
 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

SCALED APPROACH TO OPEN SOURCING 
DEPARTMENT OF THE NAVY PRODUCED 

SOFTWARE 

by 

Julian L. Garcia and Donovan Holloway Jr. 

September 2018 

Thesis Advisor: Karen L. Burke 
Second Reader: Glenn R. Cook 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
SCALED APPROACH TO OPEN SOURCING DEPARTMENT OF THE 
NAVY PRODUCED SOFTWARE

5. FUNDING NUMBERS

W7A16
6. AUTHOR(S) Julian L. Garcia and Donovan Holloway Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School 
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT 
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES) 
DoN Secretariat Historian, Arlington, VA 22202

10. SPONSORING /
MONITORING AGENCY 
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
 The Department of Defense (DoD) must continue to develop, sustain, and update its software-based 
capabilities. For the Department of the Navy (DoN), the life cycle costs of software continue to grow; over 
time, developing code will not be cost effective. An alternative to developing code is to further integrate 
open source software (OSS) into DoN programs. OSS is software that grants users the ability to view, use, 
and change the software source code. The use of OSS has been extensively researched, as addressed in the 
MITRE Corporation’s study on free and open source software (FOSS) in the DoD, completed in 2003. 
Despite favorable reports and published DoD policy, and the widespread successful use of OSS in current 
software, program managers are reluctant to fully integrate OSS into the DoN due to concerns with legal 
requirements, cybersecurity, total expenses, and the ability to implement and control OSS on classified 
systems while adhering to security regulations. This study utilized a quantitative, scaled approach to 
determine the risks and benefits to open sourcing for all DoN software. Several OSS case studies were 
examined. This research concluded that while OSS has been tested and proven cost-effective in certain areas 
of the DoN, it may not be the most efficient solution for all DoN projects. Therefore, the DoN should 
consider further implementation of OSS in security, software development, infrastructure support, and for 
program lifecycle cost reductions. 

14. SUBJECT TERMS
open source software, open source code, free and open source

15. NUMBER OF
PAGES 

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF 
REPORT 
Unclassified

18. SECURITY
CLASSIFICATION OF THIS 
PAGE 
Unclassified

19. SECURITY
CLASSIFICATION OF 
ABSTRACT 
Unclassified

20. LIMITATION OF
ABSTRACT 

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 

101



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

SCALED APPROACH TO OPEN SOURCING DEPARTMENT OF THE NAVY 
PRODUCED SOFTWARE 

Donovan Holloway Jr. 
Captain, United States Marine Corps 

BSBA, Auburn University, 2012 

Julian L. Garcia 
Captain, United States Marine Corps 

BBA, Prairie View A & M University, 2011 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT 

from the 

NAVAL POSTGRADUATE SCHOOL 
September 2018 

Approved by: Karen L. Burke 
Advisor 

Glenn R. Cook 
Second Reader 

Dan C. Boger 
Chair, Department of Information Sciences 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

The Department of Defense (DoD) must continue to develop, sustain, and update 

its software-based capabilities. For the Department of the Navy (DoN), the life cycle 

costs of software continue to grow; over time, developing code will not be cost effective. 

An alternative to developing code is to further integrate open source software (OSS) into 

DoN programs. OSS is software that grants users the ability to view, use, and change the 

software source code. The use of OSS has been extensively researched, as addressed in 

the MITRE Corporation’s study on free and open source software (FOSS) in the DoD, 

completed in 2003. Despite favorable reports and published DoD policy, and the 

widespread successful use of OSS in current software, program managers are reluctant to 

fully integrate OSS into the DoN due to concerns with legal requirements, cybersecurity, 

total expenses, and the ability to implement and control OSS on classified systems 

while adhering to security regulations. This study utilized a quantitative, scaled 

approach to determine the risks and benefits to open sourcing for all DoN software. 

Several OSS case studies were examined. This research concluded that while OSS 

has been tested and proven cost-effective in certain areas of the DoN, it may not be the 

most efficient solution for all DoN projects. Therefore, the DoN should consider further 

implementation of OSS in security, software development, infrastructure support, and 

for program lifecycle cost reductions. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 
A. OBJECTIVES ............................................................................................2 
B. RESEARCH QUESTIONS .......................................................................2 
C. THESIS DESIGN .......................................................................................3 

II. BACKGROUND ....................................................................................................5
A. OSS IN THE DOD .....................................................................................8 

1. The MITRE Corporation’s Study of OSS in the DoD ................9
2. DoD Open Source Policies ...........................................................10

B. OPEN SOURCE TRAITS .......................................................................13 
1. OSS as COTS................................................................................14
2. OSS Information Security ...........................................................16
3. Understanding Linux ...................................................................17

C. OSS PLANNING CONSIDERATIONS FOR DOD .............................18 
1. OSS Challenges and Opportunities Background ......................19
2. OSS Fear and Inertia ...................................................................21
3. Concerns with Warranties, Support, and Procurement ..........24
4. OSS Education and Guidance ....................................................27

D. SUMMARY ..............................................................................................28 

III. OSS BENEFITS AND VULNERABILITIES ...................................................29
A. MEASURING THE COSTS OF OSS ....................................................31 

1. Cost Case Studies .........................................................................34
2. Forge.mil .......................................................................................37

B. TOTAL COST OF OWNERSHIP .........................................................38 
C. BEAUMONT HOSPITAL OPEN SOURCE CASE .............................42 
D. OSS VULNERABILITIES ......................................................................44 
E. SUMMARY ..............................................................................................49 

IV. THE SCALED APPROACH AND RESEARCH FINDINGS .........................51
A. STRATEGIC GOALS AND SUPPORT ................................................52 

1. Infrastructure Support ................................................................52
2. Software Development .................................................................55
3. Security of OSS ............................................................................57
4. Life Cycle Cost Reductions/ Savings ..........................................64

B. DEVOPS ...................................................................................................65 
1. How DevOps Works ....................................................................65



viii 

2. DevOps Culture ............................................................................68 
C. SUMMARY ..............................................................................................69 

V. CONCLUSION AND FUTURE WORK ...........................................................71 
A. THESIS SUMMARY ...............................................................................71 
B. RESEARCH QUESTIONS .....................................................................72 

1. What are the Processes, Criteria, and Responsibilities for 
Publishing Publicly Releasable Software? .................................72 

2. What is the Feasibility of using OSS for DoN Programs, 
from Unclassified through Classified? .......................................72 

3. Have there Been any Programs in the Federal 
Government, DoD, DoN that have Incorporated OSS? ...........73 

4. Was there a Discernable Cost Benefit for the Program? 
How would/could OSS Affect Maintenance Cost? ....................73 

5. What Are the Cybersecurity Requirements or Challenges 
for Implementing OSS? ...............................................................73 

6. If it Is Not Possible to Obtain All of the DoN’s 
Requirements using OSS, would a Scaled Approach be 
Cost Effective? ..............................................................................74 

C. FUTURE WORK .....................................................................................74 
1. Culture Change ............................................................................74 
2. DevOps ..........................................................................................75 
3. Security .........................................................................................75 

LIST OF REFERENCES ................................................................................................77 

INITIAL DISTRIBUTION LIST ...................................................................................83 

 

  



ix 

LIST OF FIGURES  

Figure 1. Open Source Improvement Cycle. Source: Department of Defense 
Chief Information Officer (n.d). ................................................................12 

Figure 2. Prometheus Monitoring Dashboard. Source: Taylor (2017)......................23 

Figure 3. Grafana Monitoring Dashboard. Source: Taylor (2017). ...........................23 

Figure 4. OSS Cost Element Taxonomy. Source MITRE Corp (2001). ...................33 

Figure 5. OSS Taxonomy of Risks and Benefits. Source: MITRE Corp, 
(2001). ........................................................................................................34 

Figure 6. Published Open Source Vulnerabilities by Year. Source: Snyk 
(2017). ........................................................................................................46 

Figure 7. Red Hat Linux Vulnerabilities by Year. Source: Snyk (2017). .................47 

Figure 8. How Quickly Maintainers could Respond to a Vulnerability. Source: 
Snyk (2017). ...............................................................................................48 

Figure 9. CGMCS Common Software Functional Libraries. Source: Reed et 
al. (2013). ...................................................................................................55 

Figure 10. How Often Maintainers Audit their Code. Source: Snyk (2017)...............59 

Figure 11. Three Tiered Risk Management Approach. Source: NIST (2010). ...........61 

Figure 12. Risk Management Framework. Source: NIST (2010). ..............................62 

Figure 13. DevOps Concept and Information Flows Model. Source: Amazon 
Web Services (2018). .................................................................................66 

Figure 14. DevOps Culture Loop. Source: WebSenor (2018). ...................................68 



x 

THIS PAGE INTENTIONALLY LEFT BLANK 



xi 

LIST OF TABLES 

Table 1. Open Source License Categories. Adapted from Department of 
Defense Chief Information Officer (n.d). ..................................................15 

Table 2. Categories of DoD OSS users. Adapted from MITRE Corp (2003). ........16 

Table 3. OSS Challenges Interviewees. Adapted from Dunn and Wheeler 
(2017). ........................................................................................................20 

Table 4. Comparison of Open Source and Proprietary Code. Source: Coverity 
(2014). ........................................................................................................30 

Table 5. Summary of DTS Estimated Annual Net Savings Reported in the 
September 2003 Economic Analysis. Adapted from Williams and 
Rhodes (2006). ...........................................................................................36 

Table 6. Total Cost of Ownership Table. Adapted from ActiveState (2016). .........39 

Table 7. Beaumont Hospital Phase 1 Solutions. Source: Fitzgerald and Kenny 
(2004). ........................................................................................................43 

Table 8. Beaumont Hospital Phase 2 Solutions. Source: Fitzgerald and Kenny 
(2004). ........................................................................................................43 

Table 9. Security Control Identifiers and Family Names. Source: NIST 
(2013). ........................................................................................................63 

 



xii 

THIS PAGE INTENTIONALLY LEFT BLANK 



xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

ALM Application Life Cycle Management 
API application programming interface 
ASR authorized strength report 
CGMCS Coast Guard Machinery Control System 
CECOM Communication Electronics Command 
CIO  Chief Information Officer 
CMC Commandant of the Marine Corps 
CNSSP Committee on National Security Systems Policy 
COTS  commercial-off-the-self 
CSIS Center for Strategic and International Studies 
CSS closed source software 
DAU Defense Acquisitions University 
DevOps development and operations 
DISA Defense Information Systems Agency 
DoD  Department of Defense 
DoN Department of the Navy 
DTS Defense Travel System 
FCC Fleet Cyber Command 
FFRDC federal funded research and development centers 
FINTECH financial technology 
FOSS free open source software 
GAO Government Accountability Office 
GOTS government-off-the-shelf 
GPL general public license 
GPS global positioning system 
GTC government travel card 
HP Hewlett-Packard 
HTTP hypertext transfer protocol 
ISR intelligence, surveillance, and reconnaissance 
IDC International Data Corporation 



xiv 

IT information technology 
LIMUX Linux in Munich 
MARADMIN Marine Corps administrative message 
MCS Machinery Control system 
MOL marine online 
MRRS medical readiness reporting system 
NMCI Navy and Marine Corps Intranet 
NIST National Institute of Standards and Technology 
NIPR non-classified Internet protocol router 
OAI Open Application Initiative 
OCCFLD operations occupational field 
OIC officer-in-charge 
OMB Office of Management and Budget 
OSI Open Source Initiative  
OSS Open Source Software 
OTD open technology development 
SARA Security Auditor’s Research Assistant 
SIPR secure Internet protocol router 
TCO Total Cost of Ownership 
URL uniform resource locator 
USCYBERCOM United States Cyberspace Command 
VISTA veteran’s health information systems and technology architecture 
VPAT voluntary product accessibility template 
  



xv 

ACKNOWLEDGMENTS 

We would like to start by thanking our thesis advisor, Professor Karen Burke, for 

her guidance, patience, support, and the time that she devoted to this thesis. We were 

incredibly grateful to have such a caring and no-nonsense leader as a mentor throughout 

our Naval Postgraduate School experience.  

We would also like to thank our second reader, Professor Glenn Cook. His 

knowledge, patience, and guidance were paramount during the thesis process and time 

spent learning and growing at NPS. We are thankful for both our advisor and second 

reader and want to thank them in advance for the advice we anticipate in our future 

endeavors.  

Finally, we are especially grateful for the love and support from our families. 

Words cannot express how important our family support has been during this process. 



xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



1 

I. INTRODUCTION 

The life cycle costs of software continue to grow for the Department of the Navy 

(DoN), and the fear is these costs will become unsustainable. The use of open source  

software (OSS) has been an interest of many in the community since the 1990s (Endsley, 

2018). The use of OSS in the Department of Defense (DoD) has been studied for over a 

decade; yet, the DoD and the DoN continue developing code at an incredible expense. 

The DoD addresses the use of OSS, maintains policies for its use, and provides 

cybersecurity controls to be applied. However, there seem to be perceptions by some 

managers in the DoD that use of open source code is not a feasible option; consequently, 

code development continues. Given the potential cost benefits of using OSS, it is 

necessary to explore the feasibility of using OSS in the DoN. 

The research reviewed the current reports on open sourcing, which included: 

“OSS in Government, Challenges and Opportunities,” dated August 2013; and “Open 

Technology Development (OTD): Lessons Learned & Practices for Military Software,” 

dated May 2011. The research also explored the successes that have been discovered in 

the international software developer community and attempted to ascertain the reasons 

for their success. In addition to case studies on OSS, other topics such as OSS costs 

trends, vulnerabilities, and OSS key drivers were identified and discussed.  

This research was applied to the DoN to determine the benefits and risks to more 

routine open-sourcing for DoN all software. With the knowledge of OSS trends and 

drivers, and the successful efforts of organizations around the world, this research was 

created to inform DoN leadership of potential courses of action for the DoN. Given 

potential limitations due to cybersecurity or legal requirements, a scaled approach proved 

to be more prudent, and was discussed as part of this research. Furthermore, the research 

reviewed current policies that specifically addressed the use of open sourcing, such as 

DoD memorandums and other published policy.  



2 

A. OBJECTIVES 

The research is a quantitative study that relied on previously published literature, 

cost benefit analysis, previously collected data, software literature, successes of 

international software development, and an analysis of cost, risk, and benefits. The 

desired outcome of this research was to propose the feasibility of the use of OSS for DoN 

programs.  

The research identified several factors that could provide recommended support 

for OSS in the DoN. Such factors included the following: the processes, criteria, and 

responsibilities for publishing publically-releasable software, current programs in the 

DoD that have incorporated OSS, cost benefits of OSS, and cybersecurity requirements 

and challenges of OSS. 

This research was designed to determine the feasibility of OSS in applicable or 

manageable situations within the DoN. The recommendations of the research provided 

evidence that using a combination of open source and developed code, in a scaled 

approach, may be the best way to implement OSS for future projects. A cost benefit 

analysis considered the use of total open source components versus proprietary or closed-

source components. 

B. RESEARCH QUESTIONS 

• What are the processes, criteria, and responsibilities for publishing 

publicly releasable software? 

• What is the feasibility of using OSS for DoN programs, from unclassified 

through classified? 

• Have there been any programs in the federal government, DoD, DoN that 

have incorporated OSS?  

• Was there a discernible cost benefit for the program? How would/could 

OSS affect maintenance costs? 

 



3 

• What are the cybersecurity requirements or challenges for implementing 

OSS?  

• If it were not possible to obtain all of the DoN’s requirements using OSS, 

would a scaled approach be cost effective? 

C. THESIS DESIGN 

Chapter II provides the reader with an overview of OSS and the current DoN 

policies regarding OSS. The chapter begins by establishing the definition of OSS and 

then continues by looking into studies conducted on the use of OSS. Additionally, the 

chapter examines differences between OSS, commercial-off-the-shelf software, and 

proprietary software. Finally, the chapter reviews OSS variables that must be considered 

when using OSS.  

Chapter III continues the research with an examination of the benefits and 

vulnerabilities of OSS. The chapter presents a number of cost variables as well as 

intangible cost considerations. Here, the acquisition process is reviewed and case studies 

are used to demonstrate the costs, benefits, and vulnerabilities of using OSS. Lastly, the 

chapter concludes with a summary and advantages that were drawn from the current 

research. 

Chapter IV begins with an overview of significant implementation steps needed to 

further integrate OSS into certain DoN produced software. In addition to the 

implementation process, this chapter explores the research findings regarding strategic 

goals, security concerns, and the Development and Operations (DevOPs) concept. The 

research recognizes DevOps as a concept that joins the developments and operations 

teams while working toward process efficiency and achieving strategic goals.  

Finally, Chapter V briefly considers a holistic view of the research conducted 

throughout this thesis, addresses the research questions, and establishes recommendations 

for follow-on research. 



4 

THIS PAGE INTENTIONALLY LEFT BLANK 



5 

II. BACKGROUND 

The use of OSS in the DoN allows the users to have the right to develop code and 

make changes as they see fit. The DoN program users and software engineers can use 

OSS to develop, study, and assemble software applications that will support the on-going 

needs of software updates in DoN programs. It is widely accepted that “Software that 

qualifies as free almost always also qualifies as open source, and vice versa, since both 

phrases derive from the same set of software user rights
 
formulated in the late 1980s by 

Richard Stallman of the Free Software Foundation” (MITRE Corp, 2003, p. 2). In 1983, 

the GNU’s Not Unix (GNU) platform was created by Richard M. Stallman. The GNU 

was first designed in order to operate like UNIX, yet the software was free (Free 

Software Foundation, 2018). This was a new concept in the software world because other 

developers could use and manipulate the software without having to pay for it. Stallman 

proved to be an innovator and his initiative was one of the platforms that led to the 

development of OSS. Later, Stallman went on to create the Free Software Foundation of 

1985 (Free Software Foundation, 2018). Today, GNU is largely associated with open 

source licenses. The free licenses of OSS are extensive and must be considered in the 

decision to use OSS. Deciding which or what combination of open source licenses to use 

can be complicated but must be done as a part of the open source selection process 

(Almeida, Murphy, Wilson, & Hoye, 2018). 

The MITRE Corporation report defines free open-source software (FOSS) as, 

“software that gives users the right to run, copy, distribute, study, change, and improve it 

according to their needs, without them having to ask permission from or make additional 

payments to any external group or person” (MITRE Corp, 2003, p. 2). OSS allows users 

to view the source code, which in many cases, can expedite the process of writing code. 

“Source code” is software that works behind the scenes. Most computer users are 

unaware of how the source code operates but computer programmers can use this code to 

manipulate the way software—a “program” or an “application” works (Endsley, 2018). 

The code is sometimes referred to as the “blueprint” of a program. A programmer can 

read these blueprints and, like an architect, use them to create anything from a simple 



6 

diagram of a digital tree house to a complex model of the Sydney Opera House, whatever 

the situation calls for. The point being that possession and the ability to manipulate code 

or blueprints opens up endless possibilities to engineers. According to Opensource.com, 

“Programmers who have access to a computer program’s source code can improve that 

program by adding features to it or fixing parts that do not always work correctly” 

(Endsley, 2018.). The traditional closed-source or proprietary option does not allow users 

to see or manipulate the source code, which can make it extremely difficult for an 

organization to adjust or manipulate the code to fit their needs. In the article, “What is 

Open Source?,” the term closed-source is described as follows: “Proprietary or Closed 

Source Software, is software that has source code that only the person, team, or 

organization who created it-and maintains exclusive control over it-can modify” 

(Endsley, 2018). This means that the DoN has to spend the resources of time, money, and 

manpower to write software from scratch, find a commercial-off-the-self option (COTS), 

or pay the original developer for modifications. Creating software takes time and 

experience. The DoN would have to be extremely flexible and efficient to keep up with 

exponential technological advances and cyber security. Alternatively, a COTS option 

may not meet all of the complex functionality needs and may require a high investment 

for modification and support.  

Imagine using an available presentation template for a complex presentation vice 

creating a presentation from scratch. When a person undertakes a task, that person can 

take the time to gather all of the information, plan a presentation method, and then build a 

presentation with intricate detail and formulas. It would take a lot of time to perfect the 

presentation and make it effective. So much so, that creating a presentation in this method 

almost never happens. Typically, one usually simply opens Microsoft PowerPoint and 

selects a template; saving time on the basics of presentation development. The user would 

still have to tailor the presentation to meet specific needs but at least there is a completed 

presentation foundation. If the user does not have access to Microsoft PowerPoint, the 

user could use an open source presentation program such as LibreOffice Impress, if the 

user is in an environment that allows users to download and install software. That is not 

the case for DoD users.  



7 

In this situation, time and money and possibly cyber security policy are enormous 

barriers to production. What if a presentation was required, but there was not enough time 

to start from scratch or money to purchase the PowerPoint software? What if the software 

did not have the specific template that was needed and there was no way to manipulate 

the software to produce the desired result without signing an expensive extended contract 

for general support? This analogy roughly describes what and why OSS is beneficial. 

OSS is free, has various licenses to ensure ease of continued use, is versatile, tailorable, 

and is supported by developers worldwide (Free Software Foundation, 2018). Emily 

Rose, lead developer Evangelist at Salesforce, noted that having a tested starting point, 

with certain established OSS, will allow for faster, and more specific, software and 

technology development (Chrzanowska, 2017). These capabilities would assist the 

military in keeping up with the new challenges in the IT environment. The Microsoft 

PowerPoint analogy provides a good example of the importance and the theory of OSS, 

but the DoN must also explore how technology leaders view OSS.  

In 2005, Microsoft founder Bill Gates referred to open source as “a new form of 

communism” (Asay, 2016, p. 1). At the time, Microsoft was thriving, boasting revenue 

increases of roughly $3 billion; bringing the yearly total to $39.79 billion (Gates & 

Ballmer, 2005). In a five-year span, from 2000 to 2005, the company’s revenues 

increased 73%, which equated to approximately $162 billion dollars in total revenue 

(Gates & Ballmer, 2005). With profits like these, one can plainly see how Gates would 

not be a proponent of free software. Today, Microsoft has openly embraced OSS and has 

even publicly announced its support for Linux (Asay, 2016). So, what changed? Why 

would a company such as Microsoft, that was making billions of dollars from its software 

and products, support free OSS? Perhaps Microsoft had to change its strategy because of 

the emergence of new competitors and technologies; or maybe the company managers 

were simply feeling generous and decided that using and producing OSS aligned with 

their morals. Whatever the reason, it is worth looking into open-source software, and why 

a company as successful as Microsoft now embraces OSS. In June 2018, Microsoft took a 

step further into the open source community by purchasing GitHub for $7.5 billion 

(Warren, 2018). Big technology companies and software developers have used GitHub as 



8 

an open source code repository for years (Warren, 2018). With the purchase of GitHub 

and Microsoft’s other projects such as “PowerShell, Visual Studio Code, and the 

Microsoft Edge Java script,” which are now open source, it is plain to see that industry 

leaders are embracing OSS (Warren, 2018, p. 1). Currently, OSS is now intertwined in 

many aspects of the current technological environment and it is important to dive into the 

open source world and how it can be applied to the DoN.  

A. OSS IN THE DOD 

Wennergren argues that many leaders in the DoD do not understand OSS 

(Wennergren, 2009). Given the definition of OSS and the secret nature of many programs 

in the military, it seems logical that the military should steer clear of having anything, 

including software code, that is transparent to their adversaries. However, research has 

shown that the DoD already uses and has policy on OSS. 

One commonly confusing part of DoD IT policy is found in the DoD 

Information Assurance (IA) policy. According to the DoD IA policy, Enclosure 4 

[SI-7 (14)], 

Public Domain Software Controls Binary or machine executable public 
domain software products and other software products with limited or no 
warranty such as those commonly known as freeware or shareware are not 
used in DoD information systems unless they are necessary for mission 
accomplishment and there are no alternative IT solutions available. 
(Department of Defense Chief Information Officer, n.d., p. 1) 

This statement refers to software in which “the Government does not have access 

to the original source code” and was clarified in a 2009 DoD Chief Information Officer 

(CIO) Memorandum (Department of Defense Chief Information Officer, n.d., p. 1). The 

clarifying statement explained that since the DoD would have access to the source code 

of OSS, then the previous control as set forth in the DoD IA policy does not forbid its use 

(Department of Defense Chief Information Officer, n.d.). As a result, OSS is approved 

for use in the DoD. 

In an environment where security and IT is an imperative asset to any military, 

the DoD is in a transition to raise and build its technical capabilities. In the article “OSS 



9 

and the Department of Defense,” FitzGerald, Parziale, and Levin emphasize those 

capabilities and their dependence on software. The authors highlight that the current 

military advantage resides in their capabilities (FitzGerald, Parziale, & Levin, 2016). The 

DoD can expertly conduct intelligence, surveillance, and reconnaissance (ISR) missions, 

and employ precision munitions and targeting through the use of global positioning 

systems (GPS). These types of missions are largely dependent on IT capabilities, which 

means that the quality of the software is crucial to the accomplishment of these tasks 

(FitzGerald et al., 2016). As military leaders plan for future IT capabilities to foster 

technological innovation and efficiency within the DoN, they must address the fears that 

are often associated with OSS. A good starting point would be a review of the 2003 

report conducted by The MITRE Corporation. 

1. The MITRE Corporation’s Study of OSS in the DoD 

In 2003, the MITRE Corporation studied the role of Free OSS (FOSS) in the 

DoD. The MITRE study of government use and interest in OSS highlighted the 

importance of OSS applications in government software and provided an insight on how 

future government programs and applications may benefit from the open source 

community. According to the report, “the MITRE Corporation operates federally funded 

research and development centers (FFRDCs), which are unique organizations that assist 

the United States government with scientific research and analysis, development and 

acquisition, and systems engineering and integration” (MITRE Corp, 2003, p. 2). 

MITRE determined that OSS plays a critical role in the DoD (MITRE Corp, 

2003). MITRE reported that, “Over a two-week period, the survey identified a total of 

115 OSS applications and 251 examples of their use” (MITRE Corp, 2003, p. 2). 

According to the MITRE report, “The word free in FOSS refers not to fiscal cost, but to 

the autonomy rights that FOSS grants its users. The phrase open source emphasizes the 

right of users to study, change, and improve the source code—that is, the detailed 

design—of FOSS applications” (MITRE Corp, 2003, p. 2). The autonomy rights granted 

to OSS users permit them to change code, rewrite it, distribute, and copy it as they see fit. 

These rights to control the software and its coding allows the DoD to integrate OSS in 



10 

many programs and certain areas such as Infrastructure Support, Software Development, 

Security and Research as mentioned in the MITRE report (MITRE Corp, 2003). The four 

categories of infrastructure support, software development, security, and research will 

provide the “road map and support basis” to the scalable integration of OSS in the DoN 

(MITRE Corp, 2003, p. 17). The MITRE report suggests that banning its use in network 

applications may have negative consequences because it would limit the ability of the 

DoD to change infrastructure source code rapidly to adapt to changing cyberattacks. 

(MITRE Corp, 2003).   

There are many costs associated with OSS that are not readily known. The 

MITRE report detailed the misconception that OSS is completely “free.” The reality is, 

OSS software is not totally free; there are intangible costs (MITRE Corp, 2003). 

Although it may be cheaper to integrate in the beginning stages of implementation, the 

cost of using OSS could rise as use continues and maintenance is needed to maintain the 

software. Software sustainment costs will vary depending on the type of software, 

applications, and support that are required for functionality. 

Since 2003, OSS applications in the DoD have increased in use and will only 

continue to increase as technology improves and develops. In fact, there is a direct 

correlation between the increase of OSS applications in the DoD and the reduction in 

long-term support cost (MITRE Corp, 2003). The MITRE Corporation noted that the 

OSS solutions that have large communities have a greater reduction in cost over long 

periods of time (MITRE Corp, 2003). In their research, the MITRE Corporation found 

that certain communities have many experts contributing to perfecting code, which leads 

to resolving problems faster than is typically done with the generalized support provided 

with proprietary software (MITRE Corp, 2003). 

2. DoD Open Source Policies 

A review of the history of DoD policy, statements, and memorandums regarding 

OSS presents a clear message. In an attempt to achieve faster, more secure, and cost-

effective functioning software systems, OSS should be more routinely considered 

throughout various platforms within the DoD. In 2002, the DoN had established 



11 

programs that contained OSS, however, it was not being integrated in many areas where 

OSS would be feasible (MITRE Corp, 2003). More guidance was required and the DoD 

Chief Information Officer (CIO) published a memo in 2003 that addressed and 

encouraged the use of OSS in the DoD. Still, OSS was not widely and positively 

perceived by many in the DoD. David Wennergren, author of the 2009 DoD 

memorandum titled “Clarifying guidance regarding OSS,” noted that due to 

“misconceptions and misinterpretations of existing policies” the DoD CIO had to publish 

another memo in 2009 which superseded the 2003 memo (Wennergren, 2009, p. 2). The 

DoD CIO’s 2009 memo stated that OSS can provide a military advantage and help the 

DoD “anticipate new threats and respond to continuously changing requirements,” as 

well as help the DoD “update its software-based capabilities faster than ever” 

(Wennergren, 2009, p. 1).  

After the initial publications were released, the DoD began to release more 

guidance on the need to enhance their IT capabilities. On 9 January 2010, Navy.mil 

released the article “Navy Stands Up Fleet Cyber Command, Reestablishes U.S. 10th 

Fleet,” the article states, “the Fleet Cyber Command (FCC) and 10th Fleet were created 

as part of the CNO’s vision to achieve the integration and innovation necessary for 

warfighting superiority across the full spectrum of military operations in the maritime, 

cyberspace, and information domains” (United States Navy Chief of Information, 2010.). 

More recently, during the March 2017 Executive Offsite event, the Commandant of the 

Marine Corps (CMC) directed that a Cyberspace Operations Occupational Field (OccFld) 

be created by the release of the February 2018 Authorized Strength Report (ASR). 

Marine Corps Administrative Message (MARADMIN) 164/18 stated that the “1700 

OccFld will provide the Marine Corps with a deliberate, professionalized, and sustainable 

cyberspace workforce enabling the Marine Corps to conduct cyberspace operations, as 

directed by U.S. Cyberspace Command (USCYBERCOM)” (O’Donohue, 2018). These 

policies were published to foster an environment of IT growth, adaptability, and speed 

using OSS (Wennergren, 2009).  

Years later, in 2016, the Office of Management and Budget (OMB) published a 

memorandum that highlighted current practices of creating but not sharing source code. 



12 

OMB concluded that the government was not being transparent and that challenges 

spawned from this practice “may result in duplicative acquisitions for substantially 

similar code and an inefficient use of taxpayer dollars” (Scott & Rung, 2016, p. 1). The 

OMB went on to encourage the use of OSS for benefits of cost saving to the tax payer, 

continual code improvements, better software peer review, increase knowledge sharing, 

and improved security testing (Scott & Rung, 2016).  

The recent military memorandums and messages combined with current 

publications and policy set the foundation for OSS and have made the DoN environment 

ready for growth in the open source and IT realm. In addition to the policies, the DoD 

published the open source improvement cycle that outlines processes and procedures for 

service members and developers to work together with OSS. Figure 1 highlights the 

collaborative process of OSS by showing how the user can provide software 

improvements from the bottom level up to the developer (Department of Defense Chief 

Information Officer, n.d.). 

 

Figure 1. Open Source Improvement Cycle. Source: Department of 
Defense Chief Information Officer (n.d).  

 

In today’s war fighting environment, the DoN relies heavily on software systems 

to program and operate its many weapon systems, manpower accountability, and 



13 

communication assets in order to gain a tactical advantage on the battlefield. Since the 

first major DoD OSS reports in 2003, the role of OSS has expanded to a variety of fields 

including database management, computing infrastructure, modeling and simulation, and 

many more (Koltun, 2011). In addition to these fields, OSS has already begun to be 

integrated throughout DoN as well as all DoD software systems. According to the DoD 

CIO website, 

Today, many DoD software systems are combined with “Linux 
distributions” which provide suites of such software as Red Hat Enterprise 
Linux, Fedora, Novell SuSE, Debian and Ubuntu. Other OSS 
implementations of Unix including Solaris, OpenBSD, NetBSD, and 
FreeBSD are also being successfully used in DoD systems. (Officer U.S. 
Department of Defense Chief Information Officer, 2018, p. 1)  

B. OPEN SOURCE TRAITS 

Currently, many applications in the DoN run on proprietary software. Using 

proprietary software has traditionally been standard operating procedure for the DoN and, 

as such, is the comfortable and known option for program managers and military 

leadership. This section will explore OSS through discussing and comparing OSS and 

proprietary software, highlighting classifications of OSS as COTS, and raising security 

concerns commonly found among OSS opponents. Most proprietary software 

applications consist of closed-source coding, which does not allow the user to freely 

manipulate the code to best serve the user as needed. In fact, many old or outdated 

versions of a DoN system, commonly referred to as “legacy systems,” and desktop 

applications are run on and are compatible with Microsoft/Windows operating systems 

(Shachtman, 2010). This might serve to be a problematic issue in terms of total 

functionality and interoperability between OSS and proprietary or closed-source 

applications. Establishing the use of OSS and ensuring all regulations and functionality 

will not be simple; however, the benefit of OSS has the potential to be enormous for DoN 

in terms of functionality, customizability, and control of IT. According to the Center for a 

New American Security, “The DoD should instead seize this opportunity to make greater 

use of open source methods and more fully embrace the use of OSS. In doing so, it will 

gain the common mode benefits of open source platforms and methods, as well as 



14 

important advantages specific to the DoD’s needs” (FitzGerald et al., 2016). OSS has 

been tried and the benefits are competitive with alternative software options. (Center for 

Strategic and International Studies, 2007). 

1. OSS as COTS 

As OSS continued to grow exponentially, not only in the civilian sector, but also 

within the DoD, purchasing and licensing agreements of OSS began to meet barriers in 

the DoD acquisition pipeline that made it difficult for DoD to continue its purchase and 

use of OSS. Initially, the confusion of processing OSS into the DoD was due to the 

definition interpretation. According to Carey, who wrote the DoN OSS Guidance,  

The misconception that OSS is neither a commercial off-the-shelf (COTS) 
nor government off-the-shelf (GOTS) solution has hindered the DoN’s 
ability to leverage the benefits of OSS methodology. Because of this 
misconception, OSS has not received equal consideration during the 
software acquisition process. (Carey, 2007, p. 1) 

In order to streamline the acquisition process and implementation of OSS 

throughout the DoD and DoN, Carey issued that all OSS will be treated as COTS 

products. Therefore, by establishing a baseline and streamlining the acquisition process, 

the DoN was able to purchase OSS properly through the acquisition pipeline in order to 

better support IT in the DoN.  

In order to meet the DoD’s goals of net-centricity and interoperability, the DoD 

established that OSS would be treated as a COTS product (Carey, 2007). As such, OSS 

would adhere to all federal regulations, policies, and guidelines that apply to COTS 

products (Carey, 2007). This decision provided a baseline for establishing OSS but new 

policy and licensing agreements were still needed to align OSS with federal regulations.  

As the DoD set policies to ensure that OSS met standards according to military 

policy, the DoN CIO also expressed the need to be in full compliance with OSS license 

agreements. The importance of obtaining and following licensing agreements is 

imperative to the DoN user or programmer that is going to need to alter the source code 

of the software. Even if DoN programs and software users are not interested in the 

modifying the code—and instead use the applications at its most basic functioning—they 



15 

are still required to adhere to the license stipulations. There are many different types of 

licenses but generally, OSS can be grouped into three categories: permissive, strongly 

protective, weakly protective. The details of these license categories are explained in 

Table 1.  

Table 1. Open Source License Categories. Adapted from 
Department of Defense Chief Information Officer (n.d). 

License Category 
Permissive These licenses permit the software to become 

proprietary (i.e., not OSS). This includes the 
MIT license and the revised BSD license. The 
Apache 2.0 license is also a popular license in 
this category; note that the Apache 2.0 license is 
compatible with GPL version 3, but not with 
GPL version 2. 

Strongly Protective (aka strong copyleft) These licenses prevent the software from 
becoming proprietary, and instead enforce a 
“share and share alike” approach. In such 
licenses, if you give someone a binary of the 
program, you are obligated to give them the 
source code (perhaps upon request) under the 
same terms. This includes the most popular 
FLOSS license, the GNU General Public 
License (GPL). There are two versions of the 
GPL in common use today: the older version 2, 
and the newer version 3. 

Weakly Protective (aka strong copyleft) These licenses are a compromise between 
permissive and strongly protective licenses. 
These prevent the software component (often a 
software library) from becoming proprietary, yet 
permit it to be part of a larger proprietary 
program. The GNU Lesser General Public 
License (LGPL) is the most popular such 
license, and there are two versions in common 
use: the older version 2.1 and newer version 3. 
An alternative approach is to use the GPL plus a 
GPL linking exception term (such as the 
“Classpath exception”). 

 
All personnel writing code or involved in the security or acquisition process for 

any OSS related item must have basic knowledge of OSS licenses. This pertains to all of 

the uses the DoN has for open source, including but not limited to; code writing and 

development, to project collaboration and management, with private sector companies on 

http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/apache2.0.php
http://www.opensource.org/licenses/gpl-license.php
http://www.opensource.org/licenses/gpl-license.php
http://www.opensource.org/licenses/lgpl-license.php
http://www.opensource.org/licenses/lgpl-license.php
http://en.wikipedia.org/wiki/GPL_linking_exception
http://en.wikipedia.org/wiki/GPL_linking_exception


16 

different software projects. The main categories of DoD OSS users identified in the 

MITRE Corporation’s report are described in Table 2.  

Table 2. Categories of DoD OSS users. Adapted from MITRE Corp (2003). 

Category Description 
Scripting and basic code development users Large category. This includes language and 

scripting applications such as Perl, GCC, 
bash and JBoss to write simple scripts and 
code packages 

Advanced code development users Medium category. Included are cases 
where large complex library routines (e.g., 
scientific and parallel processing routine) 
need to be incorporated into new software 

OSS sponsors Smallest category. Consists of those that 
had explicitly decided to use an OSS model 
to promote non-DoD development work on 
their project 

 

2. OSS Information Security 

A common theme among opponents of OSS is security. There are those who 

argue that OSS is vulnerable simply because the code is exposed. Others are curious as to 

how to keep trade secrets and classified information secure when everyone can see the 

inner workings of a system. Thus, cyber security and software integration are major 

concerns when using OSS. If anyone can access and modify software and code, then how 

will the DoN safeguard against vulnerabilities. Does OSS even meet security 

requirements? How will the DoN achieve standard implementation and integration of 

programs or software if everyone is operating on their own version of the code? All of 

these legitimate questions must be considered and addressed when considering an open 

source option. The bottom line is that OSS is approved and being used in many 

government areas. Due to its already deeply imbedded roots in DoD software, 

information security within the DoD simply cannot function without OSS (MITRE Corp, 

2003). 



17 

Along with coding efforts and software integration, OSS is ingrained in DoD 

security as well. OSS contributes to these efforts in two ways,  

First, it has produced infrastructure software such as OpenBSD with low 
rates of software failure combined with early and rapid closure of security 
holes, which makes such systems useful as the security linchpins in 
broader security strategies.  

Secondly, the OSS communities have had a long-term fascination with 
developing more and more sophisticated applications for identifying and 
analyzing security holes in networks and computers, resulting in OSS 
products such as SARA (Security Auditor’s Research Assistant) and Snort 
(multi-platform, lightweight, rule-based tool for detecting hostile 
intrusions into a network) that are invaluable to in-depth analyses of 
security risks. (MITRE Corp, 2003, p. 20)  

Although there is always concern for security, the previous examples display two 

of the many ways and different variations that OSS contributes to the security of our 

software programs. Security is a concern of every DoD official and is required to be 

considered at every aspect of any software integration project. 

3. Understanding Linux 

In order to further understand OSS and the many traits that are associated with it, 

one must be aware of perhaps the most prominent open source operating system: Linux. 

Linux is referenced in several of the examples and case studies that are discussed in this 

research; thus, a broad understanding of Linux will enhance the reader’s understanding of 

the topics. The name Linux is often referenced when discussing OSS. Linux is a free 

open source operating system created by Linus Torvalds. This operating system, often 

referred to as the Linux Kernel, is one of the most widely used open source projects in the 

world (Garrison, 2010). Basically, the Linux kernel allows users a common method of 

controlling computer processes and hardware. Linux has revolutionized the computer 

industry and is now used by many well-known companies such as Amazon, Google, and 

Facebook (McMillian, R. 2012). Jeremy Allison, Google engineer and lead developer on 

the Samba project said, 

More than 8,000 developers have contributed to the Linux kernel in the 
past seven years, according to the Linux Foundation. And it has even 



18 

become a standard operating system on custom-built consumer devices. 
You can find it on everything from inflight entertainment systems to 
streaming video players to Google’s Android phones. It became the 
plumbing. (McMillian, 2012, p. 2) 

The “plumbing” is now being used in various methods and across multiple 

platforms. Linux comprises the roots of the strong foundation of OSS. One reason Linux 

has been such a success is because of the cost, more specifically the cost to obtain a 

license. The GNU General Public License allows users to access software and ensures 

that they share their work. This affords a countless number of code developers to view, 

test, and ensure the functionality of published software. Like the notion of survival of the 

fittest, this process naturally highlights the software that works the best because it is that 

software that is being most used. This process is continuous and occurs all the while 

engineers and developers are simultaneously viewing, testing, and improving the 

functionality of this software.  

C. OSS PLANNING CONSIDERATIONS FOR DOD 

More recently, the DoD established a collaboration project with the civilian sector 

and many open source experts, the program was introduced as the Code.mil. program. 

According to the DoD’s 2017 news release NR-077-17, “The Code.mil program is an 

open source initiative that allows software developers around the world to collaborate on 

unclassified code written by federal employees in support of DoD projects” (Department 

of Defense, 2017). DoD is currently working with GitHub, a development platform for 

hosting, building and reviewing code, to examine a collaboration effort between 

experienced software developers and government employees in the IT field (Department 

of Defense, 2017). The website code.mil helps users by directing them to a repository 

that houses source codes for a wide range of projects (Department of Defense, 2017). 

Users across the DoD can then review and make suggested changes, which streamlines 

the entire code writing process (Department of Defense, 2017). 

Git is a program designed by Linus Torvalds, and is the heart of the GitHub 

website. Torvalds designed Git to facilitate the source code management of different 

developers creating, building, reviewing and changing software simultaneously with 



19 

other developers. Warren reports “there are 85 million repositories hosted on GitHub, and 

28 million developers contribute to them” (Warren, 2018, p. 1). According to the DoD, 

“The collaboration between the DoD and GitHub allows for Code.mil to create a network 

of peers between the federal government and the developer community to encourage 

participation, share knowledge, and make connections in support of DoD programs” 

(Department of Defense, 2017). The entire project allows for the design and building of 

critical software to meet the demands of today’s military force.  

Overall, OSS has been an ambiguous concept to government planners. Although 

many OSS programs have been involved in government software for over 15 years, it has 

not been fully embraced due to several different occurring themes and concerns 

(Wennergren, 2009). Carey pointed out some misconception of the DoD guidance as 

being a potential barrier to adoption (Carey, 2007). In “OSS in Government: Challenges 

and Opportunities” the authors David A. Wheeler, Institute for Defense Analysis, and 

Tom Dunn, Georgia Tech Research Institute, provide an in-depth analysis that present 

key challenges and opportunities for a maximization of use for OSS within the Federal 

Government. By identifying these challenges, and with the use of interviews, Dunn and 

Wheeler were able to identify issues with the procurement, application, and embracement 

of OSS. They were also able to help provide recommendations to help resolve these 

issues. Through their research, proposed solutions, and recommendations Dunn and 

Wheeler have laid a foundation to assist the government in finding success in the use and 

application of OSS. 

1. OSS Challenges and Opportunities Background 

As with any new program involved with government integration, difficulties can 

come in many forms of obstacles. Dunn and Wheeler were able to identify many different 

issues as well as opportunities that OSS could present to government application. In their 

approach, they interviewed many different subject matter experts to help with their 

analysis and recommendations. According to the authors, “This document identifies key 

challenges and opportunities in the government application of OSS so that inappropriate 

roadblocks can be countered or mitigated. These challenges and opportunities were 



20 

identified in interviews with experts, suppliers, and potential users, where users include 

both government contractors and government employees” (Dunn & Wheeler, 2013, p. 5). 

By going to the source experts, in not just OSS but in different areas of the entire chain 

management, Dunn and Wheeler provided details from every aspect in chain 

management that are affected by full integrations of OSS. In their research, Dunn and 

Wheeler “interviewed 31 people who were (1) OSS experts, (2) suppliers (especially non-

government OSS suppliers), or (3) potential users (aka the demand side). The potential 

users included both government contractors and government employees (military and 

non-military, federal and non-federal)” (Dunn & Wheeler, 2013, p. 5). Table 3 displays 

the interviewees by category.  

Table 3. OSS Challenges Interviewees. Adapted from 
Dunn and Wheeler (2017). 

Category Number 
OSS Experts 7 
OSS Suppliers 7 
Contractors / Integrators 5 
Government Employees 12 
Total 31 

 
Rather than conduct a quantitative survey, the interviewers took their time when 

letting the interviewees answer their questions and providing real feedback. The 

interview itself was guided so that the questions given about OSS were broad, leaving the 

interviewees to fill in the information needed without being guided to a certain endpoint.  

During the course of the interviews conducted by Dunn and Wheeler, 

interviewees explained that OSS had already been in a considerable amount of use in 

government software systems. Other Interviewees felt the impact of cost was a driving 

factor for integration by explaining that OSS is much cheaper to operate than proprietary 

software, therefore as economic times cause for budget reductions OSS would be a better 

choice when cutting cost. According to the Office of Management and Budget (OMB), 

“Each year, the Federal Government spends more than $6 billion on software through 

more than 42,000 transactions, which results in a fragmented and inefficient 



21 

marketplace” (Scott & Rung, 2016). Given the scale of that spending, it is understandable 

that the U.S., like other administrations around the world, is considering open-source 

software and open software standards as a way of saving money (Amirtha, 2016). As 

economic concerns of overspending continue to plague government information systems, 

open source presents a solution that is cheaper, more affordable, and equally capable 

software. 

2. OSS Fear and Inertia 

In government, some of the biggest factors when introducing something such as 

OSS are the idea of change and the risk involved with change. Change is something many 

in government feel impedes the way business is conducted. The motto “if it ain’t broke, 

don’t fix it” seems to impede the government’s ability to provide better functioning 

software to its consumer. The ideology that the Dunn and Wheeler refer to as “risk 

aversion” is what keeps those in government feeling safe about developing their own 

code rather than using code written by someone else (Dunn & Wheeler, 2013).  

In their research, Dunn and Wheeler assert, “OSS represents a change in the 

business model, and government entities are averse to risk. Any change is viewed as a 

risk” (Dunn & Wheeler, 2013, p. 7). Avoiding risk is what those in government feel they 

are doing by not embracing the many opportunities that OSS presents. Generally, many 

in the government fear that having openly available source code will make it easier to 

access government systems and “hack the code.” Others are worried about compatibility, 

license issues, having someone to hold accountable in case of emergency, and product or 

software support (Serbu, 2018).  

Another big concern about the use of OSS is the fear of malware being installed 

by another party when coding. While it is true that many individuals have access to the 

source code of any particular OSS, it is the same high visibility and code validation that 

allows for the detection of malware. The argument can be made that transparency is 

actually an attribute of OSS, unlike of unknown hidden code found in other types of 

software. In “Government policy toward OSS: An Overview,” Dr. Robert Hahn discusses 

added advantages of OSS. According to Hahn,  



22 

Open source can pay off on the demand side, too. Some users of software 
greatly value the option “to look under the hood” and to have the ability to 
make changes. Access to source code, for example, makes it possible for 
information technology professionals who maintain computer networks to 
tailor generic software to their specific needs and to debug software on the 
fly. (Hahn, 2009, p. 2)  

The ability to view the source code can lead to the detection and over all protection of the 

software, subsequently more quality code can be produced for future software.  

Not all OSS is safe or resistant to malware. So, organizations created measures 

that allow for the detection of such malware. According the article “OSS in Government, 

Challenges and Opportunities,” “There can be good and bad OSS, but there are metrics to 

figure out which is which. Another contractor said “[OSS] can assert higher quality in a 

more transparent way; they can show their source code is quite solid through the use of 

software quality assurance tools” (Dunn & Wheeler, 2013, p. 10). The metrics that are 

created for malware detection and quality assurance tools in OSS can be created in such a 

way to meet demands of government regulation and protection standards. Currently, there 

are many programs that allow for the capturing of metrics data such as Grafana, and other 

programs such as Prometheus that allow for the advanced system alerting and monitoring 

toolkit of OSS (Taylor, 2017). Figures 2 and 3 provide a visualization of monitoring 

dashboards for Prometheus and Grafana. 



23 

 

Figure 2. Prometheus Monitoring Dashboard. Source: Taylor (2017). 

 

Figure 3. Grafana Monitoring Dashboard. Source: Taylor (2017). 

Prometheus is a highly utilized open source-monitoring tool in the market today, 

and was initially created by Sound Cloud. Prometheus specializes in the monitoring of 

time-series data, alerts and auto-scale (Taylor, 2017). In Figure 2, the customized 

dashboard that is displayed for Prometheus shows the monitoring of multi-dimensional 



24 

real-time data that Prometheus is able to provide. Although Prometheus is not a visual 

tool, like Grafana, the program is able to display the custom dashboard settings such as 

Ingested Events, Database Operations, Rate Limits, and Malware Alerting. Grafana, an 

open source visualization tool, is used by other applications (like Prometheus) to plot 

charts based on the time-series data as shown in Figure 3 (Taylor, 2017). Prometheus’ 

main features are, 

• A multi-dimensional data model. 
• A flexible query language to leverage this dimensionality. 
• No reliance on distributed storage; single server nodes are autonomous. 
• Time series collection happens via a pull model over HTTP. 
• Pushing time series is supported via an intermediary gateway. 
• Targets are discovered via service discovery or static configuration. 
• Multiple modes of graphing and dashboarding support. (Rabenstein, 2015, 

p. 2) 

Software applications such as Prometheus that provide multi-dimensional data, 

scalable data collection, operational simplicity, and query language provide the 

government the ability to monitor OSS for malware.  

3. Concerns with Warranties, Support, and Procurement 

Reliability and customer support will always be concerns for organizations that 

are seeking new products or software. In government, the reliability of software support 

is one main reason why many government entities feel safe with proprietary software and 

hesitate when considering a switch to OSS. Therefore, when proprietary software is 

purchased through government contracts, the customer support is sold as part of the 

package. Consequently, if the customer or software support is unsatisfactory, there is 

limited ability to change customer support vendors; due to vendor lock-in. When it comes 

to service, OSS may present the better option because of the flexibility it gives the 

customer when choosing who provides support. 

Another trait that OSS proponents tout over proprietary software is that it allows 

for the option to omit product warranty and customer support. With increasing budget 

restraints, some proprietary software sells a warranty along with its software. In some 

cases, the warranty may not be needed, but the warranty is part of the package therefore 



25 

forcing government to pay for such warranties. According to Dunn and Wheeler, 

“Wasted money on commercial OSS support when it was available but known to be 

unnecessary. In one case, we were required to purchase a support contract for $30K [by 

management, even though there was no expectation that it was needed]” (Dunn & 

Wheeler, 2013, p. 12). The flexibility of using OSS, separate from vendor customer 

support, allows the government the ability to pick and choose which software capabilities 

can best support their needs. The DoD simply does not have to accept overpriced 

customer support that does not benefit their mission and slows operational tempo.  

Incentivizing the acquisitions community to routinely consider OSS is a 

challenge. A government official observed, “It’s an interesting problem—how do we 

change contracts to incentivize sharing? We need to change incentives to foster building 

a collaborative community and share code. I’m not sure we know how to do that. We 

could explicitly require past performance on how forthcoming they are on data rights and 

sharing code.” (Dunn & Wheeler, 2013, p. 13). What the government official was 

referring to was the acquisitions process and the lack of monetary gain from sharing 

software vice contracting with one specific provider.  

The acquisition process is set up to allow competition among companies for the 

government contracts. The issue many companies have with using code and software that 

can be “shared” is that there is very little incentive, or ability, to share secrets and 

possibly lose their bargaining advantage. By giving up its code to other OSS users, the 

incentive to produce software and become the main contractor for government may 

diminish. The monetary gains from outright owning a contract to now incentivized 

sharing can be significantly less for any contractor who is no longer the main provider for 

any particular contract. Therefore, how does the government create a system that allows 

for monetary gain through incentivized sharing? This could be accomplished by 

incentivizing contractors to share efforts in improving source code and creating better 

software for the DoD. Several recommendations were made by the authors on how to 

better the procurement process. They are as follows, 



26 

• Emphasize the value of accepting “80 percent solutions” and tailoring as 
necessary, instead of “100 percent solutions,” which have much larger 
costs and delays. 

• Update processes to become faster and nimbler. 
• Avoid imposing unnecessary paperwork burdens. 
• Clearly state that source code must be shared within the government, as 

appropriate, if its development is government-funded. 
• Consider switching to releasing unclassified software as OSS by default if 

its development is government-funded. 
• Avoid presuming, when developing RFPs, that respondents will have a 

particular business model. 
• Consider contributing Section 508 material (such as VPATs) for major 

OSS projects, to ensure that accessibility capabilities are documented. 
• Include requirements in RFPs and contracts that the government must 

receive source code and unlimited rights if the development is 
government-funded, unless special waivers are granted. 

• Consider switching to releasing unclassified software as OSS by default if 
its development is government-funded (Dunn & Wheeler, 2013, p. 17) 

By considering the previous recommendations for improving the procurement 

process, government officials, specifically those in the acquisition community, may attain 

the ability to speed up the procurement process. This improvement to procurement will 

create a faster, more productive, and better incentivized process that leaves both customer 

and contractor satisfied (Dunn & Wheeler, 2013).  

More recently, the government addressed the need of procuring custom developed 

software in the 2016 OMB Memorandum: “Federal Source Code Policy: Achieving 

Efficiency, Transparency, and Innovation through Reusable and OSS” (Scott & Rung, 

2016). The initiative addressed the issue of existing software that cannot adequately 

satisfy the needs of the government. As a result, the memorandum encourages 

government agencies to consider acquiring OSS that will meet necessary government 

objectives (Scott & Rung, 2016). This particular memorandum helps to address 

procurement issues that were presented by Dunn and Wheeler. The memorandum also 

served as a beginning step to raise awareness in fostering more government agencies to 

consider OSS along with purchasing existing commercial software solutions to 

accomplish mission objectives. 



27 

4. OSS Education and Guidance 

The lack of education will continue to be a barrier for open source until OSS 

training and education are mandated for specific decision makers in the DoD. This lack 

of education also leads to a continued reliance on the software producer to provide 

software support and guidance; allowing proprietary software producers to control 

software and support costs. With many OSS products already imbedded within many 

DoD software systems, the possibility of moving forward to a scalable open OSS 

architecture is not unfathomable. It is once again the knowledge gap that causes 

hesitation in government to fully embrace OSS. Therefore, education and guidance 

should be established in order to create a better understanding of how OSS works and the 

benefits it can provide.  

In order to begin with the proper guidance and education, Dunn and Wheeler 

present several starting points. The starting points mentioned are as follows: 

• General OSS Education - There is a need for general education about 
OSS, including the meaning of OSS and how it is developed, among both 
government employees and contractors. 

• Education on Intellectual rights - There is a need for basic 
understanding of copyright laws and OSS. There is also a need for 
education and guidance on the implications of OSS licenses specifically.  

• Procurement Education - There is a pressing need for education on OSS 
in procurement.  

• Need for guidance - We recommend the government develop and release 
guidance on evaluating OSS (including the impact of OSS licenses such as 
the GPL), on contributing to OSS communities, and on releasing 
government-funded projects as OSS. (Dunn & Wheeler, 2013, p. 39) 

As previously mentioned, there are several policies set forth by the DoD to help 

provide guidance and policy on OSS. By taking advantage of these starting points and 

further educating the government on use and implementation of OSS policy, standards 

can be set so that those individuals who are in the procurement process, education 

process, and leadership positions will possess the knowledge to increase the use of OSS 

within the government.  



28 

D. SUMMARY 

The decision to fully embrace OSS into the Department of the Navy will not be 

easily made. Current regulations and policies have been established promoting OSS but 

still, obstacles persist. Leaders will have to these obstacles to create a future for OSS. 

Dunn and Wheeler conducted interviews and research that proposed several solutions to 

help create and guide the government in the use of OSS. According to Dunn and 

Wheeler, 

To maximally use its limited resources, the U.S. government must address 
these challenges and reduce the unnecessary barriers to the use and 
development of OSS. Many of these challenges can be addressed by 
promulgating education and guidance on OSS for different roles. The U.S. 
government should also transition to increased transparency and openness. 
(Dunn & Wheeler, 2013, p. 40) 

These proposed solutions provide an excellent starting point for government and the 

ability to maximize the opportunities created from OSS. By adhering to the 

recommendations provided in the article “OSS in Government, Challenges and 

Opportunities,” the government may find success in OSS, which may lead to a more 

efficient, cost effective, and better operating software needed for mission success in the 

future. 



29 

III. OSS BENEFITS AND VULNERABILITIES 

Organizations routinely seek ways to obtain and maintain efficiency in all aspects 

of conducting business. This can be accomplished in many different ways; however, one 

major consideration in any business strategy is cost. Unfortunately, the true “cost” of IT, 

specifically OSS, can be difficult to determine. One may favor OSS because of the cost 

savings of owning the code, with the ability to manipulate the code, versus purchasing 

outside software for an organization’s software capabilities. OSS can also be measured in 

terms of time needed to acquire and implement an open source project or the personnel 

needed to develop and support software using open source code. Furthermore, OSS cost 

can be viewed from the perspective of code stability and interoperability (Active State, 

2016). A deeper dive into the true cost of OSS appeals to business strategist because it 

allows an organization to use software with free software licenses, own the code, reduce 

the initial cost of project and product development, and also shortens the code writing or 

procurement process (Active State, 2016). This is accomplished by a few methods that 

are unique to OSS.  

First, OSS uses a collective community to produce, screen and verify the 

software. Software produced in this manner is tested on multiple platforms, by multiple 

users. As a community of external users write, develop, and share the software, a 

company is essentially receiving free labor, production, troubleshooting, and testing of 

code. All of this will be accomplished with a large community with different experiences 

and diverse ideas (Bromhead, 2017).  

This large talent pool, all working on open source products, will yield more 

reliable and secure software. Furthermore, this process allows for the “cream to rise to the 

top.” Meaning that the products that actually work best, vice only in theory, will be used 

more, more readily available, known, more heavily vetted, and more trustworthy. The 

DoN can leverage this theory by attaining vetted OSS and applying it in useful areas. 

Forbes conducted “The Future of Open Source” surveys from 2011- 2013 and the top 

reasons why organizations sought to use OSS were “better quality service” and “freedom  

 



30 

from vendor lock-in” (Sabhlok, 2013, p.1). Open source is considered to have better 

quality service because of the technical expertise and high efficiency levels that come 

from the large pool of contributors (MITRE Corp, 2001).  

Despite this claim, vulnerabilities and defects persist in OSS. A company called 

Coverity that specializes in examining software for quality and security conducted a 

study in 2013 and determined that, “OSS had fewer defects in the code than proprietary 

software,” as shown in Table 4 (Vaughan-Nichols, 2014c, p. 1). 

Table 4. Comparison of Open Source and Proprietary Code. 
Source: Coverity (2014). 

 
 

In addition to the fewer recorded defects, Coverity also found that defects found 

in OSS were being fixed faster than defects found in proprietary code (Coverity, 2014). 

Programmers using Linux were able to reduce the average defect fix time from 122 days 

to six days (Vaughan-Nichols, 2014c). Organizations deciding whether to implement 

OSS must consider the vulnerabilities that come with this particular type of software and 

how those vulnerabilities are addressed. 

Vendor lock-in for software is another concern that OSS allows an organization to 

avoid. The lock-in comes with need for vendors to keep the details of their proprietary  

 



31 

software a secret from their competitors which creates barriers to interoperability and 

flexibility. Vendors then seek to establish long-term contracts that not only consist of the 

software, but also training and support. The inability to see or manipulate any software 

used by an organization will limit internal troubleshooting capabilities and the ability to 

see the extras or vulnerabilities that may come with proprietary software (Bromhead, 

2017). Some organizations will not be concerned with avoiding vendor lock-in because 

they are either incapable of customizing their software or their strategy does not gain 

from the ability to customize their IT experience (O’Connor, Ong, Sander, & Ferlo, n.d.). 

In some cases, OSS can lead to vendor lock-in by securing external contractors to support 

or “fill the gaps” of internal DoD capabilities. 

The DoN will have to examine each area of potential OSS implementation and 

determine if vendor lock-in would be a benefit or detriment, and how much risk they 

would be willing to accept for each program. In certain cases, avoiding vendor lock-in is 

financially beneficial. The Electronic Government Initiative in San Paulo, Brazil 

organized 72 telecenters that provided free Internet and computer use (O’Connor et al., 

n.d.). These centers were established using OSS and cost approximately $10,000 per 

telecenter. In this situation the initiative was able to establish the telecenters cheaper by 

using OSS than by contracting with a vendor (O’Connor et al., n.d.). 

A. MEASURING THE COSTS OF OSS 

Ultimately, organizations such as the DoN need to consider two types of costs: 

direct and indirect costs. Both of these types of costs have varying benefits and have 

different advantages and disadvantages in terms of performance. In addition to these 

overt measurable variables, there are also intangible variables such as peer support, 

usability, practicality, and scalability that must be considered (MITRE Corp, 2001). 

Direct costs are easily explained and relatively transparent when calculating and carefully  

considering everything that has an allocation of funds. Indirect costs are more 

complicated to calculate and will require heavy scrutiny when deciding if using OSS is  

 

 



32 

more cost effective than using a COTS system. Program managers must consider the 

costs of reliability, functionality, and scalability and what these indirect costs mean to 

their programs (MITRE Corp, 2001). In order to help quantify both direct and indirect 

cost the MITRE report completed in 2001, developed a cost element taxonomy.  

The taxonomy found in Figure 4 was designed to assist program managers make 

decisions on purchasing software while having a visual representation of the business and 

economic implications of their decisions. Included in this taxonomy is the “Futz Factor.” 

The Futz Factor is a term coined for time that is lost due to inefficiencies. An example of 

this is seen in the extensive amounts of time spend on polishing appearance rather than 

perfecting optimal performance (Moore & Stanton, 2018).  

The report also provided a taxonomy of risks and benefits with an example rating 

system to address some of the intangible costs that come along with software. Every 

business decision will have business effects and additional business consequences. Given 

the knowledge of these effects, it would be wise to attempt to identify and, if possible, 

quantify the risks and benefits of a decision such as to allow scalable integration of OSS.  

 



33 

 

Figure 4. OSS Cost Element Taxonomy. 
Source MITRE Corp (2001). 



34 

 

Figure 5. OSS Taxonomy of Risks and Benefits. 
Source: MITRE Corp, (2001). 

The idea behind Figure 5 is that it lists qualitative attributes that should be 

assessed when planning a software strategy. The DoN should consider and compare the 

strengths and weaknesses, from a qualitative perspective, for both OSS and other COTS 

options (MITRE Corp, 2001).  

1. Cost Case Studies 

The DoD spends billions of dollars on IT software and programs. These programs 

often come with complex contracts, which include both money and time commitments. In 

a 2016 memo, the Office of Management and Budget (OMB) highlighted the importance 

of saving taxpayer dollars and exploring OSS as a viable IT option (Scott & Rung, 2016). 

The DoN is not immune to high spending for IT systems and although OSS may not be 

the final solution, it may be able to help reduce costs. At the very least, it is important to 

look at the DoN’s current programs and determine if OSS can be implemented to help 

reduce cost; in accordance with the 2016 OMB memorandum.   



35 

All of these costs can equate up to billions of dollars over the life cycle of a 

system or contract. In 2010, for instance, the Navy sent $3.3 billion to Hewlett-Packard 

(HP) for services, licenses, hardware, and software just to start weaning itself from HP 

services (Shachtman, 2010). The idea behind the Navy Marine Corps Intranet (NMCI) 

was to combine all of the various DoN systems into a single network and for all intents 

and purposes, NMCI was able to achieve that goal. Systems and networks were 

consolidated and functional, although the extensive policies and centrally managed 

network had a plethora of issues. This contract served as a vendor lock-in example, where 

the DoN paid nearly $10 billion over 10 years for a system that was riddled with bugs 

and lengthy downtimes (Shachtman 2010). Another example of high spending and the 

inability to make system adjustments to provide efficiency is the Defense Travel System 

(United States Digital Service, 2016).  

The Defense Travel System (DTS) is the software that the DoD uses to provide 

travel arrangements. The software was implemented in 1998 with program development 

cost of $263.7 million (Perera, 2007). This system is linked with employees’ government 

travel card (GTC) and can perform many functions to facilitate government employee 

business travel; including the ability to books flights, rental cars, hotel reservations, etc. 

DTS system has been in operation for more than a decade and is still encountering 

problems in the use, employment, and cost of operation. Initially, the Government 

Accountability Office (GAO) published a report that estimated approximately $56 

million in savings, as seen in Table 5.  

 

 

 

 

 



36 

Table 5. Summary of DTS Estimated Annual Net Savings 
Reported in the September 2003 Economic Analysis. 

Adapted from Williams and Rhodes (2006). 

Constant fiscal year 2003 dollars in millions  
Cost components Estimated annual net savings 
Records management $19.8 
Centrally billed accounts 1.7 
CTO acquisition and administration 2.4 
CTO services 31.0 
Voucher process and compute 54.1 
Voucher pay 0 
Legacy systems 14.5 
PMO (8.8) 
Help desk/DTA (36.8) 
System operations (21.5) 
Total net savings $56.4 

 
This report considered the DTS estimated costs of $2.1 billion from fiscal years 

2003–2016 (Williams & Rhodes, 2006). Later, in a 2016 report to congress the 

Government Accountability Office (GAO) determined, “that DoD had overestimated 

savings for DTS and failed to fix implementation problems with the system nearly a 

decade ago, DTS added fees for the user and prevented travelers from quickly making 

changes to their reservations” (United States Digital Service, 2016). Overall, the DTS 

handles about $3.5 billion annually for travel accommodations with a per transaction cost 

of approximately $10 (United States Digital Service, 2016). Each transaction for this 

GAO report refers to the exchange of money from arrangements made through DTS. 

Ultimately, DTS has been a largely successful project in terms of arranging travel. 

Government employees routinely use the service to conduct official travel and generally 

accomplish their desired travel requirements. However, when accounting for the actual 

cost of operating and then add the qualitative costs, risks, and benefits from Figure 5, the 

program is still lacking. After pouring billions of dollars into the program, the system still 

has a variety of unresolved issues that seem to have eluded the government since 1998.  



37 

2. Forge.mil 

Given the high spending cases of NMCI and DTS, one must consider the 

questions, “Could a cheaper OSS option be implemented that meets all organizational 

needs, user needs, and meets security requirements, or how can OSS components help to 

lower TCO?” The website forge.mil was established to explore questions like this. 

Forge.mil is a site that was created to prevent project teams from “re-inventing the 

wheel,” as discussed by the 2016 OMB report. The DoD has multiple layers of software 

development that is often times inconsistent and incompatible with other related software 

(Nimmer, 2015). Programs and software are routinely developed in an ad-hoc manner or 

in silos, which cause problems when interacting with other systems or performing 

mission related interoperable functions (Nimmer, 2015). The goals of forge.mil were, 

to create a more open and transparent development process that could 
remove barriers to reuse, encourage collaboration, and discourage 
proprietary or closed systems. Build such an extensive, collaborative 
community required a powerful and adaptable Application Life Cycle 
Management (ALM) platform to enable code reuse and quality 
improvements, as well as improve of time to market for new applications. 
(Nimmer, 2015, p. 1) 

The use of forge.mil resulted in both tangible and intangible benefits. The 

Defense Information Systems Agency (DISA) recorded savings of approximately 

$18,000 for small projects $1.2 million per project for large teams. Furthermore, the 

establishment of forge.mil created a large open source community of developers and 

projects. In 2015, forge.mil, recorded “24,000 registered users, 900 projects, 200 active 

groups, 2,900+ applications and 150,000+ downloads.” (Nimmer, 2015).  

Forge.mil is composed of two different sections. The first is SoftwareForge.mil, 

which hosts for internal projects only and usually considered free software (Martin & 

Lippold, 2013). The second section of forge.mil is ProjectForge.mil, ProjectForge.mil 

was created for users who required their own private space due to limited access to 

property rights on other software; it also requires a fee from its users for the services 

provided (Martin & Lippold, 2013).  



38 

Since its inception the use of forge.mil has grown significantly in the DoD. 

Forge.mil has been implemented in many DoD programs, the case study of the 

Communications Electronics Command (CECOM) provides an example of forge.mil 

implementation within DoD systems. CECOM manages different aspects of software 

programs that are rooted in logistics, artillery, and other various military functions. 

Initially, CECOM project teams were siloed with limited ability to leverage the work of 

its adjacent teams. With project teams siloed they were unable to access common code. 

Therefore, each time a new project emerged, new teams would then have to reinvent their 

processes and procedures. CECEOM was plague by other issues such as, the lack of 

visibility on code and lacked the ability to track code according to its software life cycle. 

Forge.mil was chosen by CECOM mainly because it was a DoD implemented system. 

Once implemented, many of CECOMs software issues were resolved, the code was now 

tracked and visible to software engineers within the project teams. This allowed for faster 

start up times and improved code (International Data Corporation, 2013).  

The case study of CECOM is one example of the forge.mil implementing OSS to 

achieve mission readiness, cut cost, and improve software life cycles for DoD software 

systems. Forge.mil host other projects as well and continues to gain popularity within the 

DoD. As software systems continue to need upgrades from legacy systems, platforms 

such as Forge.mil will no doubt be applicable to benefit certain projects in the DoD. With 

Forge.mil currently operating and recording cost savings on the government’s Non-

classified Internet Protocol Router (NIPR) and Secure Internet Protocol Router (SIPR) 

networks, why does the DoN not more routinely seek to use OSS as a primary option for 

software and code development? Perhaps before that decision is made, the DoN should 

consider the total cost of ownership for OSS.  

B. TOTAL COST OF OWNERSHIP 

The Total Cost of Ownership (TCO) of using OSS must be considered when 

deciding between writing and developing code, choosing a vendor, or starting the 

acquisitions process for a project. This cost covers all of the additional costs that will be 

included when purchasing or developing software. Costs for using software include the 



39 

software, training, support and legal licensing, maintenance, and development 

(ActiveState, 2016). Other considerations such as long-term support, maintaining the 

software or system over time, customizing, or enhancing software. Organizations or 

project managers will have to consider all of these variables when seeking to use OSS. 

Considerations such as these are illustrated in Table 6. 

Table 6. Total Cost of Ownership Table. Adapted from 
ActiveState (2016). 

Costs OSS Proprietary  

Acquisition Cost (software licenses) None Potentially millions of dollars 

Training Developer salary * days training Developer salary * days 
training + in-house time and 
employee salary * days training 

Development Developer salary * development 
months + fixed cost of in-house 
open source expert 

Developer salary * 
development months + variable 
cost of external expert 

Maintenance and Support Full-time salary + fixed cost of 
in-house open source expert of 
consultant fee 

Full-time salary + variable cost 
of external expert and recurring 
consultant fee 

Legal (Distribution Rights and 
Indemnification) 

Time for license audit/building 
governance process + potential 
license infringement risk costs 

Time for license audit/building 
governance process + potential 
license infringement risk costs 

 
 

As seen in Table 6, using OSS can save money, potentially millions of dollars in 

the upfront licensing and software acquisition costs. In the other cost categories, the 

proprietary option will have additional expenses that will only increase the total cost of 

proprietary software over OSS. As one examines Table 6, OSS looks like a better option 

than a closed-source or proprietary system, but different organizations have experienced 

varying levels of success after implementation. The California Department of 

Transportation spent approximately $220,000 on an open source identification and 

password security solution (O’Connor, Ong, Sander, & Ferlo, n.d.). Their Linux-based 

system worked as planned, reduced the total cost of ownership, and was approximately 

$280,000 cheaper than the proprietary alternative (O’Connor et al., n.d.). One the other 

hand, Mexico decided to implement an OSS option for 120,000 of their schools. The 



40 

project leaders for the Red Escolar Libre project choose the OSS because they wanted to 

avoid paying for software licenses. Ultimately, the cost of support for their OSS began to 

skyrocket. Project leaders were forced to rethink their decision to use OSS and began the 

search to complete the project using a proprietary option (O’Connor et al., n.d.).   

The final case study in this section occurred in Munich, Germany. This is an 

example that shows there is much more to OSS than monetary costs. Factors such as 

compatibility and interoperability can plague a system that does not have a flexible 

design. In 2001, the city of Munich Germany launched an initiative to move to an open 

source platform LIMUX (LINUX in Munich). The city conducted extensive research and 

determined that the city would benefit from OSS rather than proprietary software. The 

proprietary software was Microsoft. Until that point, the entire city operated under 

Windows platform (Windows NT) (Heath 2017). As the end of the contract drew close, 

Microsoft presented the upgrade to Windows XP. Instead, the city council sought to look 

at OSS for a possible alternative to Microsoft product. Many factors played a role in the 

decision from cost, to the local economy, to security concerns (Heath, 2017). 

Upon their final analysis, the city council figured that their move would be 

strategic vice monetary (Saunders, 2014). Although numbers and calculations pointed to 

initial higher cost of transition due to new software, infrastructure, and hardware, the city 

still deemed OSS a better fit. They planned to design the code, using their own particular 

skills, in order to fit their own security concerns and change software as they saw fit. As 

time went on, the entire city was able to change their infrastructure to meet their needs 

for OSS. Munich became a beacon of hope and an example of perfectly executed OSS 

implementation for OSS advocates everywhere (Heath, 2017). 

Later in 2017, it was determined that Munich would back track their OSS 

initiative and reequip their entire infrastructure to work, once again, with Microsoft 

(Heath, 2017). This move was a shock to the OSS community. From an outside 

perspective, it was hard to understand why Munich would make such an arduous move; 

especially after all of the work went into redesigning their entire IT infrastructure. The 

issue that still plagued Munich was that 4,163 Windows based computer still needed to 

operate on Microsoft Windows (Heath, 2017).  



41 

The downfall of Munich was simply the inoperability of the OSS LIMUX to work 

on Microsoft Office and vice versa. The city council in Munich also believed that in the 

long term, LIMUX would prove to be unstable and cost would increase dramatically. 

However, it was the rumblings across the business sectors in Munich who were 

complaining that businesses needed the Windows platform in order to not only operate 

with local Munich businesses, but global windows-based businesses as well (Heath, 

2017). Too much avail, the city council decided that the idea of running two different 

types of systems independently would end up being too costly for local businesses and 

the taxpayer. Therefore, the entire city made the switch back to Microsoft platforms.  

The Munich case likely failed due to interoperability issues with the Windows 

Platform. One option the city council could have looked at implementing, was ensuring 

that open standards was an option, which could have possibly helped ease their transition 

to operating with Microsoft products. Opensource.com defines open standards in the 

following manner, “Open standards act as a guideline to keep technologies open 

especially for open source developers” (Endsley, 2018, p. 1). Open standards allow the 

interoperability and allow applications to talk to each other (Heintzman, 2003). Recently, 

Gregg Brown, the Senior Director for the Interoperability Group at Microsoft, said, 

“Today, developers frequently decide to implement widely used open standards rather 

than design new protocols from scratch. That’s certainly the trend at Microsoft” (Brown, 

2011, p. 1). With Microsoft pursuing the use of OSS and open standards a possible 

solution could have been implemented for Munich. An open standards interface would 

have allowed Microsoft and LIMUX to exchange information and communicate with 

each other. This would have been a critical element to ensure that Munich could have 

continued on their path to using OSS rather than allowing interoperability issues to 

plague and discontinue their use of OSS. The Munich case serves as an example of why 

the DoD should consider a scaled approach to OSS. As discussed earlier in this research, 

not every type of software platform is going to be applicable to OSS.                   

These three examples show that the success of OSS, and whether or not OSS will 

decrease the TCO, depends on the organization. Organizations have different anatomy 

and various capabilities that should be weighed when dealing with OSS. The Mexico case 



42 

is a good example of how OSS was not the best option in terms of cost. Research 

conducted by the Gartner Group showed that companies often spend only about 8% of 

their IT budget on software and 92% of the budget on other costs such as installation, 

support, subscription fees, training, and downtime (O’Connor et al., n.d.). These studies 

suggest that organizations should consider all aspects of cost, not only the licensing fees 

that can be saved by using OSS (O’Connor et al., n.d.). 

C. BEAUMONT HOSPITAL OPEN SOURCE CASE 

Fitzgerald and Kenny conducted a study of a hospital in Ireland named Beaumont 

Hospital. The hospital employed over 3,000 employees and had a significant need for an 

upgrade in its IT systems. This upgrade would not only include back-office servers but 

front-office applications as well (Fitzgerald & Kenny, 2004). Once complete, Beaumont 

Hospital would undergo a complete IT upgrade using primarily OSS. The hospital 

decided to conduct this task in two phases. The first phase would review and select 

certain products for upgrade, which were mainly email and generic desktop applications. 

The second phase addressed operational systems that helped the organization conduct 

business on a daily basis (Fitzgerald & Kenny, 2004).   

Beaumont upgraded its system in several areas. One area was the content 

management system, called Zope. Beaumont downloaded the product for free but spent 

roughly €20,000 in software support from a small support company. This service 

functioned as desired, allowing the hospital to plan meetings and events, tag people with 

alerts, procedures, and events, and linked other hospital systems and servers for a more 

interoperable, inter-domain, and customizable program (Fitzgerald & Kenny, 2004). 

Systems were “talking” to each other, which increased efficiency in the hospital. 

Additionally, Beaumont was trying to implement an open source system called Veteran’s 

Health Information Systems and Technology Architecture (VistA). VistA is a proven 

open source system that has been in operation by the U. S. Department of Veterans 

Affairs and the U.S. DoD for more than 20 years (Fitzgerald & Kenny, 2004). The 

federal government has successfully thrived on this open source system, which is 

supported by an extensive network of programmers. In addition to the U.S. DoD, VistA is 



43 

also used by countries like Finland, Germany, and Nigeria (Fitzgerald & Kenny, 2004). 

This is an example of OSS being used worldwide while handling secure medical 

information.  

In the end, at Beaumont Hospital, the two-phase upgrades revealed major savings 

during the implementation of the new open source IT solution. Tables 7 and 8 show the 

results of phase one and two respectively.  

Table 7. Beaumont Hospital Phase 1 Solutions. 
Source: Fitzgerald and Kenny (2004). 

 

Table 8. Beaumont Hospital Phase 2 Solutions. 
Source: Fitzgerald and Kenny (2004). 

 
 

The savings in phase 1 resulted in favor of the OSS solution. Savings were 

approximately €4.7 million and €8.2 million, when applied over a period of five years 

(Fitzgerald & Kenny, 2004). In phase 2, the initial cost savings were approximately €6.5 

million, and the total five year cost savings were €12 million (Fitzgerald & Kenny, 2004).  

The case study of Beaumont Hospital saw significant savings by using OSS 

solutions. Beaumont choose open source options for the majority of their programs but 



44 

still had some proprietary software and systems in use. They found that OSS allowed the 

hospital to continue performing all functions while bringing down their total cost of 

ownership (Fitzgerald & Kenny, 2004). This is an example of OSS still being beneficial 

and operational even though all systems were not using OSS components. This case 

supports the idea that OSS can be used for only certain functions and in specific areas of 

an organization. Beaumont did not force an OSS implementation on all of their programs 

and systems because there were specific areas in which a non-open source option would 

have been more efficient, reliable, and resilient. The Beaumont case may serve to be a 

good example of how the DoN could consider using OSS. Leaders can use OSS 

components in various aspects of the IT strategy, still saving on cost in certain areas, 

while understanding that there will be areas and times when a proprietary option is better 

to meet mission needs and requirements.   

D. OSS VULNERABILITIES 

OSS has many benefits and proponents often tout the community of contributors 

as the ultimate example of checks and balances, however there are examples of bugs and 

vulnerabilities. In 2014, an OSS zero-day vulnerability called “Heartbleed” that was 

discovered (Vaughan-Nichols, 2014a). This was a major vulnerability that would allow 

hackers undetected access to data and secure servers. The 2017 Coverity Scan Report 

describes Heartbleed as follows, “The Heartbleed bug allows anyone on the Internet to 

read the memory of the systems protected by the vulnerable version of the OpenSSL 

software” (Llaguno, 2017, p. 4). Heartbleed was found to be a programming problem and 

was patched less than 24 hours of public discovery, yet it still affected hundreds of 

millions of websites (Vaughan-Nichols, 2014b). The 2017 Coverity report indicated that 

a positive outcome of Heartbleed was the maturation of the community (Llaguno, 2017). 

By maturing, Coverity means that software developers are now conducting more frequent 

analysis of their products with scanning software (Llaguno, 2017). In 2016, Coverity 

recorded 4,117 active open source projects were submitted to be scanned for 

vulnerabilities, 50% using Travis CI (Llaguno, 2017). Wikipedia describes Travis CI as 

“a hosted, distributed, continuous integration service used to build and test software 



45 

projects hosted at GitHub. Open source projects may be tested at no charge via travis-

ci.org” (Llaguno, 2017).  

Perhaps a more well-known intrusion was the 2018 Equifax breach. Equifax has 

components of OSS and, despite the security advantages that OSS offers, the company 

still lost positive control of its data (Korolov, 2018). These examples prove OSS is not 

impenetrable; however, enterprises are still turning to OSS that offers them more tools 

and agile methodologies to accomplish organizational goals (Korolov, 2018). Maria 

Korolov, a 20-year emerging technology writer and current contributor for CSOonline, 

reported that 96% of commercial applications have open source components in them. 

Korolov continues to state, “The average application had 147 different open source 

components—and 67 percent of the applications used components with known 

vulnerabilities” (Korolov, 2018). A 2017 report by an organization called Snyk outlined 

the increasing vulnerabilities generally found in OSS, as seen in Figure 6. 



46 

 

Figure 6. Published Open Source Vulnerabilities by Year. 
Source: Snyk (2017). 

There could be a myriad of reasons for the reported increase in vulnerabilities 

over time, but the point is that OSS vulnerabilities exist. Snyk monitored more than 

430,000 sites with open source components and continues to see an increase in open 

source vulnerabilities (Snyk, 2017). In 2016 alone, there was a 53% increase in the 

number of published vulnerabilities found the OSS surveyed sites (Snyk, 2017). After its 

general report, Synk choose to look at a specific organization and found different results. 

Snyk isolated the results for Red Hat Linux and found a decrease in vulnerabilities over 

time.  



47 

 

Figure 7. Red Hat Linux Vulnerabilities by Year. 
Source: Snyk (2017). 

Figure 7 shows a downward trend in vulnerabilities, with the solid line 

representing regular vulnerabilities and the dotted-line representing critical 

vulnerabilities. Overall, Red Hat has seen a 62% decrease in vulnerabilities since 2012 

(Snyk, 2017). The takeaway is that not all OSS is equal in terms of vulnerabilities, 

security, and support. If organizations choose to use OSS, they must conduct thorough 

research and find a reliable option.  

The Snyk report continued its research into OSS by looking at vulnerabilities and 

how long it takes to fix those vulnerabilities. They found that, as mentioned earlier, the 

OSS community has a large number of contributors who are willing and eager to fix 

vulnerabilities (Snyk, 2017). In Red Hat Linux, 69% of vulnerabilities were fixed within 

a day and 90% of vulnerabilities were fixed within two weeks of public disclosure (Snyk, 

2017). The general report, as seen in Figure 8, on OSS was similar to Red Hat, showing 

maintainers could respond to 94% of OSS vulnerabilities within a week of public 

disclosure (Snyk, 2017).  



48 

 

Figure 8. How Quickly Maintainers could Respond to a 
Vulnerability. Source: Snyk (2017). 

The bottom-line is that OSS, like all software, has vulnerabilities. Any organization that 

chooses to use OSS in any capacity needs to understand that vulnerabilities exist and that 

maintenance will be required on all types software and systems. Organizations have learned 

that system upkeep and monitoring are still important; even with OSS. Understanding the 

risk allows an organization to properly make an informed assessment on the value of 

investing in a strategy or project.  

Opponents of OSS are concerned of the mere idea of freely available code, having 

someone to hold accountable in the case that something malfunctions, and the availability 

of support (O’Connor et al., n.d.). They argue that open access to the source code will 

allow malicious entities easier access and availability to compromising the code. 

Additionally, there is the issue of accountability: who will the DoN hold accountable for 

an open source issue, and how quickly can an essential community of volunteer code 

writers fix an OSS problem? Alternatively, as previously discussed, there are those who 

would argue that open availability of the source code will result in a myriad of users 

working together to perfect the code. Both the proponents and opponents of OSS seem to 

argue, primarily, on the security of OSS. As seen in Table 4, OSS generally has fewer 



49 

defects than its competitors. However, organizations must still incur the burden of 

establishing and maintaining security, conducting audits, and correcting vulnerabilities. 

For a comprehensive understanding of OSS, enterprises must consider security and its 

role in OSS.  

E. SUMMARY  

Chapter III analyzed the different variables that must be considered when 

determining cost for OSS. Organizations must explore both direct and indirect cost as 

well as qualitative cost that are often intangible. When determining the cost, it is 

important to also consider the total cost of ownership over the life cycle of the software 

or the program. Once all foreseen costs are accounted for, it would then be beneficial to 

look at an analysis of alternatives to OSS. OSS has several cost advantages over 

proprietary software such as the software and license cost and the reduced external 

experts that are required to provide technical assistance to a program or software, but 

organizations must still look at their specific organizational strategy and capabilities to 

determine if OSS is the best option for them to pursue. This chapter also looked at 

vulnerabilities and case studies of OSS projects, proving that implementation of OSS in 

certain areas of an organization, has the potential to be secure and benefit large 

organizations in terms of cost savings. It is clear that the use of OSS can have significant 

cost savings for the DoN, if it is strategically planned and implemented. 



50 

THIS PAGE INTENTIONALLY LEFT BLANK 



51 

IV. THE SCALED APPROACH AND RESEARCH FINDINGS 

When this study began, the hypothesis was that if our research found that the 

DON could not go to full-scale open sourcing, this thesis would suggest a scaled 

approach.  OMB has since directed that Federal Agencies make customized source code 

“broadly available for reuse across the Federal Government” (Scott & Rung, 2016, p. 1). 

Not only would this eliminate duplicative costs, it would improve collaboration between 

government and industry. The memo also developed a three-year pilot program requiring 

each agency to release 20 percent of their newly developed code as OSS for the duration 

of the program (Scott & Rung, 2016). In order to encourage collaboration with other 

agencies and industry, agencies be able to access the rights to the custom-developed code 

(Scott & Rung, 2016). Additional guidance for implementation would be provided on the 

code.gov website. There are exceptions to the policy for sharing of code that would 

jeopardize national security, personal security, or be against the law (Scott & Rung, 

2016). Every software development effort must consider using OSS or COTS before 

developing custom code. To meet the restrictions of the OMB memo, a DON system will 

have to develop at least 20% of its new code as either OSS or reuse code unless it meets 

the exception in this policy. Given the potential limitations due to cyber security or legal 

requirements, a scaled approach proved to be prudent, as seen in the Beaumont hospital 

case. Beaumont chose to use OSS for administrative functions but not for some of their 

more technical software. In the Beaumont case, they wanted the ability to share 

information with other hospitals and had certain processes that they wanted to use as 

proprietary software. They assessed their organization and explored how to make OSS 

work for their situation (Fitzgerald & Kenny, 2004).  

The findings from this research show that overall development and 

implementation of strategic goals will lay a foundation for further guidance and follow-

on research. The bases for establishing strategic goals for OSS implementation were 

supported by the review and research of policies that specifically address the use of open 

sourcing. Based on the review and research of these policies, strategic goals for the 

implementation of OSS in the DoN should be addressed according to the topics of 



52 

infrastructure, software development, security and life cycle cost, and reduction savings. 

To better assist with this process, the DoN should consider a new development 

methodology. The development and operations (DevOps) methodology may provide an 

efficient way for the DoN to implement OSS and applications. The use of DevOps and 

strategic goals can help advance the policies that were set forth in DoD correspondence to 

routinely consider OSS as a viable option for applicable programs.   

A. STRATEGIC GOALS AND SUPPORT 

Strategic goals will provide the “road map and support basis” to the integration of 

OSS in the DoN. These goals were first highlighted in the MITRE report and, as 

mentioned in Chapter II, OSS remains prevalent in this specific areas of the DoN. The 

researchers also believe that, given the current state of DoD policies pushing the use and 

exploration of OSS, these are the strategic goals and areas where the DoN can effectively 

progress the use of OSS. The strategic goals are as follows: infrastructure support, 

software development, security and life cycle cost and reduction savings.   

1. Infrastructure Support 

The first strategic goal is to ensure the current infrastructure support can maintain 

the use of OSS in its current state. According to the OSS & The DoD article, “On August 

8, 2016, the White House Chief Information Officer (CIO) released a Federal Source 

Code Policy that calls for new software to be built, shared, and adapted using open source 

methods to capitalize on code that is secure, reliable, and effective in furthering our 

national objectives” (FitzGerald et al., 2016, p. 6). The policy requires that “new custom-

developed source code developed specifically by or for the Federal Government to be 

made available for sharing and re-use across all Federal agencies ... [and] Federal 

agencies to release at least a portion of new custom-developed Federal source code to 

the public” (FitzGerald et al., 2016, p. 6).  

According to the Memorandum, “Federal Source Code Policy: Achieving 

Efficiency, Transparency, and Innovation through Reusable and OSS,” “This policy also 

establishes a pilot program that requires agencies, when commissioning new custom 

software, to release at least 20 percent of new custom-developed code as OSS for three 



53 

years, and collect additional data concerning new custom software to inform metrics to 

gauge the performance of this pilot” (Scott & Rung, 2016, p. 2). This directly addressed 

the software improvement, efficiency, transparency, and cost savings provided by 

the use of OSS within the government (Scott & Rung, 2016). In order to achieve the 

desired effects of implementation, the CIO proposed a new program that would 

involve new programs to release 20% of its code for application and research (Scott 

& Rung, 2016). The release of the research data in 2019 will provide the metrics for data 

collection, research, and outcomes from the use of open sourcing within the DoD (Scott 

& Rung, 2016). The main point provided by the memo and research is that the DoD 

currently has an IT infrastructure that can maintain, support, and provide feedback for 

OSS. Although OSS has been part of DoD infrastructure for many years, it has now 

become a more viable option as costs rise and budgets are minimized within the Federal 

Government.  

Currently, DoD Infrastructure has many applications and different software that 

comprise its architecture. MITRE reported, “Since much of the infrastructure of the 

Internet was created under the FOSS model, its infrastructure applications such as 

Apache are generally older, more functionally mature, and less likely to fail than much 

more recent proprietary equivalents” (MITRE Corp, 2003, p. 17). The MITRE report 

highlighted more than 65 OSS applications used in DoD infrastructure support the overall 

architecture that is the framework for the DoN infrastructure system (MITRE Corp, 

2003). Therefore, the implementation of OSS within the DoN infrastructure is not 

necessarily a foreign idea. In fact, replacing these “already in use” OSS applications with 

proprietary applications will not necessarily show an improvement in infrastructure 

design, efficiency, or reduction in cost. OSS is so embedded and in perfect function with 

many software applications today that its complete removal from DoN applications 

would likely raise the financial cost (MITRE Corp, 2003).  

The current IT infrastructure system is capable of handling OSS projects. The 

case study of the Coast Guard Machinery Control System (CGMCS), provides a good 

example of OSS improving the functionality, scalability, and cost effectiveness of the 

Machinery Control System (MCS) for both the Navy and the Coast Guard. The MCS 



54 

allowed engineers to view various components such as electrical systems, propulsion 

systems, machinery, and other various hardware and software components through a 

Human Machine Interface (HMI) design (Reed, Cohen, Majumder, Chonko, & Walker, 

2013). The case study explained that the current MCS continued to become more 

technologically complex and unable to become standardized amongst each ship. The 

technological complexity caused the life cycle cost to rise over the life of the MCS. In 

order to minimize rising cost, increase scalability, and standardization across all ships, 

the Coast Guard and Navy began implementing the new CGMCS on National Security 

Cutter (NSC) WMSL-750 Class Ships (Reed et al., 2013).   

The goal of the CGMCS was to reduce development time and cost for individual 

ship classes. The CGMCS allows for the commonality of more affordable hardware and 

adaptable software that can be utilized in any ship (Reed et al., 2013). This program 

allowed for adaptable software that was used in different ship classes. The software used 

in this system ran on different vendor technologies such as Linux or Windows and uses 

open source libraries, as seen in the Figure 9. 



55 

 

Figure 9. CGMCS Common Software Functional Libraries. Source: 
Reed et al. (2013). 

The scalability, implementation and functionality of this system proved the DoN 

has an infrastructure that can allow for further use of OSS. However, the CGMCS is a 

specific case in which the attributes of OSS work effectively for the need of the Navy. A 

scalable approach for OSS will prove to be beneficial for some applications since not all 

systems or hardware will use or benefit from OSS. 

2. Software Development 

The second strategic goal is to prioritize software development within the DoN 

and the DoD as a whole. Many new high-priority topics are of great concern today. 

Examples of new IT innovation include rapid new developing technologies, new airframe 

platforms, emerging cyber security threats, and the newly adopted information warfare 

offensive. Yet, in order to ensure there is functionality between each of these functions 



56 

and their respective commanders, more emphasis needs to be directed at software 

development.  

Software development should be the driving factor to ensure that each one of 

these priorities is able to perform its functions so that they operate smoothly. FitzGerald 

et al. stated, “Unfortunately, software development is not currently a high-profile, high-

priority topic in the discussion about diminishing U.S. military technical superiority. It 

should be.” (FitzGerald et al., 2016, p. 5). The authors also discussed the issues related to 

much of the DoD’s technical problems with new technology. FitzGerald et al. argue that 

software development is not on the forefront of DoD priorities, yet much of the new 

technology created today, like weapon systems and aircraft technology, requires software 

that is developed, can be modified, and is interoperable; such as OSS (FitzGerald et al., 

2016).  

Much of the success of these new programs depends largely on the ability of the 

DoD to develop new software. OSS allows for the exact building of the needed software 

to fit the design in which it is applied to. The OSS methodology is built collaboratively. It 

is often built with various entities collaborating in a private or public manner (FitzGerald 

et al., 2016). The collaboration of many experts is what allows for OSS to steadily move 

forward to adapt to any modifications or design fixes that are required by the end user. In 

fact, the civilian private sector has prioritized software development in their private 

businesses and corporations.  

The prioritization of software development has led the private industry to achieve 

success in the IT community as where the DoD insufficiently lags behind (FitzGerald et 

al., 2016). According to FitzGerald et al.,  

In recent years, the private sector has become increasingly reliant on OSS, 
which underpins critical software infrastructure from enterprise 
applications to smartphones and advances from artificial intelligence to 
electric cars. But while the commercial world has installed repeatable and 
scalable frameworks that improve the software it uses, the DoD struggles 
to keep pace. (FitzGerald et al., 2016, p. 4) 

The success of prioritizing software development by private organizations such as 

google, Apache, Linux, Facebook, and Amazon can present a perfect example of how the 



57 

DoN and the DoD as a whole can optimize the best solutions for success in software 

development.  

Integration of more OSS into the DoN may eventually lead to a push of more 

software development. This will allow software development practices to become much 

easier to prioritize for DoD officials (FitzGerald et al., 2016). In order to replicate IT 

success and efficiency in programs, like Google, Linux, and Apache, the DoN must 

advocate for IT to be considered a high priority. This emphasis on software development 

has the potential to greatly benefit the DoN in future technology performance, 

acquisitioning of software, interoperability, and the overall control of software 

development.  

3. Security of OSS 

The Strategic goal for the implementation of security in OSS is to provide 

understanding that security measures are already in place. A further setting of policies 

and procedures should be created to help provide understanding and alleviate security 

concerns of integrating more OSS into the DoN. The MITRE Corporation researched at 

least 44 organizations involved in DoD security use Free OSS (FOSS) (MITRE Corp, 

2003, p. 20). 

a. Open Source Security Concerns 

Many in the government believe that an infrastructure that supports using OSS is 

at higher risk to cyber-attacks or more vulnerable to hackers, however this is not the case. 

According to Joseph, a technology writer for opensource.com,  

The open source projects that have open sourced their infrastructures have 
proven the value of allowing multiple companies and organizations to 
submit educated bug reports, and even patches and features, to their 
infrastructure. Suddenly you can invite part-time contributors. Your 
customers can derive confidence by knowing what your infrastructure 
looks like under the hood. (Joseph, 2018, p. 1) 

Infrastructure, integrity, and security is not compromised by OSS. In fact, the software 

provides for more opportunities to allow the de-bugging of programs, and the increase of 

safety from cyber-attacks (Joseph, 2018). The OSS security analysis is done by different 



58 

organizations and programmers because they are given access to the source code which 

allows these programmers, which are contracted by the DoD, to find and help prevent 

cyber incidents from occurring. In others words, there is more visibility and eyes on the 

software in order to determine if the software has been compromised in anyway. OSS 

provides the visibility that propriety or closed software cannot provide because it is only 

being analyzed by one entity; if it is analyzed at all.  

When considering security concerns of OSS applications, many believe that 

proprietary software is considered “more” safe than OSS, however the issue much more 

complicated than that. Dunn and Wheeler interviewed several government employees on 

their cyber security expertise on OSS. According to the authors,  

There is a concern over the ease of getting malware into OSS. Actually, 
it’s pretty easy to get malware into proprietary software too. OSS is 
unique in that it gives complete visibility into the supply chain. Another 
government employee said, “Just because you cannot [review] the source 
[of proprietary software] does not mean the software is safe ... I would 
rather know where it came from so I know what to target in my 
evaluation. (Dunn & Wheeler, 2013, p. 11)  

The article by Dunn and Wheeler addressed many security concerns from government 

officials. One main concern from the government was that OSS was “easier” for another 

individual to slip in malware or that the software in general was not safe. The advice 

given by the experts in the article address that OSS actually provides a safer option 

because of the visibility that it provides. The visibility allows programmers to detect 

malware, viruses, or any other foreign entity within the code. Therefore, providing 

solutions to quickly address and eradicate any issues.  

Another reason that government officials advocate proprietary software over OSS 

is that proprietary software is always considered the more “safe” and consistent solution 

to software in the DoD. However, based on research and expertise, Dunn and Wheeler 

advocate that just because software is proprietary does not make it safe from cyber-

attacks. In fact, an issue that arises with proprietary software is that the software code 

cannot be viewed, therefore allowing only the producer of the software to view all 

security issues within the software. This essentially leaves all security concerns of that 



59 

software to be addressed by the producing entity’s inspectors; in theory, decreasing the 

chances of discovery of security issues within the software code (Dunn and Wheeler, 

2013). 

Despite the praise that OSS receives for the large community of contributors and 

security checks on the software, there is evidence that this does not apply to all OSS 

supported components. The Snyk report raised serious security concerns for the general 

open source community. Snyk conducted interviews of open source maintainers and 

determined that most in the community have not had a security audit (Snyk, 2017). 

Figure 10 shows Snyk’s results for OSS audits. 

 

Figure 10. How Often Maintainers Audit their Code. 
Source: Snyk (2017). 

Audits are conducted to assist with finding vulnerabilities. This is an area that will 

have to be monitored and regulated if implemented in the DoN. In order for OSS to 

function with the minimal amount of risk, the DoN will have to conduct audits and apply 

security standards to each OSS program.   



60 

b. Security Controls 

The National Institute of Standards and Technology (NIST) produces a series of 

documents designed to outline the responsibilities required by the Federal Information 

Security Management Act (FISMA) (NIST, 2013). The NIST SP 800–53 Rev 4 describes 

the security requirements, privacy controls, as well as the processes that are used to select 

security controls on IT systems (NIST, 2013). This document is important because as the 

use of OSS becomes more prevalent, there will be a continued need to monitor and assess 

the security and vulnerabilities of the IT infrastructure. The NIST 800–53 is only one of 

the many publications that assist with the security of programs, but it provides an 

example of the types of security controls and risk assessment that would be necessary in 

determining whether or not to use OSS in programs. The security controls that are found 

in the NIST 800–53 are “designed to facilitate compliance with applicable federal laws, 

Executive Orders, directives, policies, regulations, standards, and guidance” (NIST, 2013, 

p. x). In addition to meeting published guidelines and regulations, the security controls 

are also designed to protect information systems from a variety of threats in different 

scenarios and operating environments (NIST, 2013).  

The NIST SP 800–53 provides the security controls; however, it is the 

organization’s responsibility to assess the system operating risk, select the security 

controls, oversee implementation, monitor the functionality, and make adjustments to the 

system or software. This can be an extensive process that requires strategic planning and 

organizational commitment; the NIST SP 800–53 summarized best practices to achieve 

secure systems, as seen below:  

• Clearly articulated security requirements and security specifications  

• Well-designed and well-built IT products based on state-of-the-practice 
hardware, firmware, and software development processes  

• Sound systems/security engineering principles and practices to effectively 
integrate IT products into organizational information systems 

• Sound security practices that are well documented and seamlessly 
integrated into the training requirements and daily routines of 
organizational personnel with security responsibilities 



61 

• Continuous monitoring of organizations and information systems to 
determine the ongoing effectiveness of deployed security controls, 
changes in information systems and environments of operation, and 
compliance with legislation, directives, policies, and standards 

• Information security planning and system development life cycle 
management. (NIST, 2013, p. 5) 

Before the DoN can select the security controls required for whatever OSS 

platform it intends to incorporate into the IT infrastructure or programs of record, leaders 

at all levels must consider the risk. As previously discussed, there are risks present in 

every software decision and OSS is not an impenetrable fortress, so risks will have to be 

considered before implementation. The NIST 800–53 created a diagram that considers 

risks and establishes communication about those risks at all levels of management. This 

diagram is found in Figure 11.  

 

Figure 11. Three Tiered Risk Management Approach. 
Source: NIST (2010). 

Figure 11 shows how risk span across management tiers and how the feedback 

loop will affect both tactical and strategic plans. It will be important for the DoN to 

carefully consider risk at all tier levels when picking the appropriate security controls for 

every system or software it uses. Each tier level has different goals from Tier 1, which 



62 

priorities the overarching mission and drives decisions, strategy, and investment strategy 

to Tier 2, which defines processes to support functions, determines security categories, 

and establishes the enterprise architecture (NIST, 2013). Tier 3 utilizes the Risk 

Management Framework to incorporate information systems (NIST, 2013). 

The Risk Management Framework (RMF) is a six-step process that is used to 

address security concerns of an organization like the DoN. The NIST 800–37, Rev 1 

depicts the RMF, as seen in Figure 12. 

 

Figure 12. Risk Management Framework. Source: NIST (2010). 



63 

Each step has a significant purpose designed to supplement the entire risk 

assessment and program integration process, but the step that deals mostly with 

implementing OSS across all systems in the DoN is Step 2: Select Security Controls. 

The security controls listed in the NIST 800–53 are organized into families. The 

18 families cover a large range from Access Controls, Awareness and Training, to Media 

Protection, Incident Protection, and Program Management. These families cover many 

aspects of oversight, individual action, supervision, automated mechanisms and many 

more (NIST, 2013). As OSS becomes used more often, the DoN will have to view each 

individual system or program, in the same manner it currently does, which is in 

accordance with the governing regulations. The reason that this paper targets the NIST 

800–53 is to highlight that is already policy in place to govern OSS and to list specific 

areas of concern; in terms of OSS. Because OSS is rapidly expanding on the civilian side 

of IT, it seems only natural that the DoN will have to further OSS in order to maintain 

compatibility, flexibility, and competiveness with foreign military organizations. As open 

source expands to work in all areas of the DoN, OSS will need a wide variety of security 

controls to address IT capabilities. The family of security controls highlighted in the 

NIST 800–53 are located in Table 9. 

Table 9. Security Control Identifiers and Family Names. 
Source: NIST (2013). 

 
 

Each family has sections that include guidance on control, supplemental guidance, 

control enhancements, and references (NIST, 2013). The NIST SP 800–53 goes on to 



64 

describe common controls and how they can be positively employed and adversely 

affected. Ultimately, the DoN will need to explore publications such as the NIST 800–53 

for integration of OSS. Fortunately, publications like this are already in existence and 

already have specific guidance and examples of OSS integration.  

As the security concerns of an integrated OSS network increase with greater 

integration within the DoN, leaders can be assured because of the evolution of its security 

measures and ever-growing security features that programmers will be able to openly 

share concerns, create patches, and find solutions for all DoD software and security 

related issues. OSS is an authorized option for both secure and non-secure programs. 

Security conditions must apply; however, OSS are feasible and viable. 

4. Life Cycle Cost Reductions/ Savings  

The final strategic goal of OSS is to analyze the cost savings of implementing 

OSS into the DoD; more specifically the DoN. First, the current structure of proprietary 

computer government contract business allows little room for competition for large IT 

solutions (MITRE Corp, 2003). Generally, industry powerhouses consume the DoN IT 

market. The lack of competition prohibits the ability of the DoN to save money or 

allocate resources for other necessary projects.  

As in any business-related transaction, the consumer prefers to have options. 

These options then allow each producer to compete for business; this creates better 

products at lower prices. When OSS is concerned, “Without the constant pressure of low-

cost, high-quality OSS product competing with the closed-source products, the closed-

source vendors could more easily fall into a cycle in which their support costs balloon 

and costs are passed on to their locked-in customers” (MITRE Corp, 2003, p. 22). This is 

a small example of the costly repercussions of not using OSS.  

Furthermore, longevity in OSS is where the true lower cost will be presented, 

according to Use of Free and Open-Source Software (FOSS) in the U. S. DoD, “Costs 

would drop in both the short and long term as costlier applications are replaced by FOSS 

products such as Apache that are almost universally considered to be higher quality” 

(MITRE Corp, 2003, p. 23). Over time, the strategic adoption of OSS in certain areas of 



65 

the DoN could benefit the service as it is able to leverage a combination of OSS and 

proprietary systems to increase efficiency and decrease costs.  

B. DEVOPS  

As OSS continues its growth and expansion within military software systems, it is 

hard to deny that the methodology to approaching this type of software is not going to 

change. No longer will proprietary software always be applicable to the ever-changing 

environment of IT. As the expansion of OSS continues, the DoN must learn to adopt to 

new IT practices in order to become faster, agile, and increase capacity to innovate. The 

authors of the article “What is DevOps,” explain the meaning of DevOPs as:  

DevOps which is short for Development and Operations is the 
combination of cultural philosophies, practices, and tools that increases an 
organization’s ability to deliver applications and services at high velocity: 
evolving and improving products at a faster pace than organizations using 
traditional software development and infrastructure management 
processes. (Amazon Web Services, 2018, p. 1)  

The cultural embrace of DevOps is what allows for the mixing of development and 

operations to provide speed of delivery, agility and user proficiency for organizational 

success in software development and delivery. DevOps and OSS form a synergistic 

relationship in which each entity helps the other become successful. OSS provides the 

flexibility, cost-savings, and avoids vendor lock-in, while DevOps provides rapid 

deployment, improved collaboration between development teams, and manageable 

infrastructure (Lyman, 2018). 

1. How DevOps Works 

When it comes to allowing DevOps to integrate and essentially change the 

software climate of an organization, both DevOps and OSS have to synchronize in 

harmony. In the article, “Open Source leads to DevOps Success,” the author Jay Lyman 

states, “According to enterprise DevOps users have also routinely reported that the 

modularity and componentization of open-source software is a good fit for DevOps, 

which tends to involve a broader array of tools and technologies” (Lyman, 2018, p. 1). 

The typical DevOps model does not have separate teams as most conventional or 

https://techbeacon.com/devops


66 

proprietary software is developed. DevOps instead combines development and 

operations, according to the article “What is DevOps?,” 

Under a DevOps model, development and operations teams are no longer 
“siloed.” Sometimes, these two teams are merged into a single team where 
the engineers work across the entire application life cycle, from 
development and test to deployment to operations, and develop a range of 
skills not limited to a single function. (Amazon Web Services, 2018, p. 1)  

DevOps uses a synergistic approach to combining aspects of development and 

operations to form a faster produced software. The DevOps model is designed to build 

software by building, testing, and releasing once the software has been developed by its 

engineers. The feedback loop from the customers provides the monitoring of the software 

and provide plans to the providing company for planning future updates and new types of 

software. An example of this DevOps approach by Amazon Web Services is provided in 

Figure 13. 

 

Figure 13. DevOps Concept and Information Flows Model. 
Source: Amazon Web Services (2018). 

As IT capabilities continue to move at a fast pace with innovation, emerging 

markets such as big data, social media, cloud computing, and mobile applications are 

recognizing the benefits and business value of DevOps. The business benefits the DoN 

can receive from DevOps is the maximization of speed of its delivery of a product or 

service, from initial development to production to customer feedback to enhancements all 

based on feedback (Coyne & Sharma, 2017, p. 4). Listed below are benefits that are 

provided by DevOps: 



67 

• Speed: Move at high velocity so you can innovate for customers faster, 
adapt to changing markets better, and grow more efficient at driving 
business results. 

• Enhanced Customer experience: Providing differentiated and engaging 
customer service which builds customer loyalty and positive business 
relations. 

• Rapid Delivery: Increase the frequency and pace of releases so you can 
innovate and improve your product faster. The quicker you can release 
new features and fix bugs, the faster you can respond to your customers’ 
needs and build competitive advantage. 

• Increased Capacity to Innovate: In order to increase capacity to innovate, 
DevOps focuses on a lean thinking approach. In this approach the goals 
are to reduce waste, rework, and to shift resources to higher value projects. 

• Reliability: Ensure the quality of application updates and infrastructure 
changes so you can reliably deliver at a more rapid pace while maintaining 
a positive experience for end users. 

• Scale: Operate and manage your infrastructure and development processes 
at scale. Automation and consistency help you manage complex or 
changing systems efficiently and with reduced risk. 

• Improved Collaboration: Build more effective teams under a DevOps 
cultural model, which emphasizes values such as ownership and 
accountability. 

• Security: Move quickly while retaining control and preserving 
compliance. You can adopt a DevOps model without sacrificing security 
by using automated compliance policies, fine-grained controls, and 
configuration management techniques. (Amazon Web Services, 2018, 
p. 1) 

By employing each benefit listed, this allows the encompassing experience of 

DevOps to operate fluidly and provide the best experience possible when it comes to IT 

and development. Author Mano Paul states, “DevOps doesn’t seek to erase the 

differences between the two disciplines of software development and IT operations, but 

instead builds a bridge to make them work better together while continuing to follow 

traditional processes in each discipline independently” (Paul, 2014, p. 1). Overall, it is the 

ability of DevOps to work synergistically that allows for a fluid IT operating system. This 

is why OSS is such an important asset when it comes to DevOps. OSS allows for 

software systems to talk to each other and help increase interoperability which is one 

main benefit of DevOps.  



68 

2. DevOps Culture 

The DoD is being left behind in the IT realm because of strict cultural norms and 

the bureaucracy of acquiring new services and goods. In order to stay relevant within the 

IT world and up-to-date with competing organizations, the cultural mindset of DevOps 

should be embraced. This would allow for more efficient systems, more fault tolerant 

systems, more routine deployments, more collaboration, continuous monitoring, and 

interoperable software systems. Figure 14 shows the many aspects of DevOps culture. 

 

Figure 14. DevOps Culture Loop. Source: WebSenor (2018). 

Regarding DevOps, Endsley stated, the “first steps into DevOps are about 

examining your culture and practices, identifying the barriers to cross-team 

communication and coordination, and taking the steps necessary to bridge 

communication between your development and operations teams” (Endsley, 2018, p. 1). 

Cultural mind-shift and embracing DevOps allows for the agility and continuous delivery 

of improved software life cycles. The integration with OSS is a symbiosis of software 



69 

and operations allowing for the best experience between software developers and the 

users of the software to create the best product needed to accomplish any mission. 

C. SUMMARY 

Chapter IV provided a scaled approach to determine the feasibility of OSS 

implementation in the DoN. The implementation is presented in four strategic goals, 

followed by a brief summary of DevOps in order to present the type of 

environment/culture OSS demands in order to thrive.  

The first strategic goal of infrastructure provided the understanding that the 

current infrastructure can support OSS. Many OSS programs today operate under the 

current IT infrastructure, therefore before OSS integration can begin additional policies 

and research may help ease the transition from closed-source systems to open source 

systems. The second strategic policy of software development explained how the DoN 

can gain an advantage by prioritizing software development much like its civilian 

counterparts. Prioritization provides the ability to create software that can meet demands 

of technology. 

The third security strategic goal discussed security measures, security issues, 

security vulnerabilities, and provided in depth analysis of the NIST SP 800–53 and 

security protocols. The analysis provided an understanding of OSS security measures and 

its ability to provide overall protection to the user. Cost benefits of OSS were reviewed 

and establish in the fourth strategic goal. OSS proved to have advantages over proprietary 

software in its ability to be cost effective.  

Lastly, DevOps although not fully reliant on OSS, proved to be beneficial in its 

ability to provide a culture that is conducive to operating on OSS. Likewise, OSS 

although not reliant on DevOps, is complimentary to DevOps and is greatly benefited by 

its presence. Chapter IV presented a scaled approach of strategic goals along with the 

proper environment supported by DevOps, to create an operational environment 

beneficial to implementing OSS in the DoN.  



70 

THIS PAGE INTENTIONALLY LEFT BLANK 



71 

V. CONCLUSION AND FUTURE WORK 

A. THESIS SUMMARY 

The scalable adoption of OSS into certain areas of DoN is a critical step toward 

evolving the IT capabilities of the service. As the IT realm continues to rapidly expand, 

the DoN will have to find cost effective methods to stay on pace with both their 

adversaries and civilian counterparts; who also have vested interests and are intertwined 

in DoN programs. This research clearly defined OSS and addressed the DoN policy that 

allows the use of open software. The research also concluded that OSS is becoming more 

common in business and industry practices. With a large number of organizations 

undertaking open source solutions, the use of OSS in the DoN can help realize the need 

to keep up with technology, while minimalizing the reliance of expensive proprietary 

software and long-lasting contracts. The ability to see the code will help internal service 

members learn from some of the industry’s best software engineers. Furthermore, the 

research shows that OSS is generally cost effective, especially in terms of licensing. 

However, long-term support for OSS can be expensive, depending on the program and 

organization. When deciding what type of software to use on a project, and organization 

must look at both direct and indirect cost. In addition to the cost savings, OSS offers 

many intangible qualities that must be accounted for and factored into the total cost of 

ownership. Researchers have proved that OSS can still be reliable and high quality 

products.  

OSS is compiled by a large community of developers which provides variety and 

more scrutiny of the code. This community is authorized to freely contribute to OSS but 

must adhere to OSS licenses. This includes all rules that pertain to distribution and 

version control. It is the organization’s responsibility to decide which OSS and version 

would best suit their business strategy and goals; especially since, as seen in the various 

case studies, OSS is not always the answer. Opponents of OSS are wary of the 

availability of the source code and often tout the practice of security through obscurity. 

This is a valid concern, but proponents will argue that the large community provides OSS 

with layers of defense-in-depth. Both of these general perceptions have merit, but the 



72 

research shows that OSS has fewer defects than CSS. Ultimately, all software has 

vulnerabilities. It is up to the operating organization to ensure that it conducts a proper 

risk assessment and monitors all software and programs for security compliance. 

Different methodologies are available and are encouraged to foster and enhance OSS. 

DevOps is a methodology that is proven to work with OSS. It provides the ability to 

continually monitor and deploy software and products, which increased speed and 

durability in the IT infrastructure.  

B. RESEARCH QUESTIONS 

This research sought to answer several questions regarding OSS and the 

feasibility of use within the DoN. The research included a review of DoD and DoN 

policies, case studies, and articles published by topic experts. After concluding the 

research, the authors determined the following conclusions. 

1. What are the Processes, Criteria, and Responsibilities for Publishing 
Publicly Releasable Software? 

If the DoN chooses to use OSS for projects and programs of record, they will 

have to adhere to OSS licenses and the specific rules that apply to each specific license. 

The various licenses have different rules that describe how to use the specific software. 

These rules provide instructions on managing OSS version control and public 

distribution. Program managers and software developers will have to meticulously ensure 

that they are operating and using the software as prescribed by the pertaining license. 

Additionally, the DoN can use websites described in this research, such as forge.mil and 

code.mil, to facilitate the use and public release of OSS. 

2. What is the Feasibility of using OSS for DoN Programs, from 
Unclassified through Classified? 

As highlighted in Chapters II and III, the DoD already uses OSS in certain areas 

and programs. The MITRE report highlighted specific areas that OSS is prevalent and 

these areas would be the logical place to monitor and pursue further development of OSS 

within the DoN. Forge.mil reported OSS programs on both the unclassified and classified 

networks, so the research has determined that the “feasibility” is already a reality. Future 



73 

research should explore classified programs of record and how, if at all, OSS can be 

implemented into such programs. 

3. Have there Been any Programs in the Federal Government, DoD, 
DoN that have Incorporated OSS? 

The research found the DoN already has programs implemented in various places 

throughout the organization. A major program is the VistA program, which is an OSS 

DoD Veterans Affairs program that in now used by several countries all over the world. 

The 2003 MITRE report found that 115 open source applications were found in 251 

instances. Policies such as the 2009 DoD CIO memorandum and the 2016 OMB open 

source memorandum encourage the DoD to continue to explore new ways of 

implementing OSS for greater information sharing, transparency, cost savings and 

reduction of work. 

4. Was there a Discernable Cost Benefit for the Program? How 
would/could OSS Affect Maintenance Cost? 

The main cost benefits to OSS are the ability to save on software purchase price 

and the savings incurred on obtaining proprietary licenses. The research addressed that 

the software costs are approximately 8% of the total cost of a program. With this in mind, 

other aspects must be considered when addressing cost savings. When the DoN considers 

where and how it should use OSS, it will have to carefully consider all aspects for every 

potential OSS program or application. Case studies were presented that showed cost 

benefits for both open source and proprietary options. In order to obtain significant cost 

benefits using OSS, the DoN must consider each OSS use and also the product support 

and potential maintenance for that software or program. The research shows that it is 

possible to significantly save using OSS; however, there are a myriad of considerations 

and planning factors that must occur in order to realize a cost saving goal. 

5. What Are the Cybersecurity Requirements or Challenges for 
Implementing OSS? 

OSS must adhere to the same cybersecurity requirements as all other software 

used in the DoN. There are procedures and controls that are set forth in current 



74 

regulations and policies. The difference with OSS, is that it will require an entity to 

ensure that the software is assessed for vulnerabilities and audited ensure regulations are 

being followed. OSS, generally, has a large community of developers scrutinizing the 

software and companies such as Coverity providing the means to scan for vulnerabilities. 

Even though there is research showing that OSS can be secure, it will still require 

oversight and someone to hold accountable for unplanned work, maintenance, and 

defects. 

6. If it Is Not Possible to Obtain All of the DoN’s Requirements using 
OSS, would a Scaled Approach be Cost Effective? 

Large technology companies are quickly moving and encouraging OSS. Even if 

the DoN does not pursue its own development of software using OSS, it will eventually 

use OSS components as a part of a proprietary solution. In the aggregate, it may make 

sense to develop certain programs using only proprietary software. Thus, a scaled 

approach to OSS will allow the DoN to learn to use and perfect the integration and use of 

OSS. 

C. FUTURE WORK 

OSS is still not widely accepted enough to overcome issues of integration within 

DoN IT systems. This research revealed the issues and challenges that may rise when 

trying to implement a change as significant as OSS. Several examples, such as culture 

change from proprietary software, security perception, security implementation, and 

DevOps integration were seen as common themes throughout the research process. The 

research addressed these subjects; however, the issues listed are recommended for further 

research, implementation, and possible solutions.  

1. Culture Change 

In the DoD, “open source” is considered a risky venture. When trying to propose 

solutions to current proprietary programs, OSS must be considered a feasible option. 

Although many government applications already contain OSS, one would think that the 

culture shift from proprietary software to OSS would be easy. However, the amount of 



75 

comfort that is provided by proprietary software is enough that government acquisition 

experts are willing to pay the extra expenses for the sake of having all their software 

needs contained in one package. As convenient as this sounds, it may add up to higher 

cost, unsatisfactory customer service, and vendor lock-in. OSS may provide a needed 

solution to the problem. However, in order to bring the realization of OSS into fruition, 

entire paradigm shifts in education, training, change, and implementation tactics will 

need to be addressed. Perhaps changes such as updating the Defense Acquisitions 

University curriculum would propel the DoD towards more routine OSS consideration. 

More work and additional research will need to be accomplished on this topic in order to 

further the culture change in the government.  

2. DevOps 

An issue discovered in the research was the option to use DevOps. As mentioned 

earlier, DevOps can be used in DoN in order to be able to fully compliment the 

possibilities of using OSS and the possibility of creating software that is designed for our 

DoN projects. Although OSS can stand alone without DevOps, research suggests that the 

reciprocity between DevOps and OSS allows for the maximization of OSS use. Future 

research should be conducted into DevOps and the pros and cons that the DevOps culture 

may present to the DoN.  

3. Security 

The security perception of OSS is that it always has risks that are attached to the 

software. In general, OSS is going to have users, internal or external to the organization, 

able to view, manipulate, and modify source code of government projects and 

development. Each organization must monitor controls and access to their specific 

systems and ensure that continued evaluation occurs. A popular concern is that OSS 

producers, developers, or contributors may intentionally hide malicious in the software. 

However, the research has concluded that proprietary software poses similar or more 

likely risk of the occurrence of malicious activity. This is due to the closed nature of the 

proprietary software. Proprietary software may also contain the exact issues as with OSS, 

therefore making it just as risky as OSS. One option to mitigate security risk, would be to 



76 

allow the DoD to write more code, rather than simply contracting everything out. Doing 

so could provide more internal knowledge and oversight of the software that the DoN 

uses. Future organization-specific research is needed in the realm of OSS and security to 

explain, provide examples of security flaws for OSS and proprietary software, and to 

provide security recommendations of the overall operation of OSS in the DoN. 

 
 



77 

LIST OF REFERENCES 

ActiveState Software. (2016). The true cost of OSS: Uncovering hidden cost and 
maximizing ROI. Retrieved from https://www.activestate.com/sites 
/default/files/pdfwp/whitepaper-true-cost-opensource.pdf 

Almeida, D. A., Murphy, G., Wilson, G., & Hoye, M. (2018, Apr 27). Investigating 
whether and how software developers understand OSS licensing. Retrieved from 
https://doi.org/10.1007/s10664-018-9614-9 

Amazon Web Services. (2018). What is DevOps? Retrieved from 
https://aws.amazon.com/devops/what-is-devops/ 

Asay, M. (2016). Bill Gates gets real about free software. Retrieved from 
https://www.infoworld.com/ article/3042247/open-source-tools/bill-gates-gets-
real-about-free-software.html 

Bromhead, B. (2017, Aug 17). 10 Advantages of open source for the enterprise. 
Retrieved from https://opensource.com/article/17/8/enterprise-open-source-
advantages 

Brown, G. (2011, Jul 8). Standards 101: Understanding the importance of open standards. 
Retrieved from https://blogs.technet.microsoft.com/openness/ 
2011/07/08/standards-101-understanding-the-importance-of-open-standards/ 

Carey, R. (2007, Jun 5). Department of the Navy OSS guidance [Memorandum]. 
Washington, DC.: Department of Defense. Retrieved from 
http://www.doncio.navy.mil/ contentview.aspx?id=312 

Center for Strategic and International Studies. (2007). Global policies on OSS. Retrieved 
from http://www.csis.org/component/option,com_csis_pubs /task,view/id,4009/ty 
pe,1/ 

Chrzanowska, N. (2017, Mar 30). 17 most helpful node.js open source projects according 
to experts. Retrieved from https://www.netguru.co/blog/nodejs-helpful-open-
source-projects 

Coverity. (2014). Coverity scan: 2013 open source report. Retrieved from 
http://softwareintegrity.coverity.com/rs/appsec/images/2013-Coverity-Scan-
Report.pdf 

Coyne, B., & Sharma, S. (2017). DevOps for dummies. Hoboken, NJ: John Wiley & 
Sons, Inc.  

https://www.activestate.com/sites
https://doi.org/10.1007/s10664-018-9614-9
https://aws.amazon.com/devops/what-is-devops/
https://www.infoworld.com/%20article/3042247/open-source-tools/bill-gates-gets-real-about-free-software.html
https://www.infoworld.com/%20article/3042247/open-source-tools/bill-gates-gets-real-about-free-software.html
https://opensource.com/article/17/8/enterprise-open-source-advantages
https://opensource.com/article/17/8/enterprise-open-source-advantages
https://blogs.technet.microsoft.com/openness/
http://www.doncio.navy.mil/
http://www.csis.org/component/
https://www.netguru.co/blog/nodejs-helpful-open-source-projects
https://www.netguru.co/blog/nodejs-helpful-open-source-projects


78 

Department of Defense. (2017, Feb 23). DoD announce the launch of code.mil: an 
experiment in open source. Retrieved from https://www.defense.gov/News/News-
Releases/News-Release-View/Article/1092364/DoD-announces-the-launch-of-
codemil-an-experiment-in-open-source/ 

Department of Defense Chief Information Officer. (n.d.). OSS frequently asked 
questions. Retrieved from https://DoDcio.defense.gov/Open-Source-Software-
FAQ/ 

Dunn, T., & Wheeler D. A. (2013, Aug 29). OSS in government: challenges and 
opportunities. Retrieved from https://www.dhs.gov/sites/ default/files/ 
publications /Open%20Source%20Software %20in %20Government%20–
%20Challenges%20and%20Opportunities_Final.pdf 

Endsley, R. (2018) What is open source? Retrieved from https://opensource 
.com/resources/what-open-source 

Fitzgerald, B., & Kenny, T. (2004, Aug 9). Developing an information systems 
infrastructure with OSS. IEEE Software. January-February 2004. 

FitzGerald, B., Parziale, J., & Levin, P. L. (2016, Aug 30). Open source software & the 
Department of Defense. Retrieved from https://www.cnas.org/ 
publications/reports/open-source-software-and-the-department-of-defense 

Free Software Foundation (2018). Free software is software that gives you the user the 
freedom to share, study and modify it: We call this free software because the user 
is free. Retrieved from: https://www.fsf.org/about/what-is-free-software  

Gates, B., & Balmer, S. (2005). Shareholder letter. Microsoft Corporation Annual Report 
2005. Retrieved from: https://www.microsoft.com/ investor/reports 
/ar05/staticversion/10k_sl_eng.html 

Garrison, J. (2010, Oct 26). What is the Linux kernel and what does it do? How to Geek. 
Retrieved from: https://www.howtogeek.com/howto/31632/what-is-the-linux-
kernel-and-what-does-it-do/ 

Heath, N. (2014). Ditching windows for Linux led to “major difficulties” says open 
source champion Munich. Retrieved from 
https://www.techrepublic.com/article/ditching-windows-for-linux-led-to-major-
difficulties-say-open-source-champioon-munich/ 

Heintzman, D. (2003, Jul 5). An introduction to open computing, open standards, and 
open source. Retrieved from https://www.ibm.com/developerworks/ 
rational/library/1303.html 

https://dodcio.defense.gov/Open-Source-Software-FAQ/
https://dodcio.defense.gov/Open-Source-Software-FAQ/
https://www.dhs.gov/sites/%20default/files/
https://opensource/
https://www.cnas.org/
https://www.fsf.org/about/what-is-free-software
https://www.microsoft.com/%20investor/reports%20/ar05/staticversion/10k_sl_eng.html
https://www.microsoft.com/%20investor/reports%20/ar05/staticversion/10k_sl_eng.html
https://www.howtogeek.com/howto/31632/what-is-the-linux-kernel-and-what-does-it-do/
https://www.howtogeek.com/howto/31632/what-is-the-linux-kernel-and-what-does-it-do/
https://www.techrepublic.com/article/ditching-windows-for-linux-led-to-major-difficulties-say-open-source-champioon-munich/
https://www.techrepublic.com/article/ditching-windows-for-linux-led-to-major-difficulties-say-open-source-champioon-munich/
https://www.ibm.com/developerworks/


79 

International Data Corporation. (2013, Jul). IDC customer spotlight: Driving effective 
community software collaboration at the DoD with forge.mil. Framingham, MA: 
IDC Go-to-market services. Retrieved from http://www.forge.mil/downloads/ 
casestudy_IDC_Forge.Mil.pdf 

Joseph, E. K. (2018, Aug 23). Why open source should be the first choice for cloud 
native environments? Retrieved from https://opensource.com/ article/17/8/open- 
sourcing-infrastructure 

Koltun, P. (2011, Dec). Free and OSS use: Benefits and compliance obligations: 
CrossTalk. Retrieved from http://www.scopus.com/inward/record.url? eid=2-s2.0- 
81555199735&partnerID=tZOtx3y1 

Korolov, M. (2018, Apr 2) OSS security challenges persist. Retrieved from: 
https://www.csoonline.com/article/3157377/application-development/ open-
source-software-security-challenges-persist.html 

Llaguno, M. (2017, Oct 31).  2017 Coverity scan report: OSS—The road ahead. 
Retrieved from https://www.synopsys.com/ content/dam/synopsys/sig-
assets/reports/SCAN-Report-2017.pdf 

Lyman, J. (2018). Open source leads to DevOps success. Retrieved from 
https://techbeacon.com/open-source-leads-devops-success 

Martin, G., & Lippold, A. (2011). Forge.mil: A case study for utilizing open source 
methodologies inside of government. Retrieved from 
https://link.springer.com/content/pdf/10.1007%2F978-3-642-24418-6_28.pdf 

McMillian, R. (2012, Mar 20). Linus Torvalds: The king of geeks (and dad of 3). 
Retrieved from: https://www.wired.com/2012/03/mr-linux// 

MITRE Corp. (2001). A business case study of open-source software. (MITRE Report 
No. MP 01B0000048). Bedford, MA: Retrieved from 
https://www.mitre.org/sites/default/files/pdf/kenwood_software.pdf 

MITRE Corp. (2003). Use of free and open-source software (FOSS) in the U.S. 
Department of Defense. Version 1.2.0.4. (MITRE Report No. MP 02 W0000101). 
McLean, VA: Author. Retrieved from http://www.terrybollinger.com/DoDfoss/ 
DoDfoss_pdf_hyperlinked.pdf 

Moore, J. M., & Stanton, A. (2018). Tiebreaks and diversity: Isolating effects in Lexicase 
Selection. Retrieved from https://www.mitpressjournals.org 
/doi/pdf/10.1162/isal_a_00109 

http://www.forge.mil/downloads/
https://opensource.com/%20article/17/8/open-
https://www.csoonline.com/article/3157377/application-development/
https://www.synopsys.com/
https://techbeacon.com/open-source-leads-devops-success
https://www.wired.com/2012/03/mr-linux/
http://www.terrybollinger.com/dodfoss/
https://www.mitpressjournals.org/


80 

National Institute of Standards and Technology Special Publication 800–37. (2010). 
Guide for applying risk management framework to federal information systems: a 
security life cycle approach. Retrieved from 
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r1.pdf 

National Institute of Standards and Technology Special Publication 800–53. (2013). 
Security and privacy controls for federal information systems and organizations. 
Retrieved from http://nvlpubs.nist.gov/nistpubs/Special 
Publications/NIST.SP.800-53r4.pdf 

Nimmer, C. (2015, Apr 17). How forge.mil changed the way the U.S. DoD developed 
software. Retrieved from https://opensource.com /government/15/4/how-
forgemil-changed-way-DoD-develops-software 

O’Connor, A., Ong, K. W., Sander, T., & Ferlo, M. (n.d.). Government policies on open 
source. Retrieved from https://courses.cs.washington.edu/ 
courses/csep590/04au/clearedprojects/Ferlo.pdf 

O’Donohue, D. J. (2018). Cyberspace Operations Occupational Field (OCCFLC 17). 
Retrieved from http://www.marines.mil/DesktopModules/ 
ArticleCS/Print.aspx?PortalId=59&ModuleId=46529&Article=146900 

Paul, M. (2014). The measurable and important benefits of DevOps. Retrieved from 
https://www.logicworks.com/blog/2014/10/measurable-important-benefits-devops 

Perera, D. (2007, Oct 4). Is the Defense Travel System ready to fly? Retrieved from 
https://fcw.com/articles/2007/10/04/is-the-defense-travel-system-finally-ready-to-
fly.aspx 

Reed, D., Cohen, J., Majumder, A., Chonko, J., & Walker, J. (2013). The Coast Guard 
Machinery Control System (CGMCS): Commonality come true. Arlington, VA.: 
Thor Solutions, LLC. 

Sabhlok, R. (2013, Jul 18). OSS: The hidden cost of free. Retrieved from 
https://www.forbes.com /sites/rajsabhlok/2013/07/18/open-source-software-the-
hidden-cost-of-free/#521127734001 

Saunders, M. (2014, May 9). How Munich switched 15,000 pcs from windows to Linux. 
Retrieved from https://www.linuxvoice.com/the-big-switch/ 

Scott, T., & Rung, A. E. (2016, Aug 8). Memorandum for the heads of departments and 
agencies [Memorandum]. Washington, DC: Department of Defense. Retrieved 
from https://obamawhitehouse.archives.gov/sites/default 
/files/omb/memoranda/2016/m_16_21.pdf  

http://nvlpubs.nist.gov/nistpubs/Special
https://courses.cs.washington.edu/
http://www.marines.mil/DesktopModules/
https://www.logicworks.com/blog/2014/10/measurable-important-benefits-
https://fcw.com/articles/2007/10/04/is-the-defense-travel-system-finally-ready-to-fly.aspx
https://fcw.com/articles/2007/10/04/is-the-defense-travel-system-finally-ready-to-fly.aspx
https://obamawhitehouse.archives.gov/sites/default


81 

Serbu, J. (2018, Mar 15). Amid Congressional mandate to open source DoD’s software 
code: Code.mil serves as guidepost. Retrieved from 
https://federalnewsradio.com/on-DoD/2018/03/amid-congressional-mandate-to-
open-source-DoDs-software-code-code-mil-serves-as-guidepost/ 

Shachtman, N. (2010, Aug 31). HP Holds Navy Network Hostage for $3.3 Billion. 
Retrieved: from https://www.wired.com/2010/08/hp-holds-navy-network-hostage/ 

Snyk. (2017). The state of open source security. Retrieved from 
https://snyk.io/stateofossecurity/ 

United States Digital Service. (2016). 2016 Report to congress: Modernizing the 
Department of Defense travel system. Washington, DC: Department of Defense. 
Retrieved from: https://www.usds.gov/report-to-congress/2016/defense-travel/ 

United States Navy Chief of Information. (2010). Navy stands up fleet cyber command: 
reestablishes U.S. 10th Fleet. Retrieved from http://www.navy.mil/ 
submit/display.asp?story_id=50954 

Vaughan-Nichols, S. (2014a, Apr 7). Heartbleed: Serious OpenSSL zero-day 
vulnerability revealed. Retrieved from https://www.zdet.com/article/heartbleed -
serious-openssl-zero-day-vulnerability-revealed/ 

Vaughan-Nichols, S. (2014b, Apr 14). Heartbleed: Open source’s worst hour. Retrieved 
from https://www.zdet.com/article/heartbleed-open-sources-worst-hour/ 

Vaughan-Nichols, S. (2014c, Apr 16). Coverity finds OSS quality better than proprietary 
code. Retrieved from https://www.zdnet.com /article/coverity-finds-open-source-
software-quality-better-than-proprietary-code/  

Warren, T. (2018, Jan 4). Microsoft confirms it’s acquiring GitHub for $7.5 billion. 
Retrieved from https://www.theverge.com/2018/6/4/17422788/ microsoft-github-
acquisition-official-deal 

WebSenor. (2018, Jun 22). Bringing Agility to Software Product Engineering with 
DevOps. Retrieved from https://www.websenor.com/bringing-agility-to-software-
product-engineering-with-devops/. 

Wennergren, D. (2009, Oct 16). Clarifying Guidance Regarding OSS [Memorandum]. 
Washington, D.C.: Department of Defense. Retrieved from https://DoDcio. 
defense.gov/Portals/0/documents/FOSS/2009OSS.pdf  

Williams, M., & Rhodes, K. A. (2006, Sep) Defense travel system: Reported savings 
questionable and implementation challenges remain (GAO-06-980). Washington, 
DC: Government Accountability Office.  

 

https://www.wired.com/2010/08/hp-holds-navy-network-hostage/
https://www.usds.gov/report-to-congress/2016/defense-travel/
http://www.navy.mil/%20submit/display.asp?story_id=50954
http://www.navy.mil/%20submit/display.asp?story_id=50954
https://www.zdet.com/article/heartbleed%20-serious-openssl-zero-day-vulnerability-revealed/
https://www.zdet.com/article/heartbleed%20-serious-openssl-zero-day-vulnerability-revealed/
https://www.zdet.com/article/heartbleed-open-sources-worst-hour/
https://www.theverge.com/2018/6/4/17422788/
https://www.websenor.com/bringing-agility-to-software-product-
https://www.websenor.com/bringing-agility-to-software-product-
https://dodcio/


82 

THIS PAGE INTENTIONALLY LEFT BLANK  

  



83 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	18Sep_Holloway_Donovan_First8
	18Sep_Holloway_Garcia Thesis 9-14
	I. INTRODUCTION
	A. oBJECTIVES
	B. rESEARCH QUESTIONS
	C. tHESIS DESIGN

	II. Background
	A. OSS in the DoD
	1. The MITRE Corporation’s Study of OSS in the DoD
	2. DoD Open Source Policies

	B. Open source traits
	1. OSS as COTS
	2. OSS Information Security
	3. Understanding Linux

	C. OSS planning considerations for DoD
	1. OSS Challenges and Opportunities Background
	2. OSS Fear and Inertia
	3. Concerns with Warranties, Support, and Procurement
	4. OSS Education and Guidance

	D. Summary

	III. oss Benefits and vulnerabilities
	A. Measuring the costs of OSS
	1. Cost Case Studies
	2. Forge.mil

	B. Total cost of ownership
	C. Beaumont hospital open source case
	D. Oss vulnerabilities
	E. Summary

	IV. THE scaled approach and research findings
	A. Strategic goals and support
	1. Infrastructure Support
	2. Software Development
	3. Security of OSS
	a. Open Source Security Concerns
	b. Security Controls

	4. Life Cycle Cost Reductions/ Savings

	B. Devops
	1. How DevOps Works
	2. DevOps Culture

	C. Summary

	V. conclusion and future work
	A. Thesis Summary
	B. Research questions
	1. What are the Processes, Criteria, and Responsibilities for Publishing Publicly Releasable Software?
	2. What is the Feasibility of using OSS for DoN Programs, from Unclassified through Classified?
	3. Have there Been any Programs in the Federal Government, DoD, DoN that have Incorporated OSS?
	4. Was there a Discernable Cost Benefit for the Program? How would/could OSS Affect Maintenance Cost?
	5. What Are the Cybersecurity Requirements or Challenges for Implementing OSS?
	6. If it Is Not Possible to Obtain All of the DoN’s Requirements using OSS, would a Scaled Approach be Cost Effective?

	C. Future Work
	1. Culture Change
	2. DevOps
	3. Security


	List of References
	initial distribution list




