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ABSTRACT 

 The Department of Defense (DoD) has accelerated its adoption of cloud 

technologies, which come with inherent risks. This thesis investigated four important 

cybersecurity issues that the DoD must address: customer misconfigurations, data leaks, 

complications in security controls, and necessary changes to digital forensic 

incident-response tactics. We examined current U.S. policy documents and found a 

number of issues that need to be clarified for contracting with cloud service providers. 

Human misunderstandings largely drive cloud misconfigurations, which eventually 

become cloud data spills that require a digital forensic incident-response. To prevent 

misconfigurations, it is essential that DoD staff receive continual in-depth cloud training 

and that the DoD redefines the roles for virtualized cloud architectures. Fortunately, the 

selection of the cloud service model can highlight which cloud layers the DoD is 

responsible for, and therefore which security controls to implement. Federal cloud 

computing policy, DoD FedRAMP+, specifies the security controls needed based on the 

sensitivity of the data. However, once a cyber-incident is declared, digital forensics 

analysts confront a myriad of cloud-specific technological, legal, and boundary 

challenges. The security vulnerabilities must be considered during a transformational 

migration from on-premises architectures to cloud technologies. This thesis offers 

recommendations to address these vexing cybersecurity issues. 
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I. INTRODUCTION 

A. BACKGROUND 

Cloud computing, while still in its nascence, has resoundingly demonstrated the 

benefits associated with its disruptive, transformative, and economic characteristics. Cloud 

computing is attractive because it offers organizations the flexibility to reduce hardware 

acquisition costs as well as the opportunity to save money with its pay-per-use pricing 

scheme. However, cloud computing is not without risks. The confidentiality of data stored 

in cloud environments remains a major concern, especially because cloud environments 

are typically multi-tenant, meaning they are shared by multiple clients. Cloud data is also 

stored remotely, via an internet connection, and this separation warrants additional 

assurances about data security. The Department of Defense (DoD) is exploring an 

aggressive transition strategy to best exploit cloud computing benefits while managing its 

risks.  

The primary catalyst for cloud migration, for an overwhelming majority of 

organizations, is cost savings. ISACA, a global nonprofit thought-leader focused on 

information system and information technology (IT) governance, clearly lays out the 

drivers and detractors of cloud adoption, and the prominent risk management tradeoffs 

between costs and benefits: 

As with any emerging technology, cloud computing offers the possibility of 
high reward in terms of containment of costs and features such as agility 
and provisioning speed. However, it also brings the potential for unknown 
and potentially high risk. Cloud computing introduces a level of abstraction 
between the physical infrastructure and the owner of the information being 
stored and processed. Traditionally, the data owner has had direct or indirect 
control of the physical environment affecting his/her data. In the cloud, this 
is no longer the case. Due to this abstraction, there is already a widespread 
demand for greater transparency and a robust assurance approach of the 
cloud computing supplier’s security and control environment. (ISACA, 
2009, p. 4) 

The most pertinent considerations in this description are costs, abstraction, risk, control, 

environment, transparency, assurance, and security.  
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To illuminate the significant differences between a cloud computing system and a 

pre-cloud computer system, we must first define a few terms. For example, an enterprise 

information system is one that provides functionality (e.g., email, security, file systems) 

that is integrated for use by an entire organization. In contrast, a specialized system that is 

used only by a small enclave of organizational users is not considered an enterprise system. 

Migration is the term used when an organization transitions applications from an on-

premises enterprise information system to one with cloud computing capabilities. An on-

premises system is one that predates cloud computing and is defined by (i) applications 

that have not migrated or may never migrate to transmit data between the pre-cloud 

computing information system and the cloud, (ii) the distinctive features it lacks in 

comparison to those exhibited by cloud computing. On-premises systems only have access 

to their own organizational resources; they cannot access a pool of computing resources 

that are shared by users external to the organization, as a cloud computing system can. 

Therefore, on-premises systems are unable to unilaterally increase or decrease use of the 

shared, pooled resources, as cloud computing can. If an on-premises system needs 

additional resources, the organization would have to purchase the resource (e.g., a server), 

and then wait for delivery and the subsequent configuration to its system. An on-premises 

system also does not give the organization the ability to pay only for the resources actually 

consumed, like how utilities (e.g., water, electricity) are billed. Cloud computing provides 

organizations the ability to unilaterally increase/decrease resources (on-demand self-

service), share common resources (resource pooling), change or eliminate resources based 

on need instantaneously (rapid elasticity), pay only for the services consumed (measured 

service), and access the wealth of services through an internet connection (broad network 

access). Hybrid cloud information systems use a blend of on-premises architectures and 

cloud computing resources. Incident response is the process of detecting, containing, 

eradicating, and ultimately recovering from cyber events (Joint Chiefs of Staff, 2012). All 

information systems require incident response capabilities, whether enterprise, enclave, on-

premises, hybrid, cloud computing, or other. Digital forensics is the scientific methodology 

of repeatedly retrieving and reconstructing computing events from digital artifacts (NCC 

FSWG, 2014). 
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The goal of this thesis is to identify the detailed deviations between digital forensic 

incident-response in on-premises and cloud computing architectures and offer risk 

management recommendations for migration. Methodologically, the thesis uses a 

systematic comparative approach to assess incident response cybersecurity risks, both 

inherent and amplified, in the migration from traditional on-premises enterprise 

information system architectures to cloud computing architectures. The scope for 

comparative analysis between on-premises and cloud computing is confined to digital 

forensic incident-response capabilities. The selection of incident response was deliberate; 

the forensic processes for incident response differ greatly between traditional (non-cloud) 

architectures and cloud architectures, which creates a high-pressure situation. The incident 

remediation process deficiencies are magnified by situational urgency during this crucial 

period.  

The target audience for this thesis is DoD decision makers who are planning policy 

for migration from traditional data centers to cloud architectures. The thesis examines the 

related policies authorized by the DoD cyber strategy, benefitting the Cloud Executive 

Steering Group (CESG), Joint Staff, combatant commands, services, defense agencies, 

DoD field activities, joint and combatant activities, U.S. Cyber Command, U.S. Strategic 

Command, and other federal agencies. 

B. BALANCING ACCELERATED CLOUD ADOPTION WITH CRUCIAL 
RISK MANAGEMENT DECISIONS  

This thesis is primarily motivated by the impact of the DoD’s recent accelerated 

adoption of cloud technologies (Shanahan, 2017). Cloud technologies inherently bear four 

issues—or conditions—that represent crucial risk management decisions for the DoD, and 

they each deserve fresh inspection in relation to information security: customer 

misconfigurations, cloud leaks, complications in the implementation of security controls, 

and digital forensic incident-response challenges.  

The head of global security programs for the largest cloud service provider (CSP), 

Amazon Web Services (AWS), stated that persistent customer misconfigurations continue 

to garner sustained attention by senior leadership (Clarke, 2015). Several recent cloud 
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leaks, generated by DoD vendors’ unforced errors, have publicly exposed intelligence 

community data without the aid of malicious actors (Gregg, 2017). By introducing a cloud 

service provider relationship into digital forensic incident-response (DFIR), the DoD has 

dramatically altered the coordination of incident response tactics (Cloud Security Alliance 

[CSA], 2017). This relationship may also complicate the implementation of some of the 

DoD’s security controls (SANS Institute, 2016). At the the National Institute of Standards 

Technology (NIST), the NIST Cloud Computing Forensic Science Working Group (NCC 

FSWG) identified 65 digital forensics challenges that either alter or make more difficult to 

perform established digital forensic incident response processes. 

1. Customer Misconfigurations 

Cloud computing is a transformative technology; thus, the DoD has committed to 

expedite cloud adoption within its existing infrastructure. The Deputy Secretary of Defense 

conveys the DoD’s sense of urgency toward cloud adoption and technological 

modernization in fulfilling the DoD’s mission (Shanahan, 2017). In 2017, the secretary 

announced the initiation of a Cloud Executive Steering Group (CESG) to research, execute, 

and implement commercial solutions for the DoD’s cloud strategy. He recommended that 

the aggressive cloud initiative take place over two phases: The first phase will focus on 

developing a customized acquisition strategy to transform the military’s enterprise cloud 

capabilities so that it can handle unclassified, secret, and top-secret information (Shanahan, 

2017). This first phase must also include a technical analysis of the processes needed to 

support the migration and the subsequent training for successful execution. For the second 

phase, the Cloud Executive Steering Group will quickly integrate cloud security and 

machine learning into day-to-day practices of selected DoD components. 

The secretary’s comments, however, only address the DoD’s requirements as a 

cloud client; from the perspective of a cloud service provider, there must also be an 

emphasis on the client’s role in achieving cloud security. In a 2015 interview, the head of 

AWS’ Global Security Programs articulated the dividing line that separates the security 

duties of the cloud service provider from the duties of the client. The cloud service provider 

is the organization or vendor that supplies the cloud computing pool of resources deployed 
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in software as a service, platform as a service, and infrastructure as a service (these 

concepts are discussed in more detail in Chapter II; Defense Information Systems Agency 

[DISA], 2017). From the cloud service provider’s perspective, the client has 

responsibilities—which span from the running applications down to the guest operating 

system—and the provider is responsible for the host operating system down to the physical 

data center (Clarke, 2015). This type of cooperative security is commonly referred to as a 

shared responsibility model in the cloud. In his interview, the AWS representative 

amplified the grave consequences of misconstruing the roles of the client and the cloud 

service provider in the shared responsibility model; he expressed particular concern over 

the possibility that a client might misconfigure applications, which could make the 

organization vulnerable to data leaks (Clarke, 2015).   

This misconfiguration is the first inherent issue of operating securely in the cloud. 

Consumers often execute a cloud migration incorrectly, assuming that they can simply port 

their entire traditional IT architecture to the cloud without any modification (often referred 

to as lift and shift; CSA, 2017). Cloud Security Alliance (CSA), a leading cloud security 

industry group, recommends embracing the clean slate approach to cloud migration. Given 

the ineffectiveness of lift and shift, the CSA recommends that, prior to cloud migration, 

the client should re-evaluate all of the information potentially destined for the cloud. 

2. Cloud Leaks 

A data spill is any event involving the unauthorized transfer of confidential data 

from an accredited information system to one that is not accredited (DISA, 2017). A cloud 

leak is a type of data spill, specifically originating from a cloud environment. As early as 

2013, the government had investigated data spillage specific to the cloud, documented in a 

Department of Homeland Security (DHS) presentation on February 14, 2013, called 

“Spillage and Cloud Computing.” Clearly, agencies involved in national security matters 

must effectively reduce cloud leaks; however, the cloud leaks problem has not been solved. 

For example, on June 1, 2017, The Washington Post reported that 

An unnamed employee of federal contracting giant Booz Allen Hamilton 
temporarily left sensitive government passwords exposed online last week, 
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raising questions about the McLean company’s cybersecurity practices after 
drawing scrutiny for the way top secret data was mishandled in two earlier, 
high-profile cases. (Gregg, 2017, para. 1)  

The report later confirmed that the password leak was on an AWS server for contracted 

work with the National Geospatial-Intelligence Agency. The report described a prevailing 

shift in government agencies pivoting to the cloud: 

That Amazon’s cloud server was being used to service a contract with a 
U.S. intelligence agency is indicative of a broader shift happening across 
the government, as data and applications move off individual computers and 
internal networks and into less costly and more adaptable cloud-based 
systems. (Gregg, 2017, para. 14)  

This type of cloud leak is not an isolated occurrence. Less than six months later, 

CNN reported that Pentagon data collection for U.S. Central Command (CENTCOM) and 

U.S. Specific Command (PACOM) by Vendor X had been exposed on September 6, 2017. 

The CNN report cited a response from the DoD confirming the data leak: “ ‘We determined 

that the data was accessed via unauthorized means by employing methods to circumvent 

security protocols,’ said Maj. Josh Jacques, a spokesperson for U.S. Central Command. 

‘Once alerted to the unauthorized access, Centcom [sic] implemented additional security 

measures to prevent unauthorized access’”  (Larson, 2017). This demonstrates yet another 

incident of insecure DoD data leaked from within the cloud. The DoD needs to fully 

understand the likelihood of similar leaks from commercial cloud infrastructures—and the 

necessary modifications to security procedures—moving forward to reduce the probability 

of a leak to an acceptable level of risk.  

3. Complications in the Implementations of Security Controls 

To date, agencies involved in national security matters have not effectively reduced 

cloud leaks. Use of the cloud dramatically limits proactive governance and replication of 

some traditional security controls. In some instances, traditional enterprise information 

system security practices have not been replicated identically in the cloud. The SANS 

Institute, in a 2016 white paper titled Implementing the Critical Security Controls in the 

Cloud, identified this phenomenon as “cloud negative controls,”—when implementation 
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of security is more difficult or cost-prohibitive in the cloud. The difference in or complexity 

of implementing standard controls can lead to less security in the cloud.  

When an organization transitions to the cloud, it loses governance, specifically of 

forensic incident-response. Cloud computing digital forensics attempts to augment digital-

forensic scientific methods to accommodate for cloud computing’s unique environment. 

Incident response teams are responsible for investigating and filtering cyber incidents from 

commonly occurring events. All cyber incidents are events but not all events qualify as 

cyber incidents; an event is any observable episode on an information system, while cyber 

incidents are more threatening and either pose a legitimate or potential adverse 

consequence to an information system (Joint Chiefs of Staff, 2012). In incident response, 

digital forensics professionals are only needed after the organization has determined that 

the threshold for an escalated cyber incident has been met, at which point digital forensics 

professionals initiate a process for identifying, collecting, preserving, examining, and 

reporting on the digital evidence (NCC FSWG, 2014). But the organization has lost 

governance because, in cloud computing, the organization no longer owns those resources; 

it rents them. The computing resources are also remote to the organization, and under the 

control of the cloud service provider.   

The 2016 SANS paper indicates that it is imperative for any organization’s security 

architect to have the ability to discern how on-premises networks differ from virtualized 

architecture. The SANS paper categorizes security controls into cloud-positive, cloud-

negative, and cloud-neutral controls. The three tiers correspond to the ease of application 

within the cloud. The SANS recommendation, based upon this awareness, allows the 

security architect to direct greater attention to the cloud-negative controls. The paper 

specifically identifies logging, boundary defense, and incident response management as 

cloud-negative controls. 

4. Digital Forensic Incident-Response 

The European Network and Information Security Agency (ENISA; 2009) advises 

that the cloud consumer must learn the transparency of incident reporting, what constitutes 

an incident, the time frame between incident detection and client notification, and the level 
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of involvement of the consumer. Because cloud service providers have additional 

restrictions on vulnerability assessment and penetration testing, the consumer must 

understand the processes performed by the cloud service provider to fulfill those duties. 

The consumer also needs to determine his or her satisfaction with the quality and quantity 

of the provider’s incident mitigation practices. ENISA also suggests that the consumer 

should learn if a forensic image of the virtual asset will be made available after an incident. 

In addition to technical safeguards, ENISA indicates that the consumer should understand 

the cloud service provider’s comprehensive defense against social engineering in causing 

breaches (ENISA, 2009). 

The SANS Institute (2016) comments that fewer options are available in the cloud 

for intrusion detection systems or intrusion prevention systems than for traditional 

enterprise information system infrastructure security. If the available options are not up to 

the necessary standards before cloud migration, the cloud will require alternative solutions. 

The cloud also interjects the cloud service provider relationship into the customer’s 

workflow. The SANS paper underscores that roles have to be clearly defined to 

accommodate the introduction of the cloud service provider. Further exacerbating the 

situation is that the cloud contract is the sole vehicle to arbitrate and memorialize cloud 

governance (CSA, 2017).  

In 2014, the NIST Cloud Computing Forensic Science Working Group (NCC 

FSWG) published research focused specifically on the challenges of retrieving artifacts 

from the cloud. The working group observed a bifurcation in the challenges: either they 

were substantively altering or made it more difficult to perform established digital forensic 

incident-response processes. Both are direct consequences of the impact of cloud-specific 

technologies. A universal condition consistent across every permutation of service and 

deployment model is diminshed access to forensic data (NCC FSWG, 2014). Access to 

data is essential for incident response; restricted access is at the root of most of the working 

group’s itemized challenges. Digital forensic scientists have only a rudimentary 

understanding of the cloud service provider operating environment. The consumer, in turn, 

is faced with limited transparency because the cloud remotely delivers abstracted resources 

dispensed by the cloud service provider. Therefore, the consumer has inadequate 
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environmental details regarding such important cloud service provider resources as 

architecture, hardware, software, file system type, and how that particular resource works 

(NCC FSWG, 2014). Therefore, in addition to consumers being unaware of the 

interworkings of the cloud service provider environment, they are also uncertain about the 

indeterminate boundaries between themselves and other clients (NCC FSWG, 2014). 

These indeterminate boundaries, especially for cloud service providers, which do not 

provide vertical isolation for the consumer’s data, warrant consumers’ skepticism; as NIST 

explains, can the cloud service provider deliver high-assurance data integrity or 

preservation extended over multiple parties, computers, and locations? Complicating 

matters further, the consumer has accepted the risks of operating in a multi-tenant 

environment. The lack of transparency also begs the question: Is the consumer genuinely 

capable of “collecting, accurate, complete, traceable, audible [sic] and forensically sound 

evidence” (NCC FSWG, 2014, p. 25)? 

Ultimately, there is a viable solution for the challenges facing the DoD in 

transitioning to a robust, secure cloud environment. However, that solution will require the 

DoD to reorganize people and processes to minimize the existing gaps between how 

traditional applications operate and how cloud computing applications are configured. The 

solution will also require the DoD to incorporate broad uses of encryption, two-factor 

authentication, digital forensic incidence-response processes tailored to cloud 

architectures, practicable workarounds that address cloud-negative security controls, and 

substantially more mandatory cloud training. If any of these are absent, the DoD will find 

itself in unfamiliar territory and will face limitations for proactively addressing cyber 

incidents. 

C. CHAPTER SUMMARY AND THESIS ORGANIZATION  

Chapter I has detailed the DoD’s imminent use of cloud capabilities, and has 

reviewed considerations for managing the associated risk. The DoD actively seeks greater 

cloud adoption, cloud service providers are concerned about greater client cloud 

misconfigurations, DoD vendors are publicly leaking confidential data, and incident 

response manifests itself in more complicated machinations in the cloud. This thesis posits 
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that the velocity of cloud adoption—multiplied by the immaturity of cloud incident 

response protocols—warrants a rigorous investigation of the net balance of digital-forensic 

incident-response risk management capabilities.  

Chapter II provides an informal, baseline introduction to cloud computing 

principles, and defines technical cloud computing terms. When weighing the relative 

information assurance issues, definitions are fundamental to informed analysis. Therefore, 

judiciously, this thesis prioritized the technological leadership of NIST as an authoritative 

source for taxonomy because of NIST’s foundational, vendor-neutral, widely circulated 

special publications. Organizationally, crucial terms are defined early in Chapter II. 

The analysis in Chapter III further refines the deductions established in Chapter II 

by ordering the thesis’ findings along three themes: technical, legal, and boundary digital 

forensic incident-response challenges. The related processes of on-premises systems are 

juxtaposed against the cloud for significant security implications. Chapter IV introduces 

the federal cloud computing policy, FedRAMP, and contrasts it with DoD FedRAMP+ 

with respect to cloud-based security controls. Chapter V introduces the concept of 

transformational migration and offers specific recommendations to the four pressing cloud 

risk management issues facing the DoD. Chapter VI concludes with a summary and 

suggestions for tangential future research. 

 
  



11 

II. CLOUD COMPUTING PRINCIPLES 

A. PRELIMINARY ORIENTATION 

This chapter introduces crucial cloud computing and cybersecurity definitions used 

throughout the thesis in evaluating the critical gaps between on-premises and cloud 

computing capabilities. Before introducing formal cloud definitions, we must first 

demystify the term “cloud”; this chapter provides an informal heuristic to introduce a more 

accessible definition of the cloud, which will enable the deconstruction of common 

misunderstandings about its structures and responsibilities. Substitute the term cloud with 

a concept instead: that locally operated, on-premises resources will access a larger pool of 

remotely shared resources over the internet. Cloud service providers own, operate, and 

make available distributed data centers with massive quantities of fundamental computing 

power (e.g., random access memory [RAM], central processing units [CPUs], storage, and 

network connectivity).  

NIST’s formal definition for cloud computing is, “a model for enabling convenient, 

on-demand network access to a shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or cloud provider interaction” (Mell & Grance, 

2011, p. 2). The cloud service provider’s product offerings include on-demand operating 

systems, servers, development tools, hard drives, applications, and other services. 

Additionally, cloud service providers constantly innovate and deliver new capabilities that 

are commercially supportable, as illustrated in Figure 1. 
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 Examples of Cloud Consumer Services. Source: Liu et al. (2011). 

The cloud service provider can be seen as a big box retailer that charges a unitized 

cost for the work/cycle performed by each instance of utilization. This arrangement of 

unitization enables the cloud client to increase and decrease use, as well as “swap and drop” 

products with minimal costs or risks. The cloud is predicated on a self-checkout service 

model with itemized/metered billing in which clients can consume as much as they wish 

with little involvement from the cloud service provider. While the near-inexhaustible 

pooled computing resources are readily available to the client, it is the chief responsibility 

of the cloud service provider to ensure the secure provisioning of currently unavailable 

resources. The cloud client can gain significant and always compelling additional savings 

in a reduced IT headcount with fewer on-premises resources to manage.  
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B. DEFINITIONS 

This section divides definitions into two main categories, cloud computing 

(provided primarily by NIST) and cloud security (provided by the Committee on National 

Security Systems [CNSS]).  

1. Cloud Computing 

This section defines deployment and service models, along with other pertinent 

terms. The paramount takeaway is that any meaningful discussion about cloud security will 

not refer to the ubiquitous cloud but will instead reference a specific selected architecture 

instantiation, reflecting committed organizational choices. 

Directly, NIST Special Publication (SP) 800-145 has set forth the following 

definitions as inherent qualities of cloud computing, which fit within the cloud computing 

model shown in Figure 2.  

 

 NIST Cloud Computing Model. Source: CSA (2017). 
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a. Essential Characteristics 

In SP 800-145, essential characteristics are described as follows: 

On-demand self-service. A consumer can unilaterally provision computing 
capabilities, such as server time and network storage, as needed 
automatically without requiring human interaction with each service 
provider.  

Broad network access. Capabilities are available over the network and 
accessed through standard mechanisms that promote use by heterogeneous 
thin or thick client platforms (e.g., mobile phones, tablets, laptops, and 
workstations). 

Resource pooling. The provider’s computing resources are pooled to serve 
multiple consumers using a multi-tenant model, with different physical and 
virtual resources dynamically assigned and reassigned according to 
consumer demand. There is a sense of location independence in that the 
customer generally has no control or knowledge over the exact location of 
the provided resources but may be able to specify location at a higher level 
of abstraction (e.g., country, state, or datacenter). Examples of resources 
include storage, processing, memory, and network bandwidth. 

Rapid elasticity. Capabilities can be elastically provisioned and released, in 
some cases automatically, to scale rapidly outward and inward 
commensurate with demand. To the consumer, the capabilities available for 
provisioning often appear to be unlimited and can be appropriated in any 
quantity at any time. 

Measured service. Cloud systems automatically control and optimize 
resource use by leveraging a metering capability at some level of abstraction 
appropriate to the type of service (e.g., storage, processing, bandwidth, and 
active user accounts). Resource usage can be monitored, controlled, and 
reported, providing transparency for both the provider and consumer of the 
utilized service. (Mell & Grance, 2011, p. 2) 

b. Service Models 

SP 800-145 also discusses cloud service models: 

Software as a Service (SaaS). The capability provided to the consumer is to 
use the provider’s applications running on a cloud infrastructure. The 
applications are accessible from various client devices through either a thin 
client interface, such as a web browser (e.g., web-based email), or a program 
interface. The consumer does not manage or control the underlying cloud 
infrastructure including network, servers, operating systems, storage, or 
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even individual application capabilities, with the possible exception of 
limited user specific application configuration settings. 

Platform as a Service (PaaS). The capability provided to the consumer is to 
deploy onto the cloud infrastructure consumer-created or acquired 
applications created using programming languages, libraries, services, and 
tools supported by the provider. The consumer does not manage or control 
the underlying cloud infrastructure including network, servers, operating 
systems, or storage, but has control over the deployed applications and 
possibly configuration settings for the application-hosting environment. 

Infrastructure as a Service (IaaS). The capability provided to the consumer 
is to provision processing, storage, networks, and other fundamental 
computing resources where the consumer is able to deploy and run arbitrary 
software, which can include operating systems and applications. The 
consumer does not manage or control the underlying cloud infrastructure 
but has control over operating systems, storage, and deployed applications; 
and possibly limited control of select networking components (e.g., host 
firewalls). (Mell & Grance, 2011, pp. 2–3) 

c. Deployment Models 

Figure 3 shows an overview of public and private clouds, and the ways in which 

they differ.  

 

 Public versus Private Cloud. Source: Odell et al. (2015). 
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SP 800-145 defines key terms in this domain as follows. 

Private cloud. The cloud infrastructure is provisioned for exclusive use by 
a single organization comprising multiple consumers (e.g., business units). 
It may be owned, managed, and operated by the organization, a third party, 
or some combination of them, and it may exist on or off premises. 

Community cloud. The cloud infrastructure is provisioned for exclusive use 
by a specific community of consumers from organizations that have shared 
concerns (e.g., mission, security requirements, policy, and compliance 
considerations). It may be owned, managed, and operated by one or more 
of the organizations in the community, a third party, or some combination 
of them, and it may exist on or off premises. 

Public cloud. The cloud infrastructure is provisioned for open use by the 
general public. It may be owned, managed, and operated by a business, 
academic, or government organization, or some combination of them. It 
exists on the premises of the cloud provider. 

Hybrid cloud. The cloud infrastructure is a composition of two or more 
distinct cloud infrastructures (private, community, or public) that remain 
unique entities, but are bound together by standardized or proprietary 
technology that enables data and application portability (e.g., cloud bursting 
for load balancing between clouds). (Mell & Grance, 2011, p. 3)   

The Official (ISC)2 Guide provides another key definition: 

Cloud Provisioning. The deployment of a company’s cloud computing 
strategy, which typically first involves selecting which applications and 
services will reside in the public cloud and which will remain on-site behind 
the firewall or in the private cloud. Cloud provisioning also entails 
developing the process for interfacing with the cloud applications and 
services as well as auditing and monitoring who accesses and utilizes the 
resources. (Gordon, 2016, p. 9)  

And NIST SP 800-125 rounds out the terminology for deployment models with: 

Virtualization. The simulation of the software and/or hardware upon which 
other software runs. This simulated environment is called a virtual machine 
(VM). (Scarfone, Souppaya, & Hoffman, 2011, p. 2-1) 
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d. A One-Size-Fits-All Cloud Does Not Exist 

Two U.S. intelligence agencies—the Central Intelligence Agency (CIA) and the 

National Security Agency (NSA)—are relatively recent adopters of cloud computing and, 

unsurprisingly, demand stringent information security requirements. In a 2014 interview, 

the CIA’s chief information officer (CIO), Doug Wolfe, confirmed that the two clandestine 

agencies chose to build out their respective cloud architectures differently (CIA, 2014). 

Wolfe explained that the CIA cloud was built using commercial cloud products with 

participation from a commercial cloud service provider, while the NSA cloud was designed 

in-house, also using commercially available products but without participation from a 

commercial cloud service provider. The CIA and NSA pursued two different paths in 

achieving similar cloud computing capabilities. Also in 2014, the NSA CIO, in a separate 

interview with Network World, detailed the cloud decisions the NSA made to integrate a 

community cloud that could service other intelligence mission partners and meet the 

security requirements demanded by the NSA for classified data (Smith, 2014). 

The NSA CIO interview also revealed that the community cloud was able to 

enhance performance because it collocates all community data repositories within common 

data centers (Smith, 2014). Comments from the two CIOs dispel the notion of a one-size-

fits-all cloud, even for two seemingly similar technologically sophisticated U.S. 

intelligence agencies, by contextualizing that each organization has to make choices with 

respect to cloud deployment and service models.  

2. Cloud Security  

The Committee on National Security Systems (CNSS) is the U.S. 

intergovernmental body that develops cybersecurity guidance at the national-level. It is 

therefore an appropriate forum to consult for information assurance definitions. CNSSI 

4009 defines key terms in this domain as follows (CNSS, 2015): 

Confidentiality. “Preserving authorized restrictions on information access 
and disclosure, including means for protecting personal privacy and 
proprietary information” (p. 30). 
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Integrity. “Guarding against improper information modification or 
destruction, and includes ensuring information non-repudiation and 
authenticity” (p. 68). 

Availability. “Timely, reliable access to data and information services for 
authorized users” (p. 11). 

Information System-Related Security Risks. “Risk that arises through the 
loss of confidentiality, integrity, or availability of information or 
information systems considering impacts to organizational operations and 
assets, individuals, other organizations, and the Nation. A subset of 
information security risk” (p. 66).   

Vulnerability. “Weakness in an information system, system security 
procedures, internal controls, or implementation that could be exploited by 
a threat source” (p. 131). 

Threat. “Any circumstance or event with the potential to adversely impact 
organizational operations (including mission, functions, image, or 
reputation), organizational assets, individuals, other organizations, or the 
Nation through an information system via unauthorized access, destruction, 
disclosure, modification of information, and/or denial of service” (p. 122). 

Impact. The effect on organizational operations, organizational assets, 
individuals, other organizations, or the nation (including the national 
security interests of the United States) of a loss of confidentiality, integrity, 
or availability of information or an information system (p. 60). 

Countermeasures. “Actions, devices, procedures, techniques, or other 
measures that reduce the vulnerability of an information system. 
Synonymous with security controls and safeguards” (p. 33). 

C. THE CIA TRIAD AND THE INFORMATION SECURITY EQUATION 

Information security at an elementary level consists of confidentiality, integrity, 

and availability. Collectively, the three are frequently referred to as the CIA triad. As 

previously stated, the primary objective of all high-functioning information security 

programs is preserving the CIA triad. Therefore, a worthy exercise is to establish the 

attributes that both achieve and violate the CIA triad, in adherence with the definitions 

published by the CNSS glossary (2015). 
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The security risk equation in Equation 1, adapted from NIST (n.d.), is not 

referenced as prevalently as the CIA triad, but it arguably offers comparable utility in 

concisely and accurately mapping dynamic information assurance interrelationships. The 

value in the security risk equation is that it encapsulates the entire problem domain for the 

security practitioner.  

  
(1)

 

 

D. DISTINGUISHING CLOUD-SPECIFIC VULNERABILITIES FROM ON-
PREMISES SYSTEMS 

Reviewing multiple cloud publications—from popular magazines to academic 

papers—revealed a bifurcated view of extremes regarding cloud security. Groups either 

claimed that the cloud would solve all traditional on-premises system security problems or 

could not be trusted at all. This thesis’ research provides greater confidence that the cloud 

can engender trust and can address traditional on-premises system problems to scale, but 

with a major caveat—the operating concepts for data, defense perimeter, skillsets, and 

processes require fundamental restructuring or migration. This thesis implements a more 

nuanced approach. This section first isolates for general on-premises system 

vulnerabilities, threats, and countermeasures that need to be considered before determining 

whether the cloud is more or less secure. Before designating a vulnerability as cloud-borne, 

it needs to meet a set of criteria—a litmus test to decide if a vulnerability should be assigned 

as cloud-specific. Determining whether a vulnerability is cloud-borne is helpful in 

discussions with reluctant managers about the relative risk of the cloud. Published by the 

Institute of Electrical and Electronics Engineers (IEEE), “Understanding Cloud Computing 

Vulnerabilities” provides a rubric that helps determine if vulnerabilities are cloud-borne 

(Grobauer, Walloschek, & Stöcker, 2011). According to the rubric, a vulnerability is cloud-

specific if it: 

• is intrinsic to or prevalent in a core cloud computing technology  
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• has its root cause in one of NIST’s essential cloud characteristics 

• is caused when cloud innovations make tried-and tested security controls 
difficult or impossible to implement, or 

• is prevalent in established state-of-the-art cloud offerings. (Grobauer et al., 
2011, p. 52) 

The first bullet refers to web applications, virtualization, and cryptography as the 

core cloud technologies (Grobauer et al., 2011). Web applications and services are 

considered central to the cloud because the cloud is transported via internet HTTP 

protocols—often to a Web browser. Since the internet delivers the cloud, it uses software 

that emulates hardware, which drives down costs. The delivery mechanism unleashes 

tremendous economies of scale. Cryptography is intrinsic to core cloud technology; 

consumers would balk at paying for services lacking in confidentiality, privacy, and 

integrity. The second bullet alludes to the five essential characteristics attributed to NIST 

(described in the previous chapter)—on-demand self-service, broad network access, 

resource pooling, rapid elasticity, and measured service. These characteristics are core to 

the cloud (Mell & Grance, 2011), and are precisely the traits that differentiate the cloud 

from traditional on-premises systems. 

The third bullet identifies instances when on-premises system security practices do 

not transfer to the cloud—for example, the “cloud-negative controls” identified by SANS 

(2016). The fourth bullet describes the cloud as pushing present technological boundaries. 

If a vulnerability is identified in an advanced cloud offering—one that has not been 

previously identified—then it must be a cloud-specific vulnerability. This thesis agrees that 

there is some merit to the argument, but ultimately finds it conflated; the IEEE paper 

includes weak authentication implementations (not exclusive to the cloud) in cloud 

offerings (Grobauer et al., 2011). Due to the flaw in this interpretation, this fourth indicator 

can only be seen as partially attributed, or a hybrid cloud-specific vulnerability. This partial 

attribution is addressed later in this thesis.  
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E. COMPARING CLOUD-SPECIFIC THREATS FROM ON-PREMISES 
SYSTEM THREATS 

Table 1 shows threats that are attributable to conventional on-premises 

architectures, and those that can be ascribed to cloud computing architectures. The 

distribution shows that cloud computing technologies need to account for several additional 

threats. 

Table 1. Treacherous 12 Threats Summary. Adapted from CSA (2016). 

Threat in Conventional Architectures Threat in the Cloud 
Data breaches Data breaches 
System and application vulnerabilities System and application vulnerabilities 
Advance Persistent Threats Advance Persistent Threats 
Data loss Data loss 
Denial of service Denial of service 
Weak access management Weak access management 
Account hijacking Account hijacking 
Malicious insiders Malicious insiders 
Insufficient due diligence Insufficient due diligence 
 Insecure APIs 
 Nefarious use of cloud services 
 Shared technology vulnerabilities 

 

Considering the vulnerabilities borne of cloud architectures, it is important to 

determine which vulnerabilities could be exploited by cloud-specific threats. In 2016, the 

CSA released The Treacherous 12: Cloud Computing Top Threats in 2016, which it 

compiled by surveying cloud industry experts. The Treacherous 12 ranks a dozen security 

concerns in order of severity:  

1. Data Breaches 

2. Weak Access Management 

3. Insecure APIs 

4. System and Application Vulnerabilities 
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5. Account Hijacking 

6. Malicious Insiders 

7. Advanced Persistent Threats (APTs) 

8. Data Loss 

9. Insufficient Due Diligence 

10. Abuse and Nefarious Use of Cloud Services 

11. Denial of Service 

12. Shared Technology Issues 
(CSA, 2016, p. 5)  

Data breaches are violations of confidentiality that result in unauthorized 

disclosure. Applying the four conditions from the cloud vulnerability rubric (Grobauer et 

al., 2011), data breaches are not a cloud-specific threat. They existed prior to widespread 

cloud deployment, and are a problem for on-premises systems as well. The cloud, however, 

may present a new threat vector because of multi-tenancy.  

Weak access management is a violation of integrity that can lead to destruction, 

disclosure, and distributed denial-of-service (DDos) consequences (denial of service is 

discussed later in this section). A poor credentialing scheme can originate from a variety 

of factors, but the scalability and reuse of resources exacerbates the weakness. Weak access 

management fits the second condition in the cloud vulnerability rubric— “has its root cause 

in one of [the] essential cloud characteristics” (Grobauer et al., 2011, p. 52)—because the 

vulnerability is rooted in the resource pooling essential characteristic. While weak access 

management is not a cloud-specific threat, the cloud increases the attack surface area based 

upon its rapid provisioning and de-provisioning capabilities  

An insecure application programming interface (API) can lead to violations of 

confidentiality and integrity, resulting in unattributed unauthorized disclosures. In the 

cloud vulnerability rubric, insecure APIs exploit the first two conditions: they are specific 

to the cloud and rooted in essential cloud characteristics. The cloud’s reliance on internet 

connectivity/Web services clearly exploits the first condition, while the second is exploited 

because elasticity in the frequent provisioning/de-provisioning of cloud access constitutes 
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an essential characteristic of the cloud. Additionally, The Treacherous 12 proposes that 

risks may increase proportionally with interoperability when third-party interfaces are 

accepted as trusted relationships even when they should remain untrustworthy (CSA, 

2016).  

System and application vulnerabilities are simply synonymous with buggy code. 

Poorly written code can lead to a plethora of undesirable outcomes, including unauthorized 

disclosure, destruction, and system unavailability. Those with computer experience realize 

that problematic code written by humans will likely carry inherent flaws. Thus, system and 

application vulnerabilities are not a cloud-specific threat; however, it is reasonable to argue 

that the cloud increases the attack surface area because of its growing ubiquity (CSA, 

2016). 

Account hijacking occurs when a user account is compromised—for example, by 

way of a phishing scam—and is another threat that can lead to innumerable bad outcomes. 

This threat does not exploit any of the cloud vulnerability rubric’s four criteria specific to 

the cloud. However, adversaries could use the cloud account to perform more insidious 

attacks than they can for an on-premises system distributed denial of service attack, 

leveraging only a breached IP address. Again, while this threat is not cloud-specific, the 

cloud increases the attack surface area based upon the potential access to the management 

plane a breach account can gain. 

Malicious insiders are employees who do not work in accordance with an 

organization’s goals; they present a more urgent concern than external adversaries because 

they already have access to the information system. While malicious insiders are not a 

cloud-exclusive threat, by engaging in a necessary relationship with a cloud service 

provider, the organization potentially takes on additional insiders, which increases the odds 

of encountering bad actors. This thesis expands the definition of insiders to include cloud 

service provider employees who will have account access privileges equivalent to a system 

administrator’s access. Therefore, cloud service provider personnel should be vetted 

according to the standards of the organization’s hiring practices. Like we have seen with 

other threats, malicious insiders are also not a cloud-specific threat; however, the cloud 

again increases the attack surface area. 
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Advanced persistent threats (APTs) are adversaries who have the motivation and 

resources to perpetually attempt to breach an information system and, upon a breach, 

laterally maneuver to exploit to their own design. APTs do not care whether their target is 

on-premises or cloud-based, and therefore this thesis does not consider APTs to be a cloud-

specific threat. Actually, this thesis contends that the additional resources and vigilance of 

the cloud service provider increase the available resources dedicated to counter APTs, and 

thus increase the net countermeasures to combat them.  

Data loss is exactly what it sounds like: when data is permanently, unintentionally 

unavailable. It should be clear that this threat is also agnostic to the type of information 

system, whether cloud or on-premises. Applying Grobauer et al.’s four conditions, the 

thesis determines with little controversy that data loss is not a cloud-specific. Furthermore, 

this thesis proposes that the cloud provides for inexpensive redundancy at multiple 

locations and can therefore, to an extent, reduce certain variants of data loss—for example, 

via data provenance technologies.  

Insufficient due diligence is when an organization has a low threshold of due care 

and verification for vetting a contracted technological service. Applying the cloud 

vulnerability rubric, it is not a singularly a cloud-specific threat; however, this thesis holds 

that insufficient due diligence in the cloud can both amplify and accelerate calamity 

because the consumer’s architecture is no longer remote. As a counterbalance, though, the 

aforementioned misconfiguration concerns mean that a cloud service provider that passes 

a rigorous due diligence process can at times offer additional tools to help protect the 

consumer. Ultimately, insufficient due diligence is a partial cloud-specific threat. 

Nefarious use of cloud services is the unauthorized leveraging of cloud resources 

for unintended purposes. This threat, per the rubric, is necessarily cloud-specific. It exploits 

all four conditions because the threat presupposes a cloud infrastructure.  

Denial of service occurs when an actor purposefully inhibits the availability of data, 

applications, or both. Denial of service is not a cloud-specific threat; its existence preceded 

cloud services.  
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Shared technology vulnerabilities are a cloud-specific threat, as they are a 

byproduct of multi-tenancy. Applying the rubric conditions, multi-tenancy is both core to 

cloud computing technology and has root causes from its essential characteristics of 

resource pooling and rapid elasticity. The prior operational questions address inquiring 

about the policies of isolating machine images. The extent of the shared technology 

vulnerability will depend on how the cloud service provider implements its machine 

isolation and provisioning/de-provisioning. 

In summary, when validated against Grobauer et al.’s rubric for cloud-borne 

vulnerabilities, of the Treacherous 12 threats, three are fully cloud-specific threats (APIs, 

nefarious use of cloud services, and shared information technology vulnerabilities). Four 

are partially cloud-specific, meaning they do not specifically exploit a cloud-borne 

vulnerability but they either increase the attack surface area or potentially could inflict 

greater harm (weak access management, account hijacking, malicious insiders, and 

insufficient due diligence). And the remaining five are not cloud-specific threats. 

Additionally, two of the threats actually have potentially more effective mitigations within 

a cloud environment: APIs and data loss.  

The takeaway from this analysis is that, of the 12 greatest estimated threats that 

experts say emanate from the cloud, only three point to truly cloud-specific vulnerabilities. 

Insecure APIs, nefarious use of cloud services, and shared technology vulnerabilities are 

the cloud-specific threats that merit additional in-depth defense security measures. 

Additionally, weak access management, account hijacking, malicious insiders, and 

insufficient due diligence are the next tier of cloud-specific threats to address. 

F. DISTINGUISHING CLOUD-SPECIFIC COUNTERMEASURES  

Countermeasures and security controls have the potential to detect, reduce, or even 

eliminate threats that exploit vulnerabilities. The goals of each specific cloud project, 

service model, and cloud service provider platform are the critical inputs in determining 

the additional countermeasures the project should integrate. Countermeasures and security 

controls are risk management tools. This section on countermeasures is brief, as Chapter V 

is dedicated to recommending specific cloud computing risk management options.  
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The first step in arriving at countermeasures is for the organization to conduct a risk 

assessment based on its use case(s). In further detail, the logical steps are an organization 

should generate its requirements, map its architecture, and conclude by diagnosing and 

then prioritizing the remaining security gaps of the cloud service provider (CSA, 2017). 

There are many sources that offer large catalogs of security controls categorized by needs, 

such as access control or incident response. The cataloged controls are further refined by 

impact level for more cost-effective pairings between data impact level and requisite 

controls. NIST’s SP-800-53, the International Organization for Standardization 

International’s and Electrotechnical Commission’s ISO/IEC 27001:2013, and the 

framework known as Control Objectives for Information and Related Technologies 

(COBIT) 5.0 are three widely adopted security control catalogs. The Cloud Controls 

Matrix, published by the CSA, is a rational catalog to begin with because it maps its 

controls side-by-side with many other control catalogs for easy comparison.  

Chapter III inspects the litany of technical challenges faced by digital forensic 

incident-response professionals.  
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III. TECHNICAL ISSUES IN CLOUD COMPUTING 

This chapter calls attention to the specific security implications that come with the 

different service models an organization can choose to adopt: infrastructure as a service, 

platform as a service, or software as a service. The service model an organization selects 

determines the level of involvement it must have in application development within the 

cloud service provider’s environment. The service model selection in itself also determines 

a particular set of consumer challenges balanced against greater autonomy in managing 

cloud-specific settings, configurations, and controls. The majority of the digital forensic 

challenges this chapter identifies are cloud-intrinsic and, consequently, predominately 

service model–neutral. So why does distinguishing between service models even matter? 

The initial benefit is that doing so raises the awareness of additional cloud security pain 

points, enabling the consumer to abate these issues through a combination of policy 

changes or contracts with additional security services. The sustaining, long-term benefit is 

that doing so provides an organization with a foundation for “transformational migration.” 

Transformational migration, a term coined in this thesis and discussed with the 

recommendations in Chapter V, is an operational strategy—essentially a blueprint—to help 

organizations interface with cloud service providers to best optimize cloud capabilities and 

minimize security risks. 

A. SERVICE MODEL SELECTION: COMPARATIVE RISK FACTORS  

The Cloud Security Alliance’s 2017 white paper provides a high-level overview of 

security responsibilities based on service models. Compared in Figure 4, infrastructure as 

a service and software as a service reflect the greatest and least consumer security 

responsibilities, respectively (CSA, 2017). The first step in assessing the significance of 

the discrete technological, legal, and boundary challenges the cloud presents is to use a 

generic-abstracted model to trace how the fundamental cloud building blocks interact. As 

depicted in Figure 5, an intuitive perspective views each cloud service as a series of discrete 

service functionalities stacked on top of the preceding service model. 
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 Consumer Service Model Security Burden Continuum.  
Source: Cloud Security Alliance (CSA) (2017). 

 

 Cloud Reference Service Model Stack. Source: CSA (2017). 
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(1) Infrastructure as a Service 

• Infrastructure as a service allows the consumer discretion over raw 

computing resources for the purposes of creating any application of its 

choosing.  

• In an infrastructure as a service deployment, the consumer only uses the 

infrastructure, not the platform or the applications.  

• This structure allows the most freedom in tailoring a cloud environment, 

but creates the greatest consumer security burden in exchange.  

• From a consumer perspective, infrastructure as a service is the base 

structure; it is more similar than the others to an on-premises information 

system (Mell & Grance, 2011).  

(2) Platform as a Service 

• Platform as a service builds on top of the infrastructure as a service 

abstraction; it contributes middleware to the cloud stack. 

• Consumers can build their own applications using the cloud service 

provider’s tools (Mell & Grance, 2011). 

• Platform as a service comes with a suite of tools, including—almost 

exhaustively—any in-demand programing language. 

• Middleware provides a state-of-the-art development environment platform 

to develop applications, including software as a service for external 

clients.  

• From a consumer perspective, platform as a service enables the consumer 

to develop without concern for acquiring and maintaining many of the 

traditionally associated high-budget hardware costs (e.g., servers).  
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• According to the Cloud Security Alliance (2017), because platform as a 

service deployment is accessed through the platform provided by the cloud 

service provider, the cloud service provider is responsible for securing the 

platform, with all other security responsibilities assigned to the consumer 

(e.g. built applications and data). 

(3) Software as a Service 

• At the top of the service model stack in Figure 5, software as a service 

represents a full-scale cloud application. 

• Consumers can only run applications pre-built by the cloud service 

provider (Mell & Grance, 2011).  

• From a consumer perspective, familiar software as a service applications 

include Microsoft Office 365 and Dropbox; users access the application 

based on a pay-as-you-go subscription agreement.  

• While software as a service can be developed with a combination of 

infrastructure as a service or platform as a service—even from different 

cloud service providers—the user will be one of many clients; this gives 

rise to multi-tenancy concerns.  

• As noted in Figure 4, the consumer has the least onerous direct security 

responsibilities with software as a service.  

• However, indirect security concerns remain. Because the delivery may 

entail a potential combination of infrastructure as a service and platform as 

a service development, the consumer must rely upon cumulative trust of 

each and every service model present in development of the software as a 

service product.  

• The consumer’s administrative authority is limited to users who can access 

objects and associated privilege levels (CSA, 2017). 
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(4) Service Model Stack Components 

Infrastructure as a Service:  

• Facilities are the physical data center.  

• Hardware consists of the inventory of computing physical assets (e.g., 

servers), networking, and storage. 

• Abstraction decouples the physical resources through a process called 

virtualization (defined in Chapter II.C.1), which allows resource pooling. 

• Core connectivity and delivery is the process of integrating and 

automating the abstracted resources into pools that can deliver metered 

services to multiple customers. 

• APIs are protocols and tools the cloud service provider makes available 

for the customer to communicate with cloud services, such as 

configuration settings (CSA, 2017). 

Platform as a Service:  

• Integration and middleware is an additional layer built on infrastructure as 

a service that provides the customer with access to programming tools to 

build applications accessed through platform as a service APIs. 

Middleware allows the customer to leverage the infrastructure as a service 

abstraction without managing the hidden resources (e.g., patching 

networks or load balancing servers; CSA, 2017). 

Software as a Service:  

• Data is an information source that is either stored or processed.  

• Metadata is data about the data, such as when a data file was created or 

which user created the data file. 
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• Content is data that has been processed for end users in a form different 

from the original unprocessed data.  

• The majority of cloud software as a service applications are not created in 

isolation but in combination with contributions from other infrastructure 

as a service and/or platform as a service.  

• APIs are protocols and tools the cloud service provider makes available 

for the customer to communicate with cloud services, such as 

configuration settings (CSA, 2017). 

• Presentation modality refers to the security features for an application, 

often determined by whether the end user is on a consumer platform (e.g., 

social media) or an enterprise platform.  

• Presentation platform differs based on the end-point device (e.g., tablet, 

mobile phone, specialty medical device) to deliver an optimal user 

experience based on end-point device constraints (CSA, 2011). 

B. SHARED RESPONSIBILITY MODEL 

The consumer and the cloud service provider both share responsibilities in the cloud 

relationship. As previously mentioned, confusion or uncertainty about the division of 

responsibilities often leads to customer misconfiguration.  Figure 6 shows the general, if 

inexact, division of responsibility between the consumer and the cloud service provider, 

based solely on the service model selection.  
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As noted in the text, this matrix lacks essential granularity; the matrix provided in Figure 7, in the 
next subsection, is more complete. 

 Cloud Security Responsibility Matrix (Low Differentiation). 
Source: Gordon (2016). 

However, the breadth of Figure 6 is inoperable; when compared to the granularity 

of the matrix in Figure 7 (presented in the next subsection), relying on the information in 

Figure 6 alone could lead to misconfigurations. As we begin to understand how the cloud 

works, Figure 6 is an adequate model because it effectively captures that the three service 

models have varying levels of consumer participation and joint responsibility. But its 

effectiveness ends there. The matrix is imprecise about the division of labor and does not 

usefully compare the three service models to an on-premises application, as the matrix in 

Figure 7 does. This matrix also inaccurately ascribes the responsibility of data and 

application security to the consumer in a software as a service model, which shows a 

misunderstanding about cloud operations. The cloud service provider is managing the 

entire service model stack in software as a service. This illustrates that customer 

misconfigurations occur when there is confusion about which entity is responsible for 

which logical layer of the cloud stack, depending on the service model.  
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1. Why Lift and Shift Does Not Work 

Mistakenly, when some consumers contemplate cloud migration, they assume that 

they can simply port their entire traditional IT architecture to the cloud without any 

modification—as previously mentioned, this is known as lift and shift (CSA, 2017). 

Fallaciously, it is not the responsibility of the cloud service provider to make a lift and shift 

migration work, because this cloud transition “strategy” is orthogonal to cloud 

architectures. The lift and shift assumption is largely responsible for the prevalence of 

consumer misconfigurations. Chapter V.B.1 addresses recommendations for reducing 

customer misconfigurations.  

For a more factual representation of the shared responsibility model, see the 

leftmost column in Figure 7, which represents an on-premises application. Prior to the 

cloud, on-premises system applications were highly customized and expected to operate 

within a standalone data center, and application data was structured for minimal to no 

interaction with other applications (Bommadevara, Del Miglio, & Jansen, 2018). The 

remaining three columns in Figure 7 represent how applications interact within each of the 

three cloud service models. In Figure 7, the yellow highlighting indicates that security for 

the corresponding layer is a consumer responsibility and the gray highlighting indicates it 

is the responsibility of the cloud service provider. Cloud applications, juxtaposed against 

on-premises applications, are highly agile and are expected to operate in multiple data 

centers; permissioned cloud data is available on-demand for maximal interaction with other 

applications. This underscores why on-premises applications require changes at multiple 

logical layers to properly function in a cloud service model, as depicted in the cloud stack 

in Figure 7. The high customization of on-premises system applications created two 

deficiencies relative to scalability when compared to cloud systems: it inhibited 

applications from leveraging data from other applications, and it limited administrator 

knowledge to a small subset of applications, creating pockets of specialization. This means 

that applications that could leverage data from another application are inhibited from doing 

so in the cloud, and application administrator knowledge bases are limited to a small subset 

of applications (Bommadevara et al., 2018). 
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Repeated again as Figure 11 for reader convenience. 

 Cloud Security Responsibility Matrix (On-premises Application). 
Source: DISA (2017). 

2. Cloud Logical Layer Commonalities 

Infrastructure as a service, platform as a service, and software as a service models 

all share interoperability commonalities that permit communication with a diverse array of 

endpoint devices. While the service model dictates the aggregate resources of each layer 

under the customer’s control (depicted by the varying swaths of yellow in Figure 7), only 

standardized structures and exacting protocols below the surface (diagramed in Figure 8) 

permit a logical layer to communicate with another layer. 

Data are able to transmit via the cloud because, succinctly stated, “Abstraction is 

separation of interface from internals, of specification from implementation” (Saltzer & 

Kaashoek, 2009, Chapter 1.3.2, para. 2). This implies that the logical interconnected 

structure of all cloud service models simply requires the proper configuration of interfaces 

of the endpoint devices. Communications proceed for all compatible interfaces that meet 

the service model’s precise specifications for the transmitting logical layers. 
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 Cloud Security Alliance Logical Model. Source: CSA (2017). 

Infostructure is data either to be stored or processed by computing processes. Data 

security concerns will directly address the cloud’s infostructure. Applistructure comprises 

applications services used in building applications or the resultant cloud-deployed 

application itself (CSA, 2017). Application security concerns will directly address the 

cloud’s applistructure. Infrastructure comprises the enormity of the cloud service 

provider’s pooled core computing, networking, and storage resources. Infrastructure 

security will directly address the cloud’s scalable and elastic infrastructure. Metastructure 

enables communication interoperability protocols between the various layer interfaces to 

function cohesively; critical configuration and management settings are embedded in 

metastructure signals. Configuration, management, and administrative security concerns 

will directly address the cloud’s metastructure. The merits of this logical model maps 

responsibility to service model selection. 

It is this lower-level understanding of the uniform interconnection logic that should 

assist in preventing customer misconfigurations caused by ignorance of standard cloud 

communication functions at different layers. The oversimplification of consumer and cloud 

service provider responsibilities, as displayed in Figure 6, promotes ignorance and 

ultimately leads to misconfigurations. While determining which service model is best 

suited to the organization’s needs is the obvious first step, the consumer must continue to 

assess responsibilities throughout the more detailed structures within this logical model. 

The user experience of an on-premises application may be nearly identical to the new cloud 
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service; however, the wiring, depending on the service model, introduces several 

permutations that require different customer configurations. This is why understanding 

how service model selection dictates the likelihood of security misconfigurations is crucial 

to reducing them. 

C. CLOUD DIGITAL FORENSIC INCIDENT-RESPONSE CHALLENGES 

Cloud digital forensic incident-response challenges are characterized as a last-

resort concern, only needed when simpler tools and precautions did not stop the penetrating 

threat. However, when digital forensic incident-response is required, it is also an admission 

that the organization has experienced a significant security breach worthy of digital 

forensics specialists. Often, the foremost cloud migration challenge is gaining comfort that 

the cloud service provider will preserve confidentiality for the sensitive data on its 

information system that is readily accessible by internet connection (Singh & Singh, 2017). 

Chapter III.C.1.a touches on the encryption complexity used in the cloud and the difficulty 

it poses just in identifying users—let alone reading their data. Also, cryptographic erasure 

(also known as crypto-erase or cryptographic erase) is a technique that can quickly address 

misconfiguration confidentiality violations. This thesis focuses on the higher-impact but 

lower-probability scenarios compelling digital forensics and the numerous difficulties 

forensic scientists confront with cloud computing.  

The NIST Cloud Computing Forensic Science Working Group (NCC FSWG) 

identifies the three main categories of cloud challenges: 

The cloud exacerbates many technological, organizational, and legal 
challenges already faced by digital forensics examiners. Several of these 
challenges, such as those associated with data replication, location 
transparency, and multi-tenancy are somewhat unique to cloud computing 
forensics. (NCC FSWG, 2014, p. 1)  

In the future, the NCC FWSG’s mission dictates that it will develop mitigation 

strategies not currently addressed by existing cloud forensic science. The working group’s 

research findings tabulated 65 unique cloud forensic challenges. From this analysis, the 

group then distributed the 65 challenges into nine primary groupings: architecture, data 

collection, analysis, anti-forensics, incident first responders, role management, legal, 
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standards, and training challenges (NCC FSWG, 2014). Table 2 shows how many of the 

65 challenges fit into each of the nine primary groupings. 

Table 2. Sixty-Five Challenges by Primary Categories. Adapted from 
NCC FSWG (2014).  

Primary Category Count 

Data Collection  19 

Architecture 18 

Legal 13 

Analysis 6 

Role Management 4 

Standards 2 

Training 2 

Incident First Responders 1 

Anti-forensics - 

Total 65 

 

The working group further established additional subcategories, because not all of 

the primary categories in practice effectively resolved into a single grouping of the nine 

primary categories; for example, “multi-tenancy” and “data segregation” are two 

prominent architecture-related subcategories that emerged. Figure 9 expands the nine 

groupings to show both the nine primary categories and related subcategories. 
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 Sixty-Five Cloud Challenges Aggregated into Nine Primary 
Categories and Relevant Sub-categories. Source:  NCC FSWG (2014). 

The following list provides an abbreviated description of the nine primary 

categories, each resulting in a mixture of technical, legal, and organizational complications 

set forth by the NCC FSWG’s  report (2014, pp. 6–7). 

• Architecture cloud challenges: challenges that involve the heterogenity of 

cloud architectures deployed by cloud service providers; the lack of 

precedent pertaining to court-admissable standards in the preservation of 

cloud chain-of-custody artifacts; and the deficit of support services to 

enable seizure without impacting other tenants. 

• Data collection cloud challenges: challenges that arise from the shared and 

distributed architecture, which can make locating data—which can be in 

variable locations—difficult. These also include challenges that mpede the 

collection aggregation activities due to the likely incidence of breaching the 

confidentiality of collocated tenants. 

• Analysis cloud challenges: challenges that involve reproducing events from 

a forensic image virtual asset or highly dynamic storage; validating 

recovered metadata; synchronizing log file timestamps; and correlating 

artifacts both inter- and intra-cloud service providers. 
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• Anti-forensics cloud challenges: challenges that involve tools and 

techniques specifically purposed for deception and for underming the 

integrity of retrieved evidence, or from malicious code that defeats virtual 

machine isolation safeguards. 

• Incident first responder cloud challenges: challenges that arise form a 

conflict of interest between the cloud service provider’s approach—as an 

incident first responder and agent—and the approach that the principal data 

owner wants to employ.  

• Role management cloud challenges: challenges that stem from the relative 

ease of creating fraudulent accounts to conceal identity, or from difficulty 

establishing non-repudiation for cloud users because of the minimal 

requirements necessary to open a cloud account. 

• Legal cloud challenges: challenges that arise form the laws and regulations 

of the jurisdiction(s) governing legal access to data; the legal ramifications 

based upon the location of the cloud service provider, servers, user, and the 

“effect of applicable treaties or other determinants” (CSA, 2017, p. 37).  

• Standards cloud challenges: challenges that stem from inadequate 

standards, interopearbility conventions, policies, procedures, accepted 

practices, and tools. 

• Training cloud challenges: similar standards challenges, training challenges 

arise due to deficiency in training materials, instructors, and, consequently, 

trained personel and naive attempts to retrofit established digital training 

methodology to the cloud. 

The NCC FSWG concluded that all 65 challenges, either grouped or separate, 

organically divided into three broad sets of challenges: technological, organizational, and 

legal. Table 3 shows the distribution of the nine primary categories between the three 

broader classes. 
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Table 3. Sixty-Five Challenges by Three Broad Classes. Adapted from 
NCC FSWG (2014). 

Technological (47) Organizational (5) Legal (13) 
Data Collection (19) Standards (2) Legal (13) 

Architecture (18) Training (2)  
Analysis (6) Incident First Responders (1)  

Role Management (4)   
Anti-forensics (-)   

 

Technological challenges are the driver, as the technological capabilities and 

limitations dictate the realties that cloud service providers must integrate. The remote 

delivery of cloud services and the cloud service provider’s capacity as an intermedieary 

give rise to organizational boundary challenges. The multi-geographical operations of 

cloud service providers create the majority of the legal challenges, as consumers might fall 

under regulations in multiple jurisdictions.  

Cloud forensic investigation hurdles require an intediciplinary approach because 

the complications “cannot be solved by technology, law, or organizational principles alone. 

Many of the challenges need solutions in all three areas” (NCC FSWG, 2014, p. 3). The 

observed overlapping is noteworthy and extends from the top of the cloud forensics 

challenges hierarchy into the primary categories, primary subcategories, and related 

categories. The related category challenges are intersections of the nine primary categories 

and exist higher in the hierarchy. Figure 10 shows the overlapping of primary category 

challenges with related categories challenges. For example, in Figure 10, the primary 

category “legal” identifies “privacy” as a subcategory, and “privacy” overlaps with 

“challenge #40: Cryptographic key management,” which is definitively technical in nature 

(NCC FSWG, 2014, p. 51). 
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 Primary Categories Intersection (Related Categories). Source: NCC FSWG (2014). 

 



43 

There is prevalent overlapping lower in the cloud forensics challenges hierarchy as 

well. Table 3 showed that the technological category is the largest of the three broad 

categories, with 47 challenges. In building on the initial analysis of the working group, 

Table 4 further dissects the technological challenges and reveals a dominant statistic: that 

over 60 percent of all the forensic challenges are attributed to data collection, architecture, 

or a combination of both, or either of the two paired with any of the other seven primary 

categories. This dominant concentration of attributable challenges directed the focus of the 

technological challenges in this thesis on the specific subset that featured at least data 

collection or architecture as one of the primary or related categories. 

Table 4. Technological Challenges Dominated by Data Collection and 
Architecture Primary Categories. Source: NCC FSWG (2014). 

Primary Category Count Percentage 

Data Collection 10 15.38 

Architecture 5 7.69 

Data Collection and Architecture 14 21.54 

Other 25 38.46 

Data Collection/Architecture and/or Other 11 16.92 
 

1. Technical Challenges 

a. Big Differences 

A major difference between the cloud and on-premises systems, in the event of a 

cyber-incident, is the efficiency of locating stored media, which includes artifacts, log files, 

and other evidentiary traces (NCC FSWG, 2014). Unlike in on-premises systems, 

virtualized computer instances in the cloud are not physically attached to local persistent 

storage; they are attached to storage temporarily, but not after abstraction to enable pooling 

and dynamic customer provisioning. This decoupling was raised as a concern in Chapter 

III.A.3 in discussing abstraction as part of detailing Figure 5, the cloud reference service 

model stack. Comparing the leftmost column in Figure 11, which represents an on-
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premises application, against each of the cloud service models in the other columns shows 

that in each of the service model deployments, storage is designated as a cloud service 

provider responsibility. The NCC FSWG characterized the separation of a virtual machine 

from local persistent storage: “Thus, the operational security model of the application, 

which assumes a secure local log file store, is now broken when moved into a cloud 

environment” (2014, p. 36). Locating storage in the cloud is more burdensome and 

represents the first order of significance of breaking the operational security model 

exemplified by self-contained on-premises system applications. 

 
Repeated previously from Figure 7 for reader convenience. 

 Cloud Security Responsibility Matrix (On-premises Application). 
Source: DISA (2017)  

Identifying digital forensic evidence in the cloud is more taxing because the 

generation of evidence sources in the cloud dramatically departs from on-premises systems 

and represents the second-order consequence of breaking the application operational 

security model (NCC FSWG, 2014). The NCCFSWG observed that in the cloud, “User-
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based login and controls are typically in the application rather than in the operating system” 

(2014, p. 37). Cloud applications have the ability to log activity, but the application 

developers must specifically include this functionality; this is a significant departure from 

the assurance—with on-premises systems—that the operating system will log activity 

without fail. Infrastructure as a service and platform as a service cloud applications are 

developed by the organization that likely will be using them, and can therefore enforce 

high-assurance security features in development. But organizations do not have such 

enforcement rights over externally deployed software as a service applications. Similarly, 

cloud application developers determine the generation, availability, controls, 

documentation, and storage management capabilities of their applications (NCC FSWG, 

2014). In on-premises systems, the operating systems dependably and centrally manage the 

consistent generation and storage of valuable evidence traces, and the information is well 

documented. Previously, major software development firms such as Microsoft and Oracle, 

with large teams solely dedicated to documentation, developed the large market share of 

applications. Cloud computing empowers smaller organizations by providing a 

development environment and tools that rival the major software development firms. 

However, to date, there is a development gap between conventions that were standard in 

on-premises applications and conventions that are needed for cloud architectures. As a 

result, acquiring evidentiary traces has become potentially more burdensome in all cloud 

service models; additionally, related documentation has diminished materially. 

As non-repudiation is not as rigorously enacted for actors external to an 

organization, identity management represents another new challenge in the cloud. 

Specifically, identification and authentication pose unique challenges for cloud 

environments; cloud technologies and policies do not sufficiently enforce unique identities 

(NCC FSWG, 2014). As an example, Figure 12 shows the few steps required to begin using 

the AWS platform. 
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 Requirements to Create an AWS Account. 
Source: Amazon Web Services (2015). 

A related aggravating factor is that cloud technologies decouple user identification 

credentials from a corresponding physical workstation (NCC FSWG, 2014). The binding 

of identification credentials with a local physical object is fundamental in the forensic 

collection of network metadata (NCC FSWG, 2014). The ability to ascribe metadata is in 

turn integral in establishing non-repudiation, and the working group asserts that, “there is 

no mandatory non-repudiation methods implemented in the cloud” (NCC FSWG, 2014, p. 

40). What this means is non-repudiation methods are available but not standard developers 

would need to include the non-repudiation methods in development. Additionally, cloud 

technologies further impede the acquisition of network metadata by concealing cloud 
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identities, obfuscating network proxy services and complex encryption schemes (NCC 

FSWG, 2014). 

b. Exacerbated Challenges 

The forensic investigator faces challenges in correlating evidence due to the sheer 

enormity of the cloud. For example, unifying log formats in on-premises systems is 

consistently a pain point. In cloud computing, unified logs allow for “a single, efficient, 

performant API for capturing messaging across all levels of the system… The system 

implements global settings that govern logging behavior and persistence…” (Apple, n.d.). 

The significance of unified logs is their ability to remotely access a single repository with 

system-wide settings that persist. Criticisms of on-premises systems have centered on 

volume and the heterogeneity of log formats. The cloud has introduced additional 

proprietary log formats, which have proven a challenge to convert or unify because of the 

forensic investigator’s concerns of omitting applicable data between each of the relevant 

sources (NCC FSWG, 2014). A unified logging system would overcome the proprietary 

formats and volume through a customer application programming interface. The NCC 

FSWG perceived the decentralization of cloud resources as a sprawl of “multiple physical 

machines that are spread across multiple geographical regions, between the cloud 

infrastructure and remote web clients including numerous end points” (2014, p. 21). In 

other words, the cloud requires potential data collection over a more expansive 

technological footprint. Ultimately, the influx of devices spread over this technological 

footprint has also affected forensic data collection by increasing the probability of 

inconsistent log timestamps between devices (NCC FSWG, 2014).  

For digital forensics, the rewriting phenomena of cloud metadata becomes even 

more confounding than the straightforward issue of correlating timestamps. Investigations 

often key on establishing timelines and vetting the alibis of suspects. The cloud makes 

establishing the forensic timelines an impossibility. In on-premises systems, forensic 

investigations seized on “MAC times.” MAC is a mnemonic for the operating system 

timestamps: modification time, access time, and creation time. The timestamp names are 

self-explanatory, but for clarity, the modification time is the last time a file changed, access 
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time is the last time an access function was performed on a file (e.g., open, print, etc.), and 

creation time is either the time a file was created or the time it was copied onto a file system. 

Timestamp metadata is fundamentally different in the cloud; the NCC FSWG identifies 

that metadata “may be changed as the data is migrated to and within the cloud. Metadata 

may also be changed during the collection process, giving rise to both authentication 

challenges and spoliation worries” (2014, p. 22). For on-premises systems, there is already 

a problem known as time-stomping—when bad actors change the date of a timestamp. 

However, the cloud arbitrarily rewriting metadata is more problematic than on-premises 

time-stomping; the NCC FSWG’s findings warn that the preservation of cloud metadata is 

dubious due to the common processing of data transference within the cloud. Therefore, 

correlating evidence in the cloud is irresolvable because of the metadata inclusivity, log 

format incongruity, and timestamp ambiguity predicated on the proliferation of end devices 

c. Concentration of Data Collection and Architecture Challenges  

Cloud service providers are encountering the current technological limits of rapid 

provisioning and straightforward evidence retrieval. Collecting evidential traces in the 

cloud is difficult for a number of reasons. One of the early challenges in locating evidence 

is navigating the cloud ecosystem, which proves to be a web of dependencies (NCC FSWG, 

2014). The NCC FSWG shares an example of the enmeshed relationships a forensic 

investigator may have to unwind: “A cloud Provider that provides an email application 

(SaaS) may depend on a third-party provider to host log files (i.e., PaaS), which in turn 

may rely on a partner who provides the infrastructure to store log files (IaaS)” (p. 28). A 

likely next challenge is in locating the data, which is, itself, a moving target; data movement 

could be initiated by the cloud service provider, an enmeshed cloud service provider 

partner, or the consumer (NCC FSWG, 2014). If the data is located it may relocate again, 

and the forensic investigator’s lack of understanding of the native cloud environment may 

raise uncertainty about the completeness of the evidence (NCC FSWG, 2014). Essentially, 

the forensic investigators must navigate a moving crime scene. 

Imaging (saving) evidence from the cloud faces the added challenge that related 

data is so voluminous that it not possible to image all available evidence; but a less-than-
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complete data collection poses ramifications to chain of custody/legal admissibility (NCC 

FSWG, 2014). This volume is not driven by more data but surprisingly by overwhelming 

amounts of associated metadata and by deciding which metadata to discard without 

jeopardizing the chain of custody. The NCC FSWG reported a second quandary specific 

to forensic scientists attempting to reconstruct virtual storage: “Imaging of media has an 

added level of complexity in some cloud environments which could cause damage to the 

original media and add the risk of being sued” (2014, p. 21). The possibility that imaging 

can cause damage to cloud service provider equipment does not lend itself to cloud service 

provider cooperation. In contrast, when resources are confiscated from on-premises 

systems, the seizure will not negatively affect multiple tenants, and on-premises imaging 

has not been reported to damage equipment. Ultimately, managing the scope of cloud 

investigations is unpredictable given a lack of insight into the cloud service provider’s 

proprietary protocols, the unknown geo-location of the data, the multiplicity of data centers 

in which data can reside, and the possibility that data could migrate after initial location—

all of which makes an opportunity for additional collection unlikely (NCC FSWG, 2014).  

d. Deletion and Data Remanence 

Cloud deletion and data remanence challenges are more rightfully framed as 

uncertainties. These uncertainties stem from the previous discussion about how the cloud 

breaks the operational security model of applications. The challenges raise four questions: 

1) Is it possible to attribute deleted data to a unique user? 2) Is data recoverable from a 

deallocated1 virtual machine (VM) instance? 3) Is overwritten data recoverable from a 

deallocated VM? 4) How does the implementation of dynamically allocated storage 

amplify the conclusions of the preceding three questions? The first open question is 

directed at scrutinizing the mechanics of the VM deallocation process. When a VM is 

deallocated, what is known is that the node pointing to the VM’s storage is deleted (NCC 

FSWG, 2014). The deleted node was previously pointing to a remote physical storage 

device, which was formerly storing data for the deallocated VM. What remains unknown 

is whether access to and recoverability of the uncoupled data is possible. If data of a 

                                                 
1 This section uses the terms deleted and deallocated interchangeably. 
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previously deallocated VM is attributable to specific users, this may reveal difficulties to 

attribute deletions in platform as a service and infrastructure as a service tools (NCC 

FSWG, 2014). 

With respect to the second question, the NCC FSWG asserted that “no research has 

been conducted on determining what data is associated with removed VM instances” 

(2014, p. 29). Thus, it is unclear whether any evidential traces or even the complete VM 

would be retrievable. The third question scrutinizes the effects of the VM deallocation 

process and seeks to determine if an analogous recoverability is technically feasible in the 

cloud’s multi-tenant architecture when a deallocated VM is reallocated. 

The fourth question, regarding dynamically allocated storage, is focused on how 

quickly previously deallocated VMs are reallocated. Dynamic storage is a process in which 

cloud service providers sift through deallocated VMs to optimize performance of reading 

data by quickly processing VM reallocations (NCC FSWG, 2014). To determine the 

expediency of dynamic storage algorithms, forensic scientists must determine if it is viable 

to do any of the following: attribute deallocated VMs to specific users, recover evidential 

traces from deallocated VMs, or recover overwritten data from deallocated VMs. The 

answers can also possibly constrain the extent of backups that cloud service providers are 

able to retain based on storage limitations (NCC FSWG, 2014).  

e. Interoperability 

When it comes to security, that complete interoperability is not the goal because 

the security breach of one system could lead to contagion. Another relationship between 

interoperability and security to consider is the degree to which interoperability is welcome; 

cloud service providers tend to desire less interoperability and consumers more (Kostoska, 

Gusev, & Ristov, 2016). The interoperability context for digital forensics is in reducing the 

proprietary knowledge needed by minimizing wide divergence between cloud service 

providers. The opaqueness of cloud service provider architectures and operating 

environments perpetuates the current lack of interoperability standards. The lack of 

transparency is a significant hurdle in understanding the cloud service provider 

environment because the interoperability is both abstract and remote. The NCC FSWG 
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commented on the difficulties of correlating evidence in the cloud, stating, “there is no 

interoperability between cloud Providers” (2014, p. 21). Cloud interoperability issues are 

not limited to correlating cloud service provider logs. Interoperability issues are relevant 

to the development and subsequent documentation of applications; specifically, the NCC 

FSWG observed that “Private and confidential details of cloud based software/applications 

used to produce records are typically unavailable to the investigator” (2014, p. 32). This 

reality leaves investigators ignorant of the application’s full functionality, data structures, 

and potential vulnerabilities that may have led to the investigation.   

The confounding aspect of interoperability is that the cloud integrates multiple 

sophisticated technologies, cloud service providers, servicing counterparties, logical 

layers, hardware, and endpoint devices. The NCC FSWG identified that “the 

trustworthiness and integrity of cloud forensics data is a challenge because of the 

dependence on the cumulative integrity of multiple layers of abstraction throughout the 

cloud system” (2014, p. 34). A cloud service provider’s trustworthiness is compromised if 

any of the multiple parties or technological interchanges are compromised  

f. Threat Enhancements 

Similar to many legitimate organizations, criminal enterprises are also attracted to 

the cloud’s pay-as-you-go cost savings. The cloud offers criminals superior computing 

power for a fraction of the cost. For example, the cloud can rapidly provision enough nodes 

to perpetrate a botnet attack without having to actually compromise the underlying 

computers that a botnet operating outside of the cloud would need. The NCC FSWG 

recognized that the cloud has been used to enhance the threat capabilities of bad actors: in 

2009, a botnet used Google’s AppEngine as its command-and-control-network; the NCC 

FSWG report also mentions the existence of a cloud password cracking service, and how 

a security researcher used Amazon’s EC2 services to crack Wi-Fi passwords (2014).   

Criminals can also remain anonymous in the cloud, inexpensively. As was shown 

in Figure 12, most cloud service providers only require users to provide a name, address, 

and credit card to register for an account. Identity theft trends portend that criminals should 

be able to easily obtain stolen identities to register many fraudulent accounts (NCC FSWG, 
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2014). The fraudulent accounts are yet another hurdle for forensic investigators to bypass 

to determine the authentic identity behind a cloud username.  

Furthermore, criminals can decentralize their operations by utilizing multiple cloud 

service providers. The NCC FSWG offered an example of how an enterprise can use 

decentralization to obscure related criminal activities at separate cloud service providers: 

“A criminal organization can choose one cloud provider as a storage solution (e.g., 

Dropbox), obtain compute services from a second cloud provider (e.g., Amazon EC2), and 

route all of their communications through a third (e.g., Gmail or Pastebin)” (2014, p. 23). 

For a forensic investigator, the scope and complexity of reconstructing evidential traces 

distributed among multiple cloud service providers is significantly more demanding than 

an investigation limited to a single cloud service provider. Forensic incident response teams 

must update their threat model to incorporate how bad actors are presently leveraging cloud 

services in their attacks.  

g. Timing  

In the cloud, real-time investigations to collect volatile forensic data, also known 

as live forensics, are improbable because of the level of collaboration required between the 

consumer and cloud service provider (NCC FSWG, 2014). Volatile data is any data for 

short-term memory purposes that is lost without power. Persistent data is considered non-

volatile, and is any data exceeding short-term memory purposes, which remains available 

in storage media even after losing power. The NCC FSWG underscores that volatile data 

“can only be collected in real time by placing sensors into the real-time environment” 

(2014, p. 24). Real-time investigations are improbable because targeting a specific cloud 

account for these sensors confronts the reality that cloud infrastructures are complex and 

may be constituted by leased lines from a variety of service providers. The end result is 

that any volatile evidential traces not in storage will be lost when a suspected VM loses 

power. 

In the event that multiple parties were able to successfully coordinate to conduct a 

live forensics investigation on a running VM, the NCC FSWG warns that “it is impossible 

for a third party to verify, after acquisition, that the data collected is correct because the 
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data is no longer the same as at the time of acquisition” (2014, p. 31). As previously 

mentioned, cloud environments rewrite metadata, and this would challenge the ability of a 

third party to verify the collected evidential traces. Additionally, because the system is 

running, just the act of introducing the live forensics collection tools would change the VM 

environment, biasing verification against a running system unexposed to the live forensics 

tools. Another issue complicating the use of live forensics tools on a running system is that 

the system could have anti-forensic functionality to sabotage the data collection (NCC 

FSWG, 2014). 

Live forensics tools will need to evolve to address the highlighted shortcomings, as 

VMs contain highly valuable log data with evidential traces captured in system, registry, 

and network logs. Systems, registries, and networks contain a treasure trove of forensic 

value. Chapter V.E.1 introduces a Linux distribution that can address several shortfalls in 

accessing valuable system and registry data. On-premises systems are able to image (save) 

the volatile data and then take a digital fingerprint (hash) for later comparison with the live 

forensics collected data. On-premises systems do not experience the phenomena of 

rewriting metadata, which means the collected data can be successfully verified against the 

hash of the imaged file. This data collection comparison capability is what cloud live 

forensics tools will need to achieve.  

2. Legal Challenges 

The majority of legal challenges concern contractual, jurisdictional/law 

enforcement, or chain of custody questions. 

a. Scope 

The remainder of this thesis examines cloud incident-response from the perspective 

of DoD policy. As is discussed in more detail in Chapter IV, the Federal Risk and 

Authorization Management Program (FedRAMP) establishes federal policy for cloud 

computing. The DoD follows FedRAMP+, which is tailored guidance for the DoD’s 

mission. Chapter V explains the drivers for FedRAMP+ and specific regulatory guidelines 

for federal cloud adoption, but many of these legal challenges are outside the scope of this 

thesis.  
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b. Reliance on Contract 

The contract is the sole vehicle that arbitrates and memorializes cloud governance, 

and the consumer needs to obtain everything upfront, especially for forensic terms of 

agreement. The NCC FSWG (2014) identified missing contractual terms in service-level 

agreements as a legal challenge. Specifically, the working group spotlighted the omission 

of clauses that require the cloud service provider to produce relevant evidence within 

specific time limits. The multi-tenancy inherent in the cloud limits the ability of any single 

consumer to consummate a highly negotiated custom solution. In stark contrast, the 

negotiating flexibility is generally much greater in bilateral agreements. Because the cloud 

is shared by multiple clients, each consumer is also therefore limited in its customization. 

Notwithstanding, it is expected that software as a service and infrastructure as a service 

will provide the greatest negotiating space: for software as a service, primarily because the 

multi-tenancy factor is minimized by the cloud access via applications; and for 

infrastructure as a service, because it most resembles a green data center. The least tailored 

solution would be offered by platform as a service.  

To maximize service agreements, in 2012 the Chief Information Officer Council 

and Chief Acquisition Officers (CAO) Council published guidance to improve 

enforceability. They advise that every agreement must comply with federal laws and 

regulations and remain consistent with agency governance, and all service-level 

agreements should aim to include measurable conditions that hold the cloud service 

provider accountable. Consumers should focus on the definitions used in each agreement. 

The cloud has matured to a common lexicon; however, wide variability exists among cloud 

service providers with respect to defined terms and related metrics (Chief Information 

Officer Council & Chief Acquisition Officers Council [CIO & CAO Councils], 2012). The 

Councils highlight that many service-level agreements are negligently ambiguous 

regarding ramifications for underperformance. Lastly, the Councils explain that non-

disclosure agreements are required whenever federal data is transmitted. 
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3. Boundary Challenges 

The majority of boundary challenges center on the few certainties the consumer or 

forensic scientists can establish about cloud service provider environments. In addition to 

challenges of unfamiliarity with cloud environments, other boundary challenges include 

loss of governance and decoding the cloud service provider environment.  

a. Loss of Governance 

“There is no cloud, it’s just someone else’s computer.” This unattributed saying 

resonates with consumers who experience loss of governance through the constraints 

presented by cloud service providers. As the cloud is effectively someone else’s computer, 

cloud service providers may require permissions or limit the scope for routine security 

measures such as port scanning, penetration testing, and other methods of formally 

analyzing security vulnerabilities. Furthermore, when consumers transition from on-

premises systems, they will find gaps within their existing security policies and how they 

interplay with the contracted terms and conditions of an executed service-level agreement. 

The CIO and CAO Councils (2012) warn that the lack of agency will require consumers to 

seek alternative methods to achieve equal measures or higher of confidentiality, integrity, 

and availability (the CIA triad) within a cloud service provider environment.  

b. Decoding the Cloud Service Provider Environment 

This thesis has expressed repeatedly that cloud interoperability standards are, to 

date, grossly inadequate. Counterparties reliant on cloud service providers have found it 

difficult to understand how the cloud service provider environment operates because cloud 

technologies are relatively immature, generally remote to consumers, and use proprietary 

protocols. All these factors limit the advancement of professional knowledge, standards, 

training, and experimentation. The NCC FSWG assessed cloud training for investigators 

in its report, finding, “Most digital forensic training materials … are not applicable in cloud 

environments … and there is an absence of proper tools to effectively investigate the cloud 

computing environment…. Only few standard operating policies are in place … making 

the approach more trial and error than scientific” 2014, p. 41). Acquiring knowledge is 

problematic because, unlike in on-premises systems, existing cloud record logs are held by 
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custodians. The data held by custodians usually only becomes public during court 

testimony (NCC FSWG, 2014). The withheld details would greatly help consumers acquire 

knowledge, test validation, and conduct training and professional development. Standards 

development is especially necessary considering the unsatisfactory interoperability 

progress to date. The NCC FSWG also has concerns regarding the standards development 

process; “there is no one accepted standard, and the majority of organizations are creating 

their own SOPs, which may or may not be based on an existing process model” (2014, p. 

40). If cloud service providers granted access to academics and researchers, their work 

could go a long way to address the many outstanding uncertainties of the cloud service 

provider environment.  
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IV. ADAPTING DoD REQUIREMENTS FOR CLOUD 
ARCHITECTURES 

This chapter marks a transition from general cloud computing to a much more 

specific DoD-centric perspective. Chapter I established four security-related issues facing 

the DoD in its aggressive adoption of cloud computing technologies. Chapter II introduced 

definitions, vulnerabilities, and threats specific to cloud computing for use in analyzing 

risk management disparities with on-premises information systems. Chapter III discussed 

the impact of service model selection and the shared responsibility model, and imparted a 

general awareness about technical cloud computing digital forensic incident-response 

challenges. These preceding chapters provided a necessary foundation about how the cloud 

is structured, how it operates, and which organization is responsible for which layer. We 

are now oriented to assess the efficacy of FedRAMP’s direction in navigating cloud 

computing security risks. 

A. FedRAMP 

FedRAMP (the Federal Risk and Authorization Management Program) is a 2011 

federal policy that details the minimally required security authorization procedures with 

which an agency must comply when engaging with a cloud service provider for contracted 

cloud services. FedRAMP was specifically drafted to direct federal cloud computing 

acquisitions, and its goal was to accelerate adoption of cloud services and enforce 

standardized cybersecurity requirements government-wide. A 2011 memo by Steven 

VanRoekel, the federal chief information officer, was FedRAMP’s documented debut. The 

memo established policy for protecting federal data in cloud architectures, and specifically 

prescribes seven tasks of compliant agencies: 

i. Use FedRAMP when conducting risk assessments, security authorizations, 
and granting ATOs [authorization to operate] for all Executive department 
or agency use of cloud services; 

ii. Use the FedRAMP PMO [project management office] process and the 
JAB [Joint Authorization Board]-approved FedRAMP security 
authorization requirements as a baseline when initiating, reviewing, 
granting and revoking security authorizations for cloud services; 
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iii. Ensure applicable contracts appropriately require CSPs [cloud service 
providers] to comply with FedRAMP security authorization requirements; 

iv. Establish and implement an incident response and mitigation capability for 
security and privacy incidents for cloud services in accordance with DHS 
guidance; 

v. Ensure that acquisition requirements address maintaining FedRAMP 
security authorization requirements and that relevant contract provisions 
related to contractor reviews and inspections are included for CSPs; 

vi. Consistent with DHS guidance, require that CSPs route their traffic such 
that the service meets the requirements of the Trusted Internet Connection 
(TIC) program; and 

vii. Provide to the Federal Chief Information Officer (CIO) annually on April 
30, a certification in writing from the Executive department or agency CIO 
and Chief Financial Officer, a listing of all cloud services that an agency 
determines cannot meet the FedRAMP security authorization requirements 
with appropriate rationale and proposed resolutions. (VanRoekel, 2011, 
p. 5)  

After a U.S. federal agency adheres to the specific FedRAMP standards, the agency 

is deemed the responsible party based on the risk undertaken within the cloud environment. 

In addition to the procurement requirements, FedRAMP identifies seven critical security 

policy controls that need to be addressed in every cloud implementation: security-

authorization requirements, continuous monitoring, incident response, key escrow, 

forensics, two-factor authentication with Homeland Security Presidential Directive 12 

(HSPD-12), and auditing (CIO & CAO Councils, 2012). 

To fulfill the security authorization requirements for cloud computing, all U.S. 

federal agencies must categorize their data in accordance with Federal Information 

Processing Standards (FIPS) 199 and 200, and must additionally contract with cloud 

service providers to implement security countermeasures commensurate to the impact level 

for the environment that will process the data (CIO & CAO Councils, 2012). The CIO and 

CAO Councils proclaim that cloud service providers must adhere to the continuous 

monitoring standards proposed in NIST SP 800-137. The cloud service provider must also 

follow DHS’s directions for documenting changes made that pertain to defending the cloud 

service provider environment, integrating new Federal Information Security Management 
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Act (FISMA) requirements, and ensuring there is sufficient time to make efficient, 

forward-looking risk management decisions (CIO & CAO Councils, 2012). 

The contracting U.S. federal agency must oversee incident response cloud 

computing standards, but the incident response activities are fulfilled by the cloud service 

provider. The cloud service provider must adopt NIST SP 800-61, Computer Security 

Incident Handling Guide, which explains how to select the appropriate response for 

information system incidents. Adherence to SP 800-61 guidance allows the agency to 

cooperate with DHS’s United States Computer Emergency Readiness Team (U.S. CERT) 

when responding to dynamic changes to risk within cloud service provider environments 

(CIO & CAO Councils, 2012). Clear expectations need to be documented regarding 

acceptable responses to recover from a security incident. The federal agency needs to 

ensure that any contractual language clearly defines expectations for satisfactory corrective 

action by the cloud service provider.   

U.S. federal agencies can comply with the key escrow requirement by assessing the 

cloud service provider’s encryption practices against NIST SP 800-152, A Profile for U.S. 

Federal Cryptographic Key Management Systems. Additionally, HSPD-12, Policy for a 

Common Identification Standard for Federal Employees and Contractors, is a required 

federal standard for two-factor authentication that features the use of compliant personal 

identity verification cards (CIO & CAO Councils, 2012). It is a best practice for contractual 

agreements to recognize HSPD-12 guidance.  

Federal agencies can comply with the FISMA log preservation requirement by 

verifying that the cloud service provider’s environment is highly similar to the best 

practices identified in NIST SP 800-92, Guide to Computer Security Log Management. 

FISMA also requires all cloud service provider personnel who log data to have appropriate 

clearances (CIO & CAO Councils, 2012).   

B. DoD CLOUD COMPUTING SECURITY REQUIREMENTS GUIDE 

1. FedRAMP+ 

Cloud requirements for the DoD exceed requirements for other federal government 

agencies; for that reason, the DoD issued the Cloud Computing Security Requirements 
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Guide (DISA, 2017), which describes FedRAMP+. FedRAMP+ adds DoD-specific 

security controls to fulfil the DoD’s mission requirements. It is applicable to DoD agencies 

and dictates that their cloud service providers will be assessed according to the Cloud 

Computing Security Requirements Guide. A cloud service provider can lose its 

authorization if it is unable to maintain compliance with FedRAMP+ requirements (DISA, 

2017). FedRAMP+ determines security controls based on the sensitivity of the data to be 

processed in the cloud, defined as security objectives, combined with the potential impact 

in the event of a CIA triad violation, defined as impact levels. Interestingly, FedRAMP+ 

impact levels are only based on confidentiality and integrity objectives. Availability 

objectives are unaddressed and it is the mission owner’s responsibility to appraise the cloud 

service provider’s availability during the service provider selection process (DISA, 2017). 

Additionally, FedRAMP+ provides an opportunity to further tailor individual security 

controls with “security controls/enhancements” (DISA, 2017, p. 44). Accordingly, the 

Cloud Computing Security Requirements Guide directs that the cloud contract is the 

appropriate space to address available security controls/enhancements. 

2. FedRAMP+ Security Controls/Enhancements 

FedRAMP+ is the cloud computing tailored approach to NIST 800-53 security 

controls, and it is applicable to all impact levels except Level 2 (described in more detail 

in the next section). These controls “were selected primarily because they address issues 

such as the Advanced Persistent Threat (APT) and/or Insider Threat, and because the DoD 

… must categorize its systems in accordance with CNSSI 1253, beginning with its 

baselines, and then tailoring as needed” (DISA, 2017, p. 44). CNSSI 1253 is the Committee 

on National Security Systems Instruction No. 1253, titled Security Categorization and 

Control Selection for National Security Systems (CNSS, 2014). A comparison of security 

controls, as seen in Equation 2 (adapted from DISA, 2017), indicates that 32 CNSSI 1253 

controls were added to the NIST SP 800-53 moderate baseline and 88 NIST 800-53 

moderate controls were subtracted from the CNSSI 1253 moderate baseline (DISA, 2017).  

(2) 
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The increase of control enhancements correlates directly to rising impact levels 

(DISA, 2017). For example, Impact Level 6 uses a classified information overlay that 

prescribes an additional 94 security controls and enhancements (DISA, 2017). 

3. Impact Levels 

The security control baseline for all four cloud-computing impact levels is moderate 

confidentiality and moderate integrity. Missions that require systems with higher 

confidentiality or integrity “must deploy to facilities assessed using CNSSI 1253 high 

baselines through the DoD RMF (typically a DoD facility) or contract for the added 

security from a commercial [cloud service provider]” (DISA, 2017, p. 25). The four 

information impact levels are 2, 4, 5, and 6, as shown in Figure 13. Level 2 includes all 

data that has been cleared for public release (i.e., non-controlled unclassified information), 

Level 4 includes controlled unclassified information (CUI), Level 5 includes CUI but can 

also process unclassified national security systems, and Level 6 processes classified 

information up to Secret (DISA, 2017). To accommodate Level 5, FedRAMP+ uses an 

additional security controls/enhancements structure. Level 6 requires the complete 

dedication of cloud infrastructure to the DoD or federal government community and is 

therefore not considered a “commercial” service (DISA, 2017). All processed data must be 

within a legal U.S. jurisdiction, as indicated in column 4 of Figure 13, which resolves 

potential legal jurisdictional challenges. FedRAMP+ has multi-tenant separation 

requirements based on the impact level, as indicated in column 6 of Figure 13.
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 Impact Level Comparision. Source: DISA (2017). 
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4. Data Spills 

Human error can lead to cloud security misconfigurations and those 

misconfigurations can lead to data spills. An example of such a data spill was provided in 

Chapter 1.B.2, in which a federal contracting employee of Booz Allen Hamilton was 

responsible for spilling data collected on behalf of the National Geospatial-Intelligence 

Agency. Misunderstandings and inadequate training contribute to this type of cloud 

security misconfiguration, despite the robust encryption methods employed by cloud 

service providers to enforce rigorous confidentiality standards. The Cloud Computing 

Security Requirements Guide recognizes the need to employ different sanitizing methods 

for data spills in the cloud as compared to on-premises systems: 

Cloud environments present a unique challenge for data spill response… 
[Cloud service provider] use of storage virtualization makes physical data 
locations difficult to ascertain. This makes physical sanitization methods 
non-viable for data spill remediation in cloud services. These challenges 
require a method for mitigating data spill cyber incidents that occur in the 
cloud. (DISA, 2017, p. 80) 

The Cloud Computing Security Requirements Guide endorses cryptographic erase 

as the primary method to address cloud data spills. Cryptographic erase is credited by the 

DoD as “high-assurance data destruction”— “media sanitization is performed by sanitizing 

the cryptographic keys used to encrypt the data, as opposed to sanitizing the storage 

locations on media containing the encrypted data itself” (DISA, 2017, p. 113). 

Cryptographic erase also accommodates “partial sanitization,” in which a subset of the data 

is sanitized, but this requires the use of unique keys for each subset (DISA, 2017). 

Cryptographic erase paired with deleting files is more expedient than physically sanitizing 

a cloud service provider environment. However, cryptographic erase is only effective for 

encrypted data. Therefore, the mission owner is responsible for ensuring that all DoD data 

is encrypted for data-at-rest. Furthermore, the DoD must have exclusive control of both the 

encryption keys and key management; this facilitates the DoD’s ability to remediate 

unilaterally, high-assurance data destruction, without any cloud service provider 

cooperation (DISA, 2017). In the event of a data spill, the mission owner can delete the 

keys related to the unauthorized data. Additionally, the mission owner must follow the 
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extra measures of sanitizing any existing data in an unencrypted state (e.g., memory in an 

allocated virtual machine) and remediate backups and mirrored storage (DISA, 2017).  

However, cryptographic erase is not a panacea. This technology is an effective tool 

to resolve non-malicious misconfiguration-related data spills generated by human error, 

but it would likely prove ineffective against data spills initiated by malicious code. 

Cryptographic erase would be unable to contain a running process while data is still in use. 

Because of the extra sanitizing measures, the mission owner needs to understand for any 

data in unencrypted states will put that data at risk, open to precisely the types of 

vulnerabilities that malicious code attempts to exploit. For example, cryptographic erase 

would be ineffective if a malicious process reads confidential data of another running 

process while both processes are in the same memory space. Additionally, cryptographic 

erase is only effective in infrastructure as a service— and some platform as a service—

cloud deployments when the mission owner determines exactly how the data is stored. The 

Cloud Computing Security Requirements Guide acknowledges that “the Mission Owner 

relies on the [cloud service provider] and the security posture of its SaaS offering for the 

protection of DoD information” (DISA, 2017, p. 100). Each mission owner must perform 

risk analysis assessments and weigh whether the DoD can potentially accept the risk 

(DISA, 2017). 

5. Incident Response  

FedRAMP+ lists nine security controls specific to cloud computing incident 

response with increasing security controls and enhancements. Table 5 lists the incident 

response security controls—each parenthetical number indicates the stipulation of 

additional security controls and enhancements. 
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Table 5. DoD FedRAMP+ Incident Response Security Controls. 
Adapted from Metheny (2013). 

 
 

The book Federal Cloud Computing describes many of these controls best 

(Metheny, 2013): 

• Security control IR-1 requires that incident policies are updated at least 

every three years and procedures annually.  

• Security control IR-2 requires the cloud service provider to define the period 

in which it will provide new user training, and also stipulates annual 

refresher training.  

• Security control IR-3 requires that the cloud service provider to test and 

document incident response effectiveness at least annually.  

• Security control IR-4 requires the cloud service provider to implement an 

incident handling program consistent with CJCSM 6510.01B, Chairman of 

the Joint Chiefs of Staff Manual: Cyber Incident Handling Program; the 

program includes: preparation, detection and analysis, containment 

eradication, and recovery steps.  

• Security control IR-5 requires that the cloud service provider collect and 

analyze cyber incidents.  
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DISA (2017), however, best describes IR-6: 

• Security control IR-6 “requires cloud service providers to report cyber 

incidents to the Department of Homeland Security (DHS) United States 

Computer Emergency Readiness Team (U.S. CERT) and the consuming 

Federal Agencies” (p. 129). Reporting also requires the submission of an 

initial incident report within one hour of discovery.  

And Federal Cloud Computing rounds off the descriptions of IR-7 through IR-9 (Metheny, 

2013): 

• Security control IR-7 requires that the cloud service provider maintain a 

collaborative relationship with all external stakeholders.  

• Security control IR-8 requires that the cloud service provider specify the 

criteria of reportable incidents, metrics to assess incident response 

effectiveness, and approved personnel.  

• Security control IR-9 requires that the cloud service provider document its 

procedures in responding to data spills. 

The Cloud Computing Security Requirements Guide specifically recognizes the 

need for employing digital forensic methods in the cloud as compared to on-premises 

systems: “Digital forensics in the cloud has many challenges…. the CC SRG [Cloud 

Computing Security Requirements Guide] provides initial guidance regarding the DoD 

requirements for enabling and performing Cloud Forensics” (DISA, 2017, p. 133).  
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V. RISK MANAGEMENT ALTERNATIVES: 
TRANSFORMATIONAL MIGRATION 

At the outset, Chapter I.B.1-4, this thesis intended to address four cloud-specific 

issues: customer misconfigurations, cloud leaks, complications in the implementation of 

security controls, and altered digital forensic incident-response challenges. This chapter 

discusses potential DoD risk management solutions addressing the four cloud-specific 

conditions and is able to connect many of the recommendations to the proposed concept of 

transformational migration. 

Statements from the former NSA CIO’s interview, first discussed in Chapter 

II.B.1.d, illuminate core tenets of transformational migration: 

But we do utilize a variety of security protocols at every layer of the 
architecture, as well as a robust encryption strategy. The NSA cloud brings 
together multiple data sets and protects each piece of data through security 
and enforcement of the authorities that specify its use. We do this by 
marking each individual piece of data with a set of tags that dictate its 
security protections and usage. In addition to data markings, security is 
applied throughout the architecture at multiple layers to protect data, 
systems, and usage. (Smith, 2014) 

This thesis has chosen the term transformational migration to represent the 

requisite coordinated collection of adaptations required for a successful and 

transformational cloud migration. Transformational migration focuses on the relocation of 

data, security perimeter, knowledge base, and work processes to align with how the cloud 

actually functions. 

A. COLLOCATING DATA LOCATION 

The NSA CIO interview discusses the assembling of data (Smith, 2014). On-

premises systems have typified data stranded in an application that prevents or significantly 

impedes access from other applications. The Institute for Defense Analyses suggests that: 

Legacy applications, especially those designed prior to 2005, were likely 
designed to run on a single server, not on multiple shared and redundant 
cloud servers, and they may need to be rewritten to account for scenarios 
such as one of the host servers going offline. (Odell et al., 2015, p. 4-2) 
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Transformational migration mandates the collocation of relevant data sets or 

accessibility through secure API calls. Data migration is necessary to achieve machine 

learning capabilities named in the Cloud Executive Steering Group’s phase two goals, 

previously referenced in Chapter I.B.1, to quickly integrate cloud security and machine 

learning (Shanahan, 2017). 

B. RECOMMENDATIONS ADDRESSING CUSTOMER 
MISCONFIGURATIONS 

A better understanding of how the service model relates to the intent of the 

application can reduce the risk of customer misconfigurations. This section summarizes 

five migration strategies—rehost, refractor, revise, rebuild, and replace—and indicates the 

service model that maps to that strategy. Additionally, the section briefly introduces 

service-oriented architecture to increase portability and counter vendor lock-in. 

Mapping Cloud Motivations to the Appropriate Service Model Migration 

Rehost (lift and shift) applications on infrastructure as a service platforms are not 

going to benefit from the current and future capabilities of cloud technologies (Woods, 

2011). Refactor (backward-compatible) application code with platform as a service will 

benefit from the current and future capabilities of cloud technologies (Woods, 2011). 

Revise (lift and refit) application code with infrastructure as a service or platform as a 

service can retrofit existing code for further rehosting or refactoring migration (Woods, 

2011). The revised application with retrofitted code would then benefit from the current 

and future capabilities of cloud technologies. Rebuild (cloud native) application code with 

platform as a service abandons legacy code so that the rebuilt application will benefit from 

the current and future capabilities of cloud technologies (Woods, 2011). Replace (discard) 

applications with software as a service also abandon legacy code. The commercial software 

will deliver the benefit from current and future capabilities of cloud technologies. This 

solution does not allow customer customization and can lead to vendor lock-in by making 

the porting of data more challenging. As general cloud migration guidance, the Institute 

for Defense Analyses recommends first incorporating cloud-borne application for non-
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mission essential data and then determining the necessary controls for mission-essential 

applications approved for Impact Level 5 (Odell et al., 2015). 

This thesis only mentions service-oriented architecture because it is an abstraction 

that helps counter cloud service provider vendor lock-in. The Linux Information Project 

defines vendor lock-in as “the situation in which customers are dependent on a single 

manufacturer or supplier for some product (i.e., a good or service), or products, and cannot 

move to another vendor without substantial costs and/or inconvenience” (LINFO, 2006). 

Service-oriented architecture development produces applications that are treated like 

“services,” as in “anything as a service.” Once the application can be treated as a service, 

it should be able to port or “plug” into any cloud service provider seamlessly and temper 

the fears of having to make large-scale changes to existing code bases for interoperability 

with proprietary requirements of the new cloud service provider. Service-oriented 

architecture is easily reconfigurable. 

C. RECOMMENDATIONS ADDRESSING CLOUD LEAKS  

The DoD urgently needs to address cyberattacks not only on its own data centers 

but throughout its entire supply chain. This thesis, in Chapter 1.B.2, cited two DoD 

contractor-related breaches. The Washington Post reported another successful, high-profile 

cyberattack in the summer of 2018: 

Chinese government hackers have compromised the computers of a Navy 
contractor, stealing massive amounts of highly sensitive data related to 
undersea warfare—including secret plans to develop a supersonic anti-ship 
missile for use on U.S. submarines by 2020, according to American 
officials. (Nakashima & Sonne, 2018a) 

“Deliver Uncompromised” is a new strategy proposed by MITRE Corporation, 

which conducts federally funded research on behalf of the government, to address 

cybersecurity lapses that extend to DoD contractors (Nakashima & Sonne, 2018b). Deliver 

Uncompromised encourages adding security assessment attainment levels in the awarding 

of contracts along with traditional cost and performance considerations. The new strategy 

believes the cloud can contribute to protecting the DoD supply chain by specifically 

encouraging its contractors “to shift information systems and applications to qualified, 
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secure cloud service providers. The security outcome for many companies using the cloud 

will be superior compared to measures taken for on-premises systems” (Nissen, Gronager, 

Metzger, O’Donnell, & Rishikof, 2018). This thesis is supportive of such a move with the 

following caveats. The contractors 1) allow transformational migration principles to guide 

their organization’s transition to the cloud, 2) are aware of the misconceptions that lead to 

misconfigurations and subsequent cloud leaks, and 3) are aware of—and have a plan to 

address—the expected complications that arise in the implementation of cloud security 

controls, including digital forensic incident-response. 

1. Migrating Security Perimeter 

The NSA CIO’s interview also, as previously discussed, also mentions protecting 

data at a cellular level (Smith, 2014). On-premises systems have focused almost 

exclusively on the network security perimeter or internet-facing demilitarized zone. This 

has proven ineffective and there is growing support within information security to assume 

that organizational network boundaries are frequently breached. Transformational 

migration mandates that migration of the security perimeter comport with a more accurate 

assessment of adversarial threats. Transformational migration also supports extending the 

perimeter from the network boundary to include the boundary of specific chunks of data. 

Migrating the perimeter enables the user to leverage metadata tagging to unleash stricter 

enforcement of file authorizations and legal compliance. The NSA CIO affirmed his 

personal assessment that current cloud capabilities would have likely prevented U.S. 

solider Bradley Manning from nefariously accessing classified information in 2010 (Smith, 

2014).  

2. Migrating Workflow Processes 

In his interview, the NSA CIO also mentioned that security is applied throughout, 

at multiple layers of the cloud stack (Smith, 2014). On-premises systems have focused on 

encryption for data at rest and in transit and have been marred by repeated successful 

attacks because of incomplete security throughout the data security life cycle. 

Transformational migration mandates security through the complete data life cycle: 

creating, storing, processing, sharing, archiving, and destruction (CSA, 2017). This is 
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achieved by retraining a workforce that is no longer assigned to a subset of applications 

(Bommadevara et al., 2018). Instead, security is each member’s responsibility. 

Transformational migration “requires mission owners to have a cloud-literate IT workforce 

to design, install, and configure the applications” (Odell et al., 2015, p. 4-4). Additionally, 

the Institute of Defense Analysis recommends that the DoD focus its hiring on 

professionals who have previous development experience in cloud environments (Odell et 

al., 2015). Cloud applications are often poorly documented. It is therefore incumbent on 

the consumer to have staff that can interface with the cloud service provider with similar 

work function responsibilities. Reorganizing will require migrating application 

professionals to a new dynamic, transformational workforce with the dexterity to remediate 

issues at multiple cloud logical layers. Both the newly hired and the retrained workforce 

will develop and continuously tune applications, addressing security at multiple layers and 

for the complete data life cycle.  

3. Retraining Workforces for Cloud Computing 

The DoD must train its cloud operators in greater depth, more frequently, and over 

a longer period of time than mandated for other information systems. The Institute for 

Defense Analyses reported encouraging initiatives in this vein, such as the Defense 

Acquisition University’s plan to create a cloud module to educate technical staff about 

securely implementing within cloud environments (Odell et al., 2015). Transformational 

migration requires “an IT workforce who is familiar with and excited about cloud 

computing, and who can translate the benefits to DoD mission owners” (Odell et al., 2015, 

p. 6-1). However, this training fails to specifically address the underdeveloped training for 

forensic digital incident-response within cloud environments, which earnestly requires 

cloud service provider cooperation. Transformational migration for retraining places a 

significant burden on the cloud service provider to first foster greater collaboration to help 

forensic investigators understand the cloud service provider operating environment.  
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D. RECOMMENDATIONS ADDRESSING COMPLICATIONS IN THE 
IMPLEMENTATION OF SECURITY CONTROLS 

The DoD CIO and DISA have acknowledged: 

In addition to specified controls, commercial cloud service providers would 
benefit from the implementation of DoD-specific security services that all 
cloud service providers could leverage. As of July 2015, this is only a 
proposed development, but its implementation would help spur cloud 
adoption and ease integration of cloud service providers into the DoD 
security framework. (Odell et al., 2015, p. 5-2) 

Additionally, the cloud controls that are more difficult to implement than traditional 

architectures pose a further challenge. One potential solution is to use a forensics as a 

service (FaaS) provider to address forensic aspects that are more challenging to implement, 

but this increases supply chain management, with yet an additional vendor to manage. 

E. RECOMMENDATIONS ADDRESSING DIGITAL FORENSIC 
INCIDENT-RESPONSE  

This thesis agreed with three recommendations that the NIST Cloud Computing 

Forensic Science Working Group (2014) advanced to improve the forensic digital incident-

response process. The first is that consumer boundaries within cloud service provider 

architectures require better definition. This recommendation aims to segregate forensic 

data in a multi-tenant architecture to remove the possibility of breaching other tenants’ 

confidentiality during a forensic investigation. The second recommendation, related to the 

first, advocates for the integration of forensic evidence collection tools into the cloud 

service provider architecture (NCC FSWG, 2014). The third—implementing structural 

changes to consumer boundaries that guarantee consumer confidentiality during forensic 

investigations and integrated cloud service provider forensic acquisition tools—will 

remediate these two high-priority digital forensic science obstacles. This thesis also advises 

that cloud service providers welcome greater collaboration with academic and forensic 

science researchers to improve the field’s understanding of the challenge-laden cloud 

service provider environment. 

The open-source Linux Caine distribution includes a digital forensic tools suite that 

may address several of the challenges raised by the NCC FSWG: Autopsy (recovering lost 
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or obfuscated data, artifact extraction, and time line analysis), Guymager (disk imaging 

without damaging the cloud service provider’s image), Fred (scanning folders and files for 

deleted or obfuscated data), and Photorec (data carving confirming complete recover of 

damaged or deleted files) (Decusatis, Carranza, Ngaide, Zafar, & Landaez, 2015). 

Integrating forensics as a service (FaaS) applications embedded in cloud service provider 

environments to readily manage the investigation of cloud log files would increase 

investigation utility without forcing cloud service providers to reveal more about their 

environments than they are prepared to (Raju, & Moharil, & Geethakumari, 2016). Digital 

forensics as a service (DFaaS) uses customized, multilateral service-level agreements, 

beyond the consumer and cloud service provider, but standardizes technical, legal, and 

boundary forensics aspects identified by the NCC FSWG (Keserwani & Samaddar, 2017).  

This thesis advocates for the inclusion of specific terms within contractual service-

level agreements. Service-level agreements can contain service-level objectives. Service-

level objectives specifically indicate measures to determine performance or 

underperformance. This thesis endorses service-level objectives that include cloud service 

provider obligations for preservation and access to evidential sources under cloud service 

provider control (CSA, 2013). Many of those sources will be logs and should be 

specifically named by function (e.g., guest operating system logs; CSA, 2013). This 

reiterates that all critical contractual terms require documentation prior to a digital forensic 

incident.  
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VI. CONCLUSION 

This thesis set out to identify the detailed deviations between digital forensic 

incident-response in on-premises and cloud computing architectures and offer risk 

management recommendations for migration. This thesis answered the research question 

by identifying, in detail, the divergence of digital forensic incident-response procedures in 

cloud computing starting in Chapter III.C. The thesis also diagnosed four cloud 

computing–related risk management issues that the DoD must tackle: customer 

misconfigurations, cloud leaks, complications in implementing security controls, and 

digital forensic incident-response challenges (Chapter I.B.1-4). Furthermore, the thesis 

identified that when humans (customers) misunderstand the ramifications of service model 

selection and the related complications with implementing security controls, customer 

misconfigurations occur, which can lead to cloud leaks and, if serious enough, result in a 

digital forensic incident-response investigation. Chapter V’s recommendations advocate 

for adopting a transformational migration mindset by consolidating the series of 

organizational steps necessary to achieve a successful cloud migration. For more in-depth 

treatment of definitions, see Chapter II; for cloud-specific threats, see Chapter II.E; for 

cloud security controls, see Chapter II.F; for service model selection, see Chapter III 

(para. 1); for critical cloud structures for securing data, application, infrastructure, and 

configuration settings; see Chapter III.B.2; and for federal cloud computing policy for nine 

incident-response controls, see Chapter IV.B.5. There is obviously more research required 

into digital forensic incident-response. 

Recommendations for follow-on or tangential research are: 

• The publication of Security Technical Implementation Guides (STIGs) for 

all cloud services (infrastructure as a service, platform as a service, and 

software as a service). It could begin with the three largest cloud service 

providers and would result in nine STIGs to enforce strict configuration 

settings to reduce misconfigurations. 
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• The development of a series of required robust continuous cloud training 

modules that retrain the DoD workforce to securely interface with cloud 

service providers.  

• Experimentation with the open-source Linux Caine distribution digital 

forensic tools suite to determine full capabilities and limitations in 

addressing forensic investigative challenges. 

• The vetting of the newly proposed Deliver Uncompromised strategy to 

shift the DoD supply chain to approved cloud service providers. 

• The development and implementation of DoD-specific security services 

that all cloud service providers could leverage. 

• The testing of automated cloud penetration tools for each of the DoD 

cloud service providers akin to CloudSploit, which is dedicated to 

scanning AWS. 

• The integrating of embedded forensics as a service applications in cloud 

service provider environments to address digital forensic investigative 

challenges. 

• Experimenting with forensics as a service applications in external cloud 

service provider environments to determine efficacy in reducing digital 

forensic investigative challenges. 

• The customization of multilateral digital forensic as a service service-level 

agreements that standardize technical, legal, and boundary forensic aspects 

identified by the working group. 

• The endorsement of a service-level agreement, representing majority 

acceptance by the largest cloud service providers by market share, that 

includes cloud service provider obligations for preservation and access to 

evidential sources under cloud service provider control.  
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