
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

ASSESSMENT OF FOREIGN OBJECT DEBRIS
MANAGEMENT USING GROUP 1 UNMANNED

AERIAL SYSTEMS

by

Wee Leong Lee

September 2018

Thesis Advisor: Oleg A. Yakimenko
Second Reader: Fotis A. Papoulias

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2018

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
ASSESSMENT OF FOREIGN OBJECT DEBRIS MANAGEMENT USING
GROUP 1 UNMANNED AERIAL SYSTEMS

5. FUNDING NUMBERS

6. AUTHOR(S) Wee Leong Lee

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 The level of unmanned aerial system (UAS) technology provides an opportunity to improve
productivity and at the same time increase safety in airport operations. This thesis aims to study the
requirements of a system of Group 1 UAS swarm to perform foreign object debris (FOD) management at an
airport. A concept of operations of the Automated FOD Detection System (AFDS) was designed, and the
graphical user interface (GUI) was developed to prove the concept. A variety of image processing
algorithms was developed in MATLAB to perform the functions of AFDS. FOD parameters such as its color
and size, as well as the operating altitude of UAS and the image processing filter window size, were varied
to determine the optimal AFDS configuration. This research involved hands-on experience of assessing the
developed algorithms on board a commercial-off-the-shelf DJI UAS in a series of experiments conducted
over a real runway at Camp Roberts, CA. The performance of the system in a large airport was assessed and
the costs involved in implementing the system were determined. The results showed that FOD management
using Group 1 UAS is feasible, with future work required in developing control algorithms of the UAS and
testing them to eventually operationalize the AFDS.

14. SUBJECT TERMS
runway safety, foreign object debris, unmanned aerial system, image processing

15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
Prescribed by ANSI Std. 239–18

i

89

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

ASSESSMENT OF FOREIGN OBJECT DEBRIS MANAGEMENT USING
GROUP 1 UNMANNED AERIAL SYSTEMS

Wee Leong Lee
Major, Singapore Air Force

Bachelor in Engineering, National University of Singapore, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2018

Approved by: Oleg A. Yakimenko
 Advisor

 Fotis A. Papoulias
 Second Reader

 Ronald E. Giachetti
 Chair, Department of Systems Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 The level of unmanned aerial system (UAS) technology provides an opportunity

to improve productivity and at the same time increase safety in airport operations. This

thesis aims to study the requirements of a system of Group 1 UAS swarm to perform

foreign object debris (FOD) management at an airport. A concept of operations of the

Automated FOD Detection System (AFDS) was designed, and the graphical user

interface (GUI) was developed to prove the concept. A variety of image processing

algorithms was developed in MATLAB to perform the functions of AFDS. FOD

parameters such as its color and size, as well as the operating altitude of UAS and the

image processing filter window size, were varied to determine the optimal AFDS

configuration. This research involved hands-on experience of assessing the developed

algorithms on board a commercial-off-the-shelf DJI UAS in a series of experiments

conducted over a real runway at Camp Roberts, CA. The performance of the system in a

large airport was assessed and the costs involved in implementing the system were

determined. The results showed that FOD management using Group 1 UAS is feasible,

with future work required in developing control algorithms of the UAS and testing them

to eventually operationalize the AFDS.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. NEED FOR AUTOMATION IN SINGAPORE1
B. AIRPORT OPERATIONS ..1

1. Critical Task of Detecting and Removing Foreign Object
Debris ..1

2. UAS as a Possible Solution ...2
C. VARIETY OF UAS AND TRENDS ...2

1. Regulatory Trends ...3
2. UAS Technology Application Trends ..3
3. FOD Detection with Automated Means3

D. PROBLEM FORMULATION ...4

II. OPERATIONAL CONSIDERATIONS AND GUI MOCKUP5
A. AIRFIELD INSPECTION OPERATIONAL

CONSIDERATIONS ...5
B. CONCEPT OF OPERATIONS ..5
C. FUNCTIONAL ANALYSIS OF THE AFDS ..7

1. Scan Area of Interest ...8
2. Process Output from Sensor ...8
3. Interface with Operator ..9

D. GRAPHICAL USER INTERFACE MOCKUP9

III. CHALLENGES IN IMAGE PROCESSING ..13
A. IMAGE PROCESSING DEFINITIONS ...13
B. IMAGE PROCESSING ALGORITHMS..15

1. Image Filtering ...15
2. Image Alignment ..16
3. Threshold Segmentation ..16
4. Edge Detection ..17
5. Image Processing Procedure ...19

IV. ALGORITHM DEVELOPMENT AND DATA GATHERING......................21
A. CONCEPT OF OPERATIONS AND GUI PROTOTYPE21
B. DEVELOPMENT OF MATLAB CODE...21
C. VARY EXPERIMENT PARAMETERS ...22

1. Object Color ...23
2. Object Size ..23

 viii

3. UAS Altitude...23
4. Image Filter Window Size ...23

D. EXECUTION OF EXPERIMENTS AT CAMP ROBERTS23
1. System Specifications ...24
2. Test Scenario ..26
3. Measures of Performance..26
4. Data Collection Procedures ...27
5. Data Collection Challenges ...32

V. DATA ANALYSIS ...33
A. EFFECTS OF FOD PARAMETERS...33

1. Effects of Object Color ..33
2. Effects of Object Size ...33
3. Effects of UAS Altitude ...34
4. Effects of Filter Size ...34

B. SELECTION OF AFDS PARAMETERS ...35
1. Ground Sample Distance ...36
2. Number of UASs Required ...37
3. Number of Images Required ...37
4. Data Generation and Transfer Rate ..37
5. Processing Time ...38
6. Summary of System Specifications and Cost38

VI. CONCLUSION AND RECOMMENDATIONS ...39
A. SUMMARY ..39
B. RECOMMENDATIONS FOR FUTURE WORK39

APPENDIX A. MATLAB CODE FOR GRAPHICAL USER INTERFACE41

APPENDIX B. MATLAB CODE FOR OBJECT DETECTION59

LIST OF REFERENCES ..63

INITIAL DISTRIBUTION LIST ...67

 ix

LIST OF FIGURES

Figure 1. UAS swarm performing inspection on runway ...6

Figure 2. Graphical description of the concept of operations for the AFDS.7

Figure 3. Critical functions of AFDS in a functional hierarchy8

Figure 4. GUI mock-up of AFDS ..9

Figure 5. Pop-up window for selection of start and end points of inspection10

Figure 6. Ongoing inspection indicated by the green light beside the “Start/
Stop” toggle switch ..11

Figure 7. Sample window showing image of FOD detected by the UAS12

Figure 8. Parameters affecting GSD. Source: PIX4D (2017).14

Figure 9. The median filter in a 3pix-by-3pix neighborhood. Source: Jain,
Kasturi, and Schunck (1995)..15

Figure 10. Example of intensity distribution of an image with two peaks
representing background (a) and object (b). ..17

Figure 11. Pixel labels in Sobel and Prewitt operator. Source: Jain, Kasturi, and
Schunck (1995). ...18

Figure 12. Detection of tool with different edge detectors..19

Figure 13. Sequence of image processing in fire detection and tracking. Source:
Yuan et al. (2015). ...20

Figure 14. Experimental set-up at Camp Roberts ...24

Figure 15. Images in this study taken at the access circled in red. Adapted from
Google Maps (2018). ...28

Figure 16. Foreign objects with alternating white (left) and black (right) sides in
image to be detected...29

Figure 17. Red duct tape and taxiway centerline bracketed the area where the
objects were placed ..29

Figure 18. Image collection at Camp Roberts ...30

 x

Figure 19. Examples of the image processing output ...31

Figure 20. Detection rate of varying object size for black and white objects33

Figure 21. Detection rate of varying UAS altitude for black and white objects34

Figure 22. Detection rate of varying filter size for black and white objects35

Figure 23. For inspection at UAS altitude of 4 m, 11 UAS are required and 964
images per UAS would be taken to cover a runway length of 4000
m. ...37

 xi

LIST OF TABLES

Table 1. Characteristics of different UAS types. Adapted from Hogan et al.
(2017). ..2

Table 2. Spatial dimensions and physical properties. Source: Harney (2004).13

Table 3. UAS and remote controller specifications ...25

Table 4. Zenmuse X3 camera specifications ...25

Table 5. Image processing computer specifications ..26

Table 6. Desired metrics ..27

Table 7. Example of object detection results. (Y) represented object detected,
and (N) represented object not detected in the last column.31

Table 8. Detection rate of black objects in the UAS altitude-filter window
size coordinates ..35

Table 9. Proposed AFDS configuration ...36

Table 10. System specifications and cost of AFDS ...38

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AOA Air Operations Area
ATC Air Traffic Control
AFDS Automated FOD Detection System
CMOS Complementary Metal-Oxide-Semiconductor
FAA Federal Aviation Authority
FCC Federal Communications Commission
FOD Foreign Object Debris
FOV Field of View
GSD Ground Sample Distance
GUI Graphical User Interface
HDMI High-Definition Multimedia Interface
NPS Naval Postgraduate School
IFOV Instantaneous Field of View
UAS Unmanned Aerial System
UAV Unmanned Aerial Vehicle

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Limitations in manpower in Singapore have led to the desire to improve

productivity and efficiency in operations throughout the country, including airport

operations. At the same time, foreign object debris (FOD) is a significant concern in airport

operations. Together with recent trends of improvements in unmanned aerial systems

(UAS) technology and clarification of regulations regarding small UAS operations, it is an

opportune time to study the feasibility of performing FOD management using small (Group

1) UAS.

The concept of operations for the Automated FOD Detection System (AFDS)

involve a UAS swarm lined up at the start of the runway, which on command from the

operator, would proceed along the runway to take images at short intervals, covering the

length of the platform where the inspection was to occur. While traversing the runway, the

images taken would be transmitted to the central processor to be processed. The process

would be controlled by the graphical user interface (GUI) installed on a desktop computer

in the control tower. The operator would be informed of any FOD detected through the

GUI.

The image processing entails the following steps:

1. Read background image file which forms the baseline.

2. Read current image file where FOD may be detected.

3. Convert and filter the images into grayscale.

4. Align the two images.

5. Find the difference of the current image from the background image.

6. Filter the results to sharpen the resultant binary image.

7. Draw bounding boxes around image objects which are suspected FODs.

8. Overlay the bounding boxes on the current image file.

 xvi

Experiments were conducted at Camp Roberts to determine the optimal

configuration of the AFDS that is able to detect objects as small as 3cm-by-3cm. Object

parameters that were varied in the experiments were as follows:

1. Object color

2. Object size

3. UAS altitude

4. Image processing filter window size

The results of the experiments found that white specimens were detected more

reliably than black ones, with white objects being able to be detected by the computer

algorithm 91.3% of the time, compared to 35.8% for black objects. The detection rate

increased as object size increased. For black objects, the smallest 3cm-by-3cm object was

detected 28.3% of the time, compared to 40.8% of the time for the largest 20cm-by-20cm

object. For white objects, the smallest object was detected 69.2% of the time, while objects

that were 10 cm or larger were detected 100% of the time.

As the UAS altitude increased, the detection rate decreased. Black objects were

detected 96.7% of the time at 1 m UAS altitude, which decreased to 10% at 10 m. White

objects were detected 100% of the time at 1 m UAS altitude, which decreased to 47% at

10 m.

As the filter window size increased, the detection rate decreased. Black objects

were detected 98% of the time with the smallest 3pix-by-3pix median filter, which

decreased to 10% with the largest 25pix-by-25pix median filter. White objects were

detected 100% of the time with the 3pix-by-3pix median filter, compared to 78% with the

25pix-by-25pix median filter.

With the results from the experiments, the optimal AFDS configuration was

selected based on the ability to detect black objects. From Table ES-1, the AFDS

configuration that was selected was the UAS operating at 4 m with a filter window size of

7pix-by-7pix.

 xvii

Table ES-1. Detection rate of black objects in the UAS altitude-
filter window size coordinate

 UAS altitude AGL (m)
 1 2 3 4 5 6 7 8 9 10

Fi
lte

r w
in

do
w

 si
ze

 (p
ix

)

3 100% 100% 100% 100% 100% 100% 100% 100% 100% 80%
5 100% 100% 100% 100% 100% 100% 100% 80% 40% 40%
7 100% 100% 100% 100% 60% 80% 20% 40% 0% 0%
9 100% 100% 100% 60% 20% 0% 20% 0% 0% 0%
11 100% 100% 80% 40% 0% 0% 0% 0% 0% 0%
13 100% 80% 60% 40% 0% 0% 0% 0% 0% 0%
15 100% 80% 0% 0% 0% 0% 0% 0% 0% 0%
17 100% 80% 0% 0% 0% 0% 0% 0% 0% 0%
19 100% 60% 0% 0% 0% 0% 0% 0% 0% 0%
21 100% 40% 0% 0% 0% 0% 0% 0% 0% 0%
23 80% 20% 0% 0% 0% 0% 0% 0% 0% 0%
25 80% 20% 0% 0% 0% 0% 0% 0% 0% 0%

With the AFDS configuration determined, the amount of resources required to

perform a runway inspection was calculated. For a large airport with a 4000m-by-60m

runway such as the Singapore Changi Airport, 11 UAS are required to cover the width, and

each UAS would be required to take 964 images to cover the length of the runway. An

airport with a smaller runway of 2187m-by-45.72m at the Monterey Regional Airport

would require 9 UAS with 527 images each. The 4000m-by-60m runway would take 13.3

minutes to be scanned, and almost 100 hours for the images to be processed on a laptop

computer, which could be reduced to less than an hour with compiled code. While that is

still too slow to be practical in the operational environment, code optimization and better

hardware should result in improvements to make the AFDS a reality in the near future.

Finally, the cost of the AFDS was presented. For a large airport such as the

Singapore Changi Airport, it would cost approximately $55,500 to implement the system,

assuming a parallel computing system with one computer processing the inputs from each

individual UAS.

The thesis presented the requirements of a system of Group 1 UAS swarm to

perform FOD management at an airport, and found it feasible. Future work in UAS control

and testing would improve the system and allow it to eventually be operationalized.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

Working away from home and loved ones had not been an easy process. I would

like to thank my wife, Shu Wei, for having the patience and tolerating me being away from

her physically and at times even electronically during the past year. I am coming back

soon!

I would like to thank Professor Yakimenko for the tremendous guidance he gave

me during this thesis process. My many thinking, coding and writer’s blocks quickly

became unstuck after the quick discussions we had at your office. Thank you also for the

opportunities to share my knowledge with a wider audience. I hope my applications could

be of use to both the Singapore Navy and U.S. Navy in the future!

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

This chapter describes the background and the impetus for the thesis, followed by

the problem statement that the thesis aims to address.

A. NEED FOR AUTOMATION IN SINGAPORE

Singapore has limitations in manpower; the annual Total Fertility Rate in Singapore

had been declining since the 1970s, with the latest figures at 1.16 for 2017 (Ong 2018). This

meant that the population was not reproducing sufficiently to replace itself. The 2013

Population White Paper stated that without immigration, the citizen population would shrink

from 2025. However, infrastructure concerns had led to the government restricting the intake

of new immigrants (Seow 2017). These developments have led to calls from the government

to both the public and private sectors to seek ways to improve productivity and efficiency,

and reduce the reliance on manpower (Pedersen 2017).

B. AIRPORT OPERATIONS

Airport operations are an example where manpower needs are high. Airport

operations could be broadly separated into landside and airside operations. In page three of

his course notes on “Introduction to Airports Design and Operations,” Dr. Sherry (2009)

described landside as “how passengers arrive/depart the airport terminal building and move

through the terminal building to board the planes,” and airside as “movement of the airplanes

on the airports surface.” To the layman, landside operations are those that are that the general

public could interact with first-hand, such as ticketing, check-in, food and retail among

others. Airside operations are typically those that are performed away from the general

public, such as aircraft turnaround checks and maintenance, Air Traffic Control (ATC), and

airfield maintenance.

1. Critical Task of Detecting and Removing Foreign Object Debris

Foreign object debris (FOD) is a significant concern in airport operations.

McCreary’s study in 2010 reported that the aviation industry estimated the worldwide cost

of FOD to be between US$2.3 billion to US$4 billion annually. In his bottom-up study, he

 2

found that the direct costs of on-runway FOD were even higher, on the order of US$7 billion

a year. More significantly, FOD had been attributed as one of the significant, if not the direct

cause of several aviation crashes, the most high-profile of which was the Air France

Concorde crash in July 2000 that killed 109 on-board and four on the ground (Alexander-

Adams 2013). At the same time, FOD detection by (human) visual means is not reliable. In

the same study, McCreary (2010) compared the performance of visual inspection to

automated scanning and found that with visual inspection, one piece of FOD would be found

on the runway every two months, as compared to one found every two days with automated

scanning.

2. UAS as a Possible Solution

One of the ways to tap on the potential of automation, while reducing the reliance on

manpower is to employ robotics (Chambers and Rohaidi 2017) such as mini-Unmanned

Aerial Vehicles (UAV) or Systems (UAS). UAS technology had improved, while costs have

reduced in the past year for relatively high-end consumer-grade UAS to be affordable to the

public (Wile 2017). The reduction in costs of such UAS presents an opportunity for the

military to tap on its potential, and reduce the need for manpower in areas and operations

that these systems are deployed in.

C. VARIETY OF UAS AND TRENDS

UAS could be classified under two major categories. They are either fixed-wing, or

rotorcraft. UAS have generally the same physical characteristics as the manned aircraft of

the same types, and largely the same flight characteristics. Table 1 shows the characteristics

of fixed-wing and rotorcraft UASs.

Table 1. Characteristics of different UAS types.
Adapted from Hogan et al. (2017).

 Fixed-Wing Rotorcraft
Characteristics • Large payload capacity

• High top speed
• Long flight time
• Long range

• Highly maneuverable
• Ability to hover, rotate and capture

images at almost any angle
• Easy learning curve
• Many models with range of costs

 3

1. Regulatory Trends

The areas where UASs could be deployed in airport operations are numerous.

Hubbard et al. (2017) proposed employing UAS in performing obstruction analysis,

pavement condition assessment and inspection, airfield light inspections, wildlife

management, security, emergency response, and constructions. Many of these operations

have already been performed by UAS outside of airfields, but with the publication of the

new Small UAS Rules (Part 107) by the Federal Aviation Administration (FAA), which

cover Groups 1 (up to 20 lb) and 2 (21 - 55 lb) UAS, there now is a framework to operate

these systems legally in the United States. Such a development provides Singapore with

the opportunity to implement UAS for our many operations, while keeping operational

risks to a minimum.

2. UAS Technology Application Trends

This nascent technology in UAS had in fact been trialed at various airports in the

recent past. After being reported of using UAS to perform surveys of a parking garage at

the Hartsfield-Jackson International Airport in Atlanta in January 2017 (Worland 2017),

the airport further explored the opportunities by conducting subsequent trials of having

UAS perform inspection of the runway for damage (Whitehead 2017). UAS had also been

reported to be integrated into the airport operations at the Edmonton International Airport

in Alberta, Canada, with the airport working with private companies Aerium Analytics and

Clear Flight Solutions to employ UAS for wildlife management (PR Newswire 2017).

While these activities show that the potential of commercial prospects of UAS in airport

operations, the underlying technology have yet to be understood fully.

3. FOD Detection with Automated Means

Performing FOD detection with UASs involves automated image (or scene)

processing. At least two companies had published reports documenting their approaches in

this field, with the Israeli company Pharovision deploying the Sentinel system (with video

charge-coupled device image and infrared sensors) to perform FOD detection in 2014 at

an Israel Defence Force Air Base. The report stated that the system was able to detect

objects of 3 cm x 3 cm from a distance of 800 meters (Leite 2014). The Singaporean

 4

company Stratech had even patented a surveillance system for detecting FOD that involved

cameras to capture runway images, and adaptive image processing (using global histogram

and statistical analysis of preceding images) of the images captured by the cameras (Chew

2011). This technology had been implemented at the Singapore Changi Airport since 2008.

D. PROBLEM FORMULATION

This thesis aims to study the requirements of a system of Group 1 UAS swarm to

perform the FOD management at an airport. The UAS swarm is envisioned to collect

images of the Air Operations Area (AOA). These images would then be aligned to those

of a “clean” image to optimize system’s performance to detect the presence of FOD.

Parameters relating to the size and color of the FOD, the altitude of the UAS, as well as the

image processing filter size would be varied to determine a recommended configuration

for the system.

The thesis is organized as follows. Chapter I reviews the need for UAS and its

application in airport operations. Chapter II examines the operational considerations for

using the UAS swarm to perform FOD detection and the graphical user interface (GUI)

mock-up of the system. Chapter III illustrates the challenges in image processing. Chapter

IV discusses the algorithm development and data gathering process. Chapter V presents

the data analysis, and finally in Chapter 6 the conclusions and recommendations are made.

 5

II. OPERATIONAL CONSIDERATIONS AND GUI MOCKUP

The operational considerations for performing airfield inspections are first

examined in this chapter. We would then present the concept of operations for the

Automated FOD Detection System (AFDS) that involves the use of a UAS swarm to

perform FOD inspection. We would also present in this chapter the mockup for the GUI

for the system.

A. AIRFIELD INSPECTION OPERATIONAL CONSIDERATIONS

The Airfield Operations Procedures and Programs (Department of the Air Force

2015) describes the requirements for performing an airfield inspection. Paragraph 17.1.6.6

in particular describes the inspection of paved areas, for conditions that would cause

concern for aircraft operations. These conditions include cracks, holes, rubber deposits,

vegetation growth, and FOD and contaminants.

Paragraph 17.1.7 of the same document discussed the inspection techniques, which

entailed airfield inspectors driving on the runway towards the direction of landing aircraft

for safety of the personnel. The document also suggested having a varied inspection pattern

would reduce complacency and missing out on items that otherwise would need to be

corrected.

The FAA’s Advisory Circular 150/5220-24 dated September 30, 2009, on Airport

FOD Detection Equipment described the basic functions and their performance

requirements for FOD detection equipment. The FOD detection equipment would need to

be able to detect single and multiple FOD items, and provide an alert to the user when FOD

was detected. Among the objects that the system must detect were an unpainted metal

cylinder of 3.1 cm (1.2 in) high and 3.8 cm (1.5 in) in diameter, and a white, grey or black

sphere of 4.3 cm (1.7 in) diameter which is the size of a standard golf ball.

B. CONCEPT OF OPERATIONS

The concept of operations of the AFDS involves a UAS swarm lined up at one end

of the runway (or platform to be inspected). The number of UASs required differs

 6

according to the width of the runway and the altitude of the UAS. On command from the

operator through the GUI, the UAS would proceed to take images along the runway at short

intervals, such that images of the entire runway would be taken. Spot inspection of specific

areas could also be selected through the GUI. The GUI would be installed on a desktop

computer located in the control tower, although alternative locations such as the base

operations center could be equipped with the software as well. Figure 1 shows a simulated

swarm of UAS performing inspection of a runway.

Figure 1. UAS swarm performing inspection on runway

While traversing along the runway, the UASs would transmit the images that had

already been taken to the central processor to process the images. The images taken during

the inspection would be processed against the baseline images that were taken beforehand,

which were FOD-free.

If any FOD were detected, the operator would be informed through the GUI with

the image of the FOD and the location. Figure 2 shows the high-level graphical description

of the concept of operations.

 7

Figure 2. Graphical description of the concept of operations for the AFDS.

C. FUNCTIONAL ANALYSIS OF THE AFDS

A functional analysis was performed to determine the critical functions of the

AFDS, and to organize them into a hierarchical form. The critical functions of the AFDS

were determined to be 1) provide platform for the sensor, 2) scan area of interest, 3) process

output from sensor, and 4) interface with operator. These critical functions were further

decomposed into sub-functions, as shown in Figure 3.

 8

Automated FOD
Detection System

(AFDS)

Scan Area of
Interest

Process Output
from Sensor

Interface with
Operator

Take Inputs
from Operator

Provide
Feedback to

Operator

Read Sensor
Output

Compare Sensor
Output to
Baseline

Optimize Swarm
Configuration

Navigate and
Guide UAS

Provide High-
Resolution

Imagery

Flag Out
Differences with

Baseline

Provide Airfield
Location of
Areas with
Differences

Level 0

Level 1

Level 2

Figure 3. Critical functions of AFDS in a functional hierarchy

1. Scan Area of Interest

The system must scan the area of interest, by optimizing the UAS swarm and then

guiding the UAS to navigate over the area. It must also provide high-resolution imagery of

the area of interest.

2. Process Output from Sensor

The images transmitted are first read into the processor and compared to the

baseline images present in the database. Differences from the baseline are flagged out as

potential FOD, and the location where these differences are found are marked.

 9

3. Interface with Operator

The potential FOD and their locations would be presented to the operator through

an interface. The operator could also command the UAS swarm to perform inspection of

specific locations in the airfield through the interface.

D. GRAPHICAL USER INTERFACE MOCKUP

The GUI for the AFDS is divided into four different areas, shown in Figure 4.

Figure 4. GUI mock-up of AFDS

 In the first area in the top right corner of the application window, the operator

would select the airport and the runway of interest. The runway length and width would

then be updated in the GUI. The user could then select the speed at which the UAS swarm

would traverse along the runway.

 10

In the second area, the operator could select the camera model to perform the

airfield inspection. Selecting different camera models provide the operator with the ability

to change the minimum object size that the AFDS could detect. In the process of selecting

a different camera model with a different field of view (FOV), the number of UAS required

to perform the inspection would differ, together with the number of images required to be

taken to cover the whole area.

In the third area, the operator could select the coverage of the inspection, which are

“full sweep” which indicates a full inspection of the runway, or “partial sweep,” which

indicates the inspection of a selected area. If “partial sweep” is selected, a new window

will pop-up with crosshairs which allows the operator to select the start and end points of

the inspection on the airfield map. See Figure 5.

Figure 5. Pop-up window for selection of start and end points of inspection

 11

Once the area to be scanned is selected, the Inspection Distance field would show

the length of the runway or taxiway that the inspection would take place. The operator can

then use the toggle switch to start the inspection. When the inspection is ongoing, the

indicator light for “Inspection in Progress” would turn green, while the “Distance Scanned”

field would show the progress of the UAS in meters, as shown in Figure 6. At any time

during the inspection, the operator can stop and resume the process by selecting the toggle

switch. If the operator requires the inspection to be restarted, he would click on the “Reset

Distance Scanned” button to set the distance scanned back to zero and close the windows

showing the FODs found during this iteration.

Figure 6. Ongoing inspection indicated by the green light beside the
“Start/Stop” toggle switch

 12

Finally, in the fourth area, the UAS display shows the real-time images collected

by the UAS swarm. Should any FOD be detected, a new window would pop-up, with the

location of the FOD in distance from origin of the inspection sequence depicted in the title

bar. For example, Figure 7 shows the image of an FOD (the black square of cardboard) that

was detected at 85 m from the start of the inspection sequence.

Refer to Appendix A for the MATLAB code for the GUI.

Figure 7. Sample window showing image of FOD detected by the UAS

 13

III. CHALLENGES IN IMAGE PROCESSING

A. IMAGE PROCESSING DEFINITIONS

To be able to detect FOD in the images collected by the UAS, those images need

to be processed by computers. Harney (2004) defines an image as “a distribution in at least

two spatial dimensions of one or more parameters related to physical properties of an object

or scene.” In other words, the physical properties of the world are represented by two or

more of the spatial dimensions which are listed in Table 2.

Table 2. Spatial dimensions and physical properties. Source: Harney (2004).

Potential Spatial Dimensions Potential Physical Properties

Azimuth (or Bearing) Color
Elevation Angle Reflectivity
Range Reflected Intensity
Cartesian Coordinates (x, y, z) Radiance
Depth (or Altitude) Concentration
Map Coordinates Transmittance (or Absorptance)
Cross-Range Velocity
 Temperature
 Range
 Radar Cross Section

Hence, in this thesis, one could consider an image as a set of physical properties

such as color and reflected intensity that are represented by the spatial dimensions of

Cartesian coordinates and altitude.

Harney (2004) uses the term pixel (for “picture element”) to “denote any one of the

discretely-addressable regions in the image space from which an image is constructed by

assignment of parameter values,” while the term resel (for “resolution element”) is used to

describe “any region of image space whose size in each dimension is equal to the system

resolution in that dimension.”

 14

Harney defines the field of view (FOV) of a system as the range of angles that is

scanned and/or subtended by the detector array. He defined the instantaneous field of view

(IFOV) as the angular portion of the FOV that can be seen by one detector at any instant

in time.

The ground sample distance (GSD) is defined as the distance between the centers

of two consecutive pixels on the ground. The parameters that affect the GSD are the sensor

width SW (in mm), the focal length FR(in mm), the distance from the image, or flight height

H (in m), and the image width DW (in m). See Figure 8.

Figure 8. Parameters affecting GSD. Source: PIX4D (2017).

For an image with 4:3 ratio, the focal length FR is given by

 35[]
34.6

W
R

F SF mm ×
= (1)

where F35 is the focal length that corresponds to the 35 mm equivalent.

From trigonometry, the ground distance covered by the UAS at 4 m is given by the

equation

 W

R W

DH
F S

= (2)

and GSD is given by the equation

 15

Image Width [pixel]

WDGSD = (3)

B. IMAGE PROCESSING ALGORITHMS

This section reviews the image processing algorithms that are used to perform

object detection.

1. Image Filtering

Image filtering aims to eliminate undesirable characteristics found in the raw

images taken by the sensors. Jain, Kasturi, and Schunck (1995) described histogram

modification as stretching the contrast of images that had intensity values within a small

range, to aid in subsequent image processing efforts such as threshold selection. Linear

filters are effective in removing Gaussian (or normal distribution) noise that are introduced

into images by the sensor electronics, and are implemented by using the weighted sum of

pixels in successive windows (Jain, Kasturi, and Schunck 1995). Figure 9 shows the

implementation of a 3pix-by-3pix median filter.

Figure 9. The median filter in a 3pix-by-3pix neighborhood.
Source: Jain, Kasturi, and Schunck (1995).

An example of the linear filter is the mean filters where each pixel is replaced by

the average of all the values in the local neighborhood. The Gaussian filter is a type of

linear filter with weights determined according to the shape of a Gaussian function. The

median filter differs from the mean filter in that each pixel is replaced with the median of

 16

the gray values in the local neighborhood, and that the value is not a weighted sum of the

pixels.

2. Image Alignment

Images taken at different times for the same area of interest would invariably

exhibit differences geometrically. The affine transformation is employed to align the new

image (xnew, ynew) to the original image (xoriginal, yoriginal) through a combination of

translation, scaling, shearing and rotation in a matrix A (Yakimenko 2018).

11 12 13

21 22 23

31 32 331 1

original new new

original new new

x x a a a x
y y a a a y

w a a a

       
       = =       
              

A (4)

With matching pairs of control points, the coefficients of matrix A could be found.

Applications of image alignment are wide and varied. One example is in the alignment of

medical images such as X-ray scans, so that the progress of medical diagnosis could be

tracked and monitored (Wang and Chen 2013).

3. Threshold Segmentation

Threshold segmentation is the grouping of pixels that correspond to an object and

the separation of other pixels from the group (Jain, Kasturi, and Schunck 1995). This is

done throughout the image such that there may be multiple groups of pixels. This is shown

in Figure 10, where the intensities of the background and objects have different peaks with

some overlap. The threshold is selected from between the two peak intensities (points a

and b) such that the object could be differentiated from the background.

 17

The threshold value would be selected from between these two peaks. Adapted from Jain,
Kasturi, and Schunck (1995).

Figure 10. Example of intensity distribution of an image with two peaks
representing background (a) and object (b).

Threshold segmentation methods are used in image analysis to determine the level

of vegetation (Xie et al. 2011), as well as in determining the progress of medical diagnosis

as discussed in the previous section.

4. Edge Detection

Object detection in an image relies heavily on edge detection. Edges of objects are

very useful in being able to detect them as they form a natural boundary with the

surrounding, and they are characterized by significant local changes in the image (Jain,

Kasturi, and Schunck 1995). This could be implemented by using determining the gradient

G of the image function, where

 [](,) x

y

f
G xf x y

fG
y

∂ 
   ∂ = =  ∂  
 ∂ 

G (5)

The magnitude of the gradient is given by

 2 2
x yG G= +G (6)

and the direction of the gradient is given by

 18

 1tan y

x

G
G

−  
∠ =  

 
G (7)

The Roberts operator approximates the magnitude of the gradient to

 R x yG G G≈ + (8)

The Sobel and Prewitt operators approximates the gradient magnitude

 2 2
s x yG s s≈ + (9)

where

 2 3 4 0 7 6

0 1 2 6 5 4

() ()
() ()

x

y

s a ca a a ac a
s a ca a a ac a
= + + − + +
= + + − + +

 (10)

In the partial derivatives in equation 10, the constant c is equal to 2 for the Sobel

operator, while c is equal to 1 for the Prewitt operator. Figure 11 shows the labels of the

neighborhood of pixels at position [],i j for the partial derivatives.

Figure 11. Pixel labels in Sobel and Prewitt operator.
Source: Jain, Kasturi, and Schunck (1995).

Jain, Kasturi, and Schunck (1995) illustrated the detection of a tool using different

edge detectors, shown in Figure 12. 12(a) and (b) show the original image and the filtered

image respectively, and 12(c) shows the detection using gradient with 1 x 2 and 2 x 1 masks

on the two images, with threshold T at 32. 12(d) shows the detection using gradient with 2

x 2 masks, T at 64. 12(e) shows the detection using the Roberts operator, T at 64, 12(f)

with Sobel operator, T at 225, and 12(g) with Prewitt operator, T at 225.

 19

(a) and (b) show the original image and the filtered image respectively. (c) Gradient using
1 x 2 and 2 x 1 masks, T = 32. (d) Gradient using 2 x 2 masks, T = 64. (e) Roberts cross
operator, T = 64. (f) Sobel operator, T = 225. (g) Prewitt operator, T = 225. Source: Jain,
Kasturi, and Schunck (1995).

Figure 12. Detection of tool with different edge detectors.

5. Image Processing Procedure

Yuan et al. (2015) described the sequence of image processing techniques used in

fire detection and tracking algorithms, where the blob is representative of a hot spot. See

Figure 13.

 20

Figure 13. Sequence of image processing in fire detection and tracking.
Source: Yuan et al. (2015).

This thesis adopts the same techniques with one rearrangement in the sequence.

Instead of performing the threshold segmentation after the color model conversion, the

morphological operations are performed on the image first.

 21

IV. ALGORITHM DEVELOPMENT AND DATA GATHERING

This chapter describes the methodology to address the problem. To study

requirements of a system of UAS that could perform airfield FOD inspection, a five-step

process was adopted.

Step 1. Development of a concept of operations and GUI prototype

Step 2. Development of MATLAB code to mark out the foreign objects in

the image scene

Step 3. Vary experiment parameters to determine configuration of UAS for

airfield inspection

Step 4. Execution of experiments at Camp Roberts to collect the image data

and process with the MATLAB code

Step 5. Data analysis and recommendations

A. CONCEPT OF OPERATIONS AND GUI PROTOTYPE

The development of the concept of operations and the GUI prototype were

discussed in Chapter II. To recap, the concept of operations involves a UAS swarm lined

up at one end of the runway and traversing along the length of the runway at the operator-

specified altitude. The commands to control the UASs’ altitude, speed, area of inspection,

and the camera system used were controlled through the GUI which could be located at the

control tower.

As the UASs traverse the runway, they would wirelessly transmit the images taken

to the central processor for image processing and object detection. If any FOD were

detected, the operator would be informed through the GUI with the image of the FOD and

the location.

B. DEVELOPMENT OF MATLAB CODE

MATLAB is a programming tool that integrates computation, visualization and

programming in a user-friendly computing environment (Yakimenko 2011). The

 22

availability of modular toolboxes suitable for varied uses makes MATLAB a highly

versatile and powerful tool for both academic and industry uses. In this thesis, this author

made use of the Image Processing Toolbox and Computer Vision System Toolbox in

MATLAB, which together allowed the use of powerful image handling, transformation,

filtering and other processes by simply typing single function commands.

To allow the computer to recognize and mark out the foreign object from the image

scene, requires the sequential performance of several image processing and computation

steps. The computer does not understand a command such as “detect a foreign object on

the runway,” which an airfield inspector would. A programmer would need to break down

the command into several sub-commands which the computer could perform. For this

thesis, these commands are broken down into the following steps:

1. Read background image file.

2. Read current image file.

3. Convert and filter color background and images into grayscale.

4. Align current image to background image.

5. Find absolute difference of current image from background.

6. Filter the results to sharpen the resultant binary image.

7. Draw bounding boxes around the image objects.

8. Overlay bounding boxes on the current image file.

Refer to Appendix B for the MATLAB code.

C. VARY EXPERIMENT PARAMETERS

A set of four parameters were varied to determine the configuration of the UAS that

could perform the FOD detection. They were 1) object color, 2) object size, 3) UAS

altitude, and 4) filter window size parameter.

 23

1. Object Color

The color of the object affects its contrast in the image being processed. The color

that required the higher performance would be used to set the requirements for the system

of UAS.

2. Object Size

Increasing the size of the object in the image, while keeping all other factors a

constant, would result in an increase in the number of pixels for that object in the image.

By increasing the number of pixels, the probability of detection for that object is higher. In

this thesis, we made use of objects of different sizes, to determine the number of pixels

required for the object to be detected by the algorithm. These objects were selected from

the list that the FAA stipulated in AC 150/5220-24 for object detection performance. The

objects described in the circular ranged from 3.1 cm wide to as much as 20 cm long. In this

thesis, the objects were flat squares with sides that ranged from 3 cm to 20 cm long.

3. UAS Altitude

The altitude of the UAS would similarly affect the number of pixels for an object

in the image. The higher the UAS was at, the lower the number of pixels present for each

object.

4. Image Filter Window Size

The median filter was used to remove noise in the results. The default setting in

MATLAB for the 2-D median filter was a 3pix-by-3pix box. When the filter parameter was

increased, the number of false detections decreased correspondingly, as the filter takes the

average of a larger area and applies it to each pixel. This would however also reduce the

likelihood of detecting a small object as it would be overwritten by the average value of

the pixels surrounding the object.

D. EXECUTION OF EXPERIMENTS AT CAMP ROBERTS

Camp Roberts is in San Miguel, California, and is located approximately 100 miles

southeast of the NPS campus in Monterey, California. It is a National Guard base, with

 24

facilities including billeting and logistics support to military personnel and units on training

(California Military Department 2018). The Naval Postgraduate School performs its field

experimentation of unmanned systems at the McMillan Airport within Camp Roberts, and

that was where the experiments in this thesis was conducted over two occasions on April

27, 2018, and 12-13 July, 2018. Figure 14 shows the author’s experimental set-up at Camp

Roberts.

Figure 14. Experimental set-up at Camp Roberts

1. System Specifications

The specifications of the UAS, camera and computer used in the experiment are

described in this section.

a. UAS Specifications

The UAS used in the experiment was a DJI Inspire 1, with relevant specifications

listed in Table 3.

 25

Table 3. UAS and remote controller specifications

UAS
Weight 3060 g (6.74 lbs)
Max Speed 79 kph (49 mph)
Max Wind Speed Resistance 10 m/s
Max Flight Time 18 min
Diagonal Distance (Dimensions) 581 mm (22.8”) in Landing Mode

Remote Controller
Max Transmitting Distance Up to 5 km (3.1 miles) when FCC compliant
Video Output Ports USB, mini HDMI

The remote controller was connected to this author’s iPhone 7, with the DJI Go and

Pix4Dcapture apps installed.

b. Camera Specifications

The DJI’s proprietary Zenmuse X3 was used for image capturing. The

specifications of the camera are listed in Table 4.

Table 4. Zenmuse X3 camera specifications

Sensor Type Complementary Metal-Oxide-Semiconductor (CMOS)
Sensor Dimensions 6.17 x 4.55 mm
Shutter Speed 1/8000 sec
Focal Length (35 mm
Equivalent)

20 mm

Aperture F/2.8
FOV 94°
Max Pixels 12.4 million
Resolution 16:9 - 4000 x 2250

4:3 - 4000 x 3000

c. Computer Specifications

The computer that was used to process the images was a MSI GS43VR with 14”

built-in monitor. The specifications are listed in Table 5.

 26

Table 5. Image processing computer specifications

Processor Intel i7-7700 2.80 GHz
RAM 16 GB
Hard Disk Drive 128 GB m.2 SSD

1 TB SATA HDD
Screen Resolution 1920 x 1080
Operating System Windows 10 Home (64-bit)
Image Processing Software MATLAB R2018a Update 2

While the computer was equipped with a graphics co-processor, the MATLAB

algorithm did not employ it in the image processing.

2. Test Scenario

The scenario for the test simulates two different time slices of the runway inspection

process performed by the system of UAS. During the setup or calibration, the system of

multiple UAS would be traversing the length of the runway at a certain altitude above the

runway. While traversing, each UAS would stop at regular intervals to take images of the

runway, which would be stored as the background image. The calibration process is

complete when the images of the entire runway have been taken and stored in the image

server. During operations, the system of UAS would again be traversing the runway at the

same altitude as before, and taking images at regular intervals. During this time, we expect

to detect foreign objects on the runway. The images taken would be transferred to the image

server where the image detection algorithm would be used to detect the foreign objects in

the image. The instances in time when the background image and the corresponding

operational image were taken are the time slices simulated in the experiment.

3. Measures of Performance

The measures of performance in this experiment are the variables. To recap, the

variables are as follows:

1. Object color

2. Object size

 27

3. UAS altitude

4. Image filter window size

The objective is for MATLAB to automatically draw the bounding boxes around

the objects that were introduced into the image. When the bounding boxes are drawn, it is

assumed that the objects are detected by the algorithm.

The system configuration that would be eventually selected would be the system

configuration highest detection rate at the highest altitude and the largest filter size, for the

smallest object. To ensure that the system could perform with different contrast levels, and

results from the color that returned the lower detections would be used. See Table 6.

Table 6. Desired metrics

UAS altitude Highest

Image filter window size Largest

Object size Smallest

Object color More stringent

4. Data Collection Procedures

The images used in this study were taken at the runway access adjacent to the

displaced threshold for Runway 28. See Figure 15.

 28

Figure 15. Images in this study taken at the access circled in red.
Adapted from Google Maps (2018).

a. Foreign Objects

The “foreign objects” in the study were made using square pieces of cardboard,

with alternating sides of white and black. There were a total of five objects, with the

following dimensions. See Figure 16.

1. Object A - 20 cm x 20 cm

2. Object B - 15 cm x 15 cm

3. Object C - 10 cm x 10 cm

4. Object D - 5 cm x 5 cm

5. Object E - 3 cm x 3 cm

 29

Identifying alphabets are not present in actual specimens.

Figure 16. Foreign objects with alternating white (left) and black (right) sides in
image to be detected.

b. Experimental Set-up

Red duct tape was used to bracket the area where the objects were placed. The duct

tape also served as markers which the algorithm could use to align the images, so that

alignment could be eliminated as a form of variation in this study. To further support the

alignment of the image pair, the area where the images were taken included the taxiway

centerline. See Figure 17.

Figure 17. Red duct tape and taxiway centerline bracketed the area
where the objects were placed

 30

c. Image Collection

The background image was taken using the DJI Inspire 1 UAS. To support the

image capturing, the Pix4Dcapture app in “Free Flight” mode was used to automatically

take pictures at 1 m intervals from 1 m to 10 m above ground level (AGL), while the UAS

was manually flown to 10 m from the ground, at a vertical speed of between 0.2 m/s and

0.3 m/s. Then each object was placed between the red duct tape, and images were taken

again at altitudes of 1 m interval from 1 to 10 m. This process was repeated for the five

objects with the white side facing up, and then again with the black side facing up. Figure

18 shows the author performing an image collection test at Camp Roberts.

Figure 18. Image collection at Camp Roberts

d. Image Processing

After the images were taken, there were downloaded onto this author’s laptop. The

images were then batch processed on this author’s laptop using MATLAB, with the

“white” objects first followed by the “black” objects, while increasing the filter sizes in

steps of 2 pixels from 3 x 3 to 25 x 25 for each color-size-altitude combination. The total

number of data points was 1200 from all the variations. The processing took a total of 11

hours, with each image taking approximately 6 minutes to be processed. Figure 19 shows

an example of the image processing output, with the left image showing the foreign object

detected with the bounding box drawn around it. The presence of other boxes indicated

 31

that false detections were made. Some of the false detections could be attributed to image

alignment or the UAS shadow.

Figure 19. Examples of the image processing output

e. Tabulate Results

The results of the object detection were tabulated in Microsoft Excel. An example

is shown in Table 7.

Table 7. Example of object detection results. (Y) represented object detected, and
(N) represented object not detected in the last column.

Object
Dimensions (cm)

Object
Color

Filter
Parameter

UAS
Altitude (m)

Object
Detected

3 Black 3 1 Y
3 Black 5 1 Y
3 Black 7 1 Y
3 Black 9 1 Y
3 Black 11 1 Y
3 Black 13 1 Y
3 Black 15 1 Y
3 Black 17 1 N
3 Black 19 1 N
3 Black 21 1 N
3 Black 23 1 N
3 Black 25 1 N
3 Black 3 2 Y

 32

Object
Dimensions (cm)

Object
Color

Filter
Parameter

UAS
Altitude (m)

Object
Detected

3 Black 5 2 Y
3 Black 7 2 Y
3 Black 9 2 Y
3 Black 11 2 Y
3 Black 13 2 N
3 Black 15 2 N
3 Black 17 2 N
3 Black 19 2 N
3 Black 21 2 N
3 Black 23 2 N
3 Black 25 2 N

5. Data Collection Challenges

The collection of the data proved to be challenging, despite the availability of a

sanitized airspace for conducting the research. Wind conditions at McMillan Airport could

be strong particularly in the afternoons. It was a challenge to maintain the UAS over the

specimen FOD particularly at low altitudes, as the UAS tended to drift away relative to the

FOV. This problem also extended to horizontal flights covering an extended area, as the

UAS drifted away from the direction of travel in the presence of crosswinds.

Keeping the climb and descent rate of the UAS stable was also a challenge in

fluctuating winds, which resulted in difficulties to take images at the specific altitude

intervals required in this thesis. While the images were eventually taken during a short

break in the winds, control of the UAS particularly in high or fluctuating winds need to be

improved in future work to ensure the feasibility of the AFDS.

 33

V. DATA ANALYSIS

A. EFFECTS OF FOD PARAMETERS

The results of the field tests on changing FOD parameters are discussed in this

section.

1. Effects of Object Color

The objects that were white were able to be detected more often that the objects in

black. Of the 600 detection opportunities in each color, the black objects were detected 215

times, or 35.8% of the time, while the white objects were detected 548 times or 91.3% of

the time.

2. Effects of Object Size

As the object size increased, the detection increased. For the black objects, the

smallest object (3 cm x 3 cm) was detected 34 times out of 120 times, or 28.3% of the time,

while the largest object (20 cm x 20 cm) were detected 49 times, or 40.8% of the time. For

the white objects, the smallest object was detected 83 times, or 69.2% of the time, while

the objects that were 10 cm or larger were detected 100% of the time. See Figure 20.

Figure 20. Detection rate of varying object size for black and white objects

 34

3. Effects of UAS Altitude

As the altitude of the UAS increased, the detection of the object decreased. For

black objects, the detection rate was 58 times out of 60, or 96.7% at 1 m, which decreased

to 6 times out of 60, or 10% at 10 m. For white objects, the detection rate was 100% at 1

m, which decreased to 47 times or 78.3% at 10 m. See Figure 21.

Figure 21. Detection rate of varying UAS altitude for black and white objects

4. Effects of Filter Size

As the filter size increased, the detection of the object decreased. For black objects,

the detection rate was 49 times out of 50, or 98% at the default 3 x 3 median filter, which

decreased to 5 times, or 10% with the 25 x 25 median filter. For white objects, the detection

rate was 100% at the default 3 x 3 median filter, and that decreased to 39 times, or 78%

with the 25 x 25 median filter. See Figure 22.

 35

Figure 22. Detection rate of varying filter size for black and white objects

B. SELECTION OF AFDS PARAMETERS

The configuration for the AFDS would be based on the detection of the black

objects, as it was found to be more challenging to detect black as opposed to white objects.

For the combination of altitude and filter size, there was a set of configurations that

allowed for the objects to be detected. See Table 8 for the detection rate of the black objects

for each UAS altitude-filter window size configuration.

Table 8. Detection rate of black objects in the UAS altitude-filter window size
coordinates

 UAS altitude AGL (m)
 1 2 3 4 5 6 7 8 9 10

Fi
lte

r w
in

do
w

 si
ze

 (p
ix

)

3 100% 100% 100% 100% 100% 100% 100% 100% 100% 80%
5 100% 100% 100% 100% 100% 100% 100% 80% 40% 40%
7 100% 100% 100% 100% 60% 80% 20% 40% 0% 0%
9 100% 100% 100% 60% 20% 0% 20% 0% 0% 0%
11 100% 100% 80% 40% 0% 0% 0% 0% 0% 0%
13 100% 80% 60% 40% 0% 0% 0% 0% 0% 0%
15 100% 80% 0% 0% 0% 0% 0% 0% 0% 0%
17 100% 80% 0% 0% 0% 0% 0% 0% 0% 0%
19 100% 60% 0% 0% 0% 0% 0% 0% 0% 0%
21 100% 40% 0% 0% 0% 0% 0% 0% 0% 0%
23 80% 20% 0% 0% 0% 0% 0% 0% 0% 0%
25 80% 20% 0% 0% 0% 0% 0% 0% 0% 0%

 36

To reduce the likelihood of false detections, it was proposed to a filter window size

of no smaller than 7 pixels. Hence, the UAS would need to be flown at 4 m from the ground

to be able to detect objects that have dimensions of 3 cm or smaller. Table 9 shows the

summary of the proposed AFDS configuration.

Table 9. Proposed AFDS configuration

UAS Altitude 4 m

Image filter window size 7pix-by-7pix

1. Ground Sample Distance

For an object of 3 cm dimension, the altitude at which the object could be detected

with the Zenmuse X3 was 4 m. Using equation (1), the real focal length of the camera

would be

, 3

20 6.16[]
34.6

[] 3.561 mm

R

R X

F mm

F mm

×
=

=
 (11)

From equation (2), the ground distance covered by the UAS at 4 m is given by

4000 6.16

3.561
6920 mm

W

W

D

D

×
=

=
 (12)

The ground width of each image is 6920 mm or 6.92 m. From equation (3), The

GSD of the image is

 Image Width
6920 1.73 mm/pixel
4000

WDGSD

GSD

=

= =
 (13)

 37

2. Number of UASs Required

With the ground width of each image being 6.92 m, the number of UAS required

would be the width of the runway divided by the ground width of each image. With a 10%

overlap on either side of each UAS, the coverage of each UAS becomes 5.54 m. Hence, a

runway that is 60 m wide (such as Runway 02L/20R at the Singapore Changi Airport)

would require 11 UAS spaced 5.54 m apart. A narrower runway that is 150 ft or 45.72 m

wide (such as Runway 10R/28L at Monterey Regional Airport) would require 9 UAS

similarly spaced apart. See Figure 23.

3. Number of Images Required

For a 4000 x 3000 pixel image covering a width of 6.92 m on the ground, the image

would cover a distance of 5.19 m. With a 10% overlap for the images, the distance covered

by each image would be 4.15 m. For a runway that is 4000 m long at the Singapore Changi

Airport, each UAS would take 964 images to cover the length. For the runway at Monterey

Regional Airport that is 7175 ft or 2187 m long, each UAS would take 527 images to cover

the length of the runway. See Figure 23.

Figure 23. For inspection at UAS altitude of 4 m, 11 UAS are required and 964
images per UAS would be taken to cover a runway length of 4000 m.

4. Data Generation and Transfer Rate

The data size of one 4000 x 3000 pixel image is approximately 5 MB in JPEG form.

The amount of data generated per run for a 4000 m x 60 m runway would be 10604 images

x 5 MB for a total data size of 53 GB. The amount of data generated for a smaller runway

 38

that is 2187 m x 46 m would be 24 GB. Assuming that the UAS travels at 5 m/s including

the time to stop and take the images, it would take 800 seconds or 13.3 minutes to cover a

4000 m runway, and 437 seconds or 7.3 minutes to cover a 2187 m runway.

To maximize the time for image processing, the data should be transferred as soon

as the images are taken. Hence, the data transfer rate should be

53 8

800
0.53Gbps

GB bitBitrate

Bitrate

×
=

=
 (14)

5. Processing Time

Each image took 360 seconds or 6 minutes to be processed in MATLAB on this

author’s laptop computer. For a lane of 964 images, that would take 5784 minutes, or 96.4

hours. For compiled code, this would be reduced to approximately 3.6 seconds per image,

or slightly less than an hour. Such a length of time is too slow to be practical in the

operational environment. For the system to be practical, the processing time should ideally

be limited to less than 30 minutes. That means that processing speeds need to be increased

by a factor of 2 or better, which could be accomplished by code optimization, or performing

the processing on a more powerful computer, or both.

6. Summary of System Specifications and Cost

For a system of UAS capable of performing inspection of a 4000 m x 60 m runway,

the costs and quantity are listed in Table 10. This assumes a parallel computing system

with each desktop computer processing the inputs from each UAS. Only the hardware costs

are included in this analysis.

Table 10. System specifications and cost of AFDS

Item System Quantity Unit Cost Cost
Processor Desktop Computers 11 $3,000 $33,000
UAS DJI Inspire 1 with Zenmuse X3 11 $2,000 $22,000
Modem AC5300-standard Router 1 $500 $500

Total $55,500

 39

VI. CONCLUSION AND RECOMMENDATIONS

A. SUMMARY

This thesis presented the requirements of a system of Group 1 UAS swarm to

perform FOD management at an airport. The concept of operations of the UAS swarm was

first presented, together with the GUI to support the operations. The prototype GUI was

then developed and tested and found to be feasible.

Field-testing was conducted at Camp Roberts with a consumer-class DJI Inspire 1

UAS and a typical 4K 94° FOV Zenmuse X3 camera to collect the required images to

perform the image analysis. These tests also provided the opportunity to conduct

preliminary assessment of the challenges that need to be overcome to implement the

proposed technology.

The feasibility assessment of the computation algorithms for image processing was

performed on a consumer-class laptop with MATLAB. Object parameters including the

size and color, as well as the altitude of the UAS and the image processing window filter

size were varied to determine the recommended configuration for the system.

Finally, the performance of the system was evaluated based on the recommended

configuration of the system. With the system specifications used in the experiment, the

processing time was assessed to be too long to be practical. However, with code

optimization and better hardware, FOD management with consumer-class Group 1 UAS

and computing equipment could be implemented in the near future. This thesis found that

the concept is feasible, with more testing required to ensure the reliability of the system.

B. RECOMMENDATIONS FOR FUTURE WORK

Through the development and testing of AFDS, the future work is recommended

as follows:

• Develop image extraction from video images to improve image collection

speeds. The method used in this thesis entailed the UAS stopping at

regular intervals over the runway to take still images.

 40

• Improve UAS control in high and fluctuating wind conditions.

• Develop UAS control using the GUI.

• Optimize image-processing code to speed up object detection.

• Develop and test the data transfer infrastructure from the UAS swarm to

the image processor. Together with the UAS control GUI, these two

developments would enable the implementation of the full end-to-end

AFDS system.

• Develop system redundancies should any UAS fail during the inspection

process.

Future development in this concept would provide further proof of the feasibility

of this system, and hopefully result in the eventual implementation of the AFDS in an

operational environment. Acceptance of unmanned technologies such as the AFDS would

improve safety in airport operations, while providing the opportunity for productivity

growth in manpower-limited countries like Singapore.

 41

APPENDIX A. MATLAB CODE FOR GRAPHICAL USER
INTERFACE

classdef AFDS2 < matlab.apps.AppBase
 % Properties that correspond to app components
 properties (Access = public)
 UIFigure matlab.ui.Figure
 CoverageButtonGroup matlab.ui.container.ButtonGroup
 FullSweepButton matlab.ui.control.RadioButton
 PartialSweepButton matlab.ui.control.RadioButton
 InspectionDistancemEditFieldLabel matlab.ui.control.Label
 InspectionDistancemEditField matlab.ui.control.NumericEditField
 AirfieldMapPanel matlab.ui.container.Panel
 WindEditFieldLabel matlab.ui.control.Label
 WindEditField matlab.ui.control.NumericEditField
 WindDirection matlab.ui.control.EditField
 UIAxes matlab.ui.control.UIAxes
 UASDisplayPanel matlab.ui.container.Panel
 UIAxes2 matlab.ui.control.UIAxes
 DistanceScannedmEditFieldLabel matlab.ui.control.Label
 DistanceScannedmEditField matlab.ui.control.NumericEditField
 InspectSwitchLabel matlab.ui.control.Label
 InspectSwitch matlab.ui.control.ToggleSwitch
 CameraPanel matlab.ui.container.Panel
 ModelDropDownLabel matlab.ui.control.Label
 ModelDropDown matlab.ui.control.DropDown
 FOVdegreesEditFieldLabel matlab.ui.control.Label
 FOVdegreesEditField matlab.ui.control.NumericEditField
 MinObjectSizemmEditFieldLabel matlab.ui.control.Label
 MinObjectSizemmEditField matlab.ui.control.NumericEditField
 UASAltitudemSpinnerLabel matlab.ui.control.Label
 UASAltitudemSpinner matlab.ui.control.Spinner
 UASEditFieldLabel matlab.ui.control.Label
 UASEditField matlab.ui.control.NumericEditField
 ImagesperLaneEditFieldLabel matlab.ui.control.Label
 ImagesperLaneEditField matlab.ui.control.NumericEditField
 ResolutionEditFieldLabel matlab.ui.control.Label
 ResolutionEditField matlab.ui.control.EditField
 InspectioninProgressLampLabel matlab.ui.control.Label
 InspectioninProgressLamp matlab.ui.control.Lamp
 AirportRunwayPanel matlab.ui.container.Panel
 AirportDropDownLabel matlab.ui.control.Label
 AirportDropDown matlab.ui.control.DropDown
 RunwayDropDownLabel matlab.ui.control.Label
 RunwayDropDown matlab.ui.control.DropDown
 LengthmEditFieldLabel matlab.ui.control.Label
 LengthmEditField matlab.ui.control.NumericEditField

 42

 WidthmEditFieldLabel matlab.ui.control.Label
 WidthmEditField matlab.ui.control.NumericEditField
 DateEditFieldLabel matlab.ui.control.Label
 DateEditField matlab.ui.control.EditField
 MaxSpeedEditFieldLabel matlab.ui.control.Label
 MaxSpeedEditField matlab.ui.control.NumericEditField
 UASSpeedEditFieldLabel matlab.ui.control.Label
 UASSpeedEditField matlab.ui.control.NumericEditField
 SpeedmsSliderLabel matlab.ui.control.Label
 SpeedmsSlider matlab.ui.control.Slider
 ResetDistanceScannedButton matlab.ui.control.Button
 end

 properties (Access = private)
 Windspeed % Description
 Rwy_len
 Rwy_wd
 UAS_alt
 UAS
 end

 methods (Access = private)

 function UAS = UAS_Num(app,l,n,m,cam) % Calculate # UAS required
 % n represents runway width, m represents UAS altitude
 % cam represents camera model, l represents runway length

 if strcmp(cam,’Zenmuse X3’)
 eq_len = 20;
 elseif strcmp(cam,’Zenmuse Z3’)
 eq_len = 22;
 end

 Fr = (6.16*eq_len)/34.6;
 Dw = (m*1000*6.16) / Fr;
 D_ht = Dw * 3/4;
 app.ImagesperLaneEditField.Value = ceil(l/(D_ht*0.8/1000));
 Overlap = Dw * 0.1;
 Scan_width = Dw - (2*Overlap);
 UAS = ceil((n*1000)/Scan_width);
 GSD = Dw / 4000; % 4000 = # pixels in width
 app.MinObjectSizemmEditField.Value = (30/1.73) * GSD;

 end

 function sc = screen(app) % UAS display

 43

 sc = true(399,231);
 for m = 1:100
 x = round(399*rand+1);
 y = round(231*rand+1);
 sc(x,y) = false;
 end
 end

 function [windspeed,direction] = wind(app)
 windspeed = rand*40;
 di = {‘N’,’S’,’E’,’W’};
 r = ceil(rand*4);
 direction = di{r};
 end

 function fod = fod_found(app,p)
 likely = rand;
 if likely < p
 fod = 1; %fod found
 else
 fod = 0; %fod not found
 end
 end
 end
 methods (Access = private)
 % Code that executes after component creation
 function startupFcn(app)
 [spd,di] = wind(app);
 app.WindEditField.Value = spd;
 app.WindDirection.Value = di;

 t = datetime(‘now’);
 formatOut = 1;
 app.DateEditField.Value = datestr(t,formatOut);
 app.MaxSpeedEditField.Value = 22;
 app.UASSpeedEditField.Value = app.SpeedmsSlider.Value;

 app.RunwayDropDown.Items = {‘02L/20R’,’02C/20C’};
 app.Rwy_len = 4000;
 app.Rwy_wd = 60;
 app.WidthmEditField.Value = app.Rwy_wd;
 app.LengthmEditField.Value = app.Rwy_len;
 app.InspectionDistancemEditField.Value =
app.LengthmEditField.Value;
 app.UAS_alt = app.UASAltitudemSpinner.Value;
 selectedButton = app.CoverageButtonGroup.SelectedObject;

 44

 app.ModelDropDown.Value = ‘Zenmuse X3’;
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 app.FOVdegreesEditField.Value = 94;

 %https://www.mathworks.com/matlabcentral/answers/360670-
imshow-in-app-designer-image-size-doesn-t-fit
 % Airfield Map
 % Fill figure with axes and remove tick labels

 app.UIAxes.Position = [32 56 451 621];

 % Remove title, axis labels, and tick labels
 title(app.UIAxes, []);
 xlabel(app.UIAxes, []);
 ylabel(app.UIAxes, []);
 app.UIAxes.XAxis.TickLabels = {};
 app.UIAxes.YAxis.TickLabels = {};
 % Display image and stretch to fill axes
 I = imshow(‘WSSS.png’, ‘Parent’, app.UIAxes, ...
 ‘XData’, [1 app.UIAxes.Position(3)], ...
 ‘YData’, [1 app.UIAxes.Position(4)]);
 % Set limits of axes
 app.UIAxes.XLim = [0 I.XData(2)];
 app.UIAxes.YLim = [0 I.YData(2)];

 % Fill figure with axes and remove tick labels
 %app.UIAxes2.Position = [12 10 368 200];
 app.UIAxes2.Position = [12 9 399 231];

 % Remove title, axis labels, and tick labels
 title(app.UIAxes2, []);
 %xlabel(app.UIAxes2, []);
 %ylabel(app.UIAxes2, []);
 app.UIAxes2.XAxis.TickLabels = {};
 app.UIAxes2.YAxis.TickLabels = {};

 end
 % Value changed function: AirportDropDown
 function AirportDropDownValueChanged(app, event)
 Airport_value = app.AirportDropDown.Value;
 if strcmp(Airport_value,’Singapore Changi Airport’)
 I = imshow(‘WSSS.png’, ‘Parent’, app.UIAxes, ...
 ‘XData’, [1 app.UIAxes.Position(3)], ...
 ‘YData’, [1 app.UIAxes.Position(4)]);

 45

 app.RunwayDropDown.Items = {‘02L/20R’,’02C/20C’};
 app.Rwy_len = 4000;
 app.Rwy_wd = 60;
 app.WidthmEditField.Value = app.Rwy_wd;
 app.LengthmEditField.Value = app.Rwy_len;
 app.InspectionDistancemEditField.Value =
app.LengthmEditField.Value
 app.FullSweepButton.Value = true;
 app.RunwayDropDown.Enable = ‘on’;
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 app.FullSweepButton.Value = true;
 [spd,di] = wind(app);
 app.WindEditField.Value = spd;
 app.WindDirection.Value = di;

 elseif strcmp(Airport_value,’Monterey Regional Airport’)
 I = imshow(‘KMRY.png’, ‘Parent’, app.UIAxes, ...
 ‘XData’, [1 app.UIAxes.Position(3)], ...
 ‘YData’, [1 app.UIAxes.Position(4)]);
 app.RunwayDropDown.Items = {‘10L/28R’,’10R/28L’};
 app.Rwy_len = 1068;
 app.Rwy_wd = 18;
 app.WidthmEditField.Value = app.Rwy_wd;
 app.LengthmEditField.Value = app.Rwy_len;
 app.InspectionDistancemEditField.Value =
app.LengthmEditField.Value
 app.FullSweepButton.Value = true;
 app.RunwayDropDown.Enable = ‘on’;
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 app.FullSweepButton.Value = true;
 [spd,di] = wind(app);
 app.WindEditField.Value = spd;
 app.WindDirection.Value = di;

 else
 I = imshow(‘KSNS.png’, ‘Parent’, app.UIAxes, ...
 ‘XData’, [1 app.UIAxes.Position(3)], ...
 ‘YData’, [1 app.UIAxes.Position(4)]);
 app.RunwayDropDown.Items = {‘08/26’,’13/31’};
 app.Rwy_len = 1830;
 app.Rwy_wd = 46;
 app.WidthmEditField.Value = app.Rwy_wd;
 app.LengthmEditField.Value = app.Rwy_len;

 46

 app.InspectionDistancemEditField.Value =
app.LengthmEditField.Value
 app.FullSweepButton.Value = true;
 app.RunwayDropDown.Enable = ‘on’;
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 app.FullSweepButton.Value = true;
 [spd,di] = wind(app);
 app.WindEditField.Value = spd;
 app.WindDirection.Value = di;

 end
 end
 % Value changed function: SpeedmsSlider
 function SpeedmsSliderValueChanged(app, event)
 Speed_value = app.SpeedmsSlider.Value;
 app.UASSpeedEditField.Value = Speed_value;
 end
 % Value changed function: RunwayDropDown
 function RunwayDropDownValueChanged(app, event)
 Runway_Length = app.RunwayDropDown.Value;
 if strcmp(Runway_Length,’02L/20R’)
 app.Rwy_len = 4000;
 app.Rwy_wd = 60;
 app.WidthmEditField.Value = app.Rwy_wd;
 app.LengthmEditField.Value = app.Rwy_len;
 app.InspectionDistancemEditField.Value =
app.LengthmEditField.Value
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 app.FullSweepButton.Value = true;

 elseif strcmp(Runway_Length,’02C/20C’)
 app.Rwy_len = 4000;
 app.Rwy_wd = 60;
 app.WidthmEditField.Value = app.Rwy_wd;
 app.LengthmEditField.Value = app.Rwy_len;
 app.InspectionDistancemEditField.Value =
app.LengthmEditField.Value
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 app.FullSweepButton.Value = true;

 elseif strcmp(Runway_Length,’10L/28R’)
 app.Rwy_len = 1068;

 47

 app.Rwy_wd = 18;
 app.WidthmEditField.Value = app.Rwy_wd;
 app.LengthmEditField.Value = app.Rwy_len;
 app.InspectionDistancemEditField.Value =
app.LengthmEditField.Value
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 app.FullSweepButton.Value = true;

 elseif strcmp(Runway_Length,’10R/28L’)
 app.Rwy_len = 2187;
 app.Rwy_wd = 46;
 app.WidthmEditField.Value = app.Rwy_wd;
 app.LengthmEditField.Value = app.Rwy_len;
 app.InspectionDistancemEditField.Value =
app.LengthmEditField.Value
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 app.FullSweepButton.Value = true;

 elseif strcmp(Runway_Length,’08/26’)
 app.LengthmEditField.Value = 1830;
 app.WidthmEditField.Value = 46;
 app.Rwy_len = 1830;
 app.Rwy_wd = 46;
 app.WidthmEditField.Value = app.Rwy_wd;
 app.LengthmEditField.Value = app.Rwy_len;
 app.InspectionDistancemEditField.Value =
app.LengthmEditField.Value
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 app.FullSweepButton.Value = true;

 else
 app.Rwy_len = 1470;
 app.Rwy_wd = 46;
 app.WidthmEditField.Value = app.Rwy_wd;
 app.LengthmEditField.Value = app.Rwy_len;
 app.InspectionDistancemEditField.Value =
app.LengthmEditField.Value
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 app.FullSweepButton.Value = true;

 48

 end
 end
 % Value changing function: SpeedmsSlider
 function SpeedmsSliderValueChanging(app, event)
 SpeedchangingValue = event.Value;
 app.UASSpeedEditField.Value = SpeedchangingValue;
 end
 % Callback function
 function InspectButtonValueChanged(app, event)
 end
 % Value changed function: UASAltitudemSpinner
 function UASAltitudemSpinnerValueChanged(app, event)
 app.UAS_alt = app.UASAltitudemSpinner.Value;
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 end
 % Value changed function: InspectSwitch
 function InspectSwitchValueChanged(app, event)
 switch_val = app.InspectSwitch.Value;
 if strcmp(app.InspectSwitch.Value,’Start’)
 app.InspectioninProgressLamp.Color = [0 1 0];
 app.DateEditField.Enable = ‘off’;
 app.AirportDropDown.Enable = ‘off’;
 app.RunwayDropDown.Enable = ‘off’;
 app.ModelDropDown.Enable = ‘off’;
 app.UASAltitudemSpinner.Enable = ‘off’;
 app.SpeedmsSlider.Enable = ‘off’;
 app.FullSweepButton.Enable = ‘off’;
 app.PartialSweepButton.Enable = ‘off’;
 app.ResetDistanceScannedButton.Enable = ‘off’;
 app.LengthmEditField.Enable = ‘off’;
 app.WidthmEditField.Enable = ‘off’;
 app.MaxSpeedEditField.Enable = ‘off’;
 app.UASSpeedEditField.Enable = ‘off’;
 app.UASEditField.Enable = ‘off’;
 app.ImagesperLaneEditField.Enable = ‘off’;
 app.ResolutionEditField.Enable = ‘off’;
 app.FOVdegreesEditField.Enable = ‘off’;
 app.MinObjectSizemmEditField.Enable = ‘off’;
 app.InspectionDistancemEditField.Enable = ‘off’;

 k = app.DistanceScannedmEditField.Value;

 for i = k:app.InspectionDistancemEditField.Value
 if strcmp(app.InspectSwitch.Value,’Stop’)
 %app.StartStopEditField.Value =
app.InspectSwitch.Value;

 49

 break
 end
 if i == app.InspectionDistancemEditField.Value
 app.InspectSwitch.Value = ‘Stop’;
 %app.StartStopEditField.Value =
app.InspectSwitch.Value;
 %break
 end

 %app.StartStopEditField.Value =
app.InspectSwitch.Value;
 app.DistanceScannedmEditField.Value = i;

 prob = 0.001; %Likelihood of FOD
 fod = fod_found(app,prob);
 str = ‘FOD Found’;
 if fod == 1
 out{i} = sprintf(‘%s at %d m’,str,i);
 fig_no = figure(‘Name’,out{i});
 fig_no.MenuBar = ‘none’;
 imshow(‘01.JPG’);
 end

 %Display image and stretch to fill axes
 J = imshow(app.screen, ‘Parent’, app.UIAxes2, ...
 ‘XData’, [1 app.UIAxes2.Position(3)], ...
 ‘YData’, [1 app.UIAxes2.Position(4)]);
 % Set limits of axes
 app.UIAxes2.XLim = [0 J.XData(2)];
 app.UIAxes2.YLim = [0 J.YData(2)];
 pause(1/app.UASSpeedEditField.Value)

 end
 end
 app.InspectSwitch.Value = ‘Stop’;
 %app.StartStopEditField.Value = app.InspectSwitch.Value;
 app.InspectioninProgressLamp.Color = [1 0 0];
 app.AirportDropDown.Enable = ‘on’;
 app.DateEditField.Enable = ‘on’;
 app.RunwayDropDown.Enable = ‘on’;
 app.ModelDropDown.Enable = ‘on’;
 app.UASAltitudemSpinner.Enable = ‘on’;
 app.SpeedmsSlider.Enable = ‘on’;
 app.FullSweepButton.Enable = ‘on’;
 app.PartialSweepButton.Enable = ‘on’;
 app.ResetDistanceScannedButton.Enable = ‘on’;
 app.LengthmEditField.Enable = ‘on’;
 app.WidthmEditField.Enable = ‘on’;

 50

 app.MaxSpeedEditField.Enable = ‘on’;
 app.UASSpeedEditField.Enable = ‘on’;
 app.UASEditField.Enable = ‘on’;
 app.ImagesperLaneEditField.Enable = ‘on’;
 app.ResolutionEditField.Enable = ‘on’;
 app.FOVdegreesEditField.Enable = ‘on’;
 app.MinObjectSizemmEditField.Enable = ‘on’;
 app.InspectionDistancemEditField.Enable = ‘on’;

 end
 % Value changed function: ModelDropDown
 function ModelDropDownValueChanged(app, event)
 camera_model = app.ModelDropDown.Value;
 if strcmp(camera_model,’Zenmuse X3’)
 app.FOVdegreesEditField.Value = 94;
 elseif strcmp(camera_model,’Zenmuse Z3’)
 app.FOVdegreesEditField.Value = 92;
 end
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);
 end
 % Selection changed function: CoverageButtonGroup
 function CoverageButtonGroupSelectionChanged(app, event)
 Airport_value = app.AirportDropDown.Value;
 selectedButton = app.CoverageButtonGroup.SelectedObject;
 %app.CoverageEditField.Value = selectedButton.Text;
 if app.PartialSweepButton.Value == true
 close all;
 fig = figure(‘Name’,’Select Start and End
points.’,’NumberTitle’,’off’);
 fig.MenuBar = ‘none’;
 if strcmp(Airport_value,’Singapore Changi Airport’)
 airfield = imshow(‘WSSS.png’);
 scale = 5.2951;
 elseif strcmp(Airport_value,’Monterey Regional Airport’)
 airfield = imshow(‘KMRY.png’);
 scale = 2.8959;
 else
 airfield = imshow(‘KSNS.png’);
 scale = 2.7242;
 end

 button = 1;
 xy = []; n = 0;
 while n < 2
 [xi,yi,button] = ginput(1);
 n = n+1;

 51

 xy(:,n) = [xi;yi];
 end
 close(‘Select Start and End points.’)

 len = scale*sqrt((xy(2,2)-xy(2,1))^2 + (xy(1,2)-
xy(1,1))^2);
 app.InspectionDistancemEditField.Value = len;
 app.UASEditField.Value =
UAS_Num(app,app.InspectionDistancemEditField.Value,app.Rwy_wd,...
 app.UAS_alt,app.ModelDropDown.Value);

 end
 if app.FullSweepButton.Value == true
 app.InspectionDistancemEditField.Value = app.Rwy_len;
 close all;
 end
 app.DistanceScannedmEditField.Value = 1;
 end
 % Button pushed function: ResetDistanceScannedButton
 function ResetDistanceScannedButtonPushed(app, event)
 i = 0;
 app.DistanceScannedmEditField.Value = i;
 close all;
 end
 end
 % App initialization and construction
 methods (Access = private)
 % Create UIFigure and components
 function createComponents(app)
 % Create UIFigure
 app.UIFigure = uifigure;
 app.UIFigure.Position = [10 10 960 720];
 app.UIFigure.Name = ‘UI Figure’;
 app.UIFigure.Resize = ‘off’;
 % Create CoverageButtonGroup
 app.CoverageButtonGroup = uibuttongroup(app.UIFigure);
 app.CoverageButtonGroup.SelectionChangedFcn =
createCallbackFcn(app, @CoverageButtonGroupSelectionChanged, true);
 app.CoverageButtonGroup.Title = ‘3. Coverage’;
 app.CoverageButtonGroup.Position = [512 306 196 103];
 % Create FullSweepButton
 app.FullSweepButton = uiradiobutton(app.CoverageButtonGroup);
 app.FullSweepButton.Text = ‘Full Sweep’;
 app.FullSweepButton.Position = [11 57 81 22];
 app.FullSweepButton.Value = true;
 % Create PartialSweepButton
 app.PartialSweepButton =
uiradiobutton(app.CoverageButtonGroup);

 52

 app.PartialSweepButton.Text = ‘Partial Sweep’;
 app.PartialSweepButton.Position = [98 57 96 22];
 % Create InspectionDistancemEditFieldLabel
 app.InspectionDistancemEditFieldLabel =
uilabel(app.CoverageButtonGroup);
 app.InspectionDistancemEditFieldLabel.HorizontalAlignment =
‘right’;
 app.InspectionDistancemEditFieldLabel.Position = [34 33 131
22];
 app.InspectionDistancemEditFieldLabel.Text = ‘Inspection
Distance (m)’;
 % Create InspectionDistancemEditField
 app.InspectionDistancemEditField =
uieditfield(app.CoverageButtonGroup, ‘numeric’);
 app.InspectionDistancemEditField.Editable = ‘off’;
 app.InspectionDistancemEditField.Position = [43 12 113 22];
 % Create AirfieldMapPanel
 app.AirfieldMapPanel = uipanel(app.UIFigure);
 app.AirfieldMapPanel.Title = ‘Airfield Map’;
 app.AirfieldMapPanel.Position = [22 16 475 690];
 % Create WindEditFieldLabel
 app.WindEditFieldLabel = uilabel(app.AirfieldMapPanel);
 app.WindEditFieldLabel.HorizontalAlignment = ‘right’;
 app.WindEditFieldLabel.Position = [194 9 33 22];
 app.WindEditFieldLabel.Text = ‘Wind’;
 % Create WindEditField
 app.WindEditField = uieditfield(app.AirfieldMapPanel,
‘numeric’);
 app.WindEditField.Limits = [0 Inf];
 app.WindEditField.RoundFractionalValues = ‘on’;
 app.WindEditField.ValueDisplayFormat = ‘%.0f’;
 app.WindEditField.Position = [242 9 40 22];
 % Create WindDirection
 app.WindDirection = uieditfield(app.AirfieldMapPanel, ‘text’);
 app.WindDirection.Position = [281 9 22 22];
 % Create UIAxes
 app.UIAxes = uiaxes(app.UIFigure);
 app.UIAxes.PlotBoxAspectRatio = [0.641425389755011 1
0.641425389755011];
 app.UIAxes.Box = ‘on’;
 app.UIAxes.Position = [32 56 451 621];
 % Create UASDisplayPanel
 app.UASDisplayPanel = uipanel(app.UIFigure);
 app.UASDisplayPanel.Title = ‘4. UAS Display’;
 app.UASDisplayPanel.Position = [512 16 425 263];
 % Create UIAxes2
 app.UIAxes2 = uiaxes(app.UASDisplayPanel);
 xlabel(app.UIAxes2, ‘Relative Runway Width’)

 53

 ylabel(app.UIAxes2, ‘Downrange’)
 app.UIAxes2.PlotBoxAspectRatio = [1 0.513064133016627
0.513064133016627];
 app.UIAxes2.Position = [12 9 399 231];
 % Create DistanceScannedmEditFieldLabel
 app.DistanceScannedmEditFieldLabel = uilabel(app.UIFigure);
 app.DistanceScannedmEditFieldLabel.HorizontalAlignment =
‘right’;
 app.DistanceScannedmEditFieldLabel.Position = [713 332 124
22];
 app.DistanceScannedmEditFieldLabel.Text = ‘Distance Scanned
(m)’;
 % Create DistanceScannedmEditField
 app.DistanceScannedmEditField = uieditfield(app.UIFigure,
‘numeric’);
 app.DistanceScannedmEditField.Limits = [0 Inf];
 app.DistanceScannedmEditField.Editable = ‘off’;
 app.DistanceScannedmEditField.Position = [841 332 48 22];
 % Create InspectSwitchLabel
 app.InspectSwitchLabel = uilabel(app.UIFigure);
 app.InspectSwitchLabel.HorizontalAlignment = ‘center’;
 app.InspectSwitchLabel.Position = [893 288 44 22];
 app.InspectSwitchLabel.Text = ‘Inspect’;
 % Create InspectSwitch
 app.InspectSwitch = uiswitch(app.UIFigure, ‘toggle’);
 app.InspectSwitch.Items = {‘Stop’, ‘Start’};
 app.InspectSwitch.ValueChangedFcn = createCallbackFcn(app,
@InspectSwitchValueChanged, true);
 app.InspectSwitch.Position = [905 335 18 42];
 app.InspectSwitch.Value = ‘Stop’;
 % Create CameraPanel
 app.CameraPanel = uipanel(app.UIFigure);
 app.CameraPanel.Title = ‘2. Camera’;
 app.CameraPanel.Position = [512 415 425 142];
 % Create ModelDropDownLabel
 app.ModelDropDownLabel = uilabel(app.CameraPanel);
 app.ModelDropDownLabel.HorizontalAlignment = ‘right’;
 app.ModelDropDownLabel.Position = [6 93 38 22];
 app.ModelDropDownLabel.Text = ‘Model’;
 % Create ModelDropDown
 app.ModelDropDown = uidropdown(app.CameraPanel);
 app.ModelDropDown.Items = {‘Zenmuse X3’, ‘Zenmuse Z3’};
 app.ModelDropDown.ValueChangedFcn = createCallbackFcn(app,
@ModelDropDownValueChanged, true);
 app.ModelDropDown.Position = [56 93 100 22];
 app.ModelDropDown.Value = ‘Zenmuse X3’;
 % Create FOVdegreesEditFieldLabel
 app.FOVdegreesEditFieldLabel = uilabel(app.CameraPanel);

 54

 app.FOVdegreesEditFieldLabel.HorizontalAlignment = ‘right’;
 app.FOVdegreesEditFieldLabel.Position = [238 62 85 22];
 app.FOVdegreesEditFieldLabel.Text = ‘FOV (degrees)’;
 % Create FOVdegreesEditField
 app.FOVdegreesEditField = uieditfield(app.CameraPanel,
‘numeric’);
 app.FOVdegreesEditField.Editable = ‘off’;
 app.FOVdegreesEditField.Position = [336 62 44 22];
 % Create MinObjectSizemmEditFieldLabel
 app.MinObjectSizemmEditFieldLabel = uilabel(app.CameraPanel);
 app.MinObjectSizemmEditFieldLabel.HorizontalAlignment =
‘right’;
 app.MinObjectSizemmEditFieldLabel.Position = [202 32 121 22];
 app.MinObjectSizemmEditFieldLabel.Text = ‘Min Object Size
(mm)’;
 % Create MinObjectSizemmEditField
 app.MinObjectSizemmEditField = uieditfield(app.CameraPanel,
‘numeric’);
 app.MinObjectSizemmEditField.Editable = ‘off’;
 app.MinObjectSizemmEditField.Position = [336 32 44 22];
 % Create UASAltitudemSpinnerLabel
 app.UASAltitudemSpinnerLabel = uilabel(app.CameraPanel);
 app.UASAltitudemSpinnerLabel.HorizontalAlignment = ‘right’;
 app.UASAltitudemSpinnerLabel.Position = [6 62 95 23];
 app.UASAltitudemSpinnerLabel.Text = ‘UAS Altitude (m)’;
 % Create UASAltitudemSpinner
 app.UASAltitudemSpinner = uispinner(app.CameraPanel);
 app.UASAltitudemSpinner.Limits = [1 10];
 app.UASAltitudemSpinner.ValueChangedFcn =
createCallbackFcn(app, @UASAltitudemSpinnerValueChanged, true);
 app.UASAltitudemSpinner.Position = [111 62 55 22];
 app.UASAltitudemSpinner.Value = 1;
 % Create UASEditFieldLabel
 app.UASEditFieldLabel = uilabel(app.CameraPanel);
 app.UASEditFieldLabel.HorizontalAlignment = ‘right’;
 app.UASEditFieldLabel.Position = [8 32 40 22];
 app.UASEditFieldLabel.Text = ‘# UAS’;
 % Create UASEditField
 app.UASEditField = uieditfield(app.CameraPanel, ‘numeric’);
 app.UASEditField.Limits = [0 Inf];
 app.UASEditField.Editable = ‘off’;
 app.UASEditField.Position = [129 32 36 22];
 % Create ImagesperLaneEditFieldLabel
 app.ImagesperLaneEditFieldLabel = uilabel(app.CameraPanel);
 app.ImagesperLaneEditFieldLabel.HorizontalAlignment = ‘right’;
 app.ImagesperLaneEditFieldLabel.Position = [6 5 106 22];
 app.ImagesperLaneEditFieldLabel.Text = ‘# Images per Lane’;
 % Create ImagesperLaneEditField

 55

 app.ImagesperLaneEditField = uieditfield(app.CameraPanel,
‘numeric’);
 app.ImagesperLaneEditField.Editable = ‘off’;
 app.ImagesperLaneEditField.Position = [129 5 37 22];
 % Create ResolutionEditFieldLabel
 app.ResolutionEditFieldLabel = uilabel(app.CameraPanel);
 app.ResolutionEditFieldLabel.HorizontalAlignment = ‘right’;
 app.ResolutionEditFieldLabel.Position = [217 93 62 22];
 app.ResolutionEditFieldLabel.Text = ‘Resolution’;
 % Create ResolutionEditField
 app.ResolutionEditField = uieditfield(app.CameraPanel,
‘text’);
 app.ResolutionEditField.Editable = ‘off’;
 app.ResolutionEditField.HorizontalAlignment = ‘center’;
 app.ResolutionEditField.Position = [296 93 84 22];
 app.ResolutionEditField.Value = ‘4000 x 3000’;
 % Create InspectioninProgressLampLabel
 app.InspectioninProgressLampLabel = uilabel(app.UIFigure);
 app.InspectioninProgressLampLabel.HorizontalAlignment =
‘right’;
 app.InspectioninProgressLampLabel.Position = [722 366 124 22];
 app.InspectioninProgressLampLabel.Text = ‘Inspection in
Progress’;
 % Create InspectioninProgressLamp
 app.InspectioninProgressLamp = uilamp(app.UIFigure);
 app.InspectioninProgressLamp.Position = [861 366 20 20];
 app.InspectioninProgressLamp.Color = [1 0 0];
 % Create AirportRunwayPanel
 app.AirportRunwayPanel = uipanel(app.UIFigure);
 app.AirportRunwayPanel.Title = ‘1. Airport/Runway’;
 app.AirportRunwayPanel.Position = [512 560 425 146];
 % Create AirportDropDownLabel
 app.AirportDropDownLabel = uilabel(app.AirportRunwayPanel);
 app.AirportDropDownLabel.HorizontalAlignment = ‘right’;
 app.AirportDropDownLabel.Position = [8 95 41 22];
 app.AirportDropDownLabel.Text = ‘Airport’;
 % Create AirportDropDown
 app.AirportDropDown = uidropdown(app.AirportRunwayPanel);
 app.AirportDropDown.Items = {‘Singapore Changi Airport’,
‘Monterey Regional Airport’, ‘Salinas Municipal Airport’};
 app.AirportDropDown.ValueChangedFcn = createCallbackFcn(app,
@AirportDropDownValueChanged, true);
 app.AirportDropDown.Position = [64 95 188 22];
 app.AirportDropDown.Value = ‘Singapore Changi Airport’;
 % Create RunwayDropDownLabel
 app.RunwayDropDownLabel = uilabel(app.AirportRunwayPanel);
 app.RunwayDropDownLabel.HorizontalAlignment = ‘right’;
 app.RunwayDropDownLabel.Position = [8 72 49 22];

 56

 app.RunwayDropDownLabel.Text = ‘Runway’;
 % Create RunwayDropDown
 app.RunwayDropDown = uidropdown(app.AirportRunwayPanel);
 app.RunwayDropDown.Items = {‘02L/20R’, ‘02C/20C’};
 app.RunwayDropDown.ValueChangedFcn = createCallbackFcn(app,
@RunwayDropDownValueChanged, true);
 app.RunwayDropDown.Position = [64 72 188 22];
 app.RunwayDropDown.Value = ‘02L/20R’;
 % Create LengthmEditFieldLabel
 app.LengthmEditFieldLabel = uilabel(app.AirportRunwayPanel);
 app.LengthmEditFieldLabel.HorizontalAlignment = ‘right’;
 app.LengthmEditFieldLabel.Position = [8 48 63 22];
 app.LengthmEditFieldLabel.Text = ‘Length (m)’;
 % Create LengthmEditField
 app.LengthmEditField = uieditfield(app.AirportRunwayPanel,
‘numeric’);
 app.LengthmEditField.Editable = ‘off’;
 app.LengthmEditField.Position = [72 48 46 22];
 % Create WidthmEditFieldLabel
 app.WidthmEditFieldLabel = uilabel(app.AirportRunwayPanel);
 app.WidthmEditFieldLabel.HorizontalAlignment = ‘right’;
 app.WidthmEditFieldLabel.Position = [139 48 57 22];
 app.WidthmEditFieldLabel.Text = ‘Width (m)’;
 % Create WidthmEditField
 app.WidthmEditField = uieditfield(app.AirportRunwayPanel,
‘numeric’);
 app.WidthmEditField.Editable = ‘off’;
 app.WidthmEditField.Position = [202 48 46 22];
 % Create DateEditFieldLabel
 app.DateEditFieldLabel = uilabel(app.AirportRunwayPanel);
 app.DateEditFieldLabel.HorizontalAlignment = ‘right’;
 app.DateEditFieldLabel.Position = [266 95 31 22];
 app.DateEditFieldLabel.Text = ‘Date’;
 % Create DateEditField
 app.DateEditField = uieditfield(app.AirportRunwayPanel,
‘text’);
 app.DateEditField.Editable = ‘off’;
 app.DateEditField.Position = [312 95 104 22];
 % Create MaxSpeedEditFieldLabel
 app.MaxSpeedEditFieldLabel = uilabel(app.AirportRunwayPanel);
 app.MaxSpeedEditFieldLabel.HorizontalAlignment = ‘right’;
 app.MaxSpeedEditFieldLabel.Position = [288 72 66 22];
 app.MaxSpeedEditFieldLabel.Text = ‘Max Speed’;
 % Create MaxSpeedEditField
 app.MaxSpeedEditField = uieditfield(app.AirportRunwayPanel,
‘numeric’);
 app.MaxSpeedEditField.Editable = ‘off’;
 app.MaxSpeedEditField.Position = [369 72 47 22];

 57

 % Create UASSpeedEditFieldLabel
 app.UASSpeedEditFieldLabel = uilabel(app.AirportRunwayPanel);
 app.UASSpeedEditFieldLabel.HorizontalAlignment = ‘right’;
 app.UASSpeedEditFieldLabel.Position = [288 50 68 22];
 app.UASSpeedEditFieldLabel.Text = ‘UAS Speed’;
 % Create UASSpeedEditField
 app.UASSpeedEditField = uieditfield(app.AirportRunwayPanel,
‘numeric’);
 app.UASSpeedEditField.Editable = ‘off’;
 app.UASSpeedEditField.Position = [369 49 47 22];
 % Create SpeedmsSliderLabel
 app.SpeedmsSliderLabel = uilabel(app.AirportRunwayPanel);
 app.SpeedmsSliderLabel.HorizontalAlignment = ‘right’;
 app.SpeedmsSliderLabel.Position = [225 29 71 22];
 app.SpeedmsSliderLabel.Text = ‘Speed (m/s)’;
 % Create SpeedmsSlider
 app.SpeedmsSlider = uislider(app.AirportRunwayPanel);
 app.SpeedmsSlider.Limits = [1 22];
 app.SpeedmsSlider.ValueChangedFcn = createCallbackFcn(app,
@SpeedmsSliderValueChanged, true);
 app.SpeedmsSlider.ValueChangingFcn = createCallbackFcn(app,
@SpeedmsSliderValueChanging, true);
 app.SpeedmsSlider.Position = [311 38 104 3];
 app.SpeedmsSlider.Value = 1;
 % Create ResetDistanceScannedButton
 app.ResetDistanceScannedButton = uibutton(app.UIFigure,
‘push’);
 app.ResetDistanceScannedButton.ButtonPushedFcn =
createCallbackFcn(app, @ResetDistanceScannedButtonPushed, true);
 app.ResetDistanceScannedButton.Position = [729 297 148 22];
 app.ResetDistanceScannedButton.Text = ‘Reset Distance
Scanned’;
 end
 end
 methods (Access = public)
 % Construct app
 function app = AFDS2
 % Create and configure components
 createComponents(app)
 % Register the app with App Designer
 registerApp(app, app.UIFigure)
 % Execute the startup function
 runStartupFcn(app, @startupFcn)
 if nargout == 0
 clear app
 end
 end
 % Code that executes before app deletion

 58

 function delete(app)
 % Delete UIFigure when app is deleted
 delete(app.UIFigure)
 end
 end
end

 59

APPENDIX B. MATLAB CODE FOR OBJECT DETECTION

clc
close all
clear all
tic
%%
%naming conventions - input files by UAV height
%output files in hxx0y, where h is UAV hgt, xx is filter size,
%y where 1 is redbox image, 2 is output image

FolderName = ‘W3x3’; %Folder where images with suspected FOD are stored

cd ‘D:\School\Working Matlab\MML Baseline’
%read base files, organized from 1m to 10m
originalfiles = dir(‘*.jpg’);
nfiles = length(originalfiles); % Number of files found
for ii=1:nfiles
 originalfilename = originalfiles(ii).name;
 originalimage = imread(originalfilename);
 oldimages{ii} = originalimage;
end

%read new images, organized from 1m to 10m
WorkingFolder = strcat(‘D:\School\Working Matlab\’,FolderName);
cd(WorkingFolder);
imagefiles = dir(‘*.jpg’);
nfiles = length(imagefiles); % Number of files found
for ii=1:nfiles
 currentfilename = imagefiles(ii).name;
 currentimage = imread(currentfilename);
 images{ii} = currentimage;
 gps{ii}=imfinfo(currentfilename);
end

%%
for ii=1:nfiles
 figure(ii*10000);
 pair{ii} = ii*10000;
 filename = sprintf(‘%i.png’, pair{ii});
 %filter images after converting to gray
 fixed = rgb2gray(oldimages{ii});
 moving = rgb2gray(images{ii});
 [ht, wd, dim] = size(images{ii});

 [optimizer, metric] = imregconfig(‘multimodal’);
 optimizer.InitialRadius = 0.003;
 optimizer.Epsilon = 1.5e-7;
 optimizer.GrowthFactor = 1.005;

 60

 optimizer.MaximumIterations = 900;

 %tform and align image
 tform = imregtform(moving, fixed, ‘affine’, optimizer, metric);
 movingRegistered =
imwarp(moving,tform,’OutputView’,imref2d(size(fixed)));
 imshowpair(fixed, movingRegistered,’Scaling’,’joint’)
 set(gca,’position’,[0 0 1 1],’units’,’normalized’)
 gf = getframe(gcf);
 hd = fullfile(‘D:’,’School’,’Working Matlab’,’Results’,FolderName,...
 ‘ImgPair’,filename);
 imwrite(gf.cdata,hd);

 %find difference between images
 %g refers to filter size
 for f=1:12
 g=f*2+1;
 redbox{g} = ii*10000+g*100+1;
 redFileName = sprintf(‘%i.png’, redbox{g});
 output{g} = ii*10000+g*100+2;
 outFileName = sprintf(‘%i.png’, output{g});
 diffname{g} = ii*10000+g*100+3;
 diffFileName = sprintf(‘%i.png’, diffname{g});
 befbox{g} = ii*10000+g*100+4;
 befName = sprintf(‘%i.png’, befbox{g});
 diff=imabsdiff(fixed,movingRegistered);
 figure(ii*10000+g*100+3);
 imshow(diff)
 set(gca,’position’,[0 0 1 1],’units’,’normalized’)
 difr=getframe(gcf);
 dn = fullfile(‘D:’,’School’,’Working
Matlab’,’Results’,FolderName,...
 ‘Diff_bef_filt’,diffFileName);
 imwrite(difr.cdata,dn);
 close;
 highlighted_diff = medfilt2(roicolor(diff,100,200),[g g]);

 %draw bounding box around suspected FODs
 figure(ii*10000+g*100+1);
 imshow(highlighted_diff);
 set(gca,’position’,[0 0 1 1],’units’,’normalized’)
 befr=getframe(gcf);
 befboxn = fullfile(‘D:’,’School’,’Working
Matlab’,’Results’,FolderName,...
 ‘Before_box’,befName);
 imwrite(befr.cdata,befboxn);
 st=regionprops(highlighted_diff, ‘BoundingBox’);
 for k = 1 : length(st)
 thisBB = st(k).BoundingBox;
 rectangle(‘Position’,
[thisBB(1),thisBB(2),thisBB(3),thisBB(4)],...

 61

 ‘EdgeColor’,’r’,’LineWidth’,2)
 end

 %save image for further processing
 fr=getframe(gcf);
 imwrite(fr.cdata,’save.png’);
 fn = fullfile(‘D:’,’School’,’Working
Matlab’,’Results’,FolderName,...
 ‘Redbox’,redFileName);
 imwrite(fr.cdata,fn);
 img=imresize(imread(‘save.png’),[ht wd]);

 %separate channels to filter out the red boxes
 red = img(:,:,1); % Red channel
 green = img(:,:,2); % Green channel
 blue = img(:,:,3); % Blue channel
 boxes=imsubtract(imsubtract(red,green),blue);

 %save and display output images
 figure(ii*10000+g*100+2);
 imshow(boxes);
 %disp(g)
 imshowpair(movingRegistered,boxes,’diff’);
 set(gca,’position’,[0 0 1 1],’units’,’normalized’)
 kr=getframe(gcf);
 kn = fullfile(‘D:’,’School’,’Working
Matlab’,’Results’,FolderName,...
 ‘Output’,outFileName);
 imwrite(kr.cdata,kn);
 delete save.png
 close;
 close;
 end
end

% obtain and store the processing time for this folder
watch = toc
watch_min = toc/60
timefile = strcat(‘D:\School\Working Matlab\Results\’,FolderName);
textfile = fopen(strcat(timefile,’\time.txt’),’a+’);
fprintf(textfile,’Total Elapsed Time:%.4g seconds / %.4g minutes\n’,...
 watch,watch_min);

cd ‘D:\School\Working Matlab’

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

LIST OF REFERENCES

Alexander-Adams, Marcia. 2013. “Fact Sheet - Foreign Object Debris (FOD).” Fact
Sheet. Washington, DC: Federal Aviation Authority. https://www.faa.gov/news/
fact_sheets/news_story.cfm?newsId=15394.

Chambers, Joshua, and Rohaidi, Nurfilzah. 2017. “How Can Singapore Address Its
Manpower Shortage?” GovInsider (blog), May 25, 2017. https://govinsider.asia/
digital-gov/how-can-singapore-address-its-manpower-shortage/.

Chew, Khien Meow David. 2011. Runway surveillance system and method. U.S. Patent
9,483,952, filed March 17, 2011, and issued November 1, 2016.
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=
1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=
AND&d=PTXT&s1=stratech.ASNM.&s2=chew.INNM.&OS=AN/
stratech+AND+IN/chew&RS=AN/stratech+AND+IN/chew.

Department of the Air Force. 2015. Airfield Operations Procedures and Programs. Air
Force Instruction 13-204, Volume 3. http://static.e-publishing.af.mil/production/1/
af_a3/publication/afi13-204v3/afi13-204v3.pdf.

Federal Aviation Authority. 2009. Airport Foreign Object Debris (FOD) Detection
Equipment. Advisory Circular 150/5220-24. Washington, DC: Federal Aviation
Authority.

Google Maps. 2018. “McMillan Airfield / East Perimeter.” Accessed July 6, 2018.
https://www.google.com/maps/place/McMillan+Airfield+%2F+East+Perimeter/
@35.7174078,-120.7720719,4202m/data=!3m1!1e3!4m5!3m4!
1s0x80ecd3ca0619c4f5: 0x8ee6d45bd8f4929d!8m2!3d35.715083!4d-
120.763032.

Harney, Robert. C. 2004. “Combat Systems. Volume 1— Sensor Elements. Part 1 -
Sensor Functional Characteristics.” cnqzu.com. http://cnqzu.com/library/
Anarchy%20Folder/Electronics%20and%20Communications/
Electronic%20Warfare/Combat%20System%20Sensors.pdf.

Hogan, Sean D., Maggi Kelly, Brandon Stark, and YangQuan Chen. 2017. “Unmanned
Aerial Systems for Agriculture and Natural Resources.” California Agriculture 71
(1): 8-14. http://calag.ucanr.edu/archive/?type=pdf&article=ca. 2017a0002.

Hubbard, Sarah, Andrew Pak, Yue Gu, and Yan Jin. 2017. “UAS to Support Airport
Safety and Operations: Opportunities and Challenges,” Journal of Unmanned
Vehicle Systems. September 11 2017. https://doi.org/10.1139/juvs-2016-0020.

https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=15394
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=15394
https://govinsider.asia/digital-gov/how-can-singapore-address-its-manpower-shortage/
https://govinsider.asia/digital-gov/how-can-singapore-address-its-manpower-shortage/
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=AND&d=PTXT&s1=stratech.ASNM.&s2=chew.INNM.&OS=AN/stratech+AND+IN/chew&RS=AN/stratech+AND+IN/chew
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=AND&d=PTXT&s1=stratech.ASNM.&s2=chew.INNM.&OS=AN/stratech+AND+IN/chew&RS=AN/stratech+AND+IN/chew
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=AND&d=PTXT&s1=stratech.ASNM.&s2=chew.INNM.&OS=AN/stratech+AND+IN/chew&RS=AN/stratech+AND+IN/chew
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=AND&d=PTXT&s1=stratech.ASNM.&s2=chew.INNM.&OS=AN/stratech+AND+IN/chew&RS=AN/stratech+AND+IN/chew
http://static.e-publishing.af.mil/production/1/af_a3/publication/afi13-204v3/afi13-204v3.pdf
http://static.e-publishing.af.mil/production/1/af_a3/publication/afi13-204v3/afi13-204v3.pdf
https://www.google.com/maps/place/McMillan+Airfield+%2F+East+Perimeter/@35.7174078,-120.7720719,4202m/data=!3m1!1e3!4m5!3m4!1s0x80ecd3ca0619c4f5:0x8ee6d45bd8f4929d!8m2!3d35.715083!4d-120.763032
https://www.google.com/maps/place/McMillan+Airfield+%2F+East+Perimeter/@35.7174078,-120.7720719,4202m/data=!3m1!1e3!4m5!3m4!1s0x80ecd3ca0619c4f5:0x8ee6d45bd8f4929d!8m2!3d35.715083!4d-120.763032
https://www.google.com/maps/place/McMillan+Airfield+%2F+East+Perimeter/@35.7174078,-120.7720719,4202m/data=!3m1!1e3!4m5!3m4!1s0x80ecd3ca0619c4f5:0x8ee6d45bd8f4929d!8m2!3d35.715083!4d-120.763032
https://www.google.com/maps/place/McMillan+Airfield+%2F+East+Perimeter/@35.7174078,-120.7720719,4202m/data=!3m1!1e3!4m5!3m4!1s0x80ecd3ca0619c4f5:0x8ee6d45bd8f4929d!8m2!3d35.715083!4d-120.763032
http://cnqzu.com/%E2%80%8Blibrary/%E2%80%8BAnarchy%20Folder/%E2%80%8BElectronics%20and%20Communications/%E2%80%8BElectronic%20Warfare/%E2%80%8BCombat%20System%20Sensors.pdf
http://cnqzu.com/%E2%80%8Blibrary/%E2%80%8BAnarchy%20Folder/%E2%80%8BElectronics%20and%20Communications/%E2%80%8BElectronic%20Warfare/%E2%80%8BCombat%20System%20Sensors.pdf
http://cnqzu.com/%E2%80%8Blibrary/%E2%80%8BAnarchy%20Folder/%E2%80%8BElectronics%20and%20Communications/%E2%80%8BElectronic%20Warfare/%E2%80%8BCombat%20System%20Sensors.pdf
http://calag.ucanr.edu/archive/?type=pdf&article=ca.2017a0002
https://doi.org/10.1139/juvs-2016-0020

 64

Jain, Ramesh, Rangachar Kasturi, and Brian G. Schunck. 1995. Machine Vision. New
York: McGraw-Hill.

Leite, Clélio. 2014. SENTINEL System Foreign Object Debris (FOD) Detection
Performance Evaluation Trial - June. Report Number TR-01P-2014. Willis, TX:
Pharovision. http://pharovision.com/documents/Sentinel%20FOD%20Trials%
20Report.pdf.

McCreary, Iain. 2010. Runway Safety: FOD, Birds, and the Case for Automated
Scanning. Washington, DC: Insight SRI.

National Population and Talent Division. 2013. A Sustainable Population for a Dynamic
Singapore: Population White Paper. Singapore: Ministry of Trade and Industry.

Ong, Justin. 2018. “Singapore’s Fertility Rate at New 7-Year Low of 1.16: Josephine
Teo.” Channel News Asia, March 01, 2018. https://www.channelnewsasia.com/
news/singapore/singapore-total-fertility-rate-new-low-1-16-10002558.

Pedersen, Christian. S. 2017. “Singapore’s Productivity Challenge.” The Straits Times.
June 9, 2017. https://www.straitstimes.com/opinion/singapores-productivity-
challenge.

PIX4D. 2018. “Computing the Flight Height for a Given GSD.” Accessed July 11, 2018.
https://support.pix4d.com/hc/en-us/articles/202557469.

PR Newswire. 2017. “Robird And Integrated Drone Solutions Deployed At Major
International Airport.” May 9, 2017. https://www.prnewswire.com/news-releases/
robird-and-integrated-drone-solutions-deployed-at-major-international-airport-
300453338.html.

Seow, Joanna. 2017. “Singapore must manage inflow of new immigrants carefully: PM
Lee Hsien Loong.” Straits Times. May 28, 2017. https://www.straitstimes.com/
singapore/spore-must-manage-inflow-of-new-immigrants-carefully-pm.

Sherry, Lance. 2009. “Introduction to Airports Design and Operations.” Class notes for
SYST460/560-Fall 2009: Introduction to Airports Design and Operations, George
Mason University, Center for Air Transportation Systems Research, Fairfax, VA.
http://catsr.ite.gmu.edu/SYST460/IntroAirportsWorkbook.pdf.

Wang, Ching-Wei, and Hsiang-Chou Chen. 2013. “Improved Image Alignment Method
in Application to X-ray Images and Biological Images.” Bioinformatics. 29, (15):
1879-1887. https://doi.org/10.1093/bioinformatics/btt309.

Whitehead, Sam. 2017. “How an Atlanta Airport Is Using Drones to Help with Runway
Maintenance.” Marketplace. May 31, 2017. https://www.marketplace.org/2017/
05/31/business/how-atlanta-airport-using-drones-help-with-runway-maintenance.

http://pharovision.com/documents/Sentinel%20FOD%20Trials%20Report.pdf
http://pharovision.com/documents/Sentinel%20FOD%20Trials%20Report.pdf
https://www.channelnewsasia.com/news/singapore/singapore-total-fertility-rate-new-low-1-16-10002558
https://www.channelnewsasia.com/news/singapore/singapore-total-fertility-rate-new-low-1-16-10002558
https://www.straitstimes.com/opinion/singapores-productivity-challenge
https://www.straitstimes.com/opinion/singapores-productivity-challenge
https://support.pix4d.com/hc/en-us/articles/202557469
https://www.prnewswire.com/news-releases/robird-and-integrated-drone-solutions-deployed-at-major-international-airport-300453338.html
https://www.prnewswire.com/news-releases/robird-and-integrated-drone-solutions-deployed-at-major-international-airport-300453338.html
https://www.prnewswire.com/news-releases/robird-and-integrated-drone-solutions-deployed-at-major-international-airport-300453338.html
https://www.straitstimes.com/singapore/spore-must-manage-inflow-of-new-immigrants-carefully-pm
https://www.straitstimes.com/singapore/spore-must-manage-inflow-of-new-immigrants-carefully-pm
http://catsr.ite.gmu.edu/SYST460/IntroAirportsWorkbook.pdf
https://doi.org/10.1093/bioinformatics/btt309
https://www.marketplace.org/2017/05/31/business/how-atlanta-airport-using-drones-help-with-runway-maintenance
https://www.marketplace.org/2017/05/31/business/how-atlanta-airport-using-drones-help-with-runway-maintenance

 65

Wile, Rob. 2017. “Why High-End Drones Are Half the Price They Were a Year Ago.”
Time, June 2 2017. http://time.com/money/4800984/drone-prices-decrease-spark-
dji/.

Worland, Justin. 2017. “The FAA Allowed Drones to Fly at an Airport for the First Time
Ever.” Fortune. February 2, 2017. http://fortune.com/2017/02/02/faa-drones-
airport-atlanta-hartsfield-jackson/.

Xie, Yaowen, Linlin Li, Haoyu Wang, and Xiaojiong Zhao. 2011. “Spatio-temporal
processes and causes analysis of Jiayuguan Oasis in China over a 23a period,”
19th International Conference Geoinformatics, pp. 1-4, 2011. https://doi.org/
10.1109/GEOINFORMATICS.2011.5980679.

Yakimenko, Oleg. 2011. Engineering Computations and Modeling in
MATLAB®/Simulink®. VA: AIAA.

Yakimenko, Oleg. 2018. “Video Scoring for Automated Bursts Detection.” Unpublished
paper, 20 May 2018.

Yuan, Chi, Zhixiang Liu, and Youmin Zhang. 2015. “UAV-based Forest Fire Detection
and Tracking Using Image Processing Techniques.” In 2015 International
Conference on Unmanned Aircraft Systems (ICUAS): 639-643. https://doi.org/
10.1109/ICUAS.2015.7152345.

http://time.com/money/4800984/drone-prices-decrease-spark-dji/
http://time.com/money/4800984/drone-prices-decrease-spark-dji/
http://fortune.com/2017/02/02/faa-drones-airport-atlanta-hartsfield-jackson/
http://fortune.com/2017/02/02/faa-drones-airport-atlanta-hartsfield-jackson/
https://doi.org/%E2%80%8B10.1109/%E2%80%8BGEOINFORMATICS.2011.5980679
https://doi.org/%E2%80%8B10.1109/%E2%80%8BGEOINFORMATICS.2011.5980679
https://doi.org/10.1109/ICUAS.2015.7152345
https://doi.org/10.1109/ICUAS.2015.7152345

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Sep_Lee_Wee Leong_First8
	18Sep_Lee_Wee Leong
	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. Need for automation in Singapore
	B. Airport Operations
	1. Critical Task of Detecting and Removing Foreign Object Debris
	2. UAS as a Possible Solution

	C. Variety of UAS and Trends
	1. Regulatory Trends
	2. UAS Technology Application Trends
	3. FOD Detection with Automated Means

	D. Problem Formulation

	II. Operational Considerations and GUI Mockup
	A. Airfield Inspection Operational Considerations
	B. Concept of Operations
	C. Functional Analysis of the AFDS
	1. Scan Area of Interest
	2. Process Output from Sensor
	3. Interface with Operator

	D. Graphical user Interface mockup

	III. Challenges in Image Processing
	A. Image Processing Definitions
	B. Image Processing Algorithms
	1. Image Filtering
	2. Image Alignment
	3. Threshold Segmentation
	4. Edge Detection
	5. Image Processing Procedure

	IV. Algorithm development and data gathering
	A. concept of operations and GUI Prototype
	B. Development of MATLAB Code
	C. Vary Experiment parameters
	1. Object Color
	2. Object Size
	3. UAS Altitude
	4. Image Filter Window Size

	D. Execution of Experiments at Camp Roberts
	1. System Specifications
	a. UAS Specifications
	b. Camera Specifications
	c. Computer Specifications

	2. Test Scenario
	3. Measures of Performance
	4. Data Collection Procedures
	a. Foreign Objects
	b. Experimental Set-up
	c. Image Collection
	d. Image Processing
	e. Tabulate Results

	5. Data Collection Challenges

	V. Data Analysis
	A. Effects of FOD parameters
	1. Effects of Object Color
	2. Effects of Object Size
	3. Effects of UAS Altitude
	4. Effects of Filter Size

	B. Selection of AFDS Parameters
	1. Ground Sample Distance
	2. Number of UASs Required
	3. Number of Images Required
	4. Data Generation and Transfer Rate
	5. Processing Time
	6. Summary of System Specifications and Cost

	VI. Conclusion and recommendations
	A. Summary
	B. Recommendations for future work

	APPENDIX A. MATLAB Code for GRAPHICAL USER INTERFACE
	Appendix B. MATLAB Code for OBJECT DETECTION
	List of References
	initial distribution list

