

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

CYBER SECURITY TESTING OF THE ROBOT
OPERATING SYSTEM IN UNMANNED AERIAL

SYSTEMS

by

Sergio Sandoval

September 2018

Thesis Advisor: Preetha Thulasiraman
Second Reader: Murali Tummala

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
CYBER SECURITY TESTING OF THE ROBOT OPERATING SYSTEM IN
UNMANNED AERIAL SYSTEMS

5. FUNDING NUMBERS

R4M3G
6. AUTHOR(S) Sergio Sandoval

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
CRUSER/ONR

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 Unmanned systems have gained in prominence as platforms from which to conduct military operations.
The Robot Operating System (ROS) is a widely adopted standard robotic middleware; however, its
preliminary design is devoid of any network security features. Military grade unmanned systems must be
guarded against network threats. ROS 2.0 is built upon the Data Distribution Service standard and is
designed to provide solutions to identified ROS 1.0 security vulnerabilities by incorporating authentication,
encryption, and process profile features. The Department of Defense is looking to use ROS 2.0 for its
military-centric robotics platform. Through our work, we demonstrated that ROS 2.0 can serve as a
functional platform for use in military grade unmanned systems. We tested the viability of ROS 2.0 to
safeguard communications between an unmanned aerial swarm and a ground control station against rogue
node and message-spoofing attacks. Our experiments employ the PX4 Multi Vehicle Simulation swarming
three iris-quadcopter aerial drones within a Gazebo 9 simulation environment, utilizing QGroundControl as
our ground control station. Drones were targeted individually to ascertain the effectiveness of our attack
vectors under specific conditions. We demonstrated the effectiveness of ROS 2.0 in mitigating the chosen
attack vectors but observed a measurable operational delay within our simulations.

14. SUBJECT TERMS
authentication, authorization, encryption, ROS, unmanned aerial vehicle, swarm, security

15. NUMBER OF
PAGES
 55
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

CYBER SECURITY TESTING OF THE ROBOT OPERATING SYSTEM IN
UNMANNED AERIAL SYSTEMS

Sergio Sandoval
Major, United States Marine Corps

BS, University of California - Los Angeles, 2006
MA, Webster University, 2015

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2018

Approved by: Preetha Thulasiraman
 Advisor

 Murali Tummala
 Second Reader

 Clark Robertson
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Unmanned systems have gained in prominence as platforms from which to

conduct military operations. The Robot Operating System (ROS) is a widely adopted

standard robotic middleware; however, its preliminary design is devoid of any network

security features. Military grade unmanned systems must be guarded against network

threats. ROS 2.0 is built upon the Data Distribution Service standard and is designed to

provide solutions to identified ROS 1.0 security vulnerabilities by incorporating

authentication, encryption, and process profile features. The Department of Defense is

looking to use ROS 2.0 for its military-centric robotics platform. Through our work, we

demonstrated that ROS 2.0 can serve as a functional platform for use in military grade

unmanned systems. We tested the viability of ROS 2.0 to safeguard communications

between an unmanned aerial swarm and a ground control station against rogue node and

message-spoofing attacks. Our experiments employ the PX4 Multi Vehicle Simulation

swarming three iris-quadcopter aerial drones within a Gazebo 9 simulation environment,

utilizing QGroundControl as our ground control station. Drones were targeted

individually to ascertain the effectiveness of our attack vectors under specific conditions.

We demonstrated the effectiveness of ROS 2.0 in mitigating the chosen attack vectors but

observed a measurable operational delay within our simulations.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. IMPORTANCE OF UNMANNED SYSTEMS1
B. THE UTILITY OF ROS ...2
C. ROS 1.0 ...3
D. ROS 2.0 ...3
E. THESIS CONTRIBUTIONS ..4
F. THESIS ORGANIZATION ..5

II. RELATED WORK ..7
A. RESEARCH ON ROS 1.0 SECURITY ...7
B. RESEARCH ON SROS ...8
C. RESEARCH ON ROS 2.0 AND ROS-M ...8

III. THREAT ASSESSMENT ...11
A. INHERENT ROS VULNERABILITIES ...11

1. ROS Network ...11
2. UAV Swarm ..12

B. SUMMARY OF SECURITY VULNERABILITIES AND
CHOSEN MITIGATION TECHNIQUES ..13

C. POTENTIAL ROS SPECIFIC SOLUTIONS14

IV. EXPERIMENTAL SETUP ...15
A. SWARM SIMULATION...15
B. ROS 2.0 SECURITY ARCHITECTURE ..19

1. Authentication ..19
2. Access Control ..20
3. Cryptographic ..20

V. RESULTS AND ANALYSIS ..21
A. SIMULATION RESULTS ..21

1. Baseline ...21
2. Drone Disabling ..22
3. Drone Forced Landing ..24
4. Drone Forced Climb ..25
5. Summary of Findings ..27

VI. CONCLUSION ..29

viii

A. SUMMARY ..29
B. FUTURE WORK ...29

1. Additional Vulnerability Testing ..30
2. Measured Power Use ...30
3. Testing against Networked UAVs...30
4. Adaption to a Physical Swarm ..30

APPENDIX. MULTIPLE DRONE SIMULATION FILE...31

LIST OF REFERENCES ..35

INITIAL DISTRIBUTION LIST ...37

ix

LIST OF FIGURES

Figure 1. UAV1 Communications Architecture..16

Figure 2. Simulation ROS 1.0 Computation Graph Structure18

Figure 3. ROS Bridge Creation ...19

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. ROS Network Communication Link Vulnerabilities and Mitigations12

Table 2. UAV Swarm Communication Link Vulnerabilities and Mitigations13

Table 3. Simulation Baseline Results ..22

Table 4. Drone Disabling Simulation Results ..23

Table 5. Drone Forced Landing Results ..24

Table 6. Drone Forced Climb Results ..26

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

UxS Unmanned Systems
UAV Unmanned Aerial Vehicle
ROS Robot Operating System
OSRF Open Source Robotics Foundation
ROS-I Robot Operating System Industrial
ROS-M Robot Operating System Military
DoD Department of Defense
TCP Transmission Control Protocol
UDP User Datagram Protocol
API Application Programming Interface
TCP Transmission Control Protocol
UDP User Datagram Protocol
XMLRPC Extensible Markup Language Remote Procedure Call
IP Internet Protocol
SROS Secure ROS
OMG Object Management Group
DDS Data Distribution Service
RTPS Real-Time Publish Subscribe
3DES Triple-Data Encryption Standard
NIST National Institute of Standards and Technology
AES Advanced Encryption Standard
MAC Message Authentication Code
TLS Transport Layer Security
PKI Pubic Key Infrastructure
TARDEC Tank Automotive Research Development and Engineering Center
GCS Ground Control System
MITM Man-in-the-Middle
DoS Denial-of-Service
ECDSA Elliptic Curve Digital Signature Algorithm
ECDH Elliptic Curve Diffie-Hellman

xiv

CA Certificate Authority
AES Advanced Encryption Standard
AES-GCM AES in Galois Counter Mode
AES-GMAC AES Galois Message Authentication Code

xv

ACKNOWLEDGMENTS

Many individuals have generously imparted their wisdom and devoted their time to

make this endeavor successful. To my cohort in the Electrical and Computer Engineering

program, you have been a source of strength. Thank you for your friendship and

encouragement. To my instructors, each of you has imparted upon me the wisdom to

succeed in not just my academic life, but in my personal world.

To the knowledgeable and talented folks at the Open Source Robotic Foundation, I

could not have done this work without your assistance. In particular, I want to acknowledge

Mikael Arguedas for opening my eyes to the possibilities.

To Professor Preetha Thulasiraman, my advisor, I cannot thank you enough for

your keen insight and patience. You have been an incredible source of motivation guiding

my efforts while ensuring that I stayed the course.

Above all, I would like to express my dearest appreciation to my exceptional

spouse, Aisha, and my wonderful child, Sergio, for their admiration, curiosity, kindness

and support. They are a marvel to behold.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. IMPORTANCE OF UNMANNED SYSTEMS

Unmanned systems (UxS) have been growing in prominence as platforms from

which to conduct or support military operations. The U.S. military’s use of these systems

is changing the face of network centric warfare and altering the decision making process

in combat operations. In the past several decades, the military’s use of unmanned systems

in all domains, including ground, air, surface, and subsurface, has increased dramatically.

Military communities use UxS for the execution of offensive, reconnaissance, and

surveillance missions. One of the goals of research and development in UxS is to ensure

that they are network enabled and cyber hardened against adversarial interference.

Since 2016, the Naval Postgraduate School has been studying the operational

impact of cyber threats on UxS, particularly unmanned aerial vehicles (UAVs) [1]. The

vulnerabilities of the UAV architecture include threats against the communications link

between a UAV and ground station as well as the communications between individual

UAV assets. The communication link is only one of several inputs that are susceptible to

cyber-attacks. One of the understudied areas of UAV security is the sensitivity of the Robot

Operating System (ROS) to external threats.

ROS is a robust, open source, general-purpose platform that is used for robotics

programming. Developed by the Open Source Robotics Foundation (OSRF), ROS is

comprised of a set of software repositories and tools that assist in the development of

robotics applications [8]. Variants of ROS have been developed in recent years, including

ROS for industry applications (ROS-I) [2] and ROS for military applications (ROS-M) [3].

ROS-I has been influential in industrial automation systems like supervisory control and

data acquisition systems (SCADA). Similarly, Department of Defense (DoD)

organizations are seeking to build a military-centric ROS that provides an open, modular

architecture with a library of military-unique components and a set of military-unique tools.

The implementation of ROS-M is currently in its concept development phase [4].

2

B. THE UTILITY OF ROS

The ROS is a widely adopted standard robotic middle-ware. The ROS middleware

sits on top of a host operating system providing a communications layer that supports the

construction of functional computer clusters that are tailored for robotics applications [5].

Acting as a multi-server distributed computing network, the ROS structure allows software

applications the ability to connect and communicate across server boundaries [6]. This

aspect allows ROS-supported software applications to act as one single software system.

The master node sits at the center of the ROS topography. This dedicated server is

responsible for registering applications as well as their execution [6]. It also serves as a

repository for parameters and for the logging of message traffic [6]. In addition to the ROS

master node, a constellation of servers exists to balance out the system through the running

of additional applications. These satellite servers connect to the master server through use

of the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP) via the

local network.

Within this structure, ROS users implement independent systems that are referred

to as nodes. A node can be used for explicit purposes with specific functionality, such as

the execution of robot commands, the processing of transmitted message data, and as a

means to receive and update sensor data [7]. Each of these nodes is inexorably tied to the

ROS master. It is their connection to the ROS master that enables individual nodes to locate

and communicate with one another [7]. Once this connection is made, they can

communicate by passing messages. Nodes are further classified based on how they interact

with prescribed topics within the ROS structure. Nodes that act as a receiver of information

from a specific topic are said to be subscribed to that topic, while nodes that wish to send

out information about a specific topic are referred to as publishers [7]. Nodes

intercommunicate through an Application Programming Interface (API) via an Extensible

Markup Language Remote Procedure Call (XMLRPC). XMLPRC is a remote procedure

call protocol that uses XML encoding. Nodes can further intercommunicate through

message and service data exchanges requiring the use of transport libraries such as

ROSTCP and ROSUDP, which serialize communications through Internet Protocol (IP)

sockets [5].

3

The original development of ROS focused on software attributes which robotics

researchers coveted most. The relative simplicity and user-friendly aspects of ROS have

made it a popular instrument for the robotics community; however, interest in ROS and its

viability for application in industrial and military operations has demanded a modification

to the system to enhance its security.

C. ROS 1.0

The very nature of ROS as an open source platform presents a great deal of concern

for military operators. The system and its design and functions are available to anyone with

access to the Internet. Moreover, the developers and maintainers of ROS provide a support

apparatus on the GitHub webserver. A user can directly communicate with developers and

with the ROS community to troubleshoot systems and enable the operating system’s

functionality. Beyond the GitHub site, there is comprehensive published literature that

provides a user’s guide to ROS [8].

ROS 1.0 was designed without any network or cyber security features mainly

because it was designed for research purposes. The ROS 1.0 architecture does not have

security features for communications between nodes. There exists no means of encryption

nor authentication between nodes. This presents a problem as these networked nodes exist

to facilitate the actions and motions of physical systems enabling the real-world actions of

a robotics system. An adversary has a multitude of vectors by which to exploit a ROS 1.0

enabled unmanned system. The security vulnerabilities inherent in ROS 1.0 within the

context of UAV swarm operation are discussed in Chapter III. In addition, mitigation

techniques for these exploits are provided.

D. ROS 2.0

In recent years, ROS research has focused on the demand for network security

features, namely identity authentication and authorization of resource permissions [5].

Academics and researchers have taken steps to allay security vulnerabilities in the ROS 1.0

platform through the application of varying security enhancements, which are layered on

top of ROS 1.0. OSRF remedied the identified security limitations of ROS 1.0 by creating

Secure ROS (SROS). SROS was designed to provide solutions to common security

4

vulnerabilities by way of encryption, authentication, and process profile features [5]. SROS

was incorporated within the ROS 1.0 platform. It does not exist as a standalone system that

can function as its own version of the ROS API.

ROS 2.0 was developed with all of the security features that SROS introduced built

into the system itself. ROS-M is based on ROS 2.0. The emphasis for ROS 2.0 is on the

middleware, which is built atop the Object Management Group (OMG) consortium Data

Distribution Service (DDS) standard. DDS is an open standard for developing real-

time mission-critical distributed systems and incorporates the eProsima Fast Real Time

Publish Subscribe (RTPS) protocol [9]. Fast RTPS provides publisher-subscriber

communications over unreliable transports such as UDP [10]. DDS is used throughout

government and industry, including extensive deployment throughout the DoD.

E. THESIS CONTRIBUTIONS

Through our work, we seek to demonstrate that ROS 2.0 can serve as a functional

platform for use in military grade UxS. In this thesis, we focus on the viability of ROS 2.0

to safeguard communications between swarms and a ground control station. We test ROS

2.0’s ability to mitigate certain specific communications threats including message

spoofing and rogue nodes. We use the underlying security processes available in DDS with

the Fast RTPS model to execute our simulations. DDS enabled with the Fast RTPS protocol

provides security through authentication, access control, and encryption.

Our experiments were executed in Gazebo, a simulation platform for robotic

systems. We incorporated three quadrotor iris drones and a ground station controller,

specifically QGroundControl, utilizing ROS 2.0. A bridge between ROS 2.0 Ardent and

ROS 1.0 Kinetic was created to enable the security features inherent within ROS 2.0. Tests

were first executed with the ROS 1.0 system alone, followed by the ROS 2.0-ROS 1.0

bridged system, and finally the bridged system with security features enabled. Drones were

targeted individually to ascertain the effectiveness of our attack vectors.

While the solution provided in this thesis is specific to UAV swarms, the results

can be applied generally to any unmanned system that incorporates the use of the ROS

API.

5

F. THESIS ORGANIZATION

The remainder of this thesis is organized as follows. In Chapter II, the related work

on ROS 1.0 and ROS 2.0 security is presented. In Chapter III, a security assessment is

provided that describe the vulnerabilities of using ROS within unmanned systems. We

highlight the potential solutions for these vulnerabilities and discuss the methods that are

used in this thesis to mitigate certain attacks. In Chapter IV, we provide a discussion of the

experimental setup and design. In Chapter V, we detail the results and analysis of our

experimental results. In Chapter VI, we conclude the thesis and propose future research

directions.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. RELATED WORK

In this chapter, we discuss the related work that has been published by other

researchers on ROS security. We also examine the ROS variants that have been developed

over the years to overcome its various security shortcomings.

A. RESEARCH ON ROS 1.0 SECURITY

In recent years, research on ROS and its associated security measures have been

investigated in the literature. The aim of most research in this realm is to identify possible

solutions to ROS 1.0 security vulnerabilities. In [11], the authors study the behavior of ROS

1.0 when communications are encrypted using the Triple Data Encryption Standard

(3DES). While 3DES is one of two options authorized for encryption by the National

Institute of Standards and Technology (NIST), it is not as fast as other encryption

algorithms, such as the Advanced Encryption Standard (AES). In [12], the authors study

the use of Message Authentication Codes (MACs) in ROS 1.0 to achieve secure

authentication for remote, non-native clients; however, neither of these approaches provide

a holistic solution to ROS 1.0 security.

One group of academics from Cornell University sought to add security features to

ROS at the application layer [13]. This action allows them to incorporate security features

without having to manipulate ROS itself. They treat ROS as a black box and achieve

security through the use of an authentication server [13]. This approach utilizes a four-step

process beginning with authentication and key agreement, followed by the registration of

publishing and subscribing nodes, and ending with the actual publishing of messages. The

first step includes the association of specific topic(s) to a publisher node. The second and

third steps involve the authentication of the subscriber and publisher nodes through the

authentication server. Session keys are created in the final step to encrypt published

messages. Their design provides for confidentiality, integrity, authentication, and

authorization; however, given that their solution is not integrated with the ROS API, it

cannot provide availability and non-repudiation [13].

8

 Another group of researchers from the Institute for Robotics and Mechatronics in

Austria proposed a different means to provide security to ROS [4]. Their solution is similar

to SROS in that security elements are incorporated at the transport level. Their efforts were

focused on securing node-to-node TCP and UDP communications. Through their

technique, they are able to execute a methodical authorization scheme by looking at each

available topic through an initial handshake where public key cryptography and certificates

are the basis for mutual authentication and authorization [4]. Their technique also

incorporates the use of symmetric encryption algorithms and MACs to guarantee

confidentiality and integrity of communications [4]. The process begins with a remote

procedure call known as XMLRPC from the subscriber to the publisher. The requested

topic is subsequently verified, and then the publisher and subscriber exchange port

information for connection, TCP or UDP, establishment [4]. A final handshake is used to

secure the channel through an exchange of certificates between the client and server [4]. In

addition, a challenge and response feature enables the creation of keys that are later used

to encrypt transmitted messages [4].

B. RESEARCH ON SROS

As was mentioned earlier, SROS is an addition to the ROS API that is meant to

provide cyber security measures. SROS introduces new security features that address

encryption, access control and process profiles. Encryption in SROS is achieved through

native Transport Layer Security (TLS) support for all socket-level communications

through the use of X.509 certificates. These certificates are used in developing chains of

trust, validating authenticity, and ensuring integrity. A key server is also maintained for

key generation [5]. Access control is achieved through node restrictions and roles, auditing

of the graph network through security logs, and through user-constructed access control

policies [5]. Application security is achieved through process profiles. Node processes are

hardened using Linux security modules in the kernel [5].

C. RESEARCH ON ROS 2.0 AND ROS-M

As mentioned earlier, ROS 2.0 implements its security measures using the DDS.

The addition of DDS changes the overall communications architecture of ROS 1.0 from

9

using messages, in a sometimes complex network programming paradigm, to a simpler and

secure publish-subscribe method for sending/receiving data among nodes/topics. The

addition of the DDS security component affords ROS 2.0 the ability to protect data that is

actively being transmitted. DDS uses symmetric and asymmetric cryptography for data

confidentiality and authentication. Hash functions in conjunction with pubic key

infrastructure (PKI) are used to verify message integrity and non-repudiation [19].

Researchers with the United States Army Tank Automotive Research Development and

Engineering Center (TARDEC) have begun to develop a militarized version of ROS to suit

the needs of unmanned systems. The development of ROS-M is focused on the addition of

military-relevant aspects to the ROS 2.0 architecture, namely additional simulation

applications, the ability to perform cyber assurance checking, a means to store pertinent

coding, and the creation of a training environment for service members [14]. TARDEC

developed a phased approach to the development and implementation of ROS-M to Army

unmanned systems. Phase III, which is a demonstration of the use of ROS-M on unmanned

systems executing a maneuver over a prescribed course, was executed during their Industry

Days event in April 2018 [14]. The security assessment portion of the demonstration

included a successful man-in-the-middle attack on a simple ROS 1.0 application and the

same man-in-the-middle attack failing to work on the ROS 2.0 version of the application

for two separate unmanned ground vehicles, the Polaris MRZR and the John Deer M-Gator.

Both vehicles were running ROS code developed for two separate military projects with a

portion of the code updated to ROS 2.0 and all of the code registered as ROS-M

components [14].

Although there has been a push by the Navy to extend and harden ROS 2.0, it has

not been easily accepted into the fleet, in part due to a lack of proof of the quality of

software (i.e., formal verification and validation), particularly in unmanned aerial systems.

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

III. THREAT ASSESSMENT

Much work has been done in academia and industry to allay the network security

concerns present within ROS. In this chapter, we outline the inherent vulnerabilities of

ROS 1.0 and the potential use of ROS 2.0 to mitigate some of these problems. Given its

future adaptability to military UxS, ROS 2.0 is viewed as a holistic tool for ROS security.

A. INHERENT ROS VULNERABILITIES

 The structure of ROS 1.0 presents a set of vulnerabilities that can be exploited.

ROS messages are sent between nodes in clear text, which means that they are not

encrypted. Another feature of ROS that presents a problem is its anonymous graph-type

structure. There are no procedures in place to validate nodes within the communications

structure. Each connected node within the graph can subscribe to any topic that exists

within the ROS instance. Nodes can act as publishers of information or as receivers of

information. There is also an inherent vulnerability in how the ROS runtime process

functions.

In the subsequent sections, we highlight the vulnerabilities that exist within the

ROS 1.0 communications structure. We examine the exploits that can be executed against

ROS and a UAV swarm. A description of each exploit is provided along with possible

actions that can be taken to mitigate damage.

1. ROS Network

ROS network communications link vulnerabilties and mitigation techniques are

provided in Table 1.

12

Table 1. ROS Network Communication Link Vulnerabilities and
Mitigations

Exploit Name Description Possible Mitigations

Packet Sniffing Information transmitted between ROS
nodes are captured and analyzed

Strong encryption

Man-in-the-Middle Node message traffic is intercepted,
modified and passed on

Strong encryption and
authentication

Rogue Nodes Nodes that are capable of disturbing
system operations by injecting
commands about arbitrary topics [4]

Node specific
authentication and
authorization

Denial of Service Nodes publishing large amounts of
erroneous data which increases
processing times at other nodes [4]

Node specific
authentication and
authorization [4]

Message Spoofing Nodes publishing information to
execute actions outside of the purview
of valid user(s)

Node identification through
authentication

Code Injection Attackers that have gained access to
the ROS network modifying the
behavior of the system

Define access permissions
that prevent system
modification after running

Zero Day Exploits Altering the ROS network
permissions

Define access permissions
that prevent system
modification after running

2. UAV Swarm

The communications link used when operating in a swarm environment presents its

own vulnerabilities. Specific UAV swarm communications link vulnerabilties and

mitigation techniques are provided in Table 2.

13

Table 2. UAV Swarm Communication Link Vulnerabilities and Mitigations

Exploit Name Description Possible Mitigations

Eavesdropping Information transmitted between
ground control system (GCS) and
UAV(s) intercepted

Strong encryption,
directional antennas

Replay Attack Intercepted packets recorded and
broadcasted at a later time

Strong authentication and
serialization

RC Hijack Bad actor pairs with a UAV Strong authentication
between GCS and UAV

B. SUMMARY OF SECURITY VULNERABILITIES AND CHOSEN
MITIGATION TECHNIQUES

Given the nature of our experimental environment, it is not feasible to implement

mitigation techniques for every single type of risk previously identified. One can see from

the given types of risks that a number of those listed can be mitigated with authentication

schemes. The difficulty lies in the way the swarm communicates. Messages are broadcast

omni-directionally. Encryption is required in order to keep sensitive information from

being captured and exploited. Given the communications schemes utilized by the swarm

in addition to the use of ROS, our system is particularly vulnerable to man-in-the-middle

(MITM) attacks and replay attacks.

An individual with knowledge of ROS can introduce ROS messages into the drone

to manipulate the actions of the vehicle. Moreover, a person with specific understanding of

the ROS message fields within the given system graph can conceivably manipulate the

drone with greater efficiency [15].

It must be noted that the addition of encryption and authentication will not

completely protect the swarm from every type of attack. The communications channel that

the swarm uses for its operation is still susceptible to denial-of-service (DoS). Ensuring

channel availability is not part of this thesis work.

14

C. POTENTIAL ROS SPECIFIC SOLUTIONS

ROS 2.0, particularly its enhanced security features provided through DDS, appears

to offer a ROS-specific solution to identified concerns with the ROS 1.0 platform. The

ROS 2.0 DDS literature indicates that its features offer users a number of mitigation

techniques to the exploits that have been identified in Tables 1 and 2; however, these

security enhancements must be tested in order to verify their effectiveness. We chose to

validate the ROS 2.0 DDS system against two attack vectors: a rogue-node style attack and

a message-spoofing attack. These exploits are important first steps to validate ROS 2.0

DDS as a viable security solution for military centric operations. The processes within ROS

2.0 DDS that offer a means of node authentication and node permissions will be challenged

through our testing.

15

IV. EXPERIMENTAL SETUP

ROS 2.0, through its available security enhancements, promises to provide

solutions to many of the identified communications vulnerability exploits. In this chapter,

we explain the simulation architecture that we used to test ROS 2.0 against specific cyber

threats, specifically rogue-nodes and spoofing attacks.

A. SWARM SIMULATION

The goal of our simulations is to test the ability of ROS 2.0 to safeguard

communications between each UAV and GCS. We tested ROS 2.0’s ability to prevent threats

posed by message spoofing and rogue-node attacks. Recall that ROS 2.0 is built atop the

OMG DDS standard incorporating the eProsima Fast RTPS protocol. The security processes

within this protocol are enabled when we test the viability of ROS 2.0 in effectively providing

security through authentication, access control, and encryption. Our simulation setup

required that we incorporate a bridge between ROS 2.0 and ROS 1.0, as the most recent

version of ROS 2.0 (ROS 2.0 Ardent) does not support Gazebo. ROS 2.0 Ardent lacks the

dependencies needed to function with Gazebo. Future releases of ROS 2.0 plan to address

this issue, but a solution is not presently available without using a bridge. The bridge itself

enables the exchange of messages between ROS 1.0 and ROS 2.0. The bridge acts as a ROS

1.0 node as well as a ROS 2.0 node at the same time and can, therefore, subscribe to messages

in one ROS version and publish them into the other ROS version [16].

Our experiments were performed on a Mac Book Pro laptop with an Intel Core i7-

3615QM Processor. The Mac operating system was replaced with a Linux operating system

running Ubuntu 16.04 LTS. This particular version of Ubuntu was required for our chosen

ROS API and simulation architecture to function properly. The PX4 Multi Vehicle

Simulation was utilized in setting up the experiments. Within this simulation setup, ROS

1.0 Kinetic is used with PX4 and the Gazebo 9 simulator. PX4 autopilot allows a remotely

piloted aircraft to be flown out of sight. The simulated drones, which in our simulation

included three instances (i.e., three UAVs), are visualized in Gazebo. Our simulation

utilizes a MAVROS MAVLink node in order to establish communication with PX4 [17].

16

MAVLink is a standard communications protocol for a UAV. MAVROS is an extension

of MAVLink to ROS enabled devices. MAVROS allows for communications between the

UAV autopilot and the GCS. [17]. QGroundControl v3.3.1 served as our GCS software.

Through QGroundControl, the drone instances are armed, flightpath parameters are

entered, and the flightpath is executed. The Gazebo drone simulation generates sensor

data, including motor and actuator values, from its simulated world, which is then

transmitted to PX4. PX4 communicates with ROS and the GCS to send drone telemetry

information and to receive commands [17]. Figure 1 is a depiction of the MAVLink

communications structure for the first UAV instance.

Figure 1. UAV1 Communications Architecture

Through the experiments, we tested the simulations against attempts to manipulate

established MAVROS service nodes including the command arming, command landing

17

and command takeoff nodes. The arming command is the instruction that is sent to an

individual drone to turn on the drone itself and prepare it for a mission. The landing

command specifies where a drone will execute a landing maneuver and can be used to

immediately direct a drone to land at a specific location. The takeoff command is the

directive that specifies how a takeoff is executed; this command can be used to immediately

direct the drone to climb to a new location. In this thesis, we only consider the

communication between the simulated drones and the GCS. The ROS 1.0 Kinetic was

chosen for our experiments as it has been deemed the most functional version for use with

ROS 2.0 and our chosen simulation visualization and control software. ROS 2.0 Ardent

was released for public use in December of 2017 and was chosen for this thesis.

All available ROS nodes are displayed in the computation graph. The ROS

computation graph is a GUI that displays the nodes that currently exist within the system.

It visualizes the publish-subscribe relationship between ROS nodes. The ROS computation

graph for our simulation is shown in Figure 2. When examining the figure, we can see

distinct shapes and forms within the ROS graph. The oval in Figure 2 represents a ROS

node. Publisher-subscriber associations are represented by directed edges [8]. It is here

where we can see one of the targeted UAV MAVROS nodes for our experiment.

18

Figure 2. Simulation ROS 1.0 Computation Graph Structure

A ROS 1.0 ROS 2.0 bridge is created so that the ROS 2.0 security features can be

enabled in our drone simulation system. This bridge is built after the simulation launch file

is run and the ROS 1.0 computation graph and node structures are present. The referenced

launch file is provided in the Appendix. When creating the bridge, ROS 2.0 nodes and

topics are generated to match those existing ROS 1.0 components. It is important that

complete pairs be made so that the security features afforded to us from ROS 2.0 cover all

communications within our ROS network. The bridge creation and two-to-one matching

between ROS 2.0 and ROS 1.0 are shown in Figure 3.

19

Figure 3. ROS Bridge Creation

B. ROS 2.0 SECURITY ARCHITECTURE

Our simulation was built with a ROS 1.0 framework; however, we take advantage

of ROS 2.0 security features by creating a communications bridge between both APIs. As

discussed previously, ROS 2.0 provides encryption, authentication, and process profile

features by activating the eProsima Fast RTPS protocol, which is incorporated within the

DDS standard upon which that ROS 2.0 is built. Security through the implementation of

Fast RTPS is provided through three distinct methods. Fast RTPS authenticates remote

participants, provides access to verified entities, and encrypts transmitted data [9]. Each

level of security is achieved through the activation of the following features that are

provided within the DDS middleware.

1. Authentication

This feature provides for the authentication of ROS nodes. The Fast RTPS

authentication plugin, when activated, authenticates detected ROS nodes [9]. This process

continues until all ROS nodes are authenticated. Node authentication is achieved through

use of the Elliptic Curve Digital Signature Algorithm (ECDSA), while a shared secret key

20

is created using Elliptic Curve Diffie-Hellman (ECDH) for use in communications

encryption [9]. PKI, utilizing a pre-configured and communal Certificate Authority (CA),

is incorporated by the authentication feature [18].

2. Access Control

This attribute provides validation of ROS node permissions after a remote

participant is authenticated. Participants are assigned permissions after they are

authenticated. These permissions are validated and enforced [18]. Node permissions are

confirmed and applied and the access rights that are assigned to each node over available

system resources are defined. Access control is achieved through the creation of a

permissions document signed by the shared CA [18]. The Domain Governance and

Permissions document is signed by an X.509 permissions certificate. It is an XML

document that defines how the environment is secured [9].

3. Cryptographic

This feature provides encryption and is applied to communications messages

exchanged between ROS nodes. This feature is configured by the access control plugin.

The cryptography feature utilizes Advanced Encryption Standard in Galois Counter Mode

(AES-GCM) for encryption and AES Galois Message Authentication Code (AES-GMAC)

for the authentication of messages [18].

These security features are enabled only after the simulation architecture has been

created on both the ROS 1.0 and ROS 2.0 side. By performing this step last, we ensure that

only existing ROS artifacts, namely the established system and nodal relationships, are

incorporated into the access control documents. This ensures legitimacy of all aspects of

our system.

21

V. RESULTS AND ANALYSIS

A series of simulations under three different conditions was conducted to

demonstrate the strength of ROS 2.0 in the face of specific threat vectors. In this chapter,

we discuss our simulation results and their effectiveness in thwarting rogue-node and

message spoofing attacks. We also highlight the significance of these results in validating

ROS 2.0 from a security perspective.

A. SIMULATION RESULTS

1. Baseline

In order to establish a baseline for the simulations, a definitive flightpath was

loaded into each of the three simulated UAVs. The flightpath was designed to mirror a

reconnaissance mission over a defined route, which is a likely mission for a small UAV.

The route was determined based on the geographic features provided by the

QGroundControl software. The UAVs executed this given flightpath under three specific

conditions:

• Condition 1: The simulation is run with ROS 1.0.

• Condition 2: The simulation is run with the ROS 1.0 ROS 2.0 Bridge devoid

of any security features.

• Condition 3: The simulation is run with the ROS 1.0 ROS 2.0 Bridge with

security features enabled.

We ran the simulation through ten individual trials for each of the given conditions.

Our simulation baseline trials were conducted without any malicious activity. Time was

recorded from the moment the first UAV began its ascent to the moment the third UAV

landed safely on the ground. The results for our attack-free trials of the simulated

experiment are provided in Table 3. We refer to these results as our baseline throughout

the remainder of the thesis.

22

Table 3. Simulation Baseline Results

Simulation Run Times (min:sec)
Conditions 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th ~Avg
ROS 1.0 2:30 2:20 2:31 2:17 2:28 2:44 2:39 2:27 2:24 2:40 2:30

ROS
1.0/ROS2.0
Bridge

2:33 2:32 2:23 2:19 2:30 2:31 2:47 2:41 2:27 2:42 2:32

Security
Enabled
ROS
1.0/ROS
2.0 Bridge

2:33 2:31 2:28 2:35 2:30 2:40 2:28 2:26 2:45 2:44 2:34

As can be seen in Table 3, our results show that the addition of the ROS 1.0 ROS

2.0 Bridge added a negligible amount of time to our simulation when compared to the

simulation running on only ROS 1.0. On average, two additional seconds were needed to

complete the entire flight path under the second condition. When the security features are

enabled on the bridge, more time is required to execute the flight path. On average, an

additional four seconds were needed to complete the mission under the third condition

compared to the first condition. The additional time required by the simulation to complete

the prescribed flight path under the second and third conditions is measurable and appears

to be adding a delay overhead.

2. Drone Disabling

The next set of trials involved a rogue node completely disabling an individual

UAV. The rogue node accesses the MAVROS command arming service and directs it to

shut down the targeted drone. This action caused the drone to instantly shutoff its engines

and resulted in the drone crashing to the ground. UAV1, UAV2, and UAV3 represent the

targeted nodes/drones. The same conditions used as part of the simulation baseline were

applied to these trials. Each individual UAV was targeted under each condition for a total

of ninety trials. The results are provided in Table 4.

23

Table 4. Drone Disabling Simulation Results

Time to Disable Drone (min:sec)
Conditions 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th ~Avg
ROS 1.0
UAV1 0:40 0:41 0:42 0:40 0:41 0:42 0:42 0:40 0:42 0:41 0:41.1
UAV2 0:41 0:41 0:42 0:41 0:41 0:41 0:42 0:41 0:40 0:42 0:41.2
UAV3 0:42 0:42 0:40 0:41 0:42 0:40 0:41 0:40 0:41 0:42 0:41.1
ROS
1.0/ROS2.0
Bridge

UAV1 0:44 0:42 0:43 0:42 0:43 0:42 0:42 0:45 0:44 0:45 0:43.2
UAV2 0:42 0:42 0:43 0:44 0:45 0:43 0:41 0:44 0:43 0:45 0:43.2
UAV3 0:44 0:42 0:43 0:44 0:45 0:43 0:41 0:44 0:43 0:44 0:43.3
Security
Enabled
ROS
1.0/ROS
2.0 Bridge

UAV1 2:54 3:02 2:48 3:01 3:09 2:47 3:06 3:04 3:02 2:53 2:59
UAV2 2:55 3:01 2:47 3:03 3:10 2:46 3:07 3:05 3:03 2:54 2:59
UAV3 2:52 3:03 2:49 3:02 3:11 2:48 3:08 3:05 3:05 2:55 3:00

Under the first and second conditions, the numbers listed for each trial show the

time at which the entire drone swarm was successfully in the air flying. The attack itself

was near instantaneous. As soon as the attack was executed, the targeted drone fell out of

the sky. We can see that between the first and second conditions, it took on average two

additional seconds to get the drones in the air when the bridge was enabled; thus, a small

delay overhead is incurred when the bridge is enabled.

For the third condition (Bridge Secured), the numbers represent the total time that

the UAVs took to complete the flight path. In each of the trials, the attempted attacks failed;

however, repeated attempts to disable an individual drone added a substantial amount of

time to the flight path. When compared to the baseline simulation, the additional time

amounted to an extra 25 seconds. Considering that the entire flight time for the baseline

trials was on average two minutes and 59 seconds, the additional flight time amounted to

24

a 16% increase. In addition, these results are evidence of ROS 1.0’s inability to guard

against an attack when compared to ROS 2.0.

3. Drone Forced Landing

The next set of trials involved a message-spoofing attack. In this attack, the creation

of a malicious node takes control of a UAV and forces it to land. The MAVROS command-

landing service was accessed. The rogue node directed the targeted drone to land at a

prescribed location at the time the command was sent. The same conditions used as part of

the simulation baseline were applied to these trials. Each individual UAV, UAV1 through

UAV3, was targeted under each condition for a total of ninety trials. The timing results

under this attack are shown in Table 5.

Table 5. Drone Forced Landing Results

Time to Force Land Drone (min:sec)
Conditions 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th ~Avg
ROS 1.0
UAV1 0:42 0:41 0:41 0:42 0:43 0:42 0:44 0:42 0:41 0:42 0:42.0
UAV2 0:42 0:43 0:41 0:42 0:43 0:41 0:43 0:42 0:42 0:43 0:42.2
UAV3 0:43 0:42 0:42 0:43 0:42 0:43 0:42 0:43 0:41 0:42 0:42.3
ROS
1.0/ROS2.0
Bridge

UAV1 0:45 0:43 0:43 0:44 0:45 0:43 0:44 0:45 0:44 0:45 0:44.1
UAV2 0:44 0:45 0:44 0:45 0:44 0:45 0:42 0:44 0:43 0:46 0:44.2
UAV3 0:45 0:44 0:43 0:44 0:45 0:44 0:43 0:44 0:45 0:44 0:44.1
Security
Enabled
ROS
1.0/ROS
2.0 Bridge

UAV1 2:55 3:03 2:57 3:03 3:07 2:51 3:04 3:05 3:03 3:04 3:01
UAV2 3:07 3:03 2:56 3:05 3:01 3:06 2:55 2:53 3:00 3:05 3:01
UAV3 2:53 3:01 2:51 3:03 3:09 2:50 3:05 3:07 3:02 2:58 3:00

25

Under the first and second conditions, the numbers listed for each trial show the

time at which the entire drone swarm was successfully in the air flying. The effects of the

attacks themselves, as in the previous trial, were near immediate. As soon as the attack was

executed, the targeted drone began to execute a landing maneuver. The execution of the

landing itself took just over one second to execute as the drone was flying at an altitude of

only ten meters. Again, we observe a two-second delta between trials under the first and

second condition. The cost in time to run the bridge is still present.

With the third condition, the numbers represent the total time that the UAVs took

to complete the flight path. In each of the trials, the attempted attacks continued to fail as

before. As was observed in the previous trials, the repeated attempts to disable an individual

drone added a substantial amount of time to the flight path. When compared to the baseline

simulation, the additional time amounted to an extra 27 seconds. Considering that the entire

flight time for the baseline trials was on average two minutes and 59 seconds, the additional

flight time amounts to a 17.5% increase. As was the case before, ROS 1.0 fails at protecting

against this threat, whereas ROS 2.0 is successful but incurs a tradeoff in delay.

4. Drone Forced Climb

The last set of trials also involved a message spoofing attack. In this attack, the

creation of a malicious node takes control of a UAV and forces it to gain altitude. The

MAVROS command takeoff service was accessed. The rogue node directed the targeted

drone to climb to a prescribed location at the time the command was sent. The same

conditions used as part of the simulation baseline were applied to these trials. Each

individual UAV was targeted under each condition for a total of ninety trials. The timing

results under this attack are shown in Table 6.

26

Table 6. Drone Forced Climb Results

Time to Force Climb (min:sec)
Conditions 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th ~Avg
ROS 1.0
UAV1 0:41 0:42 0:42 0:40 0:41 0:40 0:42 0:43 0:41 0:42 0:41.4
UAV2 0:43 0:41 0:43 0:41 0:42 0:41 0:42 0:40 0:42 0:41 0:41.6
UAV3 0:42 0:40 0:44 0:40 0:42 0:41 0:42 0:43 0:41 0:40 0:41.5
ROS
1.0/ROS2.0
Bridge

UAV1 0:43 0:45 0:43 0:42 0:45 0:43 0:44 0:43 0:42 0:45 0:43.5
UAV2 0:44 0:43 0:44 0:43 0:43 0:44 0:42 0:45 0:42 0:44 0:43.4
UAV3 0:44 0:42 0:45 0:41 0:45 0:43 0:44 0:46 0:44 0:41 0:43.5
Security
Enabled
ROS
1.0/ROS
2.0 Bridge

UAV1 2:56 3:02 2:55 3:01 3:05 2:53 3:05 3:02 3:00 3:03 3:00
UAV2 3:04 3:04 3:01 3:02 2:58 2:58 3:03 3:01 2:55 3:05 3:01
UAV3 2:54 3:07 2:55 2:52 3:02 3:02 3:01 3:07 3:06 2:59 3:00

The numbers recorded under the first and second condition continue to demonstrate

the time required to have the entire drone swarm airborne. The effects of the attacks

themselves, as in the previous first trial, were again instantaneous. As soon as the attack

was executed, the targeted drone began to execute a climbing maneuver. As soon as the

attack was executed, the targeted drone began to climb and gain in altitude. The additional

two seconds are still present between trials executed under the first and second condition.

Again, the cost in time to run the bridge is still present.

As before, under the third condition, the recorded data represents the total time that

the UAVs took to run through the prescribed mission. In each of the trials, the attempted

attacks continued to fail as before. As was observed in the previous two attack experiments,

the repeated attempts to disable an individual drone added a substantial amount of time to

the flight path. When compared to the baseline simulation, the additional time amounted

27

to an extra 26 seconds. Considering that the entire flight time for the baseline trials was on

average two minutes and 59 seconds, the additional flight time amounts to just under a 17%

increase.

5. Summary of Findings

We see from examination of the simulation results under the third condition, where

security was enabled on the ROS 2.0 ROS 1.0 Bridge, proved to be effective at mitigating

each attack vector. Given these observations, ROS 2.0 DDS works well in mitigating basic

attacks; however, the effectiveness of this setup is inhibited by a significant latency

overhead. It is our belief that implementation of the bridge was the prime factor in

increasing the delay in flight time. As ROS 2.0 develops, the need for the bridged approach

may no longer be required. Future ROS 2.0 variants that can directly function with Gazebo

will likely reduce a portion of the delay overhead we observed.

28

THIS PAGE INTENTIONALLY LEFT BLANK

29

VI. CONCLUSION

A. SUMMARY

The prominence of UxS and their utility as a force multiplier for the United States

military will endure. These systems will continue to change the face of warfare and must

be guarded against network and cyber threats. In this thesis, we studied the viability of

using ROS 2.0 for UxS missions. We tested the ability of ROS 2.0 to mitigate against basic

attacks in order to begin the formal verification process for transition to the fleet.

Through our UAV swarm configuration and communications architecture, we

demonstrated the very real threat that exists to UxS that are constructed and operated

devoid of any security architecture. By enabling given security enhancements available to

the ROS through the ROS 2.0 API, we were able to demonstrate that these added features

are capable of thwarting attacks against a small UAV swarm. The security features were

effective in stifling the rogue-node and message spoofing attacks, but there was a

measureable cost to the drone operation in terms of delay. A tradeoff exists between the

use of ROS 2.0 and the latency overhead that is induced.

Operating a UxS, especially in a swarming configuration, without any network

communications security is much costlier than the added time to conduct operations. The

loss of a UxS to an adversary through the applied attack vectors would incur incredible

replacement costs due to downed systems and breach of potentially sensitive information

due to capture of the platform. It is also the expectation that in the future, ROS 2.0 will be

functional without the use of a bridge. This may reduce the latency overhead.

B. FUTURE WORK

In this thesis, authentication, encryption, and access control features were enabled

to provide security to our swarm simulation. Application of these features were limited to

our simulation environment and limited to the classes of attack trajectories against which

we chose to test. Further research and testing is needed to fully gauge the effectiveness of

ROS 2.0 and DDS.

30

1. Additional Vulnerability Testing

Our experiments can be taken further by testing its viability against all of identified

security vulnerabilities. There are over twenty other MAVROS specific nodes beyond the

three that we tested that exist for each UAV instance that can exploited. Additional network

communication vulnerabilities and mitigations should be explored.

2. Measured Power Use

Throughout our simulations, we measured an increased amount of time required to

complete the mission tasked to the drone swarm. The addition of the bridge came with a

cost, and the use of the security features came with a much higher cost. One could measure

this cost in time against the physical tax that it takes against the UAVs power stores.

3. Testing against Networked UAVs

In this thesis, the testing of ROS 2.0 focused solely on communications between an

individual UAV and the GCS. Testing of ROS 2.0 on communications between UAVs

during a specific flight maneuver is required.

4. Adaption to a Physical Swarm

Eventually, the testing of ROS 2.0’s cybersecurity features should be carried out on

hardware, moving beyond the simulated environment and into real world testing. Testing

and basic experimentation on actual UAV assets to support simulated results would be

beneficial.

31

APPENDIX. MULTIPLE DRONE SIMULATION FILE

The following ROS launch file is what used in this thesis to create our simulation
environment. This file launches the Gazebo 9 simulation software and spawns three iris
quadcopter drones with requisite MAVROS and PX SITL architecture. Each drone is
assigned specific and unique UDP ports required for the MAVLink communications
architecture.
--
<?xml version=“1.0”?>
<launch>
 <!-- MAVROS posix SITL environment launch script -->
 <!-- launches Gazebo environment and 3x: MAVROS, PX4 SITL, and spawns vehicle --
>
 <!-- vehicle model and world -->
 <arg name=“est” default=“ekf2”/>
 <arg name=“vehicle” default=“iris”/>
 <arg name=“world” default=“$(find mavlink_sitl_gazebo)/worlds/empty.world”/>
 <!-- gazebo configs -->
 <arg name=“gui” default=“true”/>
 <arg name=“debug” default=“false”/>
 <arg name=“verbose” default=“false”/>
 <arg name=“paused” default=“false”/>
 <!-- Gazebo sim -->
 <include file=“$(find gazebo_ros)/launch/empty_world.launch”>
 <arg name=“gui” value=“$(arg gui)”/>
 <arg name=“world_name” value=“$(arg world)”/>
 <arg name=“debug” value=“$(arg debug)”/>
 <arg name=“verbose” value=“$(arg verbose)”/>
 <arg name=“paused” value=“$(arg paused)”/>
 </include>
 <!-- UAV1 -->
 <group ns=“uav1”>
 <!-- MAVROS and vehicle configs -->
 <arg name=“ID” value=“1”/>
 <arg name=“fcu_url” default=“udp://:14540@localhost:14557”/>
 <!-- PX4 SITL and vehicle spawn -->
 <include file=“$(find px4)/launch/single_vehicle_spawn.launch”>
 <arg name=“x” value=“0”/>
 <arg name=“y” value=“0”/>
 <arg name=“z” value=“0”/>
 <arg name=“R” value=“0”/>
 <arg name=“P” value=“0”/>
 <arg name=“Y” value=“0”/>
 <arg name=“vehicle” value=“$(arg vehicle)”/>

32

 <arg name=“rcS” value=“$(find px4)/posix-configs/SITL/init/$(arg est)/$(arg
vehicle)_$(arg ID)”/>
 <arg name=“mavlink_udp_port” value=“14560”/>
 <arg name=“ID” value=“$(arg ID)”/>
 </include>
 <!-- MAVROS -->
 <include file=“$(find mavros)/launch/px4.launch”>
 <arg name=“fcu_url” value=“$(arg fcu_url)”/>
 <arg name=“gcs_url” value=““/>
 <arg name=“tgt_system” value=“$(arg ID)”/>
 <arg name=“tgt_component” value=“1”/>
 </include>
 </group>
 <!-- UAV2 -->
 <group ns=“uav2”>
 <!-- MAVROS and vehicle configs -->
 <arg name=“ID” value=“2”/>
 <arg name=“fcu_url” default=“udp://:14541@localhost:14559”/>
 <!-- PX4 SITL and vehicle spawn -->
 <include file=“$(find px4)/launch/single_vehicle_spawn.launch”>
 <arg name=“x” value=“1”/>
 <arg name=“y” value=“0”/>
 <arg name=“z” value=“0”/>
 <arg name=“R” value=“0”/>
 <arg name=“P” value=“0”/>
 <arg name=“Y” value=“0”/>
 <arg name=“vehicle” value=“$(arg vehicle)”/>
 <arg name=“rcS” value=“$(find px4)/posix-configs/SITL/init/$(arg est)/$(arg
vehicle)_$(arg ID)”/>
 <arg name=“mavlink_udp_port” value=“14562”/>
 <arg name=“ID” value=“$(arg ID)”/>
 </include>
 <!-- MAVROS -->
 <include file=“$(find mavros)/launch/px4.launch”>
 <arg name=“fcu_url” value=“$(arg fcu_url)”/>
 <arg name=“gcs_url” value=““/>
 <arg name=“tgt_system” value=“$(arg ID)”/>
 <arg name=“tgt_component” value=“1”/>
 </include>
 </group>
 <!-- UAV3 -->
 <group ns=“uav3”>
 <!-- MAVROS and vehicle configs -->
 <arg name=“ID” value=“3”/>
 <arg name=“fcu_url” default=“udp://:14551@localhost:14569”/>

33

 <!-- PX4 SITL and vehicle spawn -->
 <include file=“$(find px4)/launch/single_vehicle_spawn.launch”>
 <arg name=“x” value=“2”/>
 <arg name=“y” value=“0”/>
 <arg name=“z” value=“0”/>
 <arg name=“R” value=“0”/>
 <arg name=“P” value=“0”/>
 <arg name=“Y” value=“0”/>
 <arg name=“vehicle” value=“$(arg vehicle)”/>
 <arg name=“rcS” value=“$(find px4)/posix-configs/SITL/init/$(arg est)/$(arg
vehicle)_$(arg ID)”/>
 <arg name=“mavlink_udp_port” value=“14572”/>
 <arg name=“ID” value=“$(arg ID)”/>
 </include>
 <!-- MAVROS -->
 <include file=“$(find mavros)/launch/px4.launch”>
 <arg name=“fcu_url” value=“$(arg fcu_url)”/>
 <arg name=“gcs_url” value=““/>
 <arg name=“tgt_system” value=“$(arg ID)”/>
 <arg name=“tgt_component” value=“1”/>
 </include>
 </group>
</launch>
--

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

LIST OF REFERENCES

 [1] R. Thompson and P. Thulasiraman, “Confidential and authenticated
communications in a large fixed wing UAV swarm,” M.S. thesis, Department of
Electrical and Computer Engineering, NPS, Monterey, CA, USA, Dec. 2016.

[2] L. Chen, Z. Wei, F. Zhao and T. Tao, “Development of a virtual teaching pendant
system for serial robots based on ROS-I,” in Proc. of IEEE International
Conference on Cybernetics and Intelligent Systems and IEEE Conference on
Robotics, Automation and Mechatronics, pp. 720–724, Nov. 2017. [Online].
doi:10.1109/ICCIS.2017.8274867

[3] Army, “TARDEC 30-year strategy value stream analysis,” Sep. 27, 2016.
[Online]. Available:
https://www.army.mil/article/175820/tardec_30_year_strategy_value_stream_anal
ysis

[4] B. Breiling, B. Dieber and P. Schartner, “Secure communication for the robot
operating system,” Annual IEEE International Systems Conference (SysCon),
pp. 1-6, Apr. 2017. [Online]. doi:10.1109/SYSCON.2017.7934755

[5] R. White, H. I. Christensen and M. Quigley, “SROS: Securing ROS over the wire
in the graph and through the kernel,” IEEE-RAS International Conference on
Humanoid Robots (HUMANOIDS), Nov. 2016, [Online]. Available:
https://arxiv.org/pdf/1611.07060.pdf

[6] A. Singhal, P. Pallav, N. Kejriwal, S. Choudhury, S. Kumar and R. Sinha,
“Managing a fleet of autonomous mobile robots (AMR) using cloud robotics
platform,” European Conference on Mobile Robots (ECMR), pp. 1–6, Sep. 2017.
[Online]. doi: 10.1109/ECMR.2017.8098721

[7] K. W. Wong and H. Kress-Gazit, “From high-level task specification to Robot
Operating System (ROS) implementation,” First IEEE International Conference
on Robotic Computing (IRC), pp. 188–195, Apr. 2017. [Online]. doi:
10.1109/IRC.2017.18

[8] J. M. OKane, A Gentle Introduction to ROS. Columbia, SC: University of South
Carolina, 2014. [Online] Available: https://cse.sc.edu/~jokane/agitr/agitr-
letter.pdf

[9] “Security,” Security - Fast RTPS 1.6.0 documentation, 2018. [Online]. Available:
http://docs.eprosima.com/en/latest/security.html

[10] Github. “ros2/ros2,” Jun. 2018. [Online]. Available:
https://github.com/ros2/ros2/wiki/DDS-and-ROS-middleware-implementations

36

[11] F. Rodriguez et al. “Cybersecurity in Autonomous Systems: Evaluating the
Performance of Hardening ROS” IEEE Workshop of Physical Agents, pp. 1–7,
Jun. 2016. [Online]. Available:
https://pdfs.semanticscholar.org/ae27/f3cc833f3392a2929199261540ae53e4bcab.
pdf

[12] R. Toris, C. Shue and S. Chernova, “Message Authentication codes for secure
remote non-native client connections to ROS enabled robots,” IEEE International
Conference on Technologies for Practical Robot Applications, pp. 1–6, Apr.
2014. [Online]. doi: 10.1109/TePRA.2014.6869141

[13] B. Dieber, S. Kacianka, S. Rass and P. Schartner, “Application-level security for
ROS-based applications,” IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4477–4482, Oct. 2016. [Online]. doi:
10.1109/IROS.2016.7759659

[14] Army, “Industry Days draws more than 500,” Apr. 25, 2018. [Online]. Available:
https://tardec.army.mil/#article/7

[15] J. Mcclean, C. Stull, C. Farrar and D. Mascareñas, “A preliminary cyber-physical
security assessment of the Robot Operating System (ROS),” Proc. SPIE 8741,
Unmanned Systems Technology XV, 874110, May 17, 2013. [Online]. doi:
10.1117/12.2016189

[16] Github. “ros2/ros1_bridge,” 2018. [Online]. Available:
https://github.com/ros2/ros1_bridge/blob/master/doc/index.rst

[17] “ROS with Gazebo Simulation,” PX4 Developer Guide. [Online]. Available:
https://dev.px4.io/en/simulation/ros_interface.html

[18] Object Management Group. “About the DDS Security Specification Version 1.0,”
2018. [Online]. Available: https://www.omg.org/spec/DDS-
SECURITY/1.0/#specification-metadata

[19] V. Diluoffo, W. R. Michalson and B. Sunar, “Robot Operating System 2: The
need for a holistic security approach to robotic architectures,” International
Journal of Advanced Robotic Systems, vol. 15, no. 3, May 3, 2018. [Online].
doi:10.1177/1729881418770011

37

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Sep_Sandoval_Sergio_First8
	18Sep_Sandoval_Sergio
	I. INTRODUCTION
	A. IMPORTANCE OF UNMANNED SYSTEMS
	B. THE UTILITY OF ROS
	C. ROS 1.0
	D. ROS 2.0
	E. THESIS CONTRIBUTIONS
	F. THESIS ORGANIZATION

	II. RELATED WORK
	A. RESEARCH ON ROS 1.0 security
	B. Research on SROS
	C. Research on ROS 2.0 and ROS-M

	III. tHREAT ASSESSMENT
	A. INHERENT ROS VULNERABILITIES
	1. ROS Network
	2. UAV Swarm

	B. Summary OF SECURITY VULNERABILITIES AND CHOSEN MITIGATION TECHNIQUEs
	C. POTENTIAL ROS SPECIFIC SOLUTIONS

	IV. EXPERIMENTAL SETUP
	A. SWARM SIMULATION
	B. ROS 2.0 security architecture
	1. Authentication
	2. Access Control
	3. Cryptographic

	V. results and analysis
	A. simulation results
	1. Baseline
	2. Drone Disabling
	3. Drone Forced Landing
	4. Drone Forced Climb
	5. Summary of Findings

	VI. conclusion
	A. summary
	B. future work
	1. Additional Vulnerability Testing
	2. Measured Power Use
	3. Testing against Networked UAVs
	4. Adaption to a Physical Swarm

	appendix. Multiple DRONE SIMULATION FILE
	List of References
	initial distribution list

