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ABSTRACT 

 This thesis investigated the changes in physiological and cognitive performance 

as F-22 pilots transitioned short term to night-flying weeks using salivary markers of 

stress, cortisol and alpha amylase, wrist activity monitors, the National Aeronautics and 

Space Administration-Task Load Index (NASA-TLX), and a go/no-go (GNG) developed 

by Naval Medical Research Unit at Dayton. Seventeen fully qualified F-22 pilots took 

part in the two-week study. We found no differences in GNG reaction time or accuracy, 

NASA-TLX scores, or sleep quantity as participants transitioned to night-flying weeks. 

Sample cortisol levels were significantly higher than civilian levels in all experimental 

conditions and control days. Researchers fitted a unique participant cortisol curve and 

found higher-than-predicted participant cortisol levels post-flight in the day-flying 

condition and lower-than-predicted participant levels post-flight in the night-flying 

condition. Two negative relationships, F-22 experience by the magnitude of cortisol 

change (pre- to post-flight) in the day-flying condition and age by Perceived Stress 

Survey scores, suggested stress adaptation in the F-22 community. We thought that the 

night-flying environment would be more stressful on the aviator. While more research is 

required to support the results found in this study, it appeared that day flying is more 

stressful. 
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EXECUTIVE SUMMARY 

Human error is a causal factor in upward of 70%–80% of military aviation accidents 

(O’Hare, Wiggins, Batt, & Morrison, 1994; Shappell & Wiegmann, 1997). Understanding 

how and why pilots make errors is a critical part of the mishap investigation process. 

Moreover, recent advances in our understanding of factors such as fatigue, stress, and 

workload suggest that these factors often interact with one another, creating a potentially 

deadly synergy.  

F-22 pilots are required to transition in the short-term to night-flying weeks to 

facilitate training. Traditional shift workers show an increase in errors and decreased 

performance at night; however, the implications from the transition from day- to night-

flying is not well understood in the F-22 community.  

This thesis captured changes in physiological and cognitive performance as F-22 

pilots transitioned to night-flying weeks. Seventeen volunteer participants took part in two 

weeks of data collection; the first week was a normal flying week and the second week was 

a night-flying week. We collected saliva swabs at five pre-determined intervals over the 

course of three conditions: control (non-flying), day-flying and night-flying. Wrist activity 

monitors (WAMs) were worn continuously by participants for two weeks. A modified 

go/no-go (GNG) test was developed by the Naval Medical Research Unit at Dayton 

(NAMRU-D) and used both pre- and post-flight in both flying conditions. The National 

Aeronautics and Space Administration-Task Load Index (NASA-TLX) was used to 

quantify post-flight workload in both conditions.  

Using an iPad NASA-TLX application to measure workload, we found no 

difference in subjective workload ratings. Participants had average workload scores of 

approximately 66 post-flight in both the day- and night-flying conditions. These results 

were similar to NASA-TLX scores of commercial airline pilots executing a landing with 

loss of the autopilot (Zheng, Lu, Jie, & Fu, 2017), but significantly higher than F/A-18 

pilots executing an instrument landing with multiple cautions and warnings in a simulator 

(Mansikka, Virtanen, & Harris, 2018).  



 xx 

We used a two-sided paired sample t-test to analyze the results and found no 

difference in go/no-go test accuracy or reaction time as participants transitioned from day- 

to night-flying. Participant reaction times were similar to a civilian population using a 20% 

no-go test (Nieuwenhuis, Yeung, Wildenberk, & Ridderinkhof, 2003). However, the F-22 

pilots had a significantly higher average inhibition accuracy in both flying conditions, 90% 

during day-flying and 80% during night-flying, than the 66% inhibition accuracy reported 

in the civilian study.  

Cortisol samples were compared against 50% percentile males aged 31–40 in the 

CIRCORT database (Miller et al., 2016). Using time logs and sleep data, we determined 

predicted cortisol levels based on the CIRCORT fitted curve compared to actual cortisol 

levels of the participants using hours since awakening. Participants had higher cortisol 

levels during control days (p < 0.001), pre-flight (p = 0.009) and post-flight (p = 0.003) in 

the day-flying condition, and pre-flight (p = 0.025) and post-flight (p = 0.003) in the night-

flying condition. 

Because participant’s cortisol levels were higher than predicted in every condition, 

we fit a unique participant cortisol curve using control days and hours since awakening. 

Participants’ post-flight cortisol levels in the day-flying condition exceeded predictions 

(p = 0.049), and they had lower-than-predicted cortisol levels post-flight in the night-flying 

condition (p = 0.05).  

Two negative relationships were found, suggesting stress adaptation in the F-22 

community: F-22 experience and the magnitude of cortisol change (pre- to post-flight) in 

the day-flying condition (correlation (r) = -0.89, p = 0.001) and age and perceived stress 

survey scores (r = -0.72, p = 0.005). One possible reason for this adaptation could be the 

sample’s characteristics, or the selection of high trait-resilient individuals. F-22 pilots are 

an elite group that are categorized as high-functioning, Type A personalities who are often 

exposed to high-threat environments and show evidence of physiological adaptation to 

recurring stress like similar highly resilient populations (Lu, Wang, & You, 2016).  

This thesis sought to determine if F-22 pilots were experiencing increased stress as 

a result of different flying conditions. We expected that the night-flying environment would 



 xxi 

be more stressful on the aviator. While more research is required to support the results 

found in this study, it appears that the opposite may be true: day-flying is more stressful. 

Understanding the stress burden on F-22 aviators during the transition to night-flying 

operations is an important aspect of future mishap prevention efforts.  
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 1 

I. INTRODUCTION 

A. BACKGROUND 

Human error is a causal factor in upward of 70%-80% of military aviation accidents 

(O’Hare, Wiggins, Batt, & Morrison, 1994; Shappell & Wiegmann, 1997). Understanding 

how and why pilots make errors is a critical part of the mishap investigation process. 

Moreover, recent advances in our understanding of factors such as fatigue, stress, and 

workload suggest that these factors often interact with one another creating a potentially 

deadly synergy.  

The normal operating cycle for F-22 squadrons cycles pilots between day and night 

flight operations. Daytime sorties usually commence at or around 0700. The pilots must be 

at the squadron roughly two hours prior to take off time to prepare for the mission. Because 

crew rest protocol dictates a maximum 12-hour duty day, aircrew typically return home at 

1700.  

Night sorties usually commence between 1300 and 1400 hours. Night flight 

rotations are required for aircrew to maintain night-vision goggle proficiency, night landing 

currency, and their Command Mission Ready rating. Night flying weeks typically occur 

for two weeks once a quarter.  

Recent anecdotal evidence from aircrew suggests that night flights are significantly 

more stressful than day flights because of the lack of visual information available to the 

pilot. Simply stated, if a pilot can see a hazard, they can avoid it. At night, they are less 

likely to perceive and avoid threats to their safety. Hence, their subjective stress levels 

could be significantly higher for night flights. However, physiological and cognitive 

comparisons between day and night flying to validate that claim have not been investigated 

directly.  

The shift from day to night flying operations serves as an ideal timeframe to 

investigate potential changes in pilot performance as a result of stress, fatigue, and 

workload. Using non-flying days as a baseline, we will be able to determine whether the 
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transition to a night flying week contrasted with day flights causes changes in stress 

biomarkers that impact the cognitive performance of F-22 pilots.  

1. Approach 

Our quasi-experimental observational study took place over the course of two 

weeks. The first week of data collection was a week of normal daytime flying. The second 

week of data collection was a night-flying week.  

We administered pre-study questionnaires prior to the start of data collection. The 

questionnaires included a series of questions about demographic characteristics, flight 

hours, tobacco and caffeine usage, and validated measures of stress and fatigue. Aspects of 

performance, fatigue, stress and workload were captured at predetermined intervals to 

monitor potential changes; in addition, salivary samples were collected from the 

participants. Participants completed Go/No-Go (GNG) tests pre- and post- flight in both 

day and night flying conditions. An additional post-flight workload assessment was 

completed by participants. Pilots were issued a wrist activity monitor (WAM) to be worn 

for the duration of the two-week study. The experimental design is discussed in greater 

detail in Chapter III.  

2. Research Question 

The following research questions form the basis for this study. Supporting material 

for these questions will be expanded upon in Chapter II.  

• Are there differences in physiological responses (i.e., levels of alpha amylase 
and cortisol) in F-22 pilots following day and night sorties?  

• Is there a difference in attention and executive function of F-22 pilots following 
day sorties and night sorties? 

• Is there evidence to support stress system adaptation in the F-22 community?  

Analysis of the research questions are explored in Chapter IV and Chapter V. 

Recommendations for future work relating to these questions are given in Chapter VI.  
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B. HUMAN SYSTEMS INTEGRATION 

Air Force Instruction 63–1201, Life Cycle Systems Engineering drives USAF 

Human Systems Integration (HSI) efforts. Guidance is consolidated in the Air Force 

Directorate of Human Performance document (2008). This publication identifies distinct 

domains that the Air Force has chosen to consider in HSI efforts. The domains are as 

follows: 

• Manpower 

• Personnel 

• Training 

• Human Factors Engineering 

• Environment, Safety, Occupational Health  

• Survivability 

• Habitability (Directorate of Human Performance, 2008). 

These domains interact with each other, and no one domain functions in isolation. 

The relationships among these domains are often complex. This thesis will not explore all 

ways in which these domains are interrelated. Rather, it will focus on the four domains that 

have the most direct impact on flight operations in this context, i.e., personnel, safety, 

occupational health and human factors.  

1. Personnel 

The personnel domain focuses on having the right individuals in the right position 

to accomplish a task (Directorate of Human Performance, 2008). Current requirements in 

the aviation community rely on qualifications and flight hours. However, these general 

requirements fail to capture the individual differences within the population. Certain people 

respond differently to similar stress. Accordingly, a study of salivary biomarkers and 

cognitive performance may demonstrate that certain persons are more resilient to shift 

changes. Identification of these individuals may aid mission effectiveness through “smart 

scheduling” i.e., the selection of individuals for day or night sorties based on their identified 

strengths and or weaknesses.  
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2. Safety 

Current safety protocols require the investigation into factors that jeopardize pilot 

and aircrew safety. Much of what we understand about mishaps is through a 20/20 rearview 

mirror. The best way to prevent future mishaps is to fully understand past mishaps. While 

analysis has identified certain situations in which mishaps are more likely to occur, our 

understanding of physiological changes, in relation to cognitive ones, are relatively 

uninvestigated in the aviation operational environment. This research sheds light on how 

physiological responses of aircrew impact cognitive performance and vice versa.  

The research will determine if there is any difference in stress biomarkers, sleep 

quantity, or executive function between day and night flying. Where differences are found 

to exist within the sample, future work may be to identify more resilient individuals as an 

aid in smart scheduling.  

3. Occupational Health  

The F-22 total system includes the hardware, software, and personnel that keep the 

F-22 squadrons airborne. Current operations require short term night weeks to accomplish 

training requirements. If a pilot fails to meet these requirements, the pilot will not be 

Combat Mission Ready (CMR) certified. Current mission and training requirements 

require a high operations tempo that can result in performance and health issues for 

aviators.  

The detrimental effects of prolonged elevated levels of stress and chronic fatigue 

are well known. Salivary biomarkers are a credible tool for determining stress loads in the 

population. Additionally, sleep monitors will illuminate how sleeping patterns are affected 

in the short-term shift of operations. Understanding how the current F-22 operations tempo 

affects pilot health can improve our understanding of the long-term health impacts to flying 

in the F-22.  

4. Human Factors Engineering  

Wiegmann and Shappell (1999) estimated that at least 75% of aviation mishaps 

were attributed to human error. Our efforts to create a safer aviation community require us 
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to understand the underlying causes of error. A whole person concept has been adopted by 

the USAF in mishap analysis. The research outlined in this thesis studies how both the 

aviators’ duty-day stressors and lifestyle choices can affect performance.  

C. THESIS ORGANIZATION 

Chapter II sets forth a review of current literature and research surrounding stress, 

fatigue, and workload and performance. The research components do not work in 

stovepipes, but rather interact with one another. The interactions are discussed in the 

relevant sections of Chapter II. Chapter III contains the methodology, variables, and data 

collection schedule. Chapter IV presents the results of the data collection. Chapter V 

discusses the relevant findings. Chapter VI contains conclusions, recommendations for 

future research, and lessons learned. 

This study was improved upon by Dr. Douglas Granger and his colleagues at the 

Institute for Interdisciplinary Salivary Bioscience Research, University of California, 

Irvine.  
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II. LITERATURE REVIEW 

A. OVERVIEW 

This thesis strives to achieve a multidimensional understanding of stress, 

performance, and fatigue in a select, high-functioning pilot sample. The following sections 

detail how each of the various areas of research contribute to understanding the 

physiological and psychological changes as pilots transition from day to night flight 

operations.  

B. STRESS 

1. Stress Overview 

Stress, in the context of this thesis, is defined as an individual’s perception to 

changing environmental demands and the accompanying physiological and psychological 

response (Ganster & Perrewe, 2011; Kahn & Byosiere, 1992). Stress affects an individual’s 

health and disease onset (Backé, Seidler, Latza, Rossnagel, & Schumann, 2012; Steptoe, 

1991; Steptoe & Kivimaki, 2012; Vita, Lapa, Trimarchi & Benvenga, 2015). Studies 

suggest an increase in stress, or failure to cope with increased stress, may affect long-term 

individual health (Alkov, Gaynor, & Boroswsky, 1985).  

Physiological stress, or biological stress, is the change in bodily functions away 

from normal homeostasis due to internal (e.g., aging) or external (e.g., environmental) 

influences. Psychological stress is the perception that “environmental demands tax or 

exceed [their] adaptive capacity” (Cohen, Janicki-Deverts, & Miller, 2007, p. 1685).  

Physiological and psychological stress is the focus of the thesis research questions. 

Background information on stress processes, responses and measurement techniques are 

discussed in this section.  

2. Stress in Aviation 

Research conducted by Barnes (1992) examined aircrew traits using a sample of 52 

aircrew and found that pilots scored higher in anxiety than any other subset of aircrew 
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members. This finding was attributed to the nature of their jobs, which require high levels 

of responsibility and accountability (Barnes, 1992).  

Operational environments and requirements are not the only source of stress in 

aviation communities. Fiedler, Rocco, Schroeder, and Nguyen (2000) found that home 

stress carried over into the workplace. In a review of 19 United States Coast Guard (USCG) 

helicopter pilot stress questionnaires, home stress scores were positively correlated with 

self-reported job stress ratings with sample correlation r = 0.81, and p-value (p) < 0.01 for 

the two-sided test of the null hypothesis of zero correlation. The questionnaires required 

the aircrew to rate the importance of various stress-coping strategies and evaluate their own 

flight performance. The results of the study indicated that, even with coping strategies, 

domestic stress exhibited a carry-over effect into the workplace. While there was no 

evidence that the increase in home or job stress alone affected flying performance, the 

combination negatively impacted flying performance (r = -0.47, p < 0.05) (Fiedler, Rocco, 

Schroeder, & Nguyen, 2000). This research suggests that stress in a pilot’s home life can 

carry over into the workplace and negatively impact flying performance.  

3. Physiological Response to Stress 

This section will first discuss a framework for physiological response to stress, two 

salivary analytes that can be used to quantify this response, and their combined use in research.  

a. General Adaptive Syndrome  

The General Adaptive Syndrome (GAS) is a common framework developed for stress 

response (Selye, 1950). GAS divides the stress response into three phrases: alarm response, 

resistance, and exhaustion (Selye, 1936). The alarm response is the body’s immediate response 

to the stress, characterized by an increase in cortisol production, hypoglycemia, and tissue 

catabolism (Selye, 1950). The body attempts to compensate for these symptoms and return to 

homeostasis in the resistance phase. Many physiological functions will return to normal but 

those responding to the stressor remain alert (Lucille, 2016). Symptoms may reemerge in the 

exhaustion phase, which is typically associated with burnout and a continuation of the stressor 

beyond the body’s capacity (Campbell, Johnson, & Zernicke, 2013; Lucille, 2016; Selye, 

1950). This relationship is visually depicted in Figure 1.  
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Figure 1.  Selye’s General Adaption Syndrome. Source: Lucille (2016).  

b. Cortisol  

Cortisol is a hormone released in response to stress that is easily measured to 

quantify the reaction. Cortisol is produced by the adrenal cortex within the adrenal gland 

and is released in response to both physical and psychological stress. Un-bound cortisol 

passively diffuses into saliva. Studies report high correlations (r = 0.83) between salivary 

cortisol (sCort) and serum, or blood plasma, cortisol levels (Francis et al., 1987). sCort is 

a reliable estimate of serum cortisol levels (Hiramatsu, 1981; Petrowski, Wintermann, 

Schaarschmidt, Bornstein, & Kirschbaum, 2013; Vining, McGinley, Maksvytis, & Ho, 

1983).  

Short-term increased release of cortisol suppresses the immune system, reduces 

libido, and increases hypertension, insulin resistance and hyperglycemia (Hoehn & Marieb, 

2010). Long-term and prolonged elevation of cortisol can cause anxiety, depression, 

digestive problems, heart disease, memory and concentration impairment, sleep 

disturbances, and weight gain (Mayo Clinic Staff, 2016). 

(1) Daily Cortisol Rhythm  

Cortisol levels function on a tight diurnal rhythm which is high in the morning, 

gradually decreases throughout the waking day (Dorn, Lucke, Loucks, & Berga, 2007; 

Stone et al., 2001), and increases during sleep. This cycle is relatively constant within an 
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individual if uninterrupted by stressors. Figure 2 shows the normal daytime cortisol rhythm 

of a healthy individual uninterrupted by a stressor.  

 

Figure 2.  Normal salivary diurnal cortisol levels (n = 26).  
Source: Salimetrics (2014). 

The daily range of cortisol concentrations will change as individuals age. Typical 

daily cortisol ranges for healthy individuals as established by Salimetrics (2014) are 

presented in Table 1.  
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Table 1.   sCort range for healthy populations. Source: Salimetrics (2014). 

 
 

(2) Cortisol Awakening Response 

Healthy individuals experience a surge of cortisol secretion in response to morning 

awakening. This surge is referred to as the “cortisol awakening response” (CAR) (Clow, 

Hucklebridge, Stalder, Evans, & Thorn, 2010). The CAR combines the reactivity of awakening 

and circadian regulation (Stadler et al., 2016). It only encompasses the dynamic portion of the 

cortisol secretion, i.e., the bump from awakening to peak response (Clow et al., 2010). 

Morning cortisol levels have been associated with perceived stress in military 

populations (Hernandez, Markwald, Kviatkovsky, Perry, & Taylor, 2018). Hernandez and 

colleagues collected salivary samples from 58 active duty male Navy SEALs. CAR peaks 

were positively associated with stress (r = 0.437, p < 0.05). The area under the curve in 

terms of ground is the actual plot of cortisol concentration with respect to time and was 

found to be positively associated with stress (r = 0.5, p < 0.01). The average (avg) of the 

awakening cortisol samples (r = 0.506, p < 0.01) was also positively associated with stress.  

This finding is further supported by Elder, Ellis, Barclay, and Wetherell (2016). 

They found that awakening cortisol levels and the magnitude of the increase were not 
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consistent across the three days. However, as presented in Figure 3, the CAR was the same 

regardless of the awakening cortisol concentration (Elder et al., 2016). This result suggests 

that CAR remains consistent in participants irrespective of awakening cortisol levels and 

can help to establish participant diurnal rhythm.  

 

Figure 3.  Mean (+- SEM) morning cortisol levels (n = 15).  
Source: Elder, Ellis, Barclay, & Wetherell (2016). 

Research suggests taking three samples post awakening to capture the CAR: at the 

exact time of wakening, +30 minutes awakening, and +45 minutes awakening (Stalder et 

al., 2016). Females have a longer and more prolonged CAR, which is the rationale for the 

+45 minutes of awakening sample (Stalder et al., 2016).  
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Figure 4.  Calculation of CAR. Source: Corbett & Schupp (2014). 

The CAR is calculated by taking the +30 awakening sample and subtracting the 

waking cortisol levels (Figure 4) (Corbett & Schupp, 2014). Shi and associates found that 

the CAR was predictive of response inhibition in a GNG test taken in the afternoon (Shi et 

al., 2018). This relationship will be investigated in the sample. Therefore, the CAR will be 

supportive to the experimental design but not imperative. 

(3) Acute Cortisol Response  

Cortisol concentrations increase during a stress response. Figure 5 shows the 

salivary cortisol concentration as it spikes following a Tier Social Stress Test (TSST) 

(Kirschbaum, Pirke, & Hellhammer, 1993). This type of response is common in healthy 

populations.  
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Figure 5.  Salivary cortisol levels in response to TSST. Source: 
Kirschbaum, Pirke, & Hellhammer (1993). 

Cortisol also appears to regulate based on the stressor intensity. Van Eck and 

Nicolson (1994) evaluated Perceived Stress Scores (PSS) against daily cortisol levels. Two 

groups were compared: a high stress (HS) group of 42 participants and a low stress (LS) 

group of 46 participants. Participants collected saliva samples ten times per day over five 

consecutive days. During workdays, the HS participants had higher mean cortisol levels 

than the LS population at each of the ten sampling times (p < 0.02) (van Eck & Nicolson, 

1994). This suggests that cortisol levels are associated with the strength of the stressor.  

(4) Burnout Cortisol Response  

Burnout is the physical or mental breakdown caused by prolonged exposure to 

chronic workplace stress that has not been addressed (Maslach & Jackson, 1981). Burnout 

symptoms include exhaustion, depersonalization, and reduced satisfaction in performance 

(Weber & Jaekel-Reinhard, 2000).  

Burnout affects adrenal production of cortisol. Lennartsson, Sjors, Wahrborg, 

Ljung and Jonsdottir (2015) studied cortisol and adrenocorticotropic hormone (ACTH) 

responses in healthy and burnout patients. Participants that reported higher burnout scores 

had lower serum cortisol (p = 0.027) and salivary cortisol responses (p = 0.068) than 

controls after the TSST. This relationship is visually depicted in Figure 6. 
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sCort response to stress in healthy patients, patients with low burnout scores, and patients with high 
burnout scores.  

Figure 6.  sCort levels in burnout patients. Source: Lennartsson et al. (2015). 

Cortisol levels of patients with a high burnout mirror the cortisol levels of 

hypocortisolism patients. Patients with hypocortisolism have a blunted or flattened daytime 

cortisol level curve compared to healthy individuals (Edwards, 2016). Figure 7 depicts the 

flattening diurnal curve typically seen in patients with hypocortisolism.  

 

 

Figure 7.  Sample cortisol diurnal rhythms of healthy control and patient with 
hypocortisolism. Source: Adapted from Edwards (2016).  
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Populations that are exposed to frequent activation of the fight or flight response 

have a blunted cortisol response to stress. Petrowski, Wintermann, Schaarschmidt, 

Bornstein, and Kirschbaum (2013) conducted a study with a sample of 32 healthy 

patients and 32 patients diagnosed with panic disorder. Both groups were exposed to 

TSST while sCort and serum cortisol levels were captured. Both samples had an increase 

in sCort and serum cortisol in response to the TSST, but patients diagnosed with panic 

disorder had significantly lower sCort and serum cortisol levels than the healthy sample 

in response to the TSST (Petrowski et al., 2013). While there was an increase in response 

to the TSST in both samples, those diagnosed with panic disorder had a significantly 

lower sCort and serum cortisol levels.  

This research suggests that individuals with frequent reoccurring stress activation 

may experience a blunted cortisol response to a stressor compared to normal healthy 

populations.  

c. Alpha Amylase 

Alpha amylase is a protein enzyme whose primary function in the body is the 

breakdown of carbohydrates and starches in the digestive process (Goni, Garcia-Alonso, 

& Saura-Calixto, 1997). Salivary alpha amylase (sAA) is an enzyme produced in the oral 

cavity. It is not passively diffused nor actively transported into the saliva, which makes it 

unique among other salivary analytes (Granger et al., 2007). Because it is produced locally 

in the mouth, concentrations of sAA differ from other alpha amylase concentrations 

circulated throughout the body.  

(1) Daily Alpha Amylase Rhythm  

Alpha amylase exhibits a strong diurnal pattern that is robust against momentary 

influences (Nater, Rohleder, Schlottz, Ehlert, & Kirschbaum, 2007). sAA levels sharply 

decline 60 minutes after awakening and then continue to steadily increase throughout the 

waking day. This pattern is in direct opposition to the diurnal nature of cortisol and is 

visualized in Figure 8 (Adam, Hoyt, & Granger, 2011). 



 17 

 

Figure 8.  Alpha amylase and cortisol diurnal rhythms.  
Source: Adam, Hoyt, & Granger (2011). 

(2) Alpha Amylase as a Marker for Stress 

sAA is correlated with psychological or physical stress (Chatterton, Vogelsong, Lu, 

Ellman, & Hudgens, 1996; Granger, Kivlighan, El-Sheikh, Gordis, & Stroud, 2007; 

Schumacher, Kirschbaum, Fydrich, & Strohle, 2013). sAA is used as an indicator of 

sympathetic activation of the autonomic nervous system (ANS). 

sAA levels are not related to blood alpha-amylase levels (Schenkels, Veerman, & 

Nieuw-Amerongen, 1995) but do mirror norepinephrine activation (Rohleder, Nater, Wolf, 

Ehlert, & Kirschbaum, 2006). Norepinephrine (NE) is a hormone, neurotransmitter, and an 

indicator of sympathetic nervous system activation (Thoma, Kirschbaum, Wolf, & 

Rohleder, 2012; van Stegeren, Rohleder, Everaerd, & Wolf, 2006).  

Plasma NE and sAA are positively associated with each other (r = 0.54, p < 0.05) 

(Rohleder et al., 2006). Thoma and colleagues (2012) compared the predictive power or 

sAA as a surrogate marker for sympathetic nervous system activity (SNS) with NE and 

epinephrine (E), two well-established SNS indicators. Sixty-six participants were subjected 

to the TSST. Saliva and blood samples were taken four times throughout the experiment 

and analyzed for sAA, NE and E concentrations. All three indicators showed significant 
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increase in response to acute stress (p < 0.001). Researchers found that responses in sAA 

significantly predicted observed responses in NE (r = 0.032, p = 0.064), but failed to 

associate with E (p = .064). sAA does not correlate with plasma levels of alpha amylase 

but it has a strong association with ANS and SNS activation (Thoma et al., 2012). Figure 

9 shows the similar responses of both NE and sAA to a stressor.  

 

Figure 9.  sAA and norepinephrine in response to stress; gray bar indicates the 
stressor. Source: Rohleder et al. (2006). 

(3) sAA Acute Response 

The production of alpha amylase in the salivary glands increases in response to 

activation of the ANS and regulate activation based off the strength of the stressor (Bosch 

et al., 1996; Proctor & Carpenter, 2007). Figure 10 visually demonstrates the response of 

sAA levels to a stressor (Nater et al., 2005). 
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Figure 10.  sAA levels in response to stress and at rest. 
Source: Nater et al. (2005). 

Chatterton and colleagues found that greater intensities of exercise were associated 

with greater increases of sAA concentrations (Chatterton et al., 996). Vineetha, Pai, 

Vengal, Gopalakrishna, and Narayanakurup (2014) also found that chronic stress causes 

statistically significant prolonged elevation of sAA compared to control samples.  

This research suggests that sAA is an appropriate biomarker to evaluate ANS 

activation and regulates based off of stressor intensity (Granger, Kivlighan, El-Sheikh, 

Gordis, & Stroud, 2007; Nater & Rohleder, 2009).  

(4) sAA and Relaxation 

sAA levels respond to relaxation techniques. Sripongngam and colleagues (2015) 

examined sAA levels following a traditional Thai massage (TTM). Twenty-nine 

participants were randomly assigned into the TTM group or the control group. After a 2-

week washout period, the participants switched groups. Those exposed to a one-hour TTM 

following a 10-minute mentally stimulating arithmetic test had significantly lower sAA 

compared to the control group (p < 0.05). sAA is affected by stressful situations but also 

responds to relaxation techniques. 

d. Biomarkers of Stress  

Cortisol and sAA can be used simultaneously in research as a marker for stress 

system activation. Both analytes increase in response to SNS activity but differ in their 
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response time. Cortisol exhibits a longer lag time between the onset of stress and visible 

increases in salivary levels than sAA (Takai et al., 2004). Takai and colleagues explored 

this time difference by exposing young adults to 15 minutes of a standardized stressor. 

Unstimulated whole sample saliva was collected every three minutes. Cortisol and sAA 

levels increased but sAA reacted stronger and quicker than cortisol. The researchers found 

that sAA levels significantly increased just after the start of the stressor, while cortisol 

levels exhibited a longer lag time (Takai et al., 2004).  

This finding was further confirmed by Maruyama and colleagues (2012). 

Volunteers (n = 149) were exposed to both the TSST and electrical stimulation stress. 

Salivary cortisol and sAA measurements were taken three times; immediately before the 

stressor, immediately after the stressor, and 20 minutes post stress exposure. sAA levels 

rapidly reacted to the stressor and returned to baseline after 20 minutes. Salivary cortisol 

showed a delayed increase in response to the stress and remained significantly elevated 20 

minutes post stressor. This research suggests that measuring both analytes provides a more 

complete picture of the pilot stress responses in the flight conditions.  

4. Psychological Responses to Stress 

This section will focus on cognitive performance changes resulting from stress. 

Two models, the Yerkes-Dodson Curve and the Negative linear model, and their relevant 

research are discussed. The section ends with two ways to quantify psychological stress, 

which were used in this research protocol.  

(1) Human Performance in Stressful Environments 

Performance refers to the action or process of carrying out a task or function in 

accordance with pre-established standards. Human performance can be impacted by a 

variety of confounds. Stress, fatigue, circadian disruptions and experience all affect how 

well the individual can meet task or mission requirements (Schmidt, Hunter, & 

Outerbridge, 1986).  
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(2) The Yerkes-Dodson Curve  

The Yerkes-Dodson curve is a model developed to explain how arousal affects 

performance. The original version identified a linear relationship between stimulus 

strength and habit formation for simple tasks, but a non-linear relationship with complex 

tasks (Diamond, Campbell, Park, Halonen & Zoladz, 2007). The Hebbian version of the 

Yerkes-Dodson curve did not distinguish task complexity and had a simple reverse bathtub 

curve which depicted an increase in performacne with an increasing arousal until an 

“optimal” level was reached (Yerkes & Dodson, 1908), at which point additional stress or 

fatigue resulted in a decrease in performance (Duffy, 1957). Figure 11 shows the original 

Yerkes-Dodson curve and the Hebbian variant. 

 
The Hebbian version of the Yerkes-Dodson law (left) and the original Yerkes-Dodson law 
(right).  

Figure 11.  The Yerkes-Dodson Law. Source: Diamond, Campbell, Park, Halonen 
& Zoladz (2007). 

The Hebbian version of the Yerkes-Dodson model eventually evolved into the more 

generic “stress performance curve.” This inverted U-shape (shown in Figure 12) suggested 

that moderate levels of stress are beneficial for performance (Welford, 1973). After an 

arbitrary “tipping point,” further increases in stress decreases performance. While this is 

commonly accepted, research does not support the inverted U-shape hypothesis.  
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Figure 12.   Relationship between stress and arousal according to the Inverted U-
Hypothesis. Source: Welford (1973). 

(3) Negative Linear Relationship 

Current literature suggests a negative linear relationship between levels of stress 

and job or task performance. Job stress is the “psychological state perceived by individuals 

when faced with demands, constraints, and opportunities that have important but uncertain 

outcomes” (Yozgat, Yurtkoru, & Bilginoglu, 2013, p. 519). Job performance is a function 

of the individual’s performance on specific tasks (Murphy & Kroeker, 1988). 

Skosnik, Chatterton Jr., Swisher, and Park (2000) found that mild psychological 

stress altered attention processes and task performance. Fifteen minutes of exposure to a 

stressful video game reduced reaction time (RT) and negative priming in participants. 

Participants experienced a negative correlation between cortisol levels and RT immediately 

after stress, but not at any other time during the test (r = -0.46, p < 0.05) (Skosnik et al., 

2000).  

Yozgat, Yurtkoru, & Bilginoglu (2013) in a survey of high stress Istanbul public 

sector workers (n = 389) found a significant negative relationship between reported job 

stress and job performance (r = -0.122, p < 0.05). Jamal (1984) also found a negative 

relationship to job performance in role ambiguity (r = -0.41), role overload (r = -0.33), role 

conflict (r = -0.41), and resource inadequacy (r = -0.42). His research (n = 440) further 

supported a negative linear relationship (r = 0.11, p < 0.01) (Jamal, 1984). 
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Jamal’s follow-up study further supported the negative linear relationship between 

job stress and performance (2007). The majority of comparisons of workers in a 

multinational company (n = 305 from Malaysia, n = 325 from Pakistan) supported a 

negative linear relationship (90%). Only 10% of the data supported a u-shaped or 

curvilinear relationship (Jamal, 2007). 

Current research has improved upon the traditional Yerkes-Dodgson curve, 

suggesting a negative linear relationship between stress and overall performance.  

(4) Social Readjustment Rating Scale 

Several methods exist to quantify stress. The Holme-Rahe Stress Inventory, often 

referred to as the Social Readjustment Rating Scale (SRRS), was developed in 1967 

(Holmes & Rahe, 1967). Two psychiatrists, Thomas Holmes and Richard Rahe, examined 

over 5,000 patients’ medical records. They were looking for links between life-changing 

events and disease onset. Their belief was that certain life-changing, stressful events had 

the propensity to cause illness.  

Using the results of their studies, Holmes and Rahe began development of a stress 

scale using naval sailors to begin scale development. Over 2,000 personnel reported life 

changes and illnesses during the preceding 10 years. Forty-three events were found to be 

identified as potentially stressful. Careful examination of the events and medical records 

established “scores” for events or assignment of Life Change Units (LCU). The number of 

LCUs was scaled for events based on the “intensity and length of time necessary to 

accommodate to a life event regardless of its desirability” (Rabkin & Struening, 1976, p. 

1016). For example, death of a spouse (100) was assigned far more LCUs than changing 

jobs (36). 

Further empirical research found a positive correlation (r = 0.118, p < 0.01) 

between LCUs and the development of an illness (McLeod, 2010; Rahe, Mahan, & Arthur, 

1970). Rahe and colleagues conducted a prospective test with 2,664 sailors on board three 

U.S. Navy cruisers. Participants filled out a SRRS questionnaire prior to the start of a 6- to 

8-month cruise. The illness data from the cruise period was evaluated against pre-cruise 

questionnaires. Researchers discovered a positive, though modest, relationship between 
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pre-cruise data and illness reported at sea (Rahe et al., 1970). While small, the evidence 

provided a link between stressful events and illness. 

The data suggested the development of LCU categories. Personnel with less than 

150 LCUs for a given year reported good health for the following year, or had less than a 

30% chance of developing an illness (McLeod, 2010). About half of the population with 

150–300 LCUs reported an illness the following year. When LCU scores exceeded 300, 

over 70% of the individuals reported illness (McLeod, 2010; Rabkin & Struening, 1976).  

The current SRRS is predictive of health for two years and higher scores indicate a 

higher likelihood of an individual developing a health breakdown. This model and 

subsequent validation supported the link between stress and illness (Noone, 2017) and has 

been cited over 14,000 times. The SRRS is useful in this research to identify pilots that are 

at risk for stress related health breakdowns. Usefulness of the SRRS far outweigh the 

limitations.  

(5) Cohen Perceived Stress Scale 

The Cohen Perceived Stress Scale (PSS) is another established measurement of 

stress and differs in several ways from the SRRS. First, it gives a snapshot of a much shorter 

time period. Instead of evaluating stress levels over the previous 12-month time period, the 

PSS focuses on just one month. The PSS measures the perception of stressor intensity by 

the individual and does not give just a single score per life event. The predictive quality of 

the PSS is also much shorter. While the SRRS is predictive of up to two years, the PSS is 

predictive of just four to twelve weeks post administration. The PSS allows an individual 

to make their own unique interpretation of a stressor rather than relying on cumulative 

effects of stressful events. It has been used to assess psychological stressors in a variety of 

settings to include disaster response (Leon, Hyre, Ompad, DeSalvo & Munter, 2007), 

telomere length (Parks et al., 2009), salivary cortisol (van Eck & Nicolson, 1994) and 

healthy lifestyle choices (Ng & Jeffery, 2003).  

Ng and Jefferey (2003) found evidence to support the negative relationship between 

stress and lifestyle choices using the PSS. High stress in 12,110 workers was linked with 

higher fat intake, less frequent exercise, cigarette smoking, and recent increases in smoking 
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(Ng & Jeffery, 2003). Nixon, Massola, Bauer, Krueguer and Spector (2011) further 

supported this finding. Organizational and interpersonal conflicts had the highest 

relationship with job stressors and development of physical symptoms. Gastrointestinal 

issues and sleep disturbances were significantly related to increases in stress more than any 

other physical symptom (Nixon et al., 2011). There was a high correlation between the 

scores on the PSS scale and the development of symptomology (r = 0.76 and r = 0.65, p < 

0.001). The PSS is a validated measure of personal stress (Cohen, Kamarck & Mermelstein, 

1983). 

C. WORKLOAD 

This section will address how excessive workload is a source of stress. The section 

will define workload and possible sources of increased workload, and discuss two methods 

of quantifying workload that were explored in this research.  

1. Workload and Performance 

Workload the subjective “intersection between objective task demands and each 

individual’s response to them” (Hart & Staveland, 1988, p. 176). Increases in workload 

impacts stress levels but also can also impact performance. Increasing workload was found 

to influence pilot performance in a study conducted by Svensson, Angelborg-Thanderez, 

Sjoberk and Olsson (2010). Eighteen pilots performed 72 simulated sorties with recordings 

of their heart rate, performance and workload levels. An increase in workload was 

positively correlated with increased heart rate (r = 0.34, p < 0.05). Even moderately 

complex tasks were found to interfere with the pilots’ simulator performance (Svensson et 

al., 2010). This study accurately describes the relationship between workload, stress, and 

performance. The more demands (workload) put on the individual, the more the body reacts 

(stress response), thus affecting their ability to perform. This study indicates that increased 

workload can negatively influence performance.  

2. Additional Duties 

Methods used for measuring workload are unable to capture the unresourced 

burden, that is, the additional requirements that are not accounted for in typical manpower 
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models in the squadron aviator. A known issue in the Naval Surface Warfare community 

(Fletcher, 2018), the unresourced burden caused by additional work duties has not been 

quantified. Pilots typically are required to perform at least one additional duty in addition 

to their primary Air Force Specialty Code (AFSC) that takes them away from flying. A 

memo, published in 2016 from Secretary of the Air Force Deborah Lee James and Air 

Force Chief of Staff General Dave Goldfein, cited efforts to reduce additional duties for 

Airmen (James & Goldfein, 2016). Citing Air Force Instruction 38–206, “Additional Duty 

Management,” the memo attempted to eliminate 29 of 61 duties that had to be absorbed by 

squadrons and units with the dissolution of Commander Support Staff (CSS) functions.  

A 2016 USAF Task Force titled “Airmen’s Time” addressed the concerns about 

additional duties. As a main focus, the task force recommended reinstating the CSS 

functions. A secondary recommendation was a streamlined process for mandatory 

recurring training (Martin, 2016). The policy exists but currently, the intent and manning 

support has yet to reach all flying communities. Squadrons and aircrew are still being 

burdened with additional duties that resulted from a reduction in CSS manpower. This 

additional work has yet to be accounted for and is left to the existing personnel to perform 

in addition to their normal duties.  

 Quantifying workload objectively is difficult. What is a very high workload for 

one person may be a fairly light workload for another person. Multiple tools have been 

developed to objectively quantify individual workload for research purposes and two are 

discussed below. 

3. Subjective Workload Assessment Technique 

The Subjective Workload Assessment Technique, or SWAT, is a technique used to 

quantify workload and is based on the premise that mental workload is a multidimensional 

construct. SWAT uses three factors, time load, mental effort load, and psychological stress 

load, to score workload on identified tasks (Reid & Nygren, 1988). Individuals respond to 

these three factors in different ways. For example, time pressure may be extremely stressful 

for one individual while psychological stress may be the major driver for another 

individual. This scale development uses 27 cards in all possible combinations of time load, 
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mental efforts, and psychological stress that the user must rank in terms of subjective 

workload. Individual SWAT users are prompted using verbal descriptors to help rate the 

three dimensions. This sorting process develops the interval scale, which is used in the 

scoring of actual events and trains the user at the exact same time. Events are scored giving 

a numerical value from 1 to 3 in each of the three dimensions. A score of 1–3-1 would 

indicate that time and psychological stress were at minimal levels, while mental effort was 

at the highest. This score is then compared to the interval that was established in the card 

sorting and results in a numerical scale of subjective workload ranging from 1 to 100.  

Subjective scoring on the original SWAT test proved to be time consuming. Recent 

undertakings have attempted to develop a more simplified model using pairwise 

comparisons (Luximon & Goonetilleke, 2010). The simplified card sort process was show 

to significantly reduced the time to complete the training (22.08 seconds vs 476.49 seconds, 

p < 0.05) but has failed to be sensitive to low-tasks loads.  

4. NASA-TLX 

One of the most frequently used workload assessments is the National Aeronautics 

and Space Administration-Task Load Index (NASA-TLX) (Noyes & Bruneau, 2007) and 

it is considered a robust measurement of subjective workload (Moroney, Biers, & 

Eggemeier, 1995). The NASA-TLX uses six dimensions to assess mental workload: 

physical demand, temporal demand, performance, mental demand, effort, and frustration 

(Hart & Staveland, 1988). These categories are further described in Table 2 (Rubio, Diaz, 

Martin, & Puente, 2004). Twenty pair-wise comparisons are made amongst the dimensions 

to assign weight. The more times a dimension is chosen in a comparison; the more weight 

is applied in the overall rating. The NASA-TLX has been used to validate workload in 

environments from high stress hospital intensive care units (ICU) to aviation (Hoonakker 

et al., 2011). 
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Table 2.   NASA-TLX category definitions. Source: Rubio, Diaz, 
Martin, & Puente (2004). 

 

 

The NASA-TLX was traditionally offered in a pencil and paper format. Recent 

advances in technology have allowed the NASA-TLX to be administered easily on an iPad 

or iPhone. One publication has suggested that NASA-TLX is superior to SWAT in terms 

of sensitivity especially for low mental workloads (Nygren, 1991). 

D. FATIGUE 

Aircrew fatigue in aviation is a known problem and a recognized source of error 

(Sexton, Thomas, & Helmreich, 2000). This section will discuss the causes of human 

fatigue, beginning by educating the reader on sleep and natural circadian rhythms. The 

section then addresses the relationship between sleep and performance, circadian release 

of hormones, and shift work. The section ends by identifying an appropriate means with 

which to measure sleep for the participants in the thesis research. 

1. Sleep 

Sleep is required to sustain life and is modulated by an individual’s circadian 

rhythm (Fisher, Foster, & Peirson, 2013). During the sleep interval, individuals are not 
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consciously interacting with their surroundings. Voluntary muscle control and sensory 

perception is diminished which facilitates rest and recovery. Once thought of as a period 

where the brain is “turned off,” sleep studies have identified patterns of elevated brain 

activity during sleep intervals.  

The patterns of sleep are broken down into two main divisions: rapid eye movement 

(REM) sleep and non-rapid eye movement (NREM) sleep both of which perform 

complementary functions. REM sleep is considered active sleep and is characterized by 

quick eye movement and high frequency low amplitude brain activity (“Natural Patterns 

of Sleep,” 2007). REM sleep is responsible for memory consolidation of both short term 

and long-term memories (Wilhelm, Diekelmann, & Born, 2008).  

NREM sleep is broken down into three intervals: N1, N2 and N3. As the individual 

transitions from N1 to N2 to N3 sleep there is a natural progression of slower brain waves 

and reduced eye movement (“Natural Patterns of Sleep,” 2007). The majority of NREM 

sleep typically occurs at the beginning of a major sleep interval, for example, the first four 

hours of an eight-hour sleep period. REM sleep occurs in cycles later in the sleep interval 

and accounts for roughly 25% of the total time spent asleep in a healthy individual 

(“Natural Patterns of Sleep,” 2007). The National Sleep Foundation recommends adults 

receive at least 7–9 hours of sleep per night (Hirshkowitz et al., 2015).  

Aircrew populations are at particular risk for sleep deprivation. Long-duration 

missions, shifting landing and takeoff times, and high operations tempos significantly 

affect aviators’ sleep. While fatigue has long been understood to be a causal factor in 

mishaps, the mission requirements often fail to accommodate sleep requirements (Hartzler, 

2014).  

Early show times are particularly detrimental to sleep quantity. Roach, Sargent, 

Darwent, and Dawson (2012) examined the effects of show time on sleep quantity in short-

haul pilots using actigraphy and self-reported sleep. Short-haul pilots had significantly 

lower quantities of sleep with earlier show times. In their sample size (n) of 70 airline 

pilots, beginning at 0400, for each additional hour a duty-day start was delayed, the pilot 

received an additional 15 minutes of sleep. Self-reported fatigue levels were highest in the 
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early duty-day start groups (0400-0500) and lowest for the later duty-day start time group 

(0900-1000) (Roach et al., 2012). F-22 squadron sortie times are planned in conjunction 

with maintenance schedules. This often produces early-duty start days, which makes the 

aircrew at risk for fatigue. Compounding this effect is typical workday commutes, which 

can lengthen the workday upwards of 2 hours in some locations.  

2. Circadian Rhythm  

The human circadian rhythm is the natural body clock. Controlled by the 

hypothalamus, it regulates many physiological processes including hormones, body 

temperature, and the sleep/wake cycle. Environmental factors such as light and darkness 

can affect the circadian rhythm (“What is Circadian Rhythm?” 2018).  

Typical circadian wake/rest rhythms are slightly longer than 24 hours in the absence 

of light. Forced desynchrony studies found an average circadian rhythm of roughly 24.2 

hours, or about a 12-minute phase shift per day (Czeisler et al., 1999). Light, either artificial 

or natural, is a powerful circadian synchronizer and stabilizer. While light affects hormone 

regulation and sleep/wake cycles, rhythmicity of core body temperature is relatively stable, 

even in the absence of light cues (Duffy & Wright, 2005). 

3. Fatigue in Aviation 

Fatigue has been accepted as part of the military aviation culture. Pilots are required 

to meet mission and operational demands, which include early show times, multiple flights 

during a week, and additional duties. But these increasing mission demands negatively 

impacts fatigue. Short-term fatigue in pilots has been attributed to prolonged duty periods 

(53%) and early wake-ups (41%) (Bourgeois-Bougrine, Carbon, Gounelle, Mollard, & 

Coblentz, 2003). Early wake-ups for take-offs is determined by maintenance schedules 

rather than the individual aircrew members. This research suggests that fatigue in aviation 

is not just a product of individual habits but of the squadron and mission requirements. 

4. Fatigue and Performance  

Failure to receive adequate sleep at night makes an individual more likely to 

commit errors (Johnson et al., 2014) and have a slowed reaction time (Taheri & Arabameri, 
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2012). Professions requiring sustained high performance, such as aviation or medicine, 

have found a negative relationship between fatigue and performance. In a recent study, 

sleep deprivation in surgical teams had a significant impact on overall patient morbidity 

and mortality (Parker & Parker, 2017). Similar results were found by Philip and colleagues 

(2005) who saw a negative relationship between driving performance and restricted sleep. 

Sleep restriction caused significant performance degradation evidenced by increased line 

crossings (p < 0.001), even in short performance tasks of around 105 minutes. These short 

driving sessions mirror average sorties times in the F-22 aircraft. Even in short duration 

performance tasks, such as flying, fatigue impacts performance (Philip et al., 2005).  

The aviation community has long recognized that fatigue degrades performance. A 

study conducted by Cooper & Sloan (1985) surveyed commercial airline pilots (n = 422). 

In the self-reported survey, poor performance and fatigue were correlated (r = 0.316, p < 

0.001) (Cooper & Sloan, 1985).  

5. Physiological Responses to Fatigue 

Sleep quality affects the normal cortisol rhythm. In a study by Wright, 

Valdimarsdottir, Erblich, and Bovbjerg (2007) discovered a blunted cortisol response (n = 

53) to an experimental stressor in participants with a lower subjective sleep quality. A study 

by Bassett, Lupis, Gianferante, Rohleder, and Wolf (2015) further supported this finding 

of poor self-reported sleep associated with a blunted cortisol response. Their study showed 

a significant relationship in Pittsburg Sleep Quality Index (PSQI) scores and sCort 

responses following a Trier social Stress Test (TSST) in 73 college-aged adults (Bassett et 

al., 2015; Capaldi, Handwerger, Richardson, & Stroud, 2005). 

Sleep quality affects the overall circadian pattern of cortisol but does not affect the 

cortisol awakening response (CAR). Dettenborn, Rosenloecher and Kirschbaum (2007) 

found that CAR of healthy women was not impacted by repeated forced awakenings. 

Neither time in bed, sleep efficiency, nor fatigue impacted the CAR (Hernandez et al., 

2018). These results suggest that capturing perceived sleep quality is important in 

explaining cortisol anomalies. Failure to account for identified sleep changes or problems 

may bias results.  
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6. Shift Work and Fatigue 

Shift work is often associated with work schedules outside the normal 9am-5pm 

and is common in many service organizations. Firefighters, police, military, and healthcare 

populations are traditionally engage in shift work.  

Shift work is associated with “increased subjective, behavioral, and physiological 

sleepiness” (Akerstedt, 1988, p. 30). Shift workers experience shortened sleep intervals, 

drowsiness carryover effects, and insomnia (Akerstedt, 2003). These symptoms have 

recently been coined as shift work sleep disorder (SWSD). SWSD is a condition developed 

by shift workers in which periods of insomnia and excessive fatigue are caused by 

disruption to the normal circadian rhythm.  

Not all shift workers will develop SWSD, but shift workers are more likely to be 

fatigued. In a poll conducted by the National Sleep Foundation, 89% of non-shift workers 

claimed their work schedule allowed them to get enough sleep compared to only 63% of 

shift workers (“What is Shift Work?” 2018). Yuan and colleagues (2011) also found that 

shift working nurses (n = 107) were more fatigued than traditional day shift workers (odds 

ratio = 2.44, p < 0.1) (Yuan et al., 2011).  

7. Shift Work and Performance  

Shift work negatively affects cognitive performance in traditional shift work 

populations. Gold and colleagues (1992) studied 635 nurses and nurse practitioners who 

were part of a hospital system. The nurses who worked an occasional night shift, defined 

as three or less night shifts per month, had higher automobile near miss accidents going to 

or from work (28.1% vs 19.6%), higher reports of nodding off while driving to or from 

work (40.0% vs 21.2%), higher reports of medication errors (12.1% vs 5.8%), and higher 

rates of medication near misses (15.5% vs 7.8%) than those on a consistent schedule (Gold 

et al., 1992). Nurses on a rotating schedule, defined as working an equal amount of day 

and night shifts, were far more likely to have near misses (50.4%) and poor quality of sleep 

(52.1%) than any other nursing subpopulation. Performance was degraded even in those 

who worked an occasional night shift but was more pronounced in the rotating shift 

population.  
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8. Shift Work and Circadian Rhythm  

Shift work may disrupt the normal circadian rhythm of cortisol. Touitou and 

colleagues conducted an early study into internal desynchronization caused by short-term 

shift workers (1989). Serum cortisol showed a decreased amplitude but elevated 

concentrations at midnight (0000). According to their research, fast rotating shift workers 

did not appear to have a phase shift of hormones with normal diurnal rhythms (Touitou et 

al., 1990). Hung, Aronson, Leung, Day, and Tranmer (2016) also found evidence of a 

flattened cortisol curve in shift workers. Diurnal cortisol rhythms were collected from 

midstream urine on traditional day hospital employees (n = 160) and rotating shift workers 

(n = 168). Shift workers and traditional day workers had similar cortisol production during 

the day. However, shift workers that were on night shift had a flatter or more muted cortisol 

curve, indicating a reduction in cortisol production. The research suggested that night shift 

work is associated with weaker cortisol production in the shift working population (Hung 

et al., 2016).  

9. Measuring Sleep 

There are three common ways to measure sleep: polysomnography (PSG), 

actigraphy, and self-reported fatigue ratings.  

PSG remains the gold standard in quantifying sleep and is used to study sleep and 

diagnose sleep disorders (Douglas, Thomas, & Jan, 1992). Unfortunately, its use is not 

possible in field studies, as it requires specialized equipment and dozens of electrodes to 

monitor the sleeping patterns of participants.  

Actigraphy is captured through wrist-worn activity monitors (WAMs) and gives an 

objective estimation of sleep quantity and quality. Actigraphy uses a software algorithm to 

transcribe the data into sleep intervals defined as periods of reduced movement. In a study 

conducted by Marino and colleagues (2013), PSG and actigraphy were simultaneously 

collected in a controlled sleep laboratory. Actigraphy exhibited a high accuracy (0.863) 

when compared to PSG readings (Marino et al., 2013).  

Subjective ratings of fatigue are cheap to collect and have a high sensitivity 

(between 73% and 97.7%). However, of three measures discussed, subjective fatigue 
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ratings are the least accurate and least preferable in research protocols (Ibanez, Silva, & 

Cauli, 2018) 

E. CURRENT HYPOTHESES 

The main purpose of this thesis is an investigation into the physiological and 

performance changes that occur during the short-term shift to night operations in F-22 

pilots. This potential relationship will be explored in Hypothesis I. Current literature 

suggests a possible adaptation effect to repetitive stress exposure, which has not been 

studied in this population. This relationship will be explored in Hypothesis II.  

1. Hypothesis 1 

The null hypothesis is that there are no changes, in either performance or the 

physiological response, as the pilots’ transition to night-flying operations. The null 

hypothesis includes comparing sleeping patterns, a go/no-go test, NASA TLX, salivary 

cortisol and alpha-amylase levels.  

2. Hypothesis 2 

Hypothesis 2 is used to investigate stress adaptation. The more an individual is 

exposed to a stress, the less severe a stress response may become. Experience will be 

evaluated in the context of flight hours. The null hypothesis is that there is no relationship 

between pilot experience, as determined by flight hours, and stress system activation.  
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III. METHODS AND EXPERIMENTAL DESIGN 

This chapter will discuss the multifaceted approach in understanding the stress 

burden on aviators in response to different flight conditions. It begins by identifying the 

study design and the rationale for employing specific techniques used within the research. 

The last section of this chapter discusses methods for analyzing the collected data.  

A. STUDY DESIGN 

The research was designed as a prospective, quasi-experimental design within-

participants observational study. Two weeks of sleep, stress, performance, and workload 

data were collected. The first week was a normal flying week in which participants flew 

during daytime hours. The second week of data collection was a night week in which take 

off times were shifted to the evening hours. Participants were instructed to not alter their 

natural awakening time for the purpose of this study.  

1. Independent Variables 

The independent variables were flight conditions (control, day, and night) and time 

of day. Participant descriptor characteristics identified in the pre-study questionnaire were 

also used as independent variables.  

2. Dependent Variables 

The dependent salivary variables were classified into two categories: sCort levels 

measured in μg/mL and sAA levels measured in nmol/L. Priority was given to sCort in the 

event a small sample volume was collected. The GNG test provided two dependent 

variables, reaction time and accuracy, which were automatically calculated by the software. 

WAM variables were hours asleep, average awakenings, and percentage sleep efficiency. 

NASA-TLX scores were also dependent variables of the study.  

B. METHODS 

Data was collected from February 26 to March 9 of 2018 at the 19FS and 199FS 

located at Hickam Air Force Base (AFB), Hawaii.  



 36 

1. Participants 

To reach a power of 0.80 for detecting a difference of at least 1.6 between two 

population means, a two-sample t-test (where both populations have a common standard 

deviation of 1.3) requires a minimum of 12 participants sampled from each population. The 

standard deviation of 1.3 for the calculation was obtained from research conducted by 

Vining and colleagues (1983) comparing serum and salivary cortisol levels among male 

participants. A participant sample of 30 was approved by Naval Health Research Center 

(NHRC) (Protocol #NHRC.2018.0007).  

Seventeen male pilots volunteered to participate in the study. All participants were 

F-22 pilots with a current physical, and actively flying during the data collection period. 

Inclusion criteria was presented during recruitment briefs and was self-reported. No access 

to medical records was required. Participants could take part in all or parts of the study 

depending on their comfort level. The decision logic of the study can be found in Appendix 

A (“Study Design Logic”).  

2. Apparatus 

The following items were used in the execution of the study design and relevant 

analyses.  

a. Wrist Activity Monitor (WAM) 

Participants were issued a WAM, which was a non-transmitting actigraph 

manufactured by the Philips Respironics company. WAMs were pre-programmed at the 

Naval Postgraduate School (NPS) for passive data collection following the recruitment 

brief and were worn continuously throughout the two-week data collection. Participants 

were instructed to wear the WAM on their non-dominant wrist and only remove for 

hygiene purposes. WAMs were turned in at the conclusion of the data collection period. 

Two participants turned in their WAMs early due to changes in their flying schedule.  
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b. Go/No-Go (GNG) 

A GNG test was used to evaluate changes in cognitive performance pre- and post-

fight in both day- and night-flying conditions. The GNG tests reaction time to one 

stimulus while refraining from responding to incorrect stimuli also known as response 

inhibition. The task is similar to decision making in the aircraft where “friend vs foe” 

identification is required. This task is especially important in military operating 

environments. 

The GNG task used in the study was developed by the Naval Aviation Medical 

Research Unit at Dayton (NAMRU-D) to facilitate research into security forces’ 

decision-making. The software package initially contained an individual with a gun (the 

“go” stimulus) and an individual with a cell phone (the “no-go” stimulus). The original 

test took 20 minutes to complete and evaluated reaction time and accuracy for the trials. 

In discussion with program designers, it was determined that the GNG could be modified 

to fit the proposed study. Kara Blacker, a research psychologist associated with 

NAMRU-D, modified the GNG. She replaced the threatening figure with two distinctly 

different colored squares (yellow and purple). The test time was shortened to 180 trials, 

20% of which were no-go stimuli. The inter-stimulus interval, or the time between trials, 

was shortened from 0.5-1.5 seconds to 0.5-1.0 seconds. The random nature of the inter-

stimulus interval prevented the participants from establishing a predictable response 

rhythm.  

The benefit of using the GNG was twofold. First, it is already being used in other 

naval research so no license had to be purchased. Second, the GNG was administered on 

iPads that were used for other data collection within the experimental design. The 

modified GNG was appropriate for measuring executive function in the sample.  

In populations of shift workers, it is important to measure elements other than just 

reaction time. A study by Harris and colleagues (2010) in offshore drilling shift workers 

compared their reaction times. Reaction times did not vary significantly in the sample on 

swing shift (Harris et al., 2010). Using a GNG instead of a psychomotor vigilance test 

(PVT) allowed for determination of response inhibition as well as reaction time, 

generating a more complete picture of operator performance.  
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The 5-minute GNG test was completed pre- and post-sortie in both day and night 

flying conditions. The test was administered on an NPS issued laptop using MATLAB 

software.  

c. NASA-TLX 

Workload was measured using the NASA-TLX. The paper and computer NASA-

TLX versions vary in sensitivity. A significant difference exists, with the computer-

executed assessments incurring more workload (Noyes & Bruneau, 2007). We accepted 

this confound in the experimental design as it reduced computational error by researchers. 

We used Apple iPads to administer the NASA-TLX and pre-loaded study and participant 

information. Weightings of each of the six dimensions in addition to a workload score were 

automatically calculated by the NASA-TLX app.  

d. Saliva 

Levels of cortisol and alpha amylase spike in response to physical and 

psychological stress (Miller et al., 2016). Therefore, it is imperative to collect samples as 

close to the stress exposure as possible. Participants completed sample collection during 

three conditions: day, night, and non-flying (control). The non-flying condition was used 

as a control for establishing the participants’ normal diurnal rhythm of both sCort and 

sAA. In keeping with a recommendation by Douglas Granger (personal communication, 

January 25, 2018), two control samples were collected for each participant to establish a 

CAR and control for variability. Saliva was collected at predetermined intervals across 

the three conditions to control for the diurnal nature of the analytes. Initially, the data 

collection intervals were the same for the entire squadron. Upon discussion with the 

squadron schedulers, this requirement limited participant participation. The decision was 

made locally to have each pilot individually identify collection intervals that would 

accommodate their schedules, compensating for variability in the flight schedules as well 

as known limitations (e.g., flying during a collection time period).  

Salivary alpha amylase and salivary cortisol were selected as appropriate 

biomarkers for this research. Saliva samples were collected using the SalivaBio Oral 

Swab (exclusively from Salimetrics, State College, PA). According to Salimetrics, this 
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product is “a synthetic swab specifically designed to improve volume collection and 

increase participant compliance, and validated for use with salivary [Analytes]” 

(Salimetrics, 2018). 

e. Software 

(1) JMP Pro 13.1.0 

The distribution graphics and regression analyses produced in support of this thesis 

were conducted using JMP Pro software, version 13.1.0. 

(2) Microsoft Excel 

The calculations in this thesis were primarily conducted using Microsoft Excel 365. 

(3) MATLAB 

MATLAB software was used to run the GNG test developed by NMRU-D. 

3. Procedure 

All computer, iPad, and pre- and post-flight saliva sampling took place at the 

combined squadron flight equipment room. Squadron commander approval for data 

collection was obtained in November 2017.  

a. Recruitment  

A recruitment brief was conducted in accordance with IRB protocol 

(NHRC.2018.0007) and took place on February 23, 2018, during squadron administration 

briefs with approval by the Squadron Director of Operations. Participants were briefed on 

the background, purpose of the study, and various components of the study. Individual 

recruitments were conducted until February 28, 2018, to accommodate senior leadership 

schedules. Study volunteers were issued consent forms, the pre-survey questionnaire, a 

pre-programmed WAM, salivary collection sampling materials, and instructions about 

the salivary collection process.  

The pre-study questionnaire consisted of five validated stress and fatigue scales. 

Because research suggests that the interaction of home and job stress can negatively impact 
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flying performance, a Cohen Perceived Stress Scale (PSS) and Holmes-Rahe Stress 

Readjustment Rating Scale (SRRS) (Fiedler, Rocco, Schroeder, & Nguyen, 2000) were 

administered to participants in addition to the Epworth Sleepiness Scale (ESS), Pittsburgh 

Sleep Quality Index (PSQI), and the Morningness-Eveningness Questionnaire-Self 

Assessment version (MEQ-SA). 

b. Collection Overview 

Data collection consisted of two distinct parts: saliva collection and performance 

and workload assessments. Figure 13 provides a general overview of the collection 

schedule.  

 

Figure 13.  Two-week data collection schedule overview. 

At the conclusion of the night-flying week, participants returned their pre-

programed WAM and pre-survey questionnaires.  

c. Saliva 

Saliva sampling began February 26, 2018, and consisted of five samples per day 

for four days. The first sample was to be taken immediately upon waking. The second was 

scheduled to be collected 30 minutes after waking to establish the cortisol awakening 
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response (CAR). Three morning samples are recommended to capture the delayed CAR in 

females (Stalder et al., 2016). However, only male pilots were part of the sample. In an 

effort to reduce participant burden, increase adherence to protocols, and decrease financial 

requirements associated with collection and analysis, the third CAR sample at +45 minutes 

was removed from the protocol. 

The three additional samples were to be taken at intervals throughout the day. 

Participants were given flexibility in selecting the three additional collection times to allow 

for flight times, simulator training, and additional constraints on individual schedules. Text 

message reminders by research personnel were sent at the request of participants preceding 

a sample collection day.  

Per IRB protocol, participants were not to alter their crew rest requirements nor 

their normal sleeping schedule for the purpose of the study. Therefore, participants were 

required to collect several of their own salivary samples. Participants sample self-collection 

is common in salivary biomarker analytics and historically have high compliance rates 

(Kudielka, Broderick, & Kirschbaum, 2003; Nater et al., 2007). 

An additional saliva sample was collected during the day-flying and night-flying 

conditions. Pilots completed a pre-flight salivary sample within 30 minutes of planned 

engine start-up and immediately post-flight in the aircrew flight equipment room with NPS 

researchers.  

Participants were instructed to refrain from eating or drinking prior to salivary 

sample collection. A list of items to avoid in addition to instructions was provided to 

participants for their reference. Participants collected saliva by placing the SalivaBio Oral 

Swab sublingually for two minutes and then placing the swab in the collection tube. 

Participants were instructed to not touch the swab either in the placement of the swab or in 

the removal of the swab to place in the tube. Participants were instructed to not chew on 

the swab during the sample collection. No stimulants were given to increase saliva 

production (Schwartz, Granger, Susman, Gunnar, & Laird, 1998). Swabs were then 

transferred to collection tubes and either stored in home fridges (if self-collected) until they 
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could be turned into NPS researchers or immediately in NPS-provided coolers if collected 

in the presence of researchers. 

Tubes were color-coded and labeled. Each participant had individually assigned tubes 

that were recorded on a master data sheet prior to the start of the study. Participants were 

provided the collection materials in a Ziploc bag containing instructions and journal to record 

sampling times. Figure 14 shows the Ziploc bag referred to as the “take home kit.”  

 

 

Figure 14.  Participant take-home kits with time log (left) and color-coded 
collection schedule (right).  

(1) Transportation and Storage 

Salivary samples were labeled and stored in commercial off-the-shelf 3-gallon 

coolers. Small cooler size enabled samples to be stored in hotel refrigerators prior to 

shipment and maintain the cold chain. One cooler was shipped via FedEx Priority 

Overnight shipping to awaiting researchers at NPS. The second shipment was unable to be 

shipped by FedEx Overnight Priority shipping because of maintenance delays. The 

shipment was not expected to arrive to NPS for roughly three days, which would have 

disrupted the cold chain. Alternative carriers were investigated. The United Parcel Service 

did not offer overnight shipping from Hawaii. After discussion, we decided samples should 
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be transported via commercial airline carrier with the returning researcher. The NPS 

researcher kept the samples in personal hotel fridge until transporting home the next 

morning using a cooler and cool packs.  

At NPS, samples were stored at -40-degrees Celsius. The freezer was on an 

uninterrupted power supply to prevent thawing from power outages. Freezers were placed 

in the NPS wet lab behind a cypher-locked door. 

(2) Sample Extraction and Preparation 

Samples were collected using SalivaBio Oral Swab. The local lab did not have a 

centrifuge large enough for collection tubes for standardized extraction. We thawed 

samples overnight and placed swabs into sterile syringes. We pushed on the plunger to 

squeeze out liquid volume into marked 1.7mL tubes that were stored in 40 degrees Celsius 

freezers until analysis could be completed.  

Saliva samples were thawed from -40-degree Celsius freezers 24 hours prior to 

analysis. When thawed, samples were vortexed and then centrifuged at 1500 rpms for 15 

minutes prior to analysis.  

(3) ELISA Kit 

Salivary cortisol concentrations were found using Salimetrics Salivary Cortisol 

ELISA kit. The test required 25 𝜇𝜇L of volume for analysis and had a sensitivity of 0.007 

𝜇𝜇g/dL for the concentration range of 0.012-3.00 𝜇𝜇g/dL. The serum-saliva correlation is 

0.91 (Salimetrics, 2014). The protocol can be found in Appendix B (“Cortisol Assay 

Protocol”).  

(4) Enzymatic Kit 

sAA concentrations were found using the Salimetrics Salivary Alpha Amylase 

Enzymatic kit. The assay kit required a 10 𝜇𝜇L sample of saliva and had a sensitivity of 0.4 

U/mL (Salimetrics, 2016). The protocol can be found in Appendix C (“Salivary Alpha 

Amylase Protocol”).  
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d. GNG 

In both day- and night-flying conditions, participants were instructed to take a GNG 

both before and after the scheduled flight. Participants would report to the aircrew flight 

equipment room, we would input participant identifiers, and participants would read the 

instructions. Participants were instructed to press the space bar if a “go” indication was 

received and to refrain from pressing the space bar if a “no-go” indication was received. 

The indications were either a yellow or purple square on the middle of the laptop computer 

screen. The “go” and “no-go” indications were randomly assigned. After a brief practice 

session, participants would began the 5-minute timed test. This procedure was the same for 

both the pre- and post-flight data collection in both conditions.  

e. NASA-TLX 

Participants completed the NASA-TLX assessment following the GNG only post-

sortie. The NASA-TLX was administered on a password-protected iPad provided by NPS. 

We would pre-load participant-identifying information prior to the participant beginning 

the assessment. Participants completed the pair-wise comparisons each time they were 

administered the NASA-TLX.  

C. ANALYSIS 

1. Saliva 

Slopes of salivary cortisol and sAA levels were compared to civilian populations 

along with predicted sCort concentrations in relation to hours after awakening. The CAR 

was calculated and compared in each condition using a two-sided paired sample t-test.  

2. Go/No-Go 

Reaction time and accuracy were automatically calculated by the GNG using 

MATLAB software. The data were transferred to Microsoft Excel and visually examined 

using Pivot tables. A two-sided paired sample t-test was used to compare GNG results 

pre- and post-flight in both day- and night-flying conditions.  
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3. Actigraphy 

Data from the WAMs were downloaded to allow for calculation of total daily 

sleep, defined as the amount of sleep obtained in a 24-hour period. One-minute epochs 

were used in the actigraphic recordings. The 24-hour period was calculated from 

midnight to midnight of each day and was separated into two categories: the average 

sleep for the day-flying week and for the night-flying week. The sleep amounts were 

compared for each day across both conditions (e.g., Monday of day-flying week was 

compared to Monday of night-flying week) using a two-sided paired sample t-test. Data 

from the WAMs were also used to establish an average awakening time in the absence of 

an awakening salivary sample for plotting the predicted sCort concentration curve. 

4. NASA-TLX 

NASA-TLX scores were calculated by the iPad NASA-TLX application. Scores 

were compared within subjects using a two-sided paired sample t-test on Microsoft Excel 

software.  
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IV. RESULTS 

This chapter provides results of the analyses beginning with a description of the 

sample, sleep and workload results, physiological testing results, and cognitive testing 

results. Wes used a significance level, alpha, of 0.05 for all statistical tests. Table 3 gives a 

summary of those hypothesis tests yielding significance at alpha = 0.05.  

Table 3.   Significant findings of the research described by variable, 
condition, method of comparison, and associated p-value. 

  

 
 

Condition Comparison Method p-value
Flight Hours correlation 0.004
F-22 Flight Hours correlation 0.016
Night Hours correlation 0.012
PSS correlation 0.005

Non-Flying Day Predicted sCort (CIRCORT Curve) Wilcoxon Rank Sum <0.001
Pre-Flight Day Predicted sCort (CIRCORT Curve) paired sample t-test 0.009
Post-Flight Day Predicted sCort (CIRCORT Curve) paired sample t-test 0.003
Pre-Flight Night Predicted sCort (CIRCORT Curve) paired sample t-test 0.025
Post-Flight Night Predicted sCort (CIRCORT Curve) paired sample t-test 0.003
Post-Flight Day Predicted sCort (developed curve) paired sample t-test 0.049
Post-Flight Night Predicted sCort (developed curve) paired sample t-test 0.050

Pre-to-Post Flight Day F-22 Hours correlation 0.001

Pre-Flight Day Sleep Efficiency (%) correlation <0.001
Post-Flight Night Minutes Asleep (avg) correlation 0.036
Post-Flight Day NASA-TLX correlation 0.025
Post-Flight Day PSS correlation 0.043

Pre-Flight Day Sleep Efficiency (%) correlation 0.029
Post-Flight Day NASA-TLX correlation 0.026

Pre-Flight Day Minutes Asleep (avg) correlation 0.044

GNG Accuracy (total)

Variable
Age 

Cortisol (ug/DL)

GNG Accuracy (no-go)

Cortisol Change 

GNG RT
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A. DESCRIPTION OF SAMPLE BY PRE-SURVEY QUESTIONNAIRE 

This section outlines the sample characteristics as observed through the validated 

stress and fatigue scales administered during the pre-survey questionnaire. Each section 

discusses distribution results in addition to significant correlations.  

1. Sample  

Seventeen F-22 pilots participated to varying degrees in the study. Participants were 

on average 36 years old (SD = 6.29 years), with the following averages (x̅): total flight 

hours x̅ = 1745 (SD = 944 hours), F-22 flight hours x̅ = 576 (SD = 347 hours), and night-

flying hours x̅ = 204 (SD = 158 hours). Figure 15 illustrates the distributions.  
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Figure 15.  Flight hour distribution breakdown of total flight hours, F-22 flight 
hours, and night flight hours.  

Age is positively correlated with total flying hours (r = 0.75, p = 0.004), age and F-

22 hours, (r = 0.65, p = 0.016), and age and night flying hours (r = 0.67, p = 0.012). Figures 

16, 17, and 18 visually depict these relationships.  
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Figure 16.  Relationship of age and flight hours (r = 0.75, p = 0.004) 

 

Figure 17.  Relationship of age and F-22 hours (r = 0.65, p = 0.016) 
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Figure 18.  Relationship of age and night-flying hours (r = 0.67, p = 0.012) 

2. Morningness-Eveningness Questionnaire (MEQ-SA) 

Of the participants, 13 of 17 returned the MEQ-SA for a 76.5% return rate. Test 

scores ranged between 16 and 86. A score of 41 or below indicates an evening type. Scores 

of 59 and above indicate morning types. A score in the range of 42–58 indicates an 

intermediate type, with neither morning nor evening characteristics. Four respondents 

(31%) were categorized as morning types, eight respondents (61%) were intermediate 

types, and one (8%) respondent was categorized as an evening type. Figure 19 shows the 

distribution.  
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Figure 19.  Distribution of MEQ-SA scores in the sample.  

3. Epworth Sleepiness Scale (ESS) 

Of the participants, 13 of 17 returned the ESS for a 76.5% return rate. ESS scores 

fall into one of the following categories: lower normal daytime sleepiness (scores 0–5), 

higher normal daytime sleepiness (scores 6–10), mild excessive daytime sleepiness (scores 

11–12), moderate excessive daytime sleepiness (scores 13–15), and severe excessive 

daytime sleepiness (scores 16–24). Seven participants (54%) scores indicated normal 

daytime sleepiness levels. Four participants (30%) showed higher than normal daytime 

sleepiness. One individual showed moderately excessive daytime sleepiness (8%), and one 

individual showed excessive daytime sleepiness (8%). Figure 20 shows the distribution.  
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Figure 20.  Distribution of ESS scores in the sample.  

4. Pittsburg Sleep Quality Index (PSQI) 

Of the participants, 13 of 17 returned the PSQI for a 76.5% return rate. The PSQI 

is rated on a 0–21 scale with higher numbers indicating increasingly poor sleep quality. 

Scores greater than or equal to five indicate poor sleep quality. Six participants (46%) 

scored five or above indicating poor sleep quality. Figure 21 shows the distribution.  

 

Figure 21.  Distribution of PSQI scores in the sample.  

5. Social Rating and Readjustment Scale (SRRS) 

Of the participants, 11 of 17 returned the SRRS for a 64.7% return rate. An SRRS 

score of 150 or less indicates a low likelihood of developing a stress-related illness within 

the next two years; all but one of the respondents fell within this range. One respondent 
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scored 164, indicating a 50% chance of developing a health related breakdown within the 

next two years. Figure 22 shows the distribution.  

 

Figure 22.  Distribution of SRRS scores in the sample.  

6. Cohen Perceived Stress Survey (PSS) 

Of the participants, 13 of 17 returned the Cohen PSS for a 76.5% return rate. PSS 

scores fall into the following categories: low stress (score of 0–13), moderate stress (scores 

of 14–26), and high stress (scores of 27–40). Twelve participants (92%) indicated low 

stress. Only one participant (8%) indicated moderate stress. Figure 23 shows the 

distribution.  

 

Figure 23.  Distribution of PSS scores in the sample.  
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We evaluated the PSQI, ESS, SRRS, MEQ-SA, and PSS for a relationship with 

age. The PSS was the only one of the five tests that was significantly correlated with age. 

Scores on the PSS decreased with age (r = -0.72, p = 0.005). (See Figure 24).  

 

Figure 24.  Relationship of PSS scores and age (r = -0.72, p = 0.005). 

B. SLEEP ANALYSIS 

Fifteen participants wore WAMs during the day-flight week, and fourteen 

participants wore WAM for all or a portion of the night-flying week. Participants slept on 

average 7.15 hours during the day week (SD = 52.2 minutes) and 7.01 hours during the 

night week (SD = 85.7 minutes). The difference in the expected number of hours slept 

between the two weeks was not statistically different (t(14) = -0.29, p = 0.77). The notation 

t(n) is used for a t-statistic, in this case the statistics for a paired t-test whose null 

distribution is t with n degrees of freedom. The average sleep efficiency was 84% across 

the two weeks and was positively correlated with the average minutes spent asleep (r = 

0.58, p = 0.021). 

C. NASA-TLX WORKLOAD ANALYSIS 

The iPad application automatically calculated the NASA-TLX scores. Twelve 

participants completed the NASA-TLX rating post flight in the day-flight condition with 

an average workload score of 65.86 (SD = 14.74). Eight participants completed the NASA-
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TLX post-flight in the night condition with an average workload score of 66.33 (SD = 

16.83). Only six participants completed the NASA-TLX post-flight in both the day and 

night flying conditions. There were no significant changes in workload ratings across the 

two conditions (t(5) = -0.57, p = 0.59). 

D. PHYSIOLOGICAL TESTING RESULTS  

This section discusses the validity of the calculated cortisol concentrations, 

comparisons to both an established database and a participant developed cortisol curve, 

and analyses of the cortisol awakening response (CAR). This section ends with a brief 

discussion of salivary alpha amylase results.  

1. Cortisol 

A total of 17 pilots took part in the saliva collection with varying degrees of 

adherence to protocols. Only four participants completed the full sample collection 

(controls, day-, and night-flying) in the data collection period. We analyzed cortisol in the 

NPS Human Systems Integration wet-lab on nine 96-well microplates numbered 1 to 10. 

Plate 1 was used to pilot-test the assay protocols. Inter-assay variation was mediated by 

analyzing participants on the same microplate. All samples were run in duplicates when 

the volume allowed. Intra-assay coefficient of variation (CV) remained within an 

acceptable limit for all 8 plates tested. An additional plate, Plate 10, was run to test any 

anomalies found in the data analysis. Table 4 lists intra-assay average CV and R2 for each 

plate. Each plate was within an acceptable CV and R2 ranges.  
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Table 4.   CV and R2 Values for each experimental sCort microplate.  

Microplate Number Participants CV R2 
2 10, 11, 17 4.75 0.999 
3 12, 13 4.00 0.999 
4 29, 31 7.16 0.998 
5 20, 23, 27 8.73 0.999 
6 19, 27 5.46 0.999 
7 30, 15, 16 9.06 0.999 
8 22, 26 8.95 0.999 
9 14 5.22 0.999 
10 Individual Samples 6.24 0.999 

 

a. General Population Cortisol Comparison 

We fit a non-linear curve to cortisol levels as a function of hours since awakening 

using the CIRCORT database 50% percentile readings for males, age 31–40, which were 

most representative for the sample tested (Miller et al., 2016). Figure 25 shows the fitted 

CIRCORT curve.  

 

Figure 25.  Cortisol curve fit using the CIRCORT database (R2 = 0.999). 
Source: Adapted from Miller et al. (2016).  
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The awakening sample established hours since awakening by each participant. In the 

absence of a recorded awakening time for the day, the average awakening time for the week 

established by WAM analysis was used. The following sections compare the participant 

sample sCort concentrations to those predicted by the CIRCORT fitted curve in each condition.  

(1) Control Days by CIRCORT Curve 

We compared participant control (non-flying) cortisol levels to the fitted CIRCORT 

curve. Pilots in the sample had higher than expected cortisol levels than predicted from the 

CIRCORT database curve. 

Cortisol levels tend to increase with age (Larsson, Gullberg, Rastam, & Lindblad, 

2009). As a sensitivity analysis to verify that this pattern held, we used a more conservative 

sample excluding participants over the age of 40. Figure 26 shows the residuals, where the 

residuals are the difference between the actual and predicted cortisol levels, of this 

comparison. Figure 27 shows the plots for actual and predicted sCort levels for the control 

day. To see if observed cortisol levels differ from those predicted using the CIRCORT 

fitted curve, we used a Wilcoxon sign test, where the test statistics, x, is the number of 

participants with more positive than negative residuals. For both the total sample of 13 (x 

= 13, p < .001) and the age restricted sample of 9 ( x = 9, p = .002), the observed median 

cortisol levels are significantly greater than predicted.  

 

Figure 26.  Residuals of control day by CIRCORT predicted levels in the total 
sample (Part A) and the age restricted sample (Part B). 
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Figure 27.  Plot of actual and CIRCORT predicted sCort levels (𝜇𝜇g/dL) during 
control days by hours since awakening. 

(2) Day Pre-flight 

Pre-flight actual sCort levels were significantly different (t(13) = -3.05, p = 0.009) 

than CIRCORT predicted pre-flight sCort levels. Figure 28 shows the residual distribution 

and Figure 29 plots the actual day pre-flight levels and the predicted CIRCORT curve.  

 

Figure 28.  Residuals of day pre-flight sCort levels by CIRCORT predicted levels.  
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Figure 29.  Plot of actual and CIRCORT predicted sCort levels (𝜇𝜇g/dL) during 
day pre-flight days by hours since awakening. 

(3) Day Post-flight 

The day post-flight actual sCort levels differed significantly (t(12) = -3.63, p = 

0.003) from the CIRCORT predicted day post-flight levels. Figure 30 shows the 

distribution of residuals. Figure 31 shows the plotted post-flight day actual sCort levels by 

CIRCORT database predicted levels.  
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Figure 30.  Residuals of day post-flight sCort levels by CIRCORT predicted 
levels. 

 

Figure 31.  Plot of actual and CIRCORT predicted sCort levels (𝜇𝜇g/dL) during 
day post-flight by hours since awakening. 

(4) Night Pre-flight 

We compared night pre-flight actual cortisol levels to expected CIRCORT database 

pre-flight sCort levels. Actual sCort levels were significantly higher than predicted 

CIRCORT levels (t(10) = -2.64, p = 0.025). Figure 32 shows the residuals from pre-flight 
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in the night-flying condition. Figure 33 shows the plot of actual cortisol levels as compared 

to predicted CIRCORT cortisol levels.  

 

Figure 32.  Residuals of night pre-flight sCort levels and CIRCORT predicted 
levels.  

 

Figure 33.  Plot of actual and CIRCORT predicted sCort levels (𝜇𝜇g/dL) during 
night pre-flight by hours since awakening. 
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(5) Night Post-flight 

Night post-flight actual sCort levels were also significantly higher than CIRCORT 

predicted sCort levels (t(10) = -3.78, p = 0.003). Figure 34 shows the distribution of the 

residuals. Figure 35 shows the fit line of the CIRCORT database predicted sCort levels by 

the actual sCort levels of the sample.  

 

Figure 34.   Residuals of night post-flight sCort levels by CIRCORT 
predicted levels  

 

Figure 35.  Plot of actual and CIRCORT predicted sCort levels (𝜇𝜇g/dL) during 
night post-flight by hours since awakening. 
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b. Fitted Pilot Sample Curve  

We captured the sample by fitting sCort levels for the control (non-flying) samples 

as a function of hours since awakening. A total of 83 data points were used. Figure 36 

shows the curvilinear relationship.  

 

Figure 36.  Fitted diurnal curve for sample by hours since wakening.  

We calculated the day- and night-flying pre-flight and post-flight predicted sCort 

concentrations using the fitted curve and compared the results using a two-sided paired 

sample t-test.  

(1) Pre-flight 

Pre-flight actual and predicted sCort levels were not different in the day-flying 

(t(13) = 0.96, p = 0.35) or night-flying condition (t(10) = 0.25, p = 0.8).  
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(2) Post-flight 

Post-flight actual sCort levels were significantly higher in the day-flying condition 

(t(12) = -2.19, p = 0.049) and significantly lower in the night-flying condition (t(9) = -2.3, 

p = 0.05). Figures 37 and 38 show the residuals. Figures 37 and 39 show the plotted actual 

and predicted sCort levels. 

 

Figure 37.  Residuals of day post-flight sCort levels by predicted in participant 
fitted curve  

 

Figure 38.  Plot of actual and participant-developed curve predicted sCort levels 
(𝜇𝜇g/dL) during day post-flight by hours since awakening. 
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Figure 39.  Residuals of night post-flight sCort levels by predicted in participant-
developed curve. 

 

Figure 40.  Plot of actual and participant-developed curve predicted sCort levels 
(𝜇𝜇g/dL) during night post-flight by hours since awakening.  
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c. Cortisol Awakening Response (CAR) Magnitude 

Varying degrees of compliance for the CAR samples are shown in Table 5. 

Table 5.   CAR compliance by participant and condition.  

CAR Compliance 
Subject ID Control 1 Control 2 Day Night 

10     X   
11 X X X   
12   X   X 
13 X       
14 X X X X 
15 X X     
16         
17 X X     
19 X X X   
20 X X   X 
22 X X X   
23 X X   X 
26 X X X X 
27 X X     
29 X X X X 
30 X X X   
31         

 

We calculated the CAR by taking the concentration of the awakening +30 minutes’ 

sample and subtracting the awakening sCort concentration (in 𝜇𝜇g/dL). Table 6 shows the 

calculated CARs. 
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Table 6.   CAR magnitude by participant and condition.  

Subject ID CAR (control) CAR (day) CAR 
(night) 

10   0.7285   
11 2.358 0.4835   
12 0.265   0.274 
13 0.064     
14 0.555* 0.3545 -0.3835 
15 0.489*     
16       
17 0.409     
19 0.769 0.6155   
20 0.141   -0.087 
22 0.113 0.0435   
23 0.69*   0.287 
26 0.389 0.085 0.0675 
27 0.102*     
29 0.092 0.511 0.126 
30 0.3015 0.748   
31       

* Indicates an average was taken. 

 

There was no difference in the control to day flight CAR responses (t(6) = -0.85, p 

= 0.43), the control to night CAR responses (t(5) = -2.12, p = 0.087) nor the day to night 

CAR responses (t(2) = -1.83, p = 0.209).  

d. Pre- to Post-flight Cortisol Change  

The change in cortisol levels, pre-flight to post-flight, was not significant in the 

day-flying condition (t(11) = -1.33, p = 0.21) nor the night-flying condition (t(10) = -1.19, 

p = 0.26).  

We evaluated flying hours, PSQI, PSS, ESS, MEQ-SA, SRRS and NASA-TLX for 

a relationship with the cortisol response change from pre- to post-flight. A correlation 

exists only between the magnitude of the cortisol change in the day flying condition and 

F-22 hours, r = -0.89, p = 0.001, such that individuals with fewer hours in the F-22 
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experienced a larger increase in cortisol from pre-flight to post-flight. Figure 41 shows this 

relationship. This relationship was only found with F-22 hours in one flight condition.  

 

Figure 41.  F-22 hours by difference in sCort levels pre- and post-flight in the day-
flying condition (r = -0.89, p = 0.001). 

2. Alpha Amylase 

Salivary alpha amylase analysis was limited due to placing priority on the cortisol 

analysis, which thereby limited the amount of saliva available. Only comparison of pre- 

and post-flight concentrations in the day- and night-flying conditions could be analyzed. 

There were no significant differences between the pre- and post-flight conditions in the 

day-flying condition (t(11) = -0.361, p = 0.73), night-flying condition (t(7) = -1.227, p = 

0.24) or the magnitude of the difference, measured pre- to post-flight, in the day- or night-

flying operations (t(5) = 1.195, p = 0.29).  
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E. COGNITIVE TESTING RESULTS  

This section focuses on results and analysis of the Go/No-Go outputs in the 

different conditions. Each section discusses analyses with supporting graphics provided for 

significant findings. The section ends with discussion of several significant correlations 

that existed with various components of the GNG tests.  

Fourteen individuals completed the GNG with varying levels of compliance 

(Table 7). We compared the conditions using a two-sided paired sample t-test.  

Table 7.   Compliance for GNG test across both day and night conditions. 

Go/No-Go Compliance  
Subject Pre-Flight 

(Day) 
Post-Flight 

(Day) 
Pre-Flight 

(Night) 
Post-Flight 

(Night) 
10         
11 X X     
12 X X X X 
14 X X X X 
15   X   X 
16   X   X 
17   X     
19 X X     
20     X X 
22   X X   
23 X X X X 
26   X X X 
27     X X 
29 X X X X 
30 X X     
31         

 

We calculated the average no-go accuracy, total test accuracy, and reaction time 

(RT) in seconds (s) in both the day and night conditions (see Table 8).  



 71 

Table 8.   Averages for accuracy and reaction time across two flying 
conditions.  

 
 

Eight participants completed both a pre- and post- flight GNG test in the day-flying 

condition. There were no significant changes in no-go accuracy (t(7) = -0.57, p = 0.58), 

total test accuracy, (t(7) = -1.13, p = 0.29), reaction time of the correct response in seconds 

(s) (t(7) = 0.38, p = 0.71), or reaction time of an incorrect response (t(7) = -0.19, p = 0.85).  

Seven participants participated in both the pre- and post-flight night GNG test. 

There were no differences in the accuracy of the inhibitory response (t(6) = -0.63, p = 0.54), 

total test accuracy (t(6) = -0.82, p = 0.44), reaction time of the correct response (t(6) = -

0.11, p = 0.91), or reaction time of an incorrect response (t(6) = 0.459, p = 0.66). 

Seven participants completed both post-flight GNG tests in day- and night-flying 

conditions. There were no significant changes in the post-flight inhibitory accuracy (t(6) = 

-1.37, p = 0.21), total test accuracy (t(6) = -1.47, p = 0.19), reaction time of a correct 

response (t(6) = -0.74, p = 0.48), nor reaction time of an incorrect response (t(6) = 0.865, 

p = 0.42) in either the day or night post-flying condition. 

Four participants completed the pre-flight GNG tests in both the day- and night-

flying conditions. The pre-flight inhibitory accuracy was suggestive of a change (t(3) = -

2.49, p = 0.09) but did not meet the threshold for significance. Neither total test pre-flight 

accuracy (t(3) = -1.93, p = 0.14), pre-flight reaction time of a correct response (t(3) = -.318, 

p = 0.77), nor pre-flight reaction time of an incorrect response (t(3) = 0.34, p = 0.76) varied 

across the conditions.  
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We found several significant correlations with various components of the GNG test. 

These correlations are discussed below. 

1. Sleep and Go/No-Go (GNG) 

We evaluated average minutes asleep and percentages of sleep efficiency for a 

relationship with the GNG results. As sleep efficiency increases, so does GNG accuracy in 

the no-go response (r = 0.97, p < 0.0001) and total test accuracy (r = 0.93, p = 0.029) in 

the day-flying condition. Figures 42 and 43 show these relationships. 

 As sleep increased so did the GNG RT in the day-flying condition (r = 0.63, p = 

0.044). In the night post-flight condition, GNG accuracy of the no-go response increased 

with sleep (r = 0.87, p = 0.036). Figures 44 and 45 show these relationships. No other 

correlations exist between the GNG and sleep.  

 

Figure 42.  Relationship of GNG day pre-flight accuracy of “no-go” response and 
avg sleep efficiency (r = 0.97, p < 0.001).  
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Figure 43.  Relationship of GNG day pre-flight total accuracy and avg sleep 
efficiency (r = 0.93, p = 0.029). 

 

Figure 44.  Relationship of avg minutes asleep and GNG RT (s) in day pre-flight 
condition (r = 0.63, p = 0.044). 



 74 

 

Figure 45.  Relationship of GNG night post-flight accuracy of no-go response by 
avg minutes asleep (r = 0.87, p = 0.036). 

2. NASA-TLX and Go/No-Go 

We evaluated physiological changes, sleep, and the GNG test results for a 

relationship with the NASA-TLX. GNG post-flight accuracy of the no-go response (r = 

0.63, p = 0.025) and of total test accuracy (r = 0.64, p = 0.026) increased with NASA-TLX 

scores in the day-flying condition. Figures 46 and 47 show these relationships. No other 

relationships exist with the NASA-TLX. 

 

Figure 46.  Relationship of GNG post-flight accuracy in the day flying condition 
by post-flight day NASA TLX scores (r = 0.63, p = 0.025). 
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Figure 47.  Relationship of GNG post-flight total accuracy in the day flying 
condition by post-flight day NASA TLX scores (r = 0.64, p = 0.026). 

3. Perceived Stress Survey and Go/No-Go  

We evaluated the PSQI, ESS, SRRS, MEQ-SA and PSS for a relationship with the 

GNG. The PSS was the only one of the five tests that was significantly correlated with the 

GNG. GNG RT in seconds decreased with increasing PSS scores in the night post-flight 

condition (r = -0.61, p = 0.043). Figure 48 shows this relationship.  

 

Figure 48.  Relationship of night post-flight GNG RT and PSS scores (r = -0.61, p 
= 0.043). 
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4. Cortisol Awakening Response (CAR) and Go/No-Go 

We evaluated the magnitude of the CAR for a relationship with GNG test results. 

In the night post-flight condition, accuracy of the no-go response (r = 0.88, p = 0.011) and 

total accuracy (r = 0.92, p = 0.005) increased with the CAR magnitude. Figures 49 and 50 

show these relationships. No other relationship exists with the CAR and GNG test results 

in either condition.  

 

Figure 49.  Relationship of CAR magnitude and GNG post-flight accuracy of no-
go in the night-flying condition (r = 0.88, p = 0.011). 

 

Figure 50.  Relationship of CAR magnitude and GNG post-flight total accuracy in 
the night-flying condition (r = 0.92, p = 0.005). 
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5. Awakening Cortisol Levels and GNG 

We evaluated the awakening cortisol levels for a relationship with GNG responses. 

A relationship only existed in the night pre-flight reaction time. GNG RT (s) was positively 

correlated with awakening cortisol levels (r = 0.84, p = 0.038). Figure 51 shows this 

relationship.  

 

Figure 51.  Relationship of awakening cortisol levels and GNG RT (s) pre-flight 
in day-flying condition (r = 0.84, p = 0.038). 
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V. DISCUSSION 

This thesis studies the overall stress burden to F-22 aviators as they transition from 

day- to night-flying. This chapter begins by addressing the hypotheses posited in Chapter 

II with relevant findings, and ends by identifying other findings that resulted as a result of 

the research. We rejected both null hypotheses posed in Chapter II in favor of the 

alternatives based on the findings that are discussed in this chapter. 

A. HYPOTHESIS 1: EVIDENCE OF CHANGES 

We found evidence to support the alternative hypothesis that a difference in stress 

system activation exists between the day- and night-flying conditions. This finding stands 

in contrast to the null hypothesis posed in Chapter II that no changes exist in the 

physiological or performance measures as the pilots transition from day- to night-flying.  

Day-flying appeared to cause a stress response based on the lack of change of pre- 

to post-flight cortisol levels and the higher than predicted cortisol levels based off the 

participant developed curve. Pre- and post-flight levels of cortisol were not different in the 

day-flying condition (t(11) = -1.33, p = 0.21). This finding, in itself, is evidence of a stress 

response. Normal cortisol levels decrease throughout the waking day. In the absence of a 

stress response, participant cortisol levels would have dropped post-flight, following their 

normal diurnal rhythm. However, participant cortisol levels did not change during the flight 

interval and support the theory that a stress response occurred. 

The participants had significantly elevated cortisol levels post-flight in the day-

flying condition (t(12) = -2.19, p = 0.049) compared to predicted levels from the developed 

curve providing evidence of a stress response. In keeping with expected behavior, neither 

day (t(13) = 0.96, p = 0.35) nor night-flying (t(10) = 0.25, p = 0.8) showed elevated cortisol 

levels pre-flight and failed to support an anticipatory effect in the stress response. 

Participants’ day-flight cortisol levels followed a predictable rhythm on a developed curve 

up until post-flight, at which point they became elevated. Similar analyses failed to support 

a stress system activation in the night-flying condition as participants had significantly 

lower than predicted cortisol levels post-flight (t(9) = -2.3, p = 0.05). These results suggest 
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an increased stress system activation caused by the daytime flying environment but not the 

night-flying environment.  

This change cannot be definitively attributed to any one factor or a combination of 

factors, but the results were surprising. Several factors could have influenced these results. 

First, the sample shared their runway with an international airport that was commonly 

congested with commercial air traffic during the day. Additionally, because Hawaii is a 

tourist destination, sightseeing aircraft also used the airspace. It is possible that the increase 

in air traffic may have contributed to a stress response. Second, day-flying requires a visual 

scan to “see and avoid.” Radar assists in the identification of threats, but the visual system 

is the primary sensory input device in the daytime flight environment. Pressure on the pilot 

to visually identify objects in an already congested airspace may have contributed to 

activation of the stress response.  

Visual requirements differ at night and could also be responsible for the lack of a 

response in the night post-flight condition. Less commercial air traffic at night may require 

less attention devoted to aircraft deconfliction. Additionally, at night visual scans are 

limited to instrumentation cues. While some maneuvers need to be confirmed under night 

vision goggles, the majority of the visual information about the environment is digitally 

processed. Pilots are both assisted by and restricted to their instrument feedback. These 

factors may have contributed to the lower than expected cortisol levels in the night-flying 

condition.  

The physical requirements of day-flying are demanding and also may have played 

a role the cortisol spike. The F-22 is a 9Gz capable aircraft. Several pilots reported 

experiencing high or repeated G-forces during their day-flight sorties. G-forces are 

physically demanding and a sustained muscle contraction, termed the anti-g straining 

maneuver, to maintain consciousness. Because night-flying is G-limited, it does not require 

the same physical effort. The additional physical effort of day-flying may have caused the 

higher than predicted cortisol levels post-flight.  

There are a number of gaps in our understanding of just why cortisol is elevated 

post-flight in day-flight and further investigation is warranted. 
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B. HYPOTHESIS 2: EVIDENCE OF STRESS ADAPTATION  

We found evidence to support the alternative hypothesis that evidence of stress 

adaptation exists in the F-22 community. This finding stands in contrast to the null 

hypothesis posed in Chapter II that no relationship between experience and stress system 

activation exists in the F-22 community.  

Two significant correlations suggest some form of stress adaptation within the F-

22 sample: age as it relates to Perceived Stress Survey (PSS) scores and the magnitude of 

the cortisol change as it relates to F-22 hours. The PSS is a validated measure of personal, 

perceived stress (Cohen, Kamarck & Mermelstein, 1983). In the pre-survey questionnaire, 

participants reported their perceived level of stress. Participants age was negatively 

correlated with their level of perceived stress, that is younger participants reported higher 

levels of stress (r = -0.72, p = 0.005). This finding is interesting for two reasons. First, it 

confirms the high stress levels that was communicated by participants to the research team 

during the data collection. Participants, in casual conversation, would discuss life stressors. 

Several participants had young children and were struggling to find appropriate schooling 

on the island, childcare issues, or had a new infant at home. These participants all had 

relatively higher (within this sample) PSS scores. Three participants held highly visible 

positions of responsibility on the base. These three individuals were on the extreme right 

end of the age distribution of the participants and, though arguably being taxed with more 

responsibility, had lower PSS scores. Second, the PSS generally has shown a trend to 

decrease with age (Cohen & Janicki-Deverts, 2012). The participant distribution of PSS 

scores is lower than the distribution averages of both men (n = 968, x̅ = 15.52, SD = 7.44) 

and of 35–44 year olds (n = 331, x̅ = 16.38, SD = 7.07). 

We also found a negative correlation between the magnitude of the cortisol change 

and the number of flight hours in the F-22, further suggesting an adaptation effect. As 

participants flew more hours in the F-22, the magnitude of their stress response was less (r 

= -0.89, p = 0.001). Some experienced participants were non-reactors and maintained a 

steady cortisol decline even during flight. This suggests that with increased exposure to the 

stressor, in this case flying, the less stressed the individual would become.  
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These two points suggest adaptation, not burnout, within the F-22 sample. This 

physiological adaptation falls in line with other research into repeated stress exposures. 

One possible reason for the adaptation would be the sample’s characteristics, or the pilot 

selection process that brings in individuals with high resilience. F-22 pilots are an elite 

group who are categorized as high-functioning, Type A personalities who are often 

exposed to high-threat environments and show evidence of physiological adaptation to 

recurring stress like similar highly resilient populations (Lu, Wang, & You, 2016).  

C. OTHER FINDINGS 

We found several significant relationships that did not support either hypothesis but 

warrant discussion. These findings are described below. 

1. Demographics and Age 

We found a significant linear relationship between age and total flying hours, F-22 

hours, and night hours. The older the pilot, the more total flying hours, F-22 hours and 

night flying hours. This result is intuitively easy to follow, and while significant, is to be 

expected.  

2. Cortisol Levels 

There was not enough evidence to show a relationship between participant cortisol 

awakening levels and the magnitude of the cortisol response in either the day- or night-

flying condition. This finding was surprising as awakening levels were found to be 

predictive of stress in research by Elder, Elliss, Barclay, and Wetherell (2016). The small 

participant sample size may have been a factor in this finding. 

An interesting relationship in physiological stress and perceived stress was noted 

in the sample. Physiological stress indicators were higher than civilian populations but 

perceived stress scores were lower than civilian populations. We attempted to compare the 

F-22 pilot sample to an established CIRCORT database of similar-aged males. 

Unexpectedly, the participant sample had significantly higher cortisol levels across all 

conditions and days. PSS scores were lower than similar populations. Future investigations 
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should attempt to understand the relationship between perceived stress and cortisol level 

in the flying environment.  

3. Go/No-Go 

Participant reaction time in the go/no-go test did not vary across the different flight 

conditions. This finding reflects the research by Harris and colleagues (2010) who found 

consistent reaction times in populations who transitioned to shift work.  

Some correlations exist between sleep and the go/no-go results; however, these 

correlations were not consistent across conditions or tests. The small participant sample 

size may be responsible for lack of consistent correlations across the conditions.  
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VI. SYNTHESIS, RECOMMENDATIONS AND CONCLUSION 

This thesis explored how the short-term shift in operations affects F-22 pilots in an 

attempt to aid future mishap prevention efforts. Studies show that traditional shift workers, 

such as nurses and military personnel, suffer from an increase in fatigue, disruption of 

cortisol, and decreased performance. Until now, this shift has not been investigated in the 

F-22 community. Previous chapters have focused on the research, experimental methods, 

and results of the thesis research. This chapter synthesizes the current study and speaks to 

its relevancy. It concludes by providing recommendations for future research projects to 

quantify the stress burden to aviators. 

A. SYNTHESIS 

F-22 pilots are high-functioning, resilient individuals tasked with operating the 

USAF’s 5th generation fighter in support of missions across the world. Pilots are required 

to transition from day operations to short-term night operations to ensure that their training 

remains current; however, the impact on aviator performance from this short-term shift 

remains unknown. We quantified the stress burden on 17 volunteer participants as they 

made a short-term transition to night flights to maintain their readiness status. Performance, 

workload, fatigue, and stress patterns were monitored in the participants over two weeks 

as the F-22 aviators transitioned from day- to night-flying operations.  

Using a modified go/no-go test (GNG) to measure reaction time and response 

accuracy in the participants, we found no difference as participants transitioned from day- 

to night-flying operations. On average, participants had an inhibition test accuracy of about 

90% in both pre- and post-flight in the day-flying condition. Reaction time of the correct 

response averaged approximately 0.31 seconds and reaction time of the incorrect response 

averaged approximately 0.26 seconds pre-flight and post-flight in the day-flying condition. 

In the night-flying condition, participants scored on average approximately 80% inhibition 

accuracy, 0.30 seconds reaction time of the correct response, and approximately 0.25 

seconds of the incorrect response in both pre-and post-flight. Reaction times were similar 

to a civilian population using a 20% no-go test (Nieuwenhuis, Yeung, Wildenberk, & 
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Ridderinkhof, 2003). However, the F-22 pilots had a significantly higher average inhibition 

accuracy in both flying conditions (90% and 80%) than the 66% inhibition accuracy 

reported in the civilian population (Nieuwenhuis et al., 2003).  

Using a NASA-TLX (an iPad application version) to measure workload, we found 

no difference when comparing the subjective workload ratings. Participants had average 

workload scores of approximately 66 post-flight in both the day- and night-flying 

condition. These results were similar to NASA-TLX scores of commercial airline pilots 

executing a landing with the loss of the autopilot (Zheng, Lu, Jie, & Fu, 2017) but 

significantly higher than F/A-18 pilots executing an instrument landing with multiple 

cautions and warnings in a simulator (x̅ = 39.04, SD = 7.86) (Mansikka, Virtanen, & 

Harris, 2018).  

Attempts to compare F-22 participants to civilian populations of similar gender and 

age revealed an unexpected uniqueness. F-22 pilots had significantly elevated cortisol 

levels compared to the CIRCORT database, a repository of civilian cortisol levels, in all 

measured conditions. We then developed a unique participant curve and compared the 

actual cortisol to the new predicted levels. Participants’ cortisol levels were different from 

predictions in both day and night post-flying conditions. Based on their own unique curve, 

F-22 pilots had significantly higher-than-predicted cortisol levels in the post-flight day 

condition and significantly lower-than-predicted cortisol levels in the post-flight night 

condition.  

Two relationships suggest there may be some form of stress adaptation within the 

F-22 sample: the first is age as it relates to Perceived Stress Survey (PSS) scores and, 

secondly, the magnitude of the cortisol change as it relates to F-22 hours. Additionally, 

PSS scores were lower than average PSS scores for similar age and demographic 

populations. These findings suggest that F-22 pilots may have a different psychological 

threshold for perceived stress.  

Using validated measures of stress, performance, sleep and workload, we studied 

changes that could ultimately affect aircrew safety. Sleep, reaction time, accuracy, and 
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perceived workload did not change across the conditions; however, the sample size restricts 

the generalizability of the finding due to the lower test power.  

More questions than answers emerged from this study; continued research should 

focus on the impact of elevated cortisol and long term health risk it could pose in this 

participant sample. If, indeed, further research confirms that job requirements are placing 

pilots’ health at risk, we need to delve deeper. Are F-22 pilots required to accept stress as 

a normal part of their duty? What are the long-term health implications of elevated cortisol 

levels? Are these changes unique to military aviation? That question and others likely need 

further examination. The results of this thesis suggest that the full burden of F-22 flying on 

pilots is not yet understood.  

B. RECOMMENDATIONS FOR FUTURE RESEARCH  

This section focuses on two dimensions of future research: replication efforts and 

identifying stress patterns in other populations.  

1. Replication of Research 

The following section outlines some recommendations for research replication 

efforts as this thesis only achieved a 31% test power given the small number of participants. 

Many of these recommendations come from lessons learned in the current research and 

include the rationale for these changes.  

a. Go/No-Go (GNG) 

Future experimental design considerations should not interfere with pre-sortie time 

constraints. The window of time after the Top 3 brief (in which weather conditions and 

other notifications are discussed) and before “stepping” to the aircraft was a limiting factor 

for several participant participants. While the saliva sample could be undertaken with 

minimal interference, administering the GNG test took 5 minutes. Several pilots were 

unable to complete the GNG test under the time constraints. As the data collection week 

progressed, pilots would take the test in the period between the mission brief and Top 3 

brief. This adjustment allowed for before and after GNG sample collection. Some pilots 

were too time-pressed to attempt this test prior to flying but accomplished it post-sortie. 
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Aircrew were much more compliant and willing to participate in the go/no-go test when 

not otherwise pressured by mission demands.  

b. Data Collection Window 

Future research into comparisons of day- and night-flying operations should 

include more night flights to account for scheduling changes. F-22 pilots fly an average of 

five times per month. While one week was adequate to get participation for the day flights, 

night flying posed a unique problem. Personnel issues caused several pilots to have to drop 

from the schedule and prevented some individuals from participating in the night-flying 

data collection. The squadron had additional night-flying weeks available but we did not 

plan for data collection during that timeframe. 

c. Method of Saliva Collection 

Future efforts into stress measurement in the pilot population should utilize passive 

drool kits. While slightly more time-consuming, the volume obtained from a passive drool 

kit would have allowed for multiple analyses. Swabs were used instead of passive drool to 

allow for saliva collection while pilots donned their flight gear. We gave priority in the 

analysis to cortisol, which limited the amount of analysis conducted on alpha amylase due 

to gaps in the data.  

d. Stress Scale 

A more appropriate measure of daily stress may be the “Daily Hassles and Uplifts” 

by Kanner, Coyne, Schaefer, and Lazarus (1981). This scale identifies 117 hassles and 135 

uplifts that occur in everyday life. While the Perceived Stress Survey (PSS) and Social 

Readjustment and Rating Scale (SRRS) are common in stress research, they do not capture 

the traffic jams, lost items, or arguments that are a daily part of life and contribute to the 

stress burden. These vague annoyances are captured in the “Daily Hassles and Uplifts” 

scale and may be more predictive of short-term stress response than either the PSS or 

SRRS.  
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2. Other Populations  

Results of this study need to be shored up by studies that look at a larger sample 

size, but evidence suggests that the F-22 sample does not conform to typical stress patterns. 

Efforts should focus on additional aviation communities to determine if this change is 

unique to F-22s or is also prevalent in other aircraft communities.  

Additionally, personnel in support fields, such as maintenance and aircrew flight 

equipment, also transition to accommodate the flying schedule. Efforts should be made to 

investigate if similar changes exist in these support career fields.  

3. Eye-Tracking 

Future researchers could use eye-tracking software to confirm if see-and-avoid 

procedures contribute to the cortisol spike post-flight in the day-flying condition. Increased 

traffic and efforts on deconfliction have been suggested as a potential contributor to the 

elevated post-flight cortisol levels.  

C. CONCLUSION 

This thesis sought to determine if F-22 pilots were experiencing increased stress as 

a result of different flying conditions. We thought that the night-flying environment would 

be more stressful on the aviator. While more research is required to support the results 

found this in this study, it appeared the opposite is true: day-flying is more stressful. 

Understanding the stress burden to F-22 aviators during the transition to night-flying 

operations is an important aspect of future mishap prevention efforts.  
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APPENDIX A. STUDY DESIGN LOGIC 
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APPENDIX B. CORTISOL ASSAY PROTOCOL 

Task Description Note 
Prepare reagents Bring reagents to RT and 

mix. 
Bring plate to RT. 
Dilute wash buffer by 
adding 100 mL concentrate 
to 900 mL DI water. 
Pipette 24 mL diluent into 
disposable tube provided. 
Set aside. 

min 1.5hrs @RT 
Keep plate pouch closed. 
 
 
Use serological pipette 

Prepare plate Remove strip 1 & 2 and 
break off bottom wells. 
Break off 2 NSB wells and 
place in H1 and H2 
position. 

Store unused wells at 2–
8°C. 

Plate Use the plate layout to: 
Pipette 25 µL standards into 
wells. 
Pipette 25 µL diluent to 
ZERO and NSB wells. 
Pipette 25 µL controls (high 
and low). 
Pipette 25 µL saliva 
samples to plate. 

Vortex standards and 
controls before pipetting. 
Change tips between 
standards/controls/samples. 
Use same tip for duplicates. 
Missing samples – pipette 
diluent to wells 

Add enzyme conjugate Dilute enzyme conjugate by 
adding 15 µL conjugate to 
the 24 mL diluent tube. 
Vortex. 
Pipette 200 µL into each 
well. 

 

Incubate Mix on plate shaker 5 min 
@500 rpm. 
Incubate @RT 55 min 

Start 1 hour timer. 

Wash plate Pipette 300–350 µL wash 
buffer into each well.  
Discard over sink or kill 
bucket. 
Blot plate thoroughly on 
paper towel. 
Repeat 3 more times. 

A 1 min soak is 
recommended for next to 
last wash 
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Task Description Note 
Add substrate Pipette 200 µL TMB 

substrate solution into each 
well. 
Cover plate with foil. 

 

Incubate Mix on plate shaker 5 min 
@500 rpm. 
Incubate @RT 25 min.  

Start 30 min timer. 

Add stop solution Pipette 50 µL stop solution 
into each well. 
Mix on plate rotator 3 min 
@ 500 rpm.  

If green color remains, 
continue mixing until 
yellow. 

Read plate Wipe off plate with damp 
kimwipe then dry with fresh 
kimwipe. 
Run cortisol experiment on 
plate reader. 

Read within 10 min of 
adding stop solution. 
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APPENDIX C. SALIVARY ALPHA AMYLASE PROTOCOL 

Task Description Note 
Prepare reagents Bring to RT and mix min 1.5hrs @RT 
Start incubator 
heat 

Set plate shaker/incubator to 37°C 
Start plate reader heat 37°C 

 

Heat substrate Put substrate in trough provided, 
cover and heat on plate incubator 
@37°C >20 min 

Pre-heat incubator 

Prepare dilution 
tubes 

Number one 0.6 mL and one 1.7 
mL tube for each sample. 
Pipette 90 µL diluent into 0.6 mL 
tubes. 
Pipette 190 µL diluent into 1.7mL 
tubes  

Use plate sample number 
1–40, not study sample 
number. 
 

Dilute samples Pipette 10 µL sample into 0.6 mL 
tube. Vortex. 
Pipette 10 µL diluted sample into 
1.7 mL tube. Vortex 

First dilution step is 1:10, 
second step becomes 
1:200. 
Missing samples - diluent 
only. 

Plate Pipette 8 µL of high and low 
controls to plate. 
Pipette 8 µL diluted sample to 
plate. 

Vortex controls before 
pipetting. 
Use reverse pipetting to 
avoid bubbles. 

Add substrate Use electronic pipette to add 320 
µL pre-heated substrate to each 
well. 

Discard tips and leftover 
substrate after every use. 

Read plate Run SAA experiment on the plate 
reader. 

Check for bubbles when 
the plate is ejected between 
reads. 
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