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ABSTRACT 

The objective of this research is to develop a method for predicting the future 

behavior of ships and detecting anomalous behavior based on their past location 

coordinates and a set of context features. We use a Recurrent Neural Network model with 

inputs extracted from Automated Information System (AIS) data. This data includes 

ship coordinates, speed and course, and the ship’s call sign, size, and type. These 

features are appropriately encoded to amplify significant predictive structures within 

the data. The ability to automate the task of track prediction and the process of 

detecting anomalous ship behavior serves to increase maritime domain awareness and 

aid security analysts in deciding how to best allocate limited resources. Furthermore, 

these capabilities enable the investigation of potential threats, prevention of collisions, 

and planning for search-and rescue missions. 
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EXECUTIVE SUMMARY 

In this work, we use Recurrent Neural Networks (RNN) to predict vessel movements 

based on recent travel history in the form of geographic time series data. Using Automated 

Information System (AIS) data, we construct models that make accurate short- (1-minute), 

medium- (30-minute), and long-term (100-minute) predictions of future vessel location given 

recent travel history. We implement two primary approaches for model construction, posing 

the predictive task first as a classification problem and second as a regression problem. After 

implementing multiple variations of a deep RNN, we find that a classification approach, 

predicting discretized bearing and distance classes, works best, achieving the most accurate 

predictions of future position with a mean miss distance of 8, 670, and 2,795 meters for a 1-

minute, 30-minute and 100-minute prediction horizon, respectively. Nevertheless, we still 

find that a successful regression approach can be formulated based on a clustering scheme, 

where regression targets are limited to a convex combination of engineered landmark points. 

By nature of the regression problem, the predicted vessel tracks are much smoother than those 

made by the discretized classification approach. 

For our neural network (NN) design, we use a Nearly Orthogonal Latin Hypercube 

(NOLH) design for hyper-parameter selection using a two-phase search process. We 

implement the models using the Python language and the Keras library with a TensorFlow 

backend. Training the models is done using the Naval Postgraduate School (NPS) High 

Performance Computing center facilities, including a computing cluster running the training 

jobs in parallel over dozens of nodes, using 16 Nvidia Graphical Processing Units (GPUs) 

with 120 gigabytes. 

This type of model, which uses widely available AIS data to predict the future vessel 

behavior, has applications for enhancement of maritime awareness. For example, collision 

prevention and assistance with search-and-rescue lost vessel missions are two such 

applications. We briefly highlight the use of such predictive systems for another purpose, 

specifically anomaly detection, briefly exploring the use of prediction error as a real-time 

tracking mechanism for detecting improper vessel activity. Such ability to detect abnormal 

behavior is useful in automatically classifying suspicious ships that might engage in criminal 
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activity, piracy, or terror and ships suffering from an emergency that prevents them from 

following their normal conduct.  

Overall, we find RNNs to be a viable method for predicting maritime activity. With 

RNNs proving highly flexible, the potential for extending this work and incorporating new 

data sources is high, which is expected to improve the RNN’s predictive power further, 

making it a useful and valuable tool for enhancement of maritime domain awareness. 
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I. INTRODUCTION 

A. BACKGROUND 

With the world’s oceans covering approximately 71 percent of the earth’s surface, it 

is no surprise that over 90 percent of the world’s trade is carried by sea, as reported by the 

International Maritime Organization (IMO) (Tu et al. 2016). With global trade volume on the 

rise and maritime traffic increasing correspondingly, the risks associated with maritime 

operations are growing. Congestion, for example, increases the likelihood of collisions and 

presents exploitative opportunities for terrorists and piracy groups. The clutter of “normal” 

ships might disguise maritime criminal activities and veil ships that are under emergency 

conditions. To combat such activity, security analysts and maritime domain awareness experts 

search for automated algorithms to predict future trajectories of ships and to detect anomalous 

behaviors to help them decide how to best allocate their limited resources. 

The development of modern automated algorithms has been driven by the availability 

of rich data resources and collection mechanisms. For the maritime domain, the Automated 

Information System (AIS), an information system that accumulates location transmissions 

from ships and aircraft around the globe, provides one such resource. According to Al-Molegi 

et al. (2016), starting from 2002, due to the requirements of the IMO, this system provides the 

past and current whereabouts of most ships accessible (i.e., passenger ships of all sizes and 

any other ships heavier than 300 tons) and includes their velocity, bearing and other 

information. While the system’s foremost use is preventing collisions, AIS is also important 

and useful in investigating accidents, increasing maritime awareness, and managing traffic. 

The AIS data provides an incredibly large set of observations, as more than 70,000 

ships around the globe are continuously transmitting their information (Marine Traffic 2018). 

This data is a leading enabler in developing advanced algorithms to predict future behavior of 

ships. In particular, this enables the development of “data-hungry” models such as neural 

networks. These highly flexible universal approximators, while often proving too flexible for 

small-data regimes, have been shown to excel in prediction of complex behaviors when given 

large amounts of data (Leca et al. 2015; Tu et al. 2016). 
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A Recurrent Neural Network (RNN) is a type of neural network model that holds 

internal memory which can be used to process input sequences of arbitrary length and is 

therefore suitable for time series data. RNNs are widely used in automated speech and 

handwriting recognition as well as rhythm learning and even music composition (Eck and 

Schmidhuber 2002; Gers et al. 2002; Graves et al. 2009). Thus, RNNs are a natural candidate 

for predicting the behaviors of vessels at sea. 

We use RNNs to predict the future behavior of ships based on their past location 

coordinates or tracks and a set of “context” features associated with the ship extracted from 

the AIS data. We focus on formulating a model that can be easily enhanced to include future 

data sources and an enriched input space.  

B. LITERATURE REVIEW 

The following passages describe artificial neural networks, their common types and 

categories, the key challenges in using them, and short review of applications of artificial 

neural networks to track-like data. 

1. Artificial Neural Networks 

Artificial neural networks (NN) are mathematical models for information processing 

and pattern recognition. As Graves (2012) describes, an artificial neural network’s basic 

structure is a directed network of independent processing nodes that are joined using weighted 

connections. The nodes represent neurons and the connections represent the synapses between 

them. Activation of the network is done by providing an input, which then propagates from 

the input nodes and through the rest of the network. An important distinction in NNs is 

between cyclic and acyclic. Cyclic networks are usually referred to as feedback, recursive, or 

recurrent NN and are used extensively in this research. Acyclic networks are called 

feedforward NNs, such as the multilayer perceptron networks, developed and researched by 

Rumelhart et al. (1985), Werbos (1988), and Bishop and Bishop (1995). 

NNs are usually described by layers. Each layer of neurons is connected with the 

previous and the next layer’s neurons. Neurons in the same layer do not communicate. The 

layers between the input layer and the output layer are considered the hidden layers. Each 
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neuron input is composed of a weighted sum of the output coming from the connected neurons 

in the previous layer, plus a bias constant. The neuron output to the next layer is its input value 

fed to its activation function. The activation function can be a linear function, but is more 

commonly sigmoid, rectified linear (ReLu), or some other nonlinear function. 

A common activation function for the output layer in classification NNs is the softmax 

activation function (Bridle 1990). This function “squashes” the output values so that they are 

in the range (0, 1] and sum to 1, and so that each value represents the predicted probability of 

that class.  

As described in Goodfellow et al. (2016), NNs are universal approximators that 

typically use supervised learning to train their parameters (weights and biases) to their given 

task through an optimization process. The optimization process tries to minimize the loss over 

a set of data points called the training set. Typically, the optimizers use some version of 

stochastic gradient descent. NNs use a variety of loss functions, including the mean or 

absolute squared error, categorical cross entropy, and cosine proximity. In many cases 

customized loss functions are used to accommodate a given problem. Such is the case in this 

research as shown in Chapter III. 

Many types of NN layers have been developed and are used to process images, text, 

voice, and other types of information. As this work deals with RNNs, an important layer type 

is a recurrent layer called Long Short-Term Memory (LSTM). As Goodfellow et al. (2016) 

explain, these units have somewhat more complex structure than a simple neuron. Apart from 

“looping” some of their output back to themselves as input in the next time step, which is 

common to all recurrent units in RNNs, LSTMs have a set of gates that control their internal 

state. LSTMs control how much of the new current input is going to be taken in using the 

input gate. They govern how much of the previous state will be looped back to the current 

state using a forget gate and how much of the internal state is going to be output using the 

output gate. All of these gates are influenced by the internal state of the LSTM unit, which is 

composed of trainable parameters. A diagram of an LSTM unit is provided in Figure 1. 
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Figure 1.  Diagram of an LSTM unit. 
Source: Goodfellow et al. (2016) 

RNNs can take sequential input such as a time series of stock prices, a sentence or 

document, a series of image frames from a video, or a sound recording, and they can also take 

a fixed size input of any length. In the same manner, their output might be a single prediction 

based on the entire input series, a fixed length series of predictions, or a nonfixed length 

output. We use Karpathy’s (2015) example of the flexibility of RNN architectures in Figure 

2. The red rectangles represent the RNN input and the blue rectangles represent the output. 
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Figure 2.  The flexibility of RNN architectures. 
Source: Karpathy (2015) 

As Karpathy (2015) explains, an RNN can use a one-to-many architecture for image 

captioning where the input is a single image and the output is a sentence of variable length. It 

can be a many-to-one architecture, such as sentiment analysis of a sentence. It can also use a 

many-to-many architecture, such as the case in this work, where the input is a ship track of 

variable length and the output is a series of predictions whose length is determined by the 

input track length.  

2. Families of Neural Networks 

Neural network models can be, roughly speaking, divided into two model families 

according to their targets and outputs: classification and regression. A classification model 

outputs a class, or label prediction. For example, a picture might be classified as “Cat” or 

“Dog,” or a sentence can be classified as having “Positive,” “Negative,” or “Neutral” 

sentiment. Often, the prediction will be specified in the form of a score vector, with each 

element of the score vector indicating the probability that the given example belongs to each 

potential class. The last layer of the network, which provides these probabilities, will typically 

be the size of the number of classes to predict (two and three, respectively, in the previous 

examples), and the value at each node will represent the probability that the input will match 

each of the classes. In many cases the last layer is activated by a softmax function. A 

regression model’s output is numeric. For example, an NN can predict the future price of 

stocks based on previous values or predict the height of a child based on the child’s age and 
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shoe size. In contrast to a classification model, the output is not a probability but the actual 

estimated value in question (e.g., the predicted height of the child).  

The two approaches differ in the types of problems they try to solve, and both have 

their advantages and disadvantages. Some problems, however, can be modeled by both 

approaches depending on how the modeler chooses to represent the input data and output 

(target) data. As we will see, this is the case with predicting ship trajectories. We train RNNs 

that treat a future ship location as numeric (i.e., with two output units, one for latitude value 

and one for longitude value). We also train RNNs that treat future ship location as categorical, 

using a classification scheme. 

3. Challenges in Training Neural Networks 

Neural networks are flexible models, but with an array of design choices. Networks 

with only a few hidden layers are universal function approximators. For modern pattern 

recognition tasks, however, state of the art networks can often be hundreds or even thousands 

of layers deep (Shazeer et al. 2017). In addition to selecting the number of layers, one must 

also choose from many types of layers, with each layer being composed of a potentially 

different number of units. Then, once this aspect of the architecture has been selected, there 

are many ways to formulate a loss function for a specific problem and a wide variety of 

optimization techniques (e.g., variations of stochastic gradient descent) to train the network 

to minimize the chosen loss function via training examples (Pascanu et al. 2013).  

The learning itself is also governed by a number of hyper-parameters, among which 

is the learning rate parameter. A high learning rate means that every gradient descent step may 

be a large leap in the gradient direction. This might speed up learning initially, but set too 

high, the learning becomes unstable, failing to converge to any steady state. Many techniques 

have been developed to deal with this issue, such as the introduction of a momentum term that 

enforces continued movement partially in the direction of previous gradients. Other 

innovations include adaptive learning rate techniques and learning rate schedulers, changing 

the learning rate along the training process (using a decay factor) or in a way that is responsive 

to the error over the training set and a validation set (Goodfellow et al. 2016). 
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The performance of a network is sensitive to the choices of hyper-parameters, and 

thus the process of hyper-parameter tuning is considered to be an important and challenging 

task. This is ever more so in big networks, which might have many millions of weights to be 

learned, and training data sets the size of which might be measured in terabytes. Careful 

selection of these hyper-parameters is made even more important by the fact that training big 

networks with a single selection of parameters may take days or weeks, even when using high 

performance computing clusters (Goodfellow et al. 2016).  

This calls for methods to help explore the vast space of hyper-parameters. Using 

experimental design techniques (Kleijnen et al. 2005) can drastically reduce the number of 

experiments that need to be conducted in order to learn the approximate shape of a response 

surface in a high dimensional space. Response surface methodologies and analysis techniques 

can be used to find the “hot-spots” of the hyper-parameters that yield the best networks that 

can then be explored further (Gunst, 1996). 

In general, NNs achieve better performance when their input is rich with contextual 

information. However, data in its raw form is often suboptimal in its representation, not 

providing a contextual description of the data that an NN can understand in the context of the 

given pattern it is attempting to recognize (i.e., learn). This applies to both the input and output 

of an NN. Thus, engineering appropriate context features for the NN input, and engineering 

the appropriate features that should be predicted, is critical to NN training. For example, 

regression problems are often approximated as multi-class classification problems, which can 

be easier to learn with a more focused prediction task.  

To find the right type of input and the best input representation, attention must be 

given to the specific idiosyncrasies of the data available for learning and in many cases, 

extensive data processing and feature engineering have to take place to allow effective 

machine learning (Kubat et al., 1998). Data processing and feature engineering, which are 

discussed in Chapters II, III and IV of this work, are critical to our contribution. 

4. Forecasting AIS Tracks 

Related work dealing with motion prediction of vessels at sea using AIS data typically 

utilize clustering of tracks or probabilistic models. Ristic et al. (2008) utilize adaptive kernel 



8 

density estimation, predict motion and try detecting anomalies using a Gaussian sum tracking 

filter. Bomberger et al. (2006) use an associative learning algorithm that uses a grid of possible 

ship locations and assign weights to connections between grid locations using gated Hebbian 

learning. Pallotta et al. (2013; 2014) use clustering algorithms to define waypoints and identify 

trajectories between them, using only the ship coordinates and ignoring other differences 

between the ships. They then form predictions based on Ornstein-Uhlenbeck stochastic 

processes (Gardiner 2009) whose parameters are estimated with the extracted trajectories. 

Wijaya and Nakamura (2013) use a simple k-nearest neighbors (kNN) clustering to locate 

similar tracks and predict future location according to them. Mascaro et al. (2014) use 

dynamic and static Bayesian Networks learned from AIS data to detect anomalous behaviors. 

Mazzarella et al. (2015) expand this work and use a Bayesian vessel prediction algorithm 

based on a particle filter and prior knowledge of traffic routes. Young (2017) uses trajectory 

clustering, random forests and simple fully connected dense NN to predict future locations of 

ships. He also notes that the Ornstein-Uhlenbeck approach by Pallota et al. (2013) works well 

for straight ship tracks, but fails for curved tracks. 

In related problems, RNNs have been used in recent years for rain precipitation 

nowcasting (Xingjian et al. 2015), predicting the trajectories of hurricanes in the Atlantic 

(Kordmahalleh 2015), predicting a person’s next location (Al-Molegi et al. 2016; Liu et al. 

2016), and classifying ships’ fishing activity based on AIS data (Jiang et al. 2017). To our 

knowledge, using RNNs to predict ships’ trajectories based on AIS data is a novel approach 

that has yet to be considered. 

C. RESEARCH METHODS 

To predict the future behavior of ships, we use an array of RNN architectures that take 

as input the ship location, speed, bearing, unique call sign, dimension, and type. In essence, 

we use RNNs to learn the spatio-temporal dependencies in the data structure.  

The data used to train the models is AIS based and includes 17,647 ship tracks from 

the years 2016 and 2017 in the Los Angeles region (south and central California coast). The 

data is preprocessed, and two different representations of the input data are used. 
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Training of the models is done with a computer cluster at the high-performance 

computing center (HPC) at the Naval Postgraduate School (NPS) using the Python 

programming language written open-source software Keras (Chollet 2015) with a Tensorflow 

(Abadi et al. 2016) neural network training engine. The models are then evaluated and 

compared over a separate test set of ship tracks from the same time frame in the same region. 

D. RESULTS 

Overall, we show that an RNN can accurately predict vessel movements in the form 

of geographic time series data. Using AIS data, we construct models that make accurate short, 

medium, and long-term predictions of future vessel location given recent travel history. We 

implement two primary approaches for model construction, posing the predictive task first as 

a classification problem and second as a regression problem. After implementing multiple 

variations of a deep RNN, we find that a classification approach, predicting discretized 

bearing and distance classes, works best and achieves the most accurate predictions of future 

position. Nonetheless, we still find that a successful regression approach can be formulated 

based on a clustering scheme, where regression outputs are limited to a convex combination 

of engineered landmark points. By nature of the regression problem, the predicted vessel 

tracks are much smoother than those made by the discretized classification approach. 

We briefly highlight the use of such predictive RNNs for anomaly detection, exploring 

the use of prediction error as a real-time tracking mechanism for detecting improper vessel 

activity. We focus on important RNN design choices, such as layer construction, inclusion of 

secondary data, and specific forms that input features and output features can take. For 

example, we implement Nearly Orthogonal Latin Hypercubes (NOLH) to perform hyper-

parameter selection, and comment upon our findings. Additionally, we find that inclusion of 

secondary data can be both beneficial and detrimental, and is highly dependent on the overall 

prediction task.  

E. OUTLINE 

The remaining chapters are organized as follows. In Chapter II we review the AIS 

data collection and preparation process, transforming it into a form that fits the neural network 

model architecture. In Chapter III, we discuss the considerations taken in designing the 
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models, with emphasis on their input and output representations, and present the final 

architecture used for prediction of ship trajectories. Chapter IV deals with the experimental 

set-up and the model analysis and evaluation, where we compare the results of numerous 

model architectures over the test set. Chapter V holds a discussion about the methods we use 

and proposes topics for additional research and future work. We present our conclusions in 

Chapter VI. 
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II. DATA COLLECTION AND PREPARATION 

A. DATA DESCRIPTION 

AIS, which stands at the heart of this research, is an information system that 

accumulates location transmissions from ships and aircraft around the globe. According to 

Al-Molegi et al. (2016), this system makes the past and current whereabouts of most ships 

accessible and includes their speed and bearing. While the system’s foremost goal is 

preventing collisions, it is also important and useful in investigating accidents, enhancing 

maritime awareness, and managing traffic. 

Most data extracted from AIS transmissions falls into two categories, static and 

dynamic. In short, the dynamic data is broadcast in short intervals of two to ten seconds 

whenever a ship is sailing and once every 180 seconds when anchoring (U.S. Coast Guard 

Navigation Center 2018). It includes the following major fields: 

• Maritime Mobile Service Identity (MMSI): a unique nine-digit numeric 

identifier used to identify a specific AIS transceiver, seldom changes.  

• Coordinates: the ship’s position; latitude and longitude in degrees. 

• Time stamp: Coordinated Universal Time (UTC) format of the time at 

transmission. 

• Bearing: the ship’s direction relative to the magnetic north in degrees. 

• Course over ground (COG): the ship’s direction relative to the absolute 

north given in degrees.  

• Speed over Ground (SOG): the ship’s velocity in nautical miles per hour. 

A vessel is required to manually broadcast a static message every six minutes. A static 

message provides information that does not change with the motion of the ship. The full list 

of attributes of a static message can be obtained at the U.S. Coast Guard Navigation Center 

website (2018). Of interest to our work are the following fields: 
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• Maritime Mobile Service Identity (MMSI): same as in the dynamic data.  

• Name: the ship’s name as shown on its station radio license (not fixed). 

• Type of Ship and Cargo: numeric codes to classify ship type.  

• Overall Dimensions: a set of distances from the center of the ship to its 

boundaries. 

• Destination: the ship’s next destination, updated by the ship’s operator.  

The accumulation of AIS data over time produces a large data set. As Young (2017) 

describes and as is evident from online AIS-utilizing websites such as MarineTraffic.com 

(2018), more than 70,000 ships around the globe transmit AIS data at high rates on any given 

day.  

The AIS data set we use is publicly available through a joint venture between the 

Bureau of Ocean Energy Management (BOEM) and the National Oceanic and Atmospheric 

Administration (NOAA). MarineCadastre.gov (2018) provides one-minute interval AIS data 

along the coasts of the United States, in Universal Transverse Mercator (UTM) zones 1–20 (a 

third of the globe) for 2009 through 2017.Although MMSIs are encrypted and call signs 

removed between 2010 and 2014. They are available after 2014, and after 2015, the data is 

regarded as being of better quality (MarineCadastre.gov 2018). 

Since we wish to use the MMSIs and call signs, we work with two years-worth of data 

from 2016 to 2017. Although in principle the AIS data should be very frequent in time 

(dynamic data is transmitted every ten seconds or less), we find that the available AIS data is 

much less frequent. The time gap between transmissions is not constant and while it usually 

varies between one to three minutes, the gap can be longer than an hour. This variability in 

transmission intervals requires more preprocessing that is described next.  

B. DATA PROCESSING 

AIS data requires preprocessing to “clean” the data and to shape it for use as input to 

an RNN model. We discuss the need for preprocessing and the processing done to meet these 
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needs in the following passages, while leaving some of the more advanced data processing to 

Chapter III. 

1. Defining Ship Tracks 

The raw data is in the form of one record per AIS transmission. For dynamic data, one 

record includes the MMSI, time stamp and ship location at that time. Since we are interested 

in the ship’s tracks, the first stage of data processing is to assemble a ship’s consecutive 

coordinates into tracks. These tracks might include months of sailing, with multiple anchoring 

points. For the sake of learning ship behavior, we find it better to partition long tracks into 

shorter ones, where the ship is moving.  

As mentioned earlier, the time stamps are not at fixed intervals. Most our records are 

from one to three minutes apart, and some are many minutes or even hours apart. We take 

only the more frequently recorded tracks, excluding tracks where there are time gaps larger 

than ten minutes. This is more appropriate for the task at hand, which is prediction of short-

term ship behavior. To account for the variable time intervals, we interpolate the coordinates, 

speed, and bearing for every round minute (as in 13:45:00, 13:46:00, 13:47:00, etc.) and use 

this as the base data set. 

The next stage of preprocessing is to focus attention on a particular area of interest. 

The motivation for restricting the data to a certain geographical region is rooted in the 

behavioral attributes of ships. We expect ships in different areas to behave differently. A ship 

in mid-ocean will tend to move in straight lines, while near the coast there are many more 

constraints that must be considered. Other environmental factors, such as weather (for 

example, in the Arctic Sea), threats from pirates near Somalia, a tension near the coast of 

Korea etc., may also affect ship’s behavior. Therefore, we focus on learning these local 

behaviors in one area rather than attempting to learn ships’ behaviors globally. Another reason 

for using only a subset of worldwide AIS data is to reduce the sheer scale of data to a more 

workable size. As discussed in the following chapters, there are also opportunities to use 

“transfer learning” to better the learning rate and model results in other geographical areas 

(Goodfellow et al. 2016). 
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In this thesis we predict the future behavior of ships based on their past location 

coordinates and a set of “context” features concerning the ship to help in identifying 

anomalous behavior at sea. We perceive that the most important zone for anomalous behavior 

identification is near the coast, near ports. This is where smuggling operations, terror plots, 

and ships that for some technical difficulty have lost the ability to stay on course might cause 

the most damage. 

For our experiments, we focus on tracks that pass by the Los Angeles (LA) coast 

region. More accurately, any track that cross the rectangle displayed in Figure 3 is included 

in the analysis. 

 

Figure 3.  Area of interest where only tracks that cross the rectangle are 
included in the data and those tracks may extend to the circle 

boundaries. 

Some of the tracks included are from far away or are destined to anchor on the other 

side of the world. To avoid including the very distant parts of the tracks, we cut out the parts 
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of every track that are farther than 1,000 km (620 miles) from LA (described by the circle 

boundaries in Figure 3). 

Next, to establish ship type, we take the most recent static data record prior to the time 

stamp of the beginning of the track and match the MMSIs. We leave only the ship types that 

are of interest to us, ship types 60–89, 1003–1004, 1012–1017 and which include all types of 

cargo ships, tankers, and passenger vessels (MarineCadastre.gov 2018). Fishing vessels, high-

speed boats, and other special category types are omitted since they behave differently from 

the majority of ships; they might stop frequently, move in circles and return to their origin 

port without visiting another. Fishing activity trajectories are sufficiently different from 

transportation vessels to allow classification based on their behavior, as has been 

demonstrated by Jiang et al. (2017). This activity is less interesting from our perspective and 

might be harder to predict. Yet, our methods can easily be applied to ships of any kind, 

including fishing vessels. We simply focus on the subsets that are of greatest immediate 

interest for demonstration of the proposed methods. 

Ships might anchor for a while for different reasons. They might be stopped at the 

entrance to a port waiting for their turn to harbor, or for some technical problem, bad weather, 

etc. We only keep portion of ship tracks where the ship is moving constantly. Any ship 

missing dynamic records for longer than a two-hour period is a sign to partition the track into 

two different tracks, before the halt and after. If the resulting segmented tracks are shorter than 

300 minutes, we do not use them for the analysis. 

2. Dealing with Errors and Missing Data  

As with any real data set that is automatically compiled at such large scales, there are 

many challenges with errors and missing data. Any field of data that is to be manually input 

(much of the static data) is prone to errors, either by mistake or to intentionally mislead. 

Within our subset of data, much of the dynamic data is also erroneous. 

Harati-Mokhtari et al. (2007) discover various difficulties in the implementation and 

management of the AIS, which leads to many errors in the resulting data. They point to errors 

in the MMSI, ship type, ship dimensions, destinations, etc.  
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These types of errors persist in more recent AIS data sets, as indicated by Young 

(2017). Young claims that the Speed over Ground (SOG) field, for example, is particularly 

erroneous, so instead we interpolate the speed using of the coordinates and the time stamps. 

Nevertheless, the coordinates might have errors as well, so we ensure the average speed 

between every two consecutive points in the track is below a reasonable velocity threshold, 

taken to be 60 km/hour. Exceedingly high speed might also be the result of entering a wrong 

ship type code, indicating a cargo ship instead of a patrol aircraft. Either way, whether the 

error is in the ship type, coordinates, or time stamps, we decide to omit these cases.  

Missing data is another issue to be dealt with. To maximize the amount of data 

utilized, we only omit tracks where an important data field is missing. These include MMSI 

(0.1% missing), coordinates (0.3% missing), time stamp and ship type (5% missing). 

The final data set after the cleaning process includes 17,647 tracks in the range of 300 

to 3,000 time steps (minutes), which gives 20,942,915 data points. The average track length 

is 1,175 time stamps and the median is 1,051 time stamps. We work only with passenger, 

cargo, and tanker ships of which we have 947, 13,239, and 3,461 tracks, respectively. The 

average speed of the ships is 25.75 km/hour (14 knots). Figure 4 presents the frequency and 

the cumulative frequency of track lengths. 

 

Figure 4.  Track length frequency and cumulative frequency distribution 
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In Figure 5 we plot the entire data set by the tracks’ coordinates in a heatmap format. 

The left map covers the entire area of interest, and the right map takes a closer look at the LA 

region; warmer colors represent denser areas with more tracks. 

  

Figure 5.  Heatmap of all tracks’ coordinates 

The ship dimensions are calculated using the AIS static data of ship length and width 

(given as distances from a fixed point on the ship to fore, aft, port and starboard), that are used 

to get an estimate of the ship area. The frequency distribution of ship area is given in Figure 

6. Missing values (approximately 23%) are considered as zero. 

 

Figure 6.  Histogram of ships’ area 
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III. MODEL DESIGN 

The objective of this thesis is to develop RNN models to predict future behavior of 

ships based on their past location coordinates and a set of “context” features concerning a ship 

and its surroundings.  

The problem of predicting ship trajectories can be modeled as either a regression or 

classification task, depending upon how the modeler chooses to represent the output. For 

example, one could attempt to predict the exact coordinates (i.e., as real values) with the 

regression approach. Alternatively, one could reduce the entire map to a finite number of 

landmark points and predict which point the ship will be closest to at any given time, using a 

classification approach. This chapter describes in detail both a classification and a regression 

approach. 

The past and future ship locations input and output representations may be of different 

data types. A model can take as an input the exact coordinates of the ship in the past and try 

to predict its next location out of a finite number of landmark points (classification) or 

conversely, the inputs might be categorical indicating the closest landmark and the outputs 

exact numeric locations. During the research process we tried many schemes of input and 

output representations. In this chapter we present the two most successful approaches. 

Appendix A describes other approaches. 

A. INPUT REPRESENTATION 

The basic component of our models’ input is the time series of coordinates defining a 

ship’s track. Additional inputs are the speed and bearing along the track and static data such 

as the ship type, area, and call sign (in place of MMSI for ship identification). In both 

regression and classification models we feed the coordinates as numeric values to the RNN. 

As recommended by Hastie et al. (2009) and Goodfellow et al. (2016), we standardize the 

coordinates to have zero mean and unit variance (separately in each dimension). 

Following De Brébisson et al.’s (2015) recommendation, we shape the input data so 

that it is possible to feed more than a single point for each time step. This forms a window of 

N successive coordinates that shifts along the track by one point as each RNN time step. This 
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means, for example, that using a window size of 10, at the 134th time step, the input is not 

only the 134th location of the ship along the track, but the locations at a set of the ten time 

steps, 125 through 134. This helps the RNN to capture turns, speed, and heading changes. 

In addition, we use the speed and bearing as input. The speed is standardized in the 

same manner as the coordinates, and the bearing is in radians, ranging from 0 to 2𝜋𝜋, where 0 

is east, going counterclockwise. At each time step we only use the speed and bearing of that 

time step as input.  

The window of coordinates, the speed, and the bearing are then combined to form the 

“dynamic input.” At every time step of the RNN, the dynamic input is of size 2𝑁𝑁 + 2. For 

example, using a window of 15 yields an input size of 32 features.  

The static data, ship type, area, and call sign do not change over the course of the sail 

and have attributes that require a different kind of representation. The ship type is categorical 

with potentially hundreds of levels. As described in Chapter II, we take only passenger, cargo, 

and tanker ships. Since there are many sub-classes in each of the three types, we merge all 

these variants into the main three categories. There are no missing values in the ship type data. 

The proxy for ship size, ship area, is then partitioned into 20 equal length intervals 

(0,1000], (1000,2000],…,(19000,20000], as shown in Figure 7. We dedicate a separate 

category to missing values, which compose approximately 23% of this data type.  
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Figure 7.  Frequency distribution of ships’ area 

To identify a ship, one could use either the MMSI or the call sign. There are 1,137 

unique MMSI identifiers and 1,141 unique call signs. While MMSIs are not supposed to 

change, call signs might change in the long run, as happens to up to four ships during the two 

years’ worth of data we are using. Such changes might indicate a change in the ship destined 

activity, and so we decide to use the call sign and not the MMSI as a ship identifier. 

According to Goodfellow et al. (2016), the common practice is to express a categorical 

feature with C classes as a “one-hot” vector of length C where all values are zero, except one 

entry where the value is 1, indicating the class of the given categorical variable. For example, 

assume there are only three call signs (C=3), “9V8009,” “V7MT6,” and “CQKU.” A one-hot 

vector representation for the three call sighs is given in Table 1. 

Table 1.   one-hot vector example 

Call Sign one-hot vector representation 

“9V8009” (1, 0, 0) 

“V7MT6” (0, 1, 0) 

“CQKU” (0, 0, 1) 
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Our approach is to continuously feed the static data into the model at every time step. 

At each time step we build in linear embedding layer depicted in Figure 8, to reduce the 1,165 

features from the combined one-hot static input vector to a vector of 20 features. The static 

features and the units in the embedding layer are not fully connected. Ship type, ship area and 

call sign input features only connect to their respective embedded layer units.  Table 2 gives 

the number of embedded layer units of each type. 

Table 2.   Data types and associated embedding sizes 

Data type Number of possible values Embedding size 

Ship Type 3 3 

Ship Area 21 5 

Call Sign 1,142 12 

 

The dynamic input features and the embedded static features then feed into the model 

hidden layers, also depicted in Figure 8.  
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Figure 8.  Input layer architecture  

We use this input representation for all models. The next sections describe in detail 

the differences in the output representation between the classification and the regression 

approaches.  

B. CLASSIFICATION MODEL APPROACH 

To construct a categorical location target variable, there are two basic options: use 

“absolute positioning” of the area of interest so that every class represents an actual region or 

point on the map, or use “relative positioning” classes that represent the next location of the 

ship relative to its previous coordinates. In an absolute positioning approach, it is natural to 

partition the area of interest into rectangular regions so that every rectangle is a class that the 

model can predict. The classification RNN of this chapter uses relative positioning. 

Because we believe that there is much to learn from the absolute positioning approach, 

we summarize those efforts in Appendix A. The rest of Chapter III describes the models that 

prevailed. 
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1. Relative Positioning 

The idea behind this approach is that the next possible location of a ship highly 

depends on its current location and is limited by the distance a ship can travel and by the 

change of bearing it can amass in a single time step. Therefore, the RNN task is to predict the 

distance and bearing to the next location. This can be done using regression, letting the 

network predict a numeric value for these two features, or by using classification, letting the 

network assign probabilities to a set of distance categories and a separate set of bearing 

categories.  

We implement the classification scheme, using seven classes for distance (where 

distance is measured in meters): [0–110), [110–320), [320–540), etc., , and 180 classes for 

bearing each of length two degrees: (359° − 1°], (1° − 3°], (3° − 5°], up to (357° − 359°],. 

In the event that we predict more than one time step into the future, we increase the number 

of distance categories by a factor of the number of future time-steps we predict. For example, 

a model that predicts 30 time steps into the future will have 7 × 30 = 210 distance categories. 

Accordingly, the size of the model’s output layer will be the sum of the number of distance 

and the number of bearing categories. 

2. Model Architecture 

The core component of an RNN is the recurrent layer(s), which give it the ability to 

work with time series data and capture temporal relationships. We use Long Short-Term 

Memory units (LSTM) that have been utilized successfully in many challenging tasks 

involving serial data and prediction (Gers et al. 2002; Goodfellow et al. 2016; Liu et al. 2016; 

Tang et al. 2014).  

We also use input processing layers to embed the static data and concatenate it with 

the dynamic data as described in Section A of this chapter. We use a set of dropout layers 

meant to avoid overfitting and dense layers with a rectified linear activation function meant 

to help the model learn complex nonlinear relationships and representations. At the output 

layers, we use fully connected dense layers with a softmax activation function to obtain the 

probabilities of each class of distance and bearing. The model architecture is given in Figure 

9. 
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Figure 9.  Classification model architecture 

In order, after the input there are L consecutive LSTM layers (𝐿𝐿 ≥ 1) that return value 

for the entire sequence of data they process, in a many-to-many scheme. The LSTMs are 

followed by a dropout layer, which randomly omits a fixed percentage (usually 10–50%) of 

the connections between the adjacent layers. This is used to force subsequent network unit 

outputs to be less correlated thus decreasing the risk of overfitting the training data (Hinton et 

al. 2012; Goodfellow et al. 2016). The dense layer that comes after the dropout layer uses the 

Keras “Time-Distributed” wrapper so the rest of the network computes, predicts, and 

measures the loss for every time step separately. This is the preferred approach as training can 

adjust for losses over many time-step predictions and not just at the last time step in the track. 

The dense and dropout layers may be stacked M times (𝑀𝑀 ≥ 1) but the “Time-Distributed” 

wrapper is only used on the first dense layer. 
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At this point the model branches to two separate outputs, one that classifies the 

distance and one that classifies the bearing of the next predicted location. Since both branches 

use the same input layer, to add flexibility in turning this input into the two distinct types of 

predictions, we add H dense layers (𝐻𝐻 ≥ 0) at each branch and only then use the final softmax 

layers. The two softmax layers work separately, predicting the distance and bearing categories 

so that each of their output vectors sum up to one. They are then concatenated to form the 

final output layer which is the RNN’s prediction. 

It is worth mentioning that this output layer is typical for multi-labeling classification 

problems (Goodfellow et al., 2016). Classification problems might only try to predict one 

class out of the set of possible classes using one-hot encoding. In our “multi-hot” approach, 

we require the model to predict a concatenation of two separate probability distributions, thus 

“multi-labeling.” This requires a customized loss function to allow effective learning. 

3. Optimization and Loss function 

Let 𝐶𝐶 denote the number of classes to predict, for 𝑖𝑖 = 1, . . ,𝐶𝐶 let yi ∈ {0,1} be the 

ground-truth for the ith class and y�i ∈ [0,1] be the model prediction for the ith class. 

Classification problems usually use a categorical cross-entropy loss function, which is given 

by 

ℒ(𝑦𝑦�, 𝑦𝑦) = −
1
𝐶𝐶
�𝑦𝑦𝑖𝑖 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑦𝑦�𝑖𝑖)
𝐶𝐶

𝑖𝑖=1

 , 

where 𝑦𝑦 and 𝑦𝑦� represent respectively the one-hot target vector (𝑦𝑦1, . . , 𝑦𝑦𝐶𝐶) and the 

vector of predicted probabilities (𝑦𝑦�1, . . , 𝑦𝑦�𝐶𝐶). Both 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 sum to one over 𝑖𝑖. In our multi-

hot version, the loss function is the sum of two such loss functions, one corresponding to 

distance and the other to bearing classification.  

Let 𝐷𝐷 denote the number of distance classes to predict (using the previous example, 

in a model that predicts ten time steps ahead 𝐷𝐷 = 210) and 𝐵𝐵 denote the number of bearing 

classes to predict (𝐵𝐵 = 180). Let 𝑦𝑦𝑑𝑑,𝑖𝑖 and 𝑦𝑦�𝑑𝑑,𝑖𝑖, 𝑖𝑖 = 1, . . ,𝐷𝐷 denote the elements of the target 

and prediction vectors for distance, and 𝑦𝑦𝑏𝑏,𝑖𝑖 and 𝑦𝑦�𝑏𝑏,𝑖𝑖, 𝑖𝑖 = 1, . . ,𝐵𝐵 denote the elements of the 

target and prediction vectors for bearing. The loss function is 



27 

ℒ(𝑦𝑦�,𝑦𝑦) = −�
1
𝐷𝐷
�𝑦𝑦𝑑𝑑,𝑖𝑖 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙�𝑦𝑦�𝑑𝑑,𝑖𝑖�
𝐷𝐷

𝑖𝑖=1

+
1
𝐵𝐵
�𝑦𝑦𝑏𝑏,𝑖𝑖 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙�𝑦𝑦�𝑏𝑏,𝑖𝑖�
𝐵𝐵

𝑖𝑖=1

�, 

where 

�𝑦𝑦𝑑𝑑,𝑖𝑖

𝐷𝐷

𝑖𝑖=1

= �𝑦𝑦�𝑑𝑑,𝑖𝑖

𝐷𝐷

𝑖𝑖=1

= 1, 

and 

�𝑦𝑦𝑏𝑏,𝑖𝑖

𝐵𝐵

𝑖𝑖=1

= �𝑦𝑦�𝑏𝑏,𝑖𝑖

𝐵𝐵

𝑖𝑖=1

= 1, 

and where 𝑦𝑦 and 𝑦𝑦� represent the combined distance and bearing target and prediction 

vectors. 

Choosing an appropriate optimizer to optimize over the loss function is very important 

as well. We experimented with a few different optimizers such as stochastic gradient descend 

(Robbins and Monro 1985), adaptive moment estimation (ADAM) developed by Kingma and 

Ba (2014), root mean square propagation (RMSprop) developed by Tieleman and Hinton 

(2012), and others. Results with the different alternatives are shown in Chapter IV.  

C. REGRESSION MODEL APPROACH 

We use the same input design as used in the classification approach. The key 

difference is in the output representation. Instead of classifying a relative location using 

distance and bearing, we make the model learn to predict the numeric standardized 

coordinates of the next location. Therefore, the natural shape of such output layer is two units 

(vector of size two), one for each of the predicted coordinate components (latitude and 

longitude). 

Yet, as De Brébisson et al. (2015) describe, it can be hard to train such a simple model 

because it does not consider the underlying distribution of the ship’s locations or the structure 

of the data. To overcome this, one can use a set of “reference points” that cover the area of 

interest for which the network would assign weights in the prediction process.  
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Therefore, we implement two types of regression models, one with a simple output 

layer of two units and another which follows De Brébisson et al.’s (2015) suggestion. To 

integrate prior knowledge of the ship’s trajectories in the data directly in the architecture of 

the model, instead of predicting the pair of values describing the future location, we use a 

predefined set of coordinates and a hidden layer to associate a predicted probability to each 

of these coordinates. We then compute the output to be a weighted average of these 

coordinates where the predicted probabilities are the weights. 

Let 𝐾𝐾 denote the number of coordinates in the pre-defined set used, �̂�𝑝𝑖𝑖 ∈ [0,1] the 

model predicted weight of the ith coordinate, 𝑐𝑐𝑖𝑖 = (𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖, 𝐿𝐿𝑙𝑙𝐿𝐿𝑙𝑙𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖) the ith 

coordinates and where the centroid 𝑦𝑦� = �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿� , 𝐿𝐿𝑙𝑙𝐿𝐿𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿� � is the model prediction for 

the ship location,  

𝑦𝑦� = ��̂�𝑝𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖

𝐾𝐾

𝑖𝑖=1

 . 

With appropriate choice of candidates, this “focuses” the model on the area of interest 

and particularly on the ship-dense areas. This network architecture includes a pre-output layer 

with 𝐾𝐾 units that will be multiplied by the predefined 𝑐𝑐𝑖𝑖 values. To make the output 

correspond to a centroid calculation, the hidden values 𝑝𝑝𝑖𝑖 must sum to one. To achieve that, 

the pre-output layer will be activated by a softmax function. 

The predefined set of coordinates starts as a set of cluster centers found by clustering 

all ship locations in the area of interest. The unique structure of the data includes a dense 

distribution of coordinates near the shore, especially near the ports, and nothing beyond, since 

no ship travels on land. This makes it difficult for the model to predict locations that are near 

the land, as the centroid is confined to the convex hull defined by the cluster centers. This is 

not a minor issue, as we are particularly interested in predicting ship behavior at these 

shoreline regions. To solve this problem, we add a set of artificial cluster centers along the 

shore and inland, as well as a set of peripheral coordinates to allow the model to predict 

destinations at the edges of the area of interest.  

Different clustering algorithms and tuning settings result in a different number of 

clusters and spatial distribution. As we were not sure what works best, we experiment with a 
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few configurations. We use the mean shift clustering algorithm varying its bandwidth (Cheng 

1995; Fukunaga and Hostetler 1975). In Figure 10, we present such clustering outcomes using 

a bandwidth of 0.073 over the 20,942,915 coordinates in the data set. The resulting 339 cluster 

centers are shown in red, superimposed on a heatmap of ship locations.  

 

Figure 10.  Cluster centers’ spatial distribution in the 
area of interest 

One possible advantage of this regression method over the classification approach is 

that the accuracy is not limited by the number of classes in the output layer. Also, this method 

gives weight to the prior information of the data distribution that is not emphasized in the 

other approach.  

1. Model Architecture 

The model architecture is similar to the classification model architecture, and only 

deviates from it in the last layers that deal with the output representation. The model 

architecture is given in Figure 11. 
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Figure 11.  Regression model architecture 

In the “naïve” approach the size of the output layer is two, one for each of the latitude 

and longitude values. In the clustering approach the pre-output layer has 𝐾𝐾 units, one for each 

cluster center, and is activated by a softmax function. The output layer multiplies these values 

by the coordinates of the cluster centers. This results in the predicted location output of latitude 

and longitude coordinates. 

2. Optimization and Loss Function 

As we are trying to predict locations, we use a geographic distance loss function. An 

option is to use Haversine distance, which calculates the great-circle distance between two 

points p1 = (𝐿𝐿𝐿𝐿𝐿𝐿1,𝐿𝐿𝑙𝑙𝐿𝐿𝑙𝑙1) and p2 = (𝐿𝐿𝐿𝐿𝐿𝐿2, 𝐿𝐿𝑙𝑙𝐿𝐿𝑙𝑙2) on a sphere with radius R, given their 

longitudes and latitudes and is given by the formula,  
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2𝑅𝑅 ∙ 𝐿𝐿𝑎𝑎𝑐𝑐𝑎𝑎𝑖𝑖𝐿𝐿 ��𝑎𝑎𝑖𝑖𝐿𝐿2 �
𝐿𝐿𝐿𝐿𝐿𝐿2 − 𝐿𝐿𝐿𝐿𝐿𝐿1

2
� + 𝑐𝑐𝑙𝑙𝑎𝑎(𝐿𝐿𝐿𝐿𝐿𝐿1) 𝑐𝑐𝑙𝑙𝑎𝑎(𝐿𝐿𝐿𝐿𝐿𝐿2) 𝑎𝑎𝑖𝑖𝐿𝐿2 �

𝐿𝐿𝑙𝑙𝐿𝐿𝑙𝑙2 − 𝐿𝐿𝑙𝑙𝐿𝐿𝑙𝑙1
2

�� 

Using this equation as the loss function is computationally inefficient, however, in 

comparison to a simpler approximation, the Equirectangular distance given by 

𝑅𝑅 ∙ ��(𝐿𝐿𝑙𝑙𝐿𝐿𝑙𝑙2 − 𝐿𝐿𝑙𝑙𝐿𝐿𝑙𝑙1) 𝑐𝑐𝑙𝑙𝑎𝑎 �
𝐿𝐿𝐿𝐿𝐿𝐿2 − 𝐿𝐿𝐿𝐿𝐿𝐿1

2
��

2

+ (𝐿𝐿𝐿𝐿𝐿𝐿2 − 𝐿𝐿𝐿𝐿𝐿𝐿1)2 

We use the Equirectangular distance as a loss function and the haversine distance for 

prediction evaluation. 
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IV. MODEL TRAINING AND RESULTS 

This chapter presents the training procedure and an experimental design used to search 

the space of hyper-parameters and architectural configurations. Results are also presented and 

discussed.  

A. TRAINING THE MODELS 

The full data set has 17,647 tracks, with variable lengths, from 300 minutes (5 hours) 

to 3,000 minutes (2 days). We use 70% of it (approximately 12,300 tracks) for training, 15% 

for validation during the training procedure and 15% for a test set. We feed the models with 

input that includes the track coordinates as the basic data type, along with additional input 

such as the speed and bearing, the ship type, area, and call sign. 

The models’ output is a series of predictions of the next location of the ship. While 

there are several ways to train a predictive model, we obtain the best predictive power when 

training a model to predict the ship’s location at a single fixed time interval into the future. 

Predicting a short interval forward and using this prediction to obtain predictions at the next 

time steps tend to accumulate errors much faster, leading to worse prediction.  

When training the models, there is a set of design choices to be made regarding the 

RNNs’ architecture and hyper-parameter configuration. As Goodfellow et al. (2016) 

describes, the performance of a network is sensitive to these choices, and thus the process of 

architecture and hyper-parameter tuning is considered to be an important and challenging task. 

This requires a search in a high-dimensional space and over many orders of magnitude for 

some of the hyper-parameters.  

Moreover, as we are working with thousands of tracks, many millions of data points 

and large network architectures (millions of parameters), the training time typically ranges 

from hours to a few days. To tackle this, we use a two-fold solution. We use methods from 

the field of Design of Experiments (DOE), and we use parallel computing to speed up training 

time. 
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a. Experimental Design 

We cannot train a NN for every possible choice of hyper-parameters and architecture 

configuration or even using a coarse grid search, which is known to be an inefficient search 

method (Nannini and Wan 2011). Using a random search is a common practice in hyper-

parameter tuning of NNs. However, a random search is not very efficient for filling a high-

dimensional space and leads to correlations between the design columns (Bergstra and Bengio 

2012; Sanchez and Wan 2012).  

Instead, we use a search method borrowing an experimental design that has been 

particularly useful for studying how response surfaces change with input parameters in large-

scale simulation models (Nannini and Wan 2011). This design is a Nearly Orthogonal Latin 

Hypercube (NOLH). According to Cioppa and Lucas (2007), NOLH designs spread the 

design points across the factor space so that each of the factors is examined at many different 

levels, and at the same time, the design columns (governing each factor) are orthogonal or 

nearly orthogonal to avoid simple confounding effects. 

A NOLH design does not guarantee the ability to detect multiway interactions. Given 

the constraints we face, however, such design is a reasonable compromise. Furthermore, even 

if the actual response surface is complex, we can still learn a lot with low degree 

approximations from the NOLH designs. 

The initial design includes most of the parameters over 129 experiments. Since many 

of the design points are extreme, we train these models for only two epochs. Using the results 

of these initial experiments, we rule out the non-productive factor ranges and focus the search 

effort. We summarize the ranges of hyper-parameters and architectural choices in Table 3.  
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Table 3.   Productive ranges of hyper-parameters 

Parameter Initial range Productive range 
Input Choices 

Static Data (Ship type, 
area and call sign) Use / Don’t Use Use 

Speed and Bearing data Use / Don’t Use Use 
Window Size [1,100] [1,30] 

Architecture Choices 
LSTM layer size 
(number of units in each 
layer) 

[1,1000] [250,500] 

Number of LSTM Layers [1,10] [1,3] 
Dense layer size (number 
of units in each layer) [1,1000] [150,300] 

Number of Dense Layers [1,10] [1,2] 
Learning Parameters Choices 

Optimizer SGD / RMSprop / Adam 
/ Nadam RMSprop 

Dense layers activation None / Rectified Linear Rectified Linear 
Dropout Rate [0,0.5] [0.1,0.2] 
Regularization (activity 
and kernel) [0, 10−1] [0, 10−4] 

Learning rate [10−6,1] [10−3, 10−2] 
Learning momentum [0, 0.99] [0.8, 0.95] 
Learning momentum 
decay [10−5, 0.5] [0.005, 0.1] 

 
The best performance is for window sizes in the range of [1,30]. Very deep networks, 

with more than three LSTM layers and two dense layers do not perform well, perhaps due to 

the “vanishing gradient” effect common in large networks. 

An example for a second phase search, with the productive ranges taken from Table 

3, where we alter ten factors and run 33 experiments, is shown in Table 4. 
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Table 4.   Second phase NOLH design 

Window 
Size 

LSTM 
Size 

LSTM 
layers 

Dense 
Size 

Dense 
Layers 

Dropout 
Rate 

Regulari
zation 

Learning 
Rate 

Mome
ntum 

Decay 
Rate 

30 273 2 178 2 0.16 0.00002 0.0029 0.95 0.07 
27 500 1 206 1 0.12 0.00003 0.0021 0.94 0.05 
26 359 3 173 1 0.16 0.00003 0.0011 0.85 0.10 
17 469 3 211 2 0.12 0.00004 0.0012 0.87 0.01 
28 258 2 183 2 0.17 0.00001 0.0037 0.81 0.02 
29 484 2 192 1 0.12 0.00000 0.0075 0.80 0.06 
21 367 3 188 1 0.17 0.00001 0.0081 0.93 0.01 
16 422 3 202 2 0.13 0.00000 0.0100 0.88 0.09 
20 313 1 230 2 0.13 0.00000 0.0015 0.89 0.06 
23 414 2 253 1 0.15 0.00000 0.0024 0.93 0.02 
22 305 3 295 1 0.11 0.00000 0.0014 0.86 0.06 
24 430 2 291 2 0.2 0.00001 0.0025 0.83 0.02 
18 289 1 234 2 0.11 0.00009 0.0060 0.85 0.03 
25 398 2 281 1 0.16 0.00007 0.0052 0.84 0.08 
19 297 3 286 1 0.1 0.00002 0.0056 0.91 0.04 
25 406 2 300 2 0.19 0.00001 0.0045 0.92 0.08 
16 375 2 225 2 0.15 0.00001 0.0032 0.88 0.05 
1 477 2 272 1 0.14 0.00000 0.0034 0.80 0.03 
4 250 3 244 2 0.18 0.00000 0.0049 0.81 0.06 
5 391 1 277 2 0.14 0.00000 0.0093 0.90 0.01 
14 281 1 239 1 0.18 0.00000 0.0087 0.88 0.09 
3 492 2 267 1 0.13 0.00002 0.0027 0.94 0.09 
2 266 2 258 2 0.18 0.00005 0.0013 0.95 0.05 
10 383 1 263 2 0.13 0.00002 0.0012 0.82 0.10 
15 328 1 248 1 0.18 0.00004 0.0010 0.87 0.01 
11 438 3 220 1 0.17 0.00010 0.0065 0.86 0.04 
8 336 2 197 2 0.15 0.00006 0.0042 0.82 0.08 
9 445 2 155 2 0.19 0.00006 0.0070 0.89 0.04 
7 320 2 159 1 0.1 0.00001 0.0039 0.92 0.09 
13 461 3 216 1 0.19 0.00000 0.0017 0.90 0.07 
6 352 2 169 2 0.14 0.00000 0.0019 0.91 0.03 
12 453 1 164 2 0.2 0.00000 0.0018 0.84 0.07 
6 344 2 150 1 0.11 0.00001 0.0022 0.83 0.03 

 
The design factor scatterplots displayed in Figure 12 illustrate the space filling 

properties of NOLH.  
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Figure 12.  Scatterplot matrix of the design variables 

Since many of the factors are categorical with very few levels (two to three) the 

orthogonality of the design is somewhat compromised but correlation between factors is still 

relatively low, as seen in Table 5. 
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Table 5.   Correlations of phase two design columns 

 

b. Parallel Computing 

As described by Goodfellow et al. (2016), NNs train much faster on graphics 

processing units (GPU) than central processing units (CPU). The majority of work in this 

research is done with a server, hosting the data and computation in a 24-core Intel Xeon E5-

2650 with 512 GB RAM and two Nvidia Titan XP 12 GB GPUs using Nvidia CUDA 9.2 

libraries. 

However, the search described in this section uses the Naval Postgraduate School 

(NPS) High Performance Computing center (HPC), sending the computing jobs in batches to 

a heterogeneous computing cluster managed with the Simple Linux Utility for Resource 

Management (SLURM) job scheduler, and running them in parallel over dozens of nodes, 

sharing 16 GPUs with 120 GB. 

We implement the models using the Python language, the Keras library (Chollet 

2015), and a TensorFlow (Abadi et al. 2016) backend. 

c. Additional Challenges 

Another issue with the training process regards the exact method of feeding the data 

into the networks. The model “learns” on mini-batches of a set of 20–100 tracks each time, 

 Window 
Size 

LSTM 
Size 

LSTM 
layers 

Dense 
Size 

Dense 
Layers 

Dropout 
Rate 

Regularization Learning 
Rate 

Momentum Decay 
Rate 

Window Size 1.0000 -0.0030 0.0615 0.0117 -0.0972 0.0184 -0.0262 -0.0076 0.0313 0.0017 
LSTM Size -0.0030 1.0000 0.0312 0.0011 -0.2156 0.0250 -0.0096 0.0144 -0.0104 -

0.0128 
LSTM layers 0.0615 0.0312 1.0000 -0.0483 -0.2127 -0.0146 -0.0028 0.0803 0.0045 0.0109 
Dense Size 0.0117 0.0011 -0.0483 1.0000 -0.0605 0.0239 -0.0176 -0.0093 0.0167 -

0.0370 
Dense Layers -0.0972 -0.2156 -0.2127 -0.0605 1.0000 0.2337 0.0203 -0.0042 -0.0769 -

0.0565 
Dropout Rate 0.0184 0.0250 -0.0146 0.0239 0.2337 1.0000 0.0368 0.0006 -0.0280 -

0.0225 
Regularization -0.0262 -0.0096 -0.0028 -0.0176 0.0203 0.0368 1.0000 0.0664 -0.0445 -

0.0656 
Learning Rate -0.0076 0.0144 0.0803 -0.0093 -0.0042 0.0006 0.0664 1.0000 -0.0256 -

0.0141 
Momentum 0.0313 -0.0104 0.0045 0.0167 -0.0769 -0.0280 -0.0445 -0.0256 1.0000 0.0009 
Decay Rate 0.0017 -0.0128 0.0109 -0.0370 -0.0565 -0.0225 -0.0656 -0.0141 0.0009 1.0000 
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updates its internal weights and parameters according to the prediction errors, and moves to 

the next batch of tracks. However, with Keras all tracks in a batch must have the same length.  

One solution to such limitation is to choose a maximum length for all tracks in the 

data set, truncate the longer ones, and pad the shorter ones with zeros (or a relevant symbol 

that signals the model that this is not “real” data) or pre-pad these tracks with the first “real” 

input repeated. Initially we implemented this approach, paying a double fine; we lost massive 

parts of the data in the long tracks, and we forced the models to learn irrelevant data in the 

pre-padded short tracks. 

A better solution is to create a data generator that iterates through the training set. The 

data generator sorts the training set from shortest to longest track, then iteratively takes a batch 

size of tracks, truncates them to the length of the shortest track in the batch (avoiding pre-

padding), and feeds them as input to the model. Then the generator jumps forward a fixed 

number of tracks and repeats the process. This approach is illustrated in Figure 13. 

 

Figure 13.  Data generator iterative scanning procedure  

In this example, the entire training set has 12 tracks, and the batch size is four tracks; 

therefore, standing at track (i), we truncate tracks (i+1), (i+2), and (i+3) according to tracks’ 
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(i) length (they are sorted by length). If we choose a jump size of 4, we iterate through the 

training set in three batches. If we choose jump size of 2, we iterate through the training set in 

six batches, feeding most (all apart from the first and last half batch) of the tracks into the 

network twice. This is desirable since in training NNs the data is usually fed to the model 

many times anyway, and by using small jump sizes the model gets to “see” more of the data. 

B. RESULTS  

We train two types of NNs: regression and classification models. Since they use 

different loss functions, we use the classification model’s output to compute a miss distance 

(the distance between the predicted and actual ship location) to be comparable to the 

regression model.  

We use the following metrics of accuracy: 

• median miss distance 

• average miss distance 

• distribution of the miss distances 

Since the prediction is based on time series data, and we do not expect the model to 

give accurate predictions during the very beginning of the track. Thus, we give the model a 

“grace period” of 100 warm-up time steps and only from that point onward do we measure 

the losses. 

All models share some hyper-parameters found to give good performance. L2-Norm 

regularization with a coefficient of 0.0001 is used to regularize the recurrent weights in the 

LSTM layers and the dense layers. Whenever we use dropout layers, they are set to randomly 

dropout 0.1 of the connections between the layers from both their sides. The regularization 

and dropouts are only active during the training of the models. 

Furthermore, the activation function of the dense layers in all models is ReLu. All 

models are trained with the RMSprop optimizer, using an initial learning rate of 0.005, a 

momentum of 0.9, and decay of 0.01. We use a learning rate scheduler that drops the learning 

rate by 50% if the loss over the validation set do not improve in the previous five epochs. 
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The results are presented according to their prediction horizon. First, we present 

models predicting one time step into the future, then 30 time steps, and finally 100 time steps 

into the future.  

1. Prediction Models Using One Time Step (1 Minute) 

We begin by presenting the results of short-term predictions of one time step (1 

minute) into the future. Table 6 presents the mean and median miss distance for the best 

models, calculated over a test set that includes 2,647 tracks of various lengths (sampled at 

random from the initial database and separated from the training and validation data sets). The 

actual miss distance is calculated using the Equirectangular distance on all predictions made 

after a warm-up period of 100 time steps (100 minutes), leaving a total of 2,843,539 

predictions to evaluate. 

Table 6.   Accuracy of 1-minute prediction models 

# 

Model description Mean 
miss 

distance 
± 95% 

CI 
[meters] 

Median 
miss 

distance 
[meters] Type Inputs Window 

size 
LSTM 
layers 

Dense 
layers 

 

1 Classification 
20 meters 

All Dynamic 
Data 20 1X250 1X150 8 0 

2 Classification 
20 meters All types 20 1X250 1X150 123±1 12 

3 Classification 
100 meters All types 20 1X250 1X150 135±1 10 

4 Classification 
100 meters All types 20 2X400 1X300 137±1 14 

5 Classification 
100 meters 

Coordinates 
only 20 1X250 1X150 105±1 100 

6 Classification 
100 meters All types 1 1X250 1X150 287±1 148 

7 Regression 
Clusters 

All Dynamic 
Data 20 1X250 1X150 810±2 506 

8 Regression All types 20 1X250 1X150 808±2 606 
9 Regression All types 20 2X400 1X300 865±2 637 
10 Regression All types 5 1X250 1X150 1380±4 1168 
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# 

Model description Mean 
miss 

distance 
± 95% 

CI 
[meters] 

Median 
miss 

distance 
[meters] Type Inputs Window 

size 
LSTM 
layers 

Dense 
layers 

 

11 Regression All Dynamic 
Data 20 1X250 1X150 881±2 703 

12 Regression Coordinates 
only 20 1X250 1X150 1025±3 826 

 

One of the architectural design choices in classification NNs is the resolution of 

classes available. While classifying the bearing is done with 180 classes, of two degrees each, 

we experiment with different distance classification resolutions. The first two models, #1 and 

#2 use a fine grid of distance categories of 20 meters; thus, the possible categories are: {0, 10, 

30, 50, … ,1500}. The rest of the classification models use a resolution of 100 meters with 

categories of {0, 50, 150, … ,1500}. 

The classification models appear to outperform the regression models in one time-step 

predictions. The best model, #1, is the slim version with one LSTM layer with 250 units, one 

dense layer with 150 units, coordinates input window of 20 time steps that takes as input the 

dynamic data (coordinates, speed, and bearing) and does not take the static data. Its 

predictions, in a resolution of 20 meters, have a mean miss distance of 8 meters and median 

of zero meters. Here, the prediction horizon is one time step, which is 1 minute, so the ship 

can travel up to 1,000 meters in this time (given the speed limit we use to filter the data of 60 

km/hour).  

The next best model has the same architecture, but with static data as additional input. 

Surprisingly, the extra information supplied not only do not improve the predictions, it makes 

them worse. This result is consistent with the other models results, which leads us to suspect 

the embedding mechanism we use does not fit the problem or that the training set is too small. 

In contrast, using the speed and the bearing as input, in addition to the coordinates, improves 

the predictive performance, as can be seen in comparing models #1 and #5 and regression 

models #11 through #12. We conclude that richer input has the potential to improve 

performance, but choosing the right representation design is important for that goal.  
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Further, it seems that larger models perform slightly worse that the smaller ones, as 

can be seen when comparing models #3 and #4 and #8 and #9. On the other hand, a longer 

coordinate input window seems to improve the results for both classification and regression 

as can be seen by comparing models #4 and #6, and with models #8 and #10. The best 

regression model is #7 that uses the cluster centers approach. This model assigns weights to 

339 cluster centers and the prediction is therefore the weighted center of these points.  

The superiority of classification models for this time horizon prediction can be 

partially explained by the way they work. Classification models use a set of categorical units 

as an output layer and so their predictions are discretized to a set of distances and heading 

angles. In the one time-step models, the maximum distance is category 1,500 meters, and thus 

the potential miss distances are bounded, which focuses the network’s prediction and gives it 

a relative advantage over regression models. 

An example for a prediction is given in Figure 14. The blue line represents the track 

itself (the target for the prediction) and the red line represents the model’s prediction. The blue 

and purple bubble icons mark every tenth time step. Since the predictions are accurate, it is 

hard to see the difference between the lines (since they are partially transparent they blend to 

purple). 
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Figure 14.  One-minute predictions (red) of classification 
model #1 and actual track (blue) 

As can be seen in Figure 14, the RNN learns the motion pattern of the ship and 

successfully predicts the next time-step location of the ship. This result is achieved both in 

classification RNNs and in regression RNNs (though less outstanding). 

2. Prediction Models Using Thirty Time Steps (30 Minutes)  

Next, we train a set of models to predict 30 time steps (30 minutes) into the future. 

The best results are given in Table 7 . Next to the median miss distance scaled to 1-minute 

misses, so that it can be compared to the results in Table 6. All classification models use a 

distance resolution of 215 meters. 
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Table 7.   Accuracy of 30-minute prediction models 

# 

Model description Mean 
miss 

distance ± 
95% CI 
[meters] 

Median 
miss 

distance 
[meters] 
(miss per 
minute) 

Type Inputs Window 
size 

LSTM 
layers 

Dense 
layers 

 

1 Classification 
All 

Dynamic 
Data 

20 1X250 1X150 670±2 411 (14) 

2 Classification 
All 

Dynamic 
Data 

40 1X250 1X150 673±2 400 (13) 

3 Classification All types 20 1X250 1X150 1367±4 473 (16) 
4 Classification All types 20 2X400 1X300 1508±4 501 (17) 

5 Classification Coordinates 
only 20 1X250 1X150 2862±9 2143 (71) 

6 Classification All types 1 1X250 1X150 3845±15 929 (31) 

7 Regression 
Clusters 

All 
Dynamic 

Data 
20 1X250 1X150 1453±5 838 (28) 

8 Regression All types 20 1X250 1X150 1541±5 1102 (37) 
9 Regression All types 40 1X250 1X150 1623±5 1154 (38) 

10 Regression 
All 

Dynamic 
Data 

20 1X250 1X150 1445±5 1063 (35) 

11 Regression All types 10 2X400 1X300 2325±8 1222 (41) 

12 Regression Coordinates 
only 20 1X250 1X150 2481±8 1694 (56) 

 
The results of these models are similar to the short-term prediction models. 

Classification models seem to perform better and avoiding the use of the static data improves 

the prediction substantially. Yet, richer dynamic data is better than using coordinates alone, 

as reflected in models #1 and #5 and regression models #7 and #12.  

Experimenting with a larger coordinate input window size of 40 yields roughly the 

same results. On the other hand, decreasing its size to 10 or 1 significantly reduces model 

accuracy, as seen when comparing models #3 and #6. The best regression model, #7, uses the 

clustering approach with 339 centers. 
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In the case of 30 time-step prediction models the overall predictions are close to the 

actual track. Given the average speed of the ships in the database, 26 km/hour or 14 knots, in 

30 time steps (30 minutes) a ship travels on average 13 km. Therefore, a median miss distance 

of about one kilometer for the regression model and less than 500 meters for the classification 

model is quite accurate. Figure 15 shows the miss distances distributions for the best 

classification and regression models (#1 and #6, respectively). 

 

Figure 15.  Histogram of miss distances for models #1 and #7 

The classification model miss distance distribution is centered around lower distances 

than the regression model. Also, some discretization of the miss distances can be seen in the 

lower range. This is due to the discrete categories of distances, which are in intervals of 215 

meters for this model. In Figure 16, we present an example to predictions made by model #1, 

using the same color-coding as in Figure 14. 
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Figure 16.  30-minute predictions (red line and bubbles) of classification 
model #1 and actual track (blue line and bubbles) 

In the left plot of Figure 16, we show a track from September 17, 2016, of ship with 

MMSI 367455580 that is sailing to Concord. The right plot of Figure 16 takes a closer look 

at the prediction process near San Francisco (SF). Since the model predicts 30 time steps 

ahead and every bubble on the map marks ten time steps, when a ship is at P1, the model 

predicts that in 30 minutes, the ship will be at P4, heading to SF port. Yet, at ten minutes later, 

when the ship is at P2, the model acknowledges the slight change in bearing and corrects its 

prediction to P5. At P3 the model is already confident in the ships direction and predicts the 

sharp left turn that will happen in 20 minutes’ time.  

In Figure 17, we present an example of predictions made by the best regression model, 

#7. The green dots represent the cluster centers the model uses to build its predictions. 
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Figure 17.  30-minute predictions (red line and bubbles) of #7 regression 
model and actual track (blue line and bubbles) with cluster centers 

(green dots)  

At the beginning of the track where the green and red markers are located, the 

prediction is not good, as the model is in its “warm-up” period. After the warm-up period, the 

model predicts the track quite accurately. Sudden turns are not always predicted, and the 

model corrects itself to the actual track after a short while. This is especially encouraging in 

the regression models, since we are predicting a set of coordinates that are only bounded by 

the convex hull of landmark cluster centers, covering the entire region.  

The predicted track itself is less fragmented than the one produced by the classification 

approach since the possible predicted locations are not discretized. Using the weighted mean 

of the cluster points also contributes to a smoother prediction. It is worth noting the cluster 

centers that can be seen in Figure 17 are relatively sparse, which might negatively affect the 

performance.  

3. Prediction Models Using One Hundred Time Steps (100 Minutes) 

Forcing the models to predict “far” into the future makes the RNNs learn different 

patterns. As the information on which the predictions are made is less current, the models 

must now give larger weight to common ship behaviors in the region and extract more from 
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the static input data. In Table 8 the best models’ performance can be observed. The 

classification models use a distance resolution of 500 meters. The angular resolution becomes 

a potential issue at these prediction horizons, as the prediction will be typically around 45 km 

ahead. Two degrees difference at such distance a will translate to a full mile.  

Table 8.   Accuracy of 100-minute prediction models 

# Model description Mean miss 
distance ± 
95% CI 
[meters] 

Median miss 
distance 
[meters] 
(miss per 
minute) 

Type Inputs Window 
size 

LSTM  
layers 

Dense 
layers 

 
1 Classification All 

Dynamic 
Data 

20 1X250 1X150 2795±4 1673 (17) 

2 Classification All types 20 1X250 1X150 3024±4 1728 (17) 
3 Classification All types 20 2X400 1X300 3222±4 1891 (19) 
4 Classification All 

Dynamic 
Data 

20 2X400 1X300 2974±4 1502 (50) 

5 Regression 
Clusters 
(1023) 

All 
Dynamic 
Data 

20 1X250 1X150 3763±11 2020 (20) 

6 Regression 
Clusters (339) 

All 
Dynamic 
Data 

20 1X250 1X150 3950±11 2087 (21) 

7 Regression All types 20 1X250 1X150 4427±13 2642 (26) 
8 Regression All types 10 2X400 1X300 4435±13 3006 (30) 
9 Regression All 

Dynamic 
Data 

20 1X250 1X150 4200±12 2595 (26) 

 

As in the results shown in Table 6 and Table 7, the classification models seem to be 

better, but the difference is smaller. There might be a threshold effect where regression has 

some limiting error that is very prominent when trying to predict a short time into the future, 

but less so when predicting 100 time-steps forward. The best regression models are the ones 

using the clustering approach. Increasing the number of cluster centers is challenging 

computationally, as the computer has to hold in memory an array with one of its dimensions 
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being the number of clusters. The largest we experiment with is a 1,023 cluster centers model, 

#5, which seems to perform better than model #6, which uses the same architecture but with 

a smaller number of cluster centers. This makes sense, as it should be easier for the model to 

be accurate with the added centers. In Figure 18 we display the difference in the cluster centers 

point densities. 

 

Figure 18.  Cluster center points using 339 clusters (purple) and 
1,023 clusters (green) 

The miss distance distributions of models #1 and #5 in Figure 19 show the 

discretization effect for the classification model and the longer heavier tail of larger miss 

distances for the regression model. 
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Figure 19.  Miss distance histograms of models #1 and #5 

In Figure 20 we give an example of predictions made by the best classification model, 

#1, on a ship heading to Los Angeles port. We thinned the frequency of markers along the 

track to one every 50 time steps.  

 

Figure 20.  100-minute predictions (red) of classification 
model #1 and actual track (blue) 
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At P1 the model predicts that the ship will reach P3 in 100 time steps (an hour and 

forty minutes from the current point). It predicts the entrance to the port, but aims for a 

different location to harbor. At P2, the model predicts that the ship will reach the central part 

of LA port. The fragmentation of the track is due to the discretization discussed earlier.  

4. Detection of Abnormal Ship Behaviors 

A model with good predictive ability and relatively low miss distances can be used to 

detect anomalous behaviors. Most tracks in the training database exhibit normal behavior. We 

expect abnormal tracks to deviate from the norm, and therefore to be harder to predict with 

our model, which is trained on primarily normal behavior. Abnormal tracks and potentially 

nonlegitimate ones should have larger prediction errors. Tracks with high miss distance have 

something in them that is abnormal or not frequently witnessed during the training of the 

prediction model.  

In the next passages we show an initial exploration of anomalies detection using the 

prediction loss, which is far from a developed methodology. We evaluate the models shown 

in the previous tables over every track in the test set and sort the resulting mean miss distances 

from smallest to largest. The tracks with the smallest mean miss distances are simple tracks 

of straight lines and smooth sails along the coast and into harbor. On the other hand, the tracks 

with the largest mean miss distance are seen to exhibit erratic behavior with unexpected turns 

at different locations. In Figure 21 we give the distribution of mean miss distance across each 

track of the best 30 time-steps classification model (#1 in Table 7). The right tail of the 

distribution includes the tracks where the prediction, on average along the track, is less 

accurate. 
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Figure 21.  Histogram of mean miss distance per 
time step for anomaly detection 

Figure 22 and Figure 23 show examples of four cargo and passenger ship tracks with 

the highest mean miss distance. To make a clearer display we do not plot the bubbles that 

mark every tenth time step as in the previous tracks’ figures. We do mark the first time step 

with a green bubble and the first prediction with a red one. 

  

Figure 22.  Examples of anomalous tracks (blue) with 
their predicted tracks (red) 
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Figure 23.  Examples of anomalous tracks (blue) with 
their predicted tracks (red)  

The ability to detect such behaviors using the mean miss distance, without the need 

for a human operator to watch screens filled with ship tracks, is a valuable tool in today’s 

maritime environment. A system that takes as input these tracks and additional information 

can potentially identify anomalies from their very beginning, alert an operator, or execute 

other sets of orders. This can be done by following the online miss distance of the track, 

searching for sudden spikes. Figure 24 shows an anomalous track of the Japanese cargo ship 

Texas Highway (MMSI 432440000) passing by San Diego with bubble markers at every 50th 

time step (annotated). Unexpectedly, starting at around time-step 200, the ship makes a few 

sharp turns and only gets back to track after the 400th time step. 
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Figure 24.  Anomalous ship track of Texas Highway (blue) 
with its predicted track (red) 

Following the “online” prediction miss distance plotted in Figure 25, it is easy to 

detect the beginning of the anomalous behavior of the ship by the rising spikes, as pointed to 

by the red arrow. 
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Figure 25.  Online miss distance of Texas Highway’s track 
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V. DISCUSSION 

In this chapter we discuss potential improvements to the models and suggest relevant 

future work. We also discuss some of the challenges we encounter and their solution. 

A. MODEL IMPROVEMENTS AND FUTURE WORK 

Our models’ performance falls short of giving a satisfactory and universal solution to 

the problem of predicting ship trajectories and detecting anomalies from those predictions. 

There are numerous ways in which the models can be improved and their performance 

potentially enhanced. We describe some of these here. 

1. Data  

Although we use a large data set, the actual number of tracks is small. For example, a 

recent work by De Brébisson et al. (2015) using NNs to predict taxi ride destination in the city 

of Porto, Portugal, based on a Kaggle challenge, use 1.7 million tracks (or parts of tracks) to 

predict the final ride’s destination. We use about 1% (~17,500 tracks) of their training set size. 

We also use only two years’ worth of AIS data, out of at least eight years of available records.  

Further, in the process of cleaning the data we exclude a tremendous number of 

training examples. In addition, there are methods to artificially enlarge the data set. One could 

“play” tracks in both directions, thus doubling the size of the training set. Experimenting with 

partitioning long tracks into shorter ones might also prove useful. We believe that expanding 

the data set to include these types of additional data can improve the models’ predictive ability. 

We see that, in general, enriching the data improves the prediction. Nonetheless, this 

must be done in an appropriate manner. We believe the method of embedding the static data 

can be improved so that it will make a positive contribution to the predictive ability. This 

might be done by experimenting with the embedding size, which we do not do. Embedding 

more input types such as the time and date and the weather might prove useful as well. 

While the static data do not prove to have a useful impact, the additional dynamic data 

of speed and bearing certainly do. Adding a window scheme as we use for the coordinates 

might enhance their contribution in a similar manner. Further, adding “environmental” data 
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such as the location of nearby ships and Meteorological and Oceanographic (METOC) 

information seems like a promising enhancement. These nearby locations can be extracted 

from the existing AIS data.  

2. Model Architecture 

To use more geographical context features, one might implement a combination of 

convolutional layers to “read the map” as an image. Convolutional LSTM networks have been 

successfully used by Xingjian et al. (2015) for rain precipitation nowcasting. If the input will 

be rich enough, such a scheme might prove efficient. 

Batch normalization developed by Ioffe and Szegedy (2015) dramatically improves 

the performance of deep NNs. This technique has been adapted by Ba et al. (2016) and others 

to recurrent architectures using layer normalization. We did not experiment with such 

architectural variants, but they might prove beneficial to future work. 

Although the clustering approach is the most successful out of the regression models, 

we believe the results do not represent its full potential. We use a relatively small number of 

clusters and do not thoroughly tile the area of interest with artificial cluster centers. For most 

models we use 339 cluster centers to predict coordinates in an area the size of approximately 

2 million 𝑘𝑘𝑘𝑘2. In comparison, De Brébisson et al. (2015) use approximately 3300 cluster 

centers to predict coordinates in an area the size of approximately 250 𝑘𝑘𝑘𝑘2. 

Another approach that we experiment with, but do not report in the main chapters of 

this thesis, is the absolute positioning approach for classification models. We describe this 

approach in Appendix A. It might be worth examining again with larger data sets.  

3. Training  

In most cases we stop the network training before reaching convergence. This is 

especially relevant when using a learning rate scheduler. Since the training sessions are 

relatively short, there is no chance for the learning rate to decrease significantly, thus 

preventing potential “leaps forward” in performance as described by Goodfellow et al. (2016). 

Using model evaluation over the test set we identify anomalous tracks, as we explain 

in Chapter IV. This approach can be incorporated into the training procedure by creating a 
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separate model that tries only to classify whether a track is normal or anomalous. To enhance 

such a classifier, supervised learning can be used as well by enriching the data set with known 

incidents of criminal activities, piracy, ships with technical issues that affected their track, etc.  

B. CHALLENGES AND LESSONS LEARNED IN WORKING WITH 
NEURAL NETWORKS 

In this part we describe some of the challenges and lessons learned during the research, 

meant as guidance for future projects of this sort.  

• In calculating distances on a map, we find that using the Equirectangular 

distance to approximate distance is sufficient and is fast. However, when 

projecting the next destination given origin coordinates, distance and 

bearing, we find that one must use the Haversine distance formula to be 

accurate. 

• In some instances, the NN might use division operations on very small 

numbers. Working in a digital environment, one might come across 

floating point problems, a very small number “becomes” zero, and 

division by this number results in NaN (Not a Number) values. For this, 

we use two solutions: 

• Keras has a software option to clip the norm and values of the weights’ 

updates so that NaN values do not (frequently) occur. 

• We use numeric data type of large memory such as float32 or float64. 

• When working with serial data in NNs, truncation or padding might be 

needed. We propose being careful with that, as the NN might 

“understand” the padded values to be what they are meant to be. At an 

early stage of this work we discover that one of the models is only 

learning to predict the (0,0) padded values, which are the geometric center 

of all the coordinates in the data set. 
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• At the beginning of this work we only used tracks with a much larger time 

interval between consecutive points, 15 minutes instead of 1 minute. As a 

ship can travel a good number of miles in 15 minutes, the prediction 

resolution is poor in the LA region and leads to impossible tracks that 

cross land and so forth. We recommend working with the most frequent 

data possible, and if needed thin it to 1-minute intervals. An example of an 

impossible track is shown in Figure 26, where a ship crosses through San 

Francisco on its way to Oakland port.  

 

Figure 26.  Example of bad resolution time-steps interval causing the 
interpolated track to cross land 
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VI. CONCLUSIONS 

In this work, we use RNNs to predict vessel movements based on recent travel history 

in the form of geographic time series data. Using AIS data we construct models that make 

accurate short, medium, and long-term predictions of future vessel location given recent travel 

history. We implement two primary approaches for model construction, posing the predictive 

task first as a classification problem and second as a regression problem. After implementing 

multiple variations of a deep RNN, we find that a classification approach, predicting 

discretized bearing and distance classes, works best, achieving the most accurate predictions 

of future position. Nevertheless, we still find that a successful regression approach can be 

formulated based on a clustering scheme, where regression targets are limited to a convex 

combination of engineered landmark points. By nature of the regression problem, the 

predicted vessel tracks are much smoother than those made by the discretized classification 

approach. 

For neural network design, we use NOLH for hyper-parameter selection using a two-

phase search process. We implement the models using the Python language and the Keras 

library (Chollet 2015) with a TensorFlow (Abadi et al. 2016) backend. Training the models is 

done using the NPS High Performance Computing center facilities, including a computing 

cluster running the training jobs in parallel over dozens of nodes, using 16 Nvidia GPUs with 

120GB. 

This type of model, which uses widely available AIS data to predict the future vessel 

behavior, has applications for enhancement of maritime awareness. For example, collision 

prevention and assistance with search-and-rescue lost vessel missions are two such 

applications. We briefly highlight the use of such predictive systems for another purpose, 

specifically anomaly detection, briefly exploring the use of prediction error as a real-time 

tracking mechanism for detecting improper vessel activity. Such ability to detect abnormal 

behavior is useful in automatically classifying suspicious ships that might engage in criminal 

activity, piracy, or terror, and ships suffering from an emergency that prevents them from 

following their normal conduct.  
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Overall, we find RNNs to be a viable method for predicting maritime activity. With 

NNs proving highly flexible, the potential for extending this work and incorporating new data 

sources is high, which is expected to improve the RNN’s predictive power further, making it 

a useful and valuable tool for enhancement of maritime domain awareness. 

  



63 

APPENDIX 

In this appendix we present an absolute positioning approach for classification models 

predicting a ship’s future track. Although it is not included in the main body of this work, it 

may prove valuable for future work. 

The task at hand is to try to classify the future location of a ship out of a large set of 

potential locations. Since the core data type is the time stamped coordinates of the ship, we 

need find a way to express location as a categorical variable.  

One option is to use “absolute positioning” of the area of interest so that every class 

represents an actual region or point on the map. In this approach, it is natural to partition the 

area of interest into rectangular regions using a grid so that every rectangle is a class that the 

model can predict. The input in such a case can be either the series of past coordinates of the 

ship or the series of rectangles in which these coordinates are located. The most convenient 

method for partitioning a region into a grid is to use “geohashing.” 

1. Geohashing 

Geohashing is a public domain geocoding system that was invented by Gustavo 

Niemeyer (2008). It encodes a geographic location using letters and digits in the form of a 

short string. The geohash system is a hierarchical spatial data structure that subdivides the 

space into sections of grid shape (Geohash 2018), as demonstrated in Figure 27. 
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Figure 27.  Geohash subdivisions example 
Source: Movable Type (2018) 

Every additional letter or digit (in short, symbol) represents one of the 32 inner cells 

in the next subdivision (e.g., the letter “g” in  Figure 27). Every additional symbol increases 

the precision of the geohash. For example, an 11-symbol long geohash will have a precision 

of ±7 centimeters (Niemeyer 2008). 

Once the coordinates are transformed into geohashes, every coordinate falls into one 

of a number of classes. These classes are the set of geohash rectangles that cover our area of 

interest (Los Angeles region, Figure 3), or more precisely, the rectangles in the area of interest 

where at least one of the coordinates in the data fall. The next step is to represent the geohashed 

(categorical) coordinates as NN model inputs.  

2. Applying One-Hot Encoding of the Geohashes to Model Inputs

To transform the geohash representation of a coordinate into a valid input for the NN, 

we use the one-hot encoding method. That is, for N unique geohash codes we create an input 
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vector of length N, where all values are zero except for one entry where the value is 1, 

indicating the “geohash class” of the given coordinate.  

We see two advantages in using this method for input and output encoding. First, for 

every possible location on the map that is present in the one-hot vector, the input can be 

enriched to include more information such as current weather conditions or the presence of 

other ships in nearby locations that might affect the behavior of the ship’s track. For example, 

by expanding the input to include another two vectors of the same length, one of them with 

the value of 1 at the entries that represent the number of other ships in each location and one 

with values between 1 and 5 to represent the sea-state at each location.  

The second advantage has to do with the classification output. Instead of getting only 

a pair of coordinates (regression approach), the model assigns probabilities to all possible 

locations at once, which is a richer form of output. The model can then better describe the 

predictive uncertainty about the multiple potential tracks the ship might take (e.g., if it is 

nearing a “crossroad” where most ships turn to the right or to the left). 

Yet, there are difficulties involved in this input and output representation method. 

When processing large sets of data as we do in this research, one soon encounters the 

challenge of memory and computation limits. Transforming coordinates into geohashes and 

creating the set of all geohashes present in the data resulted in the sets of large size, as seen in 

Table 9, which provides the number of unique Geohashes present in the data per chosen level 

of precision.  
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Table 9.   Number of unique geohashes present in the 
data per precision level 

Geohash 
Precision 

Level 

Geographical 
Dimension of 

Geohash 

Number of Unique 
Values in the Data 

Number of Unique 
Values in the Area of 

Interest 
3 160x160 km2 86 86 
4 40x40 km2 1312 1381 
5 5x5 km2 57,784 88,400 
6 1.2x1.2 km2 645,713 ~1,530,000 
7 150x150 meter2 2,102,578 ~98,200,000 

 

Table 9 shows that using a precision level of 5 results in 57,784 unique geohashes. 

This implies the model input will be composed of vectors of length 57,784. Choosing a higher 

level of precision makes the input size orders of magnitude larger. Since the input will be a 

series of hundreds or thousands of coordinates, with more dimensions for other types of data 

(speed, heading direction, ship type, etc.) this soon requires a big chunk of memory. More 

important still, building an NN with this size of input layer will force the model to be of 

tremendous size, with many millions of parameters, which risks very long to infeasible 

training time. 

A common solution to this sort of problem is called dimensionality reduction. 

Common methods such as Principal Component Analysis (PCA) (Jolliffe 2011) or Local 

Linear Embedding (Roweis and Saul 2000) attempt to compress the data into lower 

dimensional representations, which ideally represent the underlying lower dimensional 

manifold on which the input data lie. Autoencoding neural networks, developed by Hinton 

and Salakhutdinov (2006), are one such neural-based dimensionality reduction technique. 

Furthermore, it is possible to ‘embed’ such reductions within the network itself, where the 

learned embedding does not attempt to support the reconstruction error, but to support the 

classification objective itself.  

This is commonly implemented in classification problems with high dimensional data 

and a large number of classes, such as natural language processing, and is referred to as the 

use of an embedding layer (Cho et al. 2014; Goodfellow et al. 2016; Tang et al. 2014). The 

idea behind this is the notion that there can be found much more efficient ways to represent 
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the data than with sparse one-hot vectors, and that given enough training, the network would 

be able to learn this representation.  

To test whether our data could be embedded into a lower dimensional representation, 

we first tried creating an autoencoding network that would take a high dimensional input of a 

one-hot encoded geohash, reduce the dimensionality through a set of layers, and then 

reconstruct the same geohash one-hot vector at the output layer. Successfully encoding and 

decoding the same geohash would indicate that there is a good chance we would be able to 

harness this embedding technique to build a reasonably sized model. Table 10 summarizes 

the results of a few of these experiments. The autoencoding NN’s architecture is of an 

hourglass shape, starting from a big fully connected dense layer, then smaller layer(s) and 

growing back toward the output layer. The first and last layers are fully connected to a Keras’ 

embedding layer. Using Geohash precision level of 5, such layer has 57,784 units. Precision 

level 6 embedding layer has 645,713 units. The connections between the embedding layers 

and the first and last layers compose most of the NN parameters. 

Table 10.   Accuracy results of geohash autoencoding 
networks using one-hot method 

Geohash 
Precision 

Level 
Model Architecture Number of 

parameters 
Autoencoding 

Accuracy 

5 
100-50-100 ~11.6 million 72% 

500-200-50-200-500 ~58 million 85% 
1000-500-100-500-1000 ~116 million 89% 

6 
100-50-100 ~130 million 64% 

500-200-50-200-500 ~646 million Too big to run 
1000-500-100-500-1000 ~1292 million Too big to run 

 
As can be seen from Table 10, the best model is able to accurately reproduce 89% of 

the geohashes at precision level 5, and 64% of the geohashes at precision level 6. This is not 

satisfactory, since this will most likely dictate the upper boundary of the model accuracy. 

Furthermore, even using the embedding technique, there is a big price to be paid in the number 

of parameters added to the model, especially in the higher precision levels.  
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Another potential problem with this method is that we only encode the geohashes that 

appear in the past data. This automatically prevents predicting a future ship location on land, 

but will also not allow the model to predict a future location in a geohash that is not one of the 

past ship locations. There are several possible solutions; the most obvious is to increase the 

size of the ship track data set. Another is to add geohashes. Taking the definition of the area 

of interest provided in Figure 3, we get almost 90,000 geohashes at a precision level of 5, and 

more than 1.5 million at a precision level of 6.  

3. Multi-Hot Encoding Method 

As an alternative to transforming the strings of geohashes to long one-hot vectors, we 

also use the inherent structure of the geohash itself and create a “multi-hot” vector. A multi-

hot vector is a sparse vector composed of the concatenation of multiple one-hot vectors. 

In our case, each one-hot vector is used to classify one of the letters in the geohash. 

For example, if we wanted to represent a precision level 4 geohash, based only on the letters 

“B,” “C,” “D,” “E,” and “F,” for example “ECDE,” we would use the following multi-hot 

representation, given in Table 11. 

Table 11.   Multi-hot vector representation (precision level 4) 

Geohash Multi-hot vector representation 
“ECDE” ( [0, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0] ) 

 
Or equivalently: 
 
(0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0) 

* The internal brackets “[]” are just for demonstration of the way the multi-hot vector is 
composed of the set of one-hot vectors  

 

The main advantage of this method is its size and memory efficiency. Continuing the 

previous example, if there are only five possible letters for a length 4 geohash, we would need 

a vector of length 4 × 5 = 20 to fully represent the space of possible geohashes. However, 

in the one-hot method, we would need a vector of size 54 = 625 to fully represent the space 

of possible geohashes.  
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Representing the entire space of possible precision level 5 geohashes requires an input 

vector of length 5 × 32 = 160 only, significantly shorter than the one-hot version. Another 

benefit is that in this form the network output can be any possible geohash, not only the ones 

that are present in the data. This is a desirable outcome, since we would have liked the model 

to be able to predict the most accurate future location geohash, without being dependent on it 

showing up earlier. 

The disadvantages of this method are that some of the potential richness of the input 

(adding weather and other ships’ locations) is lost and that we are forcing the model to learn 

a geohash representation that might make sense to humans but is not necessarily suitable for 

neural networks. Moreover, while the one-hot vector method inherently excludes land-based 

locations in the area of interest (only geohashes that appeared in the past are represented), the 

multi-hot vector does not.  

It is worth mentioning that this output layer is typical for multi-labeling classification 

problems (Goodfellow et al., 2016). Classification problems might only try to predict one 

class out of the set of possible classes using one-hot encoding. In our “multi-hot” approach, 

we require the model to predict a concatenation of two separate probability distributions, thus 

“multi-labeling.” This requires a customized loss function to allow effective learning. 

In this multi-hot approach, we require the model to predict the symbols in the geohash 

as a concatenation of a number of separate probability distributions. The first 32 values in the 

output layer (1–32) need to sum up to one and describe the predicted probabilities for the first 

letter in the geohash. The next 32 values (33–64) will do the same for the second letter and so 

on.  

In order to do that, there is a separate independent 1x32 softmax activated layer for 

every symbol in the geohash, all receiving the same input from the previous layer. These 

layers are then concatenated into one output layer of size 32 ∙ P, where P stands for the 

precision level of the geohash. The sum of values over each 1x32 segment is one, and 

therefore, the sum of the entire output layer will be P. 



70 

4. Optimization and Loss Function 

Training the model, we discover that the model easily learns the first letters of the 

geohash, as they seldom change in our area of interest (for example, the first and second letter 

encode rectangles of size 2500x2500 km2 and 1200x1200 km2, respectively) but has a harder 

time learning the last letters of the geohash, which change frequently. To help the learning 

process, we change the weights given to each letter prediction in the loss function. For 

example, an error in the first letter will “cost” 1, while an error in the fifth letter will cost 5.  

Let 𝐶𝐶 denote the number of classes to predict (𝐶𝐶 = 32 symbols in this case), yp,i ∈

{0,1} the ground-truth for the ith class of the pth symbol in the geohash and y�p,i ∈ [0,1] the 

model prediction for the ith class of the pth symbol. Let P denote the precision level of the 

geohash and 𝑤𝑤𝑝𝑝 the weight given to each geohash level. The loss function is: 

ℒ(𝑦𝑦�,𝑦𝑦) = −
1

𝐶𝐶 ∙ 𝑃𝑃
� � 𝑤𝑤𝑝𝑝 ∙ 𝑦𝑦𝑝𝑝,𝑖𝑖 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙�𝑦𝑦�𝑝𝑝,𝑖𝑖�

𝐶𝐶=32

𝑖𝑖=1

𝑃𝑃

𝑝𝑝=1

 

where 

�𝑦𝑦𝑝𝑝,𝑖𝑖

𝐶𝐶

𝑖𝑖=1

= �𝑦𝑦�𝑝𝑝,𝑖𝑖

𝐶𝐶

𝑖𝑖=1

= 1 ∀ 𝑝𝑝 ∈ {1,2,3. . .𝑃𝑃} 

This modification has proven to be very useful in training the model. However, as 

stated earlier, the results are not as accurate as the ones obtained using the relative positioning 

classification and the regression models. For this reason, we do not pursue this method any 

further and focus our efforts on the models presented in the main chapters of this thesis. We 

believe that the advantages listed for absolute positioning classification are not to be ignored, 

and that this approach can be successfully implemented for this problem or others alike.  
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