
 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

CYBER SECURITY TESTING OF THE ROBOT 
OPERATING SYSTEM IN UNMANNED AERIAL 

SYSTEMS 

by 

Sergio Sandoval 

September 2018 

Thesis Advisor: Preetha Thulasiraman 
Second Reader: Murali Tummala 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
CYBER SECURITY TESTING OF THE ROBOT OPERATING SYSTEM IN 
UNMANNED AERIAL SYSTEMS

5. FUNDING NUMBERS

R4M3G
6. AUTHOR(S) Sergio Sandoval

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School 
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT 
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES) 
CRUSER/ONR

10. SPONSORING /
MONITORING AGENCY 
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
 Unmanned systems have gained in prominence as platforms from which to conduct military operations. 
The Robot Operating System (ROS) is a widely adopted standard robotic middleware; however, its 
preliminary design is devoid of any network security features. Military grade unmanned systems must be 
guarded against network threats.  ROS 2.0 is built upon the Data Distribution Service standard and is 
designed to provide solutions to identified ROS 1.0 security vulnerabilities by incorporating authentication, 
encryption, and process profile features. The Department of Defense is looking to use ROS 2.0 for its 
military-centric robotics platform. Through our work, we demonstrated that ROS 2.0 can serve as a 
functional platform for use in military grade unmanned systems. We tested the viability of ROS 2.0 to 
safeguard communications between an unmanned aerial swarm and a ground control station against rogue 
node and message-spoofing attacks. Our experiments employ the PX4 Multi Vehicle Simulation swarming 
three iris-quadcopter aerial drones within a Gazebo 9 simulation environment, utilizing QGroundControl as 
our ground control station. Drones were targeted individually to ascertain the effectiveness of our attack 
vectors under specific conditions. We demonstrated the effectiveness of ROS 2.0 in mitigating the chosen 
attack vectors but observed a measurable operational delay within our simulations. 

14. SUBJECT TERMS
authentication, authorization, encryption, ROS, unmanned aerial vehicle, swarm, security

15. NUMBER OF
PAGES 
                 55
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF 
REPORT 
Unclassified

18. SECURITY
CLASSIFICATION OF THIS 
PAGE 
Unclassified

19. SECURITY
CLASSIFICATION OF 
ABSTRACT 
Unclassified

20. LIMITATION OF
ABSTRACT 

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

CYBER SECURITY TESTING OF THE ROBOT OPERATING SYSTEM IN 
UNMANNED AERIAL SYSTEMS 

Sergio Sandoval 
Major, United States Marine Corps 

BS, University of California - Los Angeles, 2006 
MA, Webster University, 2015 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

from the 

NAVAL POSTGRADUATE SCHOOL 
September 2018 

Approved by: Preetha Thulasiraman 
 Advisor 

 Murali Tummala 
 Second Reader 

 Clark Robertson 
 Chair, Department of Electrical and Computer Engineering 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 Unmanned systems have gained in prominence as platforms from which to 

conduct military operations. The Robot Operating System (ROS) is a widely adopted 

standard robotic middleware; however, its preliminary design is devoid of any network 

security features. Military grade unmanned systems must be guarded against network 

threats.  ROS 2.0 is built upon the Data Distribution Service standard and is designed to 

provide solutions to identified ROS 1.0 security vulnerabilities by incorporating 

authentication, encryption, and process profile features. The Department of Defense is 

looking to use ROS 2.0 for its military-centric robotics platform. Through our work, we 

demonstrated that ROS 2.0 can serve as a functional platform for use in military grade 

unmanned systems. We tested the viability of ROS 2.0 to safeguard communications 

between an unmanned aerial swarm and a ground control station against rogue node and 

message-spoofing attacks. Our experiments employ the PX4 Multi Vehicle Simulation 

swarming three iris-quadcopter aerial drones within a Gazebo 9 simulation environment, 

utilizing QGroundControl as our ground control station. Drones were targeted 

individually to ascertain the effectiveness of our attack vectors under specific conditions. 

We demonstrated the effectiveness of ROS 2.0 in mitigating the chosen attack vectors but 

observed a measurable operational delay within our simulations. 
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I. INTRODUCTION 

A. IMPORTANCE OF UNMANNED SYSTEMS 

Unmanned systems (UxS) have been growing in prominence as platforms from 

which to conduct or support military operations. The U.S. military’s use of these systems 

is changing the face of network centric warfare and altering the decision making process 

in combat operations. In the past several decades, the military’s use of unmanned systems 

in all domains, including ground, air, surface, and subsurface, has increased dramatically. 

Military communities use UxS for the execution of offensive, reconnaissance, and 

surveillance missions. One of the goals of research and development in UxS is to ensure 

that they are network enabled and cyber hardened against adversarial interference.  

Since 2016, the Naval Postgraduate School has been studying the operational 

impact of cyber threats on UxS, particularly unmanned aerial vehicles (UAVs) [1]. The 

vulnerabilities of the UAV architecture include threats against the communications link 

between a UAV and ground station as well as the communications between individual 

UAV assets. The communication link is only one of several inputs that are susceptible to 

cyber-attacks. One of the understudied areas of UAV security is the sensitivity of the Robot 

Operating System (ROS) to external threats. 

ROS is a robust, open source, general-purpose platform that is used for robotics 

programming. Developed by the Open Source Robotics Foundation (OSRF), ROS is 

comprised of a set of software repositories and tools that assist in the development of 

robotics applications [8]. Variants of ROS have been developed in recent years, including 

ROS for industry applications (ROS-I) [2] and ROS for military applications (ROS-M) [3]. 

ROS-I has been influential in industrial automation systems like supervisory control and 

data acquisition systems (SCADA). Similarly, Department of Defense (DoD) 

organizations are seeking to build a military-centric ROS that provides an open, modular 

architecture with a library of military-unique components and a set of military-unique tools. 

The implementation of ROS-M is currently in its concept development phase [4]. 
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B. THE UTILITY OF ROS 

The ROS is a widely adopted standard robotic middle-ware. The ROS middleware 

sits on top of a host operating system providing a communications layer that supports the 

construction of functional computer clusters that are tailored for robotics applications [5]. 

Acting as a multi-server distributed computing network, the ROS structure allows software 

applications the ability to connect and communicate across server boundaries [6]. This 

aspect allows ROS-supported software applications to act as one single software system. 

The master node sits at the center of the ROS topography. This dedicated server is 

responsible for registering applications as well as their execution [6]. It also serves as a 

repository for parameters and for the logging of message traffic [6]. In addition to the ROS 

master node, a constellation of servers exists to balance out the system through the running 

of additional applications. These satellite servers connect to the master server through use 

of the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP) via the 

local network. 

Within this structure, ROS users implement independent systems that are referred 

to as nodes. A node can be used for explicit purposes with specific functionality, such as 

the execution of robot commands, the processing of transmitted message data, and as a 

means to receive and update sensor data [7]. Each of these nodes is inexorably tied to the 

ROS master. It is their connection to the ROS master that enables individual nodes to locate 

and communicate with one another [7]. Once this connection is made, they can 

communicate by passing messages. Nodes are further classified based on how they interact 

with prescribed topics within the ROS structure. Nodes that act as a receiver of information 

from a specific topic are said to be subscribed to that topic, while nodes that wish to send 

out information about a specific topic are referred to as publishers [7]. Nodes 

intercommunicate through an Application Programming Interface (API) via an Extensible 

Markup Language Remote Procedure Call (XMLRPC). XMLPRC is a remote procedure 

call protocol that uses XML encoding. Nodes can further intercommunicate through 

message and service data exchanges requiring the use of transport libraries such as 

ROSTCP and ROSUDP, which serialize communications through Internet Protocol (IP) 

sockets [5]. 
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The original development of ROS focused on software attributes which robotics 

researchers coveted most. The relative simplicity and user-friendly aspects of ROS have 

made it a popular instrument for the robotics community; however, interest in ROS and its 

viability for application in industrial and military operations has demanded a modification 

to the system to enhance its security. 

C. ROS 1.0 

The very nature of ROS as an open source platform presents a great deal of concern 

for military operators. The system and its design and functions are available to anyone with 

access to the Internet. Moreover, the developers and maintainers of ROS provide a support 

apparatus on the GitHub webserver. A user can directly communicate with developers and 

with the ROS community to troubleshoot systems and enable the operating system’s 

functionality. Beyond the GitHub site, there is comprehensive published literature that 

provides a user’s guide to ROS [8]. 

ROS 1.0 was designed without any network or cyber security features mainly 

because it was designed for research purposes. The ROS 1.0 architecture does not have 

security features for communications between nodes. There exists no means of encryption 

nor authentication between nodes. This presents a problem as these networked nodes exist 

to facilitate the actions and motions of physical systems enabling the real-world actions of 

a robotics system. An adversary has a multitude of vectors by which to exploit a ROS 1.0 

enabled unmanned system. The security vulnerabilities inherent in ROS 1.0 within the 

context of UAV swarm operation are discussed in Chapter III. In addition, mitigation 

techniques for these exploits are provided.  

D. ROS 2.0 

In recent years, ROS research has focused on the demand for network security 

features, namely identity authentication and authorization of resource permissions [5]. 

Academics and researchers have taken steps to allay security vulnerabilities in the ROS 1.0 

platform through the application of varying security enhancements, which are layered on 

top of ROS 1.0. OSRF remedied the identified security limitations of ROS 1.0 by creating 

Secure ROS (SROS). SROS was designed to provide solutions to common security 
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vulnerabilities by way of encryption, authentication, and process profile features [5]. SROS 

was incorporated within the ROS 1.0 platform. It does not exist as a standalone system that 

can function as its own version of the ROS API. 

ROS 2.0 was developed with all of the security features that SROS introduced built 

into the system itself. ROS-M is based on ROS 2.0. The emphasis for ROS 2.0 is on the 

middleware, which is built atop the Object Management Group (OMG) consortium Data 

Distribution Service (DDS) standard. DDS is an open standard for developing real-

time mission-critical distributed systems and incorporates the eProsima Fast Real Time 

Publish Subscribe (RTPS) protocol [9]. Fast RTPS provides publisher-subscriber 

communications over unreliable transports such as UDP [10]. DDS is used throughout 

government and industry, including extensive deployment throughout the DoD. 

E. THESIS CONTRIBUTIONS 

Through our work, we seek to demonstrate that ROS 2.0 can serve as a functional 

platform for use in military grade UxS.  In this thesis, we focus on the viability of ROS 2.0 

to safeguard communications between swarms and a ground control station. We test ROS 

2.0’s ability to mitigate certain specific communications threats including message 

spoofing and rogue nodes. We use the underlying security processes available in DDS with 

the Fast RTPS model to execute our simulations. DDS enabled with the Fast RTPS protocol 

provides security through authentication, access control, and encryption. 

Our experiments were executed in Gazebo, a simulation platform for robotic 

systems. We incorporated three quadrotor iris drones and a ground station controller, 

specifically QGroundControl, utilizing ROS 2.0. A bridge between ROS 2.0 Ardent and 

ROS 1.0 Kinetic was created to enable the security features inherent within ROS 2.0. Tests 

were first executed with the ROS 1.0 system alone, followed by the ROS 2.0-ROS 1.0 

bridged system, and finally the bridged system with security features enabled. Drones were 

targeted individually to ascertain the effectiveness of our attack vectors. 

While the solution provided in this thesis is specific to UAV swarms, the results 

can be applied generally to any unmanned system that incorporates the use of the ROS 

API. 
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F. THESIS ORGANIZATION 

The remainder of this thesis is organized as follows. In Chapter II, the related work 

on ROS 1.0 and ROS 2.0 security is presented. In Chapter III, a security assessment is 

provided that describe the vulnerabilities of using ROS within unmanned systems. We 

highlight the potential solutions for these vulnerabilities and discuss the methods that are 

used in this thesis to mitigate certain attacks. In Chapter IV, we provide a discussion of the 

experimental setup and design. In Chapter V, we detail the results and analysis of our 

experimental results. In Chapter VI, we conclude the thesis and propose future research 

directions. 
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II. RELATED WORK 

In this chapter, we discuss the related work that has been published by other 

researchers on ROS security.  We also examine the ROS variants that have been developed 

over the years to overcome its various security shortcomings.  

A. RESEARCH ON ROS 1.0 SECURITY 

In recent years, research on ROS and its associated security measures have been 

investigated in the literature. The aim of most research in this realm is to identify possible 

solutions to ROS 1.0 security vulnerabilities. In [11], the authors study the behavior of ROS 

1.0 when communications are encrypted using the Triple Data Encryption Standard 

(3DES). While 3DES is one of two options authorized for encryption by the National 

Institute of Standards and Technology (NIST), it is not as fast as other encryption 

algorithms, such as the Advanced Encryption Standard (AES). In [12], the authors study 

the use of Message Authentication Codes (MACs) in ROS 1.0 to achieve secure 

authentication for remote, non-native clients; however, neither of these approaches provide 

a holistic solution to ROS 1.0 security.  

One group of academics from Cornell University sought to add security features to 

ROS at the application layer [13]. This action allows them to incorporate security features 

without having to manipulate ROS itself. They treat ROS as a black box and achieve 

security through the use of an authentication server [13]. This approach utilizes a four-step 

process beginning with authentication and key agreement, followed by the registration of 

publishing and subscribing nodes, and ending with the actual publishing of messages. The 

first step includes the association of specific topic(s) to a publisher node. The second and 

third steps involve the authentication of the subscriber and publisher nodes through the 

authentication server. Session keys are created in the final step to encrypt published 

messages. Their design provides for confidentiality, integrity, authentication, and 

authorization; however, given that their solution is not integrated with the ROS API, it 

cannot provide availability and non-repudiation [13]. 
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 Another group of researchers from the Institute for Robotics and Mechatronics in 

Austria proposed a different means to provide security to ROS [4]. Their solution is similar 

to SROS in that security elements are incorporated at the transport level. Their efforts were 

focused on securing node-to-node TCP and UDP communications. Through their 

technique, they are able to execute a methodical authorization scheme by looking at each 

available topic through an initial handshake where public key cryptography and certificates 

are the basis for mutual authentication and authorization [4]. Their technique also 

incorporates the use of symmetric encryption algorithms and MACs to guarantee 

confidentiality and integrity of communications [4]. The process begins with a remote 

procedure call known as XMLRPC from the subscriber to the publisher. The requested 

topic is subsequently verified, and then the publisher and subscriber exchange port 

information for connection, TCP or UDP, establishment [4]. A final handshake is used to 

secure the channel through an exchange of certificates between the client and server [4]. In 

addition, a challenge and response feature enables the creation of keys that are later used 

to encrypt transmitted messages [4]. 

B. RESEARCH ON SROS 

As was mentioned earlier, SROS is an addition to the ROS API that is meant to 

provide cyber security measures. SROS introduces new security features that address 

encryption, access control and process profiles. Encryption in SROS is achieved through 

native Transport Layer Security (TLS) support for all socket-level communications 

through the use of X.509 certificates. These certificates are used in developing chains of 

trust, validating authenticity, and ensuring integrity. A key server is also maintained for 

key generation [5]. Access control is achieved through node restrictions and roles, auditing 

of the graph network through security logs, and through user-constructed access control 

policies [5]. Application security is achieved through process profiles. Node processes are 

hardened using Linux security modules in the kernel [5]. 

C. RESEARCH ON ROS 2.0 AND ROS-M 

As mentioned earlier, ROS 2.0 implements its security measures using the DDS. 

The addition of DDS changes the overall communications architecture of ROS 1.0 from 
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using messages, in a sometimes complex network programming paradigm, to a simpler and 

secure publish-subscribe method for sending/receiving data among nodes/topics. The 

addition of the DDS security component affords ROS 2.0 the ability to protect data that is 

actively being transmitted. DDS uses symmetric and asymmetric cryptography for data 

confidentiality and authentication. Hash functions in conjunction with pubic key 

infrastructure (PKI) are used to verify message integrity and non-repudiation [19]. 

Researchers with the United States Army Tank Automotive Research Development and 

Engineering Center (TARDEC) have begun to develop a militarized version of ROS to suit 

the needs of unmanned systems. The development of ROS-M is focused on the addition of 

military-relevant aspects to the ROS 2.0 architecture, namely additional simulation 

applications, the ability to perform cyber assurance checking, a means to store pertinent 

coding, and the creation of a training environment for service members [14]. TARDEC 

developed a phased approach to the development and implementation of ROS-M to Army 

unmanned systems. Phase III, which is a demonstration of the use of ROS-M on unmanned 

systems executing a maneuver over a prescribed course, was executed during their Industry 

Days event in April 2018 [14]. The security assessment portion of the demonstration 

included a successful man-in-the-middle attack on a simple ROS 1.0 application and the 

same man-in-the-middle attack failing to work on the ROS 2.0 version of the application 

for two separate unmanned ground vehicles, the Polaris MRZR and the John Deer M-Gator. 

Both vehicles were running ROS code developed for two separate military projects with a 

portion of the code updated to ROS 2.0 and all of the code registered as ROS-M 

components [14]. 

Although there has been a push by the Navy to extend and harden ROS 2.0, it has 

not been easily accepted into the fleet, in part due to a lack of proof of the quality of 

software (i.e., formal verification and validation), particularly in unmanned aerial systems.  
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III. THREAT ASSESSMENT 

Much work has been done in academia and industry to allay the network security 

concerns present within ROS.  In this chapter, we outline the inherent vulnerabilities of 

ROS 1.0 and the potential use of ROS 2.0 to mitigate some of these problems. Given its 

future adaptability to military UxS, ROS 2.0 is viewed as a holistic tool for ROS security. 

A. INHERENT ROS VULNERABILITIES 

 The structure of ROS 1.0 presents a set of vulnerabilities that can be exploited. 

ROS messages are sent between nodes in clear text, which means that they are not 

encrypted. Another feature of ROS that presents a problem is its anonymous graph-type 

structure. There are no procedures in place to validate nodes within the communications 

structure. Each connected node within the graph can subscribe to any topic that exists 

within the ROS instance. Nodes can act as publishers of information or as receivers of 

information. There is also an inherent vulnerability in how the ROS runtime process 

functions. 

In the subsequent sections, we highlight the vulnerabilities that exist within the 

ROS 1.0 communications structure.  We examine the exploits that can be executed against 

ROS and a UAV swarm.  A description of each exploit is provided along with possible 

actions that can be taken to mitigate damage. 

1. ROS Network 

ROS network communications link vulnerabilties and mitigation techniques are 

provided in Table 1. 
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Table 1.   ROS Network Communication Link Vulnerabilities and 
Mitigations 

Exploit Name Description Possible Mitigations 

Packet Sniffing Information transmitted between ROS 
nodes are captured and analyzed 

Strong encryption 

Man-in-the-Middle Node message traffic is intercepted, 
modified and passed on 

Strong encryption and 
authentication 

Rogue Nodes Nodes that are capable of disturbing 
system operations by injecting 
commands about arbitrary topics [4] 

Node specific 
authentication and 
authorization 

Denial of Service Nodes publishing large amounts of 
erroneous data which increases 
processing times at other nodes [4] 

Node specific 
authentication and 
authorization [4] 

Message Spoofing Nodes publishing information to 
execute actions outside of the purview 
of valid user(s) 

Node identification through 
authentication 

Code Injection Attackers that have gained access to 
the ROS network modifying the 
behavior of the system 

Define access permissions 
that prevent system 
modification after running 

Zero Day Exploits Altering the ROS network 
permissions 

Define access permissions 
that prevent system 
modification after running 

 

2. UAV Swarm 

The communications link used when operating in a swarm environment presents its 

own vulnerabilities. Specific UAV swarm communications link vulnerabilties and 

mitigation techniques are provided in Table 2. 
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Table 2.   UAV Swarm Communication Link Vulnerabilities and Mitigations 

Exploit Name Description Possible Mitigations 

Eavesdropping Information transmitted between 
ground control system (GCS) and 
UAV(s) intercepted 

Strong encryption, 
directional antennas 

Replay Attack Intercepted packets recorded and 
broadcasted at a later time 

Strong authentication and 
serialization 

RC Hijack Bad actor pairs with a UAV Strong authentication 
between GCS and UAV 

 

B. SUMMARY OF SECURITY VULNERABILITIES AND CHOSEN 
MITIGATION TECHNIQUES 

Given the nature of our experimental environment, it is not feasible to implement 

mitigation techniques for every single type of risk previously identified. One can see from 

the given types of risks that a number of those listed can be mitigated with authentication 

schemes. The difficulty lies in the way the swarm communicates. Messages are broadcast 

omni-directionally. Encryption is required in order to keep sensitive information from 

being captured and exploited. Given the communications schemes utilized by the swarm 

in addition to the use of ROS, our system is particularly vulnerable to man-in-the-middle 

(MITM) attacks and replay attacks.  

An individual with knowledge of ROS can introduce ROS messages into the drone 

to manipulate the actions of the vehicle. Moreover, a person with specific understanding of 

the ROS message fields within the given system graph can conceivably manipulate the 

drone with greater efficiency [15]. 

It must be noted that the addition of encryption and authentication will not 

completely protect the swarm from every type of attack. The communications channel that 

the swarm uses for its operation is still susceptible to denial-of-service (DoS). Ensuring 

channel availability is not part of this thesis work. 
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C. POTENTIAL ROS SPECIFIC SOLUTIONS 

ROS 2.0, particularly its enhanced security features provided through DDS, appears 

to offer a ROS-specific solution to identified concerns with the ROS 1.0 platform. The 

ROS 2.0 DDS literature indicates that its features offer users a number of mitigation 

techniques to the exploits that have been identified in Tables 1 and 2; however, these 

security enhancements must be tested in order to verify their effectiveness. We chose to 

validate the ROS 2.0 DDS system against two attack vectors: a rogue-node style attack and 

a message-spoofing attack. These exploits are important first steps to validate ROS 2.0 

DDS as a viable security solution for military centric operations. The processes within ROS 

2.0 DDS that offer a means of node authentication and node permissions will be challenged 

through our testing. 
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IV. EXPERIMENTAL SETUP 

ROS 2.0, through its available security enhancements, promises to provide 

solutions to many of the identified communications vulnerability exploits.  In this chapter, 

we explain the simulation architecture that we used to test ROS 2.0 against specific cyber 

threats, specifically rogue-nodes and spoofing attacks.  

A. SWARM SIMULATION 

The goal of our simulations is to test the ability of ROS 2.0 to safeguard 

communications between each UAV and GCS. We tested ROS 2.0’s ability to prevent threats 

posed by message spoofing and rogue-node attacks. Recall that ROS 2.0 is built atop the 

OMG DDS standard incorporating the eProsima Fast RTPS protocol. The security processes 

within this protocol are enabled when we test the viability of ROS 2.0 in effectively providing 

security through authentication, access control, and encryption. Our simulation setup 

required that we incorporate a bridge between ROS 2.0 and ROS 1.0, as the most recent 

version of ROS 2.0 (ROS 2.0 Ardent) does not support Gazebo. ROS 2.0 Ardent lacks the 

dependencies needed to function with Gazebo. Future releases of ROS 2.0 plan to address 

this issue, but a solution is not presently available without using a bridge. The bridge itself 

enables the exchange of messages between ROS 1.0 and ROS 2.0. The bridge acts as a ROS 

1.0 node as well as a ROS 2.0 node at the same time and can, therefore, subscribe to messages 

in one ROS version and publish them into the other ROS version [16]. 

Our experiments were performed on a Mac Book Pro laptop with an Intel Core i7-

3615QM Processor. The Mac operating system was replaced with a Linux operating system 

running Ubuntu 16.04 LTS. This particular version of Ubuntu was required for our chosen 

ROS API and simulation architecture to function properly. The PX4 Multi Vehicle 

Simulation was utilized in setting up the experiments. Within this simulation setup, ROS 

1.0 Kinetic is used with PX4 and the Gazebo 9 simulator. PX4 autopilot allows a remotely 

piloted aircraft to be flown out of sight. The simulated drones, which in our simulation 

included three instances (i.e., three UAVs), are visualized in Gazebo. Our simulation 

utilizes a MAVROS MAVLink node in order to establish communication with PX4 [17].  



16 

MAVLink is a standard communications protocol for a UAV. MAVROS is an extension 

of MAVLink to ROS enabled devices.  MAVROS allows for communications between the 

UAV autopilot and the GCS.  [17]. QGroundControl v3.3.1 served as our GCS software. 

Through QGroundControl, the drone instances are armed, flightpath parameters are 

entered, and the flightpath is executed.  The Gazebo drone simulation generates sensor 

data, including motor and actuator values, from its simulated world, which is then 

transmitted to PX4.  PX4 communicates with ROS and the GCS to send drone telemetry 

information and to receive commands [17]. Figure 1 is a depiction of the MAVLink 

communications structure for the first UAV instance. 

 

Figure 1.  UAV1 Communications Architecture 

Through the experiments, we tested the simulations against attempts to manipulate 

established MAVROS service nodes including the command arming, command landing 
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and command takeoff nodes. The arming command is the instruction that is sent to an 

individual drone to turn on the drone itself and prepare it for a mission. The landing 

command specifies where a drone will execute a landing maneuver and can be used to 

immediately direct a drone to land at a specific location. The takeoff command is the 

directive that specifies how a takeoff is executed; this command can be used to immediately 

direct the drone to climb to a new location. In this thesis, we only consider the 

communication between the simulated drones and the GCS. The ROS 1.0 Kinetic was 

chosen for our experiments as it has been deemed the most functional version for use with 

ROS 2.0 and our chosen simulation visualization and control software. ROS 2.0 Ardent 

was released for public use in December of 2017 and was chosen for this thesis. 

All available ROS nodes are displayed in the computation graph. The ROS 

computation graph is a GUI that displays the nodes that currently exist within the system. 

It visualizes the publish-subscribe relationship between ROS nodes. The ROS computation 

graph for our simulation is shown in Figure 2. When examining the figure, we can see 

distinct shapes and forms within the ROS graph.  The oval in Figure 2 represents a ROS 

node.  Publisher-subscriber associations are represented by directed edges [8]. It is here 

where we can see one of the targeted UAV MAVROS nodes for our experiment.  
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Figure 2.  Simulation ROS 1.0 Computation Graph Structure 

A ROS 1.0 ROS 2.0 bridge is created so that the ROS 2.0 security features can be 

enabled in our drone simulation system. This bridge is built after the simulation launch file 

is run and the ROS 1.0 computation graph and node structures are present. The referenced 

launch file is provided in the Appendix. When creating the bridge, ROS 2.0 nodes and 

topics are generated to match those existing ROS 1.0 components. It is important that 

complete pairs be made so that the security features afforded to us from ROS 2.0 cover all 

communications within our ROS network. The bridge creation and two-to-one matching 

between ROS 2.0 and ROS 1.0 are shown in Figure 3. 
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Figure 3.  ROS Bridge Creation 

B. ROS 2.0 SECURITY ARCHITECTURE 

Our simulation was built with a ROS 1.0 framework; however, we take advantage 

of ROS 2.0 security features by creating a communications bridge between both APIs. As 

discussed previously, ROS 2.0 provides encryption, authentication, and process profile 

features by activating the eProsima Fast RTPS protocol, which is incorporated within the 

DDS standard upon which that ROS 2.0 is built. Security through the implementation of 

Fast RTPS is provided through three distinct methods.  Fast RTPS authenticates remote 

participants, provides access to verified entities, and encrypts transmitted data [9]. Each 

level of security is achieved through the activation of the following features that are 

provided within the DDS middleware. 

1. Authentication 

This feature provides for the authentication of ROS nodes. The Fast RTPS 

authentication plugin, when activated, authenticates detected ROS nodes [9]. This process 

continues until all ROS nodes are authenticated. Node authentication is achieved through 

use of the Elliptic Curve Digital Signature Algorithm (ECDSA), while a shared secret key 
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is created using Elliptic Curve Diffie-Hellman (ECDH) for use in communications 

encryption [9]. PKI, utilizing a pre-configured and communal Certificate Authority (CA), 

is incorporated by the authentication feature [18]. 

2. Access Control 

This attribute provides validation of ROS node permissions after a remote 

participant is authenticated. Participants are assigned permissions after they are 

authenticated. These permissions are validated and enforced [18]. Node permissions are 

confirmed and applied and the access rights that are assigned to each node over available 

system resources are defined. Access control is achieved through the creation of a 

permissions document signed by the shared CA [18]. The Domain Governance and 

Permissions document is signed by an X.509 permissions certificate. It is an XML 

document that defines how the environment is secured [9]. 

3. Cryptographic 

This feature provides encryption and is applied to communications messages 

exchanged between ROS nodes. This feature is configured by the access control plugin. 

The cryptography feature utilizes Advanced Encryption Standard in Galois Counter Mode 

(AES-GCM) for encryption and AES Galois Message Authentication Code (AES-GMAC) 

for the authentication of messages [18]. 

These security features are enabled only after the simulation architecture has been 

created on both the ROS 1.0 and ROS 2.0 side. By performing this step last, we ensure that 

only existing ROS artifacts, namely the established system and nodal relationships, are 

incorporated into the access control documents. This ensures legitimacy of all aspects of 

our system. 
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V. RESULTS AND ANALYSIS 

A series of simulations under three different conditions was conducted to 

demonstrate the strength of ROS 2.0 in the face of specific threat vectors.  In this chapter, 

we discuss our simulation results and their effectiveness in thwarting rogue-node and 

message spoofing attacks. We also highlight the significance of these results in validating 

ROS 2.0 from a security perspective. 

A. SIMULATION RESULTS 

1. Baseline 

In order to establish a baseline for the simulations, a definitive flightpath was 

loaded into each of the three simulated UAVs. The flightpath was designed to mirror a 

reconnaissance mission over a defined route, which is a likely mission for a small UAV. 

The route was determined based on the geographic features provided by the 

QGroundControl software. The UAVs executed this given flightpath under three specific 

conditions: 

• Condition 1: The simulation is run with ROS 1.0.  

• Condition 2: The simulation is run with the ROS 1.0 ROS 2.0 Bridge devoid 

of any security features.  

• Condition 3: The simulation is run with the ROS 1.0 ROS 2.0 Bridge with 

security features enabled. 

We ran the simulation through ten individual trials for each of the given conditions. 

Our simulation baseline trials were conducted without any malicious activity. Time was 

recorded from the moment the first UAV began its ascent to the moment the third UAV 

landed safely on the ground. The results for our attack-free trials of the simulated 

experiment are provided in Table 3. We refer to these results as our baseline throughout 

the remainder of the thesis. 

 



22 

Table 3.   Simulation Baseline Results 

Simulation Run Times (min:sec) 
Conditions 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th ~Avg 
ROS 1.0 2:30 2:20 2:31 2:17 2:28 2:44 2:39 2:27 2:24 2:40 2:30 

ROS 
1.0/ROS2.0 
Bridge 

2:33 2:32 2:23 2:19 2:30 2:31 2:47 2:41 2:27 2:42 2:32 

Security 
Enabled 
ROS 
1.0/ROS 
2.0 Bridge 

2:33 2:31 2:28 2:35 2:30 2:40 2:28 2:26 2:45 2:44 2:34 

 

As can be seen in Table 3, our results show that the addition of the ROS 1.0 ROS 

2.0 Bridge added a negligible amount of time to our simulation when compared to the 

simulation running on only ROS 1.0. On average, two additional seconds were needed to 

complete the entire flight path under the second condition. When the security features are 

enabled on the bridge, more time is required to execute the flight path. On average, an 

additional four seconds were needed to complete the mission under the third condition 

compared to the first condition. The additional time required by the simulation to complete 

the prescribed flight path under the second and third conditions is measurable and appears 

to be adding a delay overhead.  

2. Drone Disabling 

The next set of trials involved a rogue node completely disabling an individual 

UAV. The rogue node accesses the MAVROS command arming service and directs it to 

shut down the targeted drone. This action caused the drone to instantly shutoff its engines 

and resulted in the drone crashing to the ground. UAV1, UAV2, and UAV3 represent the 

targeted nodes/drones. The same conditions used as part of the simulation baseline were 

applied to these trials. Each individual UAV was targeted under each condition for a total 

of ninety trials. The results are provided in Table 4. 
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Table 4.   Drone Disabling Simulation Results 

Time to Disable Drone (min:sec) 
Conditions 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th ~Avg 
ROS 1.0  
UAV1 0:40 0:41 0:42 0:40 0:41 0:42 0:42 0:40 0:42 0:41 0:41.1 
UAV2 0:41 0:41 0:42 0:41 0:41 0:41 0:42 0:41 0:40 0:42 0:41.2 
UAV3 0:42 0:42 0:40 0:41 0:42 0:40 0:41 0:40 0:41 0:42 0:41.1 
ROS 
1.0/ROS2.0 
Bridge 

 

UAV1 0:44 0:42 0:43 0:42 0:43 0:42 0:42 0:45 0:44 0:45 0:43.2 
UAV2 0:42 0:42 0:43 0:44 0:45 0:43 0:41 0:44 0:43 0:45 0:43.2 
UAV3 0:44 0:42 0:43 0:44 0:45 0:43 0:41 0:44 0:43 0:44 0:43.3 
Security 
Enabled 
ROS 
1.0/ROS 
2.0 Bridge 

 

UAV1 2:54 3:02 2:48 3:01 3:09 2:47 3:06 3:04 3:02 2:53 2:59 
UAV2 2:55 3:01 2:47 3:03 3:10 2:46 3:07 3:05 3:03 2:54 2:59 
UAV3 2:52 3:03 2:49 3:02 3:11 2:48 3:08 3:05 3:05 2:55 3:00 

 

Under the first and second conditions, the numbers listed for each trial show the 

time at which the entire drone swarm was successfully in the air flying. The attack itself 

was near instantaneous. As soon as the attack was executed, the targeted drone fell out of 

the sky. We can see that between the first and second conditions, it took on average two 

additional seconds to get the drones in the air when the bridge was enabled; thus, a small 

delay overhead is incurred when the bridge is enabled.  

For the third condition (Bridge Secured), the numbers represent the total time that 

the UAVs took to complete the flight path. In each of the trials, the attempted attacks failed; 

however, repeated attempts to disable an individual drone added a substantial amount of 

time to the flight path. When compared to the baseline simulation, the additional time 

amounted to an extra 25 seconds. Considering that the entire flight time for the baseline 

trials was on average two minutes and 59 seconds, the additional flight time amounted to 
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a 16% increase. In addition, these results are evidence of ROS 1.0’s inability to guard 

against an attack when compared to ROS 2.0. 

3. Drone Forced Landing 

The next set of trials involved a message-spoofing attack. In this attack, the creation 

of a malicious node takes control of a UAV and forces it to land. The MAVROS command-

landing service was accessed. The rogue node directed the targeted drone to land at a 

prescribed location at the time the command was sent. The same conditions used as part of 

the simulation baseline were applied to these trials. Each individual UAV, UAV1 through 

UAV3, was targeted under each condition for a total of ninety trials. The timing results 

under this attack are shown in Table 5. 

Table 5.   Drone Forced Landing Results 

Time to Force Land Drone (min:sec) 
Conditions 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th ~Avg 
ROS 1.0  
UAV1 0:42 0:41 0:41 0:42 0:43 0:42 0:44 0:42 0:41 0:42 0:42.0 
UAV2 0:42 0:43 0:41 0:42 0:43 0:41 0:43 0:42 0:42 0:43 0:42.2 
UAV3 0:43 0:42 0:42 0:43 0:42 0:43 0:42 0:43 0:41 0:42 0:42.3 
ROS 
1.0/ROS2.0 
Bridge 

 

UAV1 0:45 0:43 0:43 0:44 0:45 0:43 0:44 0:45 0:44 0:45 0:44.1 
UAV2 0:44 0:45 0:44 0:45 0:44 0:45 0:42 0:44 0:43 0:46 0:44.2 
UAV3 0:45 0:44 0:43 0:44 0:45 0:44 0:43 0:44 0:45 0:44 0:44.1 
Security 
Enabled 
ROS 
1.0/ROS 
2.0 Bridge 

 

UAV1 2:55 3:03 2:57 3:03 3:07 2:51 3:04 3:05 3:03 3:04 3:01 
UAV2 3:07 3:03 2:56 3:05 3:01 3:06 2:55 2:53 3:00 3:05 3:01 
UAV3 2:53 3:01 2:51 3:03 3:09 2:50 3:05 3:07 3:02 2:58 3:00 
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Under the first and second conditions, the numbers listed for each trial show the 

time at which the entire drone swarm was successfully in the air flying. The effects of the 

attacks themselves, as in the previous trial, were near immediate. As soon as the attack was 

executed, the targeted drone began to execute a landing maneuver. The execution of the 

landing itself took just over one second to execute as the drone was flying at an altitude of 

only ten meters. Again, we observe a two-second delta between trials under the first and 

second condition. The cost in time to run the bridge is still present. 

With the third condition, the numbers represent the total time that the UAVs took 

to complete the flight path. In each of the trials, the attempted attacks continued to fail as 

before. As was observed in the previous trials, the repeated attempts to disable an individual 

drone added a substantial amount of time to the flight path. When compared to the baseline 

simulation, the additional time amounted to an extra 27 seconds. Considering that the entire 

flight time for the baseline trials was on average two minutes and 59 seconds, the additional 

flight time amounts to a 17.5% increase. As was the case before, ROS 1.0 fails at protecting 

against this threat, whereas ROS 2.0 is successful but incurs a tradeoff in delay. 

4. Drone Forced Climb 

The last set of trials also involved a message spoofing attack. In this attack, the 

creation of a malicious node takes control of a UAV and forces it to gain altitude. The 

MAVROS command takeoff service was accessed. The rogue node directed the targeted 

drone to climb to a prescribed location at the time the command was sent. The same 

conditions used as part of the simulation baseline were applied to these trials. Each 

individual UAV was targeted under each condition for a total of ninety trials. The timing 

results under this attack are shown in Table 6. 
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Table 6.   Drone Forced Climb Results 

Time to Force Climb (min:sec) 
Conditions 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th ~Avg 
ROS 1.0  
UAV1 0:41 0:42 0:42 0:40 0:41 0:40 0:42 0:43 0:41 0:42 0:41.4 
UAV2 0:43 0:41 0:43 0:41 0:42 0:41 0:42 0:40 0:42 0:41 0:41.6 
UAV3 0:42 0:40 0:44 0:40 0:42 0:41 0:42 0:43 0:41 0:40 0:41.5 
ROS 
1.0/ROS2.0 
Bridge 

 

UAV1 0:43 0:45 0:43 0:42 0:45 0:43 0:44 0:43 0:42 0:45 0:43.5 
UAV2 0:44 0:43 0:44 0:43 0:43 0:44 0:42 0:45 0:42 0:44 0:43.4 
UAV3 0:44 0:42 0:45 0:41 0:45 0:43 0:44 0:46 0:44 0:41 0:43.5 
Security 
Enabled 
ROS 
1.0/ROS 
2.0 Bridge 

 

UAV1 2:56 3:02 2:55 3:01 3:05 2:53 3:05 3:02 3:00 3:03 3:00 
UAV2 3:04 3:04 3:01 3:02 2:58 2:58 3:03 3:01 2:55 3:05 3:01 
UAV3 2:54 3:07 2:55 2:52 3:02 3:02 3:01 3:07 3:06 2:59 3:00 

 

The numbers recorded under the first and second condition continue to demonstrate 

the time required to have the entire drone swarm airborne. The effects of the attacks 

themselves, as in the previous first trial, were again instantaneous. As soon as the attack 

was executed, the targeted drone began to execute a climbing maneuver. As soon as the 

attack was executed, the targeted drone began to climb and gain in altitude. The additional 

two seconds are still present between trials executed under the first and second condition. 

Again, the cost in time to run the bridge is still present. 

As before, under the third condition, the recorded data represents the total time that 

the UAVs took to run through the prescribed mission. In each of the trials, the attempted 

attacks continued to fail as before. As was observed in the previous two attack experiments, 

the repeated attempts to disable an individual drone added a substantial amount of time to 

the flight path. When compared to the baseline simulation, the additional time amounted 



27 

to an extra 26 seconds. Considering that the entire flight time for the baseline trials was on 

average two minutes and 59 seconds, the additional flight time amounts to just under a 17% 

increase. 

5. Summary of Findings 

We see from examination of the simulation results under the third condition, where 

security was enabled on the ROS 2.0 ROS 1.0 Bridge, proved to be effective at mitigating 

each attack vector. Given these observations, ROS 2.0 DDS works well in mitigating basic 

attacks; however, the effectiveness of this setup is inhibited by a significant latency 

overhead. It is our belief that implementation of the bridge was the prime factor in 

increasing the delay in flight time. As ROS 2.0 develops, the need for the bridged approach 

may no longer be required. Future ROS 2.0 variants that can directly function with Gazebo 

will likely reduce a portion of the delay overhead we observed. 
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VI. CONCLUSION 

A. SUMMARY 

The prominence of UxS and their utility as a force multiplier for the United States 

military will endure. These systems will continue to change the face of warfare and must 

be guarded against network and cyber threats. In this thesis, we studied the viability of 

using ROS 2.0 for UxS missions. We tested the ability of ROS 2.0 to mitigate against basic 

attacks in order to begin the formal verification process for transition to the fleet.  

Through our UAV swarm configuration and communications architecture, we 

demonstrated the very real threat that exists to UxS that are constructed and operated 

devoid of any security architecture. By enabling given security enhancements available to 

the ROS through the ROS 2.0 API, we were able to demonstrate that these added features 

are capable of thwarting attacks against a small UAV swarm. The security features were 

effective in stifling the rogue-node and message spoofing attacks, but there was a 

measureable cost to the drone operation in terms of delay. A tradeoff exists between the 

use of ROS 2.0 and the latency overhead that is induced. 

Operating a UxS, especially in a swarming configuration, without any network 

communications security is much costlier than the added time to conduct operations. The 

loss of a UxS to an adversary through the applied attack vectors would incur incredible 

replacement costs due to downed systems and breach of potentially sensitive information 

due to capture of the platform. It is also the expectation that in the future, ROS 2.0 will be 

functional without the use of a bridge. This may reduce the latency overhead. 

B. FUTURE WORK 

In this thesis, authentication, encryption, and access control features were enabled 

to provide security to our swarm simulation. Application of these features were limited to 

our simulation environment and limited to the classes of attack trajectories against which 

we chose to test. Further research and testing is needed to fully gauge the effectiveness of 

ROS 2.0 and DDS. 
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1. Additional Vulnerability Testing 

Our experiments can be taken further by testing its viability against all of identified 

security vulnerabilities. There are over twenty other MAVROS specific nodes beyond the 

three that we tested that exist for each UAV instance that can exploited. Additional network 

communication vulnerabilities and mitigations should be explored. 

2. Measured Power Use 

Throughout our simulations, we measured an increased amount of time required to 

complete the mission tasked to the drone swarm. The addition of the bridge came with a 

cost, and the use of the security features came with a much higher cost. One could measure 

this cost in time against the physical tax that it takes against the UAVs power stores. 

3. Testing against Networked UAVs 

In this thesis, the testing of ROS 2.0 focused solely on communications between an 

individual UAV and the GCS. Testing of ROS 2.0 on communications between UAVs 

during a specific flight maneuver is required. 

4. Adaption to a Physical Swarm 

Eventually, the testing of ROS 2.0’s cybersecurity features should be carried out on 

hardware, moving beyond the simulated environment and into real world testing. Testing 

and basic experimentation on actual UAV assets to support simulated results would be 

beneficial. 
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APPENDIX. MULTIPLE DRONE SIMULATION FILE 

The following ROS launch file is what used in this thesis to create our simulation 
environment. This file launches the Gazebo 9 simulation software and spawns three iris 
quadcopter drones with requisite MAVROS and PX SITL architecture. Each drone is 
assigned specific and unique UDP ports required for the MAVLink communications 
architecture. 
------------------------------------------------------------------------------------------------------------ 
<?xml version=“1.0”?> 
<launch> 
 <!-- MAVROS posix SITL environment launch script --> 
 <!-- launches Gazebo environment and 3x: MAVROS, PX4 SITL, and spawns vehicle --
> 
 <!-- vehicle model and world --> 
 <arg name=“est” default=“ekf2”/> 
 <arg name=“vehicle” default=“iris”/> 
 <arg name=“world” default=“$(find mavlink_sitl_gazebo)/worlds/empty.world”/> 
 <!-- gazebo configs --> 
 <arg name=“gui” default=“true”/> 
 <arg name=“debug” default=“false”/> 
 <arg name=“verbose” default=“false”/> 
 <arg name=“paused” default=“false”/> 
 <!-- Gazebo sim --> 
 <include file=“$(find gazebo_ros)/launch/empty_world.launch”> 
 <arg name=“gui” value=“$(arg gui)”/> 
 <arg name=“world_name” value=“$(arg world)”/> 
 <arg name=“debug” value=“$(arg debug)”/> 
 <arg name=“verbose” value=“$(arg verbose)”/> 
 <arg name=“paused” value=“$(arg paused)”/> 
 </include> 
 <!-- UAV1 --> 
 <group ns=“uav1”> 
 <!-- MAVROS and vehicle configs -->  
 <arg name=“ID” value=“1”/> 
 <arg name=“fcu_url” default=“udp://:14540@localhost:14557”/> 
 <!-- PX4 SITL and vehicle spawn --> 
 <include file=“$(find px4)/launch/single_vehicle_spawn.launch”> 
 <arg name=“x” value=“0”/> 
 <arg name=“y” value=“0”/> 
 <arg name=“z” value=“0”/> 
 <arg name=“R” value=“0”/> 
 <arg name=“P” value=“0”/> 
 <arg name=“Y” value=“0”/> 
 <arg name=“vehicle” value=“$(arg vehicle)”/> 
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 <arg name=“rcS” value=“$(find px4)/posix-configs/SITL/init/$(arg est)/$(arg 
vehicle)_$(arg ID)”/> 
 <arg name=“mavlink_udp_port” value=“14560”/> 
 <arg name=“ID” value=“$(arg ID)”/> 
 </include> 
 <!-- MAVROS --> 
 <include file=“$(find mavros)/launch/px4.launch”> 
 <arg name=“fcu_url” value=“$(arg fcu_url)”/> 
 <arg name=“gcs_url” value=““/> 
 <arg name=“tgt_system” value=“$(arg ID)”/> 
 <arg name=“tgt_component” value=“1”/> 
 </include> 
 </group> 
 <!-- UAV2 --> 
 <group ns=“uav2”> 
 <!-- MAVROS and vehicle configs --> 
 <arg name=“ID” value=“2”/> 
 <arg name=“fcu_url” default=“udp://:14541@localhost:14559”/> 
 <!-- PX4 SITL and vehicle spawn --> 
 <include file=“$(find px4)/launch/single_vehicle_spawn.launch”> 
 <arg name=“x” value=“1”/> 
 <arg name=“y” value=“0”/> 
 <arg name=“z” value=“0”/> 
 <arg name=“R” value=“0”/> 
 <arg name=“P” value=“0”/> 
 <arg name=“Y” value=“0”/> 
 <arg name=“vehicle” value=“$(arg vehicle)”/> 
 <arg name=“rcS” value=“$(find px4)/posix-configs/SITL/init/$(arg est)/$(arg 
vehicle)_$(arg ID)”/> 
 <arg name=“mavlink_udp_port” value=“14562”/> 
 <arg name=“ID” value=“$(arg ID)”/> 
 </include> 
 <!-- MAVROS --> 
 <include file=“$(find mavros)/launch/px4.launch”> 
 <arg name=“fcu_url” value=“$(arg fcu_url)”/> 
 <arg name=“gcs_url” value=““/> 
 <arg name=“tgt_system” value=“$(arg ID)”/> 
 <arg name=“tgt_component” value=“1”/> 
 </include> 
 </group> 
 <!-- UAV3 --> 
 <group ns=“uav3”> 
 <!-- MAVROS and vehicle configs --> 
 <arg name=“ID” value=“3”/> 
 <arg name=“fcu_url” default=“udp://:14551@localhost:14569”/> 
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 <!-- PX4 SITL and vehicle spawn --> 
 <include file=“$(find px4)/launch/single_vehicle_spawn.launch”> 
 <arg name=“x” value=“2”/> 
 <arg name=“y” value=“0”/> 
 <arg name=“z” value=“0”/> 
 <arg name=“R” value=“0”/> 
 <arg name=“P” value=“0”/> 
 <arg name=“Y” value=“0”/> 
 <arg name=“vehicle” value=“$(arg vehicle)”/> 
 <arg name=“rcS” value=“$(find px4)/posix-configs/SITL/init/$(arg est)/$(arg 
vehicle)_$(arg ID)”/> 
 <arg name=“mavlink_udp_port” value=“14572”/> 
 <arg name=“ID” value=“$(arg ID)”/> 
 </include> 
 <!-- MAVROS --> 
 <include file=“$(find mavros)/launch/px4.launch”> 
 <arg name=“fcu_url” value=“$(arg fcu_url)”/> 
 <arg name=“gcs_url” value=““/> 
 <arg name=“tgt_system” value=“$(arg ID)”/> 
 <arg name=“tgt_component” value=“1”/> 
 </include> 
 </group> 
</launch> 
------------------------------------------------------------------------------------------------------------  
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