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ABSTRACT 

 Two common reliability prediction methods are the traditional method and 

physics of failure method. Each method requires accurate failure data in order to fully 

assess a system’s durability. This is particularly important in early system design when 

historical design and relative failure rates are non-existent. Consequently, practitioners 

rely on the use of external reliability data sources such as MIL-HDBK-217F, especially 

when using the traditional reliability approach. Several other external reliability data 

sources are available to the practitioner, each with its own strengths and limitations. This 

thesis surveys the various external data sources industries use in reliability predictions 

and assesses the completeness of the reliability data sources. The thesis presents the 

inherent limitations of all external data sources along with further considerations on using 

the traditional reliability approach. Early system design offers practitioners a significant 

amount of decision-making flexibility. This thesis further analyzes both reliability 

approaches and addresses when it is appropriate for a practitioner to use either approach 

or a combination of the two approaches. The author develops a reliability decision 

framework to aid practitioners in selecting the reliability prediction approach appropriate 

for the system. 
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 xv 

EXECUTIVE SUMMARY 

Reliability predictions are a methodology for the estimation of an item’s ability to 

meet the operational capabilities of the system and the specified reliability requirements. 

System reliability estimations are performed early in the design process to aid the 

evaluation of the design in terms of system requirements and to provide a basis for 

continued reliability improvements (Blanchard and Fabrycky 2011). Reliability prediction 

methods can be categorized into two different approaches. These methods are the 

traditional reliability prediction approach and the physics of failure approach. The 

traditional reliability approach is commonly used and MIL-HDBK-217F is the most widely 

used source for predicting reliability of components (Varde 2010). All reliability prediction 

methods rely on three critical areas: failure data, statistical modeling of the failure data, 

and the system’s reliability logic model. Failure data can be categorized into three types, 

field reliability data, test reliability data, and external data sources. Due to the limited 

information available to the practitioner in the early design phase, the traditional reliability 

approach is often constrained to using external data sources such as MIL-HDBK-217F. 

An assessment of the various common external data sources was conducted to 

evaluate the completeness of the reliability data sources. The result found that all external 

data sources are inherently limited. All external data sources can be considered derivatives 

of MIL-HDBK-217F and are found to be tailored toward a specific industry. The major 

limitations of external data sources include: constant failure rates and stress factors, the test 

and/or field environments are not known, the failure data is for generic component types, 

which does not account for the part quality, and the failure data is generally outdated. As a 

result, the traditional reliability approach assesses one aspect of a failure and does not 

account for actual failure mechanisms.  

The physics of failure approach assesses how a system fails, identifies the root 

causes of failures, and takes into consideration different failure mechanisms. As a result, 

the physics of failure approach leads to a more robust reliability prediction. The failure  

 

 



 xvi 

mechanisms are modeled based on the expected operational life-stress profile of the 

system. The physics of failure models take into consideration the cumulative wear and 

stress on the system as opposed to the nature of independent failures in the traditional 

approach. The primary limitations of the physics of failure approach is the amount of time 

and additional costs required to assess the dominate failure mechanisms. Since the failure 

data specific to certain failure mechanisms are not readily available to the practitioner from 

suppliers or external data sources, the physics of failure approach requires the use of 

accelerated life tests. Accelerated life testing of the system is critical to receiving accurate 

failure rates pertaining to the identified failure mechanisms and determining the life-stress 

profile of the failure. 

In the early system design process, the practitioner has great decision making 

flexibility in terms of which reliability approach would best serve the system’s design. A 

reliability decision framework has been developed to assist the practitioner during this 

process. Iterative reliability assessments are crucial in the design process to improve the 

system’s reliability. As a result, the reliability decision framework provides a focus on the 

reliability improvement and helps the practitioner in intelligently achieving the 

improvement. The practitioner should consider four factors in deciding which reliability 

prediction method is appropriate for his system in addition to the cost and timeframe 

factors. These factors are the availability of relevant historical failure data, the level of 

system complexity, the operational life requirement, and the criticality of the system. The 

reliability decision framework utilizes these factors to guide the practitioner in selecting an 

effective reliability approach for the system. The developed reliability decision framework 

presented in Figure 1, applies to the beginning of the preliminary design phase in the 

systems engineering process. The results further assist the practitioner in the allocation of 

system requirements.  
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Figure 1. A Reliability Decision Framework 

In general, a physics of failure approach will provide the practitioner with an 

understanding of the root causes of system failure. This approach is more intensive than 

the traditional approach and yields a more robust reliability prediction and system design. 

The trade-off is the need on accelerated life test to obtain failure data and to develop life-

stress profiles for specific failure mechanisms. The accelerated life tests will naturally 

increase the time and cost for the program. The traditional approach is not as accurate as 

the physics of failure approach when using external data sources. The traditional reliability 

approach is better suited for use when accurate historical failure data is available to the 
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practitioner. Data from historical life tests may also be used in the traditional approach if 

the environment and stressors for the tests are known and relevant.  
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I. INTRODUCTION 

Use of reliability predictions during early system design is a growing area of 

interest. Reliability predictions is a methodology for the estimation of an item’s ability to 

meet the operational capabilities of the system and the specified reliability requirements. 

According to Blanchard and Fabrycky (2011), “A reliability prediction estimates the 

probability that an item will perform its required functions during the mission.” System 

reliability estimations are performed early in the design process to aid the evaluation of the 

design in terms of system requirements and to provide a basis for continued reliability 

improvements (Blanchard and Fabrycky 2011). Reliability predictions can be categorized 

into two different methods. These methods are the traditional reliability prediction 

approach and the physics of failure approach.  

 All reliability prediction methods can be broken down into three key factors: failure 

data, statistical modeling, and the system’s reliability logic model. Of these three factors, 

the failure data offers the greatest area of concern that can drive the variability in reliability 

predictions. Failure data can be collected through historical field data, accelerated life tests, 

or retrieved from external data sources. In early system design, practitioners are very 

limited in the amount of data they have available to them. Often, historical data is not 

available and test data is infeasible to obtain due to limited development costs and strict 

timeframes. As a result, it is common for practitioners to retrieve failure data from external 

reliability sources. As shown in Figure 1, field and external reliability data are prevalent to 

a traditional reliability approach. Due to the strong need of modeling various failure 

mechanisms, test data is more prevalent in a physics of failure approach. Chapter II surveys 

common external reliability data sources available to practitioners and provides an 

assessment on the completeness of the reliability data sources. Considerations for 

practitioners to use in early system design and a synthesis of the relationships among 

various reliability data sources are also provided in Chapter II.  
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Figure 1.  The Relationship between Failure Data and Reliability Approaches 

The physics of failure approach seeks to understand the root causes of system 

failures. While this approach is not as common as the traditional approach, it is gaining 

popularity in the community as it addresses some of the major issues with the traditional 

approach. Chapter III provides an overview of the physics of failure reliability approach 

and how it relates to the traditional approach. In addition, Chapter III presents a reliability 

decision framework that addresses when it is appropriate for a practitioner to use a 

traditional or physics of failure approach.  

This thesis intends to aid practitioners in performing system reliability predictions 

in the early stages of system design. The contributions of this thesis include a detailed 

assessment of common external reliability data sources, a synthesis of how various 

reliability data sources connect to each other, and a reliability decision framework for 

practitioners to utilize in early system design. These contributions address critical areas in 

the reliability prediction process that result in great variability in reliability estimations. As 

highlighted in Figure 1, the contributions specifically aid the practitioner in the decision-

making process with regard to the use of reliability prediction approaches and the use of 

external data sources. 
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II. AN ASSESSMENT OF EXTERNAL RELIABILITY 
DATA SOURCES 

A. INTRODUCTION 

Reliability is the probability of a system adequately performing as intended without 

failure for a specified period of time under specified environmental conditions (Leemis 

2009). Reliability predictions during early system design are a growing area of interest. 

Reliability predictions are a methodology for the estimation of an item’s ability to meet the 

operational capabilities of the system and the specified reliability requirements. “A 

reliability prediction estimates the probability that an item will perform its required 

functions during the mission” (Blanchard and Fabrycky 2011). System reliability 

estimations are performed early in the design process to aid the evaluation of the design in 

terms of system requirements and to provide a basis for continued reliability improvements 

(Blanchard and Fabrycky 2011). There are different techniques and methods to determine 

the reliability of a system. Common reliability predictions rely on the use of failure data, a 

statistical model applied to the failure data, and a model of the system’s reliability logic. 

Reliability predictions are known to be inaccurate. Based on the three areas of reliability 

predictions, the greatest cause of inaccurate predictions can be in the failure data. The 

model of the system’s reliability logic is naturally tailored to the system, which is assumed 

to be an accurate representation of that system. The statistical model is applied to the failure 

data on which it is dependent. The failure data offers the greatest area of concern that can 

drive the variability in reliability predictions. The purpose of this paper is to survey the 

various reliability data sources industries use in their reliability predictions and to assess 

the completeness of those reliability data sources. The focus of the paper is on the reliability 

data sources used in the early system design stage to predict the reliability of the system. 

As such, this will not include internal company database data derived from testing the 

system and single use or one-shot devices, such as thermal batteries, unless in terms of a 

component within a system or the reparability and impact of repair on the system. The 

work in this paper can be applied to complex systems as the same methodology applies to 

both simple and complex systems.  
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(1) Summary of contributions 

This research provides an assessment of common reliability data sources available 

to practitioners. This includes a summary of areas that practitioners should be wary of in 

assessing system reliability in early system design and a synthesis of how various reliability 

data sources connect to each other.  

B. RELATED WORKS 

A variety of existing work has limited focus on surveying reliability data sources. 

In general, this body of work has surveyed sources that focus on electronic components 

and reliability prediction methods. 

 Peter, Das, and Pecht (2015) provide a detailed review of MIL-HDBK-217 and its 

progeny and highlights areas of concern in the handbook and similar reliability prediction 

approaches. The study focused solely on electronic components and the reliability 

prediction methods presented in MIL-HDBK-217 and similar handbooks. The study did 

not discuss in much detail the reliability data presented in the data source.  

Similarly, Pandian, Das, Li, Zio, and Pecht (2018) provide a detailed comparison 

of the common reliability prediction methods used in commercial and military avionics 

applications. The study is limited to electronic components used in avionic applications 

and an analysis on the reliability prediction methods presented in various common data 

sources.  

Yu (1996) compares various reliability prediction methodologies, with the goal of 

defining a new reliability prediction method to evaluate computer and electronic systems. 

The focus is to develop a new reliability prediction methodology that minimizes the 

deficiencies of traditional methods. This includes reliability data to an extent but does not 

provide an assessment of data sources used to feed the prediction method.  

The IEEE Standards Coordinating Committee developed a comprehensive 

guideline for selecting a reliability prediction method and documenting it properly (IEEE 

Standards Coordinating Committee 2003). As explained in Pecht, Das, and 

Ramakrishnan’s study (2002), the IEEE guide is valuable to use as a framework for 
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assessing reliability prediction methodologies and to understand the risks associated with 

the using the prediction method. The standard focuses on the compliance with IEEE 

standard 1413 and electronic systems. While the standard discusses the importance of 

having accurate and complete information and data for reliability predictions, the 

assessment of reliability data sources are not evaluated.  

The field is focused on the reliability prediction techniques and methodologies used 

to predict a system’s reliability accurately. While some works have identified external data 

sources, none have fully assessed and analyzed the data sources. The field discusses the 

importance of having good reliability data, but for the most part assumes that data is 

accurate. This chapter is relevant in early system design when the practitioner has great 

flexibility on system development and explores the external data sources in greater detail 

to aid the practitioner in deriving accurate reliability data to enhance the accuracy of 

reliability predictions.  

C. METHODOLOGY 

This section focuses first on defining relevant terms in reliability data sources. 

External reliability data sources are identified and summarized. The survey framework for 

the external reliability data sources are outlined and discussed followed by the assessment 

of the data sources.  

There are various ways to obtain failure data and to model the system’s reliability. 

Failure data can be categorized into field data, test data, and external reliability data 

sources. The use of different types of data alone can yield different results when predicting 

a system’s reliability. These three terms are defined here. 

 Field reliability data is historical data collected from similar fielded systems 

operated in the same or similar environments. This utilizes previous experience from 

similar system designs and builds upon the knowledge and data gathered. To utilize 

previous field data, the system must be very similar in comparison to the previous system 

in terms of design complexity, technology maturity, item quality, operational and 

environmental stresses. These criteria limit the applicability of the field data primarily to 

systems derived from an older configuration. Even then, a framework to assess the usability 
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of field reliability data from another system does not exist. When a new system exceeds 

the scope of the historical field data, the result can lead to very different experienced 

reliability. The design improvements of the newer configuration and the differences, if any, 

of the environmental stressors are factored into the reliability field data of the system.  

Test reliability data is data collected through stress testing the system. Systems can 

be stress tested to develop a baseline reliability metric ensuring the system meets the 

operational, environmental, functional, and performance requirements. Test data can be 

used to narrow the critical focus areas in the design, outline a behavior map of the system, 

and identify any potential maintenance issues. Stress test data also provides a great 

understanding of the system’s operational environment bounds and the issues experienced 

at the extremes of those environments. Test reliability data is collected through a variety 

of accelerated life tests such as environmental stress screening (ESS), burn-in, highly 

accelerated life tests (HALT), highly accelerated stress screen (HASS), stress plus life test 

(STRIFE), and highly accelerated stress audit (HASA) (McLean 2009). Accelerated life 

tests can assess the reliability of the system within a short period and improve the reliability 

of the system during the design and development phase.  

External reliability data sources are a collection of empirical field failure rates for 

various types of components. The data is generally collected through a group or collection 

of companies and agencies, which have recorded the reliability of their components 

through either historical field data or test data. Various data sources exist for many common 

items and are generally used for system reliability predictions when historical data is not 

available or applicable and gathering test data is not feasible. Multiple external data sources 

exist for failure rate expectations. 

Field and test reliability data are specific to a particular system, whereas external 

reliability data are more system-agnostics. In early design, a system has significant 

flexibility relative to its physical and functional architecture. In scenarios when a historical 

design is non-existent, reliability data is limited to only external data sources. This paper 

will survey and assess the several external data sources used in reliability engineering to 

demonstrate the inherent limitations and to present practitioners with considerations during 

early system design.  
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1. External Data Sources 

External reliability data sources are identified and briefly explained in this section. 

This is to supplement and support an assessment on each data source. External reliability 

data sources provide valuable data for a practitioner to predict a system’s reliability in 

which data is not readily available internally. Various organizations have developed their 

own data source applicable to their specific systems and industry. Table 1 provides a listing 

of the data sources that will be assessed throughout the paper. 

Table 1.   List of External Reliability Data Sources Surveyed in this Research 

External Data 
Source 

Application / (Country 
of Origin) 

Latest 
Issue 

Reliability 
Approach 

Prediction 
Method 

MIL-HDBK-217F  
(U.S. Air Force 
1995) 

Military/Commercial 
(U.S.) 1995 Traditional 

Parts 
Count/Parts 

Stress 
Analysis 

Bellcore/Telcordia 
SR-332 (Isograph 
n.d.) 

Telecommunications 
(U.S.) 2006/2016 Traditional Parts Count 

CNET/RDF 2000  
(Union technique de 
l'électricité 2000) 

Telecommunications 
(France) 2000 Traditional 

Parts 
Count/Parts 

Stress 
Analysis 

NTT Procedure 
(Shiono, Arai, and 
Mutoh 2013) 

Telecommunications 
(Japan) 1985 Physics of 

Failure 
Parts Stress 

Analysis 

SAE Reliability 
Prediction Method 
(Foucher et al. 
2002) 

Automotive (U.S.) 1987 Traditional Parts Count 

Siemens SN29500 
(Jones and Hayes 
1999) 

Siemens Products 
(Germany) 2013 Traditional Parts Count 

GJB/Z 299C 
(Mou et al. 2013) 
 

Military/aerospace 
(China) 2006 Traditional Parts Stress 

Analysis 

FIDES 
(FIDES Group 
2009) 
 

Commercial/Military 
(France) (mostly 
European industries) 

2009 Physics of 
Failure 

Parts Stress 
Analysis 
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External Data 
Source 

Application / (Country 
of Origin) 

Latest 
Issue 

Reliability 
Approach 

Prediction 
Method 

RAC PRISM/RIAC 
217Plus 
(O'Connor and 
Kleyner 2012) 

Military/Commercial 
(U.S.) 2000/2015 Traditional 

Parts 
Count/Parts 

Stress 
Analysis 

IEC 62380/IEC 
61709 
(International 
Electrotechnical 
Commission 2011) 

Telecommunications 
(France) 2006/2017 Traditional 

Parts 
Count/Parts 

Stress 
Analysis 

HRD-5 
(Pandian et al. 2018) 
 

Telecommunications 
(UK) 1994 Traditional Parts Count 

NPRD-2016 
(Quanterion 
Solutions Inc. 
2016b) 

Military (U.S.) 2016 Traditional 

Parts 
Count/Parts 

Stress 
Analysis 

NSWC-98/LE1 
(Naval Surface 
Warfare Center, 
Carderock Division 
1998) 

Military (U.S.) 1998 Traditional Parts Stress 
Analysis 

EPRD-2014 
(Quanterion 
Solutions Inc. 2014) 

Military (U.S.) 2014 Traditional 

Parts 
Count/Parts 

Stress 
Analysis 

FMD-2016 
(Quanterion 
Solutions Inc. 
2016a) 

Military/Commercial 
Failure Modes (U.S.) 2016 Physics of 

Failure 
Parts Stress 

Analysis 

 
 
The most widely used external data source for failure rates of electronic 

components is MIL-HDBK-217F. Most of the other data sources are derivatives of the 

military handbook. The data provided by MIL-HDBK-217F is a constant base failure rate 

for each component and values for various stress factors being applied to those 

components. The stress factors include temperature, application, environment, quality, and 

various applicable electronic factors. The electronic factors include power rating, current 

rating, voltage stress, and matching network factors. The product of the base factors 

(i.e., pi factors) and the base failure rate provides the user with an estimated failure rate for 
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the component. MIL-HDBK-217F provides two methods of reliability predictions, Part 

Stress Analysis and Parts Count. Part Stress Analysis is applicable during the late design 

phase in which most of the design is completed and a detailed parts list is available and the 

part stressors are known. It is also when the components or items of the system such as 

circuit card assemblies are designed. The Part Count methodology is applicable during the 

early design phase when determining part quantities, quality levels, and the applicable 

environment (U.S. Air Force 1995). 

“Telcordia SR-332 was originally the Bell Laboratories, Bellcore standard for 

reliability prediction of commercial electronic components” (Isograph n.d.). The Telcordia 

SR-332 standard provides reliability predictions based on a parts count method using any 

combination of test data, field data, and parts count data. Telcordia SR-332 uses a Bayesian 

analysis to incorporate burn-in, field, and test data into its data source model.  

 CNET/RDF 2000 is a universal model for reliability prediction calculations for 

components, printed circuit boards, and equipment (Union technique de l'électricité 2000). 

RDF-2000 is primarily focused on the telecommunications industry. RDF-2000 provides 

field failure rates with various influencing factors operating in four different environments; 

weather protected ground stationary equipment (telecommunications equipment), non-

weather protected stationary ground equipment (payphones GSM relays), airborne 

equipment, and non-stationary ground equipment. For a very few component families, 

RDF-2000 also provides life expectancy or end of life data. IEC TR 62380 builds upon 

the prediction methodologies outlined in RDF-2000 and provides updated failure rates and 

life expectancy for components and accounts for the effects of phased mission profiles 

and thermal cycling. IEC TR 62380 was eventually superseded by IEC 61709, which 

updates the guidance on the use of failure rate data for reliability predictions of 

electronic components and provides part stress models (International Electrotechnical 

Commission 2011). 

Nippon Telegraph and Telephone (NTT) Procedure provides a failure rate 

prediction model based on field failure data collected and used in equipment reliability 

design (Shiono, Arai, and Mutoh 2013). The primary focus on the NTT procedure is the 
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field failure data of semiconductor devices used in various telecommunications equipment 

and applies a physics of failure (POF)-based approach to reliability prediction.  

SAE Reliability Prediction Method uses original equipment manufacturer (OEM) 

warranty and field repair data to develop a reliability prediction model for use in the 

automotive industry (Foucher et al. 2002). The field repair data is used to calculate the 

failure rates of individual components and subsequent systems. The SAE approach 

estimates the base failure rate for generic components which can be applied to other 

components of the same type based on the similarity of the physical characteristics 

of the component. 

Siemens SN29500 is a Siemens AG standard for the reliability prediction of 

various electronic and electromechanical components. The standard provides expected 

values of failure rates for various electronic and electromechanical components (Jones and 

Hayes 1999).  

PRISM was developed by the Reliability Analysis Center (RAC) and was released 

in 2000. It was based on MIL-HDBK-217F and was designed to overcome the limitations 

of the handbook after it was no longer being supported (O'Connor and Kleyner 2012). 

PRISM is a collection of reliability field and test data collected from military and 

commercial systems. In 2015, 217Plus was released to build upon the PRISM 

methodology. 217Plus increased the number of part type failure rate models and expanded 

the data to include additional electronic components.  

GJB/Z 299C is the latest Chinese standard for the reliability prediction of electronic 

components. Similar to MIL-HDBK-217F, the GJB standard uses the part stress method to 

predict electronic component failure rates (Mou et al. 2013).  

FIDES is a reliability methodology for electronic systems primarily using 

commercial-off-the-shelf items (FIDES Group 2009). The Délégation Générale pour 

l’Armement (DGA)–French Ministry of Defense and a consortium of aeronautical 

companies developed the FIDES method. The failure data contained within FIDES was 

collected from various companies throughout the aeronautical and defense industries 

(FIDES Group 2009). The FIDES reliability prediction methodology is based on a POF 
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approach and takes into consideration the failures related to development, production, 

operation and maintenance processes. The failure rates are a collection of field data and 

over-stress test data. 

HRD-5 is a British telecommunication standard that contains a collection of field 

and test failure rate data for various electronic components and circuit boards of British 

and French telecommunications equipment (Pandian et al. 2018).  

The NSWC-98 is a U.S. Naval Surface Warfare Center handbook for the reliability 

prediction of mechanical equipment. “NSWC-98 provides a methodology for evaluating a 

design for reliability and maintainability that considers material properties, operating 

environment, and critical failure modes at the component level” (Naval Surface Warfare 

Center, Carderock Division 1998).  

Non-electronic Parts Reliability Data (NPRD) and Electronics Parts Reliability 

Data (EPRD) are very similar. NPRD contains observed field failure rate data for various 

electrical, mechanical, electromechanical, and microwave parts and assemblies 

(Quanterion Solutions Inc. 2016b). EPRD shows the historically observed field failure rates 

for various electronic components and complements the prediction methods outlined in 

MIL-HDBK-217F (Quanterion Solutions Inc. 2014).  

Failure Mode Mechanism Distribution (FMD) contains field failure mode and 

failure mechanism data on various electrical, mechanical, and electromechanical parts 

and assemblies. The FMD data was collected from military and commercial sources 

and is primarily used to support reliability analysis and assessments such as Failure Modes, 

Effects, and Criticality Analysis (FMECA) and fault tree analysis (Quanterion Solutions 

Inc. 2016a). 

a. Data Sources 

 MIL-HDBK-217 was first developed in 1961 and since then other external 

reliability data sources have been created in its likeness (Gullo 2008). Most external 

reliability data sources can be viewed as derivatives of the MIL-HDBK-217F as most were 

modeled after the military handbook (Pandian et al. 2018). The creation of the various 
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external data sources were needed to address some of the limitations in MIL-HDBK-217 

and to provide relevant data on components common within their industry. Figure 2 shows 

a diagram of how these external data sources relate back to MIL-HDBK-217F. The external 

data sources are categorized by their relevant industry and their relation is reflected by 

either a dashed or solid line. The line, relationship, shows the reliability prediction 

methodology that is shared with the military handbook. A solid line represents a shared 

reliability prediction method; using either parts count or parts stress method. The dashed 

relationship shows a difference in prediction method, when the external data source takes 

on a more physics of failure approach. Independent of the reliability prediction method, all 

external data sources inherently share similar limitations as those in MIL-HDBK-217F. 

The assessment will further highlight these limitations. 

 

 

Figure 2.  A Network of Reliability Data Sources 
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2. The Development of a Survey Framework for External Reliability 
Data Sources 

A survey framework is developed in this section to assess each external reliability 

data source. The previously discussed literature is leveraged to discover the elements of 

reliability data sources that negatively contribute toward the systems’ observed reliability 

within various industries. In addition, the metrics described in this paper are derived from 

the range of information presented within the data sources.  

The elements of the survey framework are explained here. These elements include; 

completeness of data, age of data, and quality of data. The completeness of data can be 

characterized in three categories, data type, technology coverage, and data collection. The 

age of the data sources shows if the data was updated within the past five years and states 

the year in which the data source was last updated. Factors in assessing the quality of data 

are whether the environments are known, the part quality is known, whether the 

environment quality is known, and if the number of data points is known.  

The total sets of metrics are used to evaluate each external data source and are 

designed to be independent from one another. The types of metrics used are categorical 

and are classified as either nominal, ordinal, or binary values. The following sections 

describe the elements and metrics used in greater detail.  

a. Completeness of Data  

The completeness of data analyzes the external data sources in terms of the type 

of component failure data represented and how the data was collected. This provides 

a representation of the robustness of the failure rate data expressed in each external 

data source. 

The data type describes the type of data that was collected and published by the 

external data source. This metric is categorized as historical field data, test data, or both.  

Technology coverage evaluates how extensive the component data is in terms of 

technology support. Technology includes the component type, the technology of the 

component, the component family, and package. This ordinal criterion ranges across 

extensive, moderate, and limited. This metric represents how extensive the data is on a 
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particular component type and measures how well the component data was analyzed and 

portrayed in the data source. For instance, external data sources can provide data on 

components broken down into the types of family, the packaging used, and the technology 

type used (i.e., digital, analog, hybrid). An example is the technology coverage not 

addressing component options such as different interface types, material types, or 

packaging. In this scenario, the data source would be classified as having limited 

technology coverage. The coverage is assessed as moderate if it includes common options 

and extensive with the inclusion of uncommon options such as special plating, military 

temperature tolerances, ruggedized features. 

Data collection method represents whether or not the data collection method is 

known as well as from what sources the data was collected from. The result is a binary 

assessment; either the data collection methodology is known or not known to the user of 

the external data source. 

b. Age of Data  

Given that technology advances over time, it is critical in any data source to remain 

current by incorporating technological advancements and improvements to part quality and 

performance. The study presented by Torresen and Lovland (2007) shows electronic 

replacement parts are needed within five years due to part obsolescence. As a result, the 

baseline measurement of an updated data source is set at five years. To assess the data 

source on relevance, each data source was measured on the date of its latest issue and if it 

was updated within the past five years.  

c. Quality of Data  

The known environments metric assesses if the data collected has also identified the 

environment and stressors the failure experienced. Different environmental stresses affect 

the failure rate differently. The more environments identified in the data source, the greater 

the robustness of the failure rate for that component. This metric is binary and measures if 

the environment is known or unknown. The environments are assessed as known if the data 

source has identified the type of data that was collected and provides the different failure 

rates for each environment. 
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The quality of the environment is another important factor in determining the 

quality of the data present in the data source. This is particularly important for test data as 

the test environments can be easily manipulated. The quality of the environment addresses 

whether the failure was experienced in a controlled environment with ideal conditions or 

experienced during exposure to operational field environments. The binary metric is 

measured as yes, the environmental quality is known or no, it is not known. The quality of 

the environment is known if the data source identifies how the item was tested or the 

conditions that the item was exposed to in the field. 

The part quality assesses if the quality of the part was taken into consideration 

within the data source. Failure rates can correspond to the quality of the component. A high 

quality component may fail less often than an item of poor quality. This is when the quality 

level of the component would factor in and whether the data source identifies what level 

of quality of component best represents the data. The part quality is binary as yes (quality 

is known) or no (quality is unknown). The qualities of parts are known if it was specified 

within the data source or if different failure rates were identified for identical items from 

different manufacturers. 

The number of data points collected for each component shows the confidence 

level of the failure rate. With more data samples comes a greater confidence in the collected 

data. This criteria measured in binary terms, evaluates whether the data points for each 

component is known or unknown. 

3. The Assessment of External Reliability Data Sources 

An assessment of external reliability data sources was conducted based on the 

survey framework previously discussed in the last section. The result of the assessment is 

provided in Table 2.  
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Table 2.   External Data Source Assessment Results 

 Completeness  Age Quality 

Data Source Data 
Type 

Technology 
coverage* 

Data 
collection 
method 

Data 
updated 
within 

the last 5 
years? 

Latest 
Issue 

Known 
Environments 

Environment 
quality 
known 

Part 
quality 
known 

Data 
points 
known 

MIL-HDBK-217F  Field 
data 

Moderate Unknown No 1995 Yes No 
 

Yes No 

Bellcore/Telcordia 
SR-332 

Field 
data 

Moderate Known Yes 2016 Yes No 
 

Yes No 

CNET/RDF 2000 Field 
data 

Moderate Known No 2000 Yes No No No 

NTT Procedure Both Limited Unknown No 1985 Yes No Yes No 
SAE Reliability 
Prediction Method 

Field 
data 

Limited Unknown No 1987 No No No No 

Siemens SN29500 Field 
data 

Moderate Unknown Yes 2013 No No Yes No 

GJB/Z 299C Field 
data 

Moderate Unknown No 2006 Yes No Yes No 

FIDES Both Extensive Known No 2009 Yes Yes Yes No 
RAC PRISM/RIAC 
217Plus 

Field 
data 

Moderate Unknown Yes 2000/2
015 

Yes No Yes No 

IEC 62380/IEC 
61709 

Field 
data 

Moderate Unknown Yes 2006/2
017 

Yes No No No 

HRD-5 Both Moderate Unknown No 1994 Yes No Yes No 
NPRD-2016 Field 

data 
Moderate Known Yes 2016 Yes No Yes Yes 

NSWC-98/LE1 Both Limited Unknown No 1998 Yes No No No 
EPRD-2014 Field 

data 
Moderate Known Yes 2014 Yes No Yes Yes 

FMD-2016 Field 
data 

Moderate Known Yes 2016 Yes No No Yes 
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Some assumptions were made during the assessment of the external reliability data 

sources. These assumptions involved the technology coverage criteria, environments 

known and part quality known. For most external data sources, the items covered in the 

source are focused on the items used in the industry it serves. As such, not all technology 

options will be covered, but just those applicable to the industry. These data sources were 

given a ranking of moderate. In some circumstances, the environments were known; 

however, the environment factor list was not extensive. Instead, it focused on just those 

environments prevalent in the industry. RDF 2000 is an example of such a data source, in 

which only three or four levels of environments were identified. In these cases, the external 

data source was still evaluated as having identified the environments. While this is the 

approach used in this research, the user should be aware that the environmental factors 

listed may not be very extensive.  

Most of the external data sources evaluated were originally created to fill in gaps 

to the data provided in MIL-HDBK-217F. Some of these data sources also focused solely 

on the items and environment relevant to the industry of which the data source was 

designed to cover. As such, no single external data source will contain all information on 

components in a particular system’s architecture for a truly complex system. Most external 

data sources contain failure rates on electronic devices and would not have an extensive 

list on mechanical items.  

A practitioner would use this research to understand the various external reliability 

data sources available to him, which external data source is optimal for his industry, and 

the limitations of each data source. Given that every system is unique, it becomes 

challenging to identify an ideal data source. The review presented in this paper suggests 

that one does not yet exist. However, if one were to be developed, it would contain the 

following characteristics: a combination of both test and operational field data, an extensive 

range of technology coverage, a clearly specified data collection method containing new 

failure rate data that is updated regularly. The environments and the quality of 

environments for each component are well defined. The failure rate data would consider 

the quality of the part and enough data points to represent a high confidence level.  
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D. CONCLUSION 

The external reliability data sources were evaluated based on three main elements: 

the completeness, age, and quality of the data. In early system design, practitioners should 

carefully consider the elements of a data source and understand the data source inheritance.  

There is no one external reliability data source that can be used for all applications 

and systems. External data sources should only be used in lieu of historical reliability field 

data observed from similar systems operating in similar environments. Similarly, reliability 

test data obtained from stress testing the system in expected environments can also be used. 

When reliability field data is unavailable and test data is not feasible to obtain, external 

data sources can be used. It is important, however, that the practitioner understand the 

applicability and the limitations of these data sources. Most external data sources have not 

been updated in the past five years and are outdated. Others only show data relevant to its 

end application and industry, and almost all external data sources suffer from the lack of 

quality within the environments and the data collected form industry.  

E. FUTURE WORK 

Reliability data sources are used early in the design phase to assist in the prediction 

of a system’s reliability. Future works will include an assessment of reliability prediction 

methods to determine the elements that positively and negatively contribute towards 

accurate system reliability predictions.  
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III. SELECTING THE CORRECT RELIABILITY APPROACH IN 
EARLY SYSTEM DESIGN 

A. INTRODUCTION 

System reliability estimations are performed early in the design process to aid the 

evaluation of the design in terms of system requirements and to provide a basis for 

continued reliability improvements (Blanchard and Fabrycky 2011). Accurately predicting 

a system’s reliability during early system design is a challenging task. The practitioner has 

limited resources to pull data from to formulate how reliable the system will perform once 

fielded. Reliability predictions typically rely on the use of failure data, a statistical model 

applied to the failure data, and a model of the system’s reliability logic. The limiting factor 

in reliability predictions in most cases are the failure data available to the practitioner. 

It is vitally important for the practitioner to utilize the available failure data appropriately 

and efficiently.  

The most common method to predict reliability to date has been the traditional 

reliability approach. The traditional approach utilizes the assumed constant failure rate to 

apply a statistical model to represent how system failures occur over time. In most cases, 

the statistical model is assumed as an exponential distribution. If a “goodness of fit” test is 

performed, the results often demonstrate that the exponential model is not valid (Leemis 

2009). The results may lead to incorrect modeling of the system and the traditional 

reliability predictions are historically known to be inaccurate (Jones and Hayes 1999). An 

alternative to the traditional reliability approach is a physics of failure (POF) approach. 

“Physics of failure is the use of science to capture an understanding of failure mechanisms 

and evaluate useful life under actual operating conditions” (Schueller 2013). 

In the early system design process, the practitioner has great decision making 

flexibility. A reliability decision framework is developed to assist the practitioner during 

this process. Iterative reliability assessments are crucial in the design process to improve 

the system’s reliability. As a result, the reliability decision framework provides a focus on 

the reliability improvement and helps the practitioner in intelligently achieving the 

improvement. A significant amount of research exists on the benefits and limitations of 
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each reliability approach; however, they do not address when it is appropriate for a 

practitioner to use the traditional or POF approach or if a combination of the two 

approaches can be performed. The reliability community seems to be split into using 

strictly traditional empirical approaches, POF-based approaches, or another unique internal 

reliability estimation method. This paper will explore both the traditional approach and the 

POF approach. An assessment of each approach is conducted to identify the key elements 

for a reliability decision framework. A reliability decision framework is presented that 

addresses when it is appropriate for a practitioner to use the traditional and POF reliability 

approach during early preliminary design phase. 

B. BACKGROUND AND RELATED WORK 

There are numerous works on comparing both the traditional and the POF reliability 

approaches. Most related works present the theory behind a POF approach in reliability 

predictions in relationship to the traditional approach (Jones and Hayes 1999; Matic and 

Sruk 2008; McLeish 2010; Pecht 1996; Aughenbaugh and Herrmann 2009). In particular, 

these explore how a POF-based approach can improve current traditional approaches, such 

as MIL-HDBK-217F methods, are discussed. Other general research has been done on 

reliability predictions (Schueller 2013; Varde 2010; Pecht and Gu 2009; Natarajan 2015). 

Very few publications exist that present a decision framework or aid practitioners in 

selecting an appropriate reliability approach. The most relevant related works evaluating 

reliability approaches are those by Matic and Sruk (2008), Pecht and Gu (2009), and Varde 

(2010). The related works by Barlow, Claroti, and Spizzichino (1993) and Aughenbaugh, 

and Herrmann (2009) are relevant to providing decision factors in reliability assessments, 

but lack a decision framework. 

Matic and Sruk (2008) provides an outline of the classical approaches to reliability 

engineering and the POF approach. Their study discusses the advantages of the POF 

approach as it is compared to the classical approach. They noted a need for a probabilistic 

POF approach is explained due to the inevitable variations in processes contributing to 

failure occurrences.  



 21 

Michael Pecht and Jie Gu (2009) present a POF based prognostics and health 

management approach for reliability predictions. An implementation procedure including 

a failure modes and effect analysis (FMEA) and data reduction is provided. Damage 

accumulation and an assessment of uncertainty is also presented along with a discussion of 

POF based prognostics applications. Their paper is limited to the assessment of a product’s 

health, its degradation under normal operating conditions, and a procedure to predict the 

future state of the product’s reliability using a FMEA.   

Varde (2010) presents a POF approach for predicting reliability of electronic 

components. That article discusses the traditional reliability method and presents the POF 

approach. Varde primarily focuses on the POF approach, failure mechanisms, and POF 

models in regards to semiconductor devices.  

Barlow, Claroti, and Spizzichino (1993) discuss the limiting of uncertainty 

involved with a system reliability analysis and prediction. The authors utilize Bayesian 

predictive approaches to increase the decision making of reliability problems (Barlow, 

Claroti, and Spizzichino 1993). The book focuses on the statistical techniques used in 

reliability analysis. Their book does not discuss the reliability prediction approaches in 

much detail and does not provide a decision framework for practitioners in selecting an 

approach.  

Aughenbaugh and Herrmann (2009) discuss statistical approaches for modeling the 

uncertainty of new component’s reliability. Their paper focuses on the decision 

practitioners make in choosing individual components for the system and the impact on the 

reliability of the system. In particular, they discuss whether to choose an existing 

component with known established reliability or to choose a new upgraded component 

containing unknown reliability. That paper does not discuss the reliability predictive 

approaches or the practitioner’s decision in deciding between them for an early reliability 

assessment of the system. 

The reliability prediction approaches discussed throughout this paper are presented 

objectively from the scope of early system design. This paper does not provide a best 

overall reliability prediction approach for all systems. Instead, the author discusses the 
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factors that practitioners should consider when evaluating the different reliability 

approaches. In support of this, both approaches are presented and assessed. Common life-

stress models and common failure mechanisms are provided for mechanical and electronic 

devices to further support a POF-based approach. 

C. METHODOLOGY 

The content described throughout this section outlines the basis for the Reliability 

Decision Framework (RDF). The relationship of the RDF and early system design is 

discussed in terms of the system engineering process. The RDF is presented and its 

methodology is explained. The outcomes of the RDF are discussed and the reliability 

prediction methods are analyzed. 

The RDF aids the practitioner in choosing the appropriate reliability approach for 

their system early in the system functional analysis stage. As shown in Figure 3, the system 

functional analysis stage is defined here as the first stage in the preliminary design phase 

of the systems engineering process (Blanchard and Fabrycky 2011). The system functional 

analysis stage within the preliminary design phase is an extension of the system level 

functional analysis performed in the conceptual design phase. This stage extends the top-

level functional analysis to its subsystems and lower-level assemblies. This methodology 

utilizes a top-down and bottom-up systems engineering approach to design. This approach 

is commonly used to trace the requirements between the system and subsystem levels. This 

implies an iterative process during early system design that ultimately results in an 

allocated baseline for the system at the conclusion of the preliminary design phase 

(Blanchard and Fabrycky 2011).  

 

Figure 3.  The Relationship of the RDF in the Preliminary Design Phase of the 
Systems Engineering Process 
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The RDF aids the practitioner during the system functional analysis stage when 

system operational functions, maintenance functions, and alternative functions and sub-

functions are analyzed and defined. The results assist the practitioner in the allocation of 

performance factors, design factors, and effectiveness requirements. These are utilized in 

the subsequent stage of the Preliminary Design phase, synthesis, and allocation of design 

criteria. The RDF improves the practitioner’s knowledge of the system’s reliability and 

therefore enhances the decision making process throughout the design phase. As the system 

design process is an iterative process, so should be the reliability assessment process. The 

reliability assessment is again conducted in the detailed design phase in which individual 

components are selected for the system. The reliability can be further enhanced by the 

results of the prototype test and evaluation stage when accelerated life tests are performed 

on the system. This is indicated as the input to the feedback loop shown in Figure 3. The 

RDF conducted early during the preliminary design benefits the practitioner later in the 

design process when a bill of materials is developed.   

The following section presents the RDF and explains it in relation to early system 

design. The results of the decision framework guides the practitioner to an appropriate 

reliability prediction approach. These prediction approaches are traditional, POF, and a 

modified POF approach. The traditional reliability prediction method commonly used 

throughout industry is presented as it relates to the RDF. The POF approach to system 

reliability prediction is discussed. The critical areas of the POF approach, common failure 

mechanisms and POF models, are discussed in addition to the modified POF approach, 

which can be adopted to suit the practitioner’s needs.  

1. Reliability Decision Framework 

The RDF outlines factors that a practitioner should consider before choosing a 

reliability prediction approach appropriate to the system of interest. In practice, time and 

cost are generally constraints. The POF approach is more intensive in nature as compared 

to the traditional approach and will naturally result in requiring more time and cost to 

complete. This is indicated as an arrow on the decision framework flowchart in Figure 4. 

As the decision flows towards the POF approach, the cost and time increases as a greater 
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importance is placed on the correct modeling and testing of the failure mechanisms in the 

late detailed design phase. Other than time and cost, other factors such as complexity, 

usable life or operational life, criticality, and reliability requirements are important. A 

flowchart on the RDF is presented in Figure 4.  

  

 

Figure 4.  A Decision Flowchart of Reliability Predictions 

a. Relevant Historical Data 

The input to the RDF is the system level functional analysis generated during the 

conceptual design phase. In particular, the functional baseline, system architecture, and the 
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top-level reliability requirement is desired. With this information, the practitioner can 

generate subsystem designs and allocate performance factors based on a flow down of the 

reliability requirements. During the system functional analysis stage in the preliminary 

design phase, the practitioner has great flexibility in the design of subsystems and 

assemblies to meet the higher-level reliability requirements of the system. A major factor 

in generating a subsystem design is the relevance of a previous similar design. If the system 

of interest is based on a similar system design or an older configuration, the practitioner 

will have historical failure rate data available. The relevant historical data can be either 

operational field data or relevant accelerated life test data previously obtained. The 

relevancy of the data is dependent on the similarity of the historical system and the system 

of interest in terms of 1) functionality, 2) architecture, and 3) operational environment. The 

historical failure data is determined to be relevant when the comparison yields similarities 

in all three criteria. If the historical failure data is available and relevant to the system of 

interest, then the traditional reliability approach becomes the most effective reliability 

prediction approach. Depending on the level of detail of the historical data, a more POF-

based approach can also be used. To do so, the data must map failure rates based on specific 

failure mechanisms relevant to the system and its operational environment.  

b. Level of Complexity 

The level of complexity of the system dictates the intensity of a POF based 

reliability assessment. A system’s complexity is difficult to quantify and is based on 

multiple factors including the number of components, subsystems, emergent behaviors and 

properties, and nonlinear relationships between components (BKCASE 2017). For the 

purposes of the RDF, the level of complexity is rated on a qualitative scale of 1–10, with 

ten being the maximum factor to represent the total number of system components in 

the thousands. A system with a level of complexity rating of six or greater represents a 

high level of complexity. A system with a high complexity level, will require additional 

man-hours to assess, analyze, and test the system for different dominate failure 

mechanisms.  
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c. Operational Life Requirement 

The expected operational life of the system is driven by the requirements analysis. 

This factor dictates how robust the system needs to be to last in its intended lifecycle. If, 

for example, the system is expected to last roughly 50 years much like military systems, 

the use of a POF approach becomes more effective. This is because the POF approach 

analyzes multiple failure mechanisms of which can improve the robustness of the system’s 

design and be used to enhance the system’s overall reliability. In contrast, a system prone 

to technology refreshes much like those in consumer electronics will generally experience 

technological evolution over a shorter period, requiring frequent system redesigns. In this 

case, the traditional reliability approach becomes the most effective reliability prediction 

method because there is not a strong need to understand all failure mechanisms associated 

with the system. Since the expected operational life is less than 10 years, a thorough 

understanding of all failure mechanisms of the systems is not an efficient use of resources. 

For applying RDF, the operational life requirement was divided into three lengths of time. 

A low operational life is represented as a system expected to last 10 years or fewer. Within 

10 years, a system has a high probability of requiring a redesign of circuit card assemblies 

due to component obsolescence (Torresen and Lovland 2007). An operational life of 

10–20 years will generally require a partial redesign of the system and a complete redesign 

of the subsystems due to the obsolescence of technology (Singh and Sandborn 2006). 

Systems expected to operate for 20 years or greater will require a complete redesign due to 

diminishing manufacturing sources and material shortages (DMSMS), technology updates, 

performance increases, and component obsolescence (Singh and Sandborn 2006). While it 

is possible to extend the system’s life cycle through mitigation of obsolescence during the 

sustainment phase, a practitioner can increase the design robustness of a system in the 

preliminary design phase to ensure the operational life requirements are satisfied. As such, 

the effective benefits for performing a POF reliability approach increases proportional to 

the increase in expected operational life of the system.  

If the practitioner does not have relevant historical data, the level of complexity of 

the system is high, and the operational life requirement is greater than 10 years, then the 

reliability prediction becomes increasingly more important. At this point of the RDF, a 
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POF-based approach becomes more effective than just a pure traditional reliability 

approach. A POF approach can be modified using principles from both the traditional and 

POF methods. The modified POF approach is a customized approach to suit the 

practitioner’s needs based on the information available. Some publications describing 

various modified reliability approaches exist (Thaduri 2013; Thaduri, Verma, and Kumar 

2015; Yadav et al. 2003; Aughenbaugh and Herrmann 2009). These modified approaches 

take aspects of the traditional and POF approaches and specify the reliability assessment 

based on two primary factors: 1) the type of failure data available to the practitioner in 

terms of both quantity and quality, and 2) the physical architecture of the system.  

d. Criticality 

For a critical system application, the POF approach becomes crucial to increasing 

the system’s survivability under varying operational stresses. This is particularly important 

in the aerospace, nuclear power, oil and gas, or healthcare industries in which system 

failures may lead to a catastrophic failure. The evaluation criteria used in the RDF for 

criticality are non-critical, mission critical, and safety critical. In military applications, 

these criticality classifications are designated as non-critical (NC), critical application item 

(CAI), and critical safety item (CSI), respectively (Office of the Under Secretary of 

Defense for Acquisition, Technology, and Logistics 2016). A failure of a non-critical 

system will not jeopardize the overall mission or render the application as un-operational. 

A failure in a mission critical system results in a significant decrease in performance, and 

the application will not be able to fulfill its primary purpose. Failures of safety critical 

systems are catastrophic failures of the application that renders the application as 

inoperable and may result in significant damage to the application, the loss of the 

application, or a loss of life (Bozzano and Villafiorita 2010). The RDF considers the 

mission critical and safety critical designations as a critical system classification. If the 

system contains critical characteristics whose failure, malfunction, or absence causes the 

application to be inoperable and creates an unacceptable risk to life, then the system is 

considered to be critical (Office of the Under Secretary of Defense for Acquisition, 

Technology, and Logistics 2016; Bozzano and Villafiorita 2010). A critical system in the 

RDF results in the use of a POF reliability approach. This is because the impact of a failure 
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is significant and will require a thorough analysis of failure mechanisms to design a very 

robust system to mitigate catastrophic failures. In the RDF, a non-critical system results in 

the use of a modified POF approach. A non-critical system does not contain critical 

characteristics and, if the system fails, the application will continue to operate. A modified 

POF approach does not contain as thorough of an analysis on various failure mechanisms 

as the strict POF approach and uses principles of the traditional approach to utilize 

resources effectively.  

As the decision flow gravitates toward the use of the POF approach, the costs and 

time become increasingly more important. The focus of the POF approach is initially on 

the dominate failure mechanisms of the system. As the system is revalidated through the 

detailed design phase, additional failure mechanisms are mitigated until a relatively high 

degree of confidence in meeting or exceeding the reliability requirements is achieved. As 

this revalidation cycle continues, the overall costs and time increases. It is vitally important 

in the POF approach to develop a solid, accelerated life test plan to address all of the 

dominate failures and reduce the number of additional tests.  

2. Traditional Reliability Approach 

Reliability predictions rely on three critical areas: failure data, statistical modeling 

of the failure data, and the system’s reliability logic model. Failure data can be categorized 

into field reliability data, test reliability data, and external data sources. Due to the limited 

information provided to the practitioner in the early design stage, the traditional reliability 

approach is often constrained to using external data sources such as MIL-STD-217F. 

The traditional reliability approach is commonly used and MIL-STD-217F is the 

most widely used source for predicting reliability of components (Varde 2010). The 

traditional reliability approach can be broken down into two methods, the Parts Count 

method and a Part Stress Analysis. Both methods are defined in MIL-STD-217F.  

The Part Count method determines the Mean-Time-Between-Failure (MTBF) for 

each electronic device by taking the inverse of the sum of the failure rates for that generic 

component type (U.S. Air Force 1995). The constant failure rates are generally obtained 

from an external data source unless historical failure rates are known or the system has 
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previously undergone an accelerated life test. The Part Count methodology is applicable to 

use because of having existing relevant, historical failure data in the RDF. Particularly 

when determining the part quantity and quality levels for subsystems to achieve the desired 

system reliability requirement.  

A Part Stress Analysis takes the Part Count method a step further by applying 

additional stress factors. In the Part Stress method, a generic scaling stress factor is applied 

to the constant failure rate to determine a component’s overall MTBF. The stress factor 

takes into account the reliability degradation due to various operational stressors such as 

power, duty cycle, and temperature. These stress factors are also generally obtained from 

external data sources when provided or estimated. The Part Stress Analysis is applicable 

in the RDF due to non-existing historical failure data. The Part Stress Analysis can be 

applied when the system complexity level is nominal or the operational life requirement of 

the system is short. The generic component types are identified later in the preliminary 

design phase and the part stressors are projected based on the intended operational 

environment of the system.  

The primary advantages of the traditional reliability approach is the simplicity of 

the time to fail calculation and the speed in which the reliability of a system can be 

calculated. In addition, a practitioner given little information about the system can utilize 

industry external data sources to determine a rough reliability estimate on the system. The 

traditional reliability approach is a commonly used and accepted reliability prediction 

method (Pecht 1996). Multiple publications list the limitations of the traditional reliability 

approach. A brief summary of these limitations are presented here (Pecht 1996; McLeish 

2010).  

(1) The traditional approach provides an assessment on only one aspect of a 

failure. It does not include an assessment of different failure mechanisms or 

analyze how a component or system can fail (McLeish 2010).  

(2) Reliability predictions in the traditional approach are based on constant 

failure rates. While this does simplify data collection and calculations, only 

the random failures are captured. As a result, the failure trends are typically 
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modeled as an exponential distribution and does not account for infant 

mortality and wear-out failures (Pecht 1996).  

(3) The average failure rates provided by external data sources are for generic 

component types. There is no failure data for specific components (McLeish 

2010).  

(4) The test and environments for supplier derived failure rates are generally 

unknown. The failure rates that some suppliers may provide are in most 

cases, for ideal situations as it is in the supplier’s best interest to promote 

high reliability metrics. The actual environment or testing method to collect 

this data is often unknown to the consumer (Pecht 1996).  

(5) The traditional approach does not take into account actual failure 

mechanisms (Pecht 1996). The stress factors provided by the data sources 

are also generic and naturally limited.   

(6) The stress factors the traditional approach uses are also constant. The stress 

factors are given by external data sources and are treated as a constant stress 

rate such as temperature. Other variable stress factors are not included in 

the prediction such as temperature cycling, humidity, shock, and vibration.  

(7) The data generally provided by external data sources are outdated (Pecht 

1996). Technology changes every so often and the data represented in the 

data sources are outdated as component types change, technology evolves, 

and advances in quality continues to improve. The last update to MIL-STD-

217F, for instance, was in 1995 (Pecht 1996).  

3. Physics of Failure Approach 

Physics of failure is a science-based approach to determining the life of a product 

through an analysis of the failures. Physics of failure emphasizes the root cause of a failure, 

the identification of failure mechanisms, and a focused analysis of the failures. The POF 

approach provides the practitioner with a thorough understanding of the cause and effect 

of failures as well as the strength tolerance of materials and components that lead to a 
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system failure. The strength of a component is measured by the amount of stress it can 

endure before failing.  

In the POF approach, the operating environment must be properly defined. The 

environment can be defined through measurement or by customer requirements (Pecht 

1996). By defining the operating environment, the practitioner can identify the potential 

stressors acting on the system. These stressors are modeled to determine the time to fail for 

the system. A detailed stress analysis is conducted based on the known stressors and the 

system. The stress analysis identifies the failure sites, modes, and failure mechanisms 

(Pecht 1996). The time to fail is calculated for each failure mechanism through modeling 

of the failure mechanism. A reliability assessment of the system during the preliminary 

design stage, aids the practitioner in identifying the system’s weaknesses in both the failure 

sites and mechanisms that lead to the lowest time to fail for the system. These weaknesses 

can be addressed to improve the system’s reliability and to enhance the robustness of the 

systems design. Later in the detail design phase, when a prototype of the system is 

developed, the use of accelerated life tests can further enhance the robustness of the system 

design. As the RDF leans towards a POF-based approach, an accelerated life test becomes 

imminent. Accelerated life tests are highly desired in the POF approach to verify the time 

to fail data for the failure mechanisms and in the identification of additional failure 

mechanisms that were not previously assessed. The critical areas of a POF-based approach 

is in the identification of potential failure mechanisms and the modeling of those failure 

mechanisms.  

The POF approach assesses how a system fails, identifies the root causes of failures, 

and takes into consideration different failure mechanisms. This advantage alone leads to a 

more robust reliability prediction. The reliability assessment in the preliminary design 

phase focuses on the dominate failure mechanisms that drive a system failure. These 

dominate failure mechanisms serve the practitioner as areas of further reliability 

improvement. The failure mechanisms are modeled based on the expected operational life-

stress profile of the system. This modeling does not assume a constant failure rate and can 

model different stages of a system’s lifecycle such as the wear-out stage as opposed to just 
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capturing the random failures. The models also take into consideration the cumulative wear 

and stress on the system.  

The primary limitation of the POF approach is that it almost requires the use of 

accelerated life testing. Accelerated life testing of the system is critical to receiving 

accurate failure rates pertaining to the identified failure mechanisms and determining the 

life-stress profile of the failure. This detailed and specific failure data is generally not 

readily available to the practitioner from suppliers or external data sources. The POF 

approach inherently increases the accuracy and robustness of the reliability prediction at 

the expense of the length and cost associated with testing the system during the detail 

design phase. 

The practitioner may also adapt a modified POF approach. This approach is best 

suited for a non-critical system applications and systems with an expected operational life 

requirement of 10–20 years as shown in the RDF. A modified POF approach take aspects 

of the traditional and POF approach. Two factors can influence the type of modified POF 

approach taken by the practitioner. The first factor is the type of failure data available to 

the practitioner in terms of both quantity and quality. The second factor is the projected 

physical architecture of the system. Based on these factors the practitioner can customize 

the POF approach to fit his needs. Publications exist on describing various modified 

reliability approaches (Thaduri 2013). 

a. Common Failure Mechanisms 

Failure mechanisms describe the failure that has occurred and the cause of the 

failure (O’Halloran, Stone, and Tumer 2012). Failure mechanisms are dependent on the 

system design and the types of components used. Presented here are some common failure 

mechanisms for electronic and mechanical devices. Collins provides a more complete 

failure mechanism taxonomy (Collins 1993). Uder, Stone, and Tumer (2004) provide an 

extension of Collin’s taxonomy for electrical failure mechanisms.  

Failure mechanisms can be categorized into three different types; manufacturing 

variation, overstress, and wear-out. Each category reflects a stage in the system’s lifecycle. 

Manufacturing variation are the minor changes in production that yield early failures and 
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represent infant mortality. Overstress failures mechanisms, such as those presented in 

Table 3, are the result of the stress exceeding the strength of the device (Natarajan 2015). 

Wear-out failure mechanisms are due to the accumulation of stress over time such as 

fatigue. The majority of mechanical failure mechanisms can be classified as wear-out.  

Table 3.   Common Failure Mechanisms for Electronic Devices 

Device Failure Mechanisms 
Integrated 
Circuits 

Supply 
voltage and 
current 

Input 
voltage and 
current 

Power 
dissipation 

Junction 
temperature 

Operating 
temperature 

Discrete 
Semiconductors 

Dielectric 
breakdown 

Junction 
breakdown 
voltages 

Power 
dissipation 

Hot carrier Electro-
migration 

Resistors Limiting 
dissipation 

Power 
dissipation 

Junction 
temperature 

Operating 
temperature 

 

Capacitors Voltage Ripple 
current 

Operating 
temperature 

  

Inductors and 
Transformers 

Hot spot 
temperature 

Voltage  Current Power 
dissipation 

Operating 
temperature 

Connectors Rated 
voltage 

RF power 
rating 

Rated 
current 

Operating 
temperature 

 

Switches Rated 
voltage 

Rated 
current 

Operating 
temperature 

  

Relays Input power Output 
power 

Junction 
temperature 

Operating 
temperature 

 

Fuses Nominal 
current 

Rated 
voltage 

Breaking 
capacity 

Operating 
temperature 

 

PCBs Conductor 
temperature 

Vibration 
resonance 

Delamination Shock 
fracture 

Corrosion 

Coaxial Cables Bending 
diameter 

Operating 
temperature 

   

 

ZVEI provides various common failure mechanisms specific to circuit card 

assemblies (CCA) (ZVEI Robustness Validation Working Group 2013). These failure 

mechanisms are categorized into four common sources: temperature, vibration/shock, 

humidity/moisture, contaminants and dust. These failure mechanisms produce circuit card 

assembly wear-out failures such as fatigue, delamination, creep, and corrosion (ZVEI 

Robustness Validation Working Group 2013).   
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Common failure mechanisms found in mechanical devices include, shear loading 

failure, instability failure, bending failure, compressive failure, tensile yield strength 

failure, fatigue, creep/rupture failure, stress concertation failure, material flaw, bearing 

failure, and metallurgical failure (Dhillon 2015; Safety and Reliability Society 2012).  

b. Modeling 

Once the potential failure mechanisms have been identified, it is important to apply 

the correct model to represent the failure and determine the time to fail for the failure 

mechanism. The POF or life stress models are life distributions that describe the time to 

failure of a system. These models are used to analyze the relationships between the causes 

of the failure (Leemis 2009). In the traditional reliability prediction approach, stress is 

treated as being independent of time, resulting in constant failure rates. The majority of 

complex systems, however, show stress levels vary with time (Anderson et al. 2004). 

Presented in this section are the common life stress models.  

The Arrhenius model is a temperature dependent model widely used in the POF 

reliability approach. The model is used to predict the influence of steady-state temperature 

on failure rates for electronic devices (Lall 1996). The Arrhenius model by itself is limited 

as it factors temperature stress as a constant and does not factor in cyclic temperature, duty 

cycle, or on/off ratios (Lall 1996). Often, the Arrhenius model is combined with the inverse 

power law to yield a temperature-non-thermal relationship. This relationship models 

temperature with a second, non-thermal stressor such as vibration or voltage. This model 

shows the relationship of a non-thermal stressor on the system’s life, as temperature is 

remained constant and vice-versa (HBM Prenscia 2018). The inverse power law model is 

commonly used to model just non-thermal stresses (HBM Prenscia 2018).  

The Eyring Model is similar to the Arrhenius model with the exception of variable 

stress instead of a constant stress. The Eyring model is often used for modeling the 

relationship between temperature and humidity.  

The cumulative-damage/exposure model are appropriate for modeling step-stress 

profiles when the stress varies over time (Nelson 1990). The stress on the system is 

gradually increasing with each step representing the cumulative effect of the stress on the 
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system.  This model is also useful for measuring multiple different stresses acting on the 

system. Other multivariable stress models include the general log-linear and proportional 

hazards model. These models are used in cases when more than two different failure 

mechanisms are applied to the system as in most cases.   

Multiple, fatigue life models exist for mechanical devices. The most common 

models are the Basquin and Coffin-Manson models. The Basquin Model is used for high-

cycle fatigue and the Coffin-Manson Model is used for low-cycle fatigue. Often, both 

models are combined to represent both high and low cycling fatigue. The Coffin-Manson 

Model is also often used to model solder joint low-cycle fatigue. Similarly, the Norris-

Landzberg Model modifies the Coffin-Manson to account for the effects of thermal cycling 

frequency and maximum temperature (Schenkelberg 2018).    

Physics of failure models represent specific failure mechanisms acting on a 

component or system. Varde (2010) describes three models specific to degradation failure 

mechanisms for semiconductor devices. These models are Black’s equation, anode hole 

injection, and hot carrier injection. Black’s equation model shows the relationship between 

temperature and current density that leads to an electro-migration wear-out failure. The 

anode hole injection model represents the electric field across the dielectric as the 

temperature changes and models the dielectric breakdown. This model captures the 

degradation of gate dielectrics that leads to short circuits. The hot carrier injection models 

the hot carrier oxides degradation in semiconductor devices and the hot carrier injection in 

MOSFET devices (Varde 2010).  

D. CASE STUDY 

This section presents a case study to demonstrate how to apply the RDF and to 

articulate an example of the expected results. While this case study is presented for a real 

system, the results are only valid for better understanding the RDF methodology. 

Therefore, the results should not be used outside of this paper. 

The system being used in this case study is a gas turbine auxiliary power unit (APU) 

on a military aircraft. This system was chosen because of the dynamic scenario it provides 

practitioners in early system design.  As previously mentioned, an input to the method is a 
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system functional analysis. Specifically, Figure 5 shows the information derived from a 

functional baseline, a functional architecture, and the top-level system reliability 

requirements that are results of the system level functional analysis conducted in the 

conceptual design phase. Using the functional baseline and architecture at the start 

of the preliminary design phase, the practitioner is extending the functional analysis to 

the subsystems and lower-level assemblies. The reliability requirement naturally becomes 

a flow down requirement for the design of the subsystems. During this stage, the 

practitioner has flexibility in allocating reliability requirements to elements of the 

subsystems and designing the subsystems to optimally meet or exceed the allocated 

reliability requirements.  

 

Figure 5.  Relevant APU Information Retrieved from the Functional Analysis 

A review of previously developed APU designs for the commercial industry show 

similarities in system functionality and architecture. The historical failure data collected by 

the commercial system is dependent on the environment and as the environment for the 

military application introduces different stressors, the historical data for the commercial 

system becomes less relevant to the military application. In the RDF, the historical data 

does not contain all three criteria of relevancy and therefore the practitioner does not have 

relevant historical data.  

The level of system complexity is analyzed based on the number of subsystems, 

interfaces, and an estimation of components required for each subsystem. Applying an 
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estimation factor of a thousand components per subsystem gives the system an estimated 

10,000 components. This is equivalent to a complexity level of 10 in the RDF, constituting 

the system as having a high complexity level. The expected operational lifecycle for the 

APU is 35 years. At this point in the RDF, the traditional reliability approach is no longer 

a feasible option for the APU. Even though the criticality of the system is not specified in 

the system functional analysis, the system safety requirements are provided. The criticality 

of the system is estimated based on the functional requirement, interactions with external 

systems, safety requirements, and the end application of the APU. The APU provides 

electrical and hydraulic power to support aircraft systems. The aircraft systems the APU 

interfaces with are the hydraulic equipment, the main engines, and the environmental 

control system. The safety requirements are fire prevention, protection for over-speed, 

rotor containment, and mid-flight engine start. Based on these factors, the APU system is 

determined to be a mission critical system. Due to the functionality of the APU, the loss of 

the system in mid-flight will not result in the aircraft becoming inoperable or cause the loss 

of life. This eliminates the safety critical classification. The APU would be considered a 

non-critical system; however, the requirement of the APU starting an engine in mid-flight 

eliminates this classification as well. If the APU fails to start the engine in mid-flight or 

fails completely in flight, the successful operation of the aircraft is jeopardized. As a result, 

the RDF recommends the practitioner to perform a reliability assessment of the APU using 

a strict POF reliability approach.  

E. DISCUSSION 

By not using the RDF, the practitioner may have decided to use either a traditional 

or a modified POF approach. Performing a traditional approach for the APU will yield in 

a non-robust system due to the lack of reliability enhancements in system design and risks 

a reliability prediction that will not match the system’s reliability once it is fielded.  

In a scenario where ample historical data exists and is initially relevant, but the 

level of system complexity is high, the RDF will favor the traditional approach. The result 

is driven by the relevancy of the historical data. Of which is determined by the similarity 

of the historical system and the system of interest in terms of functionality, architecture, 



 38 

and operational environment. By meeting all three criteria and therefore determined 

relevant, the historical failure data becomes significantly more accurate to the system then 

failure data derived from external sources or through accelerated life tests. The results of a 

traditional approach utilizing the parts count method will yield a high confidence level due 

to the quality of the failure data. The system’s complexity can be addressed by applying a 

traditional approach utilizing a parts stress methodology to the subsystems and lower 

assemblies. The result will earn the practitioner with additional knowledge of the system’s 

reliability, which further enhances the decision making throughout the design phase. 

The results of the system-level functional analysis generated in the conceptual 

design phase provides the practitioner with the necessary information to make a thoughtful 

decision on an appropriate reliability approach for the system. The RDF highlights the key 

factors in system design that contribute to an appropriate reliability approach. When used 

at the beginning of the preliminary design phase, the RDF aids the reliability allocation and 

assessment at the subsystem and component level. The reliability approach resulting from 

the RDF can be used in the refinement of the system and subsystem design. This further 

enhances the system’s robustness throughout the rest of the iterative system design process. 

The APU case study provides a deeper understanding of the RDF methodology and 

validates the use of the RDF in early system design. 

F. CONCLUSION 

In early system design, relevant system failure data is the limiting factor in 

reliability predictions. Often practitioners are limited in collected historical failure data and 

data derived from accelerated life tests. The failure data generally provided by external 

data sources are very limiting and outdated. Traditional reliability prediction methods often 

rely on the use of external data sources in accurately predicting the reliability of a system. 

Many reliability predictions do not match experienced operational failures. The POF 

approach reduces the inaccuracy of reliability predictions by exploring the root causes of 

failures and defining failure rates for different failure mechanisms. The POF approach 

results in a more extensive reliability prediction but often requires failure data derived from 

accelerated life tests to determine the life-stress profile and properly model the failure 
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mechanism over time. It is important for a practitioner to accurately assess and predict a 

system’s reliability. Multiple publications exist weighing the benefits and limitations of 

each reliability predication approach. Few sources exist, however, that provide the 

practitioner guidance in determining when to use one approach over the other. The RDF 

identifies the key factors a practitioner should consider when selecting an approach. In 

systems exposed to multiple failure mechanisms and require a more robust design, a POF 

approach is the best in predicting and assessing the system’s reliability. In scenarios when 

time and cost are extremely limited and those scenarios in which the system is not expected 

to last as long, the traditional approach will serve best as there is not a strong need to 

understand all failure mechanisms associated with the system. Although reliability is an 

iterative process throughout the design phases, the RDF is best applied in the early stage 

of the preliminary design phase when a system level functional analysis has been 

performed. In addition to assisting the selection of a reliability prediction method, the 

results of the RDF may further enhance the system design and the allocation of system 

requirements in the preliminary design phase. 

G. FUTURE WORK 

The reliability decision framework can be expanded on through the exploration and 

assessment of the varying types of modified POF approaches. An assessment of the 

modified methodologies is beneficial to the practitioner for specific types of devices and 

systems. In addition, most comparative studies lack data in quantifying the disparity of the 

different reliability approaches. A study simulating both reliability approaches for a system 

will help quantify the disparity in the different approaches. An additional study can be 

conducted comparing the predictive results with actual historical failures and failure 

mechanisms the system has experienced.  
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IV. CONCLUSION 

Accurate failure data and appropriate modeling of the failure data is vital in 

reliability predictions. Historical failure data for a similar systems operating in the same 

environment to the designed system is ideal as inputs to a reliability prediction. In early 

design, this not always an option for the practitioner. Test data obtained from life-stress 

tests such as accelerated life tests are a good alternative. The stress tests become even more 

important when using a physics of failure reliability approach. If accelerated life tests are 

an option to the practitioner, it is advised to perform a physics of failure approach and 

develop a throughout comprehensive accelerated test plan. An accelerated test plan will 

ensure the appropriate data for dominate failure mechanisms are captured and the tests are 

conducted efficiently. Applying the correct model to represent the data is equally as 

important in reliability predictions. This is best done through a goodness-of-fit test. The 

use of external reliability data sources should only be explored when no other options are 

available to the practitioner. Based on the assessment conducted in Chapter II, a single best 

external reliability data source does not exist. Each external data source varies from other 

sources. Many data sources are tailored to contain failure rate data relevant to the 

components and environments in a particular industry. All external data sources share the 

same inherent issues. These issues include average failure rates, undefined survey 

parameters for each component with unknown quality levels, and unknown environmental 

stresses. Practitioners should consider these factors when deciding on the appropriate 

external data to utilize in predictions. The unknown variables should be kept to a minimum 

to reduce the probability of an inaccurate reliability prediction.  

The practitioner generally has two different approaches to predicting the reliability 

of a system, the traditional approach and the physics of failure approach. It is important to 

understand the advantages and limitations for both approaches. It is also equally as 

important to understand when it is appropriate to use each approach. Factors such as time 

and cost are significant in every program, but there additional factors to consider when 

choosing the appropriate approach. These factors include historical failure data, system 

complexity, projected operational life, demand, criticality, and reliability requirements. 
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Based on the scenario and the failure data available, the practitioner may inherently be 

limited to perform one approach over the other approach. In general, a physics of failure 

approach will provide the practitioner with an understanding of the root causes of system 

failure. This approach is more intensive than the traditional approach and will yield a more 

robust reliability prediction and system design. The trade-off is the need on accelerated life 

test to obtain failure data and to develop life-stress profiles for specific failure mechanisms. 

The accelerated life tests will naturally increase the time and cost for the program. The 

traditional approach is not as accurate as the physics of failure approach when using 

external data sources. The traditional reliability approach is better suited for use when 

accurate historical failure data is available to the practitioner. Data from historical life tests 

may also be used in the traditional approach if the environment and stressors for the tests 

are known and relevant.  
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V. FUTURE WORK 

Most comparative studies lack data in quantifying the disparity of the different 

reliability prediction approaches. A study simulating both traditional and physics of failure 

approaches for a particular system will help quantify the disparity between the different 

prediction approaches. An additional comparative study can be conducted to assess the 

variable outcome of the prediction approaches, the models used for the prediction, actual 

historical failures, and the failure mechanisms the system has experienced. The results of 

which will further highlight the elements that positively and negatively contribute towards 

accurate system reliability predictions. The resulting elements will enhance the 

practitioner’s ability to accurately predict the reliability of a system and support the 

system’s design in meeting its intended reliability requirements. An experimental approach 

is desired to assess the outcomes of the reliability prediction methodology and the actual 

experienced system failure data. Further research into the varying types of modified 

reliability prediction methods can also be performed. Many modified methods use aspects 

of the physics of failure approach to compensate for the limitations in the traditional 

approach. An assessment of the modified methodologies may be beneficial to practitioners 

for specific types of devices and systems.  
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