

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

APPLIED CYBER
OPERATIONS CAPSTONE

REPORT

SIEM-ENABLED CYBER EVENT CORRELATION
(WHAT AND HOW)

by

Fidel E. Christopher and Kurt J. Myers

September 2018

Project Advisors: John D. Fulp
 Gurminder Singh

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2018

3. REPORT TYPE AND DATES COVERED
Applied Cyber Operations Capstone Report

4. TITLE AND SUBTITLE
SIEM-ENABLED CYBER EVENT CORRELATION (WHAT AND HOW)

5. FUNDING NUMBERS

6. AUTHOR(S) Fidel E. Christopher and Kurt J. Myers

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 This capstone evaluates the capabilities and potential usefulness of a Security Information and Event
Management (SIEM) system in the detection of malicious network activities. The emphasis of this project
was to select and configure a Free and Open Source SIEM (FOSS) to perform automated detection and
alerting of malicious network events, based upon predefined indicators of compromise. To test these
functionalities, a virtual lab network consisting of a combination of Windows servers and Windows and
Linux workstations was built to provide a proof of concept environment for testing the chosen FOSS SIEM.
From within the lab network, a series of malicious cyber actions were executed to evaluate how well our
configured FOSS solution detected and reported them. As SIEM solutions are increasingly deployed to help
automate cyber defense, we hope this study motivates the adoption of FOSS solutions by organizations that
may not be able to afford a commercial solution, or—perhaps—may simply prefer the advantages of
free and open-source solutions.

14. SUBJECT TERMS
Security Information and Event Management, incident detection, log analysis

15. NUMBER OF
PAGES

133
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

SIEM-ENABLED CYBER EVENT CORRELATION (WHAT AND HOW)

PO1 Fidel E. Christopher (USN) and CPO Kurt J. Myers (USN)

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED CYBER OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
September 2018

Reviewed by:
John D. Fulp Gurminder Singh
Project Advisor Project Advisor

Accepted by:
Dan C. Boger
Chair, Department of Information Sciences Department

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This capstone evaluates the capabilities and potential usefulness of a Security

Information and Event Management (SIEM) system in the detection of malicious

network activities. The emphasis of this project was to select and configure a Free and

Open Source SIEM (FOSS) to perform automated detection and alerting of malicious

network events based upon predefined indicators of compromise. To test these

functionalities, a virtual lab network consisting of a combination of Windows servers and

Windows and Linux workstations was built to provide a proof-of-concept environment

for testing the chosen FOSS SIEM. From within the lab network, a series of malicious

cyber actions were executed to evaluate how well our configured FOSS solution detected

and reported them. As SIEM solutions are increasingly deployed to help automate cyber

defense, we hope this study motivates the adoption of FOSS solutions by

organizations that may not be able to afford a commercial solution, or—perhaps—

may simply prefer the advantages of free and open-source solutions.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. WHAT IS A SIEM? ...2
B. EVENT LOGS ..2
C. AGGREGATION ...3
D. NORMALIZATION ..4
E. CORRELATION ...5

II. COMPARE AND CONTRAST OF OPEN-SOURCE SIEMS7
A. PRELUDE ...7

1. Components ..7
2. Offered Features ..9
3. Ability to Integrate with Other Products9
4. Minimum System Requirements ..9
5. Compatible Host OSes ...10
6. Ability to Generate Reports ..10
7. Documentation ...10

B. OSSIM ...10
1. Components ..11
2. Offered Features ..11
3. Ability to Integrate with Other Products and Systems12
4. Minimum System Requirements ..12
5. Compatible Host OS ..13
6. Ability to Generate Reports ..13
7. Documentation ...13

C. ELK ...13
1. Components ..14
2. Offered Features ..15
3. Ability to Integrate with Other Products and Systems16
4. Minimum System Requirements ..17
5. Compatible Host OS ..17
6. Ability to Generate Reports ..17
7. Documentation ...18

III. CHOSEN SIEM ...19
A. PACKET CAPTURE ...20
B. NIDS AND HIDS..21
C. NETWORK ANALYSIS TOOLS ..21

viii

IV. VIRTUAL TESTBED NETWORK ...23
A. BUILDING A SIEM TESTBED NETWORK23

1. Hardware ..23
2. Network Backbone ...23
3. Software ..24

B. NETWORK TOPOLOGY ..25

V. ELK AND SECURITY ONION INSTALLATION AND
CONFIGURATION ...27
A. GATHERING RESOURCES ...27

1. Building the Virtual Machine ...27
2. Downloading Security Onion ..27

B. SECURITY ONION INSTALLATION ...28
C. SECURITY ONION CONFIGURATION AND ELK

INSTALLATION ...29
1. Security Onion Update ..29
2. Setup Script Round 1: Initial Network Configuration29
3. Setup Script Round 2: ELK Installation and

Configuration ...30
4. Additional Configurations ..33

D. ELK CONFIGURATION ...34
1. Elasticsearch ...35
2. Logstash ..37
3. Kibana ...39

VI. OSSEC INSTALLATION AND CONFIGURATION55
A. AGENT MANAGEMENT ON SECURITY ONION55
B. AGENT INSTALLATION AND CONFIGURATION ON

LINUX ...57
C. AGENT INSTALLATION AND CONFIGURATION ON

WINDOWS ...60
D. VERIFICATION OF OSSEC AGENT COMMUNICATION

FROM CLIENT TO SIEM ...62

VII. INCIDENT DETECTION AND CORRELATION WITH ELK65
A. MALICIOUS ACTIVITY CORRELATION ..65

1. Port Scan ...65
2. Online Password Cracking Attack ...72
3. Web Server Attack ...80
4. Windows Server Exploitation ...88

ix

B. FALSE POSITIVES AND FALSE NEGATIVES97

VIII. SUMMARY, CONCLUSION, AND FUTURE WORK99
A. SUMMARY ..99
B. CONCLUSION ..100
C. FUTURE WORK ...101

APPENDIX A. SNORT PRIORITIES ...103

APPENDIX B. OSSEC RULE CLASSIFICATION LEVELS105

LIST OF REFERENCES ..107

INITIAL DISTRIBUTION LIST ...111

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. Testbed Network Diagram ...26

Figure 2. etc/network/interfaces configuration ...33

Figure 3. ufw firewall configuration ...34

Figure 4. List of Shards ...36

Figure 5. List of template.json Files ..36

Figure 6. /etc/logstash directory ..38

Figure 7. Kibana Login Page ...40

Figure 8. Kibana Overview Dashboard ...41

Figure 9. Time range tab ...42

Figure 10. Auto-refresh tab ...42

Figure 11. Settings under the “Edit” Tab ..43

Figure 12. Sharing Dashboards and Snapshots ...43

Figure 13. Kibana Home Page ..44

Figure 14. Discovery Page ..45

Figure 15. Visualize Page ..46

Figure 16. Timelion Page ..47

Figure 17. Dev Tools Page ..48

Figure 18. Management Page ..49

Figure 19. Custom Dashboard ...51

Figure 20. Single Document View (Table Format) ...52

Figure 21. Single Document View (JSON Format) ..53

Figure 22. Surrounding Documents View ...54

Figure 23. OSSEC Server-side Agent Entry ...56

xii

Figure 24. OSSEC Server-service restart ..57

Figure 25. Adding the OSSEC software repository ..58

Figure 26. OSSEC Agent for Linux - Configuration ..59

Figure 27. OSSEC Agent Installation for Windows—Component Selection60

Figure 28. OSSEC Agent Manager for Windows—Unconfigured61

Figure 29. OSSEC Agent Manager for Windows—Fully Configured62

Figure 30. OSSEC Agent Verification ..63

Figure 31. nmap scan...67

Figure 32. NHIDS-Alert Over Time ...68

Figure 33. NIDS—Alerts ..69

Figure 34. Extended NIDS—Alert on Port Scan Activity ..70

Figure 35. Port Scan CAPME ...71

Figure 36. Port Scan Pcap ...71

Figure 37. Bro Notice Message ...72

Figure 38. Online Password Cracking Attempt with Hydra73

Figure 39. NIDS—Alert on Password Cracking Attack ...74

Figure 40. Extended NIDS - Alert Showing RDP Attempted Connection76

Figure 41. Bro Hunting RDP ...78

Figure 42. Password Cracking Attack CapME ...79

Figure 43. Password Cracking Attack PCAP ..80

Figure 44. Nikto Scan Results ...81

Figure 45. WPScan Enumeration ..82

Figure 46. WPScan Password Enumeration ..83

Figure 47. Metasploit Exploit ..83

Figure 48. Meterpreter Session ...84

xiii

Figure 49. NIDS—Alert on Web Server Attack ...85

Figure 50. Metasploit Meterpreter Login Attack ..87

Figure 51. SMB Version Scan ...88

Figure 52. MS17_010 Vulnerability Scan ...89

Figure 53. EternalBlue Exploit ..90

Figure 54. Meterpreter Service Installation ...91

Figure 55. NIDS—Alert on SMB Version Scan ...92

Figure 56. NIDS—Alert on EternalBlue Vulnerability Scan93

Figure 57. NIDS—Alert EternalBlue Exploit with Meterpreter Payload94

Figure 58. Extended NIDS—Alerts for EternalBlue Exploit with Meterpreter
Payload ...95

Figure 59. OSSEC—Alert on Meterpreter Rootkit Install ..97

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF TABLES

Table 1. Prelude Components. Adapted from [3]. ...7

Table 2. Prelude OSS vs. Prelude SIEM. Adapted from [4].8

Table 3. OSSIM Components .Adapted from [8]. ...11

Table 4. OSSIM System Requirements. Adapted from [12], [13].13

Table 5. Security Onion Components ..15

Table 6. ELK Input Sources. Adapted from [25]. ..16

Table 7. PfSense Services Provided ...26

Table 8. VMWare Tools Installation ...28

Table 9. Default Configuration Options ..31

Table 10. Security Onion Status Commands ...33

Table 11. Snort Default Classifications. Source: [37]. ..103

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

LIST OF ACRONYMS AND ABBREVIATIONS

BSD Berkeley Software Distribution

CLI Command Line Interface

DC Domain Controller

DCO Defensive Cyber Operations

ELK Elastic Stack Log and Kibana

FOSS Free and Open-Source Software

FTP File Transfer Protocol

HBSS Host-Based Security System

HIDS Host-based Intrusion Detection Systems

HTTPS Secure Hypertext Transfer Protocol

IA Information Assurance

ICMP Internet Control Message Protocol

IDS Intrusion Detection Systems

IIS Internet Information Services

IPMI Intelligent Platform Management Interface

IPS Intrusion Prevention Systems

ISO International Standards Organization

JSON JavaScript Object Notation

JVM Java Virtual Machine

NIDS Network Intrusion Detection Systems

NTP Network Time Protocol

OOB Out-Of-Band

OS Operating System

PCAP Packet Capture

RAID Redundant Array of Inexpensive Drives

RDP Remote Desktop Protocol

RFC Request For Comments

SAS Serial Attached SCSI

xviii

SCSI Small Computer Systems Interface

SIEM Security Information and Event Management

SSH Secure Shell

TCP Transmission Control Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

VLAN Virtual Local Area Network

VM Virtual Machine

WAN Wide Area Network

xix

ACKNOWLEDGMENTS

We would like to extend our sincere appreciation to Professor J. D. Fulp for the

mentorship he provided us with during this capstone. Your unwavering guidance and

advice led us steadily to the finish line. We trust that by applying all you have taught us we

will be valuable assets to the U.S. Navy and our beloved country. Thank you!

xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

In the world of information technology and cryptology, those who have worked in

an Information Assurance (IA) or Defensive Cyberspace Operations (DCO) position can

attest to how strenuous and time consuming the process of identifying malicious cyber

activities can be. Alerts generated by Intrusion Detection Systems (IDS) and Intrusion

Prevention Systems (IPS) must be reviewed by a human to ensure their validity. This

review often necessitates having to analyze system and event logs from multiple devices/

sources to identify correlations helpful in corroborating the alerts. This task can be very

tedious depending on the size of the network, the number of security systems involved, the

layers of defense-in-depth, and the specificity of the alert information provided. An alert

generated by an IDS or IPS provides analysts with date/time and possibly the affected

network or subnet information. This can help focus on specific systems and a timespan of

logs to retrieve and review. Conversely, attempting to gather data on malicious activity

undetected by antivirus, IDS, or IPS with no date/time and source information can render

this task exponentially more difficult, as the absence of specific timeline information means

that more logs will likely need to be analyzed. To mitigate this difficulty, a Security

Information and Event Management (SIEM) solution ingests logs from various networks

systems, such as routers, IDS, IPS, servers, clients, antivirus systems, and host-based

security systems, thus easing the burden of having to navigate to numerous systems in

search of event(s) that may be malicious in nature. A number of SIEM solutions are

available, some proprietary and others open source. This capstone demonstrates how a free

and open-source software (FOSS) SIEM can benefit the Navy without added materiel costs.

It focuses on how a FOSS SIEM fed with appropriate system and application logs can be

leveraged to help automate the detection of malicious cyber activity. A comparison of

available FOSS SIEMs led to the selection of the Elastic Stack Log and Kibana (ELK) as

the SIEM of focus in this capstone.

2

A. WHAT IS A SIEM?

A SIEM (pronounced “sim”) is a software solution that provides security

information and event management of system and security data from hosts and network

devices. SIEMs are becoming increasingly popular in networks because of the growing

importance of the capabilities they provide. Modern networks generate a plethora of

information and logs that can potentially be valuable indicators of malicious cyber activity

of interest to system administrators and security analysts. The full value of this information,

however, can only be fully realized when it is readily available and properly presented to

the interested party. The objective of a SIEM solution is to corral the heterogeneous

information and event logs sourced from various devices within a network, and provide a

common interface for viewing and analyzing that data. While many SIEMs also incorporate

several additional features to provide unique capabilities that distinguish them from their

competitors, the principal value-added of any SIEM is derived from its incorporation of

several fundamental capabilities. These fundamental capabilities can generally be

classified as log aggregation, log normalization, log correlation, alerting, and all-around

log and alert management. Each of these capabilities will be elaborated upon in this report.

B. EVENT LOGS

Before discussing SIEM capabilities, one must first understand what event logs are.

Event logs are the primary “product” consumed by a SIEM; they are the raw data a SIEM

analyzes to glean meaningful correlations that—when significant—can yield usable

intelligence regarding cyber threats and vulnerabilities. Almost every device on a network

generates or can be configured to generate, some type of log. These logs come in a vast

variety of formats depending on the type of device they were created from and how the

manufacturer decided the logs should be formatted. Modern Microsoft Windows operating

systems, for example, use a proprietary log format called EVTX, which is an update to

Microsoft’s earlier EVT format. In [1], EVTX logs are stored in the extensible markup

language (XML) format, which provides filtering granularity within Windows’ native

Event Viewer, or when using a third-party application or SIEM.

3

One industry standard format for logs is “syslog,” or more specifically, the BSD

syslog as defined by RFC3154. Syslog-style logs are standard across many platforms,

including Cisco IOS devices, Palo-Alto Network’s PAN-OS, Linux, Unix, and a vast

number of software solutions, including the Snort intrusion detection/prevention system

and the PfSense firewall. The syslog standard is more than just a log format; it is also a

transmission protocol for the delivery of logs. Syslogs are text-based logs that can be saved

locally on the machine on which they are generated, but can also be transmitted (typically

over UDP port 514) to a centralized syslog collector.

Although vendors are free to use whichever logging format they choose,

Microsoft’s EVTX format and the industry standard syslog format are generally the most

common event log formats available. EVTX is not an industry standard log format; XML

is, and it allows some level of interoperability of EVTX logs with other systems. Syslog’s

ubiquity is in large part due to the fact syslog has become a widely used logging format on

which logging devices and log collection systems depend for interoperability. One might

consider syslog to be the least-common denominator of computer system log formats.

C. AGGREGATION

When using a SIEM, logs must be aggregated into one centralized location. This is

typically accomplished by configuring the devices, or in some cases the log collection

agents, to transport the logs to a central repository. The repository may store flat files or

some type of database. The Securosis blog states not only does the centralized log

repository allow for log consistency, it also allows for security and retention policies to be

managed more easily, as all of the logs reside in a centralized location [2]. The resource

requirements of the log repository depend upon the size of the network the SIEM is

monitoring. As the number of aggregated logs increases, the storage capacity and

computational demands on the log repository that warehouses these logs should also

increase. It is therefore important to be able to calculate the amount of log data that will be

generated. This can be accomplished using a historical baseline of events per second (EPS)

metric. This metric can also serve as a performance rating for a SIEM (e.g., “our SIEM can

process—with no bottlenecking—up to X EPS”), or as a licensing tool (e.g., “your SIEM

4

contract guarantees an EPS of no less than X”); so it is important to understand and take

into consideration when choosing a SIEM solution. EPS, unsurprisingly, equates to the

number of log events generated per second, but to use this equation to estimate the storage

capacity of the repository, the size (in bytes) of each event must also be considered.

Therefore, using the formula (Average EPS x Average Bytes Per Event / 1,000,000,000),

we can determine the size of logs generated, on average, per second in gigabytes.

Multiplying the result by 86,400 will give us the daily storage capacity in bytes needed for

storing the logs. Multiplying the daily storage requirement by the number of days desired

for retention will result in an estimate of the overall storage capacity requirements of an

organization’s log repository. It is also important to consider that certain events or incidents

may cause a spike in the EPS that could last from minutes to days. An increase in EPS

means an increase in required storage capacity, so it is best to ensure the storage repository

is large enough to handle such unforeseen spikes in log generation.

D. NORMALIZATION

After logs are aggregated, they must be normalized. While there are a handful of

standard log formats, most information networks comprise systems, software, and

applications from different manufacturers, and the logs that they generate are not all in the

same format. Using the example of the date and time an event occurs for which a log entry

is generated, a system may be configured to store logs with date in ddmmmyyyy format

(06May2018) and time in 12-hour format (2:26:42 P.M. PST) and jointly categorize them

as Date/Time. A second system may use the same format but separately categorize these

two fields as Date and Timestamp. A third system may generate date in mm/dd/yy format

(e.g., 05/06/18) and time in 12-hour format and jointly categorize them as Date/Time. A

fourth system may generate date in mm/dd/yyyy format (05/06/2018) and time in 24-hour

format (14:26:42 PST) and separately categorize them as Date and Timestamp. These are

just a few examples that illustrate how quickly the variety of log formats can become large.

If the organization operates in multiple geographic areas, things may become even more

complicated owing to differing time zones and variations regarding the implementation of

daylight saving adjustments. In France, for example, to represent 06 May 2018, the Day-

Month-Year format (06/05/2018 or 06/05/18) is used instead of Month-Day-Year (05/06/

5

2018 or 05/06/18), and the time-zone shift from GMT (Greenwich Mean Time) is plus two

hours, vice subtracting hours for time-zones in the Western Hemisphere countries. To

further complicate things, the date that France transitions to daylight saving time is two

weeks different from when most U.S. states transition. Log normalization is the process of

converting such heterogeneous log data fields into a particular (homogeneous) format that

the SIEM evaluation engine is designed to interpret. This process may be done via an agent

or be agentless. “Normalization-using agents” means that the normalization software

(agent) is installed either on a central log server or on every single security system that

generates logs. In an agentless normalization scheme, systems generating alerts send logs

within set time intervals to the SIEM to be locally normalized.

E. CORRELATION

Once logs are aggregated and normalized, they may be queried for more meaningful

inferences that pertain to identifying threats or vulnerabilities. The ability to identify

security-related events from a disparate number of systems in an autonomous network is

the primary benefit of deploying a SIEM solution. In defensive cyberspace operations,

when an incident occurs, security technicians must analyze logs from many levels, if not

every level, of the defense-in-depth architecture so as to build a logical timeline of activities

that might advance the who, what, when, where, why and how investigation of a cyber

incident. A SIEM has the ability to sift through normalized logs from disparate systems on

a network that were fed to its database and identify events that are mutually related. An

event correlation may be as simple as tracking an IP address: a host is discovered with

malware that beacons to an IP address associated with malicious activity; upon searching

that IP address in the SIEM, it is revealed that many other hosts on that network are also

infected with the same malware. The SIEM may correlate that same IP to other events

leading to the discovery of more compromised assets.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. COMPARE AND CONTRAST OF OPEN-SOURCE SIEMS

Following an online research on available FOSS SIEMs, we elected to review three

of the most popular and discussed SIEM solutions: Prelude’s Universal Open-Source SIEM

project, AlienVault’s Open Source Security Information and Event Management (OSSIM),

and Elasticsearch Logstash and Kibana (ELK) by Elastic

A. PRELUDE

Prelude is a distributed universal SIEM that sorts and reports security-related events

regardless of the system generating the events brand or license. Prelude Open Source SIEM

(OSS) is the open-source version of the Prelude SIEM and is designed for evaluation,

research and testing in small network infrastructures. Prelude OSS performance is lower

compared to its enterprise version.

1. Components

There are several components that make up both Prelude OSS and Prelude SIEM.

Table 1 lists these components and includes a description of each.

Table 1. Prelude Components. Adapted from [3].

Components Descriptions
The Prelude
Manager

A server that receives, manages, and saves alerts to a specified location (log
file or database) and establishes priority of process according to criticality.

Libprelude A secure library that is an Application Programming Interface (API) for
communication with Prelude subsystems. It also provides the necessary
functionality for generating and emitting IDMEF alerts.

LibpreludeDB “An abstraction layer upon the type and format of the database used to store
IDMEF alerts. [This] allows developers to use the IDMEF database
efficiently without worrying about SQL.”

Prelude-LML A log analyzer that allows for the collection and analysis of information
from all sorts of applications emitting logs or syslog messages.

Prelude-
Correlator

A Python rules-based correlation engine able to connect and fetch alerts
from a remote manager based on a provided ruleset.

Prewikka Prelude’s official Graphical User Interface (GUI). In addition to facilitating
analysts’ work, the GUI provides access to external tools such as whois and
traceroute.

8

The open-source version of Prelude is equipped with an abbreviated version of the

components that the commercial version comprises. Table 2 lists components of Prelude

OSS and SIEM.

Table 2. Prelude OSS vs. Prelude SIEM. Adapted from [4].

Versions Prelude OSS Prelude SIEM
Standard IDMEF. IDMEF, IODEF.
Alerting Simplified alert tray. Simplified & expert alert tray,

many tools for alerts analysis and
visualization.

Correlation Simple correlation from
Python scripts, deployment in
the command line, 10 default
rules.

Correlation and performance from
metalanguage, rules edition and
deployment via the web-UI, 60
default rules.

Selection Rules edition via shell, regex
and command line. 30 default
equipment.

Rules edition & deployment via the
web-UI. 100 default equipment.

Archiving Alert archiving only. Alert & log archiving in a NoSQL
database, indexing and intuitive
analysis interface.

Analyze Alert tray filtering. Browsable graphs statistics,
Forensic graphic, Reporting,
Compliance management.

Architecture Mono-server deployment. Multi-server architecture, relaying,
high-availability, fail over.

Rights Mono-user, no authentication. Multi-user, LDAP authentication,
user-rights & profile management.

Operating
system

Limited, many actions through
“shell and command line.”

Customized overview,
Customizable dashboard, Integrated
tickets management, Workflow and
knowledge base, Multiple
configuration web-UI.

Performance Limited real-time processing
capacity by a non-optimized
database schema. Performance
decreasing with the increase of
archived alert volume.

Millions alert notifications are
possible in a day. Search time up to
30 times faster than the Prelude
OSS version.

9

2. Offered Features

In both versions of Prelude, security event logs are normalized to the Intrusion

Detection Message Exchange Format (IDMEF), a standard data format designed by the

IETF under RFC 4765. IDMEF was developed with the intent to enable interoperability

among commercial, open source, and research systems [5].

3. Ability to Integrate with Other Products

Prelude is agentless; however, the following third-party agents are available [6]:

• Auditd—the Linux Audit Deamon.

• ufwi-filterd—for user-based addition to Netfilter, the IP filtering layer
from the Linux Kernel.

• LinuxPAM—“a system of libraries that handle authentication tasks” [6].

• Nepenthes—a versatile tool to collect malware.

• OSSEC—“an open-source host-based IDS that performs log analysis,
integrity checking, Windows registry monitoring, rootkit detection, real-
time alerting and active response” for all major operating systems [6].

• Samhain— “an open-source host-based intrusion detection system (HIDS)
for POSIX (Unix, Linux, Cygwin/Windows). [It] provides file integrity
checking, as well as rootkit detection, port monitoring, detection of rogue
SUID executables, and hidden processes” [6].

• SanCP—a network security tool designed to collect statistical information
regarding network traffic. It records traffics in PCAP format for the
purpose of auditing, historical analysis, and network activity discovery.

• Snort—a defacto rule-driven open-source IDS.

• Suricata—“a high-performance network IDS, IPS and network security
monitoring engine” [6].

• Kismet—“an open-source wireless network detector, sniffer, and intrusion
detection system” [6].

4. Minimum System Requirements

Prelude OSS does not have explicitly stated system requirements. Considering that

Prelude OSS can be installed on many different Linux distributions, the system

10

requirements would need to at least meet those which are specified by the host operating

system. Although the system requirements for most Linux distributions are considerably

less than modern consumer-grade hardware, the system requirements for Prelude OSS for

use in a production environment would likely demand more modern and powerful

hardware.

5. Compatible Host OSes

Prelude is supported for the following Linux distribution [7]:

• Fedora/RedHat/CentOS(epel): Prelude OSS 4.1

• Debian/Ubuntu: Prelude OSS 4.1

• Gentoo: Prelude OSS 4.1

• Mageia: Prelude OSS 4.1

• Arch Linux: Prelude OSS 4.1

• OpenSuse: Prelude OSS 4.0 (Update to 4.1 in progress)

6. Ability to Generate Reports

With logs stored in a centralized database, Prelude provides an easy generation of

reports. It allows users to create and send reports in pdf format via email.

7. Documentation

Well-detailed documentation is available on the Prelude website

(https://www.prelude-siem.org/projects/prelude/wiki) with details on its components,

installation procedures, configuration, and optimization.

B. OSSIM

OSSIM is AlienVault’s open source version of AlienVault’s commercial SIEM:

Unified Security Management (USM). The features available in OSSIM are more limited

than what is included in USM. OSSIM is licensed under the GNU General Public License

and is distributed as an installable ISO image. OSSIM uses Debian Linux as its host

operating system and provides many of its features using preexisting standalone FOSS

11

components. The AlienVault tools that are part of OSSIM mostly provide log correlation

and plugin integration.

1. Components

OSSIM consists of several components. Table 3 lists these components and

includes a description of each.

Table 3. OSSIM Components .Adapted from [8].

Components Descriptions
OpenVAS Open Vulnerability Assessment: Vulnerability Scanner.
Suricata A FOSS IDS and IPS.
tcptrack Network sniffer. Displays the status of TCP connections.
Nagios Network Monitoring Software. Provides monitoring of network

services, system resources, and applications across all major
operating systems

OSSEC An “open-source host-based IDS that performs log analysis,
integrity checking, Windows registry monitoring, rootkit detection,
real-time alerting and active response” for all major operating
systems [6].

Munin Network resource monitoring that provides network trend analysis.
NFSen/NFDump NetFlow Sensor / NetFlowDump: Provides network flow statistics.
FProbe NetFlow Probe: Collects network traffic data and sends the collected

traffic as NetFlow flows to a collector.
Excludes tools that are deprecated, phased out, or replaced.

2. Offered Features

OSSIM offers several capabilities but is still limited as compared to its commercial

counterpart USM. The following list includes the capabilities included in OSSIM [9].

• Asset Discovery and Inventory

• Vulnerability Assessment

• Intrusion Detection

• Behavioral Monitoring

• SIEM Event Correlation

• Community Support via Product Forums

12

• Powered via Open Threat Exchange

3. Ability to Integrate with Other Products and Systems

OSSIM can collect data from many sources. OSSIM provides agents that run on

Windows and Linux that can be used to send collected data to the SIEM. Other systems

that generate logs in various standard formats are also supported. According to FIWARE,

OSSIM supports the following log data types [10].

• Syslog (supported log format by most systems and network devices)

• SNMP (Simple Network Management Protocol)

• Osiris (Unix HIDS)

• Snare (Windows log agent)

The ability to ingest Syslog logs provides OSSIM with the widest support for other

systems and devices. AlienVault states that many devices, including the following, can be

integrated with OSSIM either via the syslog protocol or via plugins [11].

• Brocade routers and switches

• Cisco PIX and ASA firewalls

• Cisco Unified Communications Manager

• Check Point firewall

• Palo Alto PAN-OS

• Symantec Endpoint Management

• VMWare vCenter

4. Minimum System Requirements

The system requirements for OSSIM are largely dependent upon usage. On a large

network with many log sources, the hardware requirements required for installation may

be far less than what is required for operation. Table 4 represents the minimum

recommended system requirements for installation in a production environment, although

there are countless reports online of successful installations with far less system resources.

13

Table 4. OSSIM System Requirements. Adapted from [12], [13].

 Bare Metal [12] Virtual Machine [13]
CPU Intel Xeon E5620 8 cores
RAM 16 GB (DDR3 1333 MHz) 16 GB
Storage 1 TB (SAS 10000 RPM) 1 TB

5. Compatible Host OS

The only host OS supported by OSSIM is Debian Linux. OSSIM is provided as an

ISO image that installs Debian Linux along with OSSIM and all included software

packages. The latest version of OSSIM runs on Debian Linux version 8.

6. Ability to Generate Reports

OSSIM provides several report types downloadable as PDFs. Reports can also be

sent via email from within OSSIM. The default time period for reports is 30 days, but this

is customizable. According to [14], report types include Alarms (top threat information),

Business & Compliance ISO PCI (provides required information based on compliance

regulations), Geographic (based on configured geolocation of assets), SIEM events, and

Tickets (lists and describes tickets created from alarms).

7. Documentation

Documentation for OSSIM is considerably sparse as AlienVault maintains

documentation for its commercial SIEM only. USM includes many features not available in

OSSIM. Much of the information needed to deploy and operate OSSIM must be culled

together from the AlienVault forums and third-party guidance from various webpages. The

lack of a central repository of OSSIM documentation provides a major hurdle for a technician

deploying OSSIM, and is the source of many complaints within the AlienVault forums.

C. ELK

By itself, ELK is technically not a (full-service) SIEM, but merely a log aggregation

and management solution. However, when combined with OSSEC (the HIDS component

included in both Prelude and OSSIM), ELK functionality is enhanced to meet the

14

definitional requirements of a SIEM. Security Onion is a network security monitoring

solution distributed as an installable ISO image of Ubuntu Linux. When augmented with

ELK, OSSEC, and many other optional tools, Security Onion encompasses much more

security functionality than any SIEM alone typically provides. We will be considering

Security Onion as a platform for hosting our SIEM tools as it comes preloaded with tools

such as ELK and OSSEC. The scope of our consideration of Security Onion will be based

on its SIEM specific tools only.

1. Components

Table 5 lists components of Security Onion.

15

Table 5. Security Onion Components

Components Descriptions
Elasticsearch A distributed, RESTful and analytical engine used as the heart of the

Elastic Stack to centrally store data and discover expected and
unexpected information.

Logstash A “server-side data processing pipeline that ingests data from a
multitude of sources simultaneously, transforms it, and sends it to your
favorite ‘stash’” [16].

Kibana A visualization plugin for Elasticsearch that provides visual capabilities
on top of contents indexed on the Elasticsearch cluster. It allows analysts
to create bar, line, and scatter plots and/or pie charts.

OSSEC An “open-source host-based IDS that performs log analysis, integrity
checking, Windows registry monitoring, rootkit detection, real-time
alerting and active response” for all major operating systems [6].

Suricata A FOSS IDS and IPS.
Bro A “powerful network analysis framework that is much different from the

typical IDS… Bro provides a comprehensive platform for more general
network traffic analysis” [19].

Sguil “An intuitive GUI that provides access to real-time events, session data,
and raw packet captures. [It] facilitates the practice of network security
monitoring and event-driven analysis” [20].

Squert “A web application used to query and view event data stored in a Sguil
database (typically IDS alert data). [It] is a visual tool that provides
additional context to events through the use of metadata, time series
representations and weighted and logically grouped result sets” [21].

Excludes tools that are not SIEM-related, deprecated, being phased out or replaced.

Adapted from [6], [15], [16], [17], [18], [19], [20], and [21].

2. Offered Features

The Logstash pipeline process comprises three processing stages: Inputs, Filters,

and Outputs. Inputs are composed of events generated by input sources. These events are

then filtered for usefulness and correlation. And, finally, the selected (passing the filters)

events are sent as outputs to a database store.

During Inputs, Logstash reads files from a file system and listens for syslog-

formatted logs which are parsed using the Berkeley Software Distribution (BSD) Syslog

protocol. According to [22], the BSD Syslog protocol is defined in RFC 3164 as a “protocol

16

that provides transport to allow a machine to send event notification messages across IP

networks to event message collectors—also known as syslog servers.”

Logstash can be conditionally configured for specific action on events during the

Filters stage. Unstructured log data can be parsed into queryable format, a process known

as grokking. Event fields may be mutated (renamed, replaced, or modified) or dropped

entirely if not desired or prone to cause issues in Elasticsearch. Users may also configure

the filters stage to clone (copy) events or add geo-location information in the form of IP

addresses, a concept known as geoip.

Last, the Output stage defines where event logs will be shipped. Logs may be sent

to Elasticsearch to allow for convenience in future queries or saved directly to disk as a

file. Alternatively, logs may be sent to a tool called graphite, which allows for metrics

building, or sent to statsd. According [23], statsd is a service that listens for statistics such

as timers and counters and allows the data to be plugged into various backend services.

3. Ability to Integrate with Other Products and Systems

ELK can be integrated with many products that allow for a wide range of

configuration management options and log input sources. According to Logz.io, ELK can

be easily installed inside a Docker container for portability and isolation. Also,

configuration management tools such as Ansible, Puppet, and Chef can be used to automate

ELK deployment [24]. Using input plugins, ELK can also receive many input sources that

provide ELK the ability to integrate with many other products. Table 6 lists some of the

popular ELK input plugins and what input source they enable ELK to receive.

Table 6. ELK Input Sources. Adapted from [25].

Plugin Description
azure_event_hubs Receives events from Azure Event Hubs.
beats Receives events from the Elastic Beats framework.
cloudwatch Pulls events from the Amazon Web Services CloudWatch

Application Programming Interface.
elasticsearch Reads query results from an Elasticsearch cluster.
exec Captures the output of a shell command as an event.
file Streams events from files.

17

Plugin Description
github Reads events from a GitHub webhook.
http Receives events over HTTP or HTTPS.
imap Reads mail from an Internet Message Access Protocol server.
jdbc Creates events from Java Database Connectivity data.
pipe Streams events from a long-running command pipe.
rss Captures the output of command line tools as an event.
s3 Streams events from files in an Amazon S3 bucket.
snmptrap Creates events based on Simple Network Management

Protocol trap messages.
syslog Reads syslog messages as events.
unix Reads events over a UNIX socket.

4. Minimum System Requirements

The minimum system requirements for running ELK within Security Onion are a

64-bit architecture, 4 CPU cores, 8 GB of RAM, and adequate storage based on the EPS of

the network being monitored. Local solid-state storage is recommended over mechanical

storage and network-attached storage such as iSCSI or Fibre Channel. However, when

running in a testbed environment, mechanical or network-attached storage will suffice.

5. Compatible Host OS

ELK can be installed on most Linux distributions and is also supported on the latest

Windows operating systems. In theory, a highly experienced system administrator could

get a SIEM based on ELK and OSSEC installed and functioning on either Linux or

Windows. Security Onion removes the need for installation, customization, and integration

with other tools by bundling all necessary components into an installable Linux

distribution. The latest version of Security Onion is based on Ubuntu Linux version 14.04.

6. Ability to Generate Reports

Using Kibana, reports can be generated and exported as a PDF file. The reports

reflect only the data presented in the Kibana Dashboard. Kibana Dashboards are created

by combining Kibana visualizations based on log field data. Because Kibana supports

customizable dashboards based on log fields, any logged data can be visualized through

18

Kibana. Although there may not be preconfigured reports, the customizability of Kibana

Dashboard provides endless possibilities in data reporting.

7. Documentation

Security Onion provides extensive documentation on the use of ELK, OSSEC, and

essentially all the tools included in Security Onion needed for a SIEM. Documentation on

ELK, OSSEC, and many other tools is also available from each tool’s respective

homepage. Security Onion’s popularity has resulted in a plethora of guidance throughout

the web and within several published books, such as Applied Network Security Monitoring:

Collection, Detection, and Analysis by Chris Sanders, and The Practice of Network

Security Monitoring: Understanding Incident Detection and Response by Richard Bejtlich.

19

III. CHOSEN SIEM

Upon evaluating each SIEM solution, we determined that as compared to Prelude

and OSSIM, ELK, along with the other SIEM tools included in Security Onion, are better

suited for the intent of our capstone. Although many of the features across the evaluated

SIEMs were comparable, the determination to use ELK was made based on two primary

factors: features and documentation.

We believe that with regard to features, ELK is the better choice as all features are

available without the need to purchase a license. We noticed that the FOSS versions of

Prelude and OSSIM were limited in their features. To use all features available in Prelude

and OSSIM, a licensed version must be purchased. Prelude OSS is a lower-performance

version of the licensed Prelude SIEM and is designed for testing in a small network

infrastructure. Though OSSIM is not described as a lower-performance version of USM (the

licensed and full version), it lacks the ability to perform log management and to integrate

with third-party ticketing applications such as JIRA. Unlike Prelude and OSSIM, ELK is a

FOSS solution for which the full version is available for download. In contrasting the feature

sets available in our chosen SIEMs, ELK with Security Onion provides many more features

and capabilities than the free versions of Prelude and OSSIM. Due to the consideration of

licensing and features, ELK stands out as the superior SIEM choice.

We believe the ubiquitous documentation on ELK and the tools included in Security

Onion make it a more easily adoptable SIEM. Availability of documentation was an

important factor in choosing a SIEM as we want to ensure the capability can be easily

adopted. We found the documentation of OSSIM to be severely lacking as compared to

Prelude and ELK. The Need to derive guidance and information on OSSIM from

AlienVault’s USM, third-party websites, and forums was challenging and presents a barrier

for easy adoption of OSSIM. For the reason of lack of quality documentation, we eliminated

OSSIM from further consideration. The documentation for Prelude and ELK was far more

extensive and well organized. Although both Prelude and ELK had quality documentation

specifically from their vendors, we found much more third-party documentation for ELK in

general and ELK’s use within Security Onion. There are countless third-party webpages,

20

whitepapers, and books discussing how to use ELK as a SIEM. Because of the extensive

documentation and the vast suite of tools, ELK with Security Onion provide an easily

adoptable and powerful SIEM solution.

Since we have elected to use ELK within the Security Onion Linux distribution,

leveraging various security tools it has to offer, it is essential that we talk about what Security

Onion provides. There are many SIEM solutions available for use in monitoring and

protecting networks; however, there is not a single best solution for all networks. Security

Onion provides a package of network monitoring tools that network administrators and

security experts can choose from and configure to meet their specific network security needs.

Tools that comprise Security Onion may be categorized into three core components:

packet capture, Network Intrusion Detection Systems (NIDS) and Host-based Intrusion

Detection Systems (HIDS), and network analysis tools.

A. PACKET CAPTURE

Full packet capture in Security Onion is accomplished using Netsniff-ng, a sniffing

toolkit that captures packets seen by Security Onion sensors on inbound and outbound

traffics. This open-source toolkit is able to perform online and offline analysis of captured

packets. Captured packets are saved to disk, and pcap format is supported for analysis via

Wireshark. Sniffing tools are often placed on mirroring switch ports capturing and storing

data that can be relevant during preliminary and in-depth analysis. The following utilities

make up the Netsniff-ng toolkit [26]:

• Netsniff-ng: “a fast zero-copy analyzer, pcap capturing and replaying tool”
[26].

• Trafgen: “a multithreaded low-level zero-copy network packet generator”
[26].

• Mausezahn: a high-level packet generator for hardware and software
appliances with Cisco Command Line Interface (CLI).

• BPFC: “a Berkeley Packet Filter compiler, Linux BPF JIT disassembler”
[26].

• IFPPS: “a kernel networking statistics tool” [26].

21

• Flowtop: a network filter connection tracking tool.

• Curvetu: a lightweight curve25519-based IP tunnel.

• ASTraceroute: a traceroute utility.

B. NIDS AND HIDS

As their names indicate, a Network IDS monitors network traffic while a Host-based

IDS monitors activities internal to a host. A NIDS may be rule-based where traffic is analyzed

based on applied signatures, or anomaly based where traffic analysis consists of a comparison

against known good baseline(s). Security Onion provides the option of either Snort and

Suricata as rule-based NIDS or Bro IDS as analysis-driven NIDS. A HIDS performs file

integrity checking against files on a host to ensure that they have not been maliciously

changed. In addition, HIDS looks for unauthorized software that is not part of the baseline

and checks for the existence of rootkits and possible changes in group and local policies.

Should any unauthorized event be detected, a HIDS takes real-time action to prevent it and

generates alerts. OSSEC is provided as part of Security Onion to perform these functions.

C. NETWORK ANALYSIS TOOLS

Alerts generated by Snort, Suricata, Bro IDS in conjunction with OSSEC alerts,

and packets captured by the Netsniff-ng provide security analysts with a pool of data from

which attacks can be successfully identified. A well-performed analysis can tell a detailed

story of how the attack was conducted, when the payload was delivered, what the payload

is and what was affected, where the attack originated, and possibly who perpetrated the

attack. Such a vast pool of data can be daunting for the human eye to perform analysis on.

Fortunately, Security Onion is equipped with analysis tools such as Sguil, Squert, and

Kibana to help present these data as meaningful information from which analysts can make

the right conclusions.

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

IV. VIRTUAL TESTBED NETWORK

A. BUILDING A SIEM TESTBED NETWORK

To evaluate a SIEM, it is best to build a lab environment that can emulate a common

type of network the SIEM may be installed in. The goal of our lab environment was to use

both a virtualization hypervisor and a few additional physical machines to host several

systems for testing. We also wanted to use a firewall to isolate our lab environment from

the rest of the NPS network. To ensure our lab met the needs of our project, we focused on

three design characteristics—hardware, network backbone, and software. A thorough

evaluation of each of these characteristics enabled us to build a lab environment that

supported the demands of our project.

1. Hardware

The hardware we chose for our lab provided more power and resources than we

conceivably would need. Our entire lab was contained inside a Hewlett Packard Enterprise

C3000 BladeSystem chassis populated with four BL460C Gen 8 blade servers. Each blade

server was equipped with two Intel Xeon E5-2670 6-core CPUs, 64 gigabytes of RAM,

and various hard drive configurations ranging from dual 300 GB Serial Attached SCSI

(SAS) hard drives to dual 900 GB SAS hard drives. All hard drives were configured as

Redundant Array of Inexpensive Drives (RAID) level 1 to provide mirroring in case of a

failed drive. Each blade server was also equipped with six ethernet interfaces supporting

speeds up to 1 Gbps (gigabits per second) and one Intelligent Platform Management

Interface (IPMI) interface for Out-Of-Band (OOB) server management.

2. Network Backbone

For a network backbone, we utilized two Cisco Catalyst 3120X blade switches that

were connected to the C3000 blade chassis as Interconnect modules. The Cisco Catalyst

3120X blade switch is a layer 3 switch and thus performs (limited) routing functionality.

The two switches were connected via stacking cables in order to operate as one logical

switch. The switches were running Cisco IOS 12.2(58)SE1, which offered every feature

24

we determined we would likely have needed virtual local area networking (VLAN), port

mirroring, link aggregation, and secure shell (SSH). Each blade server had two ethernet

interfaces statically mapped directly to the switches. The blade chassis also was equipped

with two gigabit ethernet passthrough Interconnect modules which provided physical

ethernet interfaces that were statically mapped to the four remaining ethernet interfaces on

each blade server. The network backbone was divided into two separate VLANs—a

management VLAN and a lab VLAN. Connected to the management VLAN were all the

IPMI ports from the servers, the management interface for the C3000 blade chassis itself,

the switch, the firewall and the hypervisor. Connected to the lab VLAN were the firewall,

the hypervisor, and two blade servers for anything additional we chose not to virtualize.

3. Software

The software considerations consisted of choosing a firewall solution, a

virtualization hypervisor, and a few virtual machines running a variety of operating

systems. Rather than use an expensive firewall solution from Cisco or Palo Alto, we opted

for the free PfSense firewall. PfSense is a firewall based on FreeBSD that is distributed as

an installable ISO image. We installed PfSense onto one of the blade servers and utilized

three of the network interfaces. One network interface was configured as the wide area

network (WAN) interface and was connected directly to the NPS intranet. The only traffic

we permitted inbound on the WAN interface was established traffic and SSH for remote

management. The other two interfaces were connected directly to the switch—one assigned

to the management VLAN and the other assigned to the lab VLAN. To provide better

isolation of our lab network, we ensured that the management VLAN and the lab VLAN

could not route to each other and were also firewalled from each other. The PfSense

firewall was configured to provide DHCP services and DNS forwarding to the NPS Intranet

DNS servers for both the management VLAN and the lab VLAN.

We opted to leverage the VMWare ESXi hypervisor to allow virtualization of

Security Onion and additional network hosts. ESXi is a type 1 hypervisor, which means it

is installed onto the “bare metal” of a machine as opposed to a type 2 hypervisor that is

installed on top of a host operating system such as VMWare Workstation running on a

25

Windows OS. The main advantage in using a type 1 hypervisor such as ESXi is speed. A

type 1 hypervisor can run with almost no overhead as opposed to a type 2 hypervisor. ESXi

provided not only desirable scalability of our network, but also additional functionality,

such as saving the virtual machine’s state as a snapshot for later restoration. The snapshot

functionality affords the opportunity to quickly undo a change to a system by reverting to

a saved state. This is a convenient feature to have, especially for testing. Within the ESXi

server, we created virtual switches and port groups for both the lab and the management

VLAN. This enabled us to manage the ESXi server from the management VLAN and also

create virtual machines that were connected to one or both VLANs. We also created a

second port group on the lab virtual switch configured to promiscuous mode so that our

Security Onion virtual machine could monitor all traffic on the lab VLAN.

We created several virtual machines to encompass what operating systems may be

found on a modern network. We created a Windows Server 2012 R2 virtual machine and

promoted it to a domain controller for our “lab.net” domain. We also created a Windows 7

Pro virtual machine and joined it to the “lab.net” domain. Windows Update was disabled

on both Windows boxes. This was to ensure the Windows machines had a few

vulnerabilities in case we needed to throw exploits for malicious traffic generation. We

created Linux virtual machine running Ubuntu Linux 18.04 to act as a generic Linux box

on a network. We also created a virtual machine running Kali Linux 2018.2 to provide us

with an attack platform for simulating an attacker in the network. Finally, we created a

virtual machine designed to be vulnerable to several exploits. For this we utilized “Basic

Pentesting: 1” that we downloaded from vulnhub.org—a website dedicated to hosting

downloadable operating systems with built-in vulnerabilities.

B. NETWORK TOPOLOGY

The network diagram in Figure 1 details the architecture of our network and the IP

addressing scheme utilized.

26

Figure 1. Testbed Network Diagram

Table 7 lists the configuration of the network services in the lab VLAN.

Table 7. PfSense Services Provided

DHCP Server offering the IP addresses for the Management VLAN:
 10.10.10.200-239
DHCP Server offering the IP addresses for the Lab VLAN:
 192.168.1.101-139
DNS Forwarding for the Lab and Management VLANs
Network Time Protocol (NTP)

27

V. ELK AND SECURITY ONION INSTALLATION AND
CONFIGURATION

Once we built the testbed network, it was time to install and configure ELK via

Security Onion. There were several steps we needed to take to get ELK up and running.

First, we needed to ensure we had the necessary resources required for installation. Next,

we performed the installation, configured Security Onion and deployed ELK. Last, we

verified ELK was running correctly and familiarized ourselves with the configuration of

ELK.

A. GATHERING RESOURCES

Before we could begin installing ELK we needed to gather the resources we needed

to begin the process. We needed to create a virtual machine (VM) on our VMWare ESXi

equipped with the system resources required to execute ELK and the Security Onion

distribution. We also needed to ensure we had the installation media required to install

ELK.

1. Building the Virtual Machine

We initially built our VM based off the minimum system requirements stated for

Security Onion and used 1 CPU core, 8 GB of RAM, and 200 GB of hard disk space.

However, we found that to achieve long term stability and robust performance, we needed

to increase to 4 CPU cores and 16 GB of RAM. We attached three network interfaces to

the VM—One connected to our management VLAN, one connected to the lab VLAN tap

(for traffic monitoring), and one connected to the lab VLAN to receive logs from our

OSSEC agents. We also selected Ubuntu Linux 64-bit as the Guest OS version as that is

what Security Onion is based on.

2. Downloading Security Onion

Before we could begin our installation, we needed a copy of Security Onion. The

Security Onion distribution is provided as a downloadable International Standards

Organization (ISO) 9660 image. We downloaded the ISO image directly from the Security

28

Onion github.com page to our workstation. As a security precaution, we verified the

integrity of the ISO image using the Linux “gpg” command with the signatures and steps

provided on the Security Onion download page. After verifying the integrity of the ISO

image, we uploaded it to the ESXi datastore and assigned it to the DVD drive of the newly

created Security Onion VM.

B. SECURITY ONION INSTALLATION

Once we had a VM built and the Security Onion ISO downloaded and assigned to

the VM, we booted up the VM and began the installation process. After booting from the

ISO image, Security Onion ran as a live demo and did not write anything to disk. To begin

the installation, we ran the “Install Security Onion 16.04” script on the desktop. The install

process was standard to most Ubuntu Linux installations—choosing a language, enabling

auto-updating during installation, hard disk selection and partitioning, selecting a time

zone, and a keyboard layout. On the last screen of the installation process, we chose a

username, hostname, and password. We configured the username to be “sysop” (short for

system operator) and the hostname to be “seconion.” After several minutes, the installation

finished and a prompt to restart appeared. Upon restarting the VM, Security Onion booted

up and presented a prompt for login credentials. Because Security Onion was running in a

VM, we wanted to install the VMWare tools to enable optimizations such as automatic

screen resolution changes and copy and paste capabilities. To install the VMWare tools,

we logged in using the sysop credentials, opened a terminal and executed the following

commands in Table 8.

Table 8. VMWare Tools Installation

Command Description

sudo apt update Updated the Ubuntu software lists from the
installed software repositories.

Sudo apt install open-vm-tools-desktop Installed the VMWare tools.

29

C. SECURITY ONION CONFIGURATION AND ELK INSTALLATION

To perform the Security Onion configuration, ELK installation and initial

configuration, there were several steps that needed to be taken. We first needed to update

the system, then we needed to execute the setup script on the Security Onion desktop twice.

The first execution assigned initial network configurations and initiated a reboot. The

second execution installed, and configured ELK and additional components included in

Security Onion. Then there were several commands that need to be executed to provide

additional configurations necessary to complete the setup.

1. Security Onion Update

Before we began any installation or configuration, we wanted to be sure our system

was up to date. This ensured that all proceeding installation and configuration scripts were

the latest. The first step in the update process is to execute the “soup” command from the

terminal. Soup is short for Security Onion update, and this command will automatically

initiate installation of all available updates for the Ubuntu operating system, the Security

Onion distribution, and the IDS rules. The script completed after approximately 10 minutes

and we were prompted to press enter to reboot.

2. Setup Script Round 1: Initial Network Configuration

There are several steps that need to be taken to configure Security Onion and install

and configure ELK. To begin, we logged into the Security Onion desktop and executed the

Elastic setup script on the desktop by double-clicking the icon titled “Setup.” Once

executed, the script announced that it “will configure the following services—click yes to

proceed:”

• Elasticsearch

• Logstash

• Kibana

• Squert

• Sguil

30

• Bro

• Snort/Suricata

• netsniff-ng

Before the previous services were installed, the script prompted for the initial

configuration of the management and monitoring interfaces. First, we selected which

interface was to be used for our management VLAN, and then assigned it a static IP address

of 10.10.10.50/24, a default gateway of 10.10.10.1, and a DNS server of 10.10.10.1.

Second, we selected which interface was to be used as our monitoring interface. This was

the interface associated with the VLAN tap that we added during the VM creation. After

selecting the management and monitoring interfaces, the script committed the changes and

prompted us to reboot.

3. Setup Script Round 2: ELK Installation and Configuration

After the reboot, we logged back in and executed the setup script a second time.

This time, the script recognized the completion of the initial network configuration and

allowed us to proceed to the next phase. Our next prompt allowed us to choose between

Evaluation Mode and Production Mode. Evaluation Mode automates many of the

installation options and is—as the script describes—”recommended for first-time users”

and “NOT intended for a production deployment.” We chose Production Mode so that we

could more explicitly control the installation process. Next, we were prompted to choose

between adding our Security Onion machine to a new or existing deployment. We were

not adding our Security Onion machine as a member of an existing deployment, so we

chose “New.” The next prompt in the script asks for the creation of a user account. This

user is used for logging into Kibana (and other monitoring tools), and so we created an

account named “siemop”—short for SIEM operator.

The next step in the script prompted for the selection of “Best Practices” or

“Custom” options for the remainder of the configuration process. We chose custom so that

we could see what options were being set, but ultimately decided that the defaults were

suitable choices for the configuration. Next in the script we were prompted for the

configuration of Sguil. Table 9 lists the default configuration options provided and chosen.

31

Table 9. Default Configuration Options

Description Default
Option

Associated Configuration
File

Days of alerts to keep in Sguil database 30 /etc/nsm/securityonion.conf

Days of data to repair in Sguil database (a
daily scheduled job run to repair database
inconsistencies)

7 /etc/nsm/securityonion.conf

Once the Sguil configuration options were specified, we were then prompted to

configure IDS options. First, we needed to choose which IDS rule-set to use. We chose the

only ruleset that did not require a paid subscription—”Emerging Threats Open.” Next,

when prompted to choose between Suricata and Snort, we chose to use Suricata. According

to [27], both are good IDSs but our personal preference is Suricata, as it offers

multithreading capabilities not available in Snort.

After selecting Suricata, we chose to “Enable network sensor services” which

includes Suricata for intrusion detection, Bro for protocol logging, and netsniff-ng for

packet capture. The next several steps in the script allowed for granular configuration of

each of the network sensor services. The network services configuration began by asking

to set the PF_RING min_sum_slots configuration setting. According to the Security Onion

discussion forum, this number is essentially the queue size for Bro to use during packet

capture [28]. The setup process analyzes the system and determines an appropriate number

[29]. We elected to use the recommended number of 4096 for our installation. Next, we

were prompted to confirm our previously selected monitoring interface, enable the IDS

engine, and then select which network ranges we wanted to monitor. Our intent was to

monitor our lab VLAN so we entered “192.168.1.0/24” as the range to be monitored. At

our next prompt, we confirmed enabling Bro, selected yes to enable file extraction (this

saves all files sniffed from the network to /nsm/bro/extracted), and finally chose to enable

full packet capture. The script then asked what maximum memory allocation to use for

saved packet capture (PCAP) files. Larger individual PCAP files take longer to process so

we opted for the default size of 150 MB. We proceeded with the setup by selecting the

default I/O method for netsniff-ng and the default size of 64 MB for the PCAP ring buffer.

32

The PCAP ring buffer is the amount of RAM allocated to the monitoring interface—too

little allocated RAM could result in dropped packets. Next, when prompted to choose the

percentage of disk usage to trigger purging of old logs, we chose the default of 90%.

The next prompt in the script asked whether we wanted to enable Salt for

management of our Security Onion deployment. Salt will automatically keep IDS rule-sets

updated, so naturally we opted to accept the default and enable Salt. Moving forward, we

were prompted to enable the Elastic Stack and thus ensure the core components of our

SIEM solution were running. The last stage of the setup script deals with storage

configuration. Next, we were asked whether we would be storing logs locally or using a

remote logging server. Although using a remote logging server might be a better choice for

deployment on a larger network, local storage was more suitable for our needs. When asked

for the amount of allocated space for disk storage, we accepted the default size of 94 GB.

Last, we were presented with a confirmation prompt stating that the following changes

were about to be performed.

• Set the OS time zone to UTC.

• Delete any existing NSM data/configuration.

• Create a Sguil server named seucrityonion.

• Create a user account named siemop.

• Monitor each of the following interfaces: ens 192

• Run a single IDS engine process per interface.

• Run a single Bro process per interface.

• Download Emerging Threats Open ruleset.

• Configure IDS HOME_NET as 192.168.1.0/24.

• Configure Elastic Stack.

Upon clicking “proceed,” the last steps of the installation began and after

approximately 10 minutes, the script reported it was finished. We were then provided a

series of informational dialog boxes reporting: successful completion of various

33

components, where various logs can be found, and the following commands in Table 10

for checking on the status of the Security Onion services.

Table 10. Security Onion Status Commands

Command Description

sudo sostat Detailed information about service status
sudo sostat-quick Guided tour of sostat output
sudo-sostat-redacted Redacted information to share with the mailing list in

case of questions

4. Additional Configurations

After both setup scripts were executed, we still needed to perform additional

configurations to add an interface for receiving HIDS logs, and to adjust the firewall rules

to allow all necessary inbound connections. Leading up to this point, we only had two

interfaces configured—a management interface with the IP address of 10.10.10.50 for

remote interaction, and a monitoring interface in promiscuous mode for network sniffing.

The interface for collecting OSSEC logs was connected to the lab VLAN but needed an IP

address assigned so that the OSSEC agents could be configured with a log shipment

destination. To configure the additional interface, we needed to edit the “/etc/network/

interfaces” configuration file to add a configuration entry for the log collection interface

and then reboot for the changes to take effect. Figure 2 illustrates the additional

configuration entries we appended to the file:

Figure 2. etc/network/interfaces configuration

34

After rebooting, we proceeded to adjust the firewall rules to allow various required

inbound connections. Security Onion offers a script named “so-allow” for updating the

firewall, but we found it lacks in granularity, so we used the “ufw” command for adjusting

the firewall rules. The “ufw” command—short for “uncomplicated firewall” enabled us to

more precisely and securely configure the firewall with only the following two commands

listed in Figure 3.

Figure 3. ufw firewall configuration

The first “ufw” command listed in Figure 3 allowed TCP ports 22 (SSH), 443

(HTTPS), and 7734 (Sguil) in on the management interface to the management IP address

10.10.10.50. The second command allowed UDP port 1514 (OSSEC agent) in on the lab

interface to the lab IP address. After the firewall was updated, we now had full access to

ELK from our management VLAN. Additionally, the necessary TCP port (1514) for

OSSEC agent log collection was open for later OSSEC and OSSEC Agent installation and

configuration.

D. ELK CONFIGURATION

Within Security Onion, ELK components come preconfigured to work in tandem.

This pre-configuration was perfect for a stand-alone network environment such as the one

used for the purpose of this capstone. This configuration may not work well for all network

architectures. In a heavily distributed network architecture; for example, there may be a

need to store indexes at multiple geographic areas. Knowing the location of ELK

configuration files within Security Onion, and understanding their purpose, is crucial when

35

it comes to customizing ELK’s components configurations to satisfy your specific network

needs.

1. Elasticsearch

To speed the process of searching for logs and finding attributes based on filters,

Elasticsearch creates and saves Lucene indexes of logs available in Logstash. Lucene, as

defined in [30] is a high performance and scalable search engine application programming

interface written in Java. Lucene was written by Doug Cutting and is owned by Apache

Software Foundation. Lucene query syntax uses indexes to search for text. The Security

Onion default configuration of ELK allocates one primary shard for each index, and zero

replica for all primary shards. In a distributed architecture, Elasticsearch indexes are

distributed across numerous nodes; each element of an index that resides on a node is called

as a shard. This is different from the default configuration of ELK, which according to

Elastic [31], allocates five primary shards to each index, and one replica for each primary

shard (a total of 10 shards per index), as to allow for redundancy. These replicas can be

stored on separate nodes on the network—a cloudlike approach to eliminate a single point

of failure. To check for existing shards, we typed the command “curl localhost: 9200/_cat/

shards | grep logstash | sort.”

The output from this command is shown in Figure 4. There is a daily shard for

logstash-bro, logstash-ids, and logstash-syslog. Given that the system was configured two

days beforehand, there were only two shards available per index.

36

Figure 4. List of Shards

Though we opted to the keep the shards configuration as is, the number of generated

shards and their replicas is modifiable by accessing the “template.json” configuration files

in the “/etc/logstash” directory. This is doable by navigating to the directory and opening

the “logstash-template.json” configuration files using vim editor or an editor of choice. A

search for the string “number_of_shards” and/or “number_of_replicas” would have led to

the line where the number of shards or replicas can be changed as necessary. A listing of

the “/etc/logstash” directory for all “template.json” files is in Figure 5.

Figure 5. List of template.json Files

37

In addition to the json configuration files, are three “yml” configuration files

located in the “/etc/elasticsearch” directory.

• The “elasticsearch.yml” configuration file allows for the setting of master
node(s) on the network. In our case, the master node setting was left at its
default value of “1” and the network host IP of “0.0.0.0” to reflect the
localhost. Should more nodes be involved in receiving shard replicas, this
is where it would be configured. Also, the location where Elasticsearch
logs are to be sent and stored is configured here. Elasticsearch path is set
by default to send and save its logs to “/var/log/elasticsearch.”

• The “jvm.options” configuration file is where the Java Virtual Machine
(JVM) settings for Elasticsearch is configured. Among the many important
JVM settings in this file, it is important to note that this is where the JVM
minimum and maximum heap sizes are set. A larger heap size can
improve speed but will also consume more memory. If there is a need to
change the heap sizes, both the minimum and maximum heap sizes must
be set to the same value. The heap sizes were set automatically during
installation to 4106 megabytes as reflected by the following entries in the
“jvm.options” configuration file:

 Xms4106m

 Xmx4106m

• The “log4j2.properties” configuration file is where policies for logs that
we wish to generate for Elasticsearch is defined. This file specifies the
type, layout, patterns, policies, and strategies. Easily distinguishable is the
fact that Elasticsearch logs are rolling.

2. Logstash

In the “/etc/logstash” directory, are five configuration files that affect how Logstash

processes and ingests log data. Those files are “beat-template.json,” “jvm.options,”

“log4j2.properties,” “logstash-template.json,” and “logstash.yml.” While we mentioned

the same “template.json” configuration files in the Elasticsearch configuration section

above for the purpose of indicating how many shards to create, most of the contained

configurations affect the parsing and mapping of log data to either “logstash-*” or

“logstash-beats-*” indexes—which are created by default in Kibana and can be viewed

under the management tab.

• The “beats-template.json” file is the template that holds configuration data
for mapping log data to the “logstash-beats-*” index.

38

• The “logstash-template.json” file is the template that holds configuration
data for mapping log data to the “logstash-*” index.

• The “jvm.options” file holds configuration data for Logstash use of JVM
to include heap space allocation. Similar to Elasticsearch, Logstash is
allocated two Gigabytes of heap space.

• The “Logstash.yml” file holds Logstash configuration to identify the input
node, data path, pipeline settings during the filter and output stages,
module settings for plugins, cloud settings, queuing settings, dead-letter
queue settings, metrics settings, debugging settings, and other settings.

• The “log4j2.properties” file contains configuration data for how, where,
and when to store and delete Logstash logs. The current configuration is
set to roll (delete) logs after seven days. This is indicated in the file with
the following line:

“appender.rolling.strategy.action.condition.nested_condition.age = 7D”

Note: Log formats with fields for which configuration data is not included in these

two templates are sent to Elasticsearch without being indexed. A custom template may be

created if desired to have such logs indexed [32]. Information on how to do this is available

at https://github.com/Security-Onion-Solutions/security-onion/wiki/Logstash. Figure 6

shows a list of the “/etc/logstash” directory contents.

Figure 6. /etc/logstash directory

https://github.com/Security-Onion-Solutions/security-onion/wiki/Logstash

39

3. Kibana

For the purpose of quickly detecting cyber-attacks conducted against the network

environment that we created for the purpose of this study, we added a custom dashboard

to Kibana and configured it with some Lucene queries that are discussed in this section.

However, for the most part, Kibana came well configured with a long list of visualizations;

such as data tables, vertical and horizontal bar graphs, tag clouds, line plots, and pie charts

that reflect trends and metrics for logs, alerts, events, and detected incidents on the

monitored network. Before addressing visualizations within Kibana, it is important to note

where its configuration files are located: “/etc/kibana” and “/etc/nsm.”

• In “/etc/kibana,” the “kibana.yml” configuration file holds information
that denote the kibana server name (“Kibana” in this case), the server host
(“0” indicating the localhost), Elasticsearch’s Uniform Resource Locator
(URL) (http://elasticsearch:9200), and where Kibana is to send and store
generated logs. Kibana logs can be found in “/var/log/kibana/kibana.log.”

• In “/etc/nsm” is the “securityonion.conf” file with configuration data that
indicate settings that were applied during the installation of Security
Onion, ELK, and other included network monitoring tools. On line 81 of
this file, the following Kibana options can be found and modified:
Kibana_enabled (where the option to enable or disable Kibana is
available), the kibana index name (a different index can be specified here
if need be), the version number, the tap ID, and additional options which is
left blank by default.

a. How to Access Kibana

Kibana is accessible via a web interface. Following ELK installation, the Kibana

launch icon was added to the list of applications and to the desktop. Double clicking on the

icon launches the web browser and links the Kibana logging page at “https://localhost/app/

kibana.” To access Kibana remotely, we simply replaced “localhost” with the Security

Onion host IP “https://10.10.10.50/app/kibana.” As stated in Section C.3 of this chapter,

we had to configure the “ufw” to allow remote access to hosts on the management VLAN.

Figure 7 shows an image of the Kibana login page.

http://elasticsearch:9200/
https://localhost/app/kibana
https://localhost/app/kibana
https://10.10.10.50/app/kibana

40

Figure 7. Kibana Login Page

b. Tour of the Kibana Interface

As depicted on the Kibana login page in Figure 7, we entered the login credentials

for “siemop” created during ELK’s installation and clicked “Login.” The Overview

dashboard appeared with various visualization panels showing available log numbers, the

number of installed sensors, a count of detected devices, a list of all log types and the

number of logs available for specific log types, the number of NIDS and OSSEC alerts, pie

charts of sensors and services, Bro connections, OSSEC alerts, and NIDS alerts, and a

formatted table at the very bottom of the dashboard listing all available logs. The Overview

dashboard is the default page that Kibana displays at login. Figure 8 shows the Overview

dashboard which is also accessible by clicking on the Home button in the Navigation panel.

41

Figure 8. Kibana Overview Dashboard

The overview dashboard in Figure 8 is set to display events that occurred within

the last 15 minutes. This information is visible at the top right corner of the dashboard

window. The time range can be easily changed by clicking on it. The time range may be

changed to the following settings:

• Quick—ranging from Last 5 years to last 15 minutes.

• Relative—from “Years” to “Now.”

• Absolute—from a very specific time to another.

Figure 9 is a depiction of all available time range options.

42

Figure 9. Time range tab

Figure 10 indicates a dashboard interface that allows the user to set the dashboard

refresh time interval, or turn it off altogether. Refresh settings range from five seconds to

one day.

Figure 10. Auto-refresh tab

The Edit tab allows the user to enter the dashboard display settings mode. In the

settings mode, visualizations may be edited to show more or less aggregation, or to change

from one visualization type to another. The panel title may be edited or expanded to full

screen; or the panel may be entirely removed from the dashboard. Figure 11 shows options

available in the Edit tab.

43

Figure 11. Settings under the “Edit” Tab

The Clone tab allows for a copy or the dashboard in view to be created and saved.

There were 54 dashboards available by default in the Kibana version 6.2.4 of the Security

Onion package.

The share tab allows for sharing of saved dashboard or snapshots. As represented

in Figure 12, saved dashboards and snapshots may be shared by copying and sending

embedded iframes or links. Short URLs are also available for Snapshots.

Figure 12. Sharing Dashboards and Snapshots

44

Below the tabs mentioned above is the search bar where Lucene queries can be used

to find items of interest in Elasticsearch indexes. Below the search bar is the “Add a filter”

option which allows additional reduction of the displayed results. To the left of the

dashboard is the navigation panel with a listing of available dashboards for Alert Data, Bro

Hunting, Host Hunting, and Other. Clicking on “Help” located below the “Home” button,

provides a description of the type of information that is available on each dashboard as well

as the sidebar options.

In addition to the Dashboard, the following icons can be seen on the sidebar (located

to the left of the Kibana window in blue color): Kibana (slightly to the right of the Kibana

logo), Discover, Visualize, Timelion, Dev Tools, Management, and Squert. A description

of each follows.

The Kibana icon links to the Kibana home page where detailed setup guidance can

be found. Figure 13 is a depiction of the home page where a list of all installed plugins may

also be found.

Figure 13. Kibana Home Page

45

The Discover page allows analysts to explore logs and alert data by selecting the

desired index pattern. Available default index patterns are “*: elastalert_status*,”

“*:logstash-*,” and “*:logstash-beats-*.” Similar to the dashboard, data available in these

indexes can be filtered by using the “Add a filter” options, and/or queried using the Lucene

search bar. When a time range is set, the resulting information is displayed and represented

by a histogram that reflects the corresponding level of occurrences. Below the histogram

is an expandable list of logged events. When expanded, event information may be viewed

in table format, in JavaScript Object Notation (JSON), or a single document. Should

specific fields be of interest, a list of all available fields can be referenced for consideration.

Figure 14 shows information that became available within 15 minutes of the image being

captured. The specific date/time range is auto-generated and displayed right above the

histogram. A total of 860 hits resulted from this search and the index being queried is

“*:logstash-*.”

Figure 14. Discovery Page

46

Under Visualize is the list of all available visualization charts and metric designs.

389 visualizations are available by default; many of which are linked to dashboard pages.

These visualizations can be customized to any particular network environment. Custom

visualizations can also be created and added to dashboards. To do this, we clicked on the

plus symbol found on the Visualize Page (Figure 15) to access a list of available

visualization options. The following visualization options are available:

• Basic charts: area, heat map, horizontal bar, line, pie, and vertical bar.

• Data: data table, gauge, goal, and metric.

• Maps: coordinate map, and region map.

• Other: controls, markdown, tag cloud, vega.

Figure 15. Visualize Page

Timelion is a visualization plugin that is also viewable and manageable under

Visualize. The icon on the sidebar is a quick link to access its options, add new ones, and

delete or modify existing charts. In timelion, data from various sources can be combined

to generate a visual representation of changes over time. Figure 16 illustrates the creation

47

of a simple chart to show the count of queries performed on Elasticsearch over time. To

configure Timelion charts, we began by typing a period (.) inside the configuration panel

and a list of available options appeared. Further information on how to add and configure

Timelion can be found on https://github.com/elastic/timelion.

Figure 16. Timelion Page

The Dev Tools plugin is a command line interface that interacts directly with

Elasticsearch. Figure 16 depicts the plugin which is equipped with a console that is divided

into two panes: request and response. The request pane, to the left of the console, is where

commands to query Elasticsearch are entered. The response pane, to the right of the console

(empty in Figure 17), is where results from entered queries are displayed.

https://github.com/elastic/timelion

48

Figure 17. Dev Tools Page

Under Management, the current version of Kibana may be found. The version

installed for the purpose of this study is Kibana version 6.2.4. As depicted in Figure 18, the

submenus are Index Patterns, Saved Objects, and Advanced Settings.

• Index Patterns provides a graphical user interface that allows for the
modification of existing indexes. To modify the configuration of an index,
select the desired index to the left of the page and click on the edit button
to modify its patterns. To created new indexes, click on “create index
pattern.”

• Under Saved Objects, the user may import, export, or delete: dashboards,
saved searches, and visualizations. When exporting, files are exported in
JSON format.

• Advanced Settings provides an avenue for Advanced users to edit settings
that can impact several objects within Kibana. A caution banner on this
page states that “You can break stuff here.”

49

Figure 18. Management Page

The Squert plugin is a link to Squert—a web application used to query IDS alerts.

Squert is one of the many visualization tools included in Security Onion. More information

about Squert can be found on GitHub at https://github.com/Security-Onion-Solutions/

security-onion/wiki/Squert.

c. Alert Monitoring Using Kibana

ELK provides us with numerous logs that contain event data and alerts from various

systems within the network. Using Kibana, we could view logs and alert data, and network

trends and metrics. However, this information would be less useful to a network security

analyst if it was hard to sift through. The ability to promptly detect an intrusion was our

goal, and having the most pertinent information brought “forward” to the analyst is an

essential element of this goal. To have such a visualization available to us, we created a

custom dashboard to see NIDS (Suricata) and HIDS (OSSEC) alerts. To further configure

the custom dashboard, we added the following visualizations and saved searches:

• Visualizations: NIDS—Alerts Over Time, OSSEC Alerts—Log Count
Over Time, and Navigation.

https://github.com/Security-Onion-Solutions/security-onion/wiki/Squert
https://github.com/Security-Onion-Solutions/security-onion/wiki/Squert

50

• Saved searches: NIDS—Alerts and OSSEC—Alerts.

Note that these visualizations and saved searches were already available as part of

the ELK installation. Once created, we could see an abundance of NIDS and HIDS alerts.

To make this information more effective for our goal—quick detection of an incident—we

needed to have Kibana display the most useful information. Two options are available to

query the available data, either using the “add a filter” option, or creating a Lucene query.

We elected to use a Lucene query even though the Elasticsearch Query DSL would allow

us to do the same. Then, we the used the following syntax:

((event_type:snort) AND (priority:[1 TO 3])) OR (alert_type:emerging
threat) OR ((event_type:ossec) AND (alert_level:[3 TO 15]))

To create the above query, we needed to familiarize ourselves with Snort alert

classifications since Suricata uses Snort and Emerging Threat rules [27]. Snort alert

priorities are ranked as high, medium or low. These priority levels are represented in

Kibana as priorities 1, 2, and 3 respectively. Additionally, we needed to understand OSSEC

rule classifications. These rules range from levels 0 through 15, with level 15 representing

the most severe indicator. In our Lucene syntax, we elected to monitor NIDS alerts marked

as priorities 1 or 2, and HIDS alerts from levels 3 to 15. Appendix A provides a list of Snort

priorities, and Appendix B provides a list of OSSEC rule classifications. To complete the

dashboard, we set the time range for events to query to 24 hours and set the dashboard to

refresh every five minutes. We saved the dashboard as “_NIDS&HIDS Alerts.” For quick

access, we added this custom dashboard to the Navigation panel at the top of the Alert Data

section (visible in Figure 19). The steps used to do this are as followed:

• Click on Visualize.

• In the search bar, type “Navigation.” The Navigation Visualization will
appear.

• Click on the Navigation visualization and locate “**Alert Data** portion
near the top.

• Type the following: [<dashboard name>](<dashboard link>).

Note for step 4: The dashboard name is whatever we decided to name it on the

navigation panel. We named ours [NHIDS Alerts]. The dashboard link was obtained by

51

navigating to the “_NIDS&HIDS Alerts” dashboard and by clicking “share” for a list of

links and embedded iframes. Then, we clicked on Copy to save the link to the clipboard.

The only portion we needed was the part of the link starting with /app and ending right

before the question mark (?). The link was “/app/kibana#/dashboard/f4e77720-8e09-11e8-

9c56-4d6f58ed628a.” The complete insert was the following:

“[NHIDS Alerts] (/app/kibana#/dashboard/f4e77720-8e09-11e8-9c56-4d6f58ed628a).”

Figure 19. Custom Dashboard

d. Reporting Using Kibana

Kibana is more of a front-end visualization tool than it is a reporting tool. However,

it provides analysts with the ability to export visualizations, logs, NetFlow, and packet

captures that can be used in the generation and support of a detailed incident report. When

viewing a NIDS alert in Kibana for example, the options to list the alert data in either a

table (Figure 20) or JSON (Figure 21) format are displayed. In addition, the alert may be

viewed as a single document or with surrounding documents. If the “View single

document” option is selected, a format such as the one shown in Figures 20 and 21 is

52

displayed. Otherwise, if the option to “View surrounding documents” is selected, Kibana

returns a stream of correlated logs such as the one depicted in Figure 22. The logs are

presented in chronological order, and all refer to the same alerted activity. Some field items

such as “_id,” “source_ip,” “source_port,” “destination_ip,” “destination_port,” and

“signature_info” are clickable hyperlinks that provide detailed and/or aggregated

information about that specific item (IP or port).

Figure 20. Single Document View (Table Format)

53

Figure 21. Single Document View (JSON Format)

Clicking on the alert ID links to the CapME Webpage. CapME is one of the many

web interfaces included as part of the Security Onion toolkit that allows analysts to view

packets captured in pcap format. The CapME login page appears with the alert id and Max

Xscript Bytes pre-populated as credentials. The options to view the alert output as auto,

tcpflow, Bro, or pcap are presented as choices. You may choose to view pcap rendered to

the index being queried with Bro, tcpflow, download the pcap, or view a combination of

what is available. The source IP, destination IP, and ports hyperlinks link to an indicator

dashboard in Kibana that shows an aggregated count table of logs and alerts that account

for the IP in question.

All available visualizations may be exported in either a raw or formatted CSV file.

Last, customized searches may be saved and shared with other analysts.

54

Figure 22. Surrounding Documents View

55

VI. OSSEC INSTALLATION AND CONFIGURATION

To meet the definitional requirements of a SIEM, we needed to incorporate OSSEC

into the ELK setup. Security Onion installs with OSSEC by default and will incorporate

OSSEC logs into ELK. But before we could begin using OSSEC, we needed to ensure our

SIEM was configured to receive logs from OSSEC agents, and this; in turn, required that

we install OSSEC agents on each of the hosts in the lab VLAN from which we wanted to

collect OSSEC logs. There were no firewall adjustments required as that had already been

completed as described in Chapter V, Section C.3.

A. AGENT MANAGEMENT ON SECURITY ONION

OSSEC provides an interactive script for agent management. To execute the script,

we ran the following command from the SIEM server: “sudo /var/ossec/bin/

manage_agents.” The manage_agents script allows for adding and removing an agent,

extracting the encryption key for an agent, and listing already added agents. Using the

script, we added server-side agent configurations for each host in the lab VLAN. The script

does not install the agent on a host but merely creates a server-hosted object (an API for

server-host OSSEC information exchange) and encryption key to be used later, when

actually installing agent software on a host. Figure 23 illustrates steps taken to add an agent

entry for the Ubuntu Linux host.

56

Figure 23. OSSEC Server-side Agent Entry

57

As illustrated in Figure 23, we first entered “A” to add an agent, and were then

prompted to enter a name for the new agent. Next, we were prompted to add the IP address,

but because our lab VLAN is running DHCP with non-statically assigned IPs, we added

the IP range of the lab VLAN. We accepted the default agent unique ID number and then

confirmed the addition. Last, we extracted the encryption key specific to the newly added

agent. The encryption key was used later during the OSSEC agent installation process. The

process above was repeated for each of the hosts in the lab VLAN. As illustrated in Figure

24, once all hosts in the lab VLAN were added, we restarted the OSSEC server service to

ensure it was listening for agent connections on UDP port 1514.

Figure 24. OSSEC Server-service restart

B. AGENT INSTALLATION AND CONFIGURATION ON LINUX

Once the agent management was completed on the SIEM, we then needed to add

OSSEC agents on each of the hosts in the lab VLAN. The process for adding the OSSEC

agent on the Linux hosts consisted of adding the OSSEC software repository, installing

OSSEC agent software, and then configuring the OSSEC agent. We began with our Ubuntu

Linux VM. The screenshot provided in Figure 25 illustrates the steps we took for adding

the OSSEC software repository.

58

Figure 25. Adding the OSSEC software repository

As illustrated in Figure 25, we added the atomicorp.com (OSSEC software

developer) key to our Linux host. This allows software from Atomicorp to be trusted,

which then enabled us to install software from their repository. Then we added the

Atomicorp software repository to our Linux host and then updated the list of installable

software from newly added repository.

The next step was to install the OSSEC agent software. Installing this agent was as

simple as executing the following command: “sudo apt install ossec-hids-agent.” During

the OSSEC agent installation process, we were prompted for the OSSEC server IP address.

This is the 192.168.1.254 address configured on our SIEM.

The last step was configuring the OSSEC agent. Figure 26 provides a screenshot

illustrating the OSSEC agent configuration process.

59

Figure 26. OSSEC Agent for Linux - Configuration

As illustrated in Figure 26, we executed the manage_agents script, and when

prompted to import the key from the OSSEC server, we pasted the encryption key

generated on the SIEM during the add agent procedure addressed earlier (Chapter VI,

Section A). For changes to take effect immediately, we executed the following command

to restart the OSSEC agent service. “sudo /var/ossec/bin/ossec-control restart.” We

repeated this same procedure on the Basic Pentesting 1 VM, which completed the OSSEC

agent installation and configuration for all Linux VMs in our lab VLAN, aside from our

KALI Linux VM. We did not install an OSSEC agent on our KALI VM as that is the

machine we will be initiating attacks from.

60

C. AGENT INSTALLATION AND CONFIGURATION ON WINDOWS

We wanted our SIEM to not only collect logs from our Linux VMs, but also our

Windows VMs; so we proceeded to install an OSSEC agent on every Windows VM. The

process for installing OSSEC agents on Windows machines was the same regardless of

Windows version. First, we downloaded the OSSEC agent, then we installed the agent,

added the key, and restarted the service.

We began by installing an OSSEC agent on our Windows 7 Pro VM. To

download the OSSEC agent, we navigated to the following page with our web browser:

“https://www.atomicorp.com/ossec-downloads/.” The page includes a link for the latest

OSSEC agent for Windows. Once downloaded, we ran the executable to begin the

installation process. The process begins by requiring you to accept the End User License

Agreement. Once you agree, the next step asks which OSSEC agent components to

install. Figure 27 provides a screenshot that illustrates the component selection step of

this installation process.

Figure 27. OSSEC Agent Installation for Windows—Component Selection

61

We proceeded with the defaults as that is what was recommended, and there is no

harm in scanning and monitoring for Internet Information Services (IIS) logs even if not

every Windows VM is running IIS. Next, we selected the default installation directory and

the installation process completed. We left the checkbox selected for “Run OSSEC Agent

Manager” and clicked finish. The screenshot provided in Figure 28 illustrates the OSSEC

Agent Manager.

Figure 28. OSSEC Agent Manager for Windows—Unconfigured

For OSSEC Server IP we entered the 192.168.1.254 interface address from our

SIEM, and for Authentication key we entered the encryption key we generated on the SIEM

during the add agent procedure described earlier (Chapter VI, Section A). After entering

the IP and key information, we clicked save, and a dialog box appeared asking to confirm

importing of the key. We clicked OK to confirm, then clicked the Manage button on the

top left of the OSSEC Agent Manager, then clicked restart to start the newly configured

OSSEC Agent. Figure 29 is a screenshot illustrating the fully configured OSSEC agent on

our Windows 7 VM.

62

Figure 29. OSSEC Agent Manager for Windows—Fully Configured

We repeated this process on every other Windows VM on our lab VLAN until every

remaining Windows VM was running an OSSEC Agent.

D. VERIFICATION OF OSSEC AGENT COMMUNICATION FROM
CLIENT TO SIEM

Verification of the OSSEC agent connection to OSSEC server on our SIEM was a

very straightforward task. This can be done after all agents are configured, or each time a

new agent is configured. OSSEC agent connectivity can be verified using the command

“agent_control -l” on the SIEM. Figure 30 captures this utility’s execution and its

subsequent output.

63

Figure 30. OSSEC Agent Verification

As can be seen in Figure 30, the agent_control utility is listing all connected agents.

The topmost connected agent is the OSSEC agent running on the SIEM itself. This is a

default configuration of Security Onion. Each connection below was added manually in

Sections B and C of this chapter. The word “Active” on the right side of each connection

denotes that each agent is connected successfully. If there were an issue, it would say

“Inactive” or “Never connected.”

Troubleshooting each connection can be performed by examining the OSSEC agent

log file. On the Windows clients, the logs can be obtained by viewing the following file:

“c:\Program Files (x86)\ossec-agent\ossec.log,” or from the OSSEC Agent Manager by

clicking “View” and then “View Logs.” On the Linux clients, the logs can be obtained by

viewing the following file: “/var/ossec/logs/ossec.log.” The logs are very detailed and

provided us all the information we needed to troubleshoot any connections we encountered.

64

THIS PAGE INTENTIONALLY LEFT BLANK

65

VII. INCIDENT DETECTION AND CORRELATION WITH ELK

In this stage of the study, we conducted four malicious cyber actions against several

hosts on the lab network to test ELK’s ability to detect incidents and generate alerts. In

conducting these attacks, we simulated malicious cyber activity by using several tools on

Kali Linux. We utilized the Kibana dashboard to discover the malicious cyber activity and

perform analysis on each specific attack. During our analysis, we wanted close to real-time

information, so we set the dashboard to refresh every minute.

A. MALICIOUS ACTIVITY CORRELATION

We conducted all the malicious cyber activity internally from within the lab VLAN.

In a real-world scenario, internal network access is often acquired from an attacker initially

via activities such as phishing or gaining physical access. However, once the attacker has

gained an initial internal foothold into a network, access expansion will be attempted to

gain privileged access to workstations, servers and network devices. Because our malicious

activities were conducted inside the lab VLAN, our activity would be consistent with the

access expansion efforts of an attacker (e.g., reconnaissance, lateral-movement, privilege

escalation, and further exploitations). Our four malicious actions began with a port scan,

followed by an online password cracking attack, then a Web server attack, and finally, an

exploitation of a Windows server.

1. Port Scan

The first malicious cyber action we chose to conduct was a port scan. Port scans

are commonly done by an attacker to enumerate network resources. Although network

administrators may conduct port scans as a legitimate function of their duties, an

unauthorized port scan can indicate the beginning stages of a cyber-attack.

a. Action

To launch the port scan, we used the nmap port scanner. Nmap is a FOSS utility

for network discovery and is an extremely popular and powerful port scanner. There are

hundreds of custom scans that can be performed with nmap. For our scan, we executed the

66

following command: “nmap -sS -Pn 192.168.1.0/24” to scan the entire lab VLAN. The

options after the nmap command were used to specify a custom scan. The -sS option

performs a half-open TCP scan by sending only the first packet of the TCP three-way

handshake. This type of scan is much stealthier than a scan that completes the three-way

handshake such as the TCP connect scan. The -Pn option disables the default host discovery

action, which consists of first pinging the target host before probing TCP ports. Because

we did not specify any specific ports to scan, nmap chooses to scan its default port list of

commonly used ports, which includes well-known services such as file transfer protocol

(FTP), SSH, Windows server message block (SMB), hypertext transfer protocol (HTTP),

secure HTTP (HTTPS), and remote desktop protocol (RDP). Figure 31 is a screenshot of

the nmap scan we executed and the output of the scan. Each port utilized in every attack

scenario in this chapter is visible within the screenshot.

67

Figure 31. nmap scan

The screenshot does not show the results of every machine in the lab VLAN, but

what is shown is that the Windows Server 2012 R2 VM (192.168.1.100) is listening on

several ports, such as SMB on TCP port 445 and RDP on TCP port 3389. Also shown is

68

the Basic Pentesting 1 VM (192.168.1.107) listening on FTP, SSH, and HTTP. These ports

are typically of interest to an attacker as they may often be found hosting vulnerable

services which can be exploited to gain remote access.

b. Detection

After we launched the port scan against the lab VLAN, the first indication that

something abnormal was occurring was from the NIDS alert count visualization on the

customized NHIDS dashboard. Thanks to the persistent setting to refresh the dashboard

every minute, we quickly noticed the alert count climbing. As shown in Figure 32, the alert

count in this visualization drastically skyrocketed from 14 alerts at 15:05 to 68 alerts at

15:15, then down to four alerts at 15:20. This should be significant enough to prompt an

analyst to investigate.

Figure 32. NHIDS-Alert Over Time

Our next step was to check “NHIDS—Alerts” for a possible high number of alerts.

The alerts table shown in Figure 33 shows a high volume of traffic originating from a single

IP address (192.168.1.101) and going to multiple IP addresses and ports. All activity is

highly concentrated over a period spanning a total of 30 minutes. This is an indication of

possible network scanning.

69

Figure 33. NIDS—Alerts

Further analysis of one of the NIDS alerts (timestamp of 15:26:54.229) shows that

it was classified as “Detection of a Network Scan” with the message “[1:2001972:19] ET

SCAN Behavioral Unusually fast Terminal Server Traffic Potential Scan or Infection

(Inbound) [Classification: Detection of a Network Scan] [Priority: 3]: <seconion-ens192>

{TCP} 192.168.1.101:59091 -> 192.168.1.104:3389.” More succinctly stated, a network

scan has been detected, originating from IP address 192.168.1.101 (Kali Linux host) and

TCP port 59091, and destined to IP address 192.168.1.104 (Windows 7 host) and TCP port

3389 (RDP). More information on this alert can be seen in Figure 34. This alert resulted

from a Snort signature marked as “emerging threats” rule-type with priority 3.

70

Figure 34. Extended NIDS—Alert on Port Scan Activity

71

Next, we clicked on the NIDS Alert ID hyperlink. The CapMe page displayed with

more information on the alert. A link provided at the top and bottom of the page, as shown

in Figure 35, allowed for the download of the corresponding pcap in Figure 36.

Figure 35. Port Scan CAPME

Figure 36. Port Scan Pcap

72

Next, we switched to the “Bro Notice” dashboard to see if Bro detected some

network anomalies. There was one notice in the “Notice—Log Count” panel. Scrolling

down the page, the same Kali Linux host IP was listed as source and 192.168.1.109

(Ubuntu host) as destination. The notice type was listed as “Scan::Port_Scan” and Bro

Message/Sub-Message listed the following: “192.168.1.101 scanned at least 18 unique

ports of host 192.168.1.109 in 1m4s.” Figure 37 shows this message.

Figure 37. Bro Notice Message

2. Online Password Cracking Attack

The next malicious cyber activity we conducted was an online password cracking

attack. We began by utilizing information we gathered from our port scan. The port scan

showed the Windows 7 Pro VM was listening on TCP port 3389 for RDP connections.

RDP can be abused by an attacker to gain control of a remote machine; but for this to be

successful, the attacker would need valid account credentials for the machine hosting RDP.

One method of acquiring valid credentials is via an online password cracking attack.

73

a. Action

Hydra is a powerful online password-cracking tool for many protocols including

RDP. We used Hydra from our Kali Linux VM to attempt to authenticate to RDP on the

Windows 7 Pro VM. In conducting this attack, we attempted to authenticate as

administrator using passwords from a password list included in Kali. As illustrated in

Figure 38, the command we executed to launch this attack is “hydra -V -t8 -l Administrator

-P /usr/share/wordlists/rockyou.txt rdp://192.168.1.104.”

Figure 38. Online Password Cracking Attempt with Hydra

The -V option instructed Hydra to run in verbose mode, so we could see the login

and password combination during each authentication attempt. The -t8 option instructed

Hydra to make 8 authentication attempts in parallel, speeding up our attack somewhat. We

specified our username as administrator with the -l option, and then specified the full path

of the password list with the -P option. Finally, we specified the protocol of RDP and the

IP address of our Windows 7 Pro VM in order to complete our command and launch the

74

attack. Because we made a strong password when we created the Windows 7 Pro VM,

Hydra was unsuccessful in guessing the password for the administrator account. The

massive number of failed authentication attempts; however, generated alerts that were

identifiable in Kibana.

b. Detection

Similar to our observation in the port scan activity, the first indication of the

occurrence of abnormal activity was a spike in the number of alerts on the “NIDS—Alert

Over Time visualization.” NIDS alerts rose from 2 to 900 counts between the time of 13:00

and 13:13: the time span corresponding to execution of Hydra. A look at the NIDS alerts

reflected in Figure 39, showed multiple connection attempts originating from the Kali

Linux host IP address 192.168.1.101 (attacker) on TCP port 38978, to the Windows 7 host

IP address 192.168.1.104 (victim) on TCP port 3389 (RDP). Also observable in Figure 39

are instances where the victim acknowledges the connection request.

Figure 39. NIDS—Alert on Password Cracking Attack

75

Further analysis of the alerts with timestamp August 1st 2018, 13:01:21.107

indicates that an attempt to remotely connect to a terminal server with root (administrator)

priviledge resulted in the generation of the alerts. It also indicated that the alerts were

generated based on a Snort emerging threat rule type with priority 3, and policy based on

access to Microsoft terminal server with root login. Clicking on the link at signature_info

took us to the specific emergingthreat.net page where the signature is available for review.

In addition to the signature, metadata is available showing when it was first created, and

last updated. Also available on the website was the referenced Common Vulnerability and

Eposure (CVE) number: 2001–0540. We then browsed to the CVE website hosted by Mitre

where a search for the aforementioned CVE number yielded the following result: “Memory

leak in Terminal servers in Windows NT and Windows 2000 allows remote attackers to

cause a denial of service (memory exhaustion) via a large number of malformed Remote

Desktop Protocol (RDP) requests to port 3389” [33]. Figure 40 provides an image capture

of the described alert.

76

Figure 40. Extended NIDS - Alert Showing RDP Attempted Connection

77

Following our preliminary analysis, we wanted to determine if Bro had noticed a

change in the network behavior, and if any alerts were generated by it. Our preliminary

analysis already indicated that the attacker was attempting to establish RDP connections

on port 3389. Such information was very handy as Kibana came equipped with Bro hunting

dashboards for several well known protocols. Under “Bro Hunting” on the Navigation

panel, we clicked on the “RDP” dashboard depicted in Figure 41. Bro indicated the

existence of 846 attempted RDP connections within 80 minutes. The “RDP—Log Count

Over Time” visualization also showed an increase in the log count averaging at 16

connection attempts per minute. The “RDP—Result (Horizontal Bar Chart)” visualization

reflected a 100 percent success rate in every attempt by the attacker to make a connection.

The “RDP—Encryption Level (Vertical Bar Chart) showed that all 846 connections were

encrypted. In the “RDP-Client” visualization, The name of the tool used (Hydra) in

perpetrating the attack was detected in 841 logs and listed. The “RDP—Cookie”

visualization lists one account name—”cookie”—against which the password attacks had

been conducted. There were 845 instances against the account name “administrator”

recorded. Further down these visualizations is a table list of Bro logs. The expansion of

one of the logs indicated that, in addition to the information already gathered, that a 128bit-

encryption method was used during the connection.

78

Figure 41. Bro Hunting RDP

79

At this point, one could say that it is quite evident based on the information already

gathered that some sort of RDP connection attack had occurred, involving a privileged user

account. Though this would be alarming enough, we still had questions for which we

needed answers. From our preliminary analysis, we determined that the RDP connections

between the attacker and the victim were successful. For a more in-depth analysis, we

clicked on the Bro_rpd log ID to access the CapME. This is shown in Figure 42. The stream

following the highlighted portion of the log entry contains relevant information that

answers the question of how Bro detected the tool by name. The first SRC line shows the

Cookie information. Also visible (four lines down) is a mention of the password cracking

tool name Hydra in the stream.

Figure 42. Password Cracking Attack CapME

We also downloaded the PCAP from both the Bro logged activity and the NIDS

alerts. As stated earlier, the connections were encrypted. Though we were able to find some

clues, we could not establish logon activity using PCAPs, such as the one in Figure 43. To

put our curiosity to rest, we queried all OSSEC alerts generated within the time frame of

80

the attack and searched for instances where the username “administrator” successfully

logged into the victim. Our query returned no result; thus, confirming that the attack,

though recorded, was ultimately unsuccessful.

Figure 43. Password Cracking Attack PCAP

3. Web Server Attack

The third malicious cyber action we conducted was against the Web server running

on the Basic Pentesting 1 host (hereon referred to as BP1 for brevity). We knew from our

port scan that BP1 was listening on port 80 therefore was likely hosting a website. Attackers

often attack web servers to attempt to gain initial access into a network. For this reason, it

is important that web servers are monitored for attackers looking for vulnerabilities and

misconfigurations.

81

a. Action

To be certain BP1 was hosting web content on port 80, we browsed to it via Firefox

from the Kali VM, and received the default webpage served by the Apache web server.

Next, we scanned the website with the web server security scanner Nikto. As described on

the Nikto homepage, Nikto performs a comprehensive security test against webservers

looking for server versions, multiple index files, and vulnerabilities [34]. Figure 44 shows

some interesting output from the Nikto scan we performed.

Figure 44. Nikto Scan Results

Highlighted in Figure 44 is information about another directory hosted on the

webserver called “secret.” Using our web browser on our Kali VM we browsed to the

newly discovered directory and discovered a WordPress webpage. WordPress is a web

content management framework commonly used in blogs, forums, and other websites. We

decided to scan the WordPress webpage with WPScan to attempt to look for potentially

exploitable vulnerabilities. WPScan is a powerful WordPress vulnerability scanner and is

82

installed by default on Kali. We first ran WPScan with the “--enumerate” option to attempt

all enumeration methods; including searching for usernames, vulnerable plugins, and

vulnerable themes. The command we used to execute this scan was “wpscan --url

http://192.168.1.107/secret --enumerate.” As illustrated in Figure 45, we did not find

vulnerable plugins or themes, but we did discover the default username of “admin.”

Figure 45. WPScan Enumeration

We ran WPScan again to perform an online password-cracking attempt with the

“admin” username and a wordlist included with Kali. The command we used to execute

this was “wpscan --url http://192.168.1.107/secret --username admin --wordlist /usr/share/

wordlists/fasttrack.txt.” As illustrated in Figure 46, WPScan detected an unknown response

when trying “admin” for the username and password. Although getting an unknown

response was slightly unexpected, it does indicate that the username and password of

“admin” successfully authenticated with the WordPress webpage. This is not surprising as

83

“admin” is the default username and password for WordPress websites. Changing default

credentials is a step often overlooked or forgotten by less experienced administrators.

Figure 46. WPScan Password Enumeration

After we discovered the username and password for the WordPress webpage, we

were able to use Metasploit to gain remote access to the BP1 VM and acquire a Meterpreter

session. The Metasploit Meterpreter is an advanced memory resident payload included in

the Metasploit Framework that offers more power to an attacker than a traditional remote

shell. Figures 47 and 48 show both the command used to launch the exploit, and evidence

of the acquired Meterpreter shell.

Figure 47. Metasploit Exploit

84

Figure 48. Meterpreter Session

From our WordPress exploit, we gained access to BP1 as the user “www-data.”

This would give us—in the role of attacker—the ability to perform various malicious

activities. If we wanted root level access for full control of BP1, we would need to

successfully attempt privilege escalation. It is likely however, that further activity would

be thwarted as much of our malicious activity thus far has been logged in the SIEM.

b. Detection

When we browsed to BP1’s webpage as an initial reconnaissance phase of this

attack, no alerts were generated as nothing malicious had been done. However, as seen by

previous scans, there was a sharp increase in alerts immediately following the Nikto scan

as shown in Figure 49. The rate of alerts over time increased from two per minute, to 1,326

alerts per minute, within four minutes.

85

Figure 49. NIDS—Alert on Web Server Attack

A look at the “NIDS—Alerts” panel indicated numerous potentially malicious

traffic originating from the Kali Linux host (attacker), and destined to the BP1 host on port

80. The following alerts of interest for traffic destined to port 80 on the victim were also

generated by Suricata during this attack:

The earliest alert associated with this activity was a priority “1” alert with

timestamp “August 4th 2018, 12:02:11.357.” The alert name was “ET SCAN Nikto Web

App Scan in Progress” originating from the Kali VM to the BP1 VM. Over the next 15

seconds, there were 1,326 total alerts from the Kali VM to the BP1 VM on TCP port 80,

after which no alerts were generated for several minutes. This suggests the Nikto scan

lasted approximately 15 seconds. Some of the 1,326 alerts are as follows:

• ET WEB_SERVER Possible CVE-2014-6271 Attempt in Headers

• ET POLICY Proxy TRACE Request—inbound

• GPL WEB_SERVER .htaccess access

After several minutes, another alert spike appeared that was associated with the

Kali VM and the BP1 VM. The first alert associated with this traffic was a priority “1”

alert named “ET WEB_SERVER WPScan User Agent.” This alert was classified as “Web

Application Attack” and had a timestamp of “August 4th 2018, 12:14:09.365.” This was a

clear indicator that the WPScan tool was scanning the webserver on BP1. Over the next 70

86

seconds, there were 474 alerts associated with the Kali VM and the BP1 VM followed by

another few minutes of silence. This shows the WPScan took roughly 70 seconds to

complete. Several of the 474 alerts were named “ET WEB_SERVER Wordpress Login

Bruteforcing Detected” which shows that the scan attempted to guess the login name.

After another several minutes, several new alerts were generated. The first alert was

named “ET WEB_SERVER Wordpress Login Bruteforcing Detected” had a timestamp of

“August 4th 2018, 12:21:11.262.” Over the next 6 seconds, 445 additional alerts were

generated for “ET POLICY Http Client Body contains pwd= in cleartext” after which there

was another period of silence. Further PCAP analysis indicated the attempt to access

numerous web pages with the word “secret” in the Uniform Resource Identifier (URI). This

obviously was a password guessing attack against the /secret/ directory hosted on the

webserver.

The exploitation of the webserver with Metasploit and the subsequently acquired

Meterpreter shell was much harder to find. One reason is that credentials had already been

acquired so the attacker was able to authenticate with WordPress to upload the Meterpreter.

There were no noticeable spikes in the alerts when this attack was conducted. This was an

attack that could only be detected by meticulously analyzing every single generated alert—

something a good analyst would do once all the previously generated alerts were noticed.

There were 24 alerts generated for this attack, each of which were categorized as one of

the following:

• ET INFO GENERIC SUSPICIOUS POST to Dotted Quad with Fake
Browser 1

• ET POLICY Cleartext WordPress Login

• ET POLICY Http Client Body contains pass= in cleartext

• ET WEB_SERVER PHP tags in HTTP POST

Further analysis of the PCAP associated with the “ET WEB_SERVER PHP tags in

HTTP POST” alert indicated that the attacker was able to successfully install a WordPress

plugin on the BP1 web server. This can be seen in Figure 50 as the BP1 web server returned

an “HTTP/1.1 200 OK” response when the attacker uploaded the plugin. The installation

87

of WordPress plugin should be alarming to an analyst as plugins can be malicious—and in

this case, it was the Meterpreter payload.

Figure 50. Metasploit Meterpreter Login Attack

88

4. Windows Server Exploitation

For our last malicious cyber action, we focused on the Windows Server 2012 R2

Domain Controller. Our initial port scan showed several open ports including TCP ports

445 (SMB) and 88 (Kerberos). These two open ports strongly suggest the host is a Domain

Controller (DC).

a. Action

Acting in our role as the attacker, we did not know exactly what version of

Windows the DC was running. To Determine the Windows version, we conducted an SMB

version scan using Metasploit. It is common to find SMB traffic in a network with

Windows machines, so we expected this scan would not likely “flag” as anything abnormal

or malicious. Figure 51 shows that the SMB Version scan detected the host to be running

Windows Server 2012 R2 Standard.

Figure 51. SMB Version Scan

An experienced attacker would recognize that this specific OS, when unpatched,

is vulnerable to MS17_010. Microsoft states that the MS17-010 vulnerability “could

allow remote code execution if an attacker sends specially crafted messages to a

Microsoft Server Message Block 1.0 (SMBv1) server” [35]. According to Rapid7 who

manages the Metasploit project, Metasploit includes both a vulnerability scan and a

remote exploit for MS17_010, which it refers to as EternalBlue [36]. As demonstrated in

89

Figure 52, we used the vulnerability scan to confirm that we could exploit the MS17_010

vulnerability to gain remote access to the DC.

Figure 52. MS17_010 Vulnerability Scan

 Next, as demonstrated in Figure 53, we used the EternalBlue exploit in Metasploit

to upload the Meterpreter payload to the DC and acquire a remote session.

90

Figure 53. EternalBlue Exploit

The exploit was successful, and we now had remote access to the DC. Our last step

in the attack was to install Meterpreter as a Windows service to ensure persistent access to

the DC. This would allow us to reacquire a Meterpreter session to the DC at any point in

the future, without needing to re-exploit. To achieve this method of persistence, we

executed “run metsvc” from our Meterpreter session, which ran the Meterpreter service

installation script. Figure 54 shows our persistent Meterpreter service installing and being

set to listen on TCP port 31337 for any future connections.

91

Figure 54. Meterpreter Service Installation

b. Detection

Unlike previously conducted scans on the network, the scan conducted to determine

the SMB version of the Windows Server scan, using Metasploit, did not result in the

generation of many alerts. The alert count visualization was consistent with “normal”

traffic. As we looked through the generated NIDS alerts, we noticed two alerts generated

(shown in Figure 55) that were based on traffic that originated from the Kali Linux host

(attacker) and sent to port 445 on IP address 192.168.1.100 (the Windows Server 2012 R2

victim). These two alerts were assigned priority “3” level, were named “GPL NETBIOS

SMB-DS IPC$ share access” and had the same timestamps.

92

Figure 55. NIDS—Alert on SMB Version Scan

Next, we looked for any indication of EternalBlue vulnerability scanning event.

Once again, there was no major increase in the alert generation. Like the SMB version

scan, the MS17_010 scan generated two alerts with the same priority and same name.

Differentiating between these two events would be very difficult as the alerts were

identical. We were; however, able to tell the two events apart using their timestamps. As

visible in Figure 56, alerts generated for the SMB version scan occurred at timestamp

“August 5th 2018, 12:41:39.408,” while alerts for the MS17_010 vulnerability scan were

generated with timestamp “August 5th 2018, 12:57:51.666.”

93

Figure 56. NIDS—Alert on EternalBlue Vulnerability Scan

Following the two alerts generated for the vulnerability scan, were 24 NIDS alerts

for the EternalBlue exploit launched with Meterpreter payload. This began with four alerts

similar to the ones recorded for the previous two scans. Then there were 20 alerts pertaining

to a connection between the Kali VM and the DC. These 20 alerts showed the DC

connected from an ephemeral port to the Kali VM on port 4444. A connection between two

hosts on high numbered ports can be suspicious. An experienced analyst would recognize

that port 4444 is a default connection port for Metasploit exploits. Figure 57 is a screenshot

of the alerts relating to the EternalBlue exploit and Meterpreter session between the

attacker and victim.

94

Figure 57. NIDS—Alert EternalBlue Exploit with Meterpreter Payload

Expanding the alert with timestamp “August 5th 2018, 13:32:36.293,” by clicking

on the arrow to the left, indicated a priority “1” alert with name “ET POLICY PE EXE or

DLL Windows file download” as shown in Figure 58. From this alert, we can assess that

an EXE or DLL file was uploaded to the victim. Providing even more evidence for the

upload of an executable payload, when we looked at the PCAP for this activity, we could

see text strings for the sections in a portable executable (PE) file header. More

information about the PE format can be found at https://docs.microsoft.com/en-us/

windows/desktop/debug/pe-format.

95

Figure 58. Extended NIDS—Alerts for EternalBlue Exploit with
Meterpreter Payload

We also saw indications of another connection between the Kali VM and the DC.

The “Bro Connection” dashboard indicated that there were 22 connections to the victim IP

96

address on port 31337. Seeing the attacker create a second connection to the victim is

consistent with an attacker establishing an improved (more stable or more permanent)

session. When analyzing the HIDS alerts for indications of compromise, we discovered the

existence of one OSSEC alert classified as “User generated error” and described as

“Windows error event.” The alert described this error as “The Meterpreter service is

marked as an interactive service. However, the system is configured to not allow interactive

services. This service may not function properly.” This alert shows that the attacker

attempted to install Meterpreter as a service, but the DC was configured to not allow

execution of interactive services. The screenshot in Figure 59 shows the alert when viewed

in Kibana.

97

Figure 59. OSSEC—Alert on Meterpreter Rootkit Install

B. FALSE POSITIVES AND FALSE NEGATIVES

During the course of this study, we experienced many false positive and some false

negative alerts. During the configuration and testing of the lab environment, we had to fine-

tune the level of alerts we wanted Kibana to display. The NIDS and HIDS generated alerts

according to downloaded signatures. However, we had the ability to control the type of

alerts we wished to see in the custom NHIDS dashboard that we created. For example, we

98

initially configured the NHIDS dashboard to only display priority 1 and 2 alerts. However,

we noticed during the port scan that alerts on generic Internet Control Message Protocol

(ICMP) events and network scans, which where priority 3, were not being displayed.

Following this discovery, we decided to change our configuration to display alerts with

priorities 1 thru 3. We frequently checked the pre-configured dashboards to be certain our

custom NHIDS dashboard did not overlook any important alerts, and confirmed none were

missed. The great thing about using the Lucene query language was that we could easily

shrink the level of alerts that we wanted displayed by simply changing the priority range.

The HIDS alerts had a higher ratio of false positives as compared to the NIDS alerts. Even

though we could have further constrained the alert level range (e.g., from 1–3 to 1–2) in

order to reduce the number of false positives displayed, we wanted to see successful/

authorized events which is prioritized as a level 3 alerts. This was necessary in order to

monitor user logon events which can be helpful for detecting and investigating password

cracking activities. Despite all the extra—non-malicious—logon alerts displayed, we

deemed this a worthwhile tradeoff for the ability to better discern attacker activities.

99

VIII. SUMMARY, CONCLUSION, AND FUTURE WORK

A. SUMMARY

Identifying malicious cyber activity can be tedious and time consuming. Large

heterogeneous networks without central logging can make timely detection and analysis

nearly impossible. The ability to aggregate and normalize logs is critical to the cyber

defender’s goal of quickly detecting and correlating malicious cyber activity. A SIEM can

perform these aggregation and normalization functions on logs collected from many

sources, and provide this rich collection of event-related information to analysts via a

searchable interface. This enables analysts to provide more timely and informed incident

response.

There are many different SIEM solutions available both commercially and as

FOSS. The intent of this capstone was to identify a FOSS SIEM capable of benefiting the

Navy’s defensive cyber capabilities. We evaluated three popular FOSS SIEMs—Prelude’s

Universal Open-Source SIEM project, AlienVault’s Open Source Security Information and

Event Management (OSSIM), and Elasticsearch Logstash and Kibana (ELK) by Elastic.

We chose ELK for this capstone because of the vast amount of documentation available

and its robust performance.

We designed and architected a testbed network and deployed the ELK SIEM to

evaluate its utility in improving cyber defense. Utilizing several blade servers, we designed

a lab network consisting of Linux and Windows virtual machines running in VMWare

ESXi. We installed ELK via the Security Onion Linux distribution to aggregate, normalize,

and correlate logs from the machines on our testbed network. We also configured ELK to

passively capture all network traffic within our lab VLAN. Using OSSEC we added HIDS

to our virtual machines and ingested the HIDS logs into ELK.

Using Kali Linux, we performed several malicious cyber actions and evaluated

ELK’s usefulness in identifying and correlating the malicious activity. We began this

malicious activity with a port scan, followed by an online password cracking attack against

RDP. We continued with an attack against a WordPress website, and finished with an

100

exploit against our domain controller. We discovered that with ELK, we were able to

readily identify each of the various malicious cyber actions via ELK-provided dashboard

alerts. ELK provided an intuitive interface that enabled us to deeply analyze the

characteristics of the malicious activity, while also more easily discern any false positive

alerts.

B. CONCLUSION

The intent of this capstone was to document the research conducted in choosing

ELK; the actions taken to install and configure ELK in a suitable analysis environment;

and to evaluate ELK’s effectiveness via the execution of offensive activities on the ELK-

defended network. We did not have a great deal of hands-on experience with ELK or any

FOSS SIEM prior to beginning this research. Our appreciation for ELK was not fully

realized until we saw how well it captured our malicious cyber activity. Though we

anticipated that ELK would allow us to see some of the malicious activity we generated;

ELK greatly exceeded even those expectations. Using ELK, we were able to detect

virtually every single malicious action, and to view activity-related information that

provided surprising detail.

The countless hours we spent on this capstone have enabled us to better understand

the power behind ELK and how the Navy could use ELK (or similarly capable FOSS) to

increase its cyber warfighting capabilities. We were impressed by the ability of ELK to

provide us with detailed threat and incident-related intelligence in a relatively simple and

intuitive interface. Using ELK, an analyst can not only monitor the cyber activity of

malicious actors, but do so with a level of efficiency that would shorten the incident

response detection-to-remediation life cycle.

ELK’s ability to not only present important information about individual events,

but to correlate multiple related events into actionable intelligence, makes it a force

multiplier for network defense. As a FOSS product, ELK could be incorporated into the

Navy’s arsenal with no added materiel cost. Based on our research, we assert that ELK is

a mission-ready solution, provides an indispensable capability, and could immediately

improve the Navy’s cyber warfighting abilities.

101

C. FUTURE WORK

This capstone focused on the selection and configuration of a FOSS SIEM and

testing its effectiveness in aggregating, normalizing, and correlating data in a typical

network environment. In doing so, the cyber-attacks and incident detection analysis

conducted during our study demonstrated that ELK, when properly configured and fed with

necessary log data, can aid cyber security analysts in the detection of malicious and

unauthorized activities on their networks. Hereof, we submit the following

recommendations for future work.

• Test the ELK SIEM (or similar FOSS SIEM) in a Consolidated Afloat Network

and Enterprise Services (CANES) environment. Deploying ELK in an authentic

shipboard network architecture would more reliably demonstrate the

capabilities ELK brings to the Navy.

• Include a router in the network architecture. The introduction of router logs into

ELK that hold pertinent information such as dropped packets, established

connections, and numerous logs that resulted from the access control list

implementation, would provide another dimension of useful information to a

network defender.

• Configure ELK to receive logs from the switch. Logs obtained from switches

can provide indication of VLAN based attacks, MAC flooding, and Address

Resolution Protocol (ARP) spoofing.

• Conduct attacks from outside the perimeter of the lab VLAN. Attacks

conducted from outside the network perimeter will demonstrate ELK’s ability

to correlate logs from perimeter control devices.

• Configure Suricata as an inline IPS. In this capstone, Suricata was configured

as an IDS and passively sniffed traffic. Given the number of alerts generated

during the attack/detection phase, it would be useful to evaluate how well

Suricata, if configured for inline prevention, would block malicious traffic and

to observe how the associated logs would appear in Kibana.

102

• Configure and deploy user-defined Snort signatures. In the case of a zero-day

attack for which no signature exists, creating and applying signatures in a timely

manner can help detect ongoing activities. Demonstrating how user-defined

Snort signatures appear in Kibana would be useful to a network defender.

103

APPENDIX A. SNORT PRIORITIES

Table 11. Snort Default Classifications. Source: [37].

Class Type Description Priority
attempted-admin Attempted Administrator

Privilege Gain
high

attempted-user Attempted User Privilege
Gain

high

inappropriate-content Inappropriate Content was
Detected

high

policy-violation Potential Corporate Privacy
Violation

high

shellcode-detect Executable code was detected high
successful-admin Successful Administrator

Privilege Gain
high

successful-user Successful User Privilege
Gain

high

trojan-activity A Network Trojan was
detected

high

unsuccessful-user Unsuccessful User Privilege
Gain

high

web-application-attack Web Application Attack high
attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium
bad-unknown Potentially Bad Traffic medium
default-login-attempt Attempt to login by a default

username and password
medium

denial-of-service Detection of a Denial of
Service Attack

medium

misc-attack Misc Attack medium
non-standard-protocol Detection of a non-standard

protocol or event
medium

rpc-portmap-decode Decode of an RPC Query medium
successful-dos Denial of Service medium
successful-recon-largescale Large Scale Information Leak medium
successful-recon-limited Information Leak medium
suspicious-filename-detect A suspicious filename was

detected
medium

suspicious-login An attempted login using a
suspicious username was
detected

medium

system-call-detect A system call was detected medium

104

Class Type Description Priority
unusual-client-port-connection A client was using an unusual

port
medium

web-application-activity Access to a potentially
vulnerable web application

medium

icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Traffic low
protocol-command-decode Generic Protocol Command

Decode
low

string-detect A suspicious string was
detected

low

unknown Unknown Traffic low
tcp-connection A TCP connection was

detected
very low

105

APPENDIX B. OSSEC RULE CLASSIFICATION LEVELS

Obtained from [38].

Rules Classification

The rules are classified in multiple levels. From the lowest (00) to the maximum

level 16. Some levels are not used right now. Other levels can be added between

them or after them.

The rules will be read from the highest to the lowest level.

00—Ignored—No action taken. Used to avoid false positives. These rules are

scanned before all the others. They include events with no security relevance.

01—None -

02—System low priority notification—System notification or status messages.

They have no security relevance.

03—Successful/Authorized events—They include successful login attempts,

firewall allow events, etc.

04—System low priority error—Errors related to bad configurations or unused

devices/applications. They have no security relevance and are usually caused by

default installations or software testing.

05—User generated error—They include missed passwords, denied actions, etc.

By itself they have no security relevance.

06—Low relevance attack—They indicate a worm or a virus that have no effect

to the system (like code red for apache servers, etc.). They also include frequently

IDS events and frequently errors.

07—”Bad word” matching. They include words like “bad,” “error,” etc. These

events are most of the time unclassified and may have some security relevance.

08—First time seen—Include first time seen events. First time an IDS event is

fired or the first time a user logged in. If you just started using OSSEC HIDS these

messages will probably be frequently. After a while they should go away, it also

includes security relevant actions (like the starting of a sniffer or something like

that).

106

09—Error from invalid source—Include attempts to login as an unknown user or

from an invalid source. May have security relevance (especially if repeated). They

also include errors regarding the “admin” (root) account.

10—Multiple user generated errors—They include multiple bad passwords,

multiple failed logins, etc. They may indicate an attack or may just be that a user

just forgot his credentials.

11—Integrity checking warning—They include messages regarding the

modification of binaries or the presence of rootkits (by rootcheck). If you just

modified your system configuration you should be fine regarding the “syscheck”

messages. They may indicate a successful attack. Also included IDS events that

will be ignored (high number of repetitions).

12—High importance event—They include error or warning messages from the

system, kernel, etc. They may indicate an attack against a specific application.

13—Unusual error (high importance)—Most of the times it matches a common

attack pattern.

14—High importance security event. Most of the times done with correlation and

it indicates an attack.

15—Severe attack—No chances of false positives. Immediate attention is

necessary.

107

LIST OF REFERENCES

[1] B. Charter, “EVTX and Windows event logging,” SANS Institute, 2018. [Online].
Available: https://www.sans.org/reading-room/whitepapers/logging/evtx-
windows-event-logging-32949

[2] A. Lane, “Understanding and selecting SIEM/LM: aggregation, normalization,
and enrichment,” Securosis, May 27, 2010. [Online]. Available:
https://securosis.com/blog/understanding-and-selecting-siem-lm-aggregation-
normalization-and-enrichmen

[3] Prelude, “Prelude components.” Accessed August 9, 2018. [Online]. Available:
https://www.prelude-siem.org/projects/prelude/wiki/PreludeComponents

[4] Prelude,“ Choose your version.” Accessed August 9, 2018. [Online]. Available:
http://www.prelude-siem.com/en/products/choose-your-version

[5] H. Debar, D. Curry, B. Feinstein, “The intrusion detection message exchange
format (IDMEF),” RFC4765, March 2007. [Online]. Available:
https://www.ietf.org/rfc/rfc4765.txt

[6] Prelude, “3rd party agents installation.” Accessed August 9, 2018. [Online].
Available: https://www.prelude-siem.org/projects/prelude/wiki/
InstallingAgentThirdparty

[7] Prelude, “Welcome to the Prelude universal open-source SIEM project.”
Accessed August 9, 2018. [Online]. Available: https://www.prelude-siem.org/
projects/prelude/wiki/WikiStart

[8] “OSSIM,” Wikipedia. Accessed August 9, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/OSSIM

[9] AlienVault, “Compare AlientVault products.” Accessed August 9, 2018. [Online].
Available: https://www.alienvault.com/products/ossim/compare

[10] FIWARE, “Security-monitoring: service level SIEM open API specification.”
Accessed August 9, 2018. [Online]. Available: http://forge.fiware.org/plugins/
mediawiki/wiki/fiware/index.php/Security-
Monitoring:_Service_Level_SIEM_Open_API_Specification

[11] AlienVault, “Configure log forwarding on commonly used data sources.”
Accessed August 9, 2018. [Online]. Available: https://www.alienvault.com/
documentation/usm-appliance/supported-plugins/supported-plugins.htm

108

[12] AlienVault, “Minimum hardware requirements for USM appliance virtual
machines.” Accessed August 9, 2018. [Online]. Available:
https://www.alienvault.com/documentation/usm-appliance/sys-reqs/hardware-
spec.htm

[13] AlienVault, “Virtual machine requirements.” Accessed August 9, 2018. [Online].
Available: https://www.alienvault.com/documentation/usm-appliance/sys-reqs/
vm-reqs.htm

[14] AlienVault, “AlienVault OSSIM report types.” Accessed August 9, 2018.
[Online]. Available: https://www.alienvault.com/documentation/usm-appliance/
reports/ossim-report-types.htm

[15] Elastic, “The heart of the Elastic Stack.” Accessed August 9, 2018. [Online].
Available: https://www.elastic.co/products/elasticsearch

[16] Elastic, “Centralize, transform & stash your data.” Accessed August 9, 2018.
[Online]. Available: https://www.elastic.co/products/logstash

[17] Elastic, “Your window into the Elastic Stack.” Accessed August 9, 2018.
[Online]. Available: https://www.elastic.co/products/kibana

[18] OSSEC, “Welcome to OSSEC’s documentation!.” Accessed August 9, 2018.
[Online]. Available: https://www.ossec.net/docs

[19] Bro, “The BRO network security monitor.” Accessed August 9, 2018. [Online].
Available: https://www.bro.org/

[20] D. Burks, “Sguil,” GitHub, July 3, 2018. [Online]. Available: https://github.com/
Security-Onion-Solutions/security-onion/wiki/Sguil

[21] Weslambert, “Squert,” GitHub, April 19, 2018. {Online]. Available:
https://github.com/Security-Onion-Solutions/security-onion/wiki/Squert

[22] C. Lonvick, “The BSD Syslog Protocol,” RFC3164, August 2001. [Online].
Available: https://tools.ietf.org/html/rfc3164

[23] Elastic, “How Logstash works.” Accessed August 9, 2018. [Online]. Available:
https://www.elastic.co/guide/en/logstash/current/pipeline.html

[24] D. Berman, “The complete guide to the ELK Stack—2018,” Logz.io, June 26,
2018. [Online]. Available: https://logz.io/learn/complete-guide-elk-stack

[25] Elastic, “Input plugins.” Accessed August 9, 2018. [Online]. Available:
https://www.elastic.co/guide/en/logstash/current/input-plugins.html

109

[26] netsniff-ng, “netsniff-ng toolkit.” Accessed August 9, 2018. [Online]. Available:
http://netsniff-ng.org

[27] Aldeid, “Suricata-vs-Snort.” Accessed August 9, 2018. [Online]. Available: http://
www.aldeid.com/wiki/Suricata-vs-snort

[28] C. White, “pf_ring slot count,” Google, December 25, 2015. [Online]. Available:
https://groups.google.com/forum/#!topic/security-onion/zu7U7U9pBT8

[29] D. Burks, “PF_RING,” GitHub, March 16, 2017. [Online]. Available:
https://github.com/Security-Onion-Solutions/security-onion/wiki/PF_RING

[30] Apache, “Welcome to Apache Lucene.” Accessed August 9, 2018. [Online].
Available: https://lucene.apache.org/

[31] Elastic, “Basic concepts.” Accessed August 9, 2018. [Online]. Available:
https://www.elastic.co/guide/en/elasticsearch/reference/
current/_basic_concepts.html

[32] Weslambert, “Logstash,” GitHub, June 8, 2018. [Online]. Available:
https://github.com/Security-Onion-Solutions/security-onion/wiki/Logstash

[33] Mitre, “CVE-2001-0540.” Accessed August 14, 2018. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0540

[34] CIRT.net, “Nikto2.” Accessed August 14, 2018. [Online]. Available:
https://cirt.net/nikto2

[35] Microsoft, “Microsoft security bulletin MS17-101—critical.” Accessed August
14, 2018. [Online]. Available: https://docs.microsoft.com/en-us/security-updates/
securitybulletins/2017/ms17-010

[36] Rapid7, “MS17-010 EternalBlue SMB remote windows kernel pool corruption.”
Accessed August 14, 2018. [Online]. Available: https://www.rapid7.com/db/
modules/exploit/windows/smb/ms17_010_eternalblue

[37] The Snort Project, “SNORT users manual 2.9.11.” Accessed August 24, 2018.
[Online]. Available: http://manual-snort-org.s3-website-us-east-
1.amazonaws.com/

[38] OSSEC, “Rules classification.” Accessed August 24, 2018. [Online]. Available:
https://ossec-docs.readthedocs.io/en/latest/manual/rules-decoders/rule-levels.html

110

THIS PAGE INTENTIONALLY LEFT BLANK

111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Sep_SE Capstone_Myers et al_First8
	18Sep_Christopher_Myers
	I. INTRODUCTION
	A. What is a SIEM?
	B. Event logs
	C. Aggregation
	D. Normalization
	E. Correlation

	II. COMPARE AND CONTRAST OF OPEN-SOURCE SIEMS
	A. Prelude
	1. Components
	2. Offered Features
	3. Ability to Integrate with Other Products
	4. Minimum System Requirements
	5. Compatible Host OSes
	6. Ability to Generate Reports
	7. Documentation

	B. OSSIM
	1. Components
	2. Offered Features
	3. Ability to Integrate with Other Products and Systems
	4. Minimum System Requirements
	5. Compatible Host OS
	6. Ability to Generate Reports
	7. Documentation

	C. ELK
	1. Components
	2. Offered Features
	3. Ability to Integrate with Other Products and Systems
	4. Minimum System Requirements
	5. Compatible Host OS
	6. Ability to Generate Reports
	7. Documentation

	III. CHOSEN SIEM
	A. Packet Capture
	B. NIDS and HIDS
	C. Network Analysis Tools

	IV. VIRTUAL TESTBED NETWORK
	A. Building a SIEM Testbed Network
	1. Hardware
	2. Network Backbone
	3. Software

	B. Network Topology

	V. ELK AND SECURITY ONION INSTALLATION AND CONFIGURATION
	A. Gathering Resources
	1. Building the Virtual Machine
	2. Downloading Security Onion

	B. Security Onion Installation
	C. Security Onion Configuration and ELK Installation
	1. Security Onion Update
	2. Setup Script Round 1: Initial Network Configuration
	3. Setup Script Round 2: ELK Installation and Configuration
	4. Additional Configurations

	D. ELK Configuration
	1. Elasticsearch
	2. Logstash
	3. Kibana
	a. How to Access Kibana
	b. Tour of the Kibana Interface
	c. Alert Monitoring Using Kibana
	d. Reporting Using Kibana

	VI. OSSEC INSTALLATION AND CONFIGURATION
	A. Agent Management on Security Onion
	B. Agent Installation and Configuration on Linux
	C. AGENT INSTALLATION AND CONFIGURATION ON WINDOWS
	D. VERIFICATION OF OSSEC AGENT COMMUNICATION FROM CLIENT TO SIEM

	VII. INCIDENT DETECTION AND CORRELATION WITH ELK
	A. MALICIOUS ACTIVITY CORRELATION
	1. Port Scan
	a. Action
	b. Detection

	2. Online Password Cracking Attack
	a. Action
	b. Detection

	3. Web Server Attack
	a. Action
	b. Detection

	4. Windows Server Exploitation
	a. Action
	b. Detection

	B. FALSE POSITIVES AND FALSE NEGATIVES

	VIII. Summary, CONCLUSION, AND FUTURE WORK
	A. SUMMARY
	B. CONCLUSION
	C. FUTURE WORK

	APPENDIX A. SNORT PRIORITIES
	Appendix B. OSSEC Rule Classification Levels
	List of References
	initial distribution list

