
 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

A PROCESS ARCHITECTURE MODEL THAT 
SUPPORTS COST AND EFFORT ANALYSIS FOR AGILE 

SOFTWARE DEVELOPMENT PROJECTS 

by 

Robert M. Gallerani and Joseph M. Simonetti 

September 2018 

Thesis Advisor: Kristin M. Giammarco 
Co-Advisor: Raymond J. Madachy 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
A PROCESS ARCHITECTURE MODEL THAT SUPPORTS COST AND 
EFFORT ANALYSIS FOR AGILE SOFTWARE DEVELOPMENT PROJECTS

5. FUNDING NUMBERS

6. AUTHOR(S) Robert M. Gallerani and Joseph M. Simonetti

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School 
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT 
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES) 
N/A

10. SPONSORING /
MONITORING AGENCY 
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
 The purpose of this thesis is to understand disparate organizational standard operating procedures 
(SOPs) covering agile software development and supporting functions, including business and technical 
feasibility analysis, contracts development, and personnel assessment. On the basis of SOP analysis, we 
developed a discrete-event software process simulation model of the architecture using Lifecycle Modeling 
Language (LML) action diagrams with the Model-Based Systems Engineering tool Innoslate. The action 
diagrams unify the SOPs to support both process architecture development and the ability to simulate 
actions independently or as a whole. The architecture illustrates that, in addition to the core function of 
software design and development, there are supporting functions that are necessary to successfully execute 
agile software development. The simulation model also serves as an accurate cost estimator for sprints. 
Historical data was available to calibrate model parameters for activity effort, staffing, and labor rates. The 
results of Monte Carlo simulations to forecast effort and cost for software sprints showed a high degree of 
accuracy against actuals. It is a viable alternative to other estimation methods and also provides risk 
assessment. The process model can be further calibrated and dynamically extended to support agile software 
development. 

14. SUBJECT TERMS
model-based systems engineering, software process modeling and simulation, agile software 
development, software cost estimation, discrete-event simulation, process architecture, 
standard operating procedure, Innoslate

15. NUMBER OF
PAGES 

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF 
REPORT 
Unclassified

18. SECURITY
CLASSIFICATION OF THIS 
PAGE 
Unclassified

19. SECURITY
CLASSIFICATION OF 
ABSTRACT 
Unclassified

20. LIMITATION OF
ABSTRACT 

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 

199



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

A PROCESS ARCHITECTURE MODEL THAT SUPPORTS COST AND 
EFFORT ANALYSIS FOR AGILE SOFTWARE DEVELOPMENT PROJECTS 

Joseph M. Simonetti 
Civilian, Department of the Navy 

BS, National University, 2002 
MBA, University of Maryland University College, 2012 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN SYSTEMS ENGINEERING MANAGEMENT 

from the 

NAVAL POSTGRADUATE SCHOOL 
September 2018 

Approved by: Kristin M. Giammarco 
Advisor 

Raymond J. Madachy 
Co-Advisor 

Ronald E. Giachetti 
Chair, Department of Systems Engineering 

iii 

Robert M. Gallerani 
Civilian, Department of the Navy 

BS, James Madison University, 2007 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

The purpose of this thesis is to understand disparate organizational standard 

operating procedures (SOPs) covering agile software development and supporting 

functions, including business and technical feasibility analysis, contracts development, 

and personnel assessment. On the basis of SOP analysis, we developed a discrete-event 

software process simulation model of the architecture using Lifecycle Modeling 

Language (LML) action diagrams with the Model-Based Systems Engineering tool 

Innoslate. The action diagrams unify the SOPs to support both process architecture 

development and the ability to simulate actions independently or as a whole. The 

architecture illustrates that, in addition to the core function of software design and 

development, there are supporting functions that are necessary to successfully execute 

agile software development. The simulation model also serves as an accurate cost 

estimator for sprints. Historical data was available to calibrate model parameters for 

activity effort, staffing, and labor rates. The results of Monte Carlo simulations to 

forecast effort and cost for software sprints showed a high degree of accuracy against 

actuals. It is a viable alternative to other estimation methods and also provides risk 

assessment. The process model can be further calibrated and dynamically extended to 

support agile software development. 
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EXECUTIVE SUMMARY 

In an effort to determine how to improve performance and management of agile 

software development projects within the context of a government organization, the Space 

and Naval Warfare (SPAWAR) Systems Center (SSC) Pacific Command, Control, and 

Intelligence Systems (C2IS) Division gathered data and heuristics over the past decade 

from its internal projects as well as academia, and industry. This led to the development of 

standard operating procedures (SOPs) for management and execution of agile software 

development projects. As stand-alone artifacts, these SOPs are not conducive for 

widespread acceptance and utilization due to their stove-piped and complex nature. To 

address this issue, we developed a holistic integrated model-based systems engineering 

(MBSE) process architecture to provide a consistent, integrated approach for performing 

agile software development in the organization. The process model architecture was 

generated using four key SOPs, which include aspects of business and technical feasibility, 

personnel, contract development, and agile software development.  

Five key takeaways were obtained from the creation of the process architecture 

model. First, by following a Life cycle Modeling Language (LML) approach, the 

development of integrated definition for function modeling (IDEF0) diagrams from action 

diagrams follow a natural progression that ensure a thorough capture of the requisite SOP 

functions. Second, the LML action diagrams provide an integrated architecture with proper 

form and function mapping, which provides a means for addressing the issues with stove-

piped SOPs. Third, the core SOPs adequately captured the processes for the business, 

contracting, and personnel to develop the LML representations of action diagrams and 

functional architecture. Fourth, successful application of metrics to simulate software 

development sprints within the architecture produced a model that accurately reflects the 

agile software development environment. Fifth, the discrete-event simulations provide 

insight into the possibilities of using MBSE approaches to support cost and schedule 

estimates for agile software development within the C2IS division. The outputs were 

validated based on a battery of model validation tests and statistical analysis against 
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historical data. The process architecture provides an extensible model that can be adapted 

for other software development projects. 

For future work relative to this thesis, additional research can be performed to 

further assess incorporation of functions and form for deployment, maintenance, and 

retirement of software within the holistic architecture. With respect to quantifiable data for 

Monte Carlo simulations, additional metrics can be obtained for business, contracts, and 

personnel functions within the C2IS division to expand the scope of simulations. We 

discovered that metrics were only available for the number of developers involved in a 

software sprint, but not pre-sprint or post-sprint. Collecting additional metrics for current 

simulations can further increase the fidelity of the model. Additionally, while continuous 

integration and test are adequately covered, the SOPs could be further expanded to include 

additional activities such as sprint planning, execution, and review. 

The high-level action and IDEF0 diagrams provide context for the major 

components of the architecture. Innoslate, which is owned by Systems and Proposal 

Engineering Company (SPEC) Innovations, is the MBSE tool used to create the integrated 

process architecture diagrams. The diagrams capture SOP details and integrate their 

guidance into a discrete-event model of the process architecture. The top-level action 

diagram is partitioned into four major actions (see Figure 1). The IDEF0 diagrams utilize 

the activities performed in action diagrams to graphically display the associated forms for 

the functional architecture (see Figure 2). The four main functions in the IDEF0 

architecture align to the entities in the action diagram for business analysis, developing 

contracts, assessment of personnel, and agile software development. The IDEF0 diagram 

illustrates numerous inputs, outputs, controls, and mechanisms that comprise an 

architecture view, whereas the action diagrams capture the high-level process flow. The 

context of an IDEF0 “establishes the boundaries of the system or organization being 

modeled by defining the inputs and controls entering from external systems and the outputs 

being produced for external systems” (Buede 2009, 67). 
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Figure 1. Top-Level Action Diagram  

 
Figure 2. Architecture to Enable Agile Software Development IDEF0 
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Action diagrams for “conduct software sprint” (D.1.3) were created within 

“perform agile software development” (D.1) in Figure 1. The action diagrams for D.1.3 

were used to perform effort and cost-based Monte Carlo simulations. The scope of the 

simulations is limited to data from a single software development project within the C2IS 

division. This historical data was used to calibrate activity effort, staffing, and labor rates. 

The inputs and outputs of the model for D.1.3 are illustrated in Figure 3.  

 
Figure 3. Model input parameters and outputs for Conduct Software Sprint (D.1.3) 

 
Models were validated using 14 different structure and behavior tests covering 

“suitability for purpose, consistency with reality source, and utility and effectiveness of a 

suitable model” (Madachy 2008, 119–121). Measures including magnitude of relative error 

(MRE), mean magnitude relative error (MMRE), coefficient of determination (R2), and 

PRED were used to analyze the cost prediction accuracy of the simulation. The MMRE 

provides the average of the MRE values for a dataset. For MRE values, a lower percentage 

value indicates a closer alignment between predicted and actual historic values. The 

“coefficient of determination shows how much variation in dependent variable is 

explained” (Rosa et al. 2017, 34). The PRED(20) and PRED(30) values represent the 
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percentage of estimates that have an MRE percentage value below 20% and 30%, 

respectively. For PRED values, a higher percentage indicates better performance.  

Scatter plots were generated from the output of Develop Software Code 

(D.1.3.3.5.17) to compare the actual and simulated data points for cost in dollars and effort 

in person-hours (see Figure 4). The model prediction accuracies for “develop software 

code,” per our model simulation produced an R2 of 68.5%, an MMRE of 10.3%, and 

PRED(20) of 90%. For the corresponding cost simulation, our model yielded an R2 of 

59.3%, an MMRE of 12.8%, and PRED(20) of 85.7%. Traditional cost models generally 

attain a PRED(30) no better than 70%. This represents the upper limit of software cost 

models. 

 
Figure 4. Actual and Simulated Output Comparison for 

Develop Software Code (D.1.3.3.5.17) 
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I. INTRODUCTION 

 BACKGROUND  

Space and Naval Warfare (SPAWAR) Systems Center (SSC) Pacific, located in 

San Diego, CA, is part of the naval research and development establishment. SSC Pacific 

provides naval, joint, coalition partners with key capabilities in command, control, 

communications, computers, intelligence, surveillance, and reconnaissance (C4ISR), 

space, and cyber security. To improve performance and management of agile software 

development projects, the Command, Control, and Intelligence Systems (C2IS) Division 

within SSC Pacific gathered data and heuristics over the past decade to develop 36 standard 

operating procedures (SOPs). The SOPs are based on industry and academic best practices, 

including those derived from the Carnegie Mellon University Software Engineering 

Institute (CMU SEI), Institute of Electrical and Electronics Engineers (IEEE), agile 

software development processes, and experience from software development subject 

matter experts. They also implement continuous process and product improvement by 

incorporating lessons learned based on past project success and failure. This thesis captures 

SOP content in the context of a process architecture using a model-based systems 

engineering (MBSE) approach that encompasses a “formalized application of modeling to 

support…design, analysis, verification and validation activities” (INCOSE 2007). The 

SOPs include systems engineering considerations for agile software development. Systems 

engineering must incorporate software development as a consideration to achieve system-

level results. 

The 36 SOPs provide guidance for execution and management relative to agile 

software development. These SOPs include agile software development assets such as 

business and technical feasibility, personnel, contracts, configuration management (CM), 

cyber security, engineering change requests (ECRs), deficiency reports (DR), continuous 

integration and testing, and customer involvement. Within these 36 SOPs, preliminary 

analysis identified significant redundancy and out of scope instructions, which reduced the 

number of applicable procedures to 18 SOPs. The 18 SOPs selected had characteristics that 

indicated the organization could benefit near-term from adoption of 18 core SOPs that are 
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already generally applicable to software development projects within the Command, 

Control, and Intelligence Systems Division. Although these 18 SOPs showed signs of 

providing beneficial guidance, they were focused on specific projects and consequently 

yielded inextensible, project-specific guidance, which does not facilitate broader adoption. 

Consequently, these 18 SOPs were further distilled to four primary SOPs that have broad 

organizational applicability. These final four SOPs focus on business and technical 

feasibility, personnel, contract development, and agile software development. These four 

SOPs provide the primary source for assessing and generating the top-level architecture 

content. 

The process architecture incorporates the interconnection of SOP guidance, 

dependencies, and their boundary constraints. Innoslate, which is owned by Systems and 

Proposal Engineering Company (SPEC) Innovations, is the MBSE tool utilized for creating 

the integrated process architecture. We used MBSE to enable visualization of data and 

processes through models, yields traceable links within the process architecture, and 

provides “a better way of creating, managing, and verifying engineering data than textual 

specifications” (Douglass 2016, 23). Life cycle Modeling Language (LML) representations 

are utilized to capture the corresponding details of the SOPs. Examples of LML 

representations are action diagrams and integrated computer-aided manufacturing (ICAM) 

definition for function modeling / integrated definition for function modeling (IDEF0) 

diagrams. An additional feature of Innoslate is the ability to conduct effort-based 

simulations using action diagrams. Action diagrams within Innoslate can be updated with 

real-world metrics, which enables to simulation of specified actions to produce activity 

cost and duration estimates. In the case of software sprint effort, quantifiable data gathered 

from the C2IS division was applied to applicable action diagram for use during simulations. 

Within the context of the proposed architecture, the scope of a given simulation is limited 

to a single software development project.  

 “Process modeling is representing a process architecture, design, or definition in 

the abstract” (Madachy 2008, 22). By modeling the SOPs for the C2IS division, 

understanding of the associated interrelated processes becomes adeptly understood by 

visualizing the process architecture in a model. “The power of models increases 
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dramatically as they become more explicit and commonly understood by people; hence, 

process modeling is ideally suited for organizational improvement” (Madachy 2008, 29). 

This benefit of modeling is compounded with the ability to perform model-based 

simulations. “Simulation is an efficient communication tool to show how a process works 

while stimulating creative thinking about how it can be improved” (Madachy 2008, 24). 

Processes need to be accurately modeled within the MBSE process architecture so that 

simulations reflect processes as they would occur in practice. Accurate models yield 

realistic simulations, which provide output that has greater fidelity. Since the simulations 

for this process model architecture vary stochastically for each run based on a multitude of 

manually or statistically selected decision paths, “the result variables are best analyzed 

statistically (e.g., mean, standard deviation, distribution type) across a batch of simulation 

runs. This is termed Monte Carlo simulation or Monte Carlo analysis” (Madachy and 

Houston 2018, 4). Understanding how the architecture should reflect process modeling and 

simulation helps in designing the architecture so the SOPs are effectively modeled in a 

logical flow. By designing the process architecture so that the SOPs can be run through 

model-based simulations, the flow of process inputs and outputs between actions is more 

acutely understood and sequenced accordingly in the process architecture. Understanding 

the dynamics with software process modeling and simulation provides context to the 

overall architecture.  

 PROBLEM STATEMENT 

The origin of our proposed SOP-based process architecture stems from C2IS 

division experience with past challenges regarding software development projects. 

“System architecture is the embodiment of concept, the allocation of physical/ 

informational function to the elements of form, and the definition of relationships among 

the elements and with the surrounding context. If we are to deliver value with the system 

we build, it must have good architecture” (Crawley, Cameron, and Selva 2017, 110). 

Additional challenges that can affect software development efforts are inherited from 

issues with contractual language, stove-piped design and development processes, and 

inconsistent application of lessons learned for the workforce. These deficiencies increase 

the likelihood of incurring issues associated with corresponding schedule, cost, and 
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technical performance risks. To help mitigate these risks, four SOPs are available to help 

guide SSC Pacific software development projects. The inherent issue of trying to utilize 

the four SOPs as stand-alone artifacts is that they have a stove-piped and complex nature 

that is nonconductive for widespread acceptance and utilization. To investigate 

remediating this issue, we performed an iterative analysis on the SOPs to develop a holistic 

integrated architecture model, which integrates corresponding inputs, outputs, controls, 

and mechanisms. A holistic integrated architecture considers the relationships within and 

between other systems (Crawley, Cameron, and Selva 2017, 20). The development and 

successful simulation of supporting action diagrams preceded the validation of the 

integrated architecture. To ensure the process architecture model performs as intended to 

match the intent of the SOPs, model testing and application of verification and validation 

tests are required determine if the model can accurately predict cost and effort, assess the 

validity of the model. 

 PROJECT GOALS AND DELIVERABLES 

One of the goals of the C2IS division is to provide elegantly engineered command 

and control capabilities for naval, joint, and national level customers. To achieve this goal, 

it is paramount that a well thought out, integrated architecture that accounts for business 

and technical feasibility analysis, contracting processes and development, software design 

and development processes, and allocation of personnel to perform the work. Since the 

current SOPs are stand-alone and do not readily present their interdependencies with other 

SOPs, there is an opportunity to develop an architecture that demonstrates critical 

interdependencies. The action and IDEF0 architecture diagrams generated for this project 

will provide the C2IS division with a holistic architecture that yields an integrated view of 

the current stove-piped SOPs.  

The MBSE process architecture we developed is intended to provide an easily 

understood flow of interconnected activities defined within the SOPs. In this capacity, the 

architecture could assist a new project manager in facilitating the execution of an agile 

software development cycle within the C2IS division. Additionally, one can feed the 

process architecture model in Innoslate the statistical cost and duration values collected 
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from software development activities in the C2IS division to perform corresponding 

simulations. The process model can perform discrete and Monte Carlo simulations using 

this data to generate output for estimating cost and duration of software development 

processes. These outputs are useful to assist software developers and managers in assessing 

the accuracy of his or her effort and cost estimates. An additional effort encompasses 

validating and verifying the model through use of behavior and structure tests. Further 

collection of actual software development costs and durations from the C2IS division will 

help improve the model’s ability to simulate processes accurately. Improved simulation 

output has potential to bypass the need to expend actual resources in learning by trial and 

error. Given the prospective benefits of this architecture and simulation-based action 

diagrams, the results of this project will be used for potential adoption by other software 

centric projects within the C2IS division. 

 ASSUMPTIONS AND CONSTRAINTS 

To effectively convey understanding of a system or process, “it is important to 

define the system under consideration by specifying its limits, boundaries, or scope” 

(Blanchard, Wolter, and Fabrycky 2011, 5). The architectural design process entails taking 

system boundaries into consideration and clarifying what is inside and outside those 

boundaries (Crawley, Cameron, and Selva 2017, 24). Modeling techniques such as IDEF0 

and flow diagrams can help better define system boundaries (Buede 2009, 144). The system 

boundaries for the architecture within this thesis provide a definitive scope for the high-

level functions and forms. The architecture for this thesis was generated using action and 

IDEF0 diagrams in the MBSE tool, Innoslate. To provide boundaries with respect to the 

scope of the architecture, this thesis is limited to content within the four primary SOPs. 

The first SOP addresses major capability assessment gating functions. The second SOP 

addresses continuous software integration. The third SOP handles deficiency reporting, and 

the last SOP includes the control board process. Guidance from these SOPs is integrated 

into the top-level action diagram and IDEF0, which focus on the following four major 

actions: business and technical feasibility analysis; assess available personnel; perform 

contracts development; and perform agile software development.  
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Within the assets and actions aligned to the top-level architecture for business and 

technical feasibility analysis, there are several constraints to the primary functions 

performed within the C2IS division. The primary functions that are assumed within the 

business analysis include those dealing with customer demand, needs analysis, project 

planning, and work acceptance. Most business and technical feasibility functions are 

captured within the system boundary. However, there are myriad external systems and 

policies that constrain how business and technical functions are perform, which include 

organizational guidance, government regulations, and industry standards. For example, the 

work acceptance process will ensure work to be performed aligns to the organization’s 

mission, and work that does not align, will not be permitted to proceed.  

The process for assessing available personnel includes actions to perform an initial 

assessment of existing personnel and processes for performing a personnel selection from 

existing personnel. The boundary does not include hiring of external or new employees 

and the human resources process that accompanies onboarding new employees. The 

boundary also does not extend to educational or other research institutions. The main 

boundary assumption is that existing employees will be assigned or redirected to new work 

and supported by a contractor workforce. New employees can be hired; however, that 

process is outside the scope of this thesis.  

Contractual development is contained to the task order level as opposed to the basic 

contract level. The C2IS division uses multiple award contracts (MACs) versus single-

award contracts. Within a MAC environment, task orders are awarded against each basic 

contract. The contractual process modeled and incorporated into the architecture is limited 

to task orders with the assumption that the basic contract has already been awarded. 

Modeling the federal acquisition regulatory process and statutes that govern a single award 

or MAC contract is outside the boundary of this thesis. In addition, within the contractual 

development process, the boundary does not extend to include the detailed processes of 

contracting specialists or legal representatives that compete and award the contracts. Those 

personnel interface with other external systems that are beyond the scope of this thesis. 

The primary architecture function of performing agile software development 

includes the sub-functions of performing capability assessments, software design, software 
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development and review, configuration management services, software quality 

engineering, and continuous integration and test. Within this primary function, design and 

development tools and infrastructure used for the architecture can be contained within the 

system boundary; however, they may cross the architecture boundary into an external 

system. For example, if one selected a server-based development implementation, the tools 

used within the server would be considered within the boundary of the system, but the 

server provider and their supporting systems would be considered outside the boundary of 

the architecture. Assets reflecting local instantiations of agile software development tools 

and infrastructure would be considered part of the architecture boundary. In essence, the 

physical boundary of the system may change with the implementation method chosen. 

“Boundary conditions mediate the flow of energy, matter, material wealth, and information 

(EMMI) across interfaces at boundaries” (Langford 2012, 42). On-premise hardware may 

be utilized, and a cloud-based infrastructure may also be utilized. From an architecture 

perspective, the functions performed are more critical than the physical asset performing 

them. There are additional activities that occur after software is developed and a decision 

to release the software is made. Examples such as formal operational testing, deployment 

of the software via download or manual delivery, and post deployment support are outside 

the boundaries of and not within scope of the models developed for this thesis. 

Another factor to consider within the parameters of the architecture is that the 

performing assets are not prescriptive with respect to the personnel performing the action. 

An example of the non-prescriptive nature of the architecture assets is that a software 

designer can also be a software quality engineering team member in a separate activity. 

The software designer and software quality engineering team member in this example is 

not mutually exclusive. This holds true in the architecture for many additional activities. 

An additional constraint implemented in this architecture is derived from the heuristic of 

only specifying one mechanism per function. This adheres to the best practice described in 

Giammarco’s 2012 architecture model-based interoperability assessment (AMBIA) 

dissertation, which states, “every exchanged resource between any two performers is 

subject to some rule that constrains those performers” (17). In the case of the subject 
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functional architecture, there are overarching controls of organizational guidance, 

government regulations, and industry standards. 

Quantifiable metrics were gathered for specific process parameters of the Innoslate 

action diagrams to enable realistic simulation within the MBSE Innoslate tool. Due to 

limitations in gathering and applying historical metrics from the C2IS division, real-world 

metrics are only applied to the software sprint section of the agile software development 

Innoslate architecture. Metrics were available for the planned and actual number of 

developers involved in a software development sprint. We discovered that projects were 

not tracking the planning work leading up the sprint and the review work after the sprint 

with as much details as the actual sprint. The model developed establishes the framework 

to enable collection of metrics within the model for future use. 

 OVERVIEW OF CHAPTERS 

After he background, purpose of the SOPs, and the purpose of the corresponding 

architecture created for this thesis are reviewed in Chapter I, Chapter II delves into software 

process models, applicability to existing research, and the methodology utilized to assess 

the standard operating procedures and generate the corresponding architecture. The chapter 

describes how the MBSE tool Innoslate was utilized to construct the architecture and 

explores the modeling framework utilized, which focuses on the agile software 

development process. 

The architecture and action diagrams focus on four holistic functions that enable 

agile software development within a government environment: business and technical 

feasibility analysis; assess available personnel; perform contracts development; and 

perform agile software development. These details are captured in Chapter III, which 

focuses on the action and IDEF0 diagrams. Within Chapter III, the architecture is 

decomposed from the top-level action diagram and IDEF0 model down to their respective 

component parts. This chapter describes the actions and assets within each diagram and it 

explains their corresponding inputs, outputs, controls and mechanisms. In aggregate, 

Chapter III provides a holistic agile software development architecture.  
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Chapter IV focuses on model usage and the details behind simulating the action 

diagram architecture and quantifying corresponding actions. It describes the architecture 

and corresponding modifications made to simulate the diagrams in Innoslate. 

Quantification of metrics for simulation focuses on the Software Sprint process within the 

agile software development cycle and ties the metrics to real-world data obtained from a 

software development project in the C2IS division within SSC Pacific. 

Chapter V provides analysis regarding model prediction measures and threats to 

model validity. Discussion includes an analysis of model testing and application of 

verification and validation tests to determine if the model can accurately predict effort and 

cost assess the validity of the model. The model is discussed in the context of traditional 

post-calibrated models and applicability of use in early phase cost estimating. 

The conclusion summarizes the findings with respect to an architecture model for 

agile software development within the organization. After revisiting the overall findings 

based on the thesis statement, recommendations based on the findings are offered. 

Following delivery of recommendations, the conclusion provides a summary of topics that 

were out of scope for this project, which could be researched as future work.  



10 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

  



11 

II. RELATED WORK AND APPROACH 

 INTRODUCTION 

This chapter discusses software process models and software process modeling. To 

put the modeling into context, we discuss applicability to related research in the area of 

software process modeling and simulation. In addition, the modeling approach used to 

develop action diagrams and IDEF0 diagrams is discussed. Section B discusses software 

process models and process modeling. Rationale is provided as to why the agile framework 

was selected over other software process models. Section C discusses software process 

modeling. For this research, we implemented a discrete event software process modeling 

approach. Section D provides a literature review of related efforts applicable to this thesis. 

Section E outlines the methodologies utilized to create the action and IDEF0 diagrams 

described in Chapter III and model usage described in Chapter IV in order to convey the 

content of the organizational SOPs for agile software development.  

 SOFTWARE PROCESS MODELS 

Developing an effective architecture requires understanding the process model 

implemented within that process architecture. As such, one of the first steps taken is to 

select a process model that captures how the C2IS division creates and delivers software. 

Both prescriptive and agile software development process models were assessed. Since all 

C2IS division SOPs focused on use of an agile framework, this is the framework that we 

chose to implement. However, to put the agile process model architecture in context, it is 

beneficial to understand several other prescriptive process models in addition to the agile 

framework. Discussion for prescriptive process models provides background and context 

of numerous software process models. The agile process model is discussed within the 

context of how it is utilized within the organization.  

1. Prescriptive Process Models 

A prescriptive process model provides an organized means for developing new 

software by prescribing a specific structured process (Pressman 2010, 38). Examples of 
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prescriptive process models include the waterfall process model, the incremental process 

model, the spiral development process model, and the V-model (Pressman 2010, 39–46). 

Each of these models has its respective benefits and deficiencies. Understanding these 

process model types provides context relative to the agile process model used.  

The waterfall process model provides “recognition of the feedback loops between 

stages, and a guideline to confine the feedback loops to successive stages to minimize the 

expensive rework involved in feedback across many stages” (Boehm 1988, 63). However, 

there are challenges with this process model. “A primary source of difficulty with the 

waterfall model has been its emphasis on fully elaborated documents as completion criteria 

for early requirements and design phases” (Boehm 1988, 63). The waterfall process model 

requirement for extensive documentation results in work that is not necessarily required 

and can consequently add avoidable effort and cost to software development projects. The 

waterfall model can be observed in Figure 1. 

 

Figure 1. Waterfall Software Process Model. Source: Boehm (1988). 
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Another prescriptive process model is the incremental process model. Incremental 

process modeling takes “a relatively narrow slice of functionality through all activities to 

produce a version of the system that is then verified and validated, before incrementally 

adding the next slice of functionality” (Douglass 2016, 22). The incremental process model 

can be visualized as a cycle in which validated work is reintroduced to subsequent work as 

an iterative building process (see Figure 2). “The success of incremental and agile methods 

in software development is due largely to the ease with which software can be refactored” 

(Douglass 2016, 22). The incremental model and agile process model share in elements of 

success due to their ability to produce software quickly and to process rework. Developing 

and delivering software using an iterative approach also can help provide early insight into 

risk of defective software code. However, an assumption of the incremental approach is 

that it depends on up-front and available well-defined requirements and is referred to as “a 

‘depth-first’ approach” (Douglass 2016, 22). This can lead to challenges from a systems 

architecture approach if all requirements are not available at the onset.  

 

Figure 2. Incremental Life Cycle Process Model. Source: Douglass (2016). 
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The spiral process model is a prescriptive model that “can accommodate most 

previous models as special cases and further provides guidance as to which combination 

of previous models best fits a given software situation” (Boehm 1988, 64–65). In the spiral 

process model “the model reflects the underlying concept that each cycle involves a 

progression that addresses the same sequence of steps, for each portion of the product and 

for each of its levels of elaboration” (Boehm 1988, 65) (see Figure 3). Although the spiral 

process model is highly adaptable, it also has challenges. Its “three primary challenges 

involve matching to contract software, relying on risk-assessment expertise, and the need 

for further elaboration of spiral model steps” (Boehm 1988, 69–70). 

 

Figure 3. Spiral Software Process Model. Source: Boehm (1988). 

Another prescriptive process model is the V-Model. “The V-model is an extended 

(or perhaps “bent”) waterfall life cycle in which the activities on the left side of the “V” 

stipulate two different but related work products: a specification and its means of 

verification” (Douglass 2016, 20). The V-model process model can be visualized and 
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thought of as top-down system realization and bottom-up verification and validation (see 

Figure 4). “The V-model is a “breadth-first” approach in that each work product is assumed 

to be created in one activity and is expected to be complete, accurate, and correct at that 

point and forever more” (Douglass 2016, 20–21). This can be an issue for software projects 

with loosely or undefined requirements. In addition, Douglass points out that “not only are 

there unknowns when planning, some of the things you do know will change later. The V-

model life cycle is notoriously resistant to changing customer needs, requirements, 

technologies, and staffing” (2016, 21). 

 

Figure 4. V-Model. Source: Douglass (2016). 



16 

2. Agile Framework 

In agile software development, incremental development and delivery divides work 

“into meaningful slices of the total end result, delivered in gradually more complete 

versions” (Hayes and Miller 2017, 21). The agile framework can be further understood by 

examining its supporting tenants and characteristics. According to Madachy (2008, 37), 

there are four value propositions associated with the agile manifesto, which include 

“individuals and interactions over processes and tools, working software over 

comprehensive documentation, customer collaboration over contract negotiation, [and] 

responding to change over following a plan” (Madachy 2008, 37). To clarify the agile 

framework approach to problem solving, the emphasis is placed “on ‘solving the problem’ 

by getting continuous customer and quality feedback rather than following the plan” 

(Douglass 2016, 44). The Agile Alliance specifies the following core principles that 

provide the impetus for agile software development and support the agile manifesto:  

Our highest priority is to satisfy the customer through early and continuous 
delivery of valuable software. Welcome changing requirements, even 
late in development. Agile processes harness change for the customer’s 
competitive advantage. Deliver working software frequently, from a 
couple of weeks to a couple of months, with a preference to the shorter 
timescale. Business people and developers must work together daily 
throughout the project. Build projects around motivated individuals. Give 
them the environment and support they need, and trust them to get the 
job done. The most efficient and effective method of conveying information 
to and within a development team is face-to-face conversation. Working 
software is the primary measure of progress. Agile processes promote 
sustainable development. The sponsors, developers, and users should 
be able to maintain a constant pace indefinitely. Continuous attention 
to technical excellence and good design enhances agility. Simplicity— 
the art of maximizing the amount of work not done—is essential. The 
best architectures, requirements, and designs emerge from self-organizing 
teams. At regular intervals, the team reflects on how to become more 
effective, then tunes and adjusts its behavior accordingly. (Agile Alliance 
2018) 
The International Council on Systems Engineering (INCOSE) specifies that the key 

objective of agile development is “flexibility, and allowing selected events to be taken out 

of sequence when the risk is acceptable” (INCOSE 2011, 40). The aggregate results of 

these principles are emphasized by the Systems and Software Consortium (2007), which 
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upholds that successful implementation of the agile software development process ensures 

an earlier return on investment, an expedient delivery of working software, faster responses 

to customer changes, mitigation of schedule risk due to shorter delivery cycle, and higher 

productivity and quality. This agile framework is captured within action diagrams, which 

are discussed in detail in Chapters III and IV. 

 SOFTWARE PROCESS MODELING 

To execute effective simulations with meaningful output based on the process 

architecture captured in the process models, it is critical to understand software process 

modeling approaches and their suitability for simulating given scenarios. In the context of 

process modeling used, “simulation is a statistical sampling experiment in which models 

convert stochastic inputs into statistical data output” (Madachy and Houston 2018, 98). 

Process modeling simulations bring added value and insight to a process architecture, since 

“simulation is used to represent the behavior of systems, processes, or scenarios” (Madachy 

and Houston 2018, 3).  

1. Overview of Process Modeling Approaches 

There are several process modeling approaches to consider when deciding how to 

simulate a process. Process modeling approaches considered include “continuous 

modeling, discrete event simulation, and agent-based simulation” (Madachy and Houston 

2018, 21) as well as hybrid process modeling. It is essential to understand the different 

types of process modeling techniques to ensure they are applied effectively for process 

architecture model simulation. Therefore, before proceeding with adopting a process 

modeling approach, it is important to weigh the assumptions, advantages, disadvantages, 

and tradeoffs of the different process modeling approaches. It is also important to keep 

these modeling techniques in context with respect to the C2IS division process architecture 

described in Chapter III. Discussion includes the concept of continuous, discrete-event, 

agent-based, and hybrid software process modeling. 
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a. Continuous Process Modeling 

In continuous process modeling “the continuous view does not track individual 

events; rather, tasks are treated ‘in the aggregate’ and systems can be described through 

differential equations” (Madachy 2008, 55). Additionally, “a continuous model shows how 

values of the attributes change as functions of time, computed at equidistant small time 

steps. These changes are typically represented by smooth continuous curves” (Madachy 

and Houston 2018, 3). Understanding the functionality of continuous process modeling 

provides further context relative to other process modeling approaches considered for this 

thesis. Within continuous process modeling, “system dynamics is the most widely used 

form of continuous simulation” (Madachy and Houston 2018, 58). System dynamics 

provides a modeling environment that can “facilitate human understanding and 

communication of the process, but does not explicitly consider automated process guidance 

or automated execution support” (Madachy and Houston 2018, 25). 

b. Discrete-Event Process Modeling 

Discrete-event process modeling “approaches model each and every event. Their 

focus is usually on the flow of discrete entities without having feedback connections and 

the resulting internal dynamics” (Madachy 2008, 56). In the process architecture for this 

thesis, each simulated entity is depicted as a block within an action diagram. When the 

process model architecture is simulated, “the entities move through a system represented 

as a network of nodes, perform activities by using resources, and create events that change 

the state of a system” (Madachy and Houston 2018, 43). Discrete-event simulations result 

in variations that “occur instantaneously as the simulated time lapses and are reflected in 

the output as discontinuous fluctuations” (Madachy and Houston 2018, 3).  

c. Agent-Based Process Modeling 

An additional approach to process modeling is agent-based modeling. This type of 

modeling represents “interacting entities, or agents. Agents have their own characteristics 

and can initiate actions, communicate with one another, and react to one another. Like 

discrete event simulation, agent-based models generally treat time as a series of discrete 

events” (Madachy and Houston 2018, 22). Agent-based processing modeling is an effective 
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“tool to study complex systems with many interacting entities and non-linear interactions 

among them. Emergent behaviors can result, which are patterns generated by the 

interactions of the agents, which are often unexpected” (Madachy and Houston 2018, 52). 

In this context of a process architecture, it is critical to know what comprises the model as 

this contributes the success of agent-based modeling.  

d. Hybrid Process Modeling 

An understanding of continuous and discrete-event process modeling is helpful to 

understand the dynamics of a hybrid process modeling approach. Hybrid process modeling 

is instantiated when its simulations “support both continuous and discrete event timing in 

the same model” (Madachy and Houston 2018, 22). Hybrid process modeling has an 

increased likelihood of being used when “no single modeling approach is well suited to all 

aspects of that situation” (Kellner, Madachy, and Raffo 1999, 15). By combining 

continuous and discrete processes, the hybrid process model can help perform a successful 

simulation where either of the processes alone would not be sufficient. 

2. Process Modeling Approaches Advantages, Disadvantages, and 
Tradeoffs  

a. Advantages of Process Modeling Approaches 

There are advantages among each of the process modeling approaches discussed. 

One of benefits of continuous process modeling is that “continuous simulation models may 

also be applied to systems that are discrete in real life but where reasonably accurate 

solutions can be obtained by averaging values of the model variables” (Madachy and 

Houston 2018, 36). Additionally, continuous process modeling “accurately captures the 

effects of feedback” (Kellner, Madachy, and Raffo 1999, 15), and it provides a “clear 

representation of the relationships between dynamic variables” (Kellner, Madachy, and 

Raffo 1999, 15). For application of continuous models in practice, the “continuous models 

are useful in such areas as engineering design where well-established mathematical 

relationships give rise to models consisting of differential or algebraic equations” 

(Madachy and Houston 2018, 3). 
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There are several advantages associated with applying discrete-event process 

modeling. “Discrete event simulation views systems and processes as interconnected 

event-based flows of entities through queues and activities. This view corresponds well 

with intrinsic, measurable, real-world phenomena” (Madachy and Houston 2018, 45). 

Additionally, discrete-event simulation is “CPU efficient since time advances at events” 

(Kellner, Madachy, and Raffo 1999, 15). It also provides simulation flexibility since its 

“attributes allow entities to vary” (Kellner, Madachy, and Raffo 1999, 15). Discrete-event 

model processing is also advantageous since it “queues and interdependence capture 

resource constraints” (Kellner, Madachy, and Raffo 1999, 15). Additionally, “Discrete-

event modeling has some advantages for product analysis because different attributes can 

be attached to individual entities like defects” (Madachy 2008, 273). 

Advantages of agent-based process modeling are derived from its ability to utilize 

agents in environments. More specifically, “agent-based models have been primarily 

developed for socio-economic systems simulating the interactions of autonomous agents 

(both individual or collective entities such as organizations or groups) to assess their effects 

on the system as a whole” (Madachy and Houston 2018, 53). Using this holistic approach 

enables agent-based process modeling to simulate models in their respective environment 

more effectively. 

Hybrid process modeling is beneficial for more complex models. This is 

particularly true in cases where “simulation software will no longer be so cleanly divided 

among continuous, discrete event, or agent-based methods. Applications will incorporate 

hybrid modeling to capture different perspectives and allow multiple-view insights” 

(Madachy 2008, 497). Additionally, “a hybrid approach combining continuous and 

discrete-event modeling is very attractive for product applications. It can model the 

creation of artifacts with attributes, modify those attributes based on system variables, and 

allow system variables to vary continuously” (Madachy 2008, 273). By combining the 

benefits of multiple process modeling approaches, hybrid process modeling can simplify 

more complex modeling cases by ingesting and simulating model variables with an 

appropriate modeling process. 
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b. Disadvantages of Process Modeling Approaches 

There are disadvantages that can be attributed to process modeling approaches as 

well. A shortfall of continuous process modeling is that “sequential activities are more 

difficult to represent” (Kellner, Madachy, and Raffo 1999, 15). Additionally, continuous 

process modeling has “no ability to represent entities or attributes” (Kellner, Madachy, and 

Raffo 1999, 15).  

A primary disadvantage of discrete-event process modeling is that “continuously 

changing variables not modeled accurately” (Kellner, Madachy, and Raffo 1999, 15). Also, 

discrete-event process modeling has “no mechanism for states” (Kellner, Madachy, and 

Raffo 1999, 15). Without a mechanism for overall model states, it is possible that 

influential variables go unaccounted for in discrete-event simulations.  

One of the main challenges associated with agent-based process modeling is that 

“agent-based modeling is relatively new without an extensive history of engineering usage 

like discrete event and continuous modeling” (Madachy and Houston 2018, 52–53). 

Without a history of metrics and prior work to reference, one can infer that agent-based 

modeling becomes harder to apply appropriately based on similar cases. 

Although hybrid process modeling can draw from the benefits of other process 

modeling approaches, it also has a shortfall when it comes to assessing complexity. Since 

hybrid process modeling typically deals with more complex cases, “these situations may 

require understanding of complex feedback processes involving such interacting 

phenomena as schedule pressure, communication overhead, or numerous others” 

(Madachy 2008, 25). One can infer that increases in complexity in executing a simulation 

may result in a higher risk of error. 

c. Tradeoffs of Process Modeling Approaches  

Based evaluation of the process modeling approaches for continuous, discrete-

event, agent-based, and hybrid simulations, tradeoffs for the specified process modeling 

approaches are evident. Tradeoffs become apparent early in modeling a process 

architecture for the sake of data preservation, as exemplified by Madachy’s (2008, 56)  
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work, which raises the question, “Are there discrete aspects that need to be preserved for 

the purpose of the study? If so, then a discrete or hybrid modeling approach may be better 

suited than system dynamics” (Madachy 2008, 56). 

 Additionally, understanding tradeoffs is important to identify which process 

modeling approach is right for a given model during its construction. The system model 

must account for process flow, interactions and interdependencies of model entities and 

resources, and characteristics and rules model behaviors. (Madachy and Houston 2018, 

33). In some cases, tradeoffs become more evident based on validity of certain process 

models in context. “There are many systems that should be modeled as discrete because no 

continuous approximations are valid” (Madachy and Houston 2018, 3). There is also an 

opportunity to evaluate tradeoffs with respect to how performance of process activities is 

portrayed in the modeling. The level of model abstraction can influence whether a 

continuous model or discrete-event model is needed. Continuous models are usually more 

abstract than discrete event models (Madachy and Houston 2018, 33). When a more global 

view is required, a continuous model can be more appropriate. In contrast, when a more 

granular view is required that demonstrates step-by-step changes in model entities, a 

discrete-event model can be more appropriate (Madachy and Houston 2018, 33). If the 

behavior of individual objects in the context of how they interact and influence the 

collective model is required, then agent-based modeling is more appropriate (Madachy and 

Houston 2018, 33). Understanding these tradeoffs enables an improved capability in 

selecting the right process modeling approach for the right model simulation. 

3. Selected Process Modeling Approach 

A discrete-event process model is the most appropriate method for simulating the 

process model architecture for this thesis. Decision factors that influenced the decision to 

use discrete-event modeling include analysis of organizational SOPs for agile software 

development, and the advantages, disadvantages, and tradeoffs of the various process 

modeling approaches. “One of the first decisions to be made in modeling is choosing the 

modeling paradigm. This may be dictated by the modeler’s expertise in a particular 

paradigm or the paradigms supported by a simulation software package used in the 
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modeler’s organization” (Madachy and Houston 2018, 21). The granularity of the models 

correlates to the level of detail within the SOPs, thus discrete-event modeling was better 

suited for the problem space. Our thesis uses the discrete-event process modeling to 

execute action diagrams in Innoslate based on the tools ability to simulate the 

corresponding process architecture in Innoslate using discrete and Monte Carlo 

simulations. This was the primary driver for using discrete process modeling to execute the 

Innoslate simulation for the action diagrams, discussed in detail in Chapters III and IV. 

Our approach was to adopt a build-test-fix approach in a small incremental manner. 

This approach is instrumental in providing early insight into issues with the model as it is 

developed. Discrete-event process modeling also provides the ability to create starting 

points, stopping points, a logical and interconnected flow, with interdependencies between 

action entities (Madachy and Houston 2018, 45). When executing simulations in the 

process architecture, the concept of discrete-event process modeling was applied such that 

“attribute values are used to set activity durations and to route entities through a model. 

Variable values are updated with each event” (Madachy and Houston 2018, 21). A major 

deciding factor for using discrete-event process modeling was the fact that the process 

architecture tool, Innoslate, only supports discrete-event modeling at this time.  

The problem domain presented by the C2IS SOPs and their corresponding action 

diagram process architecture in Innoslate yielded a prime opportunity to apply discrete-

event process modeling methodology due to the nature of individual action diagram 

entities. Each action diagram entity in Innoslate provides the ability to update and adjust 

metrics, which can perform discrete or Monte Carlo simulations. The process architecture 

created in Innoslate maps directly to the detailed SOPs, which supports the simulations. 

The holistic discrete-event process modeling of this process architecture is key to the 

simulation success. “The quality of a simulation model depends on the structure of the 

model and on the quality of the model inputs. Every model input should be considered for 

its uncertainty” (Madachy and Houston 2018, 94). A more detailed level of tracking is 

enabled by using discrete-event process modeling for actions based on staff members.  
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Another modeling tool considered to develop the process architecture was 

Monterey Phoenix. “Monterey Phoenix (MP) is a framework for software system 

architecture and business process (workflow) specification based on behavior models” 

(Auguston 2018, 5). It provides insight into and helps answer questions regarding a 

“system’s behavior, including such aspects as structure of behavior, dependencies between 

actions involved in the behavior, constraints on behaviors” (Auguston 2018, 6). Monterey 

Phoenix provides the ability to visualize those behaviors based on events that evolve over 

time, including subsystem behavior and their interaction (Auguston 2009, 3). Event 

attributes can include probability, duration, and cost. Monterey Phoenix “produces 

exhaustive set of all valid behaviors for a given scope and renders prorated probability for 

each scenario in that set” (Auguston 2018, 52). 

Both Monte Carlo simulation and Monterey Phoenix models are executable. Unlike 

Monte Carlo simulation, Monterey Phoenix supports “automated and exhaustive 

…scenario generation for early system architecture verification” up to a user-defined scope 

limit (Auguston 2018, 5). As such, Monterey Phoenix can provide a more formal and 

complete set of process-behavior scenario outcomes that results in a larger sample size of 

scenarios using the same statistical analysis performed with historical project data. 

However, given the lack of extensive experience with Monterey Phoenix, we determined 

that the use of Monterey Phoenix was more appropriate for future work. 

 APPLICABILITY TO EXISTING RESEARCH 

There are a significant number of research efforts pertaining to process modeling 

and software process modeling. A search of software process modeling in scholarly 

journals and other peer-reviewed publications within the past 10 years produced 320 

results. While not all of these may be applicable to research for this thesis, the search results 

demonstrate the breadth of research conducted or being conducted related to software 

process modeling. As part of this thesis, we reviewed 15 different sources and selected six 

research efforts that have or potentially have correlation with this thesis. These included 

the following research: An Agile Project System Dynamics Simulation Model (White  
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2014), A Reference Model for Simulating Agile Processes (De Silva, Rayadurgam, and 

Heimdahl (2015), Agile Project Dynamics: A System Dynamics Investigation of Agile 

Software Development Methods (Glaiel, Moulton, and Madnick, 2013), Modeling 

Dynamics in Agile Software Development (Cao, Ramesh, and Abdel-Hamid, 2010), 

Managerial Implications and Comparative Effects of SAFe Scaled Agile Methods in 

Government Software Acquisition (Moulton et al. 2017), Early Phase Cost Models for 

Agile Software Processes in the U.S. DoD (Rosa et al. 2017, 34). 

The research conducted by White (2014) focused on helping project managers and 

their ability to more accurately forecast agile development process performance versus 

waterfall for NASA. While our thesis does not directly compare agile and waterfall 

software development modeling processes, White’s research provides greater insight into 

the development cost for agile software development (2014, 74). In addition, White’s 

research included analysis and comparison of rework required between agile and waterfall 

methods. The process architecture for this thesis captures rework cycles within the model 

and is accounted for in the IDEF0 and action diagrams. Our model does not currently 

quantify planned versus completed task as a function of rework. Further analysis and 

comparison of the research by White (2014) may provide insight into being able to quantify 

rework as part of the agile framework.  

The research conducted by De Silva, Rayadurgam, and Heimdahl (2015) 

“introduces a process simulation reference model that provides the constructs and 

relationships for capturing the interactions among the individuals, product, process, and 

project in a holistic fashion—a necessary first step towards a process evaluation 

environment for agile processes” (De Silva, Rayadurgam, and Heimdahl 2015, 1). The 

author’s reference model for simulating agile processes encompassed modeling behavior 

of individuals as well as decoupling product from process. An agent-based modeling 

approach was explored and resulted in “implementing models to represent individual 

behavior using agents as abstractions of people” (De Silva, Rayadurgam, and Heimdahl 

2015, 90). Research for this thesis primarily focused process architecture modeling but it 

was not constructed with agent-based modeling methods and rather than decoupling 

product and process, they were modeled in a holistic and integrated approach.  
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The research conducted by Glaiel, Moulton, and Madnick (2013) focused on 

creating a framework for seven agile characteristics to explore how different combinations 

of agile features impact outcomes. These seven characteristics are defined as the “agile 

genome,” or the core set of characteristics that are required to truly be agile (Glaiel, 

Moulton, and Madnick 2013, 3). Two of these core characteristics include customer 

involvement and continuous integration. It is important to note that Glaiel, Moulton, and 

Madnick’s research was also done within the context of commercial and government 

organizations. The incorporation of continuous integration and customer involvement for 

agile development within a government organization aligns to the work in our thesis 

pertaining to the process decomposition of the SOPs into distinct actions that form together 

in a holistic fashion to produce a holistic architecture.  

The research conducted by Cao, Ramesh, and Abdel-Hamid (2010) resulted in 

creation of a system dynamics model that accounts for interdependencies of agile 

development practices. As with the process architecture model for this thesis, structural 

and behavioral tests were extensively used by Cao, Ramesh, and Abdel-Hamid to validate 

the system dynamics model (Cao, Ramesh, and Abdel-Hamid 2010, 15). Cao, Ramesh, and 

Abdel-Hamid’s research focused on enhancing “understanding of agile software 

development, especially the dynamic nature of agile practices when viewed as an integrated 

system” (Cao, Ramesh, and Abdel-Hamid 2010, 22). The scope of which included analysis 

of agile practices to include cost, schedule, and project scope. This included developer team 

size, sprint durations, and requirements volatility. Gaining further insight into how 

requirements volatility can be accounted for within our process architecture model is an 

area for further exploration.  

The research conducted by Moulton et al. (2017) focused on scaled agile framework 

(SAFe), which is intended to be able to scale smaller teams of agile developers in order to 

meet larger organizational agile development efforts. While our research does not focus on 

scaled agile, the action diagrams developed are intended to help managers visualize and 

understand the application of the agile framework within the organization. Surprisingly, a 

search for scholarly journal articles in the past 10 years on scaled agile framework only 

provided 23 results. Scaled agile is still a relatively new field within agile; however, 
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furthering our research to scale the process architecture for an enterprise level requires a 

thorough understanding of how scaled agile should be implemented. 

The research conducted by Dr. Giammarco’s AMBIA dissertation (2012) provided 

insight to heuristics for architecture development. This work influenced how we developed 

the action diagrams and IDEF0 diagrams for the process architecture developed for this 

thesis. Further collaboration for the purposes of a process architecture for software 

development projects is applicable to the research for this thesis. Using the tenets of system 

architecture, software process modeling can be extrapolated to higher-level architecture 

diagrams and assist organizations in developing MBSE solutions that are able to address 

the interdependencies and complexities of agile software process architectures.  

The research by Rosa et al. (2017) focused on early phase cost modeling within the 

U.S. DoD. The objective of this research was “to improve cost estimation by investigation 

available sizing measures, and providing practical effort estimation models for agile 

software development projects” (Rosa et al. 2017, 1). This research also provides insight 

into structured methods of gathering data, normalizing data for analysis, and measures to 

assess model validity. Variables included product and staff size. Data collection, analysis, 

measures of validity and staff size are directly related to the research for our thesis; 

however, product size and its impact on resulting cost estimations is an area for further 

exploration and collaboration. Additionally, Rosa et al. (2017) used a static cost modeling 

approach whereas our process architecture model uses effort-based simulation. 

 MODELING APPROACH 

The model types used within Innoslate are action and IDEF0 diagrams. The 

modeling approach includes the following: assessment of the SOPs, use of LML, 

architecture development conventions for action diagrams and IDEF0 diagrams, definition 

of system boundaries, simulation of the models, model testing, and verification and 

validation (V&V).  

The action diagrams were constructed as a discrete model. “Discrete models 

contain distinct…entities that move through the process and can have attached attributes.  
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Change happens in discrete steps. This supports sophisticated, detailed analyses of the 

process and project performance” (Kellner, Madachy, and Raffo 1999, 15). Discrete 

modeling facilitated the successful completion of the model to ensure no errors were 

present. Innoslate supports Monte Carlo simulations in addition to discrete simulations. 

Monte Carlo is a stochastic simulation technique. “Stochastic modeling recognizes the 

inherent uncertainty in many parameters and relationships. Rather than using 

(deterministic) point estimates, stochastic variables are random numbers drawn 

from a specified probability distribution” (Kellner, Madachy, and Raffo 1999, 15). In 

addition to the core function of software development, there are other supporting functions 

modeled. These include business and technical feasibility analysis, contracts, and 

personnel assessment. 

The essence of modeling is to provide a representation of systems in order to 

“predict and analyze performance, costs, schedules, and risks and to provide guidelines for 

systems research, development, design, manufacture, and management” (Maier 2009, 12). 

To model the architecture described within this thesis, we utilized the MBSE tool Innoslate 

version 3.9 to construct action diagrams and corresponding IDEF0 diagrams. We selected 

Innoslate as the MBSE process architecture tool for this thesis based on its ability to create 

action diagrams that can generate simulated output based on customizable metric-based 

parameters, the ability to generate corresponding IDEF0 diagrams that capture process 

functionality, and the fact that common assets that are used across separate diagrams have 

traceability throughout the architecture. Additionally, the fact that Innoslate projects are 

stored online facilitates collaboration among authors and advisors. The adoption and 

implementation of agile model-based system engineering can be thought of as a flowchart 

(see Figure 5). 
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Figure 5. Incorporating Agile Model-Based Systems Engineering. 
Source: Douglass (2016). 

In the process of creating diagrams in Innoslate, an LML approach was utilized to 

capture the nuances of agile software development as captured in the organizational SOPs. 

According to the Innoslate developer, SPEC Innovations (2018, 1), Innoslate provides a 

description of its ontology and diagrams by utilizing the Systems Modeling Language 

(SysML) and LML and Life cyclemodeling.org’s LML Specification 1.1 (2015, 3) which 

states:  

LML was designed with 6 major goals. 
1. To be easy to understand, 
2. To be easy to extend, 
3. To support both functional and object oriented approaches within the 

same design, 
4. To be a language that can be understood by most system stakeholders, 

not just Systems Engineers, 
5. To support systems from cradle to grave, 
6. To support both evolutionary and revolutionary changes to system plans 

and designs over the lifetime of a system. 
Most of the systems engineering community recognizes MBSE’s ability 
to evolve, reuse and execute models is a significant improvement over 
the classic “document-based” approach’s static view of a system. 
(Life cyclemodeling.org’s LML Specification 1.1 2015, 3) 
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The adaptable and easily understood design of LML is beneficial in project 

management and systems engineering applications. Within the Innoslate project, several 

primary features of the tool were utilized. The features of Innoslate that help construct the 

system architecture each has its own nomenclature. At a high level, the project logically 

organizes information with a collection of items called entities. With respect to Innoslate 

process architecture, “an entity is something that can exist by itself and is uniquely 

identifiable” (SPEC Innovations 2018, 2). There are seven classes of entities that enable 

system design: requirement, artifact, action, asset, input/output, conduit, and 

characteristics. For the purposes of generating action diagrams within this project, 

modeling involved utilizing actions with assets, inputs, and outputs. Within action 

diagrams in this process architecture, an LML “action entity specifies the mechanism by 

which inputs are transformed into outputs” (Life cyclemodeling.org 2015, 11). An LML 

“asset entity specifies an object, person, or organization that performs Actions, such as a 

system, subsystem, component, or element” (Life cyclemodeling.org 2015, 11). An LML 

input or output (I/O) entity provides “the information, data, or object input to, trigger, or 

output from an Action” (Life cyclemodeling.org 2015, 11). An I/O provides a means to 

guide the flow of actions within Innoslate. Each entity can have attributes, which are 

inherent features that can also provide a means to quantify attributes such as cost or 

duration for an entity.  

The specific teams that perform actions within each SOP were associated with the 

corresponding performing assets in Innoslate as part of the modeling process. In 

performing this function, it was imperative that we utilize common language to capture 

nomenclature for those performing actions so that there was consistency among the 

diagrams. Utilizing this approach ensures simplicity, consistency, and accountability for 

personnel responsible for performing functions. For example, one instantiation of the 

configuration management (CM) team was utilized throughout all models, rather than 

variations of CM group or CM representative. The process of building the architecture was 

an iterative process, which included decomposing higher-level assets to provide depth 

within the model that further defines the architecture within the boundary conditions.  
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When constructing diagrams in Innoslate, the four main SOPs were referenced, but 

additional insight was also obtained from subject matter experts (SME) within the C2IS 

division to ensure accuracy in the architecture model and its fidelity to their actual 

processes. To model the interdependencies and connections between processes described 

in the SOPs, we defined the functional architecture by using action diagrams. Based on the 

activities performed within the SOPs, actions were assigned to corresponding physical 

elements within the architecture. “The function name should start with an action verb and 

include an object of that action. The verb should not contain an objective or performance 

goal such as maximize, but should describe an action or activity that is to be performed” 

(Buede 2009, 204). Within action diagrams there are action blocks, and each has an entity 

which can be customized. Characteristics can be added to provide more detail regarding 

relationships and quantifiable metrics. These further define the architecture and provide 

users with a dynamic tool that can holistically represent the architecture. The architecture 

tools that are utilized to build action diagrams in Innoslate are pictured in Figure 6.  

Figure 6. Innoslate Action Diagram Architecture Objects. 
Source: SPEC Innovations (2017). 

The physical implementation of the architecture entails association with physical 

elements, which can include software, hardware, or human elements. Physical elements 

within Innoslate are referred to as assets, and are denoted using branch labels as shown in 
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Figure 7, which shows the assets Team 1 and Team 2 performing two separate actions on 

separate branches.  

 

Figure 7. Innoslate Action Diagram Assets 

Input and output (I/O) entities need to be used to communicate between actions in 

Innoslate. “In Innoslate, input / output entities are the primary form of communication 

between actions. In order for items to flow among the elements in our system, the 

components will need to communicate with each other through some type of connections” 

(SPEC Innovations 2018, 5). Innoslate performs this function through input/outputs, shown 

in Figure 8 using a green parallelogram. In addition, providing a common connection 

between actions, I/O entries control and guide the flow of processes within an Innoslate 

action diagram by triggering subsequent actions and creating a sequence of activities. 

 

Figure 8. Innoslate Action Diagram I/O 

Each diagram created within Innoslate linked with other diagrams and entities 

within the architecture to create relationships, which provide a means of traceability. This 
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builds off a feature within Innoslate that decomposes an Action diagram at a component 

level to show another layer of detail. The architecture decomposition process is analogous 

with defining characteristics of a forest from 10,000 feet, then from the treetops, then from 

the forest floor, and finally, from down in the weeds. Additional features within Innoslate 

action diagrams include the ability to build loops to show cases in which an action repeats. 

Loops can be set to repeat a pre-set number of times or pre-set with a probability of 

repeating. Figure 9 provides an example of an action diagram loop. 

 

Figure 9. Innoslate Action Diagram Loop Function 

Action diagrams also provide the opportunity to setup “OR” actions to provide an 

opportunity to select between two or more options in a sequence of activities. Each action 

on an “OR” action branch must pair 1-for-1 with corresponding actions on each branch of 

a “SYNC” action. The 1-for-1 pairing between “OR” and “SYNC” action is completed by 

utilizing I/O items to provide a physical item that provides linkage between the “OR” and 

“SYNC” action. When activities corresponding to an “OR” action are performed on 

separate branches of an action diagram, it is necessary have a “SYNC” action to ensure 

the model handles completion of the action appropriately. If an “OR” action is not 

correctly synchronized within the model, the action diagram will produce an error when 

simulated. Figure 10 provides an example of an “OR” action being synchronized between 

two team assets.  

Action diagrams are created using combinations of these assets, entities, and actions 

within Innoslate, and generating action diagrams supports development of corresponding 

IDEF0 diagrams. The IDEF0 diagrams utilize the activities performed in action diagrams 

and graphically display the associated forms for the functional architecture. Another way 
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to consider this is that the activities performed in the action diagrams are expressed as 

functionality in the IDEF0 diagrams. 

 

Figure 10. Innoslate Action Diagram OR Synchronization Function 

According to Buede (2009, 66), an IDEF0 model provides a perspective that 

focuses on a system’s functional or process model and describes it by utilizing a graphical 

modeling language with a holistic methodology for creating models. The IDEF0 model 

“answers definitive questions about the transformation of inputs into outputs”(Buede 2009, 

67), and it provides context by establishing the system boundary. The architectural design 

process requires consideration of system boundaries in order to determine and make clear 

what is inside and outside those boundaries (Crawley, Cameron, and Selva 2017, 24). If 

required, the boundary conditions for the IDEF0 diagrams are further defined to provide 

the viewer with additional context. System boundaries help to divide entities within the 

system from accompanying and external entities (Crawley, Cameron, and Selva 2017, 

123). The IDEF0 diagrams are utilized with the MBSE tool, Innoslate, to capture the SOP 

system boundaries within the holistic architecture. The IDEF0 has one viewpoint from the 

perspective of the topic system, which helps provides a common environment additional 

context for understanding the system. This type of diagram leverages an interconnected set 

of diagrams, which utilize the intuitive flow of graphics in conjunction with corresponding 

descriptive verbiage in the graphics. Decomposition of Innoslate IDEF0 diagrams provides 
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a greater level of detail for functions that are found at a higher level within the architecture. 

The top-level IDEF0 diagram “defines the inputs, controls, outputs, and mechanisms 

(ICOMs)” (Buede 2009, 67) for the subsequent decomposed diagrams. The context of an 

IDEF0 “establishes the boundaries of the system or organization being modeled by 

defining the inputs and controls entering from external systems and the outputs being 

produced for external systems” (Buede 2009, 67). For this thesis, the IDEF0 diagrams were 

created using the Innoslate architecture entities shown in Figure 11. These included basic 

mechanisms, inputs, outputs, and controls.  

 

Figure 11. Innoslate IDEF0 Diagram Architecture Tool. 
Source: SPEC Innovations (2017). 

An additional feature within Innoslate is the “Entity View,” which is associated 

with each asset block in an architecture model. The “Entity View” is accessible for any 

given asset or collection of assets by selecting it from a drop-down menu. An image of the 

“Entity View” graphical user interface (GUI) is shown in Figure 12. This view enables the 

user to apply metrics such as duration and cost to specific assets within the architecture. It 

is through modification of the “Entity View” metrics that assets in Innoslate can be 

accurately quantified to yield realistic simulation output for a given set of assets. 

Additionally, the “Entity View” provides a method for managing relationships and linkages 

between assets to ensure traceability. 
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Figure 12. Innoslate Entity View 

  CHAPTER SUMMARY 

This chapter provided a brief literature review of similar research in the context of 

agile software development modeling and simulation. Software process models, to include 

waterfall, spiral, incremental, V-model, and the agile development process were discussed. 

In the context of this thesis, agile software development is used exclusively. A detailed 

discussion of the MBSE tool, Innoslate, was provided for insight into how the process 

architecture was developed for this thesis. The overview of Innoslate and process models 

provides the reader with appropriate context in order to have a better understanding of the 

models presented in Chapter III and Chapter IV. 
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III. MODEL DEVELOPMENT AND RESULTING 
ARCHITECTURE 

 INTRODUCTION 

This chapter discusses the action and IDEF0 diagrams developed as part of an 

analysis of existing SOPs for agile software development. The scope of the action and 

IDEF0 models also includes business and technical feasibility analysis of candidate 

software capabilities, assessing and selecting existing personnel for the new work, and 

contractual actions to support technical activities. Discussion encompasses model purpose, 

decomposition of action diagrams to the lowest level required, IDEF0 diagrams to 

represent an architectural view and high-level representation of the action diagrams, model 

constraints, and boundaries. Models were vetted and validated through appropriate subject 

matter experts within the organization. Section B of Chapter III discusses the level 0 action 

and IDEF0 models and provides a high-level overview that serves as a foundation for the 

other diagrams that follow. Chapter III Section C discusses organizational processes 

models for business and technical feasibility of candidate products or deliveries. Chapter 

III Section D provides a model for assessment of available personnel to assign to new or 

existing work. Chapter III Section E discusses models for contracts planning, development, 

and execution within the organization. Chapter III Section F discusses models for agile 

software development. This chapter closes with Chapter III Section G, which provides 

conclusions and recommendations for the next actions to expand the modeling work done 

as part of this project. 

 LEVEL 0 ACTION AND ARCHITECTURE MODELS 

This section discusses the high-level action and IDEF0 diagrams that provides 

context for the major components of the architecture. The top-level action diagram is 

partitioned into four major actions: “business and technical feasibility analysis (B.1),” 

“assess available personnel (P.1),” “perform contracts development (C.2),” and “perform 

agile software development (D.1)” (see Figure 13). The action of “reject or redirect (R.1)” 

is a supporting action placed in parallel with the entire model and designed to handle reject 
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or redirect triggers from actions within the decomposed diagrams to end the process 

without further work. The actions “business and technical feasibility analysis (B.1)” and 

“assess available personnel (P.1)” are performed in parallel before “perform contracts 

development (C.2)” and “perform agile software development (D.1).” The primary 

rationale for this is to perform an initial assessment of the business and technical feasibility 

and perform an internal assessment of personnel, prior to pursuing contracting actions. 

Business and technical feasibility analysis focuses on gathering customer needs, 

understanding those needs, and ensuring the potential work properly aligns with the 

organizations mission and purpose. Assessing personnel is needed to determine which 

employees within the organizations would make the best fit for new opportunities that 

become available. A more detailed model decomposition and discussion of the business 

and personnel processes is provided in Chapter III Sections B and C.  

Within the C2IS division, contracts development pertains to task orders issued 

under a multiple award contract (MAC) as described in Chapter I Section D. In a single 

award environment, one company is awarded all work and is the sole prime vendor. In a 

multiple award environment, there can be any number of companies that compete and are 

awarded the contract as a prime. As stated previously, it is beyond the scope of this thesis 

to model either the single award or multiple award contracting processes. The action 

models and resulting architecture are restricted to the task order process only. The actions 

“perform contracts development (C.2)” and “perform agile software development (D.1)” 

are performed in parallel because the work will be done by a team of government and 

contractors, or government workers without contractors. It is not preferable for the C2IS 

division to only act as a pass-through from the sponsoring agency to the contracting 

company. The “contractor workforce required (C.1)” “OR” function provides the option of 

performing work with or without a contractor workforce (see Figure 13). If contract task 

orders are needed, constructing the model with contracting and software development 

efforts in parallel facilitates partial work initiation while contracting actions are taking 

place. The entire high-level action diagram resides within a “SYNC,” which allows for 

some action paths to be taken while others are ignored within the decomposed diagrams 

for each major action.  
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Figure 13. Top-Level Action Diagram 

The top-level action diagram and all the decomposed diagrams for each major 

action were used to develop the architecture to enable agile software development 

(see Figure 14). The IDEF0 is the highest level architectural diagram. For traceability, 

“business and technical feasibility analysis (B.1)” in the top-level action diagram aligns to 

“perform business analysis (EXT.F.1)” in the IDEF0. The action “assess available 

personnel (P.1)” in the top-level action diagram maps to “perform organizational 

assessment of personnel (EXT.F.3)” in the IDEF0. In addition, “perform contracts 

development (C.2)” aligns to “develop and administer contract task orders for software 

development (EXT.F.2).” Lastly, “perform agile software development (D.1)” maps to 

“perform agile software development (F.0).” 
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Figure 14. Architecture to Enable Agile Software Development IDEF0 

 



41 

The “business development team (EXT.C.1)” is the mechanism for “perform 

business analysis (EXT.F.1).” The “project acquisitions team (EXT.C.2)” is the 

mechanism for “develop and administer contract task orders for software development 

(EXT.F.2).” The function, “Perform organizational assessment of personnel (EXT.F.3)” is 

performed by the “management team (EXT.C.3).” The asset “software analysis, design and 

development team (C.0)” is the mechanism for “perform agile software development (F.0)” 

(see Figure 14).  

Each of these functions receives a control for organizational guidance, government 

regulations, and industry standards, all of which can influence the ways and means that 

each function is performed (see Figure 14). For example, organizational guidance may 

include direction to avoid specific types of work, or to pursue specific types of work 

actively. Government regulations can influence how the C2IS division is able to execute 

contracting actions. Examples include periodicity of a contract task orders, requirements 

for small business set-asides, or other regulatory requirements. Industry standards include 

best practices or other generally accepted practices and technical standards for software 

development.  

The purpose of “perform business analysis (EXT.F.1)” aligns to that of B.1 in the 

top-level action diagram (see Figure 13). Business analysis focuses on gathering customer 

needs, understanding those needs, and ensuring the potential work properly aligns with the 

organizations mission and purpose. Prospective work can be handled via insourcing, 

outsourcing, or a combination of both. The function “perform business analysis (EXT.F.1)” 

provides the decision to insource work as an output and is carried down as an input of 

“perform continuous software development and integration (F.0).” Similarly, the decision 

to outsource work is provided from EXT.F.1 to “develop and administer contract task 

orders for software development (EXT.F.2).” Refined customer needs are provided as an 

output from “perform business analysis (EXT.F.1)” to both “develop contract task orders 

for software development (EXT.F.2)” and “perform agile software development (F.0).” 

The last output from “perform business analysis (EXT.F.1)” is a technical demand signal 

provided as an input to “perform organizational assessment of personnel (EXT.F.3)” (see 

Figure 14). Lessons learned are provided as an input to “perform business analysis 
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(EXT.F.1)” from “perform agile software development (F.0).” Additionally, if a software 

capability is part of a larger existing system or new science and technology effort, then it 

will undergo a capability assessment to determine whether the capability should be 

accepted for further work. This capability assessment report is provided for consideration 

in the decision to accept, reject, or redirect work. The details of accepting, rejecting, or 

redirecting work is discussed in the decomposition of “perform work acceptance process 

(B.1.2)” and “perform business analysis (EXT.F.1)” (see Figure 17 and Figure 19).  

The purpose of “develop and administer contract task orders for software 

development (EXT.F.2)” is to develop, compete, award, and monitor task orders that are 

used to supplement the government workforce. This function aligns to “perform contracts 

development (C.2)” in the top-level action diagram (see Figure 13). A task order can be 

competed under an applicable existing multiple award contract vehicle within the 

organization once the decision to outsource work and customer needs are captured. The 

subsequent award results in contractual work approval and guidance as an output from 

“develop and administer contract task orders for software development (EXT.F.2)” to 

“perform agile software development (F.0)” (see Figure 14). 

The purpose of “perform organizational assessment of personnel (EXT.F.3)” is 

aligned to action P.1 in the top-level action diagram (see Figure 13). Assessing personnel 

determines which employees within the organization would make the best fit for available 

or future work. Once the technical demand signal is received and a personnel analysis is 

performed, the management team will assign personnel to work. This is done via an output 

from EXT.F.3 to both “develop and administer contract task orders for software 

development (EXT.F.2)” and “perform agile software development (F.0).” Technical 

workers are needed to help with activities performed for developing and accessing contract 

task orders, and other personnel will be assigned to be a part of the software analysis, 

design, and development team (see Figure 14). 

“Perform agile software development (F.0)” is the main top-level function within 

the architecture. The function F.0 takes place after all applicable business and personnel 

analysis are complete, and contracting actions are at least started. Inputs to F.0 were 

discussed previously as part of the other functions in the top-level diagram. Outputs from 
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F.0 include lessons learned from software development activities that are provided as a 

feedback loop and input to all other functions. Software delivery information is provided 

as an input to “develop and administer contract task orders for software development 

(EXT.F.2).” This is to help the technical members of the project acquisitions team 

determine how to write the task order in a way that specifies what the government expects 

and how software deliveries are to be done. The other output from F.0 is a notification to 

accept or reject, which is provided to the contractor if the software delivery is rejected for 

any reason. This output is provided as an input to “develop and administer contract task 

orders for software development (EXT.F.2)” (see Figure 14). 

 BUSINESS AND TECHNICAL FEASIBILITY ANALYSIS (B.1) 

This section discusses the detailed decomposition of the “business and technical 

feasibility analysis (B.1)” action diagram and the “perform business analysis (EXT.F.1)” 

IDEF0. Within the action diagram for B.1, there is an option to reject or redirect work, 

which provides a trigger into the top-level function of “reject or redirect (R.1).” As such, 

the action diagram for reject or redirect is described in this section to provide context for 

its functionality within the process architecture. The action “business and technical 

feasibility analysis (B.1)” decomposes into two actions: “receive and analyze customer 

needs (B.1.1),” and “perform work acceptance process (B.1.2)” (see Figure 15). As 

previously discussed, the purpose of this model is to gather customer needs, analyze and 

understand those needs, and apply a process for work acceptance to ensure the organization 

is taking on appropriate work. 

 

Figure 15. Decomposition of Business and Technical Feasibility Analysis (B.1) 
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1. Receive and Analyze Customer Needs (B.1.1) 

The decomposition of “receive and analyze customer needs (B.1.1)” is partitioned 

into three parallel paths, each performed by a unique asset (see Figure 16). These assets 

include organizational leadership, the general workforce, and project managers. There is a 

wide variety of personnel who may receive customer demand signals. Within the C2IS 

division, personnel are not permitted to commit to new work without vetting the 

opportunity through organizational leadership. Leadership must ensure that the 

organization is performing the right work, it does not conflict with other efforts, and it 

aligns with the C2IS division’s mission. This is reflected in the diagram as customer 

demands, which are received by anyone and reported up to organizational leadership (see 

Figure 16). Once leadership receives a demand signal, guidance will be given to a project 

manager to perform a customer needs analysis. The project manager will lead a team of 

people in the customer needs analysis. This is often an iterative process until the customer 

needs are fully understood. After the customer needs are understood, the project manager 

will provide recommendations to leadership on the technical approach and then leadership 

will provide direction to a project manager to initiate the work acceptance process. Even if 

the work is ultimately not accepted, the work acceptance process is used to capture 

redirected or rejected work in addition to accepted work. 

 

Figure 16. Decomposition of Receive and Analyze Customer Needs (B.1.1) 
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2. Perform Work Acceptance Process (B.1.2) 

The action “perform work acceptance process (B.1.2)” is performed in parallel by 

organizational leadership and project managers. Initially, the project manager performs 

project planning efforts (see Figure 17). Project planning will gather and provide current 

and future year funding information, such as funding amounts, appropriations, and 

sponsoring organizations. Project planning includes statements of work to be performed, 

anticipated number of government and contractor employees, a high-level risk assessment, 

anticipated material or services procurements, and information regarding any external 

agency agreements that may be required. Organizational leadership will use this project 

planning data to determine if the work should be accepted, rejected, or redirected. If 

leadership determines the work is rejected, they will notify the project manager who will 

provide the rationale for rejecting the work to the prospective customer. The work may be 

redirected as well, meaning that there may be a recommendation for the work to be done 

by another entity within the same organization, or redirected to another external 

organization. If the work is accepted, leadership must make and disseminate the decision 

whether work with be insourced outsourced or a combination of both. The project manager 

will then begin executing the project plan based on direction from leadership. The action 

“begin executing project plan (B.1.2.11)” provides a workforce demand signal as an input 

to “perform personnel qualification analysis (P.1.1.1)” to initiate the process to find and 

assign personnel to the new work. Chapter III Section D discusses the details of the 

personnel assessment actions.  
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Figure 17. Decomposition of Perform Work Acceptance Process (B.1.2) 

3. Reject or Redirect (R.1) 

If the work is rejected or redirected, a trigger is provided to the top-level “reject or 

redirect (R.1).” The decomposed view of “reject or redirect (R.1)” receives all triggers to 

reject or redirect work throughout the entire model (see Figure 18). This action will end all 

activities and result in the model completing without performing other actions. The reject 

or redirect trigger is used extensively throughout the model; therefore, any follow-on 

discussion regarding reject or redirect will reference Figure 18. 
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Figure 18. Decomposition of Reject or Redirect (R.1) 

4. Perform Business Analysis (EXT.F.1) 

The actions “receive and analyze customer needs (B.1.1)” and “perform work 

acceptance process (B.1.2)” were used to develop the decomposed architecture diagram of 

“perform business analysis (EXT.F.1).” As previously discussed, the purpose of this model 

is to gather and analyze customer needs, and apply a process for work acceptance. There 

are three main functions and mechanisms within the decomposition. The “organizational 

workforce (EXT.C.1.1)” is the mechanism for “receive customer demand (EXT.F.1.1).” 

The “project manager (EXT.C.1.2)” is the mechanism for “conduct needs analysis and 
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project planning (EXT.F.1.2).” “Organizational leadership (EXT.C.1.3)” is the mechanism 

for “accept, redirect, or reject work (EXT.F.1.3)” (see Figure 19).  

The functions “receive customer demand (EXT.F.1.1)” and “conduct needs 

analysis and project planning (EXT.F.1.2)” align to “receive and analyze customer needs 

(B.1.1)” in the action diagram. The function “accept, redirect, or reject work (EXT.F.1.3)” 

aligns to “perform work acceptance process (B.1.2)” (see Figure 15). The organizational 

guidance, government regulations, and industry standards are carried down as controls 

from the parent diagram “perform business Analysis (EXT.F.1).” Customer needs can be 

received by anyone in the workforce. After capturing this information, preliminary 

customer needs information is provided from “receive customer demand (EXT.F.1.1)” as 

an input to “conduct needs analysis and project planning (EXT.F.1.2).”  

The project manager will lead a team through initial efforts to perform a customer 

needs analysis and provide technical and business approach recommendations to leadership 

as an input to “accept, redirect, or reject work (EXT.F.1.3).” Organizational leadership will 

direct the project manager to initiate the work acceptance process. The project manager 

will then perform project planning and submit project-planning data to organizational 

leadership as an input to EXT.F.1.3. If organizational leadership decides to proceed, a 

determination is made whether to insource work, outsource work, or do a combination of 

both. If work will be outsourced, “accept, redirect, or reject work (EXT.F.1.3)” provides a 

decision to outsource work output that is carried down as an input to “develop and 

administer contract task orders for software development (EXT.F.2).” If the work will be 

insourced, “accept, redirect, or reject work (EXT.F.1.3)” provides a decision to insource 

work output that is carried down as an input to “perform agile software development (F.0).” 

The function “conduct needs analysis and project planning (EXT.F.1.2)” provides refined 

customer needs as an output that is carried down as an input to both “develop and 

administer contract task orders for software development (EXT.F.2)” and “perform agile 

software development (F.0).” The function “conduct needs analysis and project planning 

(EXT.F.1.2)” generates a workforce demand signal output that is provided as an input 

to “perform personnel qualification analysis (EXT.F.3.1)” (see Figure 19 and Figure 23). 

The function “accept, redirect, or reject work (EXT.F.1.3)” also receives a capability 
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assessment input from “perform agile software development (F.0).” This capability 

assessment is discussed in detail in Section F, Agile Software Development. Lastly, lessons 

learned is provided as an input to all functions within the decomposed “perform business 

analysis (EXT.F.1)” IDEF0. These lessons learned from “perform agile software 

development (F.0)” are used to refine product and process improvement continually.  

 

Figure 19. Architecture IDEF0 of Perform Business Analysis (EXT.F.1) 
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 ASSESS AVAILABLE PERSONNEL (P.1) 

This section discusses the decomposition of the “assess available personnel (P.1)” 

action diagram and the “perform organizational assessment of personnel (EXT.F.3)” 

IDEF0. The action “assess available personnel (P.1)” decomposes into: “perform initial 

personnel assessment (P.1.1)” and “perform personnel selection (P.1.2)” (see Figure 20). 

As previously discussed, the actions for assessing personnel are used to determine which 

employees within the organization would make the best fit for available work. 

 

Figure 20. Decomposition of Assess Available Personnel (P.1) 

1. Perform Initial Personnel Assessment (P.1.1) 

Employees are aligned with supervisors who have administrative authority. The 

supervisor will “perform initial personnel assessment (P.1.1).” For example, a supervisor 

can direct employees to change projects, can approve time off, and can address disciplinary 

issues. A project manager directs day-to-day project activities, but does not have the same 

authorities as a supervisor does. The demand signal typically comes from a project manager 

to a supervisor in the form of technical skillsets required. Demand signals are vetted 

through supervisors because of the authority they have to direct employees from one 

project to another. It is best practice to socialize opportunities with the gaining and losing 

project manager, any supervisors involved, and the employee(s) affected; however, the 

final determination to move an employee from one project to another rests within the 

supervisory hierarchy.  

Once the initial demand signal and technical skills thought to be required are passed 

along to a supervisor, he or she will perform an analysis of employee qualifications of 

personnel assigned under his or her supervision. The supervisor will down-select internal 
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candidates and provide information about the employees to the project manager for further 

consideration (see Figure 21). It is important to note that there are often many supervisors 

performing this analysis, and it can also be done across myriad technical competencies 

within the organization to provide a pool of potential candidates to project managers. 

 

Figure 21. Decomposition of Perform Initial Personnel Assessment (P.1.1) 

2. Perform Personnel Selection (P.1.2) 

The supervisor will receive information about internal candidates from “perform 

initial personnel assessment (P.1.1)” and provide this information to the project manager 

for use in “perform personnel selection (P.1.2).” The project manager and supervisor 

execute the action to “perform personnel selection (P.1.2)” (see Figure 22). The same 

iterative question and clarification process between the supervisor and the project manager 

in “perform initial personnel assessment (P.1.1)” takes place in “perform personnel 

selection (P.1.2).” The project manager will discuss candidates with one or more 

supervisors until he or she determines the right mix of skill sets available among the 

candidates provided. The project manager will then make recommendations to the 

supervisor as to which personnel he or she request be assigned to the work. It is the 

supervisor’s responsibility to discuss the new opportunity with their employees and make 

the staffing decision to assign appropriate employees and have them report to the project 

manager for work assignments (see Figure 22). 
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Figure 22. Decomposition of Perform Personnel Selection (P.1.2) 

3. Perform Organizational Assessment of Personnel (EXT.F.3)

The decomposition of “perform initial personnel assessment (P.1.1)” and “perform 

personnel selection (P.1.2)” are used to develop the architecture IDEF0 for “perform 

organizational assessment of personnel (EXT.F.3)” (see Figure 23). As previously 

discussed, the actions for assessing personnel are used to determine which employees 

within the organization would make the best fit for available work. There are two main 

functions and mechanisms within the decomposition. The “supervisor (EXT.C.3.1)” is the 

mechanism for “perform personnel qualification analysis (EXT.F.3.1).” The “project 

manager (EXT.C.3.2)” is the mechanism for “interview and select candidate for task 

(EXT.F.3.2)” (see Figure 23). 

The function “perform personnel qualification analysis (EXT.F.3.1)” aligns to 

“perform initial personnel assessment (P.1.1)” in the action diagram, and the function 

“interview and select candidate for task (EXT.F.3.2)” aligns to “perform personnel 

selection (P.1.2).” As with the IDEF0 for business analysis, a control in the form of 

organizational guidance, government regulations, and industry standards is carried down 

from the parent diagram EXT.F.3. Lessons learned from “perform agile software 

development (F.0)” are also provided as an input to both functions within the IDEF0 in 

order to refine the process for selecting technical personnel continually. The workforce 

demand signal generated from the business development team within “perform business 

analysis (EXT.F.1)” is provided as an input to “perform personnel qualification analysis 

(EXT.F.3.1).” As with the action diagrams, there is an information exchange between the 
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supervisor and project manager regarding employees being considered for work. Initial 

candidate information is provided as an output from “perform personnel qualification 

analysis (EXT.F.3.1)” to the function of “interview and select candidate for task 

(EXT.F.3.2).” The project manager may have questions about the candidates provided. 

This is reflected in the IDEF0 as an output called questions about candidates from 

EXT.F.3.2 back to EXT.F.3.1 as an input. Clarification regarding candidates is provided 

back to the project manager as an input. This process will continue until one or more 

personnel are selected for the work, shown as an output from “perform personnel 

qualification analysis (EXT.F.3.1)” to the input of “interview and select candidate for task 

(EXT.F.3.2).” The process ends with personnel assigned to work as an output of 

EXT.F.3.2. 

 

Figure 23. Architecture IDEF0 of Perform Organizational Assessment 
of Personnel (EXT.F.3) 
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 CONTRACTS DEVELOPMENT (C.2) 

This section discusses the “perform contracts development (C.2)” action diagram 

and the “develop and administer contract task orders for software development (EXT.F.2)” 

IDEF0 decomposition. The action “perform contracts development (C.2)” decomposes into 

five actions: “perform market research (C.2.1),” “perform preliminary contracts planning 

(C.2.2),” “perform draft RFP activities (C.2.3),” “perform final RFP solicitation and award 

(C.2.4),” and “award task order and conduct COR activities (C.2.5)” (see Figure 24). The 

intent of the contracting actions is to develop, compete, award, and monitor task orders that 

are used to supplement the government workforce. As discussed in Chapter I Section D, 

the contracts processes within this model pertain to task orders awarded under an existing 

multiple award contract vehicle within the organization. The model does not account for 

the broad based contracting processes for either a single award or multiple award contract 

as both are not within the scope of this thesis. For context, the asset or mechanism of 

contracts pertains to a part of the organization that is warranted and sanctioned via the FAR 

to perform contracting operations and commitments on behalf of the government.  

 

Figure 24. Decomposition of Perform Contracts Development (C.2) 

1. Perform Market Research (C.2.1) 

One of the first steps in the contracting process is to perform market research. The 

Federal Acquisition Regulations (FAR) defines market research as the collection and 

analysis of information such as product and supplier capabilities, and product 

characteristics to meet an agency’s needs (FAR 2016, 275). The decomposition of 

“perform market research (C.2.1)” was partitioned into three parallel paths, performed by 

the project team, contracts personnel, and contractor organizations assets (see Figure 25).  
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To begin, the project team develops a draft statement of work (SOW) and request 

for information (RFI). These documents will be processed by the contracts team and 

ultimately provided to contractor organizations for review (see Figure 25). The SOW 

informs contractors of what the government is trying to obtain or achieve and allows 

contractor companies to respond via the RFI with information pertaining to how the 

contractor could satisfy objectives within the SOW. The action diagram facilitates question 

and answer sessions between contractor organizations, contracts team, and the project 

team. The final outcome is an RFI response from the contractor to the government 

contracting team.  

 

Figure 25. Decomposition of Perform Market Research (C.2.1) 

2. Perform Preliminary Contracts Planning (C.2.2) 

Based on the RFI responses received during market research, the project team will 

continue with preliminary planning and make the determination whether or not there is a 

need for an industry day. An industry day provides a venue for government and contracting 

organizations to meet and exchange relevant information about the technical needs of the 
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government as well as provide an opportunity for contractor organizations to ask questions 

about the potential work. The decomposition of “perform preliminary contracts planning 

(C.2.2)” was partitioned into three parallel paths, performed by the project team, contracts 

personnel, and contractor organizations (see Figure 26). If an industry day is required, the 

project team will make the request to the contracts team to contact industry partners and 

set up the industry day. Contractor organizations will receive the industry day notification 

and have the choice to participate or not. The project team will receive notification of the 

contractor’s intent to attend or not attend industry day. For those contractor organizations 

that attend industry day, there will be further technical and information exchanges between 

the project team and industry. If no industry day is requested by the project team, the 

contracts team will be informed and notify contractor organizations that no industry day 

will be scheduled before the release of the draft request for proposal (RFP). 

 

Figure 26. Decomposition of Perform Preliminary Contracts Planning (C.2.2) 



57 

3. Perform Draft RFP Activities (C.2.3) 

After market research and industry day activities, the project team will finalize the 

technical components of the contracting task order package. This will include development 

of a performance work statement (PWS), contractor data requirements list (CDRLs), and 

an independent government cost estimate (IGCE). The decomposition of “perform draft 

RFP activities (C.2.3)” was partitioned into four parallel paths, performed by the project 

team, contracts personnel, contractor organizations, and template repository (see Figure 

27). CDRLs are a list of requirements and instructions to the contractor for how, when, and 

what to deliver. The project team will utilize contracting templates and materials to help in 

this endeavor. “The template structure minimizes the overhead associated with the creation 

of multiple task orders” (Wrubel and Gross 2015, 31). Over time, the C2IS division 

captured best practices or lessons learned to help personnel write better contracts for 

software development. These lessons learned are incorporated into templates for the PWS 

and CDRLs to help the government ask for what is needed, receive all of what was paid 

for, verify the government gets what was paid for, and ensure it can reproduce what it paid 

for. This iterative process ends with the development of a draft RFP. 

Personnel within contracts will receive the draft RFP and formally issue the draft 

RFP to contractor organizations. In parallel to the draft RFP development, the project team 

must also prepare and submit an information technology procurement request (ITPR). The 

ITPR will be submitted to an external agency, whose process is outside the scope of this 

thesis; however, it is still a valid action to capture. The ITPR is a mechanism for the broader 

U.S. Navy to track its information technology related procurements. Contractor 

organizations will receive the RFP, which typically begins an iterative question and answer 

process between contractors, the contracts team, and the project team (see Figure 27). The 

processes that personnel within contracts use to process and review the draft RFP are also 

outside the scope of this thesis. 



58 

 

Figure 27. Decomposition of Perform Draft RFP Activities (C.2.3) 

4. Perform Final RFP Solicitation and Award (C.2.4) 

Once the draft RFP process is complete, the project team will update the RFP 

materials and submit the final RFP package to the contracts team. The decomposition of 

“perform final RFP solicitation and award (C.2.4)” was partitioned into three parallel paths, 

performed by the project team, contracts personnel, and contractor organizations (see 

Figure 28). In the same manner as the draft RFP, the contracts team will issue the final RFP 

and contractor organizations will receive, review, and begin the iterative question and 

answer process. After receiving any RFP clarification required, contractor organizations 

will submit a formal bid and proposal to the government contracts team. The contracts team 

will provide the contractor’s technical proposal materials and the project team will perform 

a technical evaluation and submit that evaluation to the contracts team for review. The 

contracts team will perform a cost evaluation and once they receive the technical evaluation 

from the projects team, contracts will perform a tradeoff analysis. For example, one 

company may have been rated technically excellent, but their cost was significantly higher 

than a company rated as very good. The tradeoff analysis accounts for variance in technical 

rating and cost rating with the goal of obtaining the best value for the government. Once 
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the project team completes the technical evaluation, a purchase request must also be 

submitted in the organizations enterprise supply system (see Figure 28). 

 

Figure 28. Decomposition of Perform Final RFP Solicitation and Award (C.2.4) 

5. Award Task Order and Conduct COR Activities (C.2.5) 

After the technical evaluation and tradeoff analysis is performed, the contract task 

order can be awarded. Prior to award, a contracting officer representative (COR) must be 

nominated and approved. This process is captured in the decomposition of “award task 

order and conduct COR activities (C.2.5).” This action was partitioned into three parallel 

paths, performed by the contracts personnel, the supervisor, and contracting officer 

representative (COR) (see Figure 29). A supervisor will nominate a COR and send the 

nomination to the contracting officer via the contracts team. Once approved, the COR will 

receive a formal designation letter from contracts. The task order is awarded, and the COR 

begins to perform his or her duties. The job of a COR is to track deliverables, monitor 

contractor performance, review contractor invoices, and provide performance feedback. 

COR activities will continuously occur throughout the life cycle of the task order. 
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Figure 29. Decomposition of Award Task Order and 
Conduct COR Activities (C.2.5) 

6. Develop and Administer Contract Task Orders for SW Development 
(EXT.F.2) 

The actions from decomposition of “perform market research (C.2.1),” “perform 

preliminary contracts planning (C.2.2),” “perform draft RFP activities (C.2.3),” “perform 

final RFP solicitation and award (C.2.4),” and “award task order and conduct COR 

activities (C.2.5),” were used to develop the decomposed architecture diagram of “develop 

and administer contract task orders for software development (EXT.F.2)” (see Figure 30). 

As previously discussed, the purpose of contracting activities is to develop, compete, 

award, and monitor task orders that are used to supplement the government workforce. 

There are five main functions and mechanisms within the decomposition (see 

Figure 30). The “template repository (EXT.C.2.1)” is the mechanism for “provide 

contracting template materials (EXT.F.2.1).” The function “perform market research and 

develop contracting materials (EXT.F.2.2)” is performed by the “project technical team 

(EXT.C.2.2).” The function “process and award contract task orders (EXT.F.2.3)” is 

performed by the “contract team (EXT.C.2.3).” The function “review SOW, RFP and 
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provide response (EXT.F.2.4)” is performed by “contractor organizations (EXT.C.2.4).” 

The function “provide post award admin and guidance (EXT.F.2.5)” is performed by the 

“contracting officer representative (COR) (EXT.C.2.5).” 

The function “provide contracting template materials (EXT.F.2.1)” aligns to 

“perform draft RFP activities (C.2.3).” This function receives lessons learned as an input 

from “perform agile software development (F.0)” as well as suggestions for updated 

contracting templates from “perform market research and develop contracting materials 

(EXT.F.2.2)” and “process and award contract task orders (EXT.F.2.3).” Template 

materials are provided as an output for the project technical teams to use in performing 

market research and developing contracting materials.  

The function “perform market research and develop contracting materials 

(EXT.F.2.2)” aligns to actions within “perform market research (C.2.1),” “perform 

preliminary contracts planning (C.2.2),” “perform draft RFP activities (C.2.3),” and 

“perform final RFP solicitation and award (C.2.4).” The function “process and award 

contract task orders (EXT.F.2.3)” aligns to actions within “perform draft RFP activities 

(C.2.3),” “perform final RFP solicitation and award (C.2.4),” and “award task order and 

conduct COR activities (C.2.5).” The function “review SOW, RFP and provide response 

(EXT.F.2.4)” aligns to actions within “perform market research (C.2.1),” “perform 

preliminary contracts planning (C.2.2),” “perform draft RFP activities (C.2.3),” and 

“perform final RFP solicitation and sward (C.2.4).” The function “provide post award 

admin and guidance (EXT.F.2.5)” aligns to conduct COR activities (C.2.5).” 

The architecture reflects the iterative process modeled in the action diagrams for 

this function. Refined customer needs, software delivery information, the decision to 

outsource work, the draft RFI, industry day request, and draft RFP are all used to drive the 

final RFP package for contractor organizations to bid. Throughout this process, there are 

feedback loops included for questions and updating contracting template information. 

Once the contractor organizations submit their bid and proposal, the technical proposal 

materials will be provided from the contracts team to the project technical team for 

evaluation. The project technical team provides a technical evaluation of proposal output 

from “perform market research and develop contracting materials (EXT.F.2.2)” to the 
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contracts team via “process and award contract task orders (EXT.F.2.3).” After the 

contracts team reviews and adjudicates the task order award, notifications are provided to 

both contractor organizations and the contracting officer representative (COR). After the 

task order is awarded, the COR will provide post award administration and guidance to the 

contractor organizations. The COR also will act as the conduit between the project team 

and the performing contractors. The COR is also responsible for contractor invoice review 

and monthly status reports on contractor performance; therefore, software acceptance and 

rejection notifications are provided as an input to “provide post award admin and guidance 

(EXT.F.2.5).”  

 

Figure 30. Architecture IDEF0 of Develop and Administer Contract Task Orders for 
SW Development (EXT.F.2) 
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 AGILE SOFTWARE DEVELOPMENT (D.1) 

This section discusses the decomposition of the “perform agile software 

development (D.1)” action diagram and the “perform agile software development (F.0)” 

IDEF0. The action “agile software development (D.1)” decomposes into six actions: 

“perform capability assessment (D.1.1),” “establish templates and verify schedule 

(D.1.2),” “conduct software sprint (D.1.3),” “perform software quality engineering 

activities (D.1.4),” “perform continuous integration and testing (D.1.5),” and “conduct 

build release decision (D.1.6)” (see Figure 31). As previously discussed, agile software 

design and development focuses on software sprint activities and supporting activities that 

facilitate continuous software design, development, and testing.  

 

Figure 31. Decomposition of Perform Agile Software Development (D.1) 

1. Perform Capability Assessment (D.1.1) 

The decomposition of “perform capability assessment (D.1.1)” was partitioned into 

two parallel paths performed by the agile development, integration and test team, and 

government assessment team assets (see Figure 32). The action “perform capability 

assessment (D.1.1)” provides a gating process used for preliminary technical and cost 

assessments of an existing or science and technology (S&T) product or capability. If there 

is no existing capability or S&T product to being into the software development pipeline, 

then the agile development, integration and test team can proceed with new capability 

development. If an existing capability or S&T product is targeted for transition or 

integration into a broader system, then the capability assessment process is completed. The 

goal of performing the capability assessment process is to ensure the product or capability 

is mature enough to enter into the continuous development, integration, and test 

environment. Accepting immature S&T or existing products with major issues into the 

development pipeline can introduce technical risk and result in unexpected cost growth.  
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Figure 32. Decomposition of Perform Capability Assessment (D.1.1) 

The decomposition of “perform preliminary capability assessment (D.1.1.10)” is 

partitioned into four parallel paths, which are performed by the system engineering team, 

contracts team, legal team, and lead systems engineer assets (see Figure 33). The 

preliminary capability assessment provides a precursory look into requirements analysis, 

property rights assessment, and an initial cost analysis of the developer provided estimates.  

 

Figure 33. Decomposition of Perform Preliminary Capability Assessment (D.1.1.10) 
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The action “perform requirements analysis of candidate software delivery 

(D.1.1.10.1)” is performed by the system engineering team (see Figure 34). The purpose 

of this activity is to identify the product’s functional capabilities as stated by the developer 

or capability provider. These capabilities are then mapped to operational requirements and 

traced to system acquisition documents such as the initial capabilities document (ICD), 

capability development document (CDD) and software requirements specifications (SRS). 

The systems engineering team will identify any gaps or overlaps between system 

requirements and the product’s stated capabilities. An analysis of any external 

dependencies is performed to determine if there are potential risk factors for schedule, or 

cost, and technical performance such as unplanned integration with another system that the 

candidate product or capability dis not account for. The software quality engineering team 

will determine if the capability or candidate product will require modification of or 

additional cyber security or weapons accreditation and certification. Lastly, the system 

engineering team will provide a report documenting their findings based on analysis.  

After the requirements analysis is performed, the systems engineering team will 

work with the contracts and legal team to perform an evaluation of software property rights 

(see Figure 33). This iterative process determines if the government has the desired level 

of software property rights to minimize future development and sustainment cost. The legal 

and contracts team will provide their recommendations to the systems engineering team 

for inclusion in the preliminary capability assessment report. Prior to the preliminary 

capability assessment report, the systems engineering team conducts an initial cost analysis 

(see Figure 35). The goal of “perform initial cost analysis of developer provided estimates 

(D.1.1.10.6)” is to conduct an initial analysis of the software licensing, development, post-

development support, and software and system dependencies as stated by the capability 

developer. Based on the preliminary assessment of requirements, property rights, and cost, 

the government assessment team will make a determination of whether or not to proceed 

the next phase of a technical assessment of the candidate capability (see Figure 33). If the 

assessment team recommends rejecting the candidate capability, a reject report is produced, 

and a trigger is provided to the top-level “reject or redirect (R.1)” (see Figure 18). Unless 
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leadership or the sponsor mandate work progress, the process will then end with no further 

work performed. 

 

Figure 34. Decomposition of Perform Requirements Analysis of 
Candidate SW Delivery (D.1.1.10.1) 

 

Figure 35. Decomposition of Perform Initial Cost Analysis of 
Developer Provided Estimates (D.1.1.10.6) 

If the government assessment team makes a favorable recommendation after the 

preliminary capability assessment, the next action is to conduct a more detailed technical 

assessment of the candidate capability. The decomposition of “perform candidate 

capability technical assessment (D.1.1.11)” is partitioned into three parallel paths 

performed by cyber security subject matter experts (SMEs), software quality engineering 
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team, and lead systems engineer (see Figure 36). The cyber security SMEs will analyze 

the candidate capability or product delivery to verify proper security classification by 

the developer and run the software through vulnerability and cyber security analysis. 

If there are critical issues, the candidate delivery may be rejected without further work until 

major cyber issues are corrected. The cyber SME will produce an assessment report of 

all findings. 

In conjunction with activities performed by the cyber security team, the software 

quality engineering team will proceed the action “complete in-depth technical assessment 

of candidate capability (D.1.1.11.4)” (see Figure 37). The software quality team will 

analyze the algorithms, data models, and software modeling languages used. The team will 

also analyze standards used as stated by the developer and perform a trial install and run of 

the candidate capability in a representative environment.  

If the technical review results are favorable, cyber and technical assessments are 

produced and provided for use or reference in the next phase. If the technical assessment 

is not favorable, a recommendation to reject is produced and a trigger is provided to the 

top-level “reject or redirect (R.1).” As with the previous preliminary capability assessment 

actions, no further work is conducted unless leadership or the sponsor mandate work 

continue despite the technical issues. 

 

Figure 36. Decomposition of Perform Candidate Capability 
Technical Assessment (D.1.1.11) 
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Figure 37. Decomposition of Complete In-Depth Technical Assessment of 
Candidate Capability (D.1.1.11.4) 

If the preliminary capability and technical assessments are favorable, the 

government assessment team will perform a more in-depth cost assessment. The 

decomposition of “perform software cost assessment (D.1.1.12)” is partitioned into two 

parallel paths, performed by the systems engineering team and lead systems engineer (see 

Figure 38). The systems engineering team will review the cost estimate provided by the 

capability developer and in parallel, perform an independent government cost estimate. If 

the developer is a government only team, and no contractors are or were used, the 

government still performs an independent estimate and compares it to the government 

developer cost estimate. Ideally, the two estimates will be similar. If the developer’s cost 

estimate is significantly higher or lower than the government’s independent estimate, 

further analysis is required. For both acceptable and unacceptable cost structure, a cost 

validation or rejection report is generated and provided to the lead systems engineer for 

review and determination of whether to proceed with further software development, 

integration, and test. As with previous assessments, leadership or a sponsor may determine 

that the risk or issues with cost structure is acceptable and direct further development 

activities to proceed. If a rejection is substantiated, a reject trigger is provided to the top-

level “reject or redirect (R.1)” and the process ends.  
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Figure 38. Decomposition of Perform SW Cost Assessment (D.1.1.12) 

2. Establish Templates and Verify Schedule (D.1.2) 

Once the capability or product is formally accepted, the configuration management 

and development teams will work together to establish and verify templates and schedules 

for product deliveries that will take place during software sprints. While these templates 

are part of CDRLs discussed in Chapter III Section E for Contracts Development, the 

CDRLs specify what, when, and how, but may not descriptive enough to ensure alignment 

of expectations between the government and contractor developer. Establishing templates 

and verifying schedules helps to mitigate this potential issue. The decomposition of 

“establish templates and verify schedule (D.1.2)” was partitioned into two parallel paths, 

performed by the configuration management (CM) team and agile development, 

integration and test team (see Figure 39). This is an iterative process between the 

development team and the CM team until consensus is reached by the CM and development 

teams. The CM team ultimately maintains configuration of all documents, deliverables, 

and templates. 
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Figure 39. Decomposition of Establish Templates and Verify Schedule (D.1.2) 

3. Conduct Software Sprint (D.1.3) 

After the completion of “perform capability assessment (D.1.1)” and 

“decomposition of establish templates and verify schedule (D.1.2),” the next actions 

encompass activities for agile software development via backlog and sprint planning, sprint 

execution, and sprint review. The actions decomposed within “conduct software sprint 

(D.1.3)” are performed by multiple assets. The purpose of these assets and actions are 

explained in each decomposition of “initial backlog and sprint planning (D.1.3.1),” 

“perform spring planning, execution, and review (D.1.3.3),” and “receive software delivery 

and documentation (D.1.3.4)” (see Figure 40).  

 

Figure 40. Decomposition of Conduct Software Sprint (D.1.3) 

One of the first actions to support software sprints includes the initial planning for 

sprint activities and initialization of the product backlog, which is a continuously updated 

list of software items that require further development. If a task cannot be completed during 

a specified sprint, it will be added or maintained in the product backlog for future sprint 
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consideration. Within the agile construct, planning, development, and testing activities are 

continuous; however, for the purposes of this model, the upfront planning activities were 

broken out from the continuous sprint planning, execution, and review activities. The 

decomposition of “perform initial backlog and sprint planning (D.1.3.1)” is performed by 

the sprint planning team (see Figure 41). The type and quantity of team member varies 

based on the action to be performed. The action “define roles and responsibilities 

(D.1.3.1.1)” will establish and communicate each team member’s part in the sprint 

activities and what each team member is responsible for. The action “conduct build review 

and release planning (D.1.3.1.2)” focuses on the software epics and mapping features to 

those epics in order to establish a software roadmap plan for the product or capability to be 

developed. Epics contain large amounts of work that cannot be completed in a single sprint. 

Epics are further decomposed into smaller sets of requirements known as user stories. The 

scope of “initialize product backlog (D.1.3.1.3)” will vary based on the size of the 

development effort. For the project used to support this thesis, there were 530 system 

requirements. A higher or lower quantity and complexity of system requirements may drive 

larger or smaller team size for initialing the product backlog. Although initializing the 

product backlog is an effort and resource intensive activity, it is typically done once for a 

product baseline. Subsequent actions will update the product backlog throughout sprint 

execution and review. 

 

Figure 41. Decomposition of Initial Backlog and Sprint Planning (D.1.3.1) 
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After the roles and responsibilities, build review, release planning, and initial 

product backlog are established, the continuous sprint planning, execution, and review 

cycle will begin. The decomposition of “perform sprint planning, execution, and review 

(D.1.3.3)” was partitioned into three parallel paths and is performed by the sprint planning 

team, sprint execution team, and sprint review team (see Figure 42). This activity also 

occurs in a loop (see Figure 40). The first action allows for the prioritization of the product 

backlog. The goal of prioritization is to review the software roadmap against sprint tasks 

and determine the priority of epics and user stories to be worked. The product backlog 

is also updated in parallel based upon feedback during sprint execution, review, 

and retrospective. The product backlog can be updated to account for new information 

or technologies that have occurred since the previous sprint. Once the backlog is 

prioritized and updated, the sprint planning team conduct planning to allocates user stories 

to the sprint.  

After sprint planning, the sprint execution team is notified to begin development, 

shown in the model as “conduct sprint (D.1.3.3.5)” (see Figure 43). Details and model flow 

for sprint execution are discussed immediately following “decomposition of perform sprint 

planning, execution, and review (D.1.3.3).” The sprint review team will conduct a sprint 

review and retrospective after the development cycle is complete (see Figure 42). During 

the sprint review, the development team will present the latest product version to 

stakeholders and obtain feedback. The retrospective is more of an internal project team 

review to capture lessons learned. Following the sprint retrospective, the project team may 

conduct what is known as a Scrum of Scrums. This action is used when there are multiple 

Scrum teams working parallel development efforts and is needed to have shared awareness 

across the team. As previously stated, feedback from these actions is used to update and 

prioritize the product backlog for the next sprint; however, there can be a lag of one or two 

sprints by the time sprint feedback is incorporated into planning for a follow-on sprint. This 

is because as sprint feedback is collected, reviewed, and built into the backlog, the next 

sprint will have already begun.  



73 

 

Figure 42. Decomposition of Perform Sprint Planning, Execution, 
and Review (D.1.3.3) 

Once the sprint planning is complete, the software developers will conduct the 

sprint. The decomposition of “conduct sprint (D.1.3.3.5)” was partitioned into three 

parallel paths and is performed by the sprint planning team, the software developer, and 

project manager (see Figure 43). The development cycle within the project analyzed for 

this thesis is planned for either 10 or 15 days. Daily Scrums are held to discuss progress 

and roadblocks within the planned sprint activities. During the Scrum, the team discusses 

and determines an appropriate course of action if there are issues. Typically, a decision is 

made to either increase, decrease, or modify the scope of the some or all of the sprint. 

Conversely, the product backlog can be analyzed again and the scope of the sprint can be 

modified to swap out a user story with another one that is equal or less effort. In addition, 

the scope may also be increased. An increase in scope may require adding user stories to 

the sprint, adding resources such as additional developers, or increasing the number of user 

stories and resources.  
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Figure 43. Decomposition of Conduct Sprint (D.1.3.3.5)
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 The sprint planning team notifies the PM and developers of the viable path forward. 

The decomposition of “receive developer related notifications (D.1.3.3.5.14)” (see Figure 

44) and the decomposition of “receive PM related notifications (D.1.3.3.5.16)” (see Figure 

45) describe how the developer and project manager receive notifications. The project 

manager can influence the course of action taken. If the PM needs to adjust what the sprint 

planning team is recommending, he or she will notify the sprint planning team, who will 

in turn make adjustments to the spring plan and notify the sprint execution team (see Figure 

43). The decomposition of “receive developer related notifications (D.1.3.3.5.14)” was 

partitioned into five parallel paths and all paths are performed by the software developer 

(see Figure 44). Only one action from all available paths will be performed. The model was 

constructed in this manner for model styling purposes to synchronize with its parent 

diagram “decomposition of conduct sprint (D.1.3.3.5)” (see Figure 43). 

 

Figure 44. Decomposition of Receive Developer Related Notifications (D.1.3.3.5.14) 
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The decomposition of “receive PM related notifications (D.1.3.3.5.16)” was 

partitioned into five parallel paths and all paths are performed by the project manager (see 

Figure 45). Only one action from all available paths will be performed. As with the 

previous model, the model was constructed this way for model styling purposes to 

synchronize with and streamline its parent diagram “decomposition of conduct sprint 

(D.1.3.3.5)” (see Figure 43). 

 

Figure 45. Decomposition of Receive PM Related Notifications (D.1.3.3.5.16) 

The decomposition of “develop software code (D.1.3.3.5.15)” is performed by the 

software development team (see Figure 46). Within the C2IS division’s project for this 

thesis research, agile software sprints are time-bound to either 10- or 15-day sprint cycles. 

The loop actions of developing software code, completing peer review of software, and 

committing code to a centralized repository will continuously occur over the course of 
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either 10 or 15 days. At the conclusion of the sprint, the sprint review team will be notified 

to being sprint review activities such as a Scrum of Scrums and sprint retrospective.  

 

Figure 46. Decomposition of Develop SW Code (D.1.3.3.5.15) 

The software will go through a formal delivery acceptance review upon completion 

of the sprint. The decomposition of “receive software delivery and documentation 

(D.1.3.4)” was partitioned into three parallel paths and is performed by the configuration 

management team, software developer, and lead systems engineer (see Figure 47). 

“Review delivery against acceptance criteria (D.1.3.4.1)” starts the acceptance process 

with a review of all deliverables (see Figure 48). The acceptance criteria for a software 

delivery verifies: delivery of license agreements; inclusion of intellectual property rights 

information; build instructions for the software; virus scans; verification of source code; 

applicable scripts required for future integration; requirements documentation; software 

design documentation; interface requirements; and test plans with reports. If there are no 

issues with the acceptance criteria, the CM team will accept the delivery in full and 

software quality engineering activities will proceed. The CM team will notify the developer 

and lead systems engineer if there are issues with the delivery. The lead systems engineer 

will review the issues and determine whether or not they are minor enough to grant a waiver 

and proceed with delivery acceptance. If the lead engineer grants a waiver, it is annotated 

with the delivery and CM accepts the delivery with an approved waiver, notifying the 

developer of the waiver and any corrective action. If the issues are significant enough to 

avoid accepting the delivery, the lead engineer notifies the CM team and developer that the 

delivery will be rejected. If rejection is required, a reject trigger is provided to the top-level 

“reject or redirect (R.1)” and the process ends (see Figure 47).  
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Figure 47. Decomposition of Receive SW Delivery and Documentation (D.1.3.4) 

 

Figure 48. Decomposition of Review Delivery against Acceptance Criteria 
(D.1.3.4.1) 

4. Perform SW Quality Engineering Activities (D.1.4) 

Once the software is accepted via the delivery process, the next set of actions is 

used to determine if there are any quality issues with the software. “Perform software 

quality engineering activities (D.1.4)” is decomposed into three actions: “perform software 

cyber vulnerability scan (D.1.4.1),” “conduct software quality analysis (D.1.4.2),” and 

“build executables from source code (D.1.4.3)” (see Figure 49). The details of each action 
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are discussed within its decomposition and the software quality engineering team performs 

or leads all actions within “perform software quality engineering activities (D.1.4).” 

 

Figure 49. Decomposition of Perform SW Quality Engineering Activities (D.1.4) 

The action “perform software cyber vulnerability scan (D.1.4.1)” begins with 

verifying security classification markings are compliant. Next, the software is scanned for 

cyber vulnerabilities (see Figure 50). The team will determine if a full scan or partial scan 

is required depending on whether or not the delivery is new, or if only a portion of the code 

was modified. If the software quality engineering team finds no vulnerabilities, they will 

proceed with the next action for conducting the software quality analysis. If vulnerabilities 

are discovered, the team has to consider whether work can progress with the cyber 

vulnerabilities found. If work can progress, the software quality engineering team can 

retrieve the source code from the software repository, perform corrective actions to the 

code, and re-commit the code to the software repository. The severity and complexity of 

the changes required will determine whether this action is taken or not. In this context, 

“cyclomatic complexity provides a quantitative measure of the logical complexity of a 

program. It is the upper bound for the number of tests that must be conducted to assure that 

all statements have been executed at least once” (Osmundson and Giammarco 2017). 

Another possibility is that the vulnerabilities are so severe that work cannot proceed. If the 

team makes this determination, a reject trigger is provided to the top-level “reject or 

redirect (R.1)” and the process ends (see Figure 50). An additional possibility other than 

rejecting the code or fixing it immediately, is to proceed with subsequent actions and work 

through the deficiency reporting and engineering change request processes. The deficiency 

reporting process is discussed in Chapter III, Section F Subsection 5. This option may be 
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warranted when the software still contains vulnerabilities yet the updated software to be 

fielded fixes critical vulnerabilities elsewhere.  

 

Figure 50. Decomposition of Perform SW Cyber Vulnerability Scan (D.1.4.1) 

Upon completion of the software cyber vulnerability actions, the software will 

undergo an in-depth quality analysis. As with the cyber actions, “conduct software quality 

analysis (D.1.4.2)” is performed by the software quality engineering team (see Figure 51). 

The deficiency report and engineering change request processes initially discussed within 

the cyber vulnerability analysis are also applicable in the software quality analysis. Since 

these actions are built to be modular and can be inserted as needed to facilitate a deficiency 

report or engineering change request, they are not repeated in discussion for the software 

quality analysis actions.  

 

Figure 51. Decomposition of Conduct SW Quality Analysis (D.1.4.2) 
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The main activity for software quality analysis is performing quality acceptance 

checks on the software code. The decomposition of “complete software quality acceptance 

process (D.1.4.2.1)” illustrates 15 unique quality checks performed by the software quality 

engineering team (see Figure 52). The purpose of these quality checks is to ensure a quality 

product or capability is delivered to the end-user, minimize risk of costly post-production 

fix and repair cycles, and reduce sustainment cost in the product’s life cycle.  

 

Figure 52. Decomposition of Complete SW Quality Acceptance Process (D.1.4.2.1) 

Once the software quality analysis is performed, the next action is to ensure 

executable software can be built from the delivered source code. The software quality 

engineering team also performs “build executables from source code (D.1.4.3)” (see Figure 

53). If there are no issues building executables, the software will be installed on the 

integration and test suite of equipment for further analysis. If there are issues building 

executables, the team may perform corrective action is the issue is minor enough, then re-

commit the code to the repository. If work cannot proceed due to significant issues building 

the executables, then the issues are documented and the software is rejected via a trigger 

back to the top-level “reject or redirect (R.1)” ending the work.  
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Figure 53. Decomposition of Build Executables from Source Code (D.1.4.3)  

5. Deficiency Report Process (DR.1) 

If the software quality engineering team decides to submit a deficiency report and 

work through the engineering change request process, the deficiency will be documented 

and evaluated at the next engineering review board (ERB) to determine if the deficiency is 

valid. The action “perform deficiency report process (DR.1)” models the deficiency report 

process (see Figure 54). If ERB determines that the deficiency is invalid, it will be closed 

in the reporting system. If the ERB determines that the deficiency is valid, the ERB will 

also investigate whether or not the deficiency is within the software developer’s scope to 

address. If the deficiency is within scope, the ERB will work with the developers to 

determine is the deficiency is already assigned to a future sprint. If it is already assigned to 

a future sprint, the deficiency report will be monitored until the issue is corrected. If it is 

not already assigned to a future sprint, the deficiency will be used to update the product 

backlog for incorporation into a future sprint. If it is determined that the deficiency is 

outside the scope of the developer, ERB will determine the appropriate action (see Figure 

54 and Figure 55).  
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Figure 54. Decomposition of Perform Deficiency Report Process (DR.1) 

6. Engineering Change Request (ECR.1) 

The “conduct engineering change request process (ECR.1)” is performed by the 

engineering review board (ERB) (see Figure 55), which is initiated by the previously 

described deficiency report process. The ERB enables review and adjudication of DRs that 

are elevated by the product owner and cannot be resolved during an active sprint. The 

decomposition of “conduct engineering change request process (ECR.1)” yields three sets 

of activities that occur in a progressive series, and they include “prepare for ERB 

(ECR.1.1),” “conduct ERB (ECR.1.2),” and “close ERB (ECR1.3).” The ERB Chair, 

configuration management team, and ERB team perform their corresponding actions 

within each decomposed activity. Within ECR.1, there are three primary activities (see 

Figure 55). 

 

Figure 55. Decomposition of Conduct Engineering Change Request Process (ECR.1) 
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The action “prepare for ERB (ECR.1.1)” is the first step in the ERB process, and it 

includes the activities associated with preparing for the ERB meeting. The decomposition 

of “prepare for ERB (ECR.1.1)” is partitioned into three parallel paths that are respectively 

performed by the ERB Chair, configuration management team, and ERB Team (see Figure 

56). The ERB preparation activities begin when the ERB Chair reviews DRs for 

completeness and clarity and recommends items for the CM team to add to the ERB 

agenda. Once the CM team receives the ERB Chair’s proposed items for the ERB agenda, 

they draft an ERB agenda, which includes the date, location, connectivity information, 

discussion items, and DRs for adjudication. After the draft is complete, the CM team 

provides it to the ERB Chair for their review and approval for distribution approval. The 

ERB Chair then provides the finalized agenda for distribution to the CM team. The CM 

team then distributes the finalized agenda and supporting materials to corresponding ERB 

team members. Once the ERB team receives the agenda and supporting materials they 

conduct review in preparation for the ERB meeting.  

 

Figure 56. Decomposition of Prepare for ERB (ECR.1.1) 

The activities associated with “conduct ERB (ECR.1.2)” start as scheduled (see 

Figure 57). The first step during the ERB meeting is for the CM team to take attendance 
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and confirm that a quorum consisting of essential participants is present. If the ERB chair, 

the ERB chair’s designated replacement, or quorum is not present, then the CM team 

reschedules the ERB. If a quorum is present, then the ERB meeting can proceed as planned, 

and the CM Team notifies the ERB Chair to start the meeting. Subsequently, the ERB chair 

leads review of the agenda items, during which they can defer lower priority items to ensure 

the meeting stays within time constraints. Additionally, review of a DR may be deferred 

from ERB if the party responsible for submitting and presenting the DR is not present. 

During the ERB meeting, the ERB Team is responsible for providing adjudication for each 

presented DR. Adjudication involves advising approval, disapproval, deferral, or approval 

with action items based on the ERB team’s assessment of the respective presented DR. 

Following adjudication, the ERB Chair evaluates the meeting details to assign associated 

actions with priorities and suspense dates where applicable. The CM team takes note of the 

advised DR adjudication, action items, and topics from the meeting. The proposed DR 

adjudication will be executed in “close ERB (ECR 1.3).”  

 

Figure 57. Decomposition of Conduct ERB (ECR.1.2) 

The ERB Chair, configuration management team, and ERB team complete required 

steps to close out the ERB in three parallel paths in “close ERB (ECR 1.3)” (see Figure 

58). In the initial step to close out ERB, the CM team processes each DR based on its 

adjudication. If the CM team receives notification that the DR needs to be revised, then the 

DR is scheduled for a subsequent ERB. If the CM team receives notification the DR is 



86 

rejected, then the DR is rejected from the ERB and closed out. If the CM team receives 

notification that the DR is approved, then the CM team places the DR into the product 

backlog for consideration for incorporation in the next software sprint. Following 

execution of adjudication, the CM team generates and provides corresponding meeting 

minutes for the ERB chair for review. Once the ERB chair provides the final ERB minutes 

back to the CM team, the CM Team distributes the finalized ERB minutes to the ERB 

Team, which concludes the ERB process. 

 

Figure 58. Decomposition of Close ERB (ECR.1.3) 

7. Perform Continuous Integration and Testing (D.1.5) 

The continuous integration and testing process is the last technical action to be 

performed prior to making a decision to releasing the software. The decomposition of 

“perform continuous integration and testing (D.1.5)” is performed by the software quality 

engineering, integration, and test teams (see Figure 59). The action “conduct automated 

functional testing (D.1.5.1)” is performed by the software quality engineering team (see 

Figure 60). The software will be loaded on a stand-alone system and the team will develop 

automated test scripts and conduct automated functional tests of the software. If the testing 

was successful, the team will proceed to the next action for instrumented and un-



87 

instrumented testing. If automated testing was not successful, the team will determine if 

work can proceed. If the cause of the failure was a scripting error, the team will correct the 

syntax and continue with automated testing. If there is a software bug causing issues with 

the scripting, the team will document the issues and utilize the deficiency report and 

engineering change request processes. If work cannot proceed after the failure of automated 

testing, a reject trigger is provided to the top-level “reject or redirect (R.1)” and the process 

ends. 

 

Figure 59. Decomposition of Perform Continuous Testing (D.1.5) 

 

Figure 60. Decomposition of Conduct Automated Functional Testing (D.1.5.1) 
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The action “complete instrumented and un-instrumented tests (D.1.5.2)” is also 

performed by the software quality engineering team (see Figure 61). If the software is not 

already loaded, the team will load it on a stand-alone system and complete instrumented 

tests. Instrumented testing involves using analytical software tools to detect errors or 

potential issues in the code. If instrumented testing produced no significant findings, the 

integration team will be notified to proceed with software integration. If unsuccessful, the 

software quality engineering team will complete un-instrumented tests. Un-instrumented 

testing involves manual inspection of the software code. If un-instrumented tests discover 

significant issues with the software, and work cannot proceed, a reject trigger is provided 

back to the top-level “reject or redirect (R.1)” and work ends. If issues are minor enough 

where work can continue, the deficiency report and engineering change request processes 

will be used, then additional testing efforts will continue.  

After functional, instrumented, and un-instrumented tests, the integration team will 

load or deploy the software to an integration suite. The integration suite may be in a 

virtualized cloud environment or physical hardware. The integration team will do work 

necessary to ensure the software successfully works with other system components or 

external interfaces and is able to deploy in the target environment. If integration is 

successful, the team will develop and integration report and provide it to the test team. If 

integration is not successful, the team will develop a deficiency report and utilize the 

deficiency and engineering change request processes. 

Upon completion of integration, the test team will load software on an operationally 

representative system, connected to the network. Up to this point, all development, 

integration, or tests have been done in a development environment. The testing on a 

connected system involves the new software capability, integrated with other system 

components, and installed on the unclassified or classified network. If operational users are 

available, they will be offered a chance to perform system testing with other test team 

members on the project team. If operational users are not available, representative users 

will perform testing. If successful, a test report will be developed for consideration in the 

subsequent release decision. If testing was not successful, the deficiencies will be 

annotated, and the deficiency report and engineering change processes will be enacted.  
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Figure 61. Decomposition of Complete Instrumented and Uninstrumented Tests 
(D.1.5.2) 

8. Conduct Build Release Decision (D.1.6) 

The last major action is to decide whether or not the software is ready for release. 

The decomposition of “conduct build release decision (D.1.6)” is performed by the lead 

systems engineer, project manager, and sponsor (see Figure 62). Taking all prior activities 

and results into account, the lead systems engineer will provide recommendations to the 

project manager for releasing the software, including any risks or issues associated. The 

project manager will liaison with the sponsor to provide a formal recommendation to 

release the software or not. The sponsor will provide the decision to the project manager, 

who will disseminate the decision to the lead systems engineer. The scope of this thesis 

ends with the decision to release the software or to disapprove the release. If the software 

is approved for release, any follow-on activities can occur. These may include testing to 

determine whether or not the software is operationally suitable and effective, testing with 

other external systems, or limited deployment to operational users.  
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Figure 62. Decomposition of Conduct Build Release Decision (D.1.6) 

9. Perform Continuous SW Development, Integration, and Test (F.0) 

The actions from “perform capability assessment (D.1.1),” “establish templates and 

verify schedule (D.1.2),” “conduct software sprint (D.1.3),” “perform software quality 

engineering activities (D.1.4),” “perform continuous integration and testing (D.1.5),” and 

“conduct build release decision (D.1.6)” were used to develop the decomposed architecture 

diagram of “perform continuous software development, integration, and test (F.0)” (see 

Figure 63). As previously discussed, the purpose of F.0 is to execute software sprints and 

supporting activities that facilitate continuous software design, development, integration, 

and testing. 

There are six main functions and mechanisms within the decomposition. The 

function “perform capability assessment (F.1)” is performed by the “government 

assessment team (C.1).” The function “perform software design (F.2)” is performed by the 

“software design team (C.2).” The function “perform software development and review 

(F.3)” is performed by the “software development team (C.3).” The function “provide 

configuration management services (F.4)” is performed by the “configuration management 

team (C.4).” The function “perform software quality engineering (F.5)” is performed by 

the “software quality engineering team (C.5).” Lastly, the function “perform continuous 

integration and testing (F.6)” is performed by the “software integration team (C.6)” (see 

Figure 63). 
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The function “perform capability assessment (F.1)” aligns to “perform capability 

assessment (D.1.1).” If the software is part of an S&T or existing baseline and being 

proposed for further development, it will undergo an initial capability assessment before 

being accepted into the design, development, integration, and test pipeline. The output of 

this function may be an acceptance notification to the software design team, or a capability 

assessment report back to the business development team with “perform business and 

technical feasibility analysis (EXT.F.1)” with recommendations to proceed or not proceed 

(see Figure 63). 

The function “perform software design (F.2)” aligns to “establish templates and 

verify schedule (D.1.2)” and “conduct software sprint (D.1.3).” Refined customer needs, 

personnel assigned to work, contractual work approval and guidance, and decision to 

insource work are received as inputs (see Figure 63). Refined customer needs in the form 

of requirements are used to develop the software roadmap and initial product backlog. 

These requirements may come from “conduct needs analysis and project planning 

(EXT.F.1.2),” or they may come from higher level acquisition documents as part of the 

organizational guidance, government regulations, and industry standards control received 

by all functions in the IDEF0. Contractual work approval and guidance from “provide post 

award administration and guidance (EXT.F.2.5)” (see Figure 30) is relevant if the 

development work will be at least partially performed with a contractor workforce. 

Conversely, the decision to insource work from “accept, redirect, or reject work 

(EXT.F.1.3)” signals that the effort will be done internally without assistance from 

contractors (see Figure 19). This function also receives additional inputs as feedback loops 

from “perform software development and review (F.3)” for software sprint review data and 

any product backlog updates. Sprint review data and updates to the product backlog are 

used for planning follow on sprints. “Perform software quality engineering (F.5)” provides 

inputs to F.2 for software reject notifications from internal government developers and 

software change requests. When contractors are used, the reject notification will flow back 

to “provide post award administration and guidance (EXT.F.2.5).” The function “provide 

continuous integration and testing (F.6)” also provides inputs to “perform software design 

(F.2)” for software reject notifications, user feedback, and software change requests.  
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The function “perform software development and review (F.3)” aligns to “conduct 

software sprint (D.1.3).” The software design team via “perform software design (F.2)” 

will provide a software release plan and initial product backlog to the software 

development team. The software development team will provide software deliveries to the 

configuration management team as software development progresses. As previously 

mentioned, the development team also provides sprint review metrics back to the software 

design team along with any updates to the product backlog. In the same manner as software 

design, when contractors are used, reject notifications are provided as an input to “provide 

post award administration and guidance (EXT.F.2.5).” 

The function “provide configuration management services (F.4)” aligns to 

“establish templates and verify schedule (D.1.2)” and “conduct software sprint (D.1.3).” 

Software deliveries are processed through the CM team to maintain configuration 

management of software baselines. After delivery, the development team will retrieve code 

from CM and return code back to CM after modifying to ensure the software is 

configuration managed properly. Software is also provided as an output for use by the 

integration and test team to “perform continuous integration and test (F.6).” Software 

delivery info as an output to “perform market research and develop contracting materials 

(EXT.F.2.2)” (see Figure 30). This information helps the contracting team in writing 

CDRLs and other task order delivery specifications to include in the contracting language. 

This function also receives inputs as feedback loops from “perform software quality 

engineering (F.5)” and “perform continuous integration and test (F.6).” Executable 

software, software change requests, and software reject notifications are provided from F.5 

to F.4. Integrated and tested software, software change requests, and reject notifications 

are provided from F.6 (see Figure 63). 

The function “perform software quality engineering (F.5)” aligns to “perform 

software quality engineering activities (D.1.4).” Personnel assigned to work and CM 

baselined source code are provided as inputs. In addition to the feedback loops from F.5 

provided to F.4 as inputs, F.5 also provides a feedback loop of software 

rejection notifications to “perform software design (F.2)” (see Figure 63). 
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The function “provide continuous integration and testing (F.6)” aligns to “perform 

continuous integration and testing (D.1.5).” The inputs for this function include personnel 

assigned to work and software for integration and testing from the CM team. The outputs 

from this function were previously discussed as feedback loops to “provide configuration 

management services (F.4)” and “perform software quality engineering (F.5).” In addition, 

the feedback loop for software change requests is also provided to “perform software 

design (F.2).” 

Lessons learned and software acceptance or rejection notifications are provided as 

outputs from all functions within architecture IDEF0 of “perform continuous software 

development, integration, and test (F.0),” except for “perform capability assessment (F.1).” 

The purpose of omitting software acceptance or rejection notifications from F.1 is 

intentional. Software rejections or acceptance from contractors has to work through formal 

contracting mechanisms; whereas government deliveries do not require the same level of 

formality. The model intentionally segregates rejection notifications for government and 

contractor software deliveries. Initial capability assessments are performed on software 

capabilities that are not yet accepted into the design, development, integration, and test 

cycle. As such, issues with capability assessments can still result in a rejection of software; 

however, this would be done via a capability assessment report back to some level of 

organizational leadership or business development to make a final determination.  
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Figure 63. Architecture IDEF0 of Perform Continuous SW Development, 
Integration, and Test (F.0) 
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 CHAPTER CONCLUSIONS 

This chapter discussed action and IDEF0 diagrams developed as part of an analysis 

of existing organizational SOPs for agile software development. The action diagrams were 

used to develop the architectural IDEF0 diagrams. Action diagrams were decomposed to 

the lowest level needed to support creation of architectural diagrams. Chapter III Section 

B discussed the decomposition of the level 0 action and IDEF0 models. Chapter III Section 

C discussed models for business and technical feasibility analysis. Chapter III Section D 

discussed models for assessing organizational personnel to perform the work associated 

with software development. Chapter III Section E provided a decomposition of the contract 

task order process within the organization. Chapter III Section F discussed the modeling 

and decomposition of agile software development.  

A finding from this model development is that the current SOPs adequately cover 

contracting for software development, pre-vetting and capability assessments of S&T 

based software, and processes for continuous integration and testing. Current SOPs do not 

cover the agile software design and develop actions followed by existing projects within 

the organization. The following action diagram hierarchy can be used to develop new SOPs 

for the organization: “conduct software sprint (D.1.3),” “perform initial backlog and sprint 

planning (D.1.3.1),” “perform sprint planning, execution and review (D.1.3.3),” and 

“receive software delivery and documentation (D.1.3.4).” There is also no SOP for 

personnel assessment, currently done in an ad hoc fashion. The organization may benefit 

from adopting a more structured approach to personnel assessment for soliciting interest 

for new opportunities and assigning employees to those efforts. Technical and feasibility 

assessments are performed using a consistent and structured approach, which is correctly 

captured as part of the process architecture. Additionally, internal contracts processes are 

also correctly captured as part of the process architecture but additional efforts can be 

undertaken to collect historical data for further analysis and model refinement. In fact, 

collection of historical data is pertinent for all actions within the process architecture.  
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IV. MODEL USAGE 

 INTRODUCTION 

Chapter III discussed the action diagrams and modeling used to develop an 

architecture for agile software development. In Chapter IV, a subset of those action 

diagrams was used to perform effort and cost-based Monte Carlo simulations specifically 

for the action, “conduct software sprint (D.1.3).” The scope of the simulations is limited to 

data from a single software development project within the C2IS division. Section B 

discusses model constraints and how the values used for simulation were obtained. Section 

C discusses the construct of the actions used to support the Monte Carlo simulation for 

“perform initial backlog and sprint planning (D.1.3.1).” Section D discusses the actions 

used in support of the Monte Carlo simulation for “perform sprint planning, execution and 

review (D.1.3.3).” Section E discusses the actions used and resulting the Monte Carlo 

simulation for “receive software delivery and documentation (D.1.3.4).” Section F 

discusses the Monte Carlo simulation for all three major actions contained within “conduct 

software sprint (D.1.3).” These include “perform initial backlog and sprint planning 

(D.1.3.1),” “perform sprint planning, execution and review (D.1.3.3),” and “receive 

software delivery and documentation (D.1.3.4).” Section G provides a model use case to 

demonstrate model usage. Lastly, Section H discusses the chapter conclusions based on the 

numerous Monte Carlo simulations. 

 MODEL CONSTRAINTS FOR SIMULATION 

Once the models were complete, then validated by subject matter experts for their 

respective area within the organization, we assigned values to actions within the model to 

simulate effort and cost. Model input parameters included the number of personnel roles, 

hourly pay rate, and allocated hours for each personnel role. Model simulation outputs 

provide the effort and cost with the mean and standard deviation for 1000 Monte Carlo 

trials (see Figure 64). Monte Carlo simulations allow for multiple trial runs of large sample 

sizes. “Monte Carlo is a ‘game of chance’ technique used to solve many types of problems 

by applying random sampling instead of analytic methods” (Madachy and Houston 
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2018,75). Within the C2IS division, the model’s output of Monte Carlo simulations can be 

used by management to assess effort and cost estimation risk based on randomness within 

model parameters. The simulated output can be used by project managers to ensure effort 

and cost estimates for initial backlog and sprint activities provided by the software 

development team are reasonable and within a risk tolerance determined by management. 

 

Figure 64. Model Input Parameters and Outputs for Conduct Software Sprint (D.1.3) 

Values within each action are either duration based using hours, or they are based 

on a normal distribution with mean and standard deviation (see Figure 65). The attributes 

for each item that incurs cost is defined separately. Innoslate allows for multiple cost 

attributes to be assigned to one or more actions within the entity view of each action 

diagram, under the program management tab of relationships (see Figure 66). 
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Figure 65. Action Durations for D.1.3.1 
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Figure 66. Incurs Cost for Initialize Product Backlog (D.1.3.1.3) 

After the decomposition of all actions within the A.0 model (see Figure 13 in 

Chapter III), we determined that there was insufficient data available within the C2IS 

division for use in the simulation actions other than “perform initial backlog and sprint 

planning (D.1.3.1),” “perform sprint planning, execution and review (D.1.3.3),” and 

“receive software delivery and documentation (D.1.3.4).” Once the modeling was 

complete, we analyzed available data and applicable fit within the model for simulation. 

Data captured for the simulation includes actual work hours per developer per sprint for 10 

sprints, and actual cost per sprint for seven sprints. However, the data for supporting actions 

leading up to and after software development (D.1.3) were not available. Durations for 

software development are based on the mean and standard deviation of allocated 

development hours per developer within 10- or 15-day software sprints. The model is able 

to scale based on the time duration of software sprints to provide dynamic output. This 

includes the number and type of personnel, as well as the fully burdened hourly rate for the 
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C2IS division in fiscal year 18 (see Table 1). Data for pre, and post sprint activities was 

provided by subject matter experts in the areas of initial backlog and sprint planning, sprint 

reviews, and configuration management of software deliveries. The entire data set used to 

support model development can be found in Appendix A. Metrics utilized throughout this 

thesis were generalized relative to employees within the C2IS division. This thesis does 

not collect or include information attributable to specific individuals. Due to the use of 

generalized hourly rates versus using employee actual rates, the model simulation outputs 

for cost is not as precise as it could be if actual employee hourly rates were used. 

Model design is intentionally modular. The actions “perform initial backlog and 

sprint planning (D.1.3.1),” “perform sprint planning, execution and review (D.1.3.3),” and 

“receive software delivery and documentation (D.1.3.4)” can be simulated as a whole, or 

individually. This methodology provides a foundation and experimental test bed for future 

modeling and can be scaled for various sized software projects within the C2IS division.  

Table 1. Personnel Roles and Hourly Rates 

Role GS-Equivalent Hourly Rate (FY18 burdened) 
Project Manager GS-15 $154.14 
Product Owner GS-13 $126.50 
Lead Engineer GS-13 $123.55 
Architecture GS-13 $123.55 
Software Development Lead GS-15 $154.14 
Software Developers GS-13 $123.55 
Integration Lead GS-13 $123.55 
Integrators GS-11 $108.08 
Test Lead GS-13 $126.50 
Testers GS-11 $108.08 
Human Systems Interface (HSI) GS-13 $123.55 
Cybersecurity GS-13 $126.50 
Configuration Management (CM) GS-11 $108.08 
Trainers GS-11 $108.08 
System User GS-11 $108.08 
Subject Matter Experts (SMEs) GS-13 $123.55 
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 PERFORM INITIAL BACKLOG AND SPRINT PLANNING (D.1.3.1) 

To perform the Monte Carlo simulation, we assigned values to each decomposed 

action within “perform initial backlog and sprint planning (D.1.3.1)” as shown in Figure 

67. No values were assigned to the action of “perform initial backlog and sprint planning 

(D.1.3.1).” Instead, values were assigned individually to the decomposed actions for 

“perform initial backlog and sprint planning (D.1.3.1),” “perform sprint planning, 

execution and review (D.1.3.3),” and “receive software delivery and documentation 

(D.1.3.4).” 

 

Figure 67. Perform Initial Backlog and Sprint Planning D.1.3.1 

The duration values or statistical data assigned to each action are used within the 

Monte Carlo simulation to forecast effort and cost. Since there are no input triggers 

provided to the first action, “define roles and responsibilities (D.1.3.1.1),” the Monte Carlo 
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simulation can be performed. If there were an input trigger to D.1.3.1.1, a discrete 

simulation would be required. This is an example of modularity within the model design 

(see Figure 68).  

 

Figure 68. Decomposition of Perform Initial Backlog and Sprint Planning (D.1.3.1) 

A Monte Carlo simulation with 1000 trials of “perform initial backlog and sprint 

planning (D.1.3.1)” resulted in an average duration of 18.2 days with a standard deviation 

of 4.77 days. The average cost via simulation was $304,395 with a standard deviation of 

$81,000 (see Figure 69). The Y axis shows the number of simulations and the X axis 

shows total cost.  
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Figure 69. Monte Carlo Simulation 1000 Trials for Perform Initial Backlog and 
Sprint Planning (D.1.3.1) 

Based on a single 1000 trial run of the Monte Carlo simulation, 585 out of 1000 

trials (58.5%) resulted in a cost ranging from $245,605–$313,313 (see Figure 70). This 

simulation was performed using the 15-day sprint effort with 15 personnel roles assigned. 

This is calculated by adding the number of simulations in the two middle bars within the 

(see Figure 70). Additionally, 760 out of 1000 trials (76%) resulted in cost that was greater 

than $245,605. This is calculated by adding the number of simulations from the $245,605 

bar to the right (see Figure 70). Thus, a manager can confidently state that 76% or more of 

the time, the cost for this set of actions will be greater than $245,605. Additionally, 82% 

of the time the cost will be less than $381,021. This is calculated by adding the number of 

simulations from the $381,021bar to the left (see Figure 70). A manager can confidently 

state that 82% or less of the time, the cost for this set of actions will be less than $381,021. 

Managers can use the results such as these to make risk adjusted decisions based on his or 

her tolerance of risk pertaining to cost estimations.  
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Figure 70. Monte Carlo Cost Simulation with 1000 Trials for Perform Initial 
Backlog and Sprint Planning (D.1.3.1) 

Based on the simulation, 600 out of 1000 trials (60%) resulted in a total effort of 

15.1–19.1 days; additionally, 900 out of 1000 trials (90%) resulted in a total effort of 11.1–

23.1 days. For approximately 75% of the effort, the number of days to complete “perform 

initial backlog and sprint planning (D.1.3.1)” will be 15 days or greater. This is found by 

adding the number of simulations from 15.1 days to the right (see Figure 71). Additionally, 

for 83% of the effort, the number of days required will be less than 19 days. This is found 

by adding the number of simulations from 19.1 days to the left. The average of 18.2 days 

seems reasonable; however, since 83% of the effort the number of days required is less 

than 19 days, there is a greater risk of over-estimating effort required to perform these 

actions. Gathering metrics over time and across multiple projects will facilitate more 

accurate effort estimates based on analysis of Monte Carlo simulation results. Managers 
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can use the results such as these to make risk adjusted decisions based on his or her 

tolerance of risk pertaining to estimations for effort. 

 

Figure 71. Monte Carlo Time Simulation with 1000 Trials for Perform Initial 
Backlog and Sprint Planning (D.1.3.1) 

 PERFORM SPRINT PLANNING, EXECUTION AND REVIEW (D.1.3.3) 

To perform the Monte Carlo simulation for “perform sprint planning, execution and 

review (D.1.3.3),” we assigned values to each decomposed action within D.1.3.3 (see 

Figure 72). As with the previous simulation, no values were assigned to the higher-level 

D.1.3.3 action. Values were assigned to actions within “perform sprint planning, execution 

and review (D.1.3.3)” using a bottom-up approach. See Appendix A for the values assigned 

to decomposed actions in Figure 72, Figure 73, and Figure 74.  
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Figure 72. Decomposition to D.1.3.3 
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Figure 73. Decomposition of Conduct Sprint (D.1.3.3.5) 
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Within the “conduct sprint (D.1.3.3.5)” action, the simulation of “develop software 

code (D.1.3.3.5.17)” utilizes historical sprint metrics from a C2IS division software 

development project. The actions and effort-based metrics that are involved in develop 

software code are shown in Figure 74. The process of developing software code is 

contained within a loop to provide a means to emulate the number of days the sprint is 

conducted. As previously discussed, sprints for the software project within the C2IS 

division are time-bound to 10 or 15 days. When the sprint cycle is 15 days, the “LOOP” 

action for “develop software code (D.1.3.3.5.17.1)” is set to 14 iterations, since the action 

occurs once and then repeats 14 times. When the sprint cycle is 10 days, the loop iterations 

is set to nine. The actions that take place within the software development process include, 

“develop software code (D.1.3.3.5.17.2),” “complete peer review of delivery 

(D.1.3.3.5.17.3),” and “commit code to software repository (D.1.3.3.5.17.4),” which then 

repeat as specified by the “LOOP” function.  

 

Figure 74. Decomposition of Develop Software Code (D.1.3.3.5.17) 

Historical data from 10 prior sprints provided in Table 2 is used to calculate the 

values illustrated in Figure 74. For a sprint period of 15 days, the “develop software code 

(D.1.3.3.5.17.1)” activity is allocated an average of 4.7622 hours and standard deviation of 

0.6907 hours. When the sprint duration is 10 days, the average used is 4.8867 hours with a 
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standard deviation of 0.6376 hours. Only the “LOOP” action in Figure 74 is assigned this 

duration, which incorporates the durations associated with activities within the loop. While 

the normal work day encompasses eight hours, on average the developer was productive at 

generating code for 4.7662 hours. Thus, in the case of a 15-day sprint cycle, the results of 

the simulation can greater or less than 15 days based on the Monte Carlo simulation.  

Table 2. Sprint Metrics for Develop Software Code (D.1.3.3.5.17) 

Sprint 
Number 

Number of 
Days in 
Sprint 

Total 
Actual 
Hours 

Number of 
Developers 

Average 
Person-Hours/ 
day 

Standard 
Deviation 

1 10 781 17.5 

4.89 0.64 
2 10 1104 20 
3 10 1038 20 
4 10 912.5 20 
5 10 929 20 
6 15 1430.5 17 

4.76 0.69 
7 15 950 16 
8 15 1217 16.5 
9 15 1400 22 
10 15 1314 20.5 

 

The Monte Carlo simulation model produces cost/schedule probability 

distributions. Those distributions are essentially estimation models to be used on sprints. 

Estimators/managers can look at the cumulative distribution function (CDF) and gauge 

their risk. This probabilistic estimation approach is different than using parametric cost 

estimation models. The results of a Monte Carlo simulation with 1000 trials is shown in 

Figure 75. From the simulation of D.1.3.3, the conclusion can be drawn that it will take an 

average 15.9 days to complete the sprint planning, execution, and review process with a 

standard deviation of 2.6 days. The average cost output is $254,434 with a standard 

deviation of $20,131. 
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Figure 75. Monte Carlo Simulation Summary with 1000 Trials for Perform Sprint 
Planning, Execution and Review (D.1.3.3) 

To provide additional insight regarding the cost of a 15-day simulation, Figure 76 

provides a bar chart showing the cost values returned for a 1000 iteration Monte Carlo 

simulation. The Y axis provides the number of simulations conducted for D.1.3.3 and the 

X axis provides the cost in dollars. This chart supports the conclusion that the average cost 

to perform sprint planning, execution and review is $254,434 (see Figure 76). This Monte 

Carlo simulation shows a normal distribution with data aggregating around the mean. By 

adding the bars for number of simulations from $255,035 to the left, we can determine that 

for 75% of the effort, cost will be less than or equal to $255,035. Adding the bars for the 

number of simulations from $225,959 to the right, we can establish that for 90% of the 

effort, costs will be greater than or equal to $225,959. Managers can use the results such 

as these to make risk adjusted decisions based on his or her tolerance of risk pertaining to 

estimations of effort. In good practice, an estimate of $225K to $255K would be an 

acceptable level of risk. 

 



112 

 

Figure 76. Monte Carlo Cost Simulation with 1000 Trials for Perform Sprint 
Planning, Execution and Review (D.1.3.3) 
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Figure 77. Monte Carlo Time Simulation with 1000 Trials for Perform Sprint 
Planning, Execution and Review (D.1.3.3) 

For further insight, Figure 77 provides a bar chart showing the values returned for 

a 1000 iteration Monte Carlo simulation. The Y axis provides the number of simulations 

conducted for D.1.3.3 and the X axis provides the duration in days. Over 1000 trials the 

average effort to perform sprint planning, execution and review is approximately 15.9 days 

with 12.7 days being the mode. Based on actual productivity, there is a 50% chance of the 

sprint taking longer than 15 days, and a 40% chance of finishing in fewer than 13 days (see 

Figure 77). Since sprints are time-bound, any work not complete at the end of the sprint is 

moved to the product backlog. While the simulation shows that sprints may exceed the 



114 

time allocated for each sprint, in practice, no work will continue past the specified 

timeframe for each sprint.  

 RECEIVE SOFTWARE DELIVERY AND DOCUMENTATION (D.1.3.4) 

To perform the Monte Carlo simulation for “receive software delivery and 

documentation (D.1.3.4),” we assigned values to each decomposed action within D.1.3.4 

(see Figure 78, Figure 79, and Figure 80). As with the previous simulation, no values were 

assigned to the higher-level D.1.3.4 action. Within Figure 79 and Figure 80 if an action is 

decomposed, any values assigned are attributed at the lowest level of the decomposition. 

For example, the action “review delivery against acceptance criteria (D.1.3.4.1)” in Figure 

79, is shown to be decomposed; therefore, values are assigned to actions within D.1.3.4.1 

as opposed to its parent action D.1.3.4.1 (see Figure 80). Values assigned to decomposed 

actions in Figure 79 and Figure 80 are included in Appendix A. 
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Figure 78. Decomposition Preceding Receive SW Delivery and Documentation 
(D.1.3.4) 
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Figure 79. Decomposition of Receive Software Delivery and Documentation (D.1.3.4) 
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Figure 80. Decomposition of Review Delivery against Acceptance Criteria 
(D.1.3.4.1) 

The results of the Monte Carlo simulation with 1000 trials for “receive software 

delivery and documentation (D.1.3.4),” are shown in Figure 81. Based on the simulation 

of D.1.3.4, the metrics show it will take an average of 5.3 days to perform D.1.3.4 with a 

standard deviation of 3.4 hours. The low standard deviation relative to the total average 

indicates increased fidelity in the results of the simulation. Additionally, it can be 

concluded that D.1.3.4 results in an average cost of $8,315. The total cost of D.1.3.4 is 

insignificant compared to the costs of D.1.3.1 and D.1.3.3. In addition, many of the actions 

performed, such as those within “review delivery against acceptance criteria” (D.1.3.4.1), 

are candidates for automation. Efforts to automate actions is expected to reduce effort and 

cost even further.  
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Figure 81. Monte Carlo Simulation Summary with 1000 Trials for Receive Software 
Delivery and Documentation (D.1.3.4) 

A graphical depiction of the results for cost to perform “receive software delivery 

and documentation (D.1.3.4),” is shown in Figure 82. The bar chart shows the cost values 

returned for a 1000 trial Monte Carlo simulation, which has its Y axis provide the number 

of simulations conducted for D.1.3.4 and the X axis provide the cost in dollars. This chart 

shows two bars, which are representative of the two potential paths associated with the 

software delivery. The lower cost path reflects no issues with the software delivery whereas 

the higher cost path reflects issues with the delivery that required further analysis. The cost 

is projected to be either $7,187 or $8,538. The majority of this cost, whether the delivery 

is accepted or rejected stems from the action to “review delivery against acceptance criteria 

(D.1.3.4.1).  
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Figure 82. Monte Carlo Cost Simulation with 1000 Trials for Receive Software 
Delivery and Documentation (D.1.3.4) 

For further insight regarding the amount of effort required to “receive software 

delivery and documentation (D.1.3.4),” Figure 83 provides a bar chart showing the values 

returned for a Monte Carlo simulation with 1000 trials. The Y axis provides the number of 

simulations conducted for D.1.3.3 and the X axis provides the duration in days. Effort is 

higher when issues with the delivery are present; however, the majority of time for this 

action is spent performing “review delivery against acceptance criteria” (D.1.3.4.1). 
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Figure 83. Monte Carlo Time Simulation with 1000 Trials for Receive Software 
Delivery and Documentation (D.1.3.4) 

 SUMMARY SIMULATION OF CONDUCT SOFTWARE SPRINT (D.1.3) 

Through review of “conduct software sprint (D.1.3),” Section F provides a holistic 

assessment of the Monte Carlo simulations for all three major corresponding supporting 

actions, which include “perform initial backlog and sprint planning (D.1.3.1),” “perform 

sprint planning, execution and review (D.1.3.3),” and “receive software delivery and 

documentation (D.1.3.4).” The combination of these three groups of actions encompass the 

function provided by “conduct software sprint (D.1.3).” By combining the functionality of 

these actions in a single overarching action, aggregate metrics can be gathered based on 

simulation of the aggregate collection of activities for D.1.3 as shown in Figure 84.  
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Figure 84. Monte Carlo Simulation Summary with 1000 Trials for Conduct Software 
Sprint (D.1.3) 

The metrics shown in Figure 84 are driven by the costs built into the respective 

decomposed supporting actions “perform initial backlog and sprint planning (D.1.3.1),” 

“perform sprint planning, execution and review (D.1.3.3),” and “receive software delivery 

and documentation (D.1.3.4).” Based on the outcome of the Monte Carlo simulation the 

action of “conduct software sprint (D.1.3)” costs $566,028 on average (µ) with a standard 

deviation (σ) of $81,564. Although there is a lack of historical metrics for the number of 

people and hours for D.1.3.4, it did not have a significant impact on the overall simulation, 

since the action D.1.3.4 had a much lower cost impact than neighboring actions, D.1.3.1 

and D.1.3.3. For perspective, D.1.3.4 costs $8,351 on average, whereas D.1.3.1 and D.1.3.3 

cost an average of $304,395 and $254,434 respectively.  
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A bar chart of the overarching results for cost to “conduct software sprint (D.1.3)” 

is shown in Figure 85. The chart shows the cost values returned for a Monte Carlo 

simulation with 100 trials. The Y axis for the chart provides the number of simulations 

conducted for D.1.3 and the X axis provide the cost in dollars. This bar chart shows a 

normal distribution for 1000 iterations with a mean cost of $566,028. From review of the 

bar chart, we determined that approximately for 77% of the effort, cost is less than or equal 

to $557,655, which is slightly more than the average. This can be found by adding the 

number of simulations to the left of the bar for $557,655. Additionally, for 89% of the 

effort the cost ranges from $421,491 - $625,738. For a risk adverse manager, an estimate 

of $420K to $625,000 provides the lowest risk. If the range between the low and high point 

of that estimate range does not have enough fidelity, a manager could also evaluate that for 

60% of the effort, cost will range between $489, 573 - $557, 655. This range is illustrated 

by the two highest bars in the chart.  

  

Figure 85. Monte Carlo Cost Simulation with 1000 Trials for Conduct Software 
Sprint (D.1.3) 
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The duration of “conduct software sprint (D.1.3),” is captured in the bar chart 

shown in Figure 86, which shows the values returned for a Monte Carlo simulation with 

1000 trials. The Y axis provides the number of simulations conducted for D.1.3 and the X 

axis provides the effort in days and months. The chart supports the finding that the average 

effort of 1.3 months to conduct all activities in the software sprint. Adding the number of 

simulations in the time bar chart, there is a 74% likelihood that it will take between 1.07 - 

1.34 months to complete all actions within D.1.3.  

  

Figure 86. Monte Carlo Time Simulation with 1000 Trials for Conduct Software 
Sprint (D.1.3) 
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 MODEL USE CASE 

This section provides a step-by-step example of how to modify the Innoslate model 

for “develop software code” (D.1.3.3.5.17). As presented in Chapter I, historical data with 

actual cost and effort was only available for the decomposed “develop software code” 

action. In addition to the availability of real-world data, the reason the action for “develop 

software code” is used for this use case is to provide a primer for model testing and 

validation discussion in Chapter V, which discusses model prediction measures for 

D.1.3.3.5.17 compared to planned and actual data.  

With basic knowledge of Innoslate, the process architecture model can be modified 

to accept new input parameters, which can then be further analyzed. Innoslate provides the 

option to run either a discrete or Monte Carlo simulation. The effort required to update the 

model for different scenarios is dependent on the number of actions that need to be 

modified. For the model captured in this use case, the time to update the model can be 

measured in minutes for an Innoslate user familiar with the model. If the user has limited 

knowledge of the model, or there is a significant number of model parameters were 

required to be changed, the time to update could be substantially more, in terms of minutes, 

hours, and possibly days.  

The use case scenario involves the following objectives:  

• Change the number of sprint days from 10 to 15 

• Change the number of software developers from 16 to 18 

• Successfully run a Monte Carlo simulation and use the results 

An initial simulation for a 10-day sprint with 16 developers results in a projected 

cost of $96,685 and 6.1 days (see Figure 87). The value of 6.1 days implies that the team 

of 10 software developers was productive for an average of 6.1 days out of 10. This value 

is based on assigning the average effort per developer of 4.8867 hours per sprint with a 

standard deviation of 0.6376 to “develop software code” D.1.3.3.5.17. The average and 

standard deviation are based on statistical analysis of project historical data (see Table 2). 

For this use case, we assume a project manager wants to know what the cost and effort 
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increase will be to go from 16 developers in a 10-day sprint to 18 developers in a 15-day 

sprint in order to plan for an increased workload. A summary comparison is provided at 

the end of this use case.  

 

Figure 87. Use Case Initial Results 

The following actions required to perform the use case: 

• Step 1: Navigate to D.1.3.3.5.17 (see Figure 88). 

 

Figure 88. Use Case Step 1 
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• Step 2: Select the LOOP action for “develop and review software code,” 

D.1.3.3.5.17.1 (see Figure 89). 

• Step 3: In the “attributes action” window, modify the mean and standard 

deviation values (see Figure 89). 

 

Figure 89. Use Case Step 2 and Step 3 
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• Step 4: In the menu bar, click “open,” then “entity view” (see Figure 90). 

 

Figure 90. Use Case Step 4 

• Step 5: Under “relationships,” click “program management” (see Figure 

92). 

 

Figure 91. Use Case Step 5 
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• Step 6: To increase the number of developers from 16 to 18, click “add,” 

“existing (default)” (see Figure 93). 

 

Figure 92. Use Case Step 6 

 
 



129 

• Step 7: Select the checkbox next to each software developer required to 

equal a total of 18 developers, then click “add” (see Figure 93). 

 

Figure 93. Use Case Step 7 

 

• Step 8: Click “save” (see Figure 95). 

 

Figure 94. Use Case Step 8 

 



130 

• Step 9: Select the LOOP action for “develop and review software code,” 

D.1.3.3.5.17.1, then in the menu bar, click on “</> script” (see Figure 96). 

 

Figure 95. Use Case Step 9 

• Step 10: In the “edit develop and review software code’s script” window, 

change the number of loop iterations from “9” to “14,” and click “done” 

(see Figure 96). The LOOP action will run once, then 14 more times, 

resulting in 15 loops. This effectively changes the number of sprint days 

from 10 to 15.  

 
 

Figure 96. Use Case Step 10 
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• Step 11: Deselect the LOOP action for “develop and review software code,” 

D.1.3.3.5.17.1. 

• Step 12: In the menu bar, click the “simulate” button, then click on “Monte 

Carlo” (see Figure 97). 

 
 

Figure 97. Use Case Step 11 and Step 12 

• Step 13: Click on “settings” and ensure the “number of iterations” and 

“hours per year” values are correct for the intended simulation. For this 

model, 1000 iterations and 2,920 hours per year are used in order to generate 

simulation outputs for a standard eight-hour workday, found by multiplying 

8 times 365 days in a year (see Figure 98). 

• Step 14: Click “save settings” (see Figure 98). 
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Figure 98. Use Case Step 13, 14, and 15. Source: SPEC Innovations (2017). 

• Step 15: Click “play” (see Figure 98). 

• Step 16: View output from simulation (see Figure 99). 

 

Figure 99. Use Case Step 16 
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Analysis of changing the number of developers from 16 to 18 shows that effort 

increases from 6.1 days to 8.9 days and cost increases from $96,685 to $158,574. The 

simulation shows that there will be a cost increase of $61,889. 

Table 3. Use Case Summary Comparison 

Number of Developers Effort in Days Cost 
16 6.1 $96,685 
18 8.9 $158,574 

 

 CHAPTER CONCLUSION 

Chapter IV demonstrates model usage and Monte Carlo simulation by providing 

metrics to the action diagrams and architecture modeling described in Chapter III. The 

intention of the use case is to demonstrate how others could modify the model and use for 

different projects within the C2IS division. While the scope of the simulations is limited to 

data from a single software development project within SSC Pacific’s C2IS division, the 

results have potential to be extensible to other agile software development projects within 

the organization utilizing the SOPs. Understanding the model constraints, how the values 

used for simulations were obtained, and the corresponding construct of actions provides 

context for understanding the output of the Monte Carlo simulation. The Monte Carlo 

simulation is completed at a high-level for the parent action of “conduct software sprint 

(D.1.3)” as well as individually for the dependent actions, which include “perform initial 

backlog and sprint planning (D.1.3.1),” “perform sprint planning, execution and review 

(D.1.3.3),” and “receive software delivery and documentation (D.1.3.4).” The simulations 

provide insight into the possibilities of using MBSE approaches to support cost and 

schedule estimates for agile software development within the C2IS division.  

One benefit of having a model-based architecture is that it can be utilized as an 

experimental test bed for future projects. With the creation of an architecture that can 

simulate potential project parameters by using real-world data, there is a resulting necessity 

for projects to capture data for each major action to fuel the simulations. Gathering 
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additional real-world metrics will enable the model to be updated in order to perform 

further project analysis based on Monte Carlo simulations. The model use case provides 

an example of how model parameters can be modified for variables such as sprint length 

and personnel types assigned to various actions within the model in order to provide 

managers with cost and effort predictions Ultimately, having a well-defined and robust 

model as the architecture foundation provides a resource for refinement of holistic software 

development estimations and an aid for programs to quantifiably defend software 

development budgets.  
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V. MODEL TESTING AND VALIDATION 

 INTRODUCTION 

Chapter V provides an analysis of model testing and validation to determine 

confidence in the model, and whether the model can accurately predict effort and cost.  

The modeler must establish his/her own confidence in the model and then 
convey that confidence to stakeholders and peers, usually through sharing 
results of Verification and Validation (V&V) exercises. Verification 
exercises determine whether or not a model is built correctly (error-free) 
and represents the intended behavior according to the model specification. 
Validation exercises determine whether the model provides an adequate 
representation of the real system for the model’s stated purpose and 
addresses the sponsor’s problem. (Madachy and Houston 2018, 26) 
Model testing is scoped in terms of traditional post calibrated models and 

applicability of use in early phase cost estimating. In early phase cost models, “initial 

estimated inputs are the only information available for the early phase budgeting” and are 

used for model calibration (Rosa et al. 2017, 30). Traditional post calibrated models use 

final actual values for calibration and input parameters. Section B discusses model 

prediction accuracy using prediction measures such as relative error (RE), magnitude of 

relative error (MRE), mean magnitude relative error (MMRE), coefficient of determination 

(R2), and PRED. PRED provides the percentage of cases in a data series that have an MRE 

value below a specified percentage, such as 20% for PRED(20) and 30% for PRED(30) 

(Boehm et al. 2000, 173). Section C provides a comparison of cost and effort estimation 

methods. Section D discusses threats to model validity. Section E presents chapter 

conclusions. 

To establish model validity, we applied a series of verification and validation steps. 

While model prediction measures were limited to the cost estimates for software sprints, 

these verification and validation tests can be applied across the broader model to assess 

model validity. The process of model validation includes assessment 14 different structure 

and behavior tests covering “suitability for purpose, consistency with reality source, and 

utility and effectiveness of a suitable model” (Madachy 2008,119 - 121) (see Table 4, Table 

5, and Table 6). 
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Table 4. Suitability for Purpose. Adapted from Madachy (2008). 

Focus Test Passing criteria Results 

Structure 

Dimensional 
consistency 

Variable dimensions 
agree with the 
computation using right 
units, ensuring that the 
model is properly 
balanced 
 

Pass, all units consistent 
for person-hours, labor 
rates, and dollars 

Extreme conditions 
in equations 

Model equations make 
sense using extreme 
values 

Not tested: equations are 
built into tool, only input 
parameters are changed in 
the tool GUI (i.e., mean, 
STDEV, #loops, 
#developers)  
 

Boundary adequacy 
-important variables 
-policy levers 

Model structure contains 
variables and feedback 
effects for purpose of 
study 

 
Pass, model structure 
accounts for boundaries 
within the four SOPs 
 

Behavior 

Parameter 
(in)sensitivity 
 
-behavior 
characteristics 
 
-policy conclusions 

 
Model behavior sensitive 
to reasonable variations 
in parameters 
 
Policy conclusions 
sensitive to reasonable 
variations in parameters 
 

Pass, model accepts 
changes in parameters 
 
Policy considerations: Not 
tested: policy outside 
scope of research, see 
future work  

Structural 
(in)sensitivity 
 
-behavior 
characteristics 
 
-policy conclusions 

 
Model behavior sensitive 
to reasonable alternative 
structures 
 
Policy conclusions 
sensitive to reasonable 
alternative structures 

Pass, model includes 
alternative structures 
based on user defined 
inputs such as number of 
developers and sprint 
duration 
 
Policy considerations: Not 
tested: alternative 
software process policies 
outside scope of research, 
see future work  
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Table 5. Consistency with Reality. Adapted from Madachy (2008). 

Focus Test Passing criteria Results 

Structure 

Face validity 
 
-rates and levels 
-information 
feedback-delays 

Model structure resembles 
real system to persons 
familiar with system 

Pass, developers concur 
model matches factual 
SOP processes. 16/16 of 
developer role types and 
actions validated 

Parameter 
values 
 
-conceptual fit 
-numerical fit 

Parameters recognizable in 
real system and values are 
consistent with best 
available information about 
real system 

Pass with caveat for 
numerical fit: need larger 
sample size from more 
projects and more 
historical data 

Behavior 

Replication of 
reference modes 
(boundary 
adequacy for 
behavior) 
 
-problem 
behavior 
-past policies 
-anticipated 
behavior 

Model endogenously 
reproduces reference 
behavior modes that 
initially defined the study, 
including problematic 
behavior, observed 
responses to past policies 
and conceptually 
anticipated behavior 

Pass, reproduces behavior 
modes within SOPS used 
to construct model 
 
Past policies, model not 
suitable to simulate pre-
agile process policies 
 

Surprise 
behavior 
 
 

Model produces 
unexpected behavior under 
certain test conditions  
1) model identifies 

possible behavior 
2) model is incorrect and 

must be revised 

Pass, discrete simulations 
revealed unexpected 
behavior when testing 
reject loops, and other 
action entities. Model 
revised to correct. 
 
In addition, see future 
work related to Monterey 
Phoenix 

Extreme 
condition 
simulations 

Model behaves well under 
extreme conditions or 
policies, showing that 
formulation is sensible 

Did not experiment in this 
research, see future work 

Statistical tests 
-time series 
analyses 
-correlation and 
regression 

Model output behaves 
statistically with real 
system data; shows same 
characteristics 

Pass, model is statistically 
representative of real 
process. See details in 
Chapter V, section B for 
model prediction 
measures 
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Table 6. Utility and Effectiveness of a Suitable Model. 
Adapted from Madachy (2008). 

Focus Test Passing criteria Results 

Structure 

Appropriateness of 
model characteristics 
for audience-size 
-
simplicity/complexity 
-aggregation/detail 

Model simplicity, 
complexity and size is 
appropriate for audience 

Pass, traceable to 
SOPs used to 
develop models for 
C2IS division 

Behavior 

Counter-intuitive 
behavior 

Model exhibits seemingly 
counter-intuitive behavior 
in response to some 
policies, but is eventually 
seen as implication of 
real system structure 

Pass, tested with 
varying levels of a 
standard day, 8hr and 
24hr. Model 
exhibited counter-
intuitive output until 
number of hours in 
year was modified to 
adjust to 8hr day. 
 
In addition, see 
future work related to 
Monterey Phoenix 

Generation of insights 
Model is capable of 
generating new insights 
about system 

Pass, model is 
scalable, can be 
extended over time to 
address a larger 
process boundary, 
provides outputs to 
use for risk based 
cost and effort 
decisions 
 

 

 MODEL PREDICTION MEASURES 

 In order to test the ability of the simulation to predict effort and cost, we computed 

measures traditionally used for cost estimation models. The measures and criteria used to 

analyze the accuracy of the cost and effort simulation models include: error (E) (see 

Equation1), average RE (see Equation 2), MRE (see Equation 3), MMRE (see Equation 4), 

coefficient of determination (R2) (see Equation 5), and the measure to assess the accuracy 

of model prediction (PRED) (see Equation 6 and Equation 7). The error (E) is calculated 
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by taking the difference between the estimated and the actual value for cost and person-

hours worked per sprint (see Equation1). The RE as a measure of accuracy is calculated by 

dividing the error by the actual value for person-hours worked per sprint (see Equation 2). 

The MRE is the absolute value of the RE (see Equation 3). The MMRE is the average of 

the MREs (see Equation 4). The MMRE is an “indicator of model accuracy. Low MMRE 

is an indication of high accuracy. MMRE is defined as the sample mean (μ) of the 

magnitude of relative error (MRE)” (Rosa et al. 2017, 34).  

 The coefficient of determination (R2) (see Equation 5) value is calculated by 

squaring the value obtained for the correlation coefficient (r). The equation for the 

coefficient of determination (Equation 5) is derived from the correlation coefficient 

equation found in the works of Mun (Mun 2015, 88). “The correlation coefficient is a 

measure of the strength and direction of the relationship between two variables, and it can 

take on a value between -1.0 and +1…the higher the absolute value of the correlation 

coefficient, the stronger the relationship” (Mun 2015, 88). In equation 5, the coefficient of 

determination is calculated by substituting actual historic values for the variable x and 

predicted measured values for the variable y. While a comparison of the R2 values shows a 

wide variance, R2 is just a cursory measure. A better indicator of the model prediction 

accuracy for individual sprints is the error value relative to the actual historic values, which 

is evident in the RE, MMRE, and PRED values. 

The PRED(20) and PRED(30) results provide the percentage of cases in a data 

series that have an MRE percentage value below 20% for PRED(20) and 30% for 

PRED(30) (see Equations 6 and 7). For PRED(20) and PRED(30) values, a higher 

percentage indicates better performance. Conventional software cost models, such as 

Constructive Cost Model II (COCOMO II), generally attain a PRED(30) no better than 

70%. In cases where the project is of shorter duration, PRED(20) provides greater accuracy 

can be attained for predictions; therefore, PRED(20) was used due to the short timespan 

associated with historical actual project data (see Table 7, Table 8, and Table 9). 

Considering the number of data points used in the simulation, it can be inferred that shorter 

duration projects, such as those that span weeks, will have higher accuracy estimates than 

projects spanning longer time periods, such as those that span multiple years.  
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The “develop software code” (D.1.3.3.5.17) submodel provides the ability to 

perform traditional post calibrated analysis with a high degree of accuracy. The submodel 

accounts for the portion of work that is to be estimated using actual historical data. It can 

also be used for early-phase cost modeling; although, early phase cost modeling was 

proven to have a lesser degree of accuracy, as expected. Traditional post calibrated models 

use final actual values of effort, size and cost factors for calibration and input parameters. 

Early phase cost models are also calibrated to final effort, but use early phase cost factors 

for calibration and model inputs. The initial estimated inputs are the only information 

available for early phase budgeting on projects (Rosa et al. 2017, 30). In the case of early 

phase cost estimating where historical data might not be available, some assumptions may 

be required. When used for early phase cost estimating, model inputs are identical but may 

not be well known. For example, the model can be modified to use a standard hourly rate 

for personnel types, or an estimated number of software developers per sprint. The use case 
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discussed in Chapter IV demonstrates how to adjust the model inputs for “incurs cost” to 

assign various numbers of personnel to a specific action within the model. This provides 

the ability to use the model for early phase cost estimating. 

As a traditional post calibrated model, actual effort and cost data for software 

development sprints are used as inputs in the simulation of the action diagram for “develop 

software code” (D.1.3.3.5.17). To evaluate prediction results, the output of the Monte Carlo 

simulation is used to compare actual effort and cost data to simulated model outputs. 

Comparison of simulated versus actual outputs provides the ability to verify whether 

predicted outputs for effort and cost correlates positively with actuals. Data for the 

comparison of simulated versus actual effort uses the mean output from 1000 trial Monte 

Carlo simulation. While software development subject matter experts from the C2IS 

division verified that the model factually aligns to the SOPs, the simulation results validate 

whether the model is able to predict accurate effort and cost estimates.  

Historical actual data from five 10-day planned sprints and five 15-day planned 

sprints is used to calculate the average hours per day per sprint, and the standard deviation 

for each set of sprint lengths (see Table 1). The “LOOP” action within “develop software 

code” (D.1.3.3.5.17) was then assigned an average and standard deviation value based on 

sprint duration in days, either 10 or 15 days (Table 7, Table 8, and Table 9). Setting model 

simulation loop iterations incorrectly can result in an inaccurate output for the simulation. 

For example, setting the loop iterations to 15 days results in inaccurate simulation output 

for sprints that were only 10 days.  

 COMPARISON OF COST AND EFFORT ESTIMATION METHODS 

The prediction accuracies of the “develop software code” (D.3.1.5.5.17) simulation 

output using actual and simulated hours for 10 sprints are shown in Table 7. These results 

are generated using the traditional post calibration method. The R2 value of 68.5% indicates 

that the simulated output for sprint duration closely tracks to the actual hours associated 

with a given sprint. The average RE value indicates that the typical output from the 

simulation is within 3.5% of the actual hours on average. The MMRE demonstrates the 

mean magnitude of difference between the estimated and actual values, which indicates 
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that the simulated duration outputs are within 10.3% of the actual hours on average. 

Analysis of average RE and MMRE shows that the simulated output is closely aligned to 

the actual output. The PRED(20) and PRED(30) values indicate that 90% of MRE values 

are less than 20%, and 100% of the MRE values are less than 30%. This performance 

indicates that 90% of simulation predictions are within 20% of actual sprint values, and 

100% of simulation predictions are within 30% of actual sprint values. A visualization of 

the simulated versus actual hours against a perfect prediction line can be observed in Figure 

100. The gray line in the scatter plot depicts what a perfect prediction output would look 

like relative to the simulated output for effort in our traditional post-calibrated model. No 

significant outliers appear within the comparison of actual versus simulated person-hours. 

Table 7. Traditional Post Calibrated Model Prediction Accuracies for Develop 
Software Code: Actual vs. Simulated Person-Hours 

Sprint 
Number 

Allocated 
Sprint 
Days 

Actual 
Person-
Hours 

Simulated 
Person-
Hours 

Error 
Relative 
Error 
(RE) 

Magnitude 
Relative 
Error 
(MRE) 

1 10 781 859.6 78.6 10% 10% 
2 10 1104 980.8 -123.2 -11% 11% 
3 10 1038 982.4 -55.6 -5% 5% 
4 10 912.5 984.0 71.5 8% 8% 
5 10 929 982.4 53.4 6% 6% 
6 15 1430.5 1221.3 -209.2 -15% 15% 
7 15 950 1145.6 195.6 21% 21% 
8 15 1217 1180. -36.9 -3% 3% 
9 15 1400 1576.9 176.9 13% 13% 
10 15 1314 1469.4 155.4 12% 12% 
R2 = 68.5%  Average RE = 3.5% 
PRED(20) = 90.0%  MMRE = 10.3% 
PRED(30) = 100.0%    
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Figure 100. Software Development: Traditional Post Calibrated, Simulated vs. 
Actual Effort  

 The prediction accuracies of the “develop software code” (D.3.1.5.5.17) simulation 

output using actual and simulated cost for seven sprints are shown in Table 8. These results 

are also generated using the traditional post calibration method. The R2 value of 59.3% 

indicates that the simulated output for sprint cost tracks relatively to the actual cost 

associated with a given sprint. The average RE value indicates that the typical output from 

the simulation is within 9.3% of the actual cost on average. The MMRE indicates that the 

simulated cost outputs are within 12.8% of the actual cost on average. Analysis of average 

RE and MMRE shows that the simulated output is well aligned to the actual output. The 

PRED(20) and PRED(30) values indicate that 85.7% of MRE values are less than 20%, 

and 100% of the MRE values are less than 30%. This indicates that 85.7% of simulation 

predictions are within 20% of actual sprint values, and 100% of simulation predictions are 

within 30% of actual sprint values. A visualization of the simulated versus actual cost 

against a perfect prediction line can be observed in Figure 101. The gray line in the scatter 

plot depicts what a perfect prediction output would look like relative to the simulated 

output for cost in our traditional post calibrated model. The perfect prediction line in the 

graph is based on actual values. Table 8 and Figure 101 show that are some outliers when 

comparing actual versus simulated cost. Future work may include further analysis of these 

outliers to ascertain their root cause.  
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Table 8. Traditional Post Calibrated Model Prediction Accuracies for Develop 
Software Code: Actual vs. Simulated Cost 

Sprint 
Number 

Sprint 
Duration  
(in days) 

Actual 
Cost 

Simulated 
Cost Error 

Relative 
Error 
(RE) 

Magnitude 
Relative 
Error 
(MRE) 

1 10 $89, 257  $103,327  $19,057 21% 21% 
2 10 $126,171  $120,578  $640 1% 1% 
3 10 $118,628  $120,751  $7,877 7% 7% 
4 10 $104,285  $120,965   $22,114 21% 21% 
5 10 $106,228  $120,853   $20,294 19% 19% 
6 15 $163,485  $150,441   $(13,044) -8% 8% 
7 15 $108,571  $141,082   $32,510 30% 30% 
R2 = 59.3%  Average RE = 9.3% 
PRED(20) = 85.7%  MMRE = 12.8% 
PRED(30) = 100.0%    
 

 

Figure 101. Software Development: Traditional Post Calibrated, Simulated vs. 
Actual Cost  

The prediction accuracies of the “develop software code” (D.3.1.5.5.17) simulation 

output using actual and simulated cost for seven sprints are shown in Table 9. These results 

are generated using the early phase cost modeling approach via the use of a constant 

estimate of 18.5 developers for all seven sprints. The R2 value of 31.4% indicates that the 
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simulated output for sprint cost tracks does not track relatively close to the actual cost 

associated with a given sprint. However, the low average RE value indicates that the typical 

output from the simulation is within 7.7% of the actual cost on average. The MMRE 

indicates that the simulated cost outputs are within 14.4% of the actual cost on average. 

Analysis of average RE and MMRE indicates that the difference between actual cost and 

simulated cost was not excessive across all sprints. The PRED(20) and PRED(30) values 

indicate that 71.4% of MRE values are less than 20%, and 85.7% of the MRE values are 

less than 30%. This indicates that 71.4% of simulation predictions are within 20% of actual 

sprint values, and 85.7% of simulation predictions are within 30% of actual sprint values. 

A visualization of the simulated versus actual cost against a perfect prediction line can be 

observed in Figure 102. The gray line in the scatter plot depicts what a perfect prediction 

output would look like relative to the simulated output for cost in our early phase model. 

The perfect prediction line in the graph is based on actual values. Table 9 and Figure 102 

show that are some outliers when comparing actual versus simulated cost. Future work 

may include further analysis of these outliers to ascertain their root cause. 
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Table 9. Early Phase Model Prediction Accuracies for Develop Software Code: 
Actual vs. Simulated Cost 

Sprint 
Number 

Sprint 
Duration 
(in days) 

Actual 
Cost 

Simulated 
Cost Error 

Relative 
Error 
(RE) 

Magnitude 
Relative 
Error 
(MRE) 

1 10 $89, 257  $109,087  $19,830 22% 22% 
2 10 $126,171  $109,387  $(16,784) -13% 13% 
3 10 $118,628  $109,228  $(9,400) -8% 8% 
4 10 $104,285  $109,434  $5,148 5% 5% 
5 10 $106,228  $109,450  $3,222 3% 3% 
6 15 $163,485  $159,961  $(3,524) -2% 2% 
7 15 $108,571  $159,870  $51,298 47% 47% 
R2 = 31.4%  Average RE = 7.7% 
PRED(20) = 71.4%  MMRE = 14.4% 
PRED(30) = 85.7%    

  

Figure 102. Software Development: Early Phase, Simulated vs. Actual Cost  

Measures for actual versus planned cost evaluation criteria provides a benchmark 

for comparison with both traditional post calibrated and early phase prediction accuracies. 

For the planned cost estimation benchmark, the sprint planning team leverages subject 

matter expert knowledge and experience with past sprint efforts to develop an initial 
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planned estimate for the total number of person-hours and developers anticipated for each 

sprint based on the size, scope, and complexity of the work to be performed. A summary 

review of the evaluation criteria used to assess cost model prediction shows that the 

traditional post calibrated model provides greater prediction accuracy over the early phase 

cost mode (see Table 10).  

While a comparison of the R2 values shows a wide variance, R2 is just a cursory 

measure; therefore, other measures such as MMRE and PRED must be evaluated as they 

are better indicators of model prediction accuracy. A comparison of MMRE and PRED(20) 

for planned cost estimates versus simulation using final actuals shows that the simulation 

reasonably predicts benchmarks. Although the model can be used for early phase cost 

modeling, analysis of the evaluation criteria shows that the model performs better when 

calibrated using historical actual data. The prediction accuracy of the model indicates that 

it can be used in lieu of the project team’s current planning approach for cost and effort 

estimation. 

Table 10. Comparison of Cost Estimation Methods 

Evaluation Criteria Planned Cost 
Estimates 

Simulation Using Final 
Actuals 

Simulation Using 
Initial Estimates 

R2 91.9% 59.3% 31.4% 
Average RE 7.3% 9.3% 7.7% 
MMRE 7.7% 12.8% 14.4% 
PRED(20) 100% 85.7% 71.4% 
PRED(30) 100% 100% 85.7% 

 
 

 THREATS TO VALIDITY 

While we were able to utilize historical actual project data to perform Monte Carlo 

simulations for software development sprints, and the model prediction results are 

reasonable, there are still threats to model validity. The actual metrics obtained are from a 

software project that is still in progress; therefore, the model prediction measures are only 

based on a small sample size. Without the whole project represented in the data set used to 
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conduct model prediction analysis, subsequent data collection and analysis may result in 

different average and standard deviation values assigned to various action entities within 

the model. Additionally, data fitting tools can be used with a larger sample size to ascertain 

if another distribution model, such as triangular, normal, or exponential provide a better 

fit. Also, there is no absolute evidence that the data collection for analysis is 100% accurate.  

Effort in person-hours is captured by the project; however, this data capture is still 

subject to human error and bias when developers record the number of hours they worked 

into the tools used to track hours. Model validity is also currently tested with historical 

actual data used to calibrate the model. Extending model validity to test with data not 

calibrated to the model may yield different results. Examples include using data from a 

non-DoD project to test model validity, or separating calibration and validation data. It is 

also possible that the model cannot be generalized to a non-DoD project. Although the 

process architecture was built from SOPs that were created using academic and industry 

best practices, bias from SOP authors could manifest in intentional or unintentional bias 

within the SOPs and corresponding process architecture. Threats to validity may also 

include discrimination in data selected for analysis; therefore, modelers must avoid only 

picking data that would make the model outcome favorable.  

 CHAPTER CONCLUSIONS 

The process architecture model effectively emulates software development 

processes used in the organization based on SOPs, and as such, it can be used to perform 

cost and effort estimations in lieu of the project team’s current planning approach for cost 

and effort estimation. The model passes structure and behavior validation and verification 

tests for “suitability for purpose, consistency with reality source, and utility and 

effectiveness of a suitable model” (Madachy 2008,119–121). Evaluation criteria used to 

compare actual versus simulated effort and cost, and actual versus simulated cost showed 

that the model’s prediction results are favorable. While model performance is greater when 

used as a traditional post calibrated mode, model prediction measures also indicate that the 

model has potential to be used as an early phase cost model.  
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Regarding cost estimation, the MMRE value for simulation using final actuals is 

12.8% and 7.7% for planned cost estimates. The corresponding simulation PRED(20) of 

85.7% indicates that, on average, the validation results generate estimates that are within 

20% of the actuals, 85.7% of the time. Planned cost estimation values have a PRED(20) 

value of 100%. A comparison of MMRE and PRED(20) values shows that the simulation 

performed reasonably well when compared to planned and actual values. We conclude that 

our model has a high degree of prediction accuracy relative to actual values. 

With respect to effort estimation, the MMRE value for simulation using final 

actuals is 10.3% and 11.6% for planned effort estimates. The corresponding simulation 

PRED(20) of 90% indicates that, on average, the validation results generate estimates that 

are within 20% of the actuals, 90% of the time. Planned effort estimation values have a 

PRED(20) value of 80%. A comparison of MMRE and PRED(20) values shows that the 

simulation performed reasonably well when compared to planned and actual values. Since 

both MMRE and PRED(20) simulation results are more accurate than planned values, we 

conclude that our model has a statistically significant degree of prediction accuracy relative 

to actual values. 
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VI. FINAL CONCLUSIONS 

 FINDINGS AND RESULTS 

To achieve the goal of providing elegantly engineered command and control 

capabilities for naval, joint, and national level customers, a well thought out integrated 

process architecture was developed. The action and IDEF0 architecture diagrams generated 

for this project provide the C2IS division with a holistic architecture that yields an 

integrated view of the current stove-piped SOPs. This architecture demonstrates and 

identifies critical interdependencies of the current stand-alone SOPs while providing an 

easily understood flow of interconnected activities defined within the SOPs. Since the 

architecture for the SOPs has an understandable flow, it has potential to assist a new project 

manager in facilitating the execution of an agile software development cycle within the 

C2IS division. Additionally, the end product architecture can be used to assist with cost 

estimation simulation of software development processes to bypass the need to expend 

actual resources in learning by trial and error. Given the prospective benefits of this 

architecture and simulation-based action diagrams, the results of this project will be used 

for potential adoption by other software projects within the C2IS division. 

Five key takeaways were gleaned from the creation of a holistic MBSE agile 

software development architecture. First, by following an LML approach for building the 

SOP architecture, the development of corresponding IDEF0 diagrams followed a natural 

progression that ensured a thorough capture of the requisite SOP functions. Creating action 

diagrams first is a tenet and best practice of an LML approach for building corresponding 

IDEF0 diagrams; in practice, this enabled the development of integrated functions.  

Second, using LML action diagrams, an integrated architecture was developed that 

encompassed the four core SOPs. Architecture form and function were captured in detail 

by the multi-level decomposition of the six high-level functions within the SOP 

architecture. The integrated architecture with proper form and function mapping provides 

a means for addressing the issues with stove-piped SOPs. 
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Third, the core SOPs adequately captured the processes for business, contracting, 

and personnel activities to develop the LML representations of action diagrams and 

functional architecture. Utilizing a holistic architecture enables a more comprehensive 

assessment of the SOP actions and functions. A significant finding from this model 

development is that the current SOPs adequately cover contracting for software 

development, pre-vetting and capability assessments of S&T based software, and processes 

for continuous integration and testing. However, none of the current SOPs that we analyzed 

provide guidance for how to perform agile software design and development actions 

followed by existing projects within the organization. Based on this finding we developed 

LML action diagrams that captured the process for performing agile software development. 

These processes were verified by software development SMEs within the C2IS division, 

and subsequently validated through simulation.  

Fourth, successful application of metrics to simulate software development sprints 

within the architecture produced a model that accurately reflects the agile software 

development environment within the C2IS division. To validate the architecture against 

reality, real-world metrics were obtained from a C2IS division project to conduct 

simulations within Innoslate. Viable metrics were acquired, but in the process of collecting 

metrics, we discovered that metrics did not exist for all modeled tasks. Metrics were 

available for the planned and actual number of developers involved in a software 

development sprint; however, the project was not tracking the planning work leading up 

the sprint and the review work after the sprint. The model that we developed established 

the framework for project personnel to begin collecting metrics within the verified and 

validated model for future use by other software development projects within the C2IS 

division.  

Fifth, by running simulations for the software sprints, it is possible to obtain 

realistic outputs from the model that can facilitate analysis of effort and cost required to 

conduct software sprints within the division. The model was validated using a battery of 

validation tests, and outputs were tested with statistical analysis against historical data. The 

process architecture model produced simulated outputs that were comparable to historical 

effort and cost data from the C2IS division software project. By creating a model that 
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accurately represents real-world software development processes, model parameters can 

be modified to optimize simulation output, and, subsequently, optimized parameters can 

be applied to corresponding real-world processes to reduce effort and cost. One benefit of 

having a model-based architecture is that it can be utilized as an experimental test bed for 

future projects. 

 FUTURE WORK AND RESEARCH 

Given the limitations to the scope of the analysis performed for this project, there 

are certain aspects that would benefit from additional research. The holistic agile 

architecture does not currently include integrated diagrams for the deployment, 

maintenance, or retirement of software post-development. Additional research can be 

performed to further assess these aspects. The current model does not prescribe the physical 

mechanisms for how the functions are executed. For example, if cloud-based technologies 

are used as the mechanism to develop and deploy software, then the architecture could be 

updated for cloud-based and automated technologies. With respect to quantifiable data for 

Monte Carlo simulations, additional metrics can be obtained for business, contracts, and 

personnel functions within the C2IS division to expand the scope of simulations.  

The model accounts for process flows as-is within the C2IS division. Future work 

will be required to ensure the model reflects the latest software development methodology 

used by the C2IS division. In addition, the sample size of data used was only from a single 

project for 10 sprints with a duration of 10 or 15 days. There are additional software 

development projects within the C2IS division that are able to provide data for future use 

in this model. To increase validity, data from additional projects can be included and 

analyzed to update model parameters. While the model is currently best suited as a 

traditional post calibrated model, future work can continue to improve the model in order 

to explore its possible use as an early phase cost model. For example, stronger tests of 

prediction can be performed by segmenting the calibration and validation data, then 

attempting to predict sprints that are not included in the calibration. With larger samples, 

local data can be segmented in order to assess the prediction in another environment where 

no data was collected (Boehm et al. 2000, 173). 
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The model only accounts for the number of hours and cost per personnel role. The 

model does not account for complexity or quality of the software sprints. For example, the 

actual effort of tasks planned and completed may vary widely from sprint to sprint and 

project to project based on the complexity of tasks allocated to sprints. This could be a 

reason for the outliers shown in the model prediction accuracy tables, but future work is 

required to determine the root cause of these outliers. Future work could also include 

updating the model to account for complexity and quality of software development. The 

model for “conduct software sprint,” D.1.3, uses the same hourly rate for all software 

developers. In real-world operations, the software development team will be comprised of 

a mix of junior, mid-level, and senior developers. Future iterations of the model should 

account for the various levels of developer seniority or experience rather than using a single 

rate for all developers. 

 Due to the potential for changes in business, contracts, personnel, or software 

development processes, the structure of the SOPs may change. Consequently, future work 

could include updating the models to reflect changes in the SOPs. Lastly, there is no current 

SOP for how to perform agile software development within the C2IS division. To address 

this gap, an MBSE process architecture could be developed for use as or in conjunction 

with newly developed SOPs. 

Future work that is related to existing research includes further exploration and 

comparison of the research by White (2014) to provide greater insight into the ability to 

quantify rework as part of the process architecture. De Silva, Rayadurgam, and Heimdahl 

(2015) focused on agent-based modeling and the decoupling of product and process. While 

product and process were integrated within our process architecture, further study to 

determine the impact of decoupling product and process within the model is warranted. 

Glaiel, Moulton, and Madnick (2013) defined a set of core characteristics that are the 

essence of agile, two of which were continuous integration and customer involvement. 

While our process architecture includes customer interaction as a set of actions that occur, 

it does not fully decompose how the customer interacts within the development process. 

Agent-based modeling could be valuable in determining how customer interaction can be 

modeled or even optimized as part of the agile development process. Additionally, research 
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by Cao, Ramesh, and Abdel-Hamid (2010) explored the impact of requirements volatility 

using system dynamics to account for interdependencies within the agile development 

process. Future work may include exploration of requirements volatility and how it can be 

accounted for within our process architecture. The research by Moutlon et al. (2017) 

explored the scaled agile framework (SAFe). Future work to modify and update our process 

architecture to scale for an enterprise level application. Giammarco’s (2012) AMBIA 

dissertation provided insight into heuristics for architecture development. Future work may 

help determine if these heuristics are also applicable to software process architectures in 

order to help bridge the gap between traditional systems engineering and software 

development. Lastly, Rosa et al. (2017) focused on early phase cost modeling with DoD 

environments. While data collection, measures of validity, and staff size is accounted for 

in our process architecture, product size or complexity were not quantified within the 

model and is an area for further exploration and collaboration.  

Besides updating the process architecture model, other approaches may be pursued 

as well. Analysis and development may be repeated using Monterey Phoenix to gain an 

understanding of how its exhaustive scenario generation approach compares with the 

Monte Carlo simulation approach in terms of accuracy for effort and cost. Monterey 

Phoenix can also be used to supplement the process architecture by exposing model 

surprise behavior for further verification and validation. This helps determine how 

consistent the model is with reality, specifically whether or not the model produces 

unexpected behaviors. 
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APPENDIX A. PROJECT DATA COLLECTED 
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