
https://hyperledger-fabric.readthedocs.io/en/release-1.2/glossary.html 

[73] “Membership,” Hyperledger, accessed 13 July 2018. [Online]. Available: 
https://hyperledger-fabric.readthedocs.io/en/release-1.2/membership/
membership.html 

[74] “Channels,” Hyperledger, accessed 13 July 2018. [Online]. Available: 
https://hyperledger-fabric.readthedocs.io/en/release-1.2/channels.html 

[75] "Building your first network," Hyperledger, accessed 13 July 2018. [Online]. 
Available: https://hyperledger-fabric.readthedocs.io/en/release-1.2/
build_network.html 

[76] “Hyperledger Fabric model,” Hyperledger, accessed 13 July 2018. [Online]. 
Available: https://hyperledger-fabric.readthedocs.io/en/release-1.2/
fabric_model.html 

[77] “Transaction flow,” Hyperledger, accessed 13 July 2018. [Online]. Available: 
https://hyperledger-fabric.readthedocs.io/en/release-1.2/txflow.html 

[78] "Hyperledger Fabric sdks," Hyperledger, accessed 11 September 2018. [Online]. 
Available: https://hyperledger-fabric.readthedocs.io/en/release-1.2/fabric-
sdks.html 

[79] L. Kolisko, "Hyperledger fabric-sdk-java basics tutorial," Medium, 20 February 
2018. [Online]. Available: https://medium.com/@lkolisko/hyperledger-fabric-
sdk-java-basics-tutorial-a67b2b898410 

[80] “Cryptogen commands,” Hyperledger, accessed 22 June 2018. [Online]. 
Available: https://hyperledger-fabric.readthedocs.io/en/release-1.1/commands/
cryptogen-commands.html 



87 

 [81] “Configtxgen,” Hyperledger, accessed 22 June 2018. [Online]. Available: 
https://hyperledger-fabric.readthedocs.io/en/release-1.1/commands/
configtxgen.html 

[82] “Peer,” Hyperledger, accessed 12 July 2018. [Online]. Available: 
https://hyperledger-fabric.readthedocs.io/en/release-1.2/commands/
peercommand.html 

[83] “Fabric-ca commands,” Hyperledger, accessed 9 August 2018. [Online]. 
Available: https://hyperledger-fabric.readthedocs.io/en/release-1.1/commands/
fabric-ca-commands.html 

[84] “YAML about page,” YAML, accessed 5 July 2018. [Online]. Available: 
http://yaml.org/about.html 

[85] “YAML syntax,” Red Hat, Inc., accessed 5 July 2018. [Online]. Available: 
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html 

[86] "Basic network config," Hyperledger Fabric, accessed 14 August 2018. [Online]. 
Available: https://github.com/hyperledger/fabric-samples/blob/release-1.2/basic-
network/README.md 

[87] "Fabricamples/basic-network/start.sh," Hyperledger, accessed 14 August 2018. 
[Online]. Available: https://github.com/hyperledger/fabric-samples/blob/release-
1.2/basic-network/start.sh 

[88] "HTTP request methods," W3Schools, accessed 27 August 2018. [Online]. 
Available: https://www.w3schools.com/tags/ref_httpmethods.asp 

[89] "Balance transfer," Hyperledger, accessed 14 August 2018.[Online]. Available: 
https://github.com/hyperledger/fabric-samples/blob/release-1.2/balance-transfer/
README.md 

[90] "High-throughput network," Hyperledger, accessed 25 August 2018. [Online]. 
Available: https://github.com/hyperledger/fabric-samples/blob/release-1.2/high-
throughput/README.md 

[91] M. Rouse, "Race condition," TechTarget, accessed 25 August 2018. [Online]. 
Available: https://searchstorage.techtarget.com/definition/race-condition 

[92] "Fabric-samples/fabric-ca," Hyperledger, accessed 23 August 2018. [Online]. 
Available: https://github.com/hyperledger/fabric-samples/tree/release-1.2/fabric-
ca 

[93] "Fabric-samples/fabric-ca/scripts/setup-fabric.sh," Hyperledger, accessed 25 
August 2018. [Online]. Available: https://github.com/hyperledger/fabric-samples/
blob/release-1.2/fabric-ca/scripts/setup-fabric.sh 



88 

[94] "Fabric-samples/chaincode/abac/go," Hyperledger, accessed 25 August 2018. 
[Online]. Available: https://github.com/hyperledger/fabric-samples/blob/release-
1.2/chaincode/abac/go/abac.go 

[95] "Writing your first application," Hyperledger, accessed 25 August 2018. [Online]. 
Available: https://hyperledger-fabric.readthedocs.io/en/release-1.2/
write_first_app.html 

[96] "Fabric-samples/fabcar," Hyperleger, accessed 25 August 2018. [Online]. 
Available: https://github.com/hyperledger/fabric-samples/tree/release-1.2/fabcar 

[97] "Fabric/core/chaincode/shim/interfaces.go," Hyperledger, accessed 12 July 
August. [Online]. Available: https://github.com/hyperledger/fabric/blob/release-
1.2/core/chaincode/shim/interfaces.go 

[98] "Lexical order," William Collins Sons & Co. Ltd., accessed 26 August 2018. 
[Online]. Available: https://www.dictionary.com/browse/lexical-order 

[99] “Package queryresult," Hyperledger, accessed 25 July 2018. [Online]. Available: 
https://godoc.org/github.com/hyperledger/fabric/protos/ledger/queryresult 

[100] “Class: Channel," Hyperledger, accessed 26 August 2018. [Online]. Available: 
https://fabric-sdk-node.github.io/Channel.html#queryTransaction 

[101] "Global," Hyperledger, accessed 26 August 2018. [Online]. Available: 
https://fabric-sdk-node.github.io/global.html 

[102] "Labtainer student guide," Naval Postgraduate School, 16 August 2018. [Online]. 
Available: https://my.nps.edu/documents/107523844/109121513/labtainer-
student.pdf/a6c49134-4bd4-457f-bb88-f5cb79b34fd0 

[103] “Git,” Ubuntu, accessed 8 June 2018. [Online]. Available: 
https://help.ubuntu.com/lts/serverguide/git.html.en 

[104] “Prerequisites,” Hyperledger, accessed 9 July 2018. [Online]. Available: 
http://hyperledger-fabric.readthedocs.io/en/release-1.2/prereqs.html 

[105] “Get Docker CE for Ubuntu,” Docker, accessed 7 August 2018. [Online]. 
Available: https://docs.docker.com/install/linux/docker-ce/ubuntu/ 

[106] “Install Docker Compose,” Docker, accessed 7 August 2018. [Online]. Available: 
https://docs.docker.com/compose/install/ 

[107] “Downloads,” Golang, accessed 7 June 2018. [Online]. Available: 
https://golang.org/dl/ 



89 

[108] “Getting started,” Golang, accessed 7 August 2018. [Online]. Available: 
https://golang.org/doc/install?download=go1.10.3.linux-amd64.tar.gz 

[109] K. Juell, “How to install Node.js on Ubuntu 18.04,” Digital Ocean, 27 April 2018. 
[Online]. Available: https://www.digitalocean.com/community/tutorials/how-to-
install-node-js-on-ubuntu-18-04 

[110] “Hyperledger Fabric samples,” Hyperledger, accessed 20 May 2018. [Online]. 
Available: http://hyperledger-fabric.readthedocs.io/en/release-1.1/samples.html 

[111] “Hyperledger/fabric-samples,” Hyperledger, accessed 7 August 2018. [Online]. 
Available: https://github.com/hyperledger/fabric-samples 

  



90 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



91 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	18Sep_Shaw_Markus_First8
	18Sep_Shaw_Markus
	I. Introduction
	II. Background
	A. Blockchain Overview
	1. Decentralized Applications in General
	2. Distributed Applications in the Context of Decentralized Applications
	3. The Genesis Block
	4. Consensus Mechanisms
	a. Proof of Work
	b. Proof of Stake
	c. Zero-Knowledge Proof
	d. Practical Byzantine Fault Tolerance


	B. Forking
	C. Smart Contracts
	D. Types of Blockchain
	E. History of the components in a blockchain
	F. How Has blockchain technology been used?
	1. Cryptocurrency
	2. Financial Transactions

	G. How Could blockchain technology Be used?
	H. Power consumption of blockchain
	1. Hashing Explained
	2. Power Usage in Bitcoin Mining

	I. Summary

	III. Selection Criteria
	A. Technical Support and Tutorials
	B. Level of Platform Support
	C. proprietary or Free and Open platform
	D. Platform Licensing
	E. Database capability
	F. Operational Modes: Private or Public And permissioned or non-permissioned
	G. Operating System or Software platform Environment
	H. Supported Application Languages
	I. Platform Implementation language
	J. Documentation for Code
	K. Documentation for Administration or Maintenance
	L. Platform maturity
	M. Community Activity level
	N. Sample Applications
	O. Consensus Algorithm
	P. Minimum Implementation network Size
	Q. Summary

	IV. Blockchain Platform Selection
	A. The selected blockchain platform: Hyperledger Fabric
	B. Platform Ranking
	C. Rejected Platforms
	1. Ethereum, Counterparty, Monax, and Expanse
	2. Waves
	3. NXT
	4. Multichain
	5. Stratis
	6. Decent
	7. Factom
	8. HydraChain

	D. Summary

	V. The Hyperledger Fabric Software Environment and architecture
	A. Components of the Hyperledger Network
	1. Docker
	2. Docker Compose
	3. CouchDB
	4. Golang
	5. Node.js
	6. Chaincode

	B. Roles of entities in the Network
	1. Clients
	2. Peers and Anchor Peers
	3. Membership and Organizations
	4. Channels
	5. Ordering Nodes and Ordering Service

	C. Consensus in the Hyperledger Fabric platform
	D. Hyperledger Fabric Utilities
	1. Cryptogen
	2. Configtxgen
	3. Peer
	4. Fabric-CA-Client and Fabric-CA-Server
	5. Use of YAML in Configuration Files

	E. Summary

	VI. Applications of Hyperledger Fabric
	A. Sample applications
	1. Overview
	2. First Network
	3. Basic Network
	4. Balance Transfer
	5. High Throughput
	6. Fabric-Ca
	7. Fabcar

	B. Channel Branching and Merging
	1. Concept
	2. Necessary Components
	3. Combining the Components

	C. Summary

	VII. Future work and Conclusions
	A. Future Work
	1. Future Application Development
	2. Other Use for Hyperledger Fabric

	B. Conclusions

	Appendix A.  Build Environment setup
	A. Virualizing the environment
	a. Required Software:
	b. Set up by:

	B. Install Git
	a. Needed:

	C. Install PREREQUISITES of Hyperledger Fabric
	1. Required Software
	2. Installing Required Software
	a. Detailed instructions on prerequisites available at:
	b. Install Curl by entering command:
	c. Install docker
	d. Install Docker Compose
	e. Install Golang
	f. Adding environment variables
	g. Install Node.js on Ubuntu


	D. Hyperledger Fabric Binaries and Samples
	1. Binaries
	a. Install binaries
	b. Note: modify the curl command to read:
	c. Modify PATH variable

	2. Samples

	E. Testing the system is installation

	Appendix B.  Docker and Docker Compose setup
	A. Docker INSTALLATION instructions
	B. Docker Compose installation instructions

	list of References
	initial distribution list




