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ABSTRACT

 Logistic regression is one of the most popular means of modeling contingency 
table data due to its ease of use. Simple asymptotic inference (like a χ2 approximation) for 
evaluating goodness-of-fit tests, however, may not be valid for sparse datasets having cell 
counts less than 5. In these cases, we often attempt exact conditional inference via a 
sampler, such as Markov Chain Monte Carlo (MCMC) or Sequential Importance 
Sampling (SIS). This paper proposes a hybrid sampling scheme that combines MCMC and 
SIS to sample sparse, multidimensional contingency tables satisfying fixed marginals 
when MCMC alone does not guarantee an exhaustive sampling of the conditional state 
space. To investigate its suitability, the proposed hybrid scheme is applied to an 
observational dataset from Alzheimer’s researcher JA Mortimer measuring the cognitive 
states of nuns over a 15 year period beginning in 1991. Through the application of our 
proposed scheme, we find the estimated p-values via a hybrid MCMC and SIS sampler are 
remarkably similar to the χ2 asymptotic approximation p-values, even for sparse 
contingency tables.
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Executive Summary

We begin with the problem of performing a goodness-of-fit test on a sparse, multidimen-
sional contingency table. Due to the low cell counts of sparse tables, there is no guarantee
on the validity of asymptotic inference. In multidimensionality cases, the curse of dimen-
sionality typically precludes exact inference through enumeration of all contingency tables
satisfying the sufficient statistic. To overcome these difficulties, we usually construct an
exact conditional hypothesis test by sampling a large number of tables from the conditional
state space in order to approximate the distribution of test statistics under H0.

Markov chain Monte Carlo (MCMC) with the Metropolis-Hastings acceptance criteria
provides a method of sampling contingency tables from the conditional state space such
that the distribution of tables converges to the true distribution under H0 by the law of large
numbers. Without a Markov basis, however, there is no guarantee that all contingency
tables are connected via an ergodic Markov chain and thus have a non-zero probability of
being sampled via MCMC. To overcome this obstacle, we rely on sequential importance
sampling (SIS) to independently sample tables from incongruent regions of the conditional
state space. This paper proposes a hybrid scheme combining MCMC and SIS to sample
sparse, multidimensional contingency tables satisfying fixed marginals when MCMC alone
does not guarantee an exhaustive sampling of the state space.

First, many independent starting tables are sampled from the conditional state space via
SIS. Every SIS table is used as an independent starting point from which to initiate MCMC.
Each chain of contingency tables resulting fromMCMC has the beginning discarded (burn-
in) and the remaining tables thinned (thinning). The test statistic is calculated for each
surviving table, and the distribution is approximated using the sampled set of test statistics.
Our assumption is that by sampling many different SIS starting points from the conditional
state space, we are able to sample representatively from all regions of the space even though
all contingency tables may not be connected viaMCMC. By runningMCMC for a sufficient
number of iterations, the sampled distribution will converge to the true distribution of test
statistics.

To test our sampling scheme, we apply the proposed procedure to a four-dimensional
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contingency table dataset measuring the cognitive states of nuns. Through the application
of our hybrid scheme, we find the estimated p-values via a hybrid MCMC and SIS sampler
are similar to the χ2 asymptotic approximation p-values, even for sparse contingency tables.

Although the proposed hybrid sampler results in similar p-values for goodness-of-fit hy-
pothesis tests as the χ2 asymptotic approximation, no assumptions are made regarding the
distribution of test statistics. This methodology could also be employed to validate the use
of a χ2 approximation. By employing SIS sampling to start various MCMC chains, we also
avoid any costly computation of aMarkov basis, whichmany times is unfeasible to compute.
The major tradeoff is that a large sample size requires significant amounts of computing
power and time compared to an asymptotic distribution assumption. Our conclusions on
the suitability of this algorithm are based on its application to one dataset, but we provide
a framework that should work for datasets of increased dimensionality.
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CHAPTER 1:
Introduction

This chapter introduces the background, motivation, and objectives for our analysis. A
more exhaustive account of the proposed method and its application to an observed dataset
will be provided in subsequent chapters.

1.1 Background
In surveys, medical, and scientific research, investigators frequently use contingency tables
to study relationships between the dependent variables and independent response vari-
able (Kateri 2014; Yoshida 2010). The simplest contingency tables, two-way tables, have
two dimensions for two variables: one dependent variable, and one independent variable.
Two-way contingency tables have been studied for over a century (Fam 2012), and hypoth-
esis tests of two-way tables are often trivial. In this thesis, we attempt to extend hypothesis
tests to less tractable contingency tables that contain multiple independent variables.

When analyzing the frequencies within an observed multidimensional contingency table,
we often would like to conduct a hypothesis test comparing the relative fit of two models to
the observed data. Does adding an additional explanatory factor (or level of complication)
significantly improve the model? One of the procedures for model selection is a goodness-
of-fit test. The null hypothesis (H0) is a simpler model with fewer explanatory factors. In
the context of this thesis, the null model is a three-way table with two independent variables
(explanatory factors). The alternative hypothesis (H1) expands the table to four dimensions
by adding a third independent variable to the null model. The goodness-of-fit test assesses
how much information about the response is gained by adding the third variable to the
model. Is there sufficient evidence to confidently conclude the alternative model is a better
explanation of the observed data than the null model?

A typical contingency table has a fixed number of levels for each dimension. Each dimension
corresponds to a variable. Each cell represents a unique combination of discrete levels, one
for each variable. The cell entries in the table are simply result of binning observations
into the appropriate cells based on the observational level of each variable. For standard
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contingency tables with a large number of observations (events) and small dimensionality
(few cells), the cell counts tend to be large (>5).

Hypothesis tests evaluate the abnormality of the observed test statistic (from the observed
contingency table) based onwhere it falls on a distribution of possible test statistics assuming
the null hypothesis was true. For standard contingency tables, the hypothesis test just
described is easily performed since the distribution of test statistics can be assumed to
asymptotically converge to a parametric (χ2) distribution. There is no guarantee of the
validity of the asymptotic assumption for sparse tables with low cell counts (<5), however.
The χ2 distribution assumption has been shown to be inaccurate or biasedwhen expected cell
counts are small (Haberman 1988). For these special contingency tables, the χ2 asymptotic
assumption for the distribution of test statistics cannot be relied upon to accurately estimate
a p-value.

Although asymptotic inference may not be valid for sparse tables, an exact distribution
of test statistics could still be obtained by enumerating every possible contingency table,
calculating its test statistic, and assigning the appropriate probability of occurrence to that
table. This is known as exact inference (for example, Fisher’s (1922) exact test for 2 × 2
contingency tables). Unfortunately, it is computationally expensive (if not impossible)
to enumerate all possible tables for large, multidimensional contingency tables that could
have many possible permutations. Since we are unable to use either asymptotic or exact
inference, we pursue approximate inference via sampling.

1.2 Motivation
The ease with which data are now collected, along with increases in computing power, has
naturally led to the pervasiveness of contingency tables with more covariates and increased
dimensionality. As observations are being spread across more and more dimensions (cells),
the likelihood of contending with a sparse, multidimensional contingency table is amplified.
These contingency tables are often too sparse for asymptotic approximation to be valid and
contain too many cells to conduct exact inference through enumerating all possible tables
in the conditional state space.

Sampling contingency tables provides an alternative way of generating a distribution for
a test statistic without assuming a parametric distribution or enumerating every possible
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table. Conducting hypothesis tests in this manner is known as approximate inference. The
accuracy of approximate inference depends on the degree to which the sampled distribution
of test statistics matches the true distribution, which is usually unknown. Markov chain
Monte Carlo (MCMC) sampling of contingency tables has been shown to be useful for
obtaining hypothesis test p-values and estimating the number of contingency tables in the
state space satisfying fixed marginal sums (Besag and Clifford 1989; Chen et al. 2005;
Diaconis and Efron 1985; Guo and Thompson 1992).

Unfortunately, a naïve MCMC sampling approach may lead to biased results since it as-
sumes every possible contingency table in the state space is connected via a single MCMC
chain. For some models it is non-trivial to prove connectivity, even for two dimensional
contingency tables. It can be extremely difficult to prove this condition is met for contin-
gency tables larger than two dimensions. We require a modification of MCMC sampling
that is suitable for conditional state spaces in which not all contingency tables are connected.
By augmenting MCMC with sequential importance sampling (SIS), it becomes possible to
sample contingency tables not connected via MCMC chain.

1.3 Research Objectives
In this thesis, we present an alternative method for hypothesis testing on sparse, multi-
dimensional contingency tables, a problematic dataset for asymptotic hypothesis testing.
We propose a combination of MCMC and SIS methods to sample the multidimensional
contingency table state space in order to approximate a test statistic distribution under H0.
In our implementation of MCMC and SIS, our focus will be on an approach for testing the
fit of multivariate logistic regression models.

In 2010, Hara et al. (2010) showed an explicit description of a Markov basis1 for multiple
Poisson regression models. In the case of bivariate logistic regression models, they also
explicitly delineated a set of all moves connecting a Markov chain, provided the sum for
each combination of levels of the covariates is positive. To generalize the sampler proposed
by Hara et al. to multivariate logistic regression, we create a set of MCMC transitions for
multivariate logistic regression models via an algorithm. Currently, no proof exists that

1A Markov basis is a finite set of moves on contingency tables such that all feasible contingency tables in
the conditional state space are guaranteed to be connected via a Markov chain (Diaconis and Sturmfels 1998).

3



this set of transitions is able to connect every possible contingency table in the conditional
state space through a Markov chain. Solely using MCMC for sampling would likely omit
feasible regions of the conditional state space and bias the approximate distribution. In
order to conduct the goodness-of-fit hypothesis tests desired without bias, we combine the
set of transitions with a hybrid scheme of MCMC and SIS procedures proposed by Kahle
et al. (2017b). More specifically, we use MCMC and SIS to sample contingency tables
from the conditional state space defined by a fixed sufficient statistic.

After developing the hybrid sampler, we investigate the SIS algorithm closely. We show the
SIS procedure might have high rejection rates in general for multivariate logistic regression
models. We also observe some characteristics of the test statistic distribution resulting from
the scheme and potential causes.

We end this paper with an application test of the MCMC/SIS hybrid scheme to a sparse,
multidimensional contingency table dataset that measures the cognitive states of nuns with
Alzheimer’s disease over time (Mortimer 2012). We use our sampling scheme to assess
which factors are associated with higher rates of transition to a state of dementia. We
hope to use this research to validate our hybrid methodology as an alternative approach that
analysts and researchers could apply to a variety of similar problems.

4



CHAPTER 2:
Definitions and Literature Review

This chapter defines basic terms for understanding MCMC and SIS and reviews some of
the prior research regarding the application of these methods to contingency tables.

2.1 Definitions
The following definitions provide a foundation to understanding hypothesis testing for
contingency tables, some of the original research presented in Section 2.2, and the sampling
scheme proposed in Chapter 3.

2.1.1 Contingency Table
Contingency tables are used to study relationships between factors in a model (Yoshida
2010). Observations (events) are collected in which the response is recorded along with
potential explanatory factors. The observed events are aggregated into a contingency table
where each dimension of the table corresponds to one of the factors. The cell counts of the
table represent the frequency of events in which the response and explanatory factors take
on a unique combination of levels. An n-way contingency table is the n-dimensional table
resulting from counting the number of events that occur at combinations of two or more
discrete criteria (Drton et al. 2009).

2.1.2 Basic Notation
• Levels describe the finite number of categories contained within each dimension
(factor) of the contingency table. A 2× 2× 3× 4 table has 2 levels for the first factor,
2 levels for the second, 3 for the third, and 4 levels for the fourth factor.

• A cell is defined as a particular event within the contingency table that has a specified
level for each factor of the table. A 2 × 2 × 3 × 4 table has 48 cells.

• Cell counts are the frequency of observations or events corresponding to a particular
cell.
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• x`i j k is the cell count for ` level of the first factor, i level of the second factor, j level
of the third factor, and k level of the fourth factor.

• An alternative method for representing individual cells is to flatten the contingency
table to a one-dimensional vector. A 2 × 2 × 3 × 4 contingency table x has 48 cells
that could also be denoted as x = {x1, x2, ..., x48}.

2.1.3 Sparse
Contingency tables with small cell counts are referred to as sparse (Agresti 2002). A
common rule of thumb is a contingency table is considered sparse if any expected cell
count is less than five. As the dimensionality increases in multiway contingency tables,
the expected cell counts necessarily decrease as observations are spread across more cells.
A χ2 test statistic distribution may not be valid for sparse contingency tables (Haberman
1988). In this analysis, we consider the contingency tables analyzed to be sparse and thus
not valid for asymptotic inference using a χ2 approximation of the null distribution of test
statistics.

2.1.4 Log-linear model
Contingency tables are often modeled as log-linear models (Agresti 2002). We build
our log-linear model by extending the work of Hara et al. (2010) from bivariate logistic
regression to trivariate logistic regression.

Let A ∈ {1, ..., I}, B ∈ {1, ..., J}, andC ∈ {1, ...,K} represent three covariates (A, B,C) with
corresponding ordinal levels. For i ∈ {1, ..., I}, j ∈ {1, ..., J}, k ∈ {1, ...,K}, let random
variables X1i j k and X2i j k represent the number of successes and failures (cell counts) for
level (i, j, k). Under a log-linear model, the cell count X1i j k is modeled as a Poisson random
variable with parameter λi j k such that

X1i j k ∼ Poisson
(
λi j k

)
.

Under the generic, saturated log-linear model with three covariates, the parameter λi j k is
described in canonical form as a function of the covariates and interactions:

log(λi j k) = µ + λ
A
i + λ

B
j + λ

C
k + λ

AB
i j + λ

AC
ik + λ

BC
jk + λ

ABC
i jk . (2.1)
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An independence model is a special case of the general model in which we assume there are
no interactions between the variables and so the values of the interaction term coefficients
are all zero.

Our model further assumes the specified form: λA
i = i ·α, λB

j = j · β, and λC
k = k · γ. Under

these assumptions, the log-linear model reduces to:

log(λi j k) = µ + i · α + j · β + k · γ. (2.2)

These assumptions are appropriate when we believe each observation is independent, there
are no interactions between variables, and a linear relationship exists between the log odds
of the response and the values of the explanatory variables. The log-linear model presented
in Equation 2.2, along with the log-likelihood ratio, forms the basis of our test statistic
calculation for a hypothesis test.

2.1.5 Log-Likelihood Ratio
Let Θ1 be the parameter space for the alternative hypothesis and Θ0 be the parameter space
for the null hypothesis. Note that Θ0 ⊂ Θ1 because we specify that the null hypothesis is
nested in the alternative hypothesis.

Also let L1(θ |x) be the likelihood function for the alternative and L0(θ |x) be the likelihood
function for the null hypothesis, where θ is a parameter and x is an observation. Note that
L0 is a special case of L1 where one of the parameters θi ∈ Θ1 is fixed (often to 0). Since
Θ0 ⊂ Θ1 and L1(θ |x) is a more general form than L0(θ |x), the alternative will in general be
more likely than the null,

max
θ∈Θ1

L1(θ |x) ≥ max
θ∈Θ0

L0(θ |x).

The likelihood ratio test statistic is

∆(x) =
maxθ∈Θ0 L0(θ |x)
maxθ∈Θ1 L1(θ |x)

< 1.
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The log-likelihood ratio test statistic (G2) is defined as

G2 = −2 · log (∆) = −2 ·
(
log

(
max
θ∈Θ0

L0(θ |x)
)
− log

(
max
θ∈Θ1

L1(θ |x)
))
. (2.3)

2.1.6 Test Statistic
A test statistic of a contingency table is a statistical measure of distance between the table
and themaximum likelihood estimator (MLE) under the givenmodel. Pearson’s chi-squared
and the log-likelihood ratio are examples of test statistics. For our comparison of two nested
binomial models, we take advantage of the equivalency between the log-likelihood ratio
and the difference in residual deviances between the null and alternative models.

2.1.7 Bivariate Logit versus Trivariate Logit Test Statistic
LetT = (T`i j k) be a contingency table. Using the log-linearmodel described in Section 2.1.4,
the null hypothesis is a nested subset of the alternative hypothesis and fits the contingency
table cell counts to a bivariate logistic regression model:

H0 : log(λi j k) = µ + i · α + j · β. (2.4)

The alternative hypothesis fits the contingency table cell counts to a trivariate logistic
regression model:

H1 : log(λi j k) = µ + i · α + j · β + k · γ. (2.5)

LetG2 be the log-likelihood ratio test statistic (Section 2.1.5) between the null and alternative
hypotheses. Here we set

G2(T) = 2 · (log max likelihood under H1 − log max likelihood under H0). (2.6)

The log max likelihood under the null in Equation (2.4) is

log
(
L0(T)

)
=

∑I
i=1

∑J
j=1

(
T1i jk · log( exp(µ∗+i ·α∗+j ·β∗)

1+exp(µ∗+i ·α∗+j ·β∗) )

+ T2i jk · log( 1
1+exp(µ∗+i ·α∗+j ·β∗) )

)
where µ∗, α∗, β∗ are the MLEs under the null hypothesis. The log max likelihood under
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the alternative in Equation (2.5) is

log
(
L1(T)

)
=

∑I
i=1

∑J
j=1

∑K
k=1

(
T1i jk · log( exp(µ∗∗+i ·α∗∗+j ·β∗∗+k ·γ∗∗)

1+exp(µ∗∗+j ·α∗∗+k ·β∗∗+s ·γ∗∗) )

+ T2i jk · log( 1
1+exp(µ∗∗+i ·α∗∗+j ·β∗∗+k ·γ∗∗) )

)
where µ∗∗, α∗∗, β∗∗, γ∗∗ are the MLEs under the alternative hypothesis.

2.2 Literature Review
Given a contingency table, calculating the goodness-of-fit test statistic requires fitting two
different models (H0 and H1) to the contingency table data and calculating the difference
between the residual deviances (G2). The distribution of test statistics under H0 is necessary
to conduct a hypothesis test, however. In order to calculate the distribution of test statistics,
one must know the conditional distribution of contingency tables. Unfortunately, it is
difficult to determine the exact, conditional distribution of multiway contingency tables
because there are too many tables to enumerate. Markov chain Monte Carlo simulation
provides a means of approximating the distribution by sampling many contingency tables
from the conditional state space.

2.2.1 Markov Chain Monte Carlo (MCMC)
A Markov chain is a stochastic sequence of events or locations characterized by one-step
transition probabilities of moving from one state to another (Dobrow 2016). An important
property of Markov chains is the memoryless property that dictates the probability of
transitioning to a future state depends only on the current state and not the sequence of
arriving at that state. In the context of this paper, a Markov chain can be thought of as
a random walk on a graph whose vertices are contingency tables satisfying the sufficient
statistic (Dobrow 2016). The sufficient statistic (b) is a vector of parameters (commonly
row sums and column sums) that are fixed under H0 and specify the conditional state space
(Sb), the set of all contingency tables feasible under H0.

As suggested by the name, MCMC algorithms combine Markov chains and Monte Carlo
simulation. These methods provide a means for estimating complex and high-dimensional
probability distributions via sampling (Dobrow 2016). MCMC approaches estimate the
true distribution of tables by randomly traversing and sampling from the conditional state
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space (Sb) rather than computing the distribution directly. Stepping from one contingency
table to another on the random walk is called a move (z). A valid move must preserve the
sufficient statistic (b). Since each state on the MCMC chain is dependent on the previous
state, burn-in and thinning techniques are often applied to the MCMC chain to reduce
dependencies among samples (Link and Eaton 2012).

Diaconis and Sturmfels (1998) described algebraic ways to construct MCMC samplers in
discrete exponential families that can be used to conduct hypothesis testingwhere asymptotic
inference or exact enumeration cannot be applied. Their baseline contingency table example
was a two-way table characterized by a hypergeometric distribution as the conditional
distribution given fixed row and column sums (sufficient statistic) under the independence

model. The algorithm they devised proposes a move based on a

(
+1 −1
−1 +1

)
shift in the

values of 4 cells located by the union of 2 random rows and 2 random columns. An
accepted move must preserve the sufficient statistic as well as maintain every cell entry
as non-negative. The result of random move after random move is a Markov chain of
contingency tables on the conditional state space. Diaconis and Sturmfels proved that
by the usual Metropolis-Hastings acceptance procedure (Hastings 1970), the algorithm
they described gives a connected, aperiodic, reversible (ergodic) Markov chain with the
stationary distribution equal to the hypergeometric distribution specified by the sufficient
statistic (Diaconis and Sturmfels 1998).

In order for an MCMC algorithm to proportionally sample from all contingency tables
(states) in the conditional state space, all states must be connected via a Markov chain. With
a Markov basis already known, running an MCMC algorithm is efficient in computational
time and not memory intensive. Hara et al. (2010) applied the methods of Diaconis and
Sturmfels to show the necessary and sufficient conditions with a subset of a Markov basis
to sample contingency tables without sampling bias via an ergodic Markov chain under the
univariate and the bivariate Poisson regression model with the assumption that all sufficient
statistics are strictly positive. In this project, we extend their logic to a trivariate regression
model.

MCMCmethods are not without drawbacks. The contingency tables resulting fromMCMC
are not independent. Each subsequent table is dependent on the previous table. In our
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analysis, burn-in and thinning will be used to reduce dependency. The initial computation of
a Markov basis is also problematic. For 3-way contingency tables with fixed 2-margins, De
Loera and Onn (2005) showed there is no upper bound on the number of elements in a
Markov basis.

In general, with only a subset of a Markov basis (a set of moves), there is no guarantee of
the connectivity of all feasible states. To attempt to sample from all areas of the conditional
state space, we utilize SIS in addition to MCMC. SIS allows for the independent sampling
of the conditional state space. Unlike MCMC, tables sampled need not be connected via a
Markov chain. Each independent SIS table will have its own Markov chain in an attempt to
sample from all the Markov chains existing in the conditional state space.

2.2.2 Sequential Importance Sampling (SIS)
SISwas first applied to sampling two-way contingency tables under the independencemodel
in Chen et al. (2005). SIS randomly samples a contingency table from the conditional state
space (Sb) by populating the cell counts of the table one-by-one. The count for each cell
is a random variable, therefore the resulting contingency table is also a random variable.
In our algorithms for SIS, we use the same procedure described in Chen et al. (2006).
The multidimensional contingency table X is flattened into vector form for convenience in
applying linear algebra techniques. The minimum and maximum feasible values for the
first cell count are calculated using integer programming (IP). The cell count for the first
cell, denoted as X1 (random variable), is randomly sampled from the uniform distribution
bounded by the IP minimum and maximum. After fixing X1, the second cell X2 is sampled
in the samemanner but conditional on X1. The entire sampled contingency table is the result
of sequentially fixing all the cells in the table. Clearing all the cell counts and sequentially
sampling all cells again generates another contingency table. A desirable outcome of SIS
is that the second table is generated independently of the first.

Unlike MCMC, SIS does not require the computation of a Markov basis, which is often
difficult to compute (Xi et al. 2013). The SIS procedure independently samples from the
conditional distribution, while a Markov chain may require many iterations in order to be
independent of the current state. In these two regards SIS overcomes some disadvantages
of MCMC, but SIS also presents a new set of problems.
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The SIS procedure samples contingency tables independently and close to uniformly. Unfor-
tunately, the appropriate sampling distribution for a contingency table with a fixed sufficient
statistic is a hypergeometric distribution, not uniform (Agresti 2002). Another difficulty
of SIS is computing the marginal distribution (feasible integer values) of each cell count.
We typically approximate the marginal distribution with a discrete uniform distribution
bounded by the minimum and maximum count values a cell can assume. These integer
bounds require non-trivial time to solve via IP. After taking the time to solve for the bounds,
there could still be an integer value within the interval that makes the problem infeasible.
If this value is randomly sampled, the sufficient statistic will not be satisfied and the SIS
algorithm must restart from the beginning. Such rejections are known as holes.2 One of
the major disadvantages of SIS is that rejections lead to increased computational time due
to resampling.

2A hole of a semigroup is a right hand side (RHS) b ∈ Rd1 with A ∈ Zd1×d2 such that Pb , ∅ and
Pb ∩ Z

d2 = ∅ where the polytope Pb = {x ∈ Rd2 | Ax = b, x ≥ 0}. For the application in this paper, the
matrix A is non-negative and therefore the solution x for the equation A · x = b is always bounded (Schrijver
1986). A hole indicates sequentially sampling xi ∈ {x1, ..., xd2 } such that further random sampling to
determine x is integer infeasible. There may exist a real solution, but no integer solution exists given the
particular xi that have already been fixed. Section 4.2 presents an example hole.
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2.3 Summary
The advantages and disadvantages ofMCMCand SIS previouslymentioned are summarized
in Figure 2.1. MCMC and SIS methods developed and advanced by previous researchers
are the building blocks on which we construct a hybrid sampling scheme in the next chapter
for sampling sparse, multidimensional contingency tables. Appropriately sampling the
conditional state space allows the distribution of test statistics to be approximated and
ultimately permits hypothesis testing for sparse, multidimensional tables where asymptotic
inference may not be valid.

Figure 2.1. MCMC and SIS Comparison.

This figure describes the advantages and disadvantages of MCMC and SIS sam-
pling methods. A hybrid approach using both methods can help to overcome the
deficiencies in each. Sources: Chen et al. (2006); Steorts (2016).
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CHAPTER 3:
Methodology

Chapter 3 presents the logic of combining MCMC and SIS into a hybrid algorithm for
sampling the conditional state space of sparse, multidimensional contingency tables. An
example hypothesis test is used extensively throughout the chapter to aid in understand-
ing the application of the mathematical formulae. The R code supporting the sampler
implementation is provided in Appendix C.

3.1 Nun Cognitive Observational Dataset
The nun cognitive observation dataset originally comes from Mortimer (2012), who con-
ducted a study on 672 participants from 1031 Catholic sisters born before 1917 from the
School Sisters of Notre Dame religious order. The nuns were asked to voluntarily participate
in the study from 1991 to 1993 and were all age 75 years and older at the time of the study.
Each nun had cognitive ability recorded for up to 10 unevenly spaced examinations, and
the time between examinations ranged from 0.421 to 3.911 years (Wei and Kryscio 2016).
After removal of data with missing values, the final dataset had 461 participants with 2480
total observations (Wei and Kryscio 2016). Since its compilation, this study has been used
numerous times in academic papers for application of sampling techniques and insights into
factors affecting Alzheimer’s disease.

The levels of five factors were recorded for each observation: prior cognitive status, current
cognitive status, presence of APOE-4 allele3, highest education level achieved, and age.

• Prior/current cognitive status has five levels: intact cognition (1), mild cognitive
impairment (MCI) (2), global impairment (GI) (3), dementia (4), and death (5).

• Presence of APOE-4 allele (APOE4) has two levels: not present (1) and present (2).
• Education has three levels: no college (1), college degree (2), and post graduate
degree (3).

• In the dataset, age is a continuous variable. To construct a contingency table, we

3APOE-4 allele is a gene present in 10-15% of the population that is associated with increased risk for
Alzheimer’s and earlier onset (National Institute on Aging 2015).
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categorize observations into age quartiles. Level 1 corresponds to age 77-83.6, level
2 to 83.6-87.1, level 3 to 87.1-90.5, and level 4 to 90.5-104.3.

Markov models are often used to model transitions from one cognitive state to another.
Tyas et al. (2007) applied a Markov chain model and Wei and Kryscio (2016) applied a
Semi-Markov model to the nun dataset. In both investigations, the researchers modeled the
transitions between cognitive states as a discrete time Markov chain (DTMC) with a finite
state space of five states (1, 2, 3, 4, 5) and a transition probability matrix:

©­­­­­­­«

P11 P12 P13 P14 P15

P21 P22 P23 P24 P25

P31 P32 P33 P34 P35

0 0 0 1 0
0 0 0 0 1

ª®®®®®®®®¬
.

Dementia (4) and death (5) are treated as absorbing states. Figure 3.1 shows the possible
state transitions. The numbers on each arc correspond to the observed number of transitions
from prior state (arc tail) to current state (arc head). We are interested in discerning which
factors (APOE4, education, age) contribute to increased transition probabilities to dementia.
The complete data set used in our analysis is reported in Table A.1 of Appendix A.

Figure 3.1. Discrete time Markov Chain for Nun Cognitive Dataset.

This figure shows the five states that comprise the Markov state space. Numbers
displayed on arcs represent the number of transitions from state i to state j ob-
served in the dataset. Transitions to the same state are permissible. Source: Wei
and Kryscio (2016).
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3.2 Multivariate Logistic Regression Model
In this thesis, we make use of a Poisson regression model, a log-linear model form of
regression analysis, which can be used to model contingency table cell counts (see Section
2.1.4). Under this model, the response variable has a Poisson distribution and the logarithm
of its expectation parameter is a linear form of unknown parameters (Equations 2.4, 2.5). A
logistic regression is a special case of the Poisson regression model in which the response
variable has only two levels. The applications of Poisson regression include predicting
hospital admissions (White 2009), estimating the depth of the recruiting market (Monaghan
2016), and our application of investigating the cognitive state transitions of a patient with
Alzheimer’s disease (Xie 2016).

With the sparse, multidimensional contingency table dataset, we seek to compare the relative
fit of the observed data to two nested log-linear models (H0 and H1) using a goodness-of-fit
hypothesis test. More specifically, we are interested in the associations between transition
rates among cognitive states and three factors of interest: the presence of APOE-4 allele,
education, and age. Following the basic modeling of Salazar et al. (2007), Wei and Kryscio
(2016), and Xie (2016), we model the relationships between variables as a multivariate
logistic regression model such that:

log
(

Ps4
Psv

)
= αsv + β1svY1 + β2svY2 + β3svY3, (3.1)

for s ∈ {1, 2, 3} and v ∈ {1, 2, 3}. Here
(

Ps4
Psv

)
mimics the odds ratio. The numerator

is the number of transitions from state s to dementia (state 4). The denominator is the
number of transitions from state s to state v. Our analysis only examines the relative odds
of transitioning to dementia, but the methodology could be applied to any state transitions
of interest. The independent variables are denoted as Yi. Y1 ∈ {1, 2} is the presence of
APOE-4 allele, Y2 ∈ {1, 2, 3} is education level, and Y3 ∈ {1, 2, 3, 4} is age quantile. For
notation purposes, we designate APOE-4 allele as having I levels, education as having J

levels, and age as having K levels. αsv and βisv are the MLE parameters for the model given
the observed data.
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For each s ∈ {1, 2, 3} and v ∈ {1, 2, 3}, we establish the following hypotheses:

Hisv
0 : βisv = 0,

Hisv
1 : βisv , 0,

for variable i ∈ {1, 2, 3}. Given a null model of the contingency table data with two
independent variables, we are determining whether adding the third independent variable
improves the model as measured by a statistical threshold.

3.3 Example Setup
The following subsections establish a concrete example to illustrate sequentially proceeding
through the necessary steps for a goodness-of-fit hypothesis test. This example is used
throughout the chapter to demonstrate the algorithms discussed. Before proceeding to SIS
and MCMC, the initial steps are to establish the competing hypotheses and extract the
relevant data from the entire dataset.

3.3.1 Establish Hypotheses
Suppose we are interested in testing the following hypotheses based on the model defined
by Equation 3.1 for s = 2, v = 2, and i = 3. The null and alternative hypotheses are:

H322
0 : log

(
P24
P22

)
= α22 + β122Y1 + β222Y2, (3.2)

H322
1 : log

(
P24
P22

)
= α22 + β122Y1 + β222Y2 + β322Y3. (3.3)

These hypotheses are testing whether adding the Age factor (Y3) to a model of the transitions
from MCI (s = 2) to dementia relative to the transitions from MCI (s = 2) to MCI (v = 2)
significantly improves the model.

3.3.2 Extract Relevant Data to Observed Table (x0)
Testing the above hypotheses requires generating a test statistic from a 4-dimensional
contingency table for s = 2, v = 2, and i = 3. To conduct the hypothesis test, the test
statistic will later be compared to an approximate distribution of test statistics.
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First, we construct an L × I × J × K contingency table and assign two levels to the first
dimension (`) of our contingency table. For the example hypothesis test, ` = 1 corresponds
to state transitionswhere prior state = 2 and current state = 4 (P24). ` = 0 corresponds to state
transitions where prior state = 2 and current state = 2 (P22). For the nun dataset, the resulting
4-way contingency table is 2 (transition levels) × 2 (APOE4) × 3 (education) × 4 (age).
The are 48 cells in this contingency table.

Equivalently, ` = 1 signifies transitioning from MCI to dementia (bad outcome). ` = 0
signifies maintaining the cognitive state ofMCI between two contiguous observations (good
outcome). This hypothesis tests whether the association between the relative transition
probabilities

(
P24
P22

)
and age (Y3) is significant to the model in the presence of APOE-4 allele

(Y1) and education (Y2).

To construct the observed contingency table (x0), the 82 observations that transition from
state 2 to state 4 (P24) are collected along with the 697 observations for P22. We use d to
denote the dimension of x0. In this case, d = dim (x0) = 2 × 2 × 3 × 4. Table 3.1 shows
a 2-dimensional hierarchical representation of the observed contingency table, which is in
reality a 4-dimensional contingency table.

Table 3.1. Example Observational Data (x0).

This contingency table gives observational counts for P24 and P22. The top half
shows the 82 observations for P24 scattered across 24 cells. Examining a cell at
random, we see that for APOE4=1, Ed=1, and Age=1, there was 1 transition
from state 2 to state 4. There were 21 transitions from state 2 to state 2 given
the same levels for the three factors. The small cell counts, particularly for some
of the cells where APOE4 = 2 (present) and Ed = 1 (no college), suggest this is
probably a sparse contingency table.
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In this particular example, x0 contains 779 observations (total cell counts). Each observation
represents a nun transitioning between the corresponding prior cognitive state and current
cognitive state. By observation, many of the cells in this four dimensional contingency table
contain small numbers (<5). Therefore, asymptotic inference utilizing a χ2 distribution of
test statistics is not assured to be valid. As a check of sparsity, the expected cell counts
are calculated from the MLE of the null model and displayed in Table 3.2. As can be seen
visually, this table meets the sparse table criteria discussed in Section 2.1.3.

Table 3.2. Expected Cell Counts under H322
0 for Observational Data (E [x0]).

This table shows the expected cell counts (P24 and P22) using the MLE of the
null model: H322

0 : log
(
P24
P22

)
= α22 + β122Y1 + β222Y2. The low expected cell counts

confirm this is a sparse contingency table.

3.4 Test Statistic Calculation
To generate the test statistic, we first tabulate the data from Table 3.1 into a 779 × 4 matrix.
Each row of the data matrix represents an observation. For an observation, the value in each
column represents the observed level for the corresponding factor (L,Y1,Y2, andY3). For
example, there is one observation of (1,1,1,1). This corresponds to a nun that transitioned
from state 2 to state 4 (L = 1) with APOE-4 allele not present (Y1 = 1), no college (Y2 = 1),
and age = 77 - 83.6 (Y3 = 1). There are 21 identical observations (rows) of (0,1,1,1). This
corresponds to a nun that transitioned from state 2 to state 2 (L = 0) with APOE-4 allele
not present (Y1 = 1), no college degree (Y2 = 1), and age = 77 - 83.6 (Y3 = 1).

Using Equations 3.2 and 3.3 and the tabulated data, we fit two different generalized linear
models, both with binomial distributions and a logit link function, to the observed data. The

20



binomial distribution follows from the assumption that each observation is independent and
can take on value L = 1 (transition from state 2 to 4) or L = 0 (transition from state 2 to
2). The larger model (H1) contains all three covariates. The null model is a smaller model
and contains only 2 covariates. In the example, the null model does not contain Y3 (age
covariate). The following R code computes the MLE for the two binomial logistic models
defined in Equations 3.2 and 3.3.

res0 <- glm(L ~ Y1+Y2, family = binomial(link="logit"), data=tab)

res1 <- glm(L ~ Y1+Y2+Y3, family = binomial(link="logit"), data=tab)

Table 3.3 summarizes the MLE for these two logistic regressions.

Table 3.3. Null and Alternative Model Summary.
Variable H0 H1

β1 (APOE-4) -0.01508 0.1091
(0.30) (0.31)

β2 (Ed) 0.08281 0.1404
(0.18) (0.18)

β3 (Age) 0.3270***
(0.11)

Residual Deviance 524.04 514.81
***p < 0.01, **p < 0.05, *p < 0.1

This table reports maximum likelihood parameter estimates under H0 and H1
given x0. Standard errors for each estimate are shown in parentheses. The resid-
ual deviance equals −2× the maximum log-likelihood. The difference in residual
deviances is the observed test statistic (G2

0). Coefficients and residual deviance
are computed from the glm function in baseline R.

The log-likelihood ratio (G2) test statistic is taken to be the difference in the residual
deviances (refer to Section 2.1.5) between the two models. As expected, the larger (more
parameters) alternative model has a smaller residual deviance than the null model. G2

0 =

524.04 − 514.81 = 9.23.4 In order to conduct a goodness-of-fit hypothesis test, we need to

4In the algorithms to follow, we denote the observed test statistic as T(x0) and the distribution of test
statistics as T(X).
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assess whether this test statistic is abnormally large. If so, this evidence supports H1 and
indicates Y3 is a significant factor (β322 , 0) and should be added to the model.

The extremeness of the observed test statistic can be easily checked if the distribution of
test statistics is known. The distribution of test statistics for standard contingency tables
(all expected cell counts > 5) asymptotically approaches a χ2 distribution with appropriate
degrees of freedom. However, the asymptotic assumption is not guaranteed to be valid for
sparse contingency tables (Haberman 1988). The next alternative is an exact test in which
we enumerate all possible contingency tables that satisfy the fixed sufficient statistic (also
known as fixed marginals).

3.5 Sufficient Statistic (b)
The sufficient statistic (b) is a fixed vector under the null model (H0). The following
elements (SSn) comprise the sufficient statistic for the observed contingency table (x0).

• The number of transitions from a state s to state 4 (the sum of all cell counts where
` = 1) is fixed:

SS1 =
I∑

i=1

J∑
j=1

K∑
k=1

X1i j k, where X1i j k is cell count. (3.4)

• Weighted row sum is fixed:

SS2 =
I∑

i=1

J∑
j=1

K∑
k=1

i · X1i j k . (3.5)

• Weighted column sum is fixed:

SS3 =
I∑

i=1

J∑
j=1

K∑
k=1

j · X1i j k . (3.6)

The factor, for example Y3, that is omitted from the null hypothesis is also omitted from
the sufficient statistic. In this particular example, k does not have its own sufficient statistic
element like i (Y1) and j (Y2) do. All sampled contingency tables are required to satisfy
these three elements of the sufficient statistic.
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• Additionally, for a unique (i, j, k) combination, the sum across both cells (Ps4 + Psv)
is fixed to the sum of corresponding observed events.

SSn =

`=1∑̀
=0

X`i j k = Pi j k
s4 + Pi j k

sv ∀i, j, k . (3.7)

For example, X1111+X0111 = 1 + 21 = 22. This value is fixedwhen sampling new contingency
tables. Because it is part of the sufficient statistic, X1111+ X0111 will always equal 22. There
is an element in the sufficient statistic for each (i, j, k) combination (24 for the nun dataset).
Hara et al. (2010) showed the elements presented in Equations 3.4 - 3.7 constitute the
minimal sufficient statistic for the bivariate logistic regression model (H0).

To calculate the sufficient statistic from the observed table, x0 is flattened from a 2×2×3×4
array to a 48 × 1 vector. This simple transformation preserves the count data exactly and
allows for easier conceptualization of the sufficient statistic calculations via common 2-
dimensional linear algebra.

For a factor with Z levels, a configuration matrix is generated as

B =

[
1 1 . . . 1
1 2 . . . Z

]
. (3.8)

Following Hara et al. (2010), we consider two configurations B = (b1, · · · , bI) and C =

(c1, · · · , cJ), where bi and c j are column vectors. The Segre product of B and C is defined
as

B ⊗ C = bi ⊕ c j ∀ i ∈ {1, · · · , I}, j ∈ {1, · · · , J}, where bi ⊕ c j =

(
bi

c j

)
. (3.9)
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Suppose we have three factors with levels = 2, 3, and 4, respectively. Using Equations 3.8
and 3.9, the Segre product of B, C, and D is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4


.

The modified Segre product (Z) is obtained by removing the redundant rows (rows 3 and
5) and eliminating the row corresponding to the factor (in this case Y3) not included in H0

(row 6). The modified Segre product for our example is:

Z3x24 =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2 3 3 3 3

 .
The row corresponding to Y3, which has levels = {1, 2, 3, 4}, has been removed.

A Lawrence lifting of the modified Segre product (Z) yields the appropriate matrix for
calculating the sufficient statistic (b). From Xie (2016), the Lawrence lifting matrix (A) of
the modified Segre product (Z) with C columns5 is defined as:

A = Λ(Z) =

[
Z 0
IC IC

]
(3.10)

where IC is the identity matrix of dimension C.

For our example, applying the Lawrence lifting matrix (Equation 3.10) to the observed
data (x0) facilitates the calculation of all 27 elements of the sufficient statistic (b). For the
specified H0 and x0, the equation A · x0 = b yields the following sufficient statistic vector:

b =
[
82 97 196 22 2 47 17 82 29 13 3 72 13 74 28 21 3 65 11 67 18 27 0 88 6 59 12

]
.

5C is the number of (i, j, k) combinations. In this example, C = 24.
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The first three elements in the sufficient statistic correspond to Equations 3.4, 3.5, and 3.6
respectively. Elements 4-27 in the sufficient statistic represent Equation 3.7 applied to each
of the 24 (i, j, k) combinations. Element 4 corresponds to fixing the sum of X1111 + X0111

to 22.

The conditional state space (Sb) is the set of all contingency tables satisfying the sufficient
statistic (b). If we could enumerate all contingency tables x satisfying the equation A · x =
b, x ≥ 0 and their associated probabilities, we could use exact inference to estimate the
hypothesis test p-value. The numerous integer solutions satisfying A · x = b, x ≥ 0
preclude us from enumerating all possible contingency tables, however. As a result of the
impediments to complete enumeration, we resort to randomly sampling contingency tables
from the conditional state space. In order to approximate the true conditional distribution
of contingency tables, we employ SIS and MCMC.

3.6 Overall Approach for Hypothesis Test
The following algorithms use the notation introduced in Section 2.1.2. A 2 × 2 × 3 × 4
contingency table x is comprised of 48 cells denoted as {x1, x2, ..., x48}. Observed data
are presented as lower case; random variables are upper case. Arrays are shown in bold.
x1 is an observed scalar corresponding to the first cell in the table; x1 is the first sampled
contingency table (array). X1 is a random scalar variable corresponding to the first cell in
X, which is itself a random variable (array) composed of {X1, X2, ..., X48}.

Since aymptotic inference and exact enumeration may not be valid for sparse, multidi-
mensional contingency tables, Algorithm 3.6.1 describes an overall sampling approach to
conduct an exact conditional hypothesis test. The essential element of the algorithm is Step
2, a method for appropriately sampling the entire conditional state space (Sb).

Algorithm 3.6.1 Overall Sampling Approach for a Goodness-of-Fit Hypothesis Test.

Input: H0 and H1 as bivariate and trivariate log-linear models, respectively. The observed
contingency table x0. Sample size N and observed test statistic T (x0).

Output: Estimated p-value for the hypothesis test from an approximate distribution of test
statistics.
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Algorithm:

1. From the observed contingency table (x0) and the Lawrence lifting matrix A, compute
the sufficient statistic b (detailed in Section 3.5). Sb is the conditional state space
specified by b. That is, a set of all possible contingency tables (Xi) satisfying the
equation A · Xi = b, Xi ≥ 0.

2. Sample tables X1, . . . ,XN from Sb according to the hypergeometric distribution.
3. Compute the test statistic for each table T(X1), . . . ,T(XN).
4. Estimate the right-tailed p-value by counting the frequency

IT (x0)≤T (xi)
N for i = 1, . . . N ,

where I is the indicator function.

After completing step 1 of Algorithm 3.6.1, we seek to sample tables from the conditional
state space according to a hypergeometric distribution. MCMC using the Metropolis-
Hastings (MH) acceptance ratio samples tables from a hypergeometric distribution, but
MCMC alone is not sufficient to approximate the distribution of contingency tables (and
test statistics). Without a Markov basis for the conditional state space (Sb), there is no
guarantee all states (contingency tables) are connected via by a single MCMC chain. To
ensure adequate sampling throughout the conditional state space, we rely on SIS.

3.7 Sequential Importance Sampling (SIS)
Unlike MCMC, SIS provides a means of independently generating contingency tables
(Xi) from the conditional state space. Unfortunately, SIS does not sample tables from a
hypergeometric distribution, a drawback later rectified with MCMC.

Algorithms 3.7.1, 3.7.2, 3.7.3, and 3.7.4 delineate the steps necessary for our implementation
of SIS. As before, let A ∈ Zd1×d2 be the Lawrence lifting matrix and b ∈ Zd1 be the sufficient
statistic, where d1, d2 ∈ N and N is the set of natural numbers (N = {1, 2, . . .}). X is a
random variable (contingency table) composed of individual cell counts {X1, X2, . . . Xd2}.
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Algorithm 3.7.1 Compute the Lower Bound for X1 using IP.

Input: The matrix A ∈ Zd1×d2 and a vector b ∈ Zd1 for the system

A · x = b
x ≥ 0
x ∈ Zd2 .

Output: A lower bound (LB1) on the individual cell count X1.

Algorithm:

1. Run Rcplex to solve for x given constraints defined by A and b and the IP variable
constraints on x with an objective function of

min x1.

2. Return LB1 = the optimal objective value from Rcplex.

Continuing the example begun in Section 3.3, we run Algorithm 3.7.1 once for x1. Since
none of the other random variables {X2, X3..., X48} of x are fixed, X1 has a large range of
possible values. Not surprisingly, LB1 equals 0. Once cell counts in the contingency table
become sequentially fixed, the ranges for each subsequent Xi tend to shrink. Using a similar
method as Algorithm 3.7.1, we calculate the upper bound on the first cell in contingency
table.

Algorithm 3.7.2 Compute the Upper Bound for x1 with IP.

Input: The matrix A ∈ Zd1×d2 and a vector b ∈ Zd1 for the system

Ax = b
x ≥ 0
x ∈ Zd2 .

Output: An upper bound (UB1) on X1.

27



Algorithm:

1. Run Rcplex with A, b and the input IP constraints with an objective function of

max x1.

2. Return UB1 = the optimal objective value from Rcplex.

Also as expected, UB1 = 22, the highest possible cell count due to X1111 + X0111 being
fixed at 22 by Equation 3.7 (from observed Table 3.1). A random integer, designated x∗1, is
drawn from a discrete uniform distribution bounded by [LB1, UB1]. In this scenario, our
random draw is x∗1 = 5. After fixing cell X1 = x∗1, Algorithm 3.7.3 updates the system of
linear equations (A · x = b).

Algorithm 3.7.3 Update Constraints by Reducing A and b.

Input: The matrix A ∈ Zd1×d2 and a vector b ∈ Zd1 for the system

Ax = b
x ≥ 0
x ∈ Zd2

and an additional constraint from random sampling X1 = x∗1.

Output: A new system of constraints specified by A′ and b′.

Algorithm:

1. Let A1 be the first column of A and let A′ be the remaining columns of A. A′ ∈

Zd1×(d2−1). A′ = A − A1.
2. Set b′ = b − A1 · x∗1.6
3. Return A′ and b′.
4. Update the constraints to A′ · x′ = b′.

6Note that A·x = A′ ·x′
{2...48}+A1 · x∗1 = b = b′+A1 · x∗1 where x′

{2...48} are the cell counts {x2, x3, · · · , x48}.
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Algorithms 3.7.1, 3.7.2, and 3.7.3 provide a method for sequentially sampling x1 to x48

while preserving sufficient statistic b. We iterate through this process until every cell xi is
fixed or the problem becomes infeasible due to finding a hole. Algorithm 3.7.4 combines
the three algorithms into an SIS procedure for sampling a random contingency table Xi

from the conditional state space (Sb). In an attempt to maximize the variety of contingency
tables sampled, we modify Algorithm 3.7.3 to allow the cell being updated to be chosen
randomly rather than updating cells in order from 1 to 48 .

Algorithm 3.7.4 Sequential Importance Sampling of the Conditional State Space.

Input: The matrix A ∈ Zd1×d2 and a vector b ∈ Zd1 for the system

Ax = b
x ≥ 0
x ∈ Zd2 .

Output: A contingency table X sampled via SIS that satisfies the sufficient statistic b.

Algorithm:

1. Let d2 be the degree of freedom (i.e., the number of independent variables).
2. Initialize storage vector Y = (0, . . . , 0) ∈ Zd2 .
3. Randomly sample a cell index j from 1 to d2 without replacement. Do the following:

(a) Find the lower bound LB j for x j by Algorithm 3.7.1.
(b) Find the upper bound UB j for x j by Algorithm 3.7.2.
(c) Sample X∗j ∼ Uniform

[
LB j,UB j

]
.

(d) Set Yj = X∗j .
(e) Update A = A′ and b = b′ by Algorithm 3.7.3.
(f) Repeat Step 3 until all cells from 1 to d2 are sampled.

4. If Y does not satisfy the original integer program,7 then random sampling has en-
countered a hole, the table Y is rejected, and the algorithm returns to Step 2. If Y
satisfies the original integer program, then go to Step 5.

5. Return table X = Y.
7A · Y = b, Y ≥ 0 and Y ∈ Zd2 .
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After running Algorithm 3.7.4 once, we generate one contingency table (x1) existing in the
conditional state space (sufficient statistic = b).

A · x0 = b = A · x1. (3.11)

Table 3.4 shows a randomly sampled contingency table (x1) from SIS.

Table 3.4. Example SIS Random Contingency Table (x1).

This table shows cell counts from one SIS sample. It can be verified through
Equation 3.11 that x1 satisfies the sufficient statistic.

Table 3.4 has substantially different cell counts from Table 3.1, the observed table. The
differences in cell counts are shown in Table 3.5. Unlike the large cell count differences
resulting from SIS, one iteration of MCMC only fractionally changes the contingency table.
This is further discussed in Section 3.8.

Table 3.5. Difference in Cell Counts from a Single SIS Iteration.

This table shows differences in cell counts between the SIS contingency table (x1)
and the observed contingency table (x0).
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This section described a method to independently sample contingency tables from the
conditional state space via SIS. Running Algorithm 3.7.4 N times generates N independent
contingency tables (Xi) satisfying the sufficient statistic (b). In order to compensate for SIS
not sampling tables from a hypergeometric distribution, MCMC is applied next.

3.8 Markov Chain Monte Carlo (MCMC)
MCMC methods facilitate hypergeometric sampling of the conditional state space. Each
of the independent SIS contingency tables sampled in Section 3.7 serves as an independent
starting point for an MCMC chain. We postulate that with sufficient independent starting
points spread throughout the conditional state space, the connectivity problem of MCMC
without a Markov basis is overcome.

Starting from the current contingency table, Algorithm 3.8.1 lists a sequence of steps to
apply a random Markov move (Z) to the table and randomly select whether to move to a
new contingency table or stay at the current table.

Algorithm 3.8.1 Metropolis-Hastings Algorithm Applied to Proposed MCMC Move.

Input: The starting table X1 and the sample size N . Log-linear model F. A set of Markov
moves (M).

Output: A set of contingency tables sampled according to the hypergeometric distribution.

Algorithm:

1. Set R = {X1} (from SIS Algorithm 3.7.4).
2. For i = 2, · · · , N:

(a) Pick a move Z ∈ M uniformly.
(b) Set proposal X∗ = Z + Xi−1.
(c) Check that X∗ ≥ 0. (Negative cell counts are prohibited.)

i. If X∗ < 0, Xi = Xi−1. Proceed to Step 2f.
ii. Else continue to Step 2d.
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(d) Compute the acceptance ratio

r =
p(X∗ |b)

p(Xi−1 |b)

where p(X|b) is the probability mass function (pmf) of a hypergeometric dis-
tribution with fixed sufficient statistic b. In the case of contingency tables, the
acceptance ratio is analogous to the inverse ratio of the cell count factorials:

r =
∏

X j! ∀X j ∈ Xi−1∏
Xk! ∀Xk ∈ X∗

.

(e) Set

Xi =


X∗ with probability min(r, 1)

Xi−1 else.

(f) Add element Xi to R.
3. Return R, the set of contingency tables from MCMC with MH acceptance applied.

If it is possible to calculate a Markov basis, set M equal to the Markov basis. In most cases
though, like our example, we are unable to enumerate all the elements (possible moves)
in the Markov basis. Without a Markov basis, in Step 2a we instead generate a random,

multidimensional

(
+1 −1
−1 +1

)
move similar to those proposed by Diaconis and Sturmfels

(1998). The move must preserve the sufficient statistic b under H0. Table 3.6 shows a
random move Z ∈ M . The sufficient statistic is preserved.

Table 3.6. Example Move (Z).

This table shows the
(
+1 −1
−1 +1

)
cell manipulations Z to be applied to X1. Compared

to Table 3.5, one MCMC move results in smaller cell count differences than SIS.
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The proposed contingency table X∗ (from Step2b) is strongly dependent on the previous
contingency table in the Markov chain, Xi−1. Table 3.7 displays the proposed table (X∗).

Table 3.7. Proposed Table (X∗).

This table shows a proposed contingency table from MCMC (Step 2b of Algorithm
3.8.1).

After generating the proposed table X∗ and checking that all cell counts are non-negative,
Step 2d determines the acceptance ratio (r). This ratio measures the relative probabilities
of the two contingency tables, X∗ and Xi−1. For contingency tables, the probability ratio
is the same as the inverse ratio of the cell count factorials for each of the two contingency
tables. In the case of our example, X∗ (Table 3.7) is more likely than X1 (Table 3.4). The
acceptance ratio r is therefore greater than 1. From Step 2e, we accept the proposed table
and set X2 = X∗. Step 2f adds X2 to the set R = {X1,X2}.

Depending on the proposed table X∗, there are two additional scenarios to the situation
presented in the preceding paragraph (accepting X∗ with probability 1). If X∗ < 0, meaning
any cell X∗i ∈ X∗ is negative, then X∗ is rejected and Xi = Xi−1. Proposed table X∗ could
also be less probable than current table Xi−1. In this case, 0 < r < 1 and table X∗ will be
accepted with probability r .

The process in Step 2 of Algorithm 3.8.1 is repeated until an MCMC chain R is returned
containing N contingency tables. One connected MCMC chain is generated from each SIS
table sampled.
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3.9 Hybrid MCMC and SIS Sampling Algorithm
Algorithm 3.9.1 combines SIS and MCMC to generate an approximate, hypergeometric
distribution of test statistics (T) given x0 and b.

Algorithm 3.9.1 Approximate Hypothesis Test using MCMC and SIS Sampling.

Input: The observed contingency table x0 and sufficient statistic b. The desired number of
SIS samples K . The sample size N for each MCMC chain. The number of burn-in samples
B. The thinning interval Q. Model for H0 (F0) and model for H1 (F1).

Output: An empirical distribution of log-likelihood ratio test statistics (T (X)) from tables
in the conditional state space sampled according to a hypergeometric distribution.

Algorithm:

1. SIS: With Algorithm 3.7.4, independently sample K starting tables. The sample is
denoted as {X11, ...,X1K}.

2. For each k = 1, · · · ,K:
(a) MCMC: Sample N many tables with Algorithm 3.8.1 and starting table X1k.

The Markov chain Rk = {X1k, ...,XNk}.
(b) Initialize the vector of test statistics Tk = ∅.
(c) Burn-In: Eliminate the first B tables fromRk to minimize dependence of MCMC

on SIS starting point X1k. m = B + 1.
(d) While m ≤ N:

i. Use sampled contingency table Xmk from Rk.
ii. Compute the maximum log likelihood (residual deviance) under H0 model.
iii. Compute maximum log likelihood (residual deviance) under H1 model.
iv. Compute the log-likelihood ratio test statistic (G2) as the difference in the

residual deviance (refer to Section 3.4).
v. Add G2 to Tk.
vi. Thinning: Advance m by Q, the thinning interval to minimize dependence

between successive test statistics.
(e) Return Tk.

3. The test statistic distribution is approximated by combining test statistics from all K

Markov chains. T = {T1, ...,TK}.
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To complete the example initiated in Section 3.3, Algorithm 3.9.1 is run with parameters:
K = 100 SIS tables, MCMC chain length N = 4400, B = 400 burn-in tables elimi-
nated from beginning of each MCMC chain, record test statistics for every Q = 20 tables
sampled. To sample 440000 contingency tables and test statistics (4400 MCMC itera-
tions for 100 SIS starting points) requires approximately 2 hours of run time (Intel(R)
Core(TM) i7-6500U CPU @ 2.50GHz and 16GB RAM). Applying burn-in removes the
first 400 samples from each Markov chain. After thinning, a sample size of 20000 test
statistics (T) remains: 200 test statistics (Tk) from each MCMC chain emanating from the
100 SIS starting points. In the final step, the distribution of test statistics T, along with the
observed test statistic from Section 3.4, is used to calculate an estimated p-value. Using the
proposed hybrid sampler, the estimated p-value for the example goodness-of-fit hypothesis
test is 0.008. Chapter 4 further expands upon this result.

3.10 Summary
Figure 3.2 summarizes a notional flow chart from observed contingency table data (x0) to
hypothesis test result. Since asymptotic and exact methods are not guaranteed to be valid for
sparse, multidimensional contingency tables, this chapter proposed a method for estimating
the null distribution of test statistics under H0 using a sampler combining SIS and MCMC.

Figure 3.2. Notional Flow Chart for Goodness-of-Fit Testing.

This figure shows the steps necessary to perform a goodness-of-fit test given null
(H0) and alternative (H1) models and observed contingency table data (x0).
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In Section 3.3.1, Equations 3.2 and 3.3 propose null and alternative hypotheses to test the
statistical significance of factorY3 (age) on particular state transition ratios

(
log

(
P24
P22

))
in the

presence of Y1 (APOE-4 allele) and Y2 (education). To evaluate the hypotheses, we extract
the relevant observed contingency table data (x0) from the nun cognitive observational
dataset in Section 3.3.2.

The observed table (x0) and null and alternative hypotheses allow for the calculation of
MLEs. With the MLEs, Section 3.4 describes computing the maximum log-likelihood ratio
test statistic

(
Tx0

)
from the difference in the residual deviance of the two models.

The sufficient statistic (b) governing the conditional state space (Sb) is calculated from the
Lawrence lifting of the modified Segre product in Section 3.5. Hara et al. (2010) showed
this sufficient statistic is the minimal necessary sufficient statistic for the bivariate logistic
regression model (H0). After a discussion of p-value estimation from a distribution of
test statistics, Sections 3.7 and 3.8 detail SIS and MCMC methods of sampling from the
conditional state space.

Section 3.9 combines the independent sampling of SIS with the hypergeometric sampling
of MCMC to approximate the test statistic distribution (T (X)). The established techniques
of burn-in and thinning are employed to reduce the correlation among tables sampled using
MCMC. Applying Algorithm 3.9.1 enables us to approximate the null distribution of test
statistics T (X). Finally, with an observed test statistic Tx0 and a distribution of test statistics
T (X), an approximate p-value is estimated.
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CHAPTER 4:
Results and Insights

In this chapter, we apply the sampler described in Chapter 3 to conduct 27 goodness-of-fit
hypothesis tests on the nun cognitive dataset. Each hypothesis test is performed using three
different variations of the SIS algorithm. The chief observations, results, and insights from
the employment of the hybrid scheme are discussed.

4.1 Analysis of Example Problem
Figure 4.1 presents sampled test statistic distribution (T (X)) histograms generated from
applying the hybrid sampler (Algorithm 3.9.1) to the example hypothesis test in Chapter 3
(s = 2, v = 2, i = 3). In Figure 4.1a, burn-in is applied (B = 400) to each Markov chain
without any subsequent thinning (Q = 1), yielding a sample size of 400000. Figure 4.1b
has both burn-in and thinning (Q = 20) applied, reducing the sample size to 20000 test
statistics. For comparison to the asymptotic approximation, a chi-squared density line with
one degree of freedom (the difference in model parameters between H0 and H1) is overlayed
on each histogram. The observed test statistic is shown in red. The similarity between
thinned and unthinned samples calls into question whether the reduction in auto-correlation
from thinning justifies the loss of information (Link and Eaton 2012).

(a) No Thinning (b) Thinned Sample

Figure 4.1. Approximate Test Statistic Distribution: s = 2, v = 2, i = 3.
The histograms depict a sampled distribution of test statistics T (X) from the
hybrid sampling scheme. Figure 4.1a has no thinning applied. Figure 4.1b has
burn-in and a thinning interval of 20, resulting in 1/20 the sample size.
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The p-value is estimated by counting the proportion of test statistics from the distribution
of test statistics (T (X)) that are as extreme or more extreme (larger) than the observed
test statistic (Tx0) of 9.23 (Step 4 of Algorithm 3.6.1). As expected from the similarity
of their approximate distributions, using either the thinned and unthinned distribution of
test statistics gives similar p-value estimates. Without thinning, we calculate a p-value of
0.0075. Using the thinned sampling distribution, the p-value is 0.0076. Employing the
common asymptotic assumption for contingency tables that the log-likelihood ratio test
statistic follows a χ2 distribution, the estimated p-value is 0.0024. Although the asymptotic
p-value is roughly three times smaller than the p-value estimated from hybrid sampling, the
result of the hypothesis test at the α = 0.01 level is still to reject H0 in favor of H1.

Despite the observed data being a sparse contingency table with 21 of 48 expected cell
counts less than 5 (see Table 3.2), the distribution of test statistics from the hybrid SIS and
MCMC scheme closely resembles a χ2 distribution. The tail of the approximate distribution
is slightly fatter that the asymptotic tail but not obviously so. The asymptotic distribution
assumption seems to be robust, even for sparse contingency tables. This result coincides
with guidance from Conover (1999) for the relaxation of conditions to apply the asymptotic
assumption to contingency table distributions.

4.2 Hole Example
Staying with the example problem, this section briefly presents one occurrence of a hole, a
table rejected because there is no longer an integer feasible solution.

Suppose we have the Lawrence lifting matrix A and the sufficient statistic b from Section
3.5. We proceed through the SIS algorithm (Algorithm 3.7.4) by randomly selecting cell j

and then uniformly sampling an integer X∗j . Further suppose we have sequentially sampled
the 28 cells shown in Table 4.1.

After several iterations of Algorithm 3.7.3, A and b are reduced to yield Equation 4.1 of
the form A′ · x = b′, x ≥ 0. Although Equation 4.1 is feasible, there is no integer solution.
The sampling path delineated in Table 4.1 results in a hole. This table is discarded. The
SIS algorithm starts again from the beginning, increasing the computational time.
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Table 4.1. Cell (X j) Sampling Sequence Resulting in a Hole.
j (random column) LB j UB j x∗j

42 3 18 13
4 0 10 2
40 3 11 9
7 0 13 4
36 22 28 22
18 5 5 5
33 34 72 43
34 13 13 13
37 17 21 20
20 0 0 0
3 0 7 1
2 0 0 0
30 29 29 29
13 1 1 1
5 0 29 17
43 24 27 26
38 3 3 3
9 29 29 29
44 0 0 0
27 46 46 46
8 0 0 0
24 0 0 0
32 3 3 3
22 0 0 0
12 6 6 6
16 2 2 2
39 61 65 63
45 86 88 87

This table shows a notional random sampling sequence for performing SIS given
the observed contingency table x0 (Table 3.1) and null hypothesis (Equation 3.2).



1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 2 2 1 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 3 2 3 1 2 3 1 2 3 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



x =



15
15
39
22
2
0
15
65
0
9
0
0
0
74
0
0
0
2
0
67
0
1
0
1
6
59
12



. (4.1)
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4.3 Discrete Distributions
Because of the integer requirement, all contingency table data produce discrete distributions
of test statistics. With enough possible contingency tables in the conditional state space,
the discrete distribution appears almost continuous as was shown in Figure 4.1. The nun
cognitive dataset contains only five transitions from state 1 (intact cognition) to state 4
(dementia). As a result of few observations, the nine hypothesis tests in which s = 1 are
based on an observed contingency table that is even more sparse than s = 2 or s = 3
hypothesis tests. The small values contained in the sufficient statistic (a function of the low
P14 transitions) limit the number of feasible contingency tables. The resulting distribution
of test statistics does not resemble a smooth, contiguous distribution as was the case in
Section 4.1.

Consider the same proposed hybrid sampling scheme for conducting goodness-of-fit tests,
but now applied to s = v = i = 1. The null and alternative hypotheses are:

H111
0 : log

(
P14
P11

)
= α11 + β211Y2 + β311Y3, (4.2)

H111
1 : log

(
P14
P11

)
= α11 + β111Y1 + β211Y2 + β311Y3. (4.3)

The observed contingency table from the nun dataset is presented as Table 4.2. There are
only 5 total transitions from state 1 to 4 (P14), and P14 = 0 for Age = 1 and Age = 4.
The first three elements of the sufficient statistic (b) are: 5

(∑2
i=1

∑3
j=1

∑4
k=1 X1i j k

)
, 9(∑2

i=1
∑3

j=1
∑4

k=1 j · X1i j k

)
, and 12

(∑2
i=1

∑3
j=1

∑4
k=1 k · X1i j k

)
(Section 3.5). Relative to

the example discussed in Section 4.1, there are far fewer feasible contingency tables that
can satisfy these first three elements of the sufficient statistic.
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Table 4.2. Extremely Sparse Observational Data (x0): s = v = i = 1.

This table gives observational transitions for P14 and P11. There are very few (5)
P14 transitions, limiting the number of feasible contingency tables in the conditional
state space.

Figure 4.2 shows a histogram of test statistics corresponding to the initial distribution of
100 SIS starting points before MCMC is applied. There are only five feasible contingency
tables for this hypothesis test, including the observed table. In this instance, SIS has nearly
uniformly sampled the left three contingency tables.

Figure 4.2. SIS-Only Test Statistic Distribution: s = v = i = 1.
Few feasible contingency tables exist. After SIS, applying MCMC sampling will
increase probability of tables closer to MLE (small test statistic) and reduces prob-
ability of contingency tables far from MLE.
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With few feasible tables, it is impossible for the sampled distribution to approximatelymatch
a continuous asymptotic distribution. Figure 4.3 compares the approximate distribution
from the hybrid sampling approachwith the asymptotic distribution. Only three contingency
tables have non-trivial probability. Again, we observe little difference between the thinned
and unthinned sampling distributions. The effect of MH and MCMC in favoring transitions
to tables with higher likelihood can be seen by comparing Figure 4.2 with Figure 4.3. The
estimated p-value based on hybrid sampling is 0.005, and the p-value from asymptotic
inference is 0.005. Both methods would reject H0 in favor of H1 at α = 0.01.

(a) No Thinning (b) Thinned Sample

Figure 4.3. Approximate Test Statistic Distribution: s = v = i = 1.
Although this histogram does show a decaying probability, there are too few con-
tingency tables satisfying the sufficient statistic to produce a histogram resembling
a continuous distribution. The sample sizes are 400000 and 20000, respectively.

4.4 Hypergeometric and Triangle Distributions
Up to this point, we have exclusively used uniform sampling within the SIS algorithm to
randomly generate individual cell counts. We also modify Step 3c of Algorithm 3.7.4 to
experiment with triangle and hypergeometric cell sampling and compare the resultant dis-
tribution of SIS test statistics. Assuming a uniform, hypergeometric, or triangle distribution
within SIS does not affect MCMC sampling. Only the SIS table that begins an MCMC
chain is affected by the distribution choice.

For the hypergeometric distribution, a random sample is drawn such that X∗j ∼

Hypergeometric (K,m, n). K = lower bound (LB) + upper bound (UB) = the number
of balls to be drawn from the urn. m = UB = the number of white balls in the urn.
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n = UB = the number of black balls in the urn. Therefore, the minimum white balls
drawn from the urn will be LB and the maximum will be UB. Compared to the uniform
distribution that has equal probability for each integer, hypergeometric distribution results
in more random draws from the middle of the interval [LB,UB] than from the boundaries.

For the triangle distribution, a random sample is drawn such that X∗j ∼ Triangle (a, b, c),
where a = minimum = LB, b = maximum = UB, and c = mode, which we take to be the
maximum likelihood estimate. If a > c, we reset the distribution minimum to the mode
(a = c); if b < c, we reset the maximum to the mode (b = c). Unlike hypergeometric,
the triangle distribution is a continuous distribution. To adequately weight each integer, we
add a continuity correction by reducing a by 0.50 and increasing b by 0.49. The resulting
random draw X∗j is rounded to the nearest integer within [LB,UB]. If X∗j < LB, X∗j = LB.
If X∗j > UB, X∗j = UB. In this way, for maximum likelihood estimates outside the possible
range of X∗j , the high probability of drawing a number near themaximum likelihood estimate
is added entirely to the nearest bound rather that spread evenly over the interval.

To compare uniform, triangle, and hypergeometric sampling schemes, we reconstruct the
example problem with s = 2, v = 2, and i = 3 and replace the uniform distribution with
hypergeometric and triangle distributions (in Step 3c of SIS Algorithm 3.7.4). Figure 4.4
shows a histogram of the 100 SIS starting points from each sampling method. For this
hypothesis test, there are no discernible differences in the distribution of SIS tables.

Figure 4.4. Initial SIS Test Statistics: s = 2, v = 2, i = 3.
100 independent contingency tables from SIS. The sampling type indicates the
assumed distribution when sampling individual cells with bounds from IP.
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After applying an MCMC algorithm to each of the independent starting tables, the dis-
tribution of test statistics for each scheme is shown in Figure 4.5. Since the SIS portion
of sampling yielded similar results and the MCMC algorithm is identical in each case, it
is not surprising the three different sampling methods produce similar distributions. The
approximate p-values are 0.0076, 0.0030, and 0.0074 for uniform, hypergeometric, and
triangle sampling, respectively. The p-value for an asymptotic approximation is 0.0024.
Comparing Figure 4.4 to Figure 4.5, the SIS algorithm samples more from large test statistic
values in the right tail of the distribution than MCMC with MH applied.

Figure 4.5. Sampling Method Comparison: i = 3, s = 2, v = 2.
Uniform, Triangle, and Hypergeometric sampling methods for SIS all produce sim-
ilar distributions and p-values from the hybrid SIS and MCMC sampling scheme.
After burn-in and thinning, the histogram sample size is 20000.

To better illustrate the effect of a sampling scheme within the SIS algorithm, we reproduce
Figure 4.2 for testing the hypothesis for s = v = i = 1 but with hypergeometric and triangle
sampling schemes also used in the SIS algorithm. The three most frequently sampled tables
via SIS are displayed. Recall from Section 4.3 that this hypothesis test and corresponding
sufficient statistic had few feasible contingency tables. Figure 4.6 shows that in this instance,
uniform sampling of cells produces a roughly uniform distribution of contingency tables
across the three possibilities. Hypergeometric sampling has higher probability on the
middle table, and triangle sampling places more probability on the table with the lowest
test statistic. This illustrates that different sampling methods for SIS can produce different
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distributions of contingency tables. The sampled distribution, however, after the MCMC
portion of the hybrid sampler has been applied is almost identical for all three methods (see
Figure B.1 in Appendix B).

Figure 4.6. Initial SIS Test Statistics: i = s = v = 1.
There are few SIS initial starting points regardless of the sampling method. The
SIS sample size for each histogram is 200.

4.5 Goodness-of-Fit Test Results
The following sampling parameters are used for implementing the SIS/MCMC hybrid
sampling scheme (Algorithm 3.9.1). K = 100 independent SIS sampled tables. N = 4400
contingency tables in each MCMC chain, beginning with an initial table from SIS. B = 400
burn-in tables eliminated from beginning of eachMCMC chain, and we record test statistics
for every Q = 20 tables sampled. An approximate test statistic distribution (T(X)) is
generated for all s ∈ {1, 2, 3}, v ∈ {1, 2, 3}, and i ∈ {1, 2, 3} combinations and for the
three distribution assumptions of uniform, hypergeometric, and triangle. After burn-in and
thinning, each approximate test statistic distribution for a given (s, v, i) has a sample size of
20000 test statistics.
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Recall the null and alternative hypotheses being tested via a goodness-of-fit hypothesis test
for i, s, v:

log
(

Ps4
Psv

)
= αsv + β1svY1 + β2svY2 + β3svY3.

Hisv
0 : βisv = 0,

Hisv
1 : βisv , 0.

The results of the 27 goodness-of-fit tests are summarized in Table 4.3. The test statistic
distributions from which the estimated p-values are derived are presented in Appendix B.

Table 4.3. Goodness-of-Fit Test Results for (s, v, i).

For each (s, v, i) combination, the estimated p-value from the SIS (using either
uniform, hypergeometric, or triangle distribution assumptions) and MCMC sampler
is reported. The p-value using a χ2

1 asymptotic assumption is also stated. Light
shading indicates statistical significance at the α = 0.05 level. Dark shading
indicates statistical significance at the α = 0.01 level.
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Rejection data presented in Table 4.4 was gathered by sampling 1000 independent SIS
tables for each (s, v, i) combination and distribution assumption. Depending on the (s, v, i)
combination and distribution assumption, rejections for 1000 SIS tables ranged from 0
to 265. Triangle sampling had the lowest average rejection rate at 2.5 rejections per 100
tables, followed by uniform sampling at 3.9 rejections per 100 tables. Hypergeometric
sampling, which samples more frequently from the center of the lower and upper bounds,
had 7.4 rejections per 100 tables, roughly twice the rate of uniform and hypergeometric.
We observe that when one sampling method had a large number of rejections, the other
sampling methods also tended to have many rejections. For instance, s = 2, v = 3, i = 1
yielded the most rejections of any case for all three distribution schemes.

Table 4.4. Rejections by Interval Distribution Sampling Scheme for (s, v, i).

For each (s, v, i) combination, the number of rejections resulting from generating
1000 SIS starting points via Algorithm 3.7.4.
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4.6 Insights
This section presents multiple insights distilled from our research and application to the
nun cognitive observational dataset.

4.6.1 Asymptotic Assumption
The hybrid sampling scheme proposed in Chapter 3 produces estimated p-values similar to
the asymptotic approximation p-values (refer to Table 4.3). The hybrid sampling method is
generally more conservative with larger p-values. This result occurs despite the contingency
tables being sparse and, in the case of s = 1, producing test statistic distributions with only
a handful of possible values. We infer this as evidence of the applicability of the χ2

asymptotic approximation even to relatively sparse contingency tables. Contrary to our
initial conjectures, the asymptotic approximation works well for this dataset of sparse,
multidimensional contingency tables.

4.6.2 Run Time
Each individual hypothesis test for one sampling method (uniform, hypergeometric, or
triangle) took approximately 50 minutes to sample 100 SIS starting tables and 4400MCMC
iterations for each starting table. Individual cases ranged in time from around 30 minutes
to 2 hours. To run all 27 hypothesis tests with 3 different sampling methods requires about
3 days of run time on a personal computer. Invoking the asymptotic approximation enables
all of these tests to be run in less than a second, offering a huge time advantage over the
proposed hybrid sampler.

4.6.3 Holes
In establishing the lower and upper bounds of the feasible region for cell X∗j , we solve two
IP systems using a minimum and a maximum objective function. Therefore, both the lower
bound (minimum) and upper bound (maximum) are known to be integer feasible solutions
to the linear program and not holes. As more and more X∗j cells become fixed through
sampling and the solution set gets smaller, the interval between lower and upper bounds
for X∗j narrows. If a hole still exists in the interval, it becomes increasingly likely to be
encountered as the sampling range shrinks.
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The hypergeometric distribution samples more frequently near the middle of the range
(relative to uniform and triangle), and we observe hypergeometric sampling locating holes
more frequently (refer to Table 4.4). Uniform distribution has equal sampling probability
for each integer in the interval, including the lower and upper bounds, which are known to be
non-holes. If the mode (based on MLE) lies outside the [LB,UB] interval, we constructed
our triangle distribution to add all the probability lying outside of the bounds to the nearest
boundary. Consequently, the triangle distribution method we employ has an even greater
probability than the uniform distribution of sampling from one of the two bounds. As a
result, we observe triangle sampling has the fewest rejections.

4.6.4 Sampling Method
From the perspective of estimated p-values, uniform, hypergeometric, or triangle distribu-
tion assumptions for the sampling a cell X∗j have little effect on the estimated p-values.
Most of the sampling distribution differences between the three methods are eliminated
after MCMC has been run for 4400 iterations and the initial 400 tables (which includes the
SIS table) are removed by burn-in.

4.6.5 Application to Cognitive Impairment
We broadly interpret the results for the eight cases in which H0 is rejected in favor of H1 at
the α = .01 level. APOE-4 allele, education, and age all show up as statistically significant
in the context of our goodness-of-fit test for different combinations of s, v, i. Table 4.5
displays coefficient estimates for each case where H0 was rejected at the α = 0.01 level.

Education (i = 2) appears to have the greatest effect when the prior cognitive status is intact
cognition. We conclude education is a significant factor in predicting the relative transition
rate from intact cognition to either intact cognition, MCI, or GI relative to transition from
intact cognition to dementia. In each case, higher education is associated with a lower odds
ratio (β2 < 0) of transitioning to dementia relative to transitioning to a less severe state.

Age (i = 3) is found to be significant in the relative transition rates to dementia where
previous cognitive status is MCI and current status is intact cognition or MCI. Older nuns
are more likely to transition from MCI to dementia (β3 > 0) compared to younger nuns.
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Table 4.5. Maximum Likelihood Estimates of βi for (s, v, i).
s v i β1 (APOE4) β2 (Ed) β3 (Age)
1 1 2 3.68*** -3.28*** 0.53

(1.29) (0.97) (0.58)

1 2 2 2.18** -2.15** 0.30
(1.07) (0.89) (0.45)

1 3 2 2.88* -3.34** 0.21
(1.51) (1.37) (0.75)

2 1 3 1.28*** -0.38* 0.68***
(0.43) (0.23) (0.13)

2 2 3 0.11 0.14 0.33***
(0.31) (0.18) (0.11)

1 1 1 3.68*** -3.28*** 0.53
(1.29) (0.97) (0.58)

2 1 1 1.28*** -0.38* 0.68***
(0.43) (0.23) (0.13)

3 2 1 1.40** 0.12 0.32
(0.57) (0.31) (0.19)

***p < 0.01, **p < 0.05, *p < 0.1 t-statistic

This table reports Maximum Likelihood parameter Estimates for H0 and H1 given
x0. Standard errors for each estimate are shown in parentheses. Coefficient esti-
mates computed by glm function in baseline R.

Finally, we conclude the presence APOE-4 allele (i = 1) is associated with increased
probability of transitioning to dementia (bad outcome) relative to transitioning to a good
outcome (β1 > 0). The contribution of APOE-4 to the model is found to be statistically
significant at the α = .05 level for the following transitions: from intact cognition to
maintaining intact cognition, from MCI to intact cognition, and from GI to MCI. For all
of these scenarios, the presence of the APOE-4 allele is associated with an increase in the
relative odds of transitioning to dementia.
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CHAPTER 5:
Conclusions

This chapter summarizes the sampling methodology described in Chapter 3 and its appli-
cation to the nun cognitive observational dataset presented in Chapter 4. We discuss some
benefits and shortcomings of the hybrid sampling approach for approximate inference.
Finally, ideas for expansion and future work are suggested.

5.1 Summary
We begin with the problem of performing a goodness-of-fit test (to compare two models
of the data) on a sparse, multidimensional contingency table. Due to the low cell counts,
there is no guarantee on the validity of asymptotic inference. The multidimensionality of
the contingency table also in general precludes exact enumeration of all contingency tables
satisfying the sufficient statistic. Our solution is to conduct an approximate hypothesis test
by sampling a large number of tables from the approximate distribution.

MCMC with the Metropolis-Hastings acceptance criteria provides a method of sampling
contingency tables from the conditional state space such that the distribution of tables
converges to the true distribution under H0 by the law of large numbers. This method is
only valid if a Markov chain exists that connects all feasible contingency tables. Without
a Markov basis, there is no guarantee that contingency tables in the conditional state space
are connected via an ergodic Markov chain. To overcome this obstacle, we rely on SIS to
sample tables independently from the conditional state space under H0. The distribution of
SIS tables does not, however, yield an accurate hypergeometric distribution of contingency
tables.

Algorithm 3.9.1 in Section 3.9 combines SIS and MCMC into a hybrid algorithm that
generates an approximate distribution of contingency tables and test statistics for sparse,
multidimensional contingency tables under H0. First, many independent starting tables are
sampled from the conditional state space via SIS. An MCMC chain is then initiated at each
starting point. Each chain of test statistics has the beginning discarded (burn-in) and has the
remaining test statistics thinned (thinning). The surviving test statistics from each MCMC
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chain are combined to form an approximate distribution of test statistics. Our assumption
is that by sampling many different SIS starting points from the conditional state space,
we are able to representatively sample from all regions of the conditional state space even
though all contingency tables may not be connected via MCMC. By running MCMC for
a sufficient number of iterations, we assume the sampled distribution will converge to the
true distribution of test statistics.

In Chapter 4, we apply this sampling approach to a dataset of nuns experiencing different
levels of cognitive impairment. The previous and current cognitive state along with the
presence of APOE-4 allele, highest education level achieved, and age were recorded for each
nun. Our goodness-of-fit hypothesis tests whether adding a third factor (H1) statistically
reduced the model’s residual deviance compared to a simpler model with only the other
two factors (H0). Generating an approximate distribution through a hybrid sampler, we
conclude the presence of APOE-4 allele (i = 1) is associated with higher rates of transition
to dementia relative to transition rates to a better cognitive state. We also find that nuns with
higher education levels (i = 2) were less likely to transition from intact cognition (s = 1)
to dementia relative to transitioning from intact cognition to GI (v = 3), MCI (v = 2), or
maintaining intact cognition (v = 1). Lastly, age (i = 3) is found to be significant in a model
of the relative transition rates to dementia where previous cognitive status is MCI (s = 2)
and current status is intact cognition (v = 1) or MCI (v = 2). Lower age is associated
with increased likelihood of transitioning from MCI to intact cognition or maintaining
MCI relative to transitioning to dementia. Older nuns are more likely to transition from
MCI to dementia compared to younger nuns. Using three different methods (uniform,
hypergeometric, and triangle) of sampling individual cells (X∗j ) within SIS, we observe the
triangle distribution method results in the fewest rejections (holes).

5.2 Benefits and Shortcomings
The most significant benefit of the hybrid sampling approach is that no assumptions are
made regarding the distribution of test statistics. Specifically, the test statistics are not
assumed to have an asymptotic χ2 distribution. This makes the approximate distribution
method generally more conservative than asymptotic inference. Comparing two models via
a goodness-of-fit test also circumvents the assumptions of t-tests on the model maximum
likelihood estimates: homoskedastic, normally distributed, and independent residuals.
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By employing SIS sampling to start various MCMC chains, we avoid the requirement of
the conditional state space to be entirely accessible via a single Markov chain. Additionally,
the hybrid sampling approach does not necessitate possession of Markov basis, which many
times is unfeasible to compute. Enumerating all contingency tables satisfying the sufficient
statistic is also not necessary for the hybrid approach.

There are also several drawbacks to approximate inference through a hybrid sampling
approach. The SIS sample size must be large enough to ensure the entire conditional state
space is accessible via the subsequentMarkov chains. We currently have no way of knowing
if this condition is definitively true. MCMC sample size must be large enough to not only
establish independence from the starting point of the Markov chain but also to converge
to the stationary distribution. Accurate representation through an approximate distribution
requires a sample size of thousands if not hundreds of thousands.

A large sample size requires significant amounts of computing power and time. Even with
the cplex solver, IP problems can be slow to solve, compounding the speed drawback.
Each SIS contingency table requires solving ` × i × j × k × 2 (min/max) IP problems. In
the case of the nun data, that amounts to 96 IP solutions for each SIS contingency table,
not including the discarded IP solutions resulting from holes. The existence of holes when
conducting SIS only adds to the computation time. It is difficult to predict which systems
will result in increased frequency of holes, although our analysis shows that holes will exist
regardless of the sampling distribution assumption (see Table 4.4).

In the implementation on a personal computer (Intel(R) Core(TM) i7-6500U CPU @
2.50GHz and 16GB RAM), the generation of 440,000 test statistics to conduct a single
hypothesis test takes approximately 50 minutes. Extending our algorithm to 27 hypothesis
testswith 3 different distribution assumption trials each, even for a relatively small 2×2×3×4
contingency table, requires around 72 hours to generate all 81 approximate distributions.
Based on the congruence between the approximated and asymptotic distribution of test
statistics for the nun cognitive dataset hypothesis tests, the additional computational time
required for the hybrid sampler was not justified.
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5.3 Future Work
The sampling scheme presented in Chapter 3 can be generalized to an arbitrary number of
dimensions. The key to extending to higher dimensional contingency tables is constructing

an algorithm to generate random

(
+1 −1
−1 +1

)
moves across the multiple dimensions that

preserve the sufficient statistic (b). A perfect algorithm would be able to generate every
possible move that preserves the sufficient statistic and each move would be equally likely,
but these conditions are difficult to prove. We recommend implementing the SIS and
MCMC hybrid sampling method on a higher dimensional dataset to verify its suitability.
It is also interesting to catalogue scenarios where the hybrid sampling scheme diverges
from the asymptotic approximation. The similarity between estimated p-values for sparse
contingency tables from hybrid sampling and those from asymptotic approximation is a
surprising result of this research.

We attempted to eliminate the possibility of holes in the linear system via column based
reduction (CBR) basis transformation through the Lenstra-Lenstra-Lovász (LLL) (Lenstra
et al. 1982) and block Korkin-Zolotarev (BKZ) (Schnorr 1987) lattice basis reduction
algorithms. We utilized the LLL function of the m2r R package from David Kahle which
connects the algebraic geometry algorithms of Macaulay2 (Grayson and Stillman 2017) to
R (Kahle et al. 2017a). Unfortunately, our A·x = b system is too large for the current version
of Macaulay2 to solve, although we successfully achieved hole reduction by applying CBR
to smaller, toy problems. As implementations of the LLL algorithm improve, the reduction
of holes through forward and backward CBR could be investigated.

We believe the sampling scheme presented provides a viable means of conducting approx-
imate inference for hypothesis tests on sparse, multidimensional tables. The algorithm
could also be employed a limited number of times to check the validity of the asymptotic
approximation assumption for a given dataset. The most obvious application is for medical
data, military or otherwise, that has multiple dimensions of patient factors and a limited
sample size. However, this methodology should function for anymilitary contingency table
in which these conditions are met, such as costly weapons testing with multiple independent
factors, simulation analysis when the number of simulations is limited due to time or cost,
or wargaming results under different starting conditions.
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APPENDIX A:
Nun Cognitive Observational Dataset

Table A.1 shows the complete nun cognitive observational dataset used for our analysis.

Table A.1. Nun Cognitive Observational Dataset.
Prior State Current State APOE Educ Age Observations

1 1 1 1 1 2
1 1 1 1 2 5
1 1 1 1 3 3
1 1 1 2 1 44
1 1 1 2 2 53
1 1 1 2 3 49
1 1 1 2 4 28
1 1 1 3 1 123
1 1 1 3 2 105
1 1 1 3 3 80
1 1 1 3 4 44
1 1 2 2 1 3
1 1 2 2 2 4
1 1 2 2 3 1
1 1 2 3 1 15
1 1 2 3 2 15
1 1 2 3 3 12
1 1 2 3 4 7
1 2 1 1 1 2
1 2 1 1 2 3
1 2 1 1 3 2
1 2 1 1 4 1
1 2 1 2 1 29
1 2 1 2 2 11
1 2 1 2 3 13
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Continuation of Table A.1
Prior State Current State APOE Educ Age Observations

1 2 1 2 4 14
1 2 1 3 1 32
1 2 1 3 2 24
1 2 1 3 3 26
1 2 1 3 4 18
1 2 2 2 1 5
1 2 2 2 2 3
1 2 2 2 3 3
1 2 2 2 4 1
1 2 2 3 1 5
1 2 2 3 2 3
1 2 2 3 3 2
1 3 1 2 1 3
1 3 1 2 2 2
1 3 1 2 3 6
1 3 1 2 4 6
1 3 1 3 1 6
1 3 1 3 2 11
1 3 1 3 3 9
1 3 1 3 4 5
1 3 2 2 2 2
1 3 2 3 1 1
1 3 2 3 3 2
1 3 2 3 4 1
1 4 1 1 2 2
1 4 1 2 3 1
1 4 2 2 2 1
1 4 2 3 3 1
1 5 1 1 2 1
1 5 1 1 4 1
1 5 1 2 1 2
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Continuation of Table A.1
Prior State Current State APOE Educ Age Observations

1 5 1 2 3 4
1 5 1 2 4 5
1 5 1 3 1 5
1 5 1 3 2 7
1 5 1 3 3 11
1 5 1 3 4 6
1 5 2 2 4 1
1 5 2 3 1 1
1 5 2 3 2 2
1 5 2 3 3 1
1 5 2 3 4 1
2 1 1 1 1 4
2 1 1 1 2 4
2 1 1 1 4 1
2 1 1 2 1 24
2 1 1 2 2 21
2 1 1 2 3 8
2 1 1 2 4 7
2 1 1 3 1 37
2 1 1 3 2 21
2 1 1 3 3 21
2 1 1 3 4 14
2 1 2 2 1 4
2 1 2 2 2 1
2 1 2 2 3 2
2 1 2 2 4 1
2 1 2 3 1 4
2 1 2 3 2 2
2 1 2 3 3 1
2 2 1 1 1 21
2 2 1 1 2 11
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Continuation of Table A.1
Prior State Current State APOE Educ Age Observations

2 2 1 1 3 18
2 2 1 1 4 24
2 2 1 2 1 44
2 2 1 2 2 66
2 2 1 2 3 61
2 2 1 2 4 71
2 2 1 3 1 76
2 2 1 3 2 68
2 2 1 3 3 60
2 2 1 3 4 50
2 2 2 1 1 2
2 2 2 1 2 3
2 2 2 1 3 3
2 2 2 2 1 17
2 2 2 2 2 12
2 2 2 2 3 10
2 2 2 2 4 6
2 2 2 3 1 26
2 2 2 3 2 22
2 2 2 3 3 17
2 2 2 3 4 9
2 3 1 1 1 5
2 3 1 1 2 1
2 3 1 1 3 3
2 3 1 1 4 4
2 3 1 2 1 2
2 3 1 2 2 5
2 3 1 2 3 17
2 3 1 2 4 24
2 3 1 3 1 4
2 3 1 3 2 6
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Continuation of Table A.1
Prior State Current State APOE Educ Age Observations

2 3 1 3 3 16
2 3 1 3 4 15
2 3 2 1 1 1
2 3 2 1 2 1
2 3 2 2 1 4
2 3 2 2 2 10
2 3 2 2 3 3
2 3 2 2 4 3
2 3 2 3 1 2
2 3 2 3 2 3
2 3 2 3 3 4
2 3 2 3 4 3
2 4 1 1 1 1
2 4 1 1 2 2
2 4 1 1 3 3
2 4 1 1 4 3
2 4 1 2 1 3
2 4 1 2 2 6
2 4 1 2 3 4
2 4 1 2 4 17
2 4 1 3 1 6
2 4 1 3 2 6
2 4 1 3 3 7
2 4 1 3 4 9
2 4 2 2 2 1
2 4 2 2 3 1
2 4 2 3 1 3
2 4 2 3 2 6
2 4 2 3 3 1
2 4 2 3 4 3
2 5 1 1 3 1
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Continuation of Table A.1
Prior State Current State APOE Educ Age Observations

2 5 1 1 4 7
2 5 1 2 1 5
2 5 1 2 2 4
2 5 1 2 3 9
2 5 1 2 4 16
2 5 1 3 1 2
2 5 1 3 2 8
2 5 1 3 3 4
2 5 1 3 4 11
2 5 2 1 1 1
2 5 2 1 4 1
2 5 2 2 3 2
2 5 2 2 4 3
2 5 2 3 1 1
2 5 2 3 2 2
2 5 2 3 3 4
2 5 2 3 4 2
3 1 1 2 1 1
3 1 1 2 2 1
3 1 1 2 3 3
3 1 1 2 4 1
3 1 1 3 1 1
3 1 1 3 2 3
3 1 1 3 3 2
3 1 1 3 4 1
3 1 2 2 2 1
3 1 2 3 3 1
3 1 2 3 4 1
3 2 1 1 1 1
3 2 1 1 2 2
3 2 1 1 3 1
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Continuation of Table A.1
Prior State Current State APOE Educ Age Observations

3 2 1 1 4 2
3 2 1 2 1 1
3 2 1 2 2 3
3 2 1 2 3 9
3 2 1 2 4 5
3 2 1 3 1 1
3 2 1 3 2 2
3 2 1 3 3 2
3 2 1 3 4 5
3 2 2 1 1 1
3 2 2 2 1 1
3 2 2 2 2 1
3 2 2 3 2 1
3 2 2 3 4 1
3 3 1 1 1 3
3 3 1 1 2 4
3 3 1 1 3 6
3 3 1 1 4 15
3 3 1 2 1 3
3 3 1 2 2 3
3 3 1 2 3 8
3 3 1 2 4 39
3 3 1 3 1 5
3 3 1 3 2 16
3 3 1 3 3 17
3 3 1 3 4 19
3 3 2 1 2 1
3 3 2 1 3 2
3 3 2 1 4 2
3 3 2 2 1 7
3 3 2 2 2 7
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Continuation of Table A.1
Prior State Current State APOE Educ Age Observations

3 3 2 2 3 18
3 3 2 2 4 2
3 3 2 3 2 1
3 3 2 3 3 3
3 3 2 3 4 3
3 4 1 1 1 2
3 4 1 1 2 3
3 4 1 1 4 2
3 4 1 2 1 2
3 4 1 2 2 2
3 4 1 2 3 5
3 4 1 2 4 18
3 4 1 3 1 2
3 4 1 3 3 4
3 4 1 3 4 10
3 4 2 1 4 2
3 4 2 2 1 1
3 4 2 2 2 2
3 4 2 2 3 4
3 4 2 2 4 5
3 4 2 3 1 5
3 4 2 3 2 1
3 4 2 3 3 3
3 4 2 3 4 2
3 5 1 1 2 1
3 5 1 1 4 6
3 5 1 2 1 1
3 5 1 2 2 2
3 5 1 2 3 5
3 5 1 2 4 21
3 5 1 3 1 4

62



Continuation of Table A.1
Prior State Current State APOE Educ Age Observations

3 5 1 3 2 10
3 5 1 3 3 13
3 5 1 3 4 12
3 5 2 2 1 2
3 5 2 2 2 5
3 5 2 2 3 5
3 5 2 2 4 2
3 5 2 3 2 1
3 5 2 3 3 1
3 5 2 3 4 3

End of Table
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APPENDIX B:
Test Statistic Distributions

Figures B.1 to B.27 show histograms for the sampled test statistic distribution for each
(s, v, i) combination and sampling method.

Figure B.1. Hybrid Sampling Test Statistic Distribution: s = 1, v = 1, i = 1.

Figure B.2. Hybrid Sampling Test Statistic Distribution: s = 1, v = 1, i = 2.

Figure B.3. Hybrid Sampling Test Statistic Distribution: s = 1, v = 1, i = 3.

65



Figure B.4. Hybrid Sampling Test Statistic Distribution: s = 1, v = 2, i = 1.

Figure B.5. Hybrid Sampling Test Statistic Distribution: s = 1, v = 2, i = 2.

Figure B.6. Hybrid Sampling Test Statistic Distribution: s = 1, v = 2, i = 3.
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Figure B.7. Hybrid Sampling Test Statistic Distribution: s = 1, v = 3, i = 1.

Figure B.8. Hybrid Sampling Test Statistic Distribution: s = 1, v = 3, i = 2.

Figure B.9. Hybrid Sampling Test Statistic Distribution: s = 1, v = 3, i = 3.
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Figure B.10. Hybrid Sampling Test Statistic Distribution: s = 2, v = 1, i = 1.

Figure B.11. Hybrid Sampling Test Statistic Distribution: s = 2, v = 1, i = 2.

Figure B.12. Hybrid Sampling Test Statistic Distribution: s = 2, v = 1, i = 3.
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Figure B.13. Hybrid Sampling Test Statistic Distribution: s = 2, v = 2, i = 1.

Figure B.14. Hybrid Sampling Test Statistic Distribution: s = 2, v = 2, i = 2.

Figure B.15. Hybrid Sampling Test Statistic Distribution: s = 2, v = 2, i = 3.
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Figure B.16. Hybrid Sampling Test Statistic Distribution: s = 2, v = 3, i = 1.

Figure B.17. Hybrid Sampling Test Statistic Distribution: s = 2, v = 3, i = 2.

Figure B.18. Hybrid Sampling Test Statistic Distribution: s = 2, v = 3, i = 3.
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Figure B.19. Hybrid Sampling Test Statistic Distribution: s = 3, v = 1, i = 1.

Figure B.20. Hybrid Sampling Test Statistic Distribution: s = 3, v = 1, i = 2.

Figure B.21. Hybrid Sampling Test Statistic Distribution: s = 3, v = 1, i = 3.
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Figure B.22. Hybrid Sampling Test Statistic Distribution: s = 3, v = 2, i = 1.

Figure B.23. Hybrid Sampling Test Statistic Distribution: s = 3, v = 2, i = 2.

Figure B.24. Hybrid Sampling Test Statistic Distribution: s = 3, v = 2, i = 3.
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Figure B.25. Hybrid Sampling Test Statistic Distribution: s = 3, v = 3, i = 1.

Figure B.26. Hybrid Sampling Test Statistic Distribution: s = 3, v = 3, i = 2.

Figure B.27. Hybrid Sampling Test Statistic Distribution: s = 3, v = 3, i = 3.

73



THIS PAGE INTENTIONALLY LEFT BLANK

74



APPENDIX C:
R Code

res0 <- glm(L ~ Y1+Y2, family = binomial(link="logit"), data=tab)

res1 <- glm(L ~ Y1+Y2+Y3, family = binomial(link="logit"), data=tab)

#Load the relevant libraries

library(Rcplex) #We use cplex as the solver for the MIP

library(triangle) #This package allows for each random number from triangle distribution

#Bring the data into R

#Set the appropriate working directory

setwd(’C:/Users/Pat/Desktop/Thesis/thesis_data’)

#Read in the csv file

nun <- read.csv(file="Goeman2.csv", header=TRUE, sep=",")

dim(nun) #there should be 2480 observations

#Reorganize the observations into a contingency table

T <- xtabs(~apoe+EDCAT+age2+priorstate+currentstate, data=nun)

sum(T) #total cell counts should again be equal to 2480

###Building a contingency table with relevant cell counts

###For this hypothesis test, we look at transitions to dementia (state 4)

build.array <- function(s,v,T) {

data1 <- T[,,,s,4]

data2 <- T[,,,s,v]

I <- dim(data1)[1]

J <- dim(data1)[2]

K <- dim(data1)[3]

x <- array(NA, dim=c(2,I,J,K))

x[1,,,] <- data1

x[2,,,] <- data2

return(x)

}

###############################################################################

#Build the Lawrence Lifting matrix A, and solve for sufficient statistic b. Ax=b.

#Lawrence lifting matrix (A) gives the relation between the observation vector and the sufficient statistic

#Function create.configuration produces the levels for each factor

create.configuration <- function(n){

#this function creates the configuration (sufficient stat) matrix for a given J (K)

top.row <- rep(1,n)

bottom.row <- seq(1,n)

A <- rbind(top.row,bottom.row)

return(A)

}

lawrence.lift <- function(...){

#input to this function is arbitrary number of configuration matrices in a 2xJ(K) format

#output is the Lawrence lifting matrix with Segre product in upper left, zeros in upper right,

# and two identical Identity(I) matrices on bottom
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#how many different configurations (variates) are there?

configurations <- list(...)

#print(configurations)

n <- length(configurations)

#calculate number of rows and columns in Segre product

#by setup of logistic regression, each variate has "0" (failure) row and "1" (success) row

num.rows <- n + 1

cols <- c()

for (i in 1:n){

cols[i] <- dim(configurations[[i]])[2]

#print(cols)

}

num.cols <- prod(cols)

#print(num.cols)

segre <- matrix(NA,num.rows,num.cols)

#create the Segre product matrix

#fill in the row of 1’s

segre[1,] <- 1

#fill in the "iteration" row

for (j in 2:num.rows) {

repeats <- num.cols/prod(cols[1:j-1])

segre[j,] <- rep(unique(configurations[[j-1]][2,]),each=repeats)

}

#create the Lawrence lifting matrix

zeros <- matrix(0,num.rows,num.cols)

eye <- diag(num.cols) #identity matrix of proper dimension

eye <- cbind(eye,eye)

lawrence <- cbind(segre,zeros)

lawrence <- rbind(lawrence, eye)

return(lawrence)

}

sufficient.statistic <- function(A,x,extra.var){

A <- A[-(5-extra.var),]

b <- A %*% aperm(x,c(2,3,4,1))

output <- list(A,b)

return(output)

}
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#################################################################################

###Hara san code modified by Yoshida san for conducting MCMC sampling

# As written for the calculation of a "move," this code assumes:

# H_0 : logit with 2 covariates

# H_1 : logit with 3 covariates

#

#Function choose.cells determines which levels (1:d) will be permuted for each dimension

#2 or 4 levels could be permuted

choose.cells <- function(d){

# choose cells for (1, -1, -1, 1) or (-1, 1, 1, -1)

# input : number of levels

# output : cells for (1, -1, -1, 1) or (-1, 1, 1, -1)

a <- sort(sample(1:d,2,replace=TRUE))

if( a[1]==a[2] ){

cell <- rep(a[1],4)

}else{

diff <- a[2] - a[1] - 1

if(diff %% 2 == 0){

b <- diff %/% 2

}else{

b <- diff %/% 2 + 1

}

c <- sample(0:b,1)

cell <- c(a[1],a[1]+c,a[2]-c,a[2])

}

return(cell)

}

#Function deg4move applies +1/-1 moves to the contingency table

#There will be 4 +1/-1 moves generated that preserve sufficient statistic

deg4move <- function(d){

# generating deg 4 moves

# input : dimension of a table

# output : a deg 4 move

repeat{

z <- array(rep(0,48),dim=d) #depends on total number of cells

#d[1] is the Response Dimension

i2 <- choose.cells(d[2])

i3 <- choose.cells(d[3])

# i4 <- choose.cells(d[4])

# i5 <- choose.cells(d[5])

#because d[4] is not part of H0, it is not part of sufficient statistic

i4 <- c(sample(d[4],1),sample(d[4],1),sample(d[4],1),sample(d[4],1))

imat <- rbind(i2,i3,i4)

z[1,i2[1],i3[1],i4[1]] <- 1

z[1,i2[2],i3[2],i4[2]] <- -1

z[1,i2[3],i3[3],i4[3]] <- z[1,i2[3],i3[3],i4[3]] -1

z[1,i2[4],i3[4],i4[4]] <- 1

z[2,i2[1],i3[1],i4[1]] <- -z[1,i2[1],i3[1],i4[1]]

z[2,i2[2],i3[2],i4[2]] <- -z[1,i2[2],i3[2],i4[2]]

z[2,i2[3],i3[3],i4[3]] <- -z[1,i2[3],i3[3],i4[3]]

z[2,i2[4],i3[4],i4[4]] <- -z[1,i2[4],i3[4],i4[4]]

deg <- sum(abs(z))
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if(deg == 8){ #-1 should cancel with +1

break

}

}

if(runif(1) < 0.5){ #coin flip for +/-

return(list(z,imat))

}else{

return(list(-z,imat))

}

}

#Function "idata" simply transforms the contingency table cell counts into individual observations

idata <- function(x3, d3, extra.var){

# transformation from contingency table to individual data

# to use glm() for estimating logit model

# input : a table

# output : an individual data

tab <- as.vector(NULL)

for ( i1 in 1:d3[1] ){

for ( i2 in 1:d3[2] ){

for ( i3 in 1:d3[3]){

for ( i4 in 1:d3[4] ){

if ( (i1 == 1) && (x3[i1,i2,i3,i4] !=0 ) ) {

for ( j in 1:x3[i1,i2,i3,i4] ){

tab <- rbind(tab,c(1,i2,i3,i4))

}

}else if ( (i1 == 2) && (x3[i1,i2,i3,i4] !=0 ) ){

for ( j in 1:x3[i1,i2,i3,i4] ){

tab <- rbind(tab,c(0,i2,i3,i4))

}

}

}

}

}

}

tab <- data.frame(tab)

if (extra.var == 3)

colnames(tab) = c(’L’,’Y1’,’Y2’,’Y3’)

else if (extra.var == 2)

colnames(tab) = c(’L’,’Y1’,’Y3’,’Y2’)

else

colnames(tab) = c(’L’,’Y2’,’Y3’,’Y1’)

return(tab)

}

#Determine acceptance ratio via Metropolis-Hastings algorithm

accept.ratio <- function(w,z,x){

# computaion of acceptance ratio in MH procedure

# input : a move, nonzero cells in the move, current contingency table

# output : acceptance ratio

if( z[1,w[1,1],w[2,1],w[3,1]]==1 ){

num <- x[2,w[1,1],w[2,1],w[3,1]] * x[1,w[1,2],w[2,2],w[3,2]] *

x[1,w[1,3],w[2,3],w[3,3]] * x[2,w[1,4],w[2,4],w[3,4]]
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den <- ( x[1,w[1,1],w[2,1],w[3,1]] + 1 ) *

( x[2,w[1,2],w[2,2],w[3,2]] + 1 ) *

( x[2,w[1,3],w[2,3],w[3,3]] + 1 ) *

( x[1,w[1,4],w[2,4],w[3,4]] + 1 )

return(min(1,num/den))

}else{

num <- x[1,w[1,1],w[2,1],w[3,1]] * x[2,w[1,2],w[2,2],w[3,2]] *

x[2,w[1,3],w[2,3],w[3,3]] * x[1,w[1,4],w[2,4],w[3,4]]

den <- ( x[2,w[1,1],w[2,1],w[3,1]] + 1 ) *

( x[1,w[1,2],w[2,2],w[3,2]] + 1 ) *

( x[1,w[1,3],w[2,3],w[3,3]] + 1 ) *

( x[2,w[1,4],w[2,4],w[3,4]] + 1 )

return(min(1,num/den))

}

}

#############################################################

mcmc.sampling <- function(x, sim, extra.var, a=A, B=b) {

# computaion of likelihood ratio (LR) test statistics from a single Markov chain

# input : a starting contingency table, number of simulations/moves to run,

# the factor not part of H0

# output : a vector of LR test statistics which converges to true distribution under certain assumptions

# First, permute the matrix to maintain the sufficient statistic when performing an MCMC move

if (extra.var == 3)

x3 <- aperm(x,c(1,2,3,4))

else if (extra.var == 2)

x3 <- aperm(x,c(1,2,4,3))

else

x3 <- aperm(x,c(1,3,4,2))

d3 <- dim(x3)

tab <- idata(x3, d3, extra.var)

names = colnames(tab)

markov.chain <- rep(NA,sim) #initialize a vector to store the test statistics

#Run the MCMC simulation

for ( i in 1:sim ){

# generating a move

w <- deg4move(d3)

# z : move

z <- w[[1]]

y <- x3 + z

# cell : nonzero cells

cell <- w[[2]]

#MH procedure

if(min(y) >= 0){

r <- accept.ratio(cell,z,x3)

if(runif(1)<r){

x3 <- y

}

}

#optional check of sufficient statistic maintained
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# if (extra.var == 3)

# print( sum(B - a %*% aperm(x3,c(2,3,4,1))) ) #check the sufficient statistic statisfied

# else if (extra.var == 2)

# print( sum(B - a %*% aperm(x3,c(2,4,3,1))) ) #check the sufficient statistic statisfied

# else

# print( sum(B - a %*% aperm(x3,c(4,2,3,1))) ) #check the sufficient statistic statisfied

# Estimating logit models of H_1 and H_0 for accepted table

tab <- idata(x3, d3, extra.var)

# H_1 model

res1 <- glm(as.formula(paste("L ~ ", paste(names[2:4], collapse= "+"))),

family=binomial(link="logit"), data=tab)

# H_0 model

res0 <- glm(as.formula(paste("L ~ ", paste(names[2:3], collapse= "+"))),

family=binomial(link="logit"), data=tab)

markov.chain[i] <- res0$deviance - res1$deviance

}

return(markov.chain)

}

########### SIS ############

#We need the estimated MODE (based on MLE) for Triangle Sampling

modes <- function(res0, x){

vector.x = as.vector(aperm(x,c(2,3,4,1)))

fixed_observations = rowSums(matrix(vector.x, ncol=2))

n = length(vector.x)

row1 = rep(1,n/2)

row2 = rep(c(1,2),n/4)

row3 = rep(c(1,1,2,2,3,3),n/12)

row4 = rep(c(1,2,3,4), each=6)

newdata2 = data.frame( t(rbind(row1,row2,row3,row4)) )

colnames(newdata2) = c(’L’,’Y1’,’Y2’,’Y3’)

p.hat = predict(res0, newdata2, type="response")

mode1 = p.hat*fixed_observations

mode2 = fixed_observations - mode1

mle = as.vector(c(mode1,mode2))

return(mle)

}

#Sampling Step. Algorithm 3.7.4, Step 3c.

sampling <- function(Aprime,bprime,rand_col,method,mode=0){

#Using Rcplex LIBRARY for this algoritm

#Solve a problem of the form: min/max x_j s.t. Ax=b, x>=0

#create the objective function (min/max x1)

f.obj <- rep(0, dim(Aprime)[2])

f.obj[rand_col] <- 1

#the ’sense’ of the constraints are equality constraints

#the ’type’ of variables allowed are integers

#the value for the single variable in the objective function is the objective function

lower_bound <- Rcplex(cvec=f.obj, Amat=Aprime, bvec=bprime, Qmat=NULL,

lb=rep(0, dim(Aprime)[2]), ub=rep(Inf,dim(Aprime)[2]), objsense=c("min"), sense="E", vtype="I", n=1,

control=list(trace=0))$obj

lower_bound <- round(lower_bound,0) #simply ensuring bound is integer

upper_bound <- Rcplex(cvec=f.obj, Amat=Aprime, bvec=bprime, Qmat=NULL,

lb=rep(0,dim(Aprime)[2]), ub=rep(Inf,dim(Aprime)[2]), objsense=c("max"), sense="E", vtype="I", n=1,

control=list(trace=0))$obj

upper_bound <- round(upper_bound,0) #simply ensuring bound is integer
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if (method == ’uniform’){ #UNIFORM

if (is.na(lower_bound) | is.na(upper_bound)){

x_star <- 0 #hole

}else if (upper_bound < lower_bound){

x_star <- 0 #something went wrong

}else if (upper_bound == lower_bound){

x_star <- lower_bound

}else{

x_star <- sample(seq(lower_bound,upper_bound,1),1)

}

}else if (method == ’hyper’){ #HYPERGEOMETRIC

if (is.na(lower_bound) | is.na(upper_bound)){

x_star <- 0 #hole

}else if (upper_bound < lower_bound){

x_star <- 0 #something went wrong

}else if (upper_bound == lower_bound){

x_star <- lower_bound

}else{

x_star <- rhyper(1,m=upper_bound,n=upper_bound,k=lower_bound+upper_bound)

}

}else{

if (is.na(lower_bound) | is.na(upper_bound)){ #TRIANGLE

x_star <- 0 #hole

}else if (upper_bound < lower_bound){

x_star <- 0 #something went wrong

}else if (upper_bound == lower_bound){

x_star <- lower_bound

}else if (mode < lower_bound){

lower <- round(mode,0) #round mode to nearest integer

x_star <- round(rtriangle(1, lower-.5, upper_bound+.49, lower-.5), 0)

x_star <- max(x_star,lower_bound) #x_star cannot be less than lower bound

}else if (mode > upper_bound){

upper <- round(mode,0)

x_star <- round( rtriangle(1, lower_bound-.5,upper+.49, upper+.49), 0)

x_star <- min(upper_bound, x_star) #x_star cannot be more than upper bound

} else {

x_star <- round( rtriangle(1,lower_bound-.5,upper_bound+.49, mode), 0)

}

}

return(x_star)

}

#Matrix reduction step. Algorithm 3.7.3. Step 3e of Algorithm 3.7.4.

matrix_reduction <- function(Aprime,bprime,x_star,rand_col){

A1 <- Aprime[,rand_col] #A1 is the randomly chosen column A

Aprime <- Aprime[,-rand_col] #Aprime are the remaining columns

bprime <- bprime - A1*x_star

#print(bprime)

output <- list(Aprime, bprime)

return(output) #return Aprime and bprime

}

#SIS generation. Algorithm 3.7.4.

#Input: Lawrence Lifting Matrix A, sufficient statistic b, sampling method,

# randomly (or sequentially) select columns, the mode for triangle sampling

SIS <- function(A, b, method, random=TRUE, mle=0) {

mode = 0 #initialize mode to 0

m <- nrow(A)

n <- ncol(A) #dim(A)[2] #the number of xs we solve for

#create a vector to store the solution (x)

y <- rep(NA, n)

used_columns <- rep(0,n)
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Aprime <- A #initialize Aprime

bprime <- b #initialize brime

for (i in 1:(n-1)){

if(random==TRUE)

rand_col = sample(dim(Aprime)[2],1) #used for random column selection

else

rand_col = 1 #always choose the first column for sequential sampling

true_col = which(used_columns == 0)[rand_col]

used_columns[true_col] = 1

if (method==’triangle’)

mode = mle[rand_col]

x_star <- sampling(Aprime,bprime,rand_col,method,mode)

y[true_col] <- x_star

#Update new A matrix and b

output <- matrix_reduction(Aprime,bprime,x_star,rand_col)

Aprime <- output[[1]]

bprime <- output[[2]]

}

#for i = n (the last cell)

Aprime <- matrix(Aprime)

rand_col = sample(dim(Aprime)[2],1)

true_col = which(used_columns == 0)[rand_col]

used_columns[true_col] = 1

if (method==’triangle’)

mode = mle[rand_col]

x_star <- sampling(Aprime,bprime,rand_col,method,mode)

y[true_col] <- x_star

return(y)

}

#######################################

###### SIS and MCMC Hybrid #####

#Thinning and burn-in

#Step 2c-d of Algorithm 3.9.1

thinning = function(LR.matrix,B,sim,Q,k){

m = B + 1

LR2 = matrix(NA, nrow=(sim-B)/Q, ncol=k)

i = 1

while (m <= sim){

LR2[i,] = LR.matrix[m,]

m = m + Q

i = i + 1

}

return(LR2)

}

#Algorithm 3.9.1

sis.mcmc.hybrid = function(s, v, extra.var, method, random, sim=100, k=10, B=0, Q=20, T){

start_time <- Sys.time() #Used for timing runtime

rejections = 0 #start the rejection counter

LR.matrix <- matrix(NA, nrow=sim, ncol=k) #set up a matrix to store likelihood ratios, each column is Markov chain

x <- build.array(s,v,T)
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d <- dim(x)

if (extra.var == 3){

x2 <- aperm(x,c(1,2,3,4))

d2 <- dim(x2)

}else if (extra.var == 2){

x2 <- aperm(x,c(1,2,4,3))

d2 <- dim(x2)

}else{

x2 <- aperm(x,c(1,3,4,2))

d2 <- dim(x2)

}

tab <- idata(x2, d2, extra.var)

names = colnames(tab)

# H_1 model

res1 <- glm(as.formula(paste("L ~ ", paste(names[2:4], collapse= "+"))),

family=binomial(link="logit"), data=tab)

# H_0 model

res0 <- glm(as.formula(paste("L ~ ", paste(names[2:3], collapse= "+"))),

family=binomial(link="logit"), data=tab)

test.statistic <- res0$deviance - res1$deviance

print(paste("Test Statistic: ", test.statistic))

#create Lawrence Lifting matrix

A.2 = create.configuration(d[2])

A.3 = create.configuration(d[3])

A.4 = create.configuration(d[4])

A <- lawrence.lift(A.4,A.3,A.2)

output <- sufficient.statistic(A,x,extra.var)

A <- output[[1]]

b <- output [[2]] #sufficient statistic

print(paste("First 3 elements of sufficient statistic: ", b[1:3]))

if (method==’triangle’)

mle = modes(res0,x)

else

mle = 0

#Generate k independent SIS starting points (trials)

for (trial in 1:k) {

success <- FALSE #Start with not satisfying sufficient statistic

while(!success) {

y <- SIS(A,b,method,random,mle)

check_sum <- sum( abs(b - A %*% y) )

if (check_sum < 1) {

success <- TRUE #Independent SIS starting point generated!

print(c(’SIS trial’,trial)) #Status print message

xx <- array(y, c(2,3,4,2)) #Put into correct dimensions

xx <- aperm(xx,c(4,1,2,3)) #and permute

} else { #ELSE you found a HOLE

rejections = rejections + 1 #increment rejection counter

}

}

LR.matrix[,trial] <- mcmc.sampling(xx, sim, extra.var,A,b)

}

thinned.matrix <- thinning(LR.matrix,B,sim,Q,k)

end_time <- Sys.time()

run_time <- end_time - start_time

output = list(test.statistic, thinned.matrix, rejections, run_time)

return(output)

}
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########### MAIN ############

#INPUT PARAMETERS

s = 2

v = 2

extra.var = 2

method = ’uniform’

random = TRUE

sim = 4400 #number of MCMC runs

k = 100 #number of independent SIS tables

B <- 200 #burn-in

Q <- 20 #thinning interval

trial.1.1.1.u = sis.mcmc.hybrid(1, 1, 1, ’uniform’, random, sim, k, B, Q, T)

trial.1.1.1.h = sis.mcmc.hybrid(1, 1, 1, ’hyper’, random, sim, k, B, Q, T)

trial.1.1.1.t = sis.mcmc.hybrid(1, 1, 1, ’triangle’, random, sim, k, B, Q, T)

trial.1.1.2.u = sis.mcmc.hybrid(1, 1, 2, ’uniform’, random, sim, k, B, Q, T)

trial.1.1.2.h = sis.mcmc.hybrid(1, 1, 2, ’hyper’, random, sim, k, B, Q, T)

trial.1.1.2.t = sis.mcmc.hybrid(1, 1, 2, ’triangle’, random, sim, k, B, Q, T)

trial.1.1.3.u = sis.mcmc.hybrid(1, 1, 3, ’uniform’, random, sim, k, B, Q, T)

trial.1.1.3.h = sis.mcmc.hybrid(1, 1, 3, ’hyper’, random, sim, k, B, Q, T)

trial.1.1.3.t = sis.mcmc.hybrid(1, 1, 3, ’triangle’, random, sim, k, B, Q, T)

trial.1.2.1.u = sis.mcmc.hybrid(1, 2, 1, ’uniform’, random, sim, k, B, Q, T)

trial.1.2.1.h = sis.mcmc.hybrid(1, 2, 1, ’hyper’, random, sim, k, B, Q, T)

trial.1.2.1.t = sis.mcmc.hybrid(1, 2, 1, ’triangle’, random, sim, k, B, Q, T)

trial.1.2.2.u = sis.mcmc.hybrid(1, 2, 2, ’uniform’, random, sim, k, B, Q, T)

trial.1.2.2.h = sis.mcmc.hybrid(1, 2, 2, ’hyper’, random, sim, k, B, Q, T)

trial.1.2.2.t = sis.mcmc.hybrid(1, 2, 2, ’triangle’, random, sim, k, B, Q, T)

trial.1.2.3.u = sis.mcmc.hybrid(1, 2, 3, ’uniform’, random, sim, k, B, Q, T)

trial.1.2.3.h = sis.mcmc.hybrid(1, 2, 3, ’hyper’, random, sim, k, B, Q, T)

trial.1.2.3.t = sis.mcmc.hybrid(1, 2, 3, ’triangle’, random, sim, k, B, Q, T)

trial.1.3.1.u = sis.mcmc.hybrid(1, 3, 1, ’uniform’, random, sim, k, B, Q, T)

trial.1.3.1.h = sis.mcmc.hybrid(1, 3, 1, ’hyper’, random, sim, k, B, Q, T)

trial.1.3.1.t = sis.mcmc.hybrid(1, 3, 1, ’triangle’, random, sim, k, B, Q, T)

trial.1.3.2.u = sis.mcmc.hybrid(1, 3, 2, ’uniform’, random, sim, k, B, Q, T)

trial.1.3.2.h = sis.mcmc.hybrid(1, 3, 2, ’hyper’, random, sim, k, B, Q, T)

trial.1.3.2.t = sis.mcmc.hybrid(1, 3, 2, ’triangle’, random, sim, k, B, Q, T)

trial.1.3.3.u = sis.mcmc.hybrid(1, 3, 3, ’uniform’, random, sim, k, B, Q, T)

trial.1.3.3.h = sis.mcmc.hybrid(1, 3, 3, ’hyper’, random, sim, k, B, Q, T)

trial.1.3.3.t = sis.mcmc.hybrid(1, 3, 3, ’triangle’, random, sim, k, B, Q, T)

trial.2.1.1.u = sis.mcmc.hybrid(2, 1, 1, ’uniform’, random, sim, k, B, Q, T)

trial.2.1.1.h = sis.mcmc.hybrid(2, 1, 1, ’hyper’, random, sim, k, B, Q, T)

trial.2.1.1.t = sis.mcmc.hybrid(2, 1, 1, ’triangle’, random, sim, k, B, Q, T)

trial.2.1.2.u = sis.mcmc.hybrid(2, 1, 2, ’uniform’, random, sim, k, B, Q, T)

trial.2.1.2.h = sis.mcmc.hybrid(2, 1, 2, ’hyper’, random, sim, k, B, Q, T)

trial.2.1.2.t = sis.mcmc.hybrid(2, 1, 2, ’triangle’, random, sim, k, B, Q, T)

trial.2.1.3.u = sis.mcmc.hybrid(2, 1, 3, ’uniform’, random, sim, k, B, Q, T)

trial.2.1.3.h = sis.mcmc.hybrid(2, 1, 3, ’hyper’, random, sim, k, B, Q, T)

trial.2.1.3.t = sis.mcmc.hybrid(2, 1, 3, ’triangle’, random, sim, k, B, Q, T)
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trial.2.2.1.u = sis.mcmc.hybrid(2, 2, 1, ’uniform’, random, sim, k, B, Q, T)

trial.2.2.1.h = sis.mcmc.hybrid(2, 2, 1, ’hyper’, random, sim, k, B, Q, T)

trial.2.2.1.t = sis.mcmc.hybrid(2, 2, 1, ’triangle’, random, sim, k, B, Q, T)

trial.2.2.2.u = sis.mcmc.hybrid(2, 2, 2, ’uniform’, random, sim, k, B, Q, T)

trial.2.2.2.h = sis.mcmc.hybrid(2, 2, 2, ’hyper’, random, sim, k, B, Q, T)

trial.2.2.2.t = sis.mcmc.hybrid(2, 2, 2, ’triangle’, random, sim, k, B, Q, T)

trial.2.2.3.u = sis.mcmc.hybrid(2, 2, 3, ’uniform’, random, sim, k, B, Q, T)

trial.2.2.3.h = sis.mcmc.hybrid(2, 2, 3, ’hyper’, random, sim, k, B, Q, T)

trial.2.2.3.t = sis.mcmc.hybrid(2, 2, 3, ’triangle’, random, sim, k, B, Q, T)

trial.2.3.1.u = sis.mcmc.hybrid(2, 3, 1, ’uniform’, random, sim, k, B, Q, T)

trial.2.3.1.h = sis.mcmc.hybrid(2, 3, 1, ’hyper’, random, sim, k, B, Q, T)

trial.2.3.1.t = sis.mcmc.hybrid(2, 3, 1, ’triangle’, random, sim, k, B, Q, T)

trial.2.3.2.u = sis.mcmc.hybrid(2, 3, 2, ’uniform’, random, sim, k, B, Q, T)

trial.2.3.2.h = sis.mcmc.hybrid(2, 3, 2, ’hyper’, random, sim, k, B, Q, T)

trial.2.3.2.t = sis.mcmc.hybrid(2, 3, 2, ’triangle’, random, sim, k, B, Q, T)

trial.2.3.3.u = sis.mcmc.hybrid(2, 3, 3, ’uniform’, random, sim, k, B, Q, T)

trial.2.3.3.h = sis.mcmc.hybrid(2, 3, 3, ’hyper’, random, sim, k, B, Q, T)

trial.2.3.3.t = sis.mcmc.hybrid(2, 3, 3, ’triangle’, random, sim, k, B, Q, T)

trial.3.1.1.u = sis.mcmc.hybrid(3, 1, 1, ’uniform’, random, sim, k, B, Q, T)

trial.3.1.1.h = sis.mcmc.hybrid(3, 1, 1, ’hyper’, random, sim, k, B, Q, T)

trial.3.1.1.t = sis.mcmc.hybrid(3, 1, 1, ’triangle’, random, sim, k, B, Q, T)

trial.3.1.2.u = sis.mcmc.hybrid(3, 1, 2, ’uniform’, random, sim, k, B, Q, T)

trial.3.1.2.h = sis.mcmc.hybrid(3, 1, 2, ’hyper’, random, sim, k, B, Q, T)

trial.3.1.2.t = sis.mcmc.hybrid(3, 1, 2, ’triangle’, random, sim, k, B, Q, T)

trial.3.1.3.u = sis.mcmc.hybrid(3, 1, 3, ’uniform’, random, sim, k, B, Q, T)

trial.3.1.3.h = sis.mcmc.hybrid(3, 1, 3, ’hyper’, random, sim, k, B, Q, T)

trial.3.1.3.t = sis.mcmc.hybrid(3, 1, 3, ’triangle’, random, sim, k, B, Q, T)

trial.3.2.1.u = sis.mcmc.hybrid(3, 2, 1, ’uniform’, random, sim, k, B, Q, T)

trial.3.2.1.h = sis.mcmc.hybrid(3, 2, 1, ’hyper’, random, sim, k, B, Q, T)

trial.3.2.1.t = sis.mcmc.hybrid(3, 2, 1, ’triangle’, random, sim, k, B, Q, T)

trial.3.2.2.u = sis.mcmc.hybrid(3, 2, 2, ’uniform’, random, sim, k, B, Q, T)

trial.3.2.2.h = sis.mcmc.hybrid(3, 2, 2, ’hyper’, random, sim, k, B, Q, T)

trial.3.2.2.t = sis.mcmc.hybrid(3, 2, 2, ’triangle’, random, sim, k, B, Q, T)

trial.3.2.3.u = sis.mcmc.hybrid(3, 2, 3, ’uniform’, random, sim, k, B, Q, T)

trial.3.2.3.h = sis.mcmc.hybrid(3, 2, 3, ’hyper’, random, sim, k, B, Q, T)

trial.3.2.3.t = sis.mcmc.hybrid(3, 2, 3, ’triangle’, random, sim, k, B, Q, T)

trial.3.3.1.u = sis.mcmc.hybrid(3, 3, 1, ’uniform’, random, sim, k, B, Q, T)

trial.3.3.1.h = sis.mcmc.hybrid(3, 3, 1, ’hyper’, random, sim, k, B, Q, T)

trial.3.3.1.t = sis.mcmc.hybrid(3, 3, 1, ’triangle’, random, sim, k, B, Q, T)

trial.3.3.2.u = sis.mcmc.hybrid(3, 3, 2, ’uniform’, random, sim, k, B, Q, T)

trial.3.3.2.h = sis.mcmc.hybrid(3, 3, 2, ’hyper’, random, sim, k, B, Q, T)

trial.3.3.2.t = sis.mcmc.hybrid(3, 3, 2, ’triangle’, random, sim, k, B, Q, T)

trial.3.3.3.u = sis.mcmc.hybrid(3, 3, 3, ’uniform’, random, sim, k, B, Q, T)

trial.3.3.3.h = sis.mcmc.hybrid(3, 3, 3, ’hyper’, random, sim, k, B, Q, T)

trial.3.3.3.t = sis.mcmc.hybrid(3, 3, 3, ’triangle’, random, sim, k, B, Q, T)
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Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California
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