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ABSTRACT 

The Synthetic Theater Operations Research Model (STORM) is a stochastic 

campaign-level simulation model used by the Department of Defense to provide insight 

into military strategy, capabilities, and campaign analysis. Recent enhancements to 

STORM incorporate several energy-related features and logistical considerations.  The 

primary focus of this research was to assess and explore the energy-related enhancements 

to STORM (known as STORM-E) using data farming. That is, embedding STORM-E in 

an environment using sophisticated designs of experiments and a computing cluster 

allows researchers to get faster and more comprehensive results.  This research assists in 

model verification and validation efforts by examining the impact of a large number of 

STORM-E energy-related inputs on multiple model responses. A total of 1,700 

campaigns were simulated using an efficient design of experiments. By using an efficient 

design and a computing cluster, the time to complete the simulations was reduced from 

an estimated 12,000 years to 121 hours.  The new energy features have been shown 

to impact both logistic and mission-oriented measures in intuitive ways, thus 

enhancing our confidence in STORM-E’s new energy features. 
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EXECUTIVE SUMMARY 

Today, military decision makers within the Department of Defense (DOD) must 

make investment and strategy decisions regarding force structure and weapon system 

capabilities for the forces of tomorrow. The problem, however, is that these decisions must 

be made with a limited budget and limited information regarding the future strategic 

environment. Furthermore, the development of new technologies takes years, sometimes 

decades, before it reaches initial operational capability. Given these long lead times, a strict 

budget, and the uncertainty of the future global environment, analysts utilize tools such as 

campaign analysis to quantitatively explore scenarios to determine what factors and 

complex interactions have the most significant effect on future outcomes.  

Synthetic Theater Operations Research Model (STORM) is a multi-sided, 

stochastic campaign-level computer simulation that covers military operations across all 

domains (Group W, 2017a). Recently, the Marine Corps Expeditionary Energy Office 

(E2O) sponsored several enhancements to STORM that incorporate multiple new energy-

related features and logistical considerations. These enhancements include (1) the 

conditional arrival of fuel storage containers; (2) the representation of dynamically-laid 

fuel pipelines; (3)  naval bases to act as supply issuers in the logistics model; (4) the ability 

to model the fuel consumption of surface transportation vehicles; and (5) the degradation 

of ground unit movement due to fuel shortages (Group W, 2017d).  

The focus of this research is to assess and explore the energy-related enhancements 

of STORM (known as STORM-E or version 2.7), specifically the aforementioned items 

(4) and (5). This research also assists in model verification and validation efforts by 

examining the impact of a large number of STORM-E energy-related inputs on multiple 

model responses. This thesis explores the recent energy-related enhancements made to 

STORM using data farming. That is, STORM-E is imbedded in an environment that allows 

running sophisticated designs of experiments on a computing cluster. This allows us to run 

a large number of STORM-E experiments while simultaneously efficiently varying many 

input variables. We use this capability to test and verify various new features E2O added 
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to STORM. As part of the data farming assessment, we explore modifications to the 

existing STORM-E scenario PUNIC 21 to seek new insights. 

PUNIC 21 is a naval and ground battle between two opponents. These are the allied 

nations (Blue forces) of the Anglo Republic and Carthage (ARC), and the Red forces of 

the Swiss Empire (SWEMP) (Bickel, 2014). The scenario is broken into four battle phases: 

Battle of the Atlantic, Battle of the Mediterranean, Fight for Spain, and Fight for Italy 

(Group W, 2012). The duration of the engagement is 20 days, incorporating surface, air, 

and ground engagements in each phase of the battle. In the PUNIC 21 scenario, both sides 

possess roughly equal military strengths. Both military forces contain air, land, sea, and 

logistical elements with roughly the same force structures. While smaller than some of the 

scenarios OPNAV N81 uses, PUNIC 21 contains hundreds of objects that require 

thousands of inputs to specify their capabilities and behaviors. 

Experimental design has been used to conduct research studies in a variety of fields 

throughout history. With the technological breakthroughs in computing power, the 

development of high-dimensional computational models, and the amount of data available, 

decision makers are turning to experimental design in order to conduct experiments within 

these complicated and complex simulation models in a timely matter. Data farming enables 

researchers to conduct many more experiments, such as simulated battles, in much less 

time (Kleijnen et al., 2005). It also allows them to vary a large number of inputs, such as 

force sizes, weapon capabilities, environmental conditions, concepts of operations 

(CONOPS), etc., in efficient ways. This enables researchers to determine the relationships 

among multiple outputs (probability of mission success, length of battle, etc.) in relation to 

the inputs that were varied (Lucas, 2017). A good design needs to be space-filling, that is, 

the design points should be scattered throughout the experimental region (Cioppa & Lucas, 

2007). On the SEED Center website (see http://harvest.nps.edu), there exists a catalog of 

good space-filling and nearly orthogonal Latin-hypercube (NOLH) designs that allow 

experimenters to alter up to 29 factors and create a NOLH design in the units of the 

problem. For this research, a NOLH design was used to allow for the experimental change 

of seven factors. 

http://harvest.nps.edu/
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The selection of the variables for this study was relatively easy. Given the recent 

nature of the upgrades, the STORM developers have only included a few of the energy 

upgrades into the PUNIC 21 scenario. Prior to STORM version 2.7, when the ground units 

requested fuel, it was provided to them immediately, regardless of which type of supply 

vehicle was needed to provide it. In version 2.7, the supply vehicles can now be constrained 

by their fuel consumption (miles per gallon), their amount of fuel capacity (in tons), and 

by the number of supply vehicles in each supply convoy. As one can imagine, if a supply 

truck or train has a very high fuel consumption rate, it may not have enough fuel to reach 

the ground units, depending on the distance. In addition to these constraints, the analyst 

can now choose to allow supply vehicles the ability to resupply at alternate fuel sources or 

whether they must return to the logistic source node. To clarify, these variables were 

chosen because they are the only ones that are linked within the PUNIC 21 scenario.  

The following is a summary of our findings: 

• We used an advanced DOE to efficiently explore multiple energy factors

in 1,700 simulated campaigns with the STORMFarmer software.

• This research proves the ability to efficiently explore new STORM energy

features. By using an efficient design and a computing cluster, it took 121

hours to simulate the 1700 campaigns. Using a brute force full factorial

design and a single processor would have required nearly 12,000 years.

STORM analysts can use this new capability to provide faster and more

comprehensive studies.

• New STORM energy features have been shown to impact both logistic

and mission-oriented measures in intuitive ways. This provides enhanced

confidence in STORM 2.7’s verification.

• In Punic 21, changes in logistic factors lead to an increase in variability

across all of our metrics of interest.

Next steps: The new STORM energy features are ready for more extensive testing 

on an existing real-world classified scenario. 
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I. INTRODUCTION 

A. BACKGROUND 

Today, military decision makers within the Department of Defense (DOD) must 

make investment and strategy decisions regarding force structure and weapon system 

capabilities for the forces of tomorrow. The problem, however, is that these decisions must 

be made with a limited budget and limited information regarding the future strategic 

environment. Furthermore, the development of new technologies takes years, sometimes 

decades, before it reaches initial operational capability. Given these long lead times, a strict 

budget, and the uncertainty of the future global environment, analysts utilize tools such as 

campaign analysis to quantitatively explore scenarios to determine what factors and 

complex interactions have the most significant effect on future outcomes. Campaign 

analysis provides a baseline for comparative analysis of future weapon systems and 

platforms, where campaign outcomes can be credited to differences in model parameters 

or the concept of operations (Kline, Hughes, & Otte, 2011). 

An organization responsible for providing senior Navy and DOD decision makers 

with analytic support is the Office of the Chief of Naval Operations, Assessments Division 

(OPNAV N81). OPNAV N81 utilizes the Synthetic Theater Operations Research Model 

(STORM) to analyze and explore concepts of operations, new technologies and 

capabilities, and readiness levels using campaign analysis. STORM is a multi-sided, 

stochastic campaign-level computer simulation that covers military operations across all 

domains (Group W, 2017a). Recently, the Marine Corps Expeditionary Energy Office 

(E2O) sponsored several enhancements to STORM that incorporate multiple new energy-

related features and logistical considerations. These enhancements include (1) the 

conditional arrival of fuel storage containers; (2) the representation of dynamically-laid 

fuel pipelines; (3) naval bases to act as supply issuers in the logistics model; (4) the ability 

to model the fuel consumption of surface transportation vehicles; and (5) the degradation 

of ground unit movement due to fuel shortages (Group W, 2017d).  
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The primary focus of this research is to assess and explore the energy-related 

enhancements of STORM (known as STORM-E or STORM 2.7), specifically the 

aforementioned items (4) and (5). This research also assists in model verification and 

validation efforts by examining the impact of a large number of STORM-E energy-related 

inputs on multiple model responses. In addition, exploring these energy-related 

modifications in an existing STORM-E scenario (named PUNIC 21) may help us gain new 

insights on the value of including energy features in a campaign model. 

B. RESEARCH QUESTIONS 

The primary goal of this thesis is to determine whether the recently added STORM-

E energy-related factors affect the campaign outcome of the unclassified, pre-installed 

PUNIC 21 scenario. As a result, this research is guided by the following questions: 

1. Do the energy-related enhancements incorporated into the STORM-E 

model work as intended? 

2. Are there certain conditions or logistical constraints that cause the 

simulation to crash? 

3. Do the model runs give invalid results under certain conditions? 

4. Is the model particularly sensitive to certain inputs or parameters, or 

parameter combinations? 

5. Another goal is to explore the questions on a real-world, classified 

scenario. 

C. METHODOLOGY 

This thesis explores the recent energy-related enhancements made to STORM using 

data farming. That is, STORM-E is imbedded in an environment that allows running 

sophisticated designs of experiments on a computing cluster. This allows us to run a large 

number of STORM-E experiments while simultaneously efficiently varying many input 

variables. We use this capability to test and verify various new features E2O added to 

STORM. As part of the data farming assessment, we explore modifications to the existing 
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STORM-E scenario PUNIC 21 to seek new insights. Following the assessment, we may be 

interested in a search for solutions (campaign strategies and tactics) that are robust to 

sources of uncertainty related to energy resources and logistics. 

D. BENEFITS OF STUDY 

This research assists in model verification and validation efforts by examining the 

impacts of a large number of STORM-E energy-related inputs on multiple model responses. 

This effort also identifies aspects of STORM-E that need improvement and/or provides 

expanded confidence in STORM-E’s ability to produce valuable campaign-level insights. 

Additionally, a comprehensive model assessment of the energy-related features in STORM-

E is conducted using the findings from our data farming experiments. This provides valuable 

energy-related insight to the campaign analysis process conducted by the DoD.  

E. LITERATURE REVIEW 

The primary sources of research for this thesis are scholarly articles and STORM 

user manuals, which serve as a reference for conducting a design of experiments within the 

STORM simulation model.  

The User’s Manual is a practical guide for running the model and was created for 

the STORM end user (Group W, 2017a). Along with providing operating instructions the 

user can use while interacting with STORM, it presents various input tools and output tools 

that the user can implement while running different designs. The Analyst’s Manual was 

created for individuals who employ the simulation as a campaign-level tool in order to 

produce reasonable and credible results for top-level decision makers (Group W, 2017b). 

It is organized to provide analytical modeling and simulation discussion across a range of 

experience levels depending on the knowledge the user requires. The Programmer’s 

Manual is by far the most technical of the STORM manuals and offers guidance to those 

individuals who are concerned about developing or designing source code (Group W, 

2017c). The newest version of STORM provides many new features, specifically energy-

related enhancements. These and many other upgrades are described in detail within the 

“What’s New in Version 2.7” document which serves as an add-on to the previously 

mentioned User’s Manual  (Group W, 2017d). 
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To gain an understanding of the usage and implementation of experimental design, 

this researcher consulted numerous documents created by members of the Simulation 

Experiments and Efficient Design (SEED) Center at the Naval Postgraduate School (NPS). 

In multiple journal articles, NPS Professors Thomas Lucas, Suzan Sanchez, and Thomas 

Cioppa have addressed the benefits of using a design of experiments (DOE) and their 

utilization to improve efficiency when learning from a simulation (Kleijnen et al., 2005). 

The utilization of a DOE and implementation within the STORM framework is based on 

the work of Lucas and Sanchez (Sanchez et al., 2012). Their research has been used on 

proof-of-concept theses and papers and provides the foundation for this thesis. (See 

http://harvest.nps.edu for more information). 

Additionally, several NPS master’s theses have utilized a design of experiments 

within the STORM framework. Bickel (2014) employed a small factorial experiment using 

STORM’s framework and built-in training scenario Punic 21 to provide N81 with a quick 

way to produce robust estimates for future force structure tradeoffs. Importantly, the 

process of running the design was automated and enabled parallel execution. Seymour 

(2014) sought “to evaluate the tradeoffs between the number of replications and the 

probability of coverage of associated confidence intervals.” His research allowed N81 to 

capitalize on STORM’s full potential depending on the decision-making time-line. 

Although most research used the training scenarios with the STORM framework, Morgan 

et al. (2017) mention a small proof-of-concept study, which utilized a classified scenario. 

Cobbs’ thesis (2018) built upon the work of Bickel (2014). Cobbs conducted a design of 

experiments with a more sophisticated and fully mature classified scenario. That scenario 

was previously used to inform analysts from N81’s staff about future resourcing decisions, 

whereas, Cobb’s research focused on command and control thresholds within the 

Campaign 2020 scenario.  

http://harvest.nps.edu/
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II. STORM OVERVIEW 

This chapter provides the reader with a high-level description of STORM and 

describes some of its key features. This chapter only addresses critical features in STORM 

that are essential to this research. For a more in-depth review of STORM, the reader should 

review the reference materials mentioned in the literature review section. Lastly, this 

chapter provides a description of the Punic 21 scenario, including the force structures, 

objectives, and mission parameters of the two sides involved.  

A. OVERVIEW OF STORM 

STORM is a multi-dimensional stochastic computer simulation of joint military 

operations across all domains; land, maritime, air, and space (Group W, 2017a). Originally 

created for the Air Force by the HQ USAF Studies, Analysis and Assessments Division 

(HQ USAF/A9), significant advancements in recent years, including upgrades to naval 

combat and expeditionary warfare capabilities, has led to the adoption of STORM by 

multiple services, specifically the United States Navy and Marine Corps. A Navy 

organization that utilizes STORM and provides analytic support to these services’ decision 

makers is the Office of the Chief of Naval Operations, Assessments Division (OPNAV 

N81). OPNAV N81 primarily utilizes STORM as a campaign analysis tool. It provides 

senior decision makers with reasonably quick answers to campaign-level questions 

regarding force structures, weapon system capabilities, and concepts of operations 

(CONOPS) in a joint warfighting context (Group W, 2017c). With this in mind, STORM 

is an extremely valuable asset to DoD policy makers—as well as to those in the acquisition 

and operational communities. 

B. KEY FEATURES OF STORM 

1. STORM’s Design 

Initially, STORM was designed as a simulation model that would allow a user to 

quickly and inexpensively change key features in a campaign-level, joint military operation 

to determine the effect those changes would have on simulated campaign outcomes. 



6 

Keeping that in mind, the developers designed STORM as a data-driven construct, meaning 

the user specifies the representations and entities involved in the simulation (Group W, 

2017b). The importance of the entities in STORM being data driven is that they can be 

easily changed by the user. This allows the user to easily respond to changes in 

requirements, technology, or funding that often arise when running complex simulations.  

Each STORM scenario is comprised of hundreds of input files. Each of these files 

contains information that when combined deal with all aspects of the scenario, such as the 

probability of a weapon system hit, resupply limits, environmental conditions, and 

concepts of operations (CONOPS), etc. (Group W, 2017b). This analyst’s research is 

conducted on a built-in STORM scenario, known as Punic 21. A detailed description of 

Punic 21 is provided later in this chapter.  

2. STORM-The User 

STORM contains many tools that are critical for conducting analysis. All of these 

tools can be found in STORM’s Studytool, which employs a Graphical User Interface 

(GUI) (see Figure 1). This gives the user a central application to access all the components 

needed to setup, execute, and visualize the results (Group W, 2017a). Each of these tools 

can be broken into three separate functional areas: input, execution, and output. As one can 

surmise, input refers to the input data files that are built in the user-generated scenario, 

known within STORM as a study. Each study contains the pertinent data files that are then 

pushed into STORM when a simulated run is executed. These can be easily retrieved under 

the study manager tab in STORM’s GUI (see Figure 1).  
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Figure 1.  STORM’s Studytool GUI. Source: Group W (2017a). 

In addition to the input functional area, the execution and output interfaces can also 

be quickly accessed through STORM’s GUI to complete simulation runs or to perform 

post-run analysis. Within the execution functional area, there are numerous customizable 

options, such as the amount of simulation runs the user wants to conduct or whether the 

user wants to compress the output files. The output functional area contains three user-

friendly tools that allow the user to view and analyze the results of a study (Group W, 

2017a). These are the Graph Tool, Map Tool, and the Report Tool. 

a. Graph Tool 

The Graph Tool is an application the user can use to organize and display the results 

of a study (Group W, 2017a). These results can be displayed in simple graphic form, 

typically bar graphs or line graphs, or in the form of data tables. These data tables can also 

be transferred to a separate statistical application, such as R or JMP, which allows the user 

to conduct a more thorough analysis of the output (see Figure 2).  
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Figure 2.  STORM’s Graph Tool interface. Source: Group W (2017a). 

b. Map Tool 

The Map Tool is an application that visually displays an illustration of user-chosen 

assets within a geographical representation (Group W, 2017a). The user can select any 

number of assets through field filters, such as air, ground, sea, etc., and then watch these 

assets interact as the campaign unfolds (see Figure 3). The user can also choose to view 

support and mobility assets such as supply trains or fuel trucks. Each run, however, must 

be completed prior to utilizing the Map Tool, as it does not work until the simulation has 

completed running. 
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Figure 3.  STORM’s Map Tool interface. Source: Group W (2017a). 

c. Report Tool 

The Report Tool application allows users to extract certain results from the data 

output into tabular form, such as a comma separated file (.csv) or hyper-text markup 

language (HTML) (Group W, 2017a). This differs from the graph tool because the user can 

pick specific aspects of the simulation to include in the file. For example, the user can pull 

out information on the number of supply vehicles, the daily fuel consumed by these 

vehicles, and which type of supply vehicle (road, rail, or sea) (see Figure 4). Although this 

is incredibly useful, each STORM simulation run generates hundreds of gigabytes of output 

data, which makes it difficult to identify useful information even with an experienced user. 
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Figure 4.  STORM’s Report Tool interface. Source: Group W 
(2017a). 

C. STORM–PUNIC 21 

STORM contains two unclassified scenarios that were designed to allow users to 

test, experience, and assess the various features of STORM’s functionality; WONA (War 

of Northern Aggression) and PUNIC 21. However, the recent energy enhancements in the 

current version of STORM have only been included within the PUNIC 21 scenario, and 

therefore, PUNIC 21 is the test scenario for this thesis. This section is designed to provide 

a brief overview of the PUNIC 21scenario. 

1. Current Situation and Phases of Battle 

PUNIC 21 is a naval and ground battle between two opponents. These are the allied 

nations (Blue forces) of the Anglo Republic and Carthage (ARC) and the Red forces of the 

Swiss Empire (SWEMP) (Bickel, 2014). The Swiss Empire is determined to seize control 

and make the entire Iberian Peninsula part of the empire, causing tensions to rise between 
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these nations (Group W, 2012). The scenario is broken into four battle phases: Battle of 

the Atlantic, Battle of the Mediterranean, Fight for Spain, and Fight for Italy (Group W, 

2012). The duration of the campaign is 20 days, incorporating numerous surface, air, and 

ground engagements in each phase of the battle. Figure 5 shows a geographic illustration 

of the occupied territories in the PUNIC 21 scenario. 

 

Figure 5.  Occupied territories in STORM’s PUNIC 21 scenario. 
Source: Group W (2012). 

2. Order of Battle 

In the PUNIC 21 scenario, both sides possess roughly equal military strengths. Both 

military forces contain air, land, sea, and logistical elements with roughly the same force 

structures. The maritime and air force structures for both the Blue and Red forces can be 

seen in Table 1 and Table 2, respectively. While smaller than some of the scenarios N81 

uses, PUNIC 21 contains hundreds of objects that require thousands of inputs to specify 

their capabilities and behaviors. 
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Table 1.   A list of the Blue and Red maritime forces for the PUNIC 21 
scenario. Source: Bickel (2014). 

 

Table 2.   A list of the Blue and Red Air Forces for the PUNIC 21 scenario. 
Source: Bickel (2014). 
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The current version of STORM, version 2.7, incorporates many of the energy-

enhanced features in the PUNIC 21 scenario, however, not all of them. In the scenario, 

only ground unit movement is affected by the logistical support, or lack thereof, provided 

to them. Therefore, this thesis concentrates on the ground units and their respective 

logistical support within the Battle for Spain and the Battle for Italy. Figure 8 and Figure 9 

illustrate the order of battle and the forces involved during each of those phases of the 

campaign, respectively.  

 

Figure 6.  Battle for Spain in STORM’s PUNIC 21 scenario. 
 Source: Group W (2012). 
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Figure 7.  Battle for Italy in STORM’s PUNIC 21 scenario. Source: 
Group W (2012). 
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III. DESIGN AND EXECUTION 

This chapter provides a general overview of the purpose and implementation of a 

design of experiments to study a simulated campaign. It also provides a detailed 

explanation of how to run data farming experiments within the STORM framework (Upton, 

2018). Lastly, it identifies the carefully chosen factors of interest and their range, or set (if 

categorical), of values we utilized when running the simulation experiments.  

A. DESIGN OF EXPERIMENTS OVERVIEW 

Experimental design has been used to conduct research studies in a variety of fields 

throughout history. With the technological breakthroughs in computing power, the 

development of high-dimensional computational models, decision makers are turning to 

experimental design in order to conduct experiments within these complicated and complex 

simulation models in a timely matter. Data farming enables researchers to conduct many 

more experiments, such as simulated battles, in much less time (Kleijnen et al., 2005). It 

also allows them to vary a large number of inputs, such as force sizes, weapon capabilities, 

environmental conditions, etc., in efficient ways. This enables researchers to determine the 

relationships among multiple outputs (probability of mission success, length of battle, etc.) 

in relation to the inputs that were varied (Lucas, 2017). A good design needs to be space-

filling, that is, the design points should be scattered throughout the experimental region 

(Cioppa & Lucas, 2007). On the SEED Center website (see http://harvest.nps.edu), there 

exists a catalogue of good space-filling and nearly orthogonal Latin-hypercube (NOLH) 

designs that allow you to alter up to 29 factors and output a NOLH design in the units of 

the problem. For researchers requiring more than 29 factors, they can use the mixed-integer 

programing approach of Hernandez et al. (2012) to generate their NOLH. Furthermore, 

MacCalman, Vieira, & Lucas (2017) details a method for generating Latin hypercubes that 

are nearly orthogonal for complete second order models. For this research, a NOLH design 

was used to allow for the experimental change of seven factors. If the reader would like 

more information regarding the efficient use of design of experiments, the SEED Center 

http://harvest.nps.edu/
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website (see http://harvest.nps.edu) contains many scholarly articles, papers, and projects 

with many practical applications in a variety of fields. 

B. VARIABLE SELECTION 

The selection of the variables for this study was relatively easy. Given the recent 

nature of the upgrades, the STORM developers have only included a few of the energy 

upgrades into the PUNIC 21 scenario. The energy-enhancements within the PUNIC 21 

scenario are illustrated in the ground portion of the scenario, meaning, that only the ground 

units are affected by the available fuel, or lack thereof. These energy upgrades are located 

in the logsystem.dat file within the STORM-E framework.  

The logsystem.dat file contains thousands of lines of code and hundreds of variables 

to specify for the simulation runs. Figure 8 shows a small portion of the logsystem.dat 

input. Since the ground units for both sides are the only attributes of the PUNIC 21 scenario 

that are affected by the fuel they receive, we decided to see how the amount of fuel they 

receive affects their ability to reach and/or accomplish their mission objectives. To do this, 

we decided to experiment with the supply vehicles responsible for providing the ground 

units with the fuel they demand.  

 

 

http://harvest.nps.edu/
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Figure 8.  Logsystem.dat input file from STORM 

Prior to STORM version 2.7, when the ground units requested fuel, it was provided 

to them immediately, regardless of which type of supply vehicle was needed to provide it. 

In version 2.7, the supply vehicles can now be constrained by their fuel consumption 

(gallons per hour), their amount of fuel capacity (in tons), and by the number of supply 

vehicles in each supply convoy. As you can imagine, if a supply truck or train has a very 

high fuel consumption rate, it may not have enough fuel to reach the ground units, 

depending on the distance. In addition to these constraints, the analyst can now choose to 

allow supply vehicles the ability to resupply at alternate fuel sources or whether they must 
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return to the logistic source node. To clarify, these variables were chosen because they are 

the only ones that are linked within the PUNIC 21 scenario. Table 3 provides a description 

of the factors we explore and their baseline values. For the purpose of this research, only 

the Blue force supply vehicle constraints were experimented with in the design matrix. 

Table 3.   Logistics factors and their baseline values. 

 
 

The factor ranges were chosen broadly for this research to increase the chances of 

observing an effect on the responses. For the number of supply trucks and trains in a 

convoy, the DOE uses a multiplier of 0.25 to 1.5, which is then multiplied to the baseline 

value. For example, 0.25 is multiplied by 200 supply trucks (the baseline value) to come 

to 50 supply trucks allowed in a convoy for that specific experiment. The other factor 

ranges are as follows: ConsumptionRoad: 1–8 gallons per hour; CapacityRoad: 2–10 tons; 

ConsumptionRail: 1–8 gallons per hour; CapacityRail: 10–30 tons. The 

Allow_Alternate_Fuel_Source categorical variable is set to ‘Yes’ for half of the 

experiments and ‘No’ for the other half of the experiments.  
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1. Design Matrix 

The Excel spreadsheet that was used to generate the design matrix is from the SEED 

Center website (see http://harvest.nps.edu). This spreadsheet allows the research to vary up 

to 29 factors while still achieving orthogonality or near-orthogonality. A design matrix is 

considered nearly orthogonal if all of the absolute values of the pairwise correlations 

between the columns are less than or equal to 0.05. This minimizes the effects of multi-

collinearity. In general, the larger the number of factors selected for experimentation, the 

greater the number of design points needed to achieve near-orthogonality. This study uses 

the smallest design (up to seven factors) as it is a balance between the computational 

resources needed to run the design and the space-filling attributes desired. With seven 

factors, we use 34 design points, a 17 design point NOLH crossed with a two-level factor, 

each one representing a separate experiment, to achieve near-orthogonality (See Figure 9 

below).  

http://harvest.nps.edu/
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Figure 9.  A matrix of the simulation input values generated by the 
NOLH design. 

Prior to conducting the experiment, the analyst needs to verify that the design’s 

characteristics are suitable. Figure 10 below is an output from JMP’s multivariate function. 

This function displays the correlation and scatterplot matrices, which are used to verify that 

the NOLH excel spreadsheet worked as desired. The top half of the figure shows the 

correlation matrix. A correlation of zero indicates that the factors are independent and 

orthogonal (when centered) to each other, which is the best-case scenario. A low 

correlation between the factors indicates that there is a very low amount of confounding 
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(i.e., co-linearity) occurring with the analysis results. As one can see in the correlation 

matrix, the strongest correlation value is 0.0067, which indicates a very small amount of 

co-linearity exists. Additionally, low correlation reduces the error in coefficient estimates 

in regression models, and isolates the impact of factors associated with the coefficient. The 

lower half of Figure 10 is the scatterplot matrix. The scatterplot matrix illustrates how well 

the design points sample the design space. It does this by plotting each design point onto 

two-dimensional subplots for each pair of factors. The analyst can then see in the 

illustration how space-filling this design appears to be. As one can see in the figure, the 

design points seem to cover the design space as intended. Therefore, the NOLH design 

functions as desired. 
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Figure 10.  Correlation and scatterplot matrices of the design matrix. 
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2. Implementing Data Farming in STORM 

This section provides the reader with a general overview of implementing data-

farming in the STORM framework. The overview below, i.e. the rest of this section, was 

provided by Stephen C. Upton, SEED Center for Data Farming (Upton, 2018). See the 

appendix for step-by-step instructions, R code and shell scripts we used to facilitate the 

data-farming process with STORM (Upton, 2018). 

In brief, the data farming process using STORM is as follows: 

1. Develop a base case scenario in STORM 

2. Create your design of experiments. This includes identifying the factors of 

interest, and their range, or set (if categorical), of values 

3. Create/edit one or more STORM templates. These are the STORM input 

files with inserted text to mark which input variables (factors) to change 

when STORM builds the Excursions 

4. Build the Excursions using STORM’s Experiment Manager (STORM 

calls these “Cases”) 

5. Run the individual Cases as separate STORM “studies” 

6. Post-process and analyze the output 

7. Repeat as desired 

Figure 11 gives a graphical depiction of the process. With a base case, a Run Matrix 

(your design of experiments), and the STORM templates, the STORM Experiment 

Manager is then used to build the Excursions. We then run those on one or more machines 

using the R doParallel package to execute one or more runs concurrently and manage the 

tasks. We then post-processed the output using the STORMMiner tool and other R scripts 

to put the output in a form that can be analyzed. The analyst then used JMP Pro 13 to 

perform the analyses, using regressions and partition trees among other methods, and to 
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create a variety of plots and visualizations. Note that the use of JMP is not required; any 

statistical analysis software package could be used. 

 

Figure 11.  Graphical depiction of the data farming process in 
STORM. Source: Upton (2018). 
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IV. ANALYSIS 

This section provides the reader with post-processing analysis of the results based 

on three chosen metrics of interest. The chosen metrics are not readily available from one 

of STORM’s output tools. Therefore, custom SQL query statements were required in order 

to extract the data we needed from the database. If the reader is interested in the SQL scripts 

used to extract the data, contact the NPS SEED Center (see http://harvest.nps.edu). For this 

research, the analyst used the statistical software program JMP Pro13 to conduct the 

analysis, however, any statistical software program would have sufficed. 

The primary statistical methods used to analyze our metrics are stepwise regression 

and partition trees. These allow the analyst to see the variability in the output and to 

determine which factors had the most impact on the various metrics chosen. Understanding 

the casual relationships between the factors and their interactions can lead the analyst to 

robust solutions, if they exist (Kleijnen et al., 2005). As noted by Kleijnen et al. (2005), 

robust solutions are often more desirable than optimal solutions when there are multiple 

sources of uncertainty. In addition to regression and partition trees, carefully chosen graphs 

and plots were also used to support the various observations. 

A. AVERAGE INVENTORY LEVELS 

When observing the average inventory levels across all resources, we wanted to see 

how allowing the supply vehicles to resupply at alternate sources, rather than their source 

nodes, would affect the various resource inventory levels during the campaign. When the 

factor Allow_Alt_Fuel_Source is no, supply vehicles must return to their originating node 

to resupply before venturing back out to meet demand. However, when 

Allow_Alt_Fuel_Source is yes, as the Blue ground forces move forward they can set up 

forward operating logistic nodes so that the supply vehicles can resupply at those forward 

nodes rather than returning to their source nodes to resupply. Figure 12 is a representation 

of the average inventory level for each resource and for each day during the campaign. The 

resource levels we are exploring are Ammo, Army POL (petroleum, oil, and lubricants), 

Dry Bulk, and Water. This data was collected by taking the average inventory level of all 

http://harvest.nps.edu/
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50 replications for each design point and then separating out each inventory level by day 

of the campaign. We also wanted to explore how allowing alternate sources of fuel would 

affect the resource levels. We then plotted those average resource levels for each day of 

the campaign and split on allow alternate sources of fuel data, yes or no, see Figure 12. The 

first item that jumps out is the amount of variability in the Army POL (green line) average 

resource level. The other resources have a small amount of variability, but not close to the 

extent that Army POL does. This indicates that as we move further into the campaign, the 

amount of fuel the ground units are using (Army POL) has much more variation than the 

other resources. This makes sense because the amount of fuel required by a ground unit 

will change depending on the amount of combat they see. As we move further into the 

campaign, the Blue forces are venturing deep into Red occupied territory. Depending on 

the route and the unit, some units will see more combat and require more fuel than other 

units, leading to variability in the Army POL resource levels. Knowing that Army POL is 

more variable could be useful when planning safety stocks.  

We also see in Figure 12 that there does not appear to be much of a difference in 

the inventory levels when we allow alternate sources of fuel. This was surprising because 

one would think that increasing the complexity of the logistics network would have an 

effect on the inventory resource levels. However, we do not see that in Figure 12. 
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Figure 12.  Average inventory level of each resource for each day of 
the campaign. 

The histogram in Figure 13 helps us see the variability in the average Army POL 

inventory level throughout the campaign. We can see that the average Army POL inventory 

level varies from 70% to 90% across the 34 design points. Furthermore, by selecting the 

left and right most columns we can see the factors that cause these extreme values. It 

appears that when the supply road vehicles (supply trucks) have a high consumption rate 

and a low capacity the inventory level of Army POL is roughly 70%. On the other hand, if 

the supply trucks have a low consumption rate and a high capacity, the Army POL 

inventory level reaches 90%. This makes sense because the supply vehicles would be able 

to meet more demand if they can stay on the road longer (low consumption rate) and carry 

more supplies (high capacity). 
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Figure 13.  Histogram of average Army POL inventory level. 

Next, we did a stepwise regression to see how well the factors we varied predicted 

the average inventory level of the Army POL, see Figure 14. As one can see, three of the 

terms (the factors ConsumpRoad and CapacityRoad, as well as their interaction) have a 

significant effect on the predicted inventory level of Army POL. A high RSquare value 

(0.96) indicates that our predictor variables fit the model extremely well. That is, 96% of 

the variance in the response is explained by the predictor variables. Additionally, the p-

values of three factors (ConsumpRoad, CapacityRoad, and their interaction) is less than 

0.001, which means they are statistically significant to the model. In the top part of Figure 

14, we see the factors that have the most impact on the Army POL inventory level are the 

fuel consumption rate and capacity of the supply trucks, as well as their interaction. This 

is based on the significance of their p-values (less than 0.05) 
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Figure 14.  Regression with average Army POL inventory level as 
response variable. 

Next, we created a partition tree to see which factors have the most impact on the 

Army POL inventory level, see Figure 15. To get this data we took the average of the Army 

POL inventory levels across the 50 replications for each of the 34 design points. As one 

can see, the average Army POL inventory level during the campaign is roughly 81%, (see 

leaf 1 in Figure 15). Next, we split the tree to determine which factors most affect the Army 

POL level. One can see that when the capacity of the supply trucks (CapacityRoad) is 

greater than 5.5 tons (leaf 2), the average inventory level improves to 84%, however, when 

CapacityRoad is less than 5.5 tons (leaf 3), the average inventory level decreases to 77%. 

This indicates that the more fuel the supply trucks carry leads to higher inventory levels, 

as one would expect. Furthermore, we see that the consumption rate of the supply road 

vehicles (ConsumpRoad) factor is the next most significant to the Army POL inventory 

level. With a higher capacity (greater than 5.5 tons) and a lower consumption rate (less 

than 4.5 gallons per hour), the Army POL inventory numbers improve to 86% (leaf 4). 

However, with a consumption rate greater than 4.5 gallons per hour, the Army POL 
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inventory level decreases to 81%. We see the same effects on the other side of the tree 

when CapacityRoad is less than 5.5 tons (leaf 5). As one can see, the highest average 

inventory level for Army POL occurs when the supply trucks have a higher capacity and 

lower consumption rate. 

 

Figure 15.  Average Army POL inventory level during the campaign. 

B. FUEL CONSUMED 

In analyzing the fuel consumed during the ground campaign, we first wanted to see 

how the supply vehicles, both road and rail, were able to meet the fuel demands imposed 

on them. The fuel-consumed data comes from the amount of fuel consumed by the supply 

vehicles in order to meet the supply demanded of them. As you can imagine, logistics 

networks are typically long and complex. If supply vehicles have smaller capacities, for 

example, they will need to make more trips in order to meet the demand requested from 

them. This analysis is designed to show how the capacity and consumption rates of the 

supply vehicles affects how much fuel they consume in order to meet the demand. In order 
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to get this data, we took the average of the 50 replications for each of the 34 design points 

to get to the average amount of fuel consumed by each type of supply vehicles, road and 

rail, per design point.  

1. Supply Road Vehicles (Supply Trucks) 

Once we extracted the data, we created a histogram to see the variability in our 

results, see Figure 16. One can see that the average amount of fuel consumed varies by a 

large amount, roughly 5,000,000 to 30,000,000 gallons. By selecting the left and right most 

columns we were able to determine that the supply trucks used the most fuel (almost 

30,000,000 gallons) when they had a low capacity and a high fuel consumption rate. This 

makes sense because if they carry less they have to resupply more in order to meet demand, 

which uses more fuel.  

 

Figure 16.  Histogram of the average fuel consumed by supply trucks. 

Next, we analyzed the fuel consumed by the supply trucks, or road vehicles, see the 

partition tree in Figure 17. As one can see, the average fuel consumed for the supply trucks 

is 13,113,193 gallons for the entirety of the campaign (leaf 1). However, there are two 

factors that significantly affect the fuel consumed; the capacity the supply trucks can carry 

and their fuel consumption rates. As we can see in Figure 17, when the supply truck 

capacity (CapacityRoad) is less than 5.5 tons (leaf 2), the supply trucks consume 
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19,608,660 gallons of fuel on average; whereas, when the capacity is greater than 5.5 tons 

(leaf 3), they only consume 8,566,365 gallons of fuel on average. This result makes sense 

because when the supply truck capacity is less than 5.5 tons they need to make more trips 

in order to meet the demand, thus using more fuel. However, when they can carry more 

capacity, they do not need the additional trips, and therefore, use much less fuel.  

 

Figure 17.  Fuel consumed by supply road vehicles 

We can also see in Figure 17 that after CapacityRoad, the most significant factor is 

the consumption rate (ConsumpRoad) of the supply trucks. We can see on both sides of 

the partition tree that a higher consumption rate causes the supply trucks to use more fuel, 

which makes sense. Specifically, when the supply truck capacity is less than 5.5 tons, and 

the consumption rate is greater than 4.9 gallons per hour, the supply trucks use almost 

25,000,000 gallons of fuel (leaf 4). However, when the consumption rate is less than 4.9 

gallons per hour, the supply trucks use roughly half that number (12.8 million gallons). We 

see the same effect on the other side of the tree when the capacity is greater than 5.5 tons 
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(leaf 5). This shows that by having a larger fuel consumption rate the supply trucks require 

more fuel to meet demand than if their consumption rate is lower. 

2. Supply Rail Vehicles (Supply Trains) 

After extracting the fuel consumption data of the supply trains, we created a 

histogram to see the variability in the results, see Figure 18. As with the supply trucks, we 

see lots of variability in our results. The fuel consumed ranges from less than 10,000 

gallons to almost 70,000 gallons. In selecting the left and right most columns, we see that 

when the supply trains have a high capacity (greater than 16.3 tons) and low consumption 

rate (1 gallon per hour), they burn less than 10,000 gallons of fuel. This makes sense 

because they do not have to resupply as often and therefore burn less fuel. Naturally, we 

see the opposite on the other side of the graph. When the supply trains have a low capacity 

and high consumption rate, they burn more fuel. 

 

Figure 18.  Histogram of the average fuel consumed by supply trains. 

Next, we created a partition tree to look at the fuel consumed by the supply trains, 

or rail vehicles, to determine which factors are the most significant to the amount of fuel 

they consumed, see Figure 19. First, we noticed that the supply trains use much less fuel 

than the supply trucks. The average fuel consumed throughout the campaign for the supply 

trains is only 27,241 gallons (leaf 1), vice 13 million with the supply trucks. We believe 

this is because the supply trains are tied to the train tracks, whereas the supply trucks have 
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more freedom of movement and are better able to follow and respond to the Blue forces’ 

demand. Similar to the road network, the most significant factors are the consumption rate 

and the capacity of the supply trains. Unlike the supply trucks, the most significant factor 

impacting the fuel consumed by supply trains is their fuel consumption rate, not their 

capacity. We see that when their consumption rate is greater than 6.3 gallons per hour, they 

use just under 48,000 gallons of fuel (leaf 2), however, when their consumption rate is 

lower than 6.3 gallons, they only use 18,715 gallons of fuel on average (leaf 3). That is a 

difference of 30,000 gallons. 

 

Figure 19.  Fuel consumed by supply rail vehicles. 

Exploring further in Figure 19, we can see that when the consumption rate is lower 

than 6.3 gallons per hour, the factor with the most significance is the capacity of the supply 

trains. We see that when the capacity is less than 16.3 tons, the average fuel consumed is 

roughly 35,000 gallons, whereas, when the capacity is greater than 16.3, the fuel consumed 

is 13,100 gallons (leaf 4). This is result is similar to that of the supply trucks. Since the 
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trains are carrying less capacity, they have to return to resupply more frequently to meet 

the demand, thus using more fuel. However, when they can carry more, they do not need 

to resupply as often and therefore use much less fuel. As we have seen in these findings, 

the capacity and consumption rate of the supply vehicles has a significant impact on how 

much fuel they need to consume in order to meet the demand of the Blue forces.  

C. PROBABILITY RED LOSES ZARAGOZA 

Zaragoza is a city deep in Red territory and is the last military objective of the Blue 

ground units. In analyzing the probability that Zaragoza is lost by the Red forces, we first 

created a histogram to see the variability in the results, see Figure 20. As one can see, there 

is a lot of variability in our results, roughly 40% to 75%. First, we wanted to see what 

caused our lowest and highest results (left and right most columns). In selecting the left 

most column, we see that the probability that Zaragoza is lost is 44% when the number of 

supply road vehicles is less than 128 per convoy and while their capacity is less than four 

tons. On the other hand, Zaragoza is lost 74% of the time when there are greater than 128 

supply road vehicles along with a low fuel consumption rate.  

 

Figure 20.  Histogram of the probability that Zaragoza is lost by Red 
forces. 

Next, we created a regression to see how well our energy factors predict the 

probability that Red loses Zaragoza. In order to conduct this analysis, we took the average 
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of the 50 replications over each of the 34 design points. We then fit a regression model 

with the probability that Zaragoza is lost as the response variable and the factors we varied 

as the predictor variables. This allows us to see how the probability Zaragoza is lost varies 

due to the level each of the predictor variables are set. In Figure 21, you can see that there 

is a lot of variability in our response variable. The probability that Zaragoza is lost goes 

from 44% to 74%. A very low RSquare value (0.24) indicates that our model does not 

explain a lot of the deviation we see. However, insights can still be gained. Even with a 

low RSquare value, it appears that the logistic factors we varied still have an effect on 

whether or not Blue is able to complete their final military objective of capturing Zaragoza. 

Figure 21.  Regression with response variable of probability Zaragoza 
is lost by Red forces. 

We next conducted an analysis on the energy factor levels using a partition tree. As 

stated earlier, a partition tree allows us to see which factors affect the response variable the 
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most. For this analysis, we took the average probability (over the 50 replications) that 

Zaragoza is lost by Red forces, for each of the 34 design points. In Figure 22, you can see 

that before the split the average probability that Zaragoza is lost is 0.578 (leaf 1). Keep in 

mind, splitting the partition tree allows us to see which factors are the most influential and 

also shows us which value (or threshold) those factors must be in order to affect the 

response variable (Probability Zaragoza is lost) the most.  

 

Figure 22.  Partition tree illustrating influential factors that affect the 
probability Zaragoza is lost by Red forces. 

As one can see in Figure 22, when the number of supply trucks (VehiclesRoad) is 

greater than 64% of 200, or 128 vehicles, the probability that Zaragoza is lost increases to 

roughly 0.60 (leaf 2). If you have less than 128 supply trucks, the probability decreases to 0.528 

(leaf 3). Additionally, if the 128 supply trucks are more efficient, that is, if they have a 

consumption rate lower than 2.8 gallons per hour, the probability that Zaragoza is lost increases 

to 0.653 (leaf 4). This is significant because it shows decision makers that the number of supply 

vehicles in the supply convoy, and their consumption rates, have a significant impact on 

whether or not the ground units (in this scenario) can reach and achieve their objective. 
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V. CONCLUSION 

This thesis illustrates the advantages of using an efficient design of experiments to 

systematically change input parameters to explore the influence of energy-related variables 

on campaign outcomes. It is a proof-of-concept study that assists in enhancing the quality of 

analysis provided by STORM. Additionally, the research conducted in this thesis provides 

the STORM user community with a methodology that can be utilized in future studies. 

A. SUMMARY OF FINDINGS 

This data farming approach uses steps that are rational, observable, and offer a 

practical direction for analysis so that it can be easily incorporated into future studies. 

Utilizing an efficient designed experiment allows the analyst to vary a large number of 

input factors over a wider range. This allows the researcher to see whether response 

variables differ in means and variances over the design points and to determine which 

factors are the most influential on the outcome. Across all of the metrics of interest, we see 

that varying the logistical factors influence the amount of fuel consumed, the resource 

levels of the ground units, and also have a significant impact on the successful capture of 

Zaragoza, a campaign-level objective. This study illustrates to decision makers how 

employing a simulation model that incorporates energy and other logistical considerations 

can impact planning and executing future campaigns or designing future forces. Efforts to 

improve or increase STORM energy features are proving to be a worthwhile investment. 

B. RECOMMENDATIONS FOR FUTURE RESEARCH 

This research outlines a methodology to conduct sensitivity analysis on the energy 

enhancements in STORM. This methodology can be expanded to include other input 

factors, specifically the other energy-related enhancements, to explore outcome metrics of 

particular interest to the analyst. Further research can also be conducted using the 

methodology in this research on a real-world, classified scenario. Furthermore, the data 

farming approach may be useful both during and after the development of new STORM 

scenarios by focusing the analyst’s attention on influential energy-related factors to reveal 

the campaign’s sensitivity. 
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The following is a summary of our accomplishments: 

• We used an advanced DOE to efficiently explore multiple energy factors

with STORMFarmer in 1,700 simulated campaigns.

• This research proves the ability to efficiently explore new STORM energy

features. By using an efficient design and a computing cluster, it took 121

hours to simulate the 1700 campaigns. Using a brute force full factorial

design and a single processor would have required nearly 12,000 years.

STORM analysts can use this new capability to provide faster and more

comprehensive studies.

• New energy features have been shown to impact both logistic and

mission-oriented measures in intuitive ways. This provides enhanced

confidence in STORM 2.7’s verification.

• In Punic 21, changes in logistic factors lead to an increase in variability

across all of our metrics of interest.

Next steps: The new STORM energy features are ready for more extensive testing 

on an existing real-world classified scenario. 

C. CLOSING THOUGHTS 

Military decision makers within the Department of Defense (DOD) must make 

investment and strategy decisions regarding force structure and weapon system capabilities 

for the forces of tomorrow. The problem, however, is that these decisions must be made with 

a limited budget and limited information regarding the future strategic environment. 

Campaign models, such as STORM, enable decision makers to quickly and inexpensively 

change key features in a simulated campaign-level, joint military operation to determine the 

effect those changes would have on the campaign outcome. This thesis demonstrates how 

designed experiments may assist in the process of making investment and strategy decisions 

that ensure tomorrow’s military is ready for future challenges. 
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