
COMPOSITIONAL RESOURCE-ADAPTIVE CERTIFIED
SYSTEM SOFTWARE

YALE UNNIVERSITY

DECEMBER 2018

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2018-297

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2018-297 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S /
STEVEN DRAGER
Work Unit Manager

 / S /
JOHN D. MATYJAS
Tech Advisor, Computing &
Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

DECEMBER 2018
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

AUG 2016 – AUG 2018
4. TITLE AND SUBTITLE

COMPOSITIONAL RESOURCE-ADAPTIVE CERTIFIED SYSTEM
SOFTWARE

5a. CONTRACT NUMBER
FA8750-16-2-0274

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Zhong Shao

5d. PROJECT NUMBER
BRAS

5e. TASK NUMBER
YA

5f. WORK UNIT NUMBER
LE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Yale University
New Haven, CT 06520

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA DARPA
525 Brooks Road 675 North Randolph Street
Rome NY 13441-4505 Arlington, VA 22203-2114

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2018-297
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The BRASS program aims to build resource adaptive systems that can operate under widely differing environments. This
seedling project addressed several important technical challenges for building long-lived resource adaptive system
software. CertiKOS layers were extended with formal resource models. New thread objects were added as basic building
blocks and used to model the hardware and virtual device layers. A general mechanism for managing available CPU
resources and support compositional layered refinement for concurrent programs on both single core and multicore
machines was provided. A fully verified preemptive OS kernel with temporal and spatial isolation was developed.

15. SUBJECT TERMS
Program verification, Formal methods, Resource-Aware Abstraction Layers, Operating Systems, Concurrency, Temporal
and Spatial Isolation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STEVEN DRAGER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
NA

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

38

Contents

1 Summary 1

2 Introduction 2

3 Methods, Assumptions, and Procedures 6
3.1 Basic Methodology and Assumptions . 6
3.2 Resource-Aware CertiKOS . 12
3.3 Certified Concurrent Abstraction Layers . 17
3.4 Real-Time CertiKOS . 18

4 Results and Discussion 24
4.1 Publications . 25

5 Conclusion 28

References 29

List of Symbols, Abbreviations, and Acronyms 32

i

List of Figures

1 Layer-based contextual refinement 8

2 Console circular buffer implementation 10

3 Specifications of abstract console buffer primitives 11

4 The layer hierarchy of circular console buffer 11

5 Intermediate specifications of console buffer primitives 13

6 The definition of refinement relation between Lhigh and Lmid in Coq 13

7 The device driver hierarchy of CertiKOS 14

8 Abstraction layers w. interrupts: a failed attempt 15

9 The driver as an extended device 16

10 Building certified abstraction layers with hardware interrupts: our new approach 16

11 Environment contexts and parallel layer composition 18

12 Changes with respect to the non-interference version of CertiKOS. 21

ii

1 Summary
The DARPA Building Resource Adaptive Software Systems (BRASS) program aims to build re-
source adaptive software systems that can operate under widely differing environments and can
last more than 100 years. We believe that the BRASS vision would greatly benefit from having
a high-assurance and resource-adaptive hypervisor Operating System (OS) kernel. Because any
bug in the OS kernel can compromise the resource guarantee of the entire system, it is important
that the kernel is not only adaptive but also high-assurance.

In this seedling project, we tackle two major technical challenges for building long-lived re-
source adaptive system software:

• Formal resource and environment model. A formal resource and environment model is a pre-
requisite for reasoning about the resource usage of a program and its adaptation to changes
in its ecosystem. Unfortunately, due to the low-level nature of hardware resources, such a
model often does not exist, and even if it does, it is informal and too low level; and it has a
huge gap with the high-level notions of resources in today’s programming languages.

• Compositional specification for communicating threads and hardware devices. Modern sys-
tem software often rely on a collection of communicating threads so it can best adapt to the
available CPU resources on multicore machines. It is unclear how to specify the behaviors
and resource usage of these threads in a modular way using existing technology.

In the last two years, we have developed a general formal framework for reasoning about
resources and environment contexts. An OS kernel manages and multiplexes a large variety of
physical or virtual resources at different abstraction levels, but these resource managers are often
ad hoc and intertwined with other kernel components. We aggressively decompose an otherwise
complex software stack into a large number of simple but carefully designed resource-aware ab-
straction layers. All these layers share a unified abstract notion of resource objects with proper
cost models and resource-safety properties.

We have applied our formal framework to turn Certified Kit Operating System (CertiKOS)
into a resource-aware certified OS kernel. The CertiKOS kernel [Gu et al., 2016] and its device
drivers are decomposed into many certified abstraction layers. It can also support various forms
of kernel- and user-level concurrency on multicore machines. We support resource-aware concur-
rency by providing resource-aware synchronization primitives and real-time schedulers. We have
also developed a fully verified preemptive OS kernel with temporal and spatial isolation.

We believe that our work contributes significantly to the BRASS vision and complements the
current BRASS-funded efforts. Our formal resource framework and automated tools can be ap-
plied to facilitate building resource-adaptive software systems. The Concurrent and Realtime Cer-
tiKOS hypervisor kernels could be used to build a stronger assurance case for end-to-end resource
guarantees.

1
Approved for Public Release; Distribution Unlimited.

2 Introduction
Our research is built on top of the clean-slate CertiKOS hypervisor kernel [Gu et al., 2016] de-
veloped by PI Shao and his team at Yale. In contrast to traditional OS kernels which use the
hardware-enforced “red line” to define a single system call Application Programmer Interface
(API), CertiKOS is a high-assurance, extensible kernel that provides a large number of abstraction
layers enforced via formal specification and proofs. Programming with certified abstraction lay-
ers enables a disciplined way of composing a large number of components in a complex system.
Without using layers, we might have to consider arbitrary interactions between the current module
and its environment: an invariant held in one function can be easily broken when it calls a function
defined in another module. A layered approach aims to sort and isolate all components based on
a carefully designed set of abstraction levels so we can reason about one small abstraction step
at a time. This can dramatically simplify the environment model that needs to be considered at
each layer. The compositional layered architecture also allows CertiKOS to support rich kernel
extensions and certified ring-0 processes, and it is the main reason that made the CertiKOS effort
scale.

The goals of our seedling project are to develop a general formal resource framework and then
apply it to build new resource-aware high-assurance OS kernels. More specifically, we extend
CertiKOS’s abstraction layers with a detailed resource specification that also specifies adaptive
variants for anticipated changes in the underlying layer implementation. To overcome a current
limitation of CertiKOS, we also develop a new class of layered thread objects that model physical
devices, interrupt controllers, device drivers, or kernel daemon threads.

We use machine-checked formal verification: we prove mathematical theorems about programs
and their behavior, in formal logic. Of course, to a mathematician, most of these theorems would
look like “engineering:” they’re very “applied” properties of specific software components. And
indeed, this is engineering—it’s what software engineering should look like in the 21st century,
especially for high-assurance systems. The formal logic that we use is called the Calculus of In-
ductive Constructions (CiC), and we use the Coq proof assistant to build and check our proofs.
Within Coq, we use CiC to build application-specific logics—such as a logic for proving correct-
ness of C programs. We have primarily focused on building resource-aware OS kernels. All kernel
components must be written in some programming language, typically a low-level language such
as C or assembly language; and must be translated to machine-language by a verified compiler
such as CompCert [Leroy, 2005–2014].

In our research for this seedling project, we have successfully carried out the following three
lines of work. First, we extended CertiKOS layers with formal resource models and we added
new thread objects as basic building blocks and use them to model the hardware and virtual device
layers. Second, we developed a general mechanism for managing available CPU resources and
support compositional layered refinement for concurrent programs on both single core and mul-
ticore machines. Third, we developed a fully verified preemptive OS kernel with temporal and
spatial isolation.

2
Approved for Public Release; Distribution Unlimited.

Resource-Aware CertiKOS We extended each CertiKOS abstraction layer with a detailed re-
source specification. The specification not only defines the cost models of all abstract states and
primitives (in each layer object), but also specify adaptive variants for anticipated changes in the
underlying layer implementation. Resource specifications can range from simple resource counters
(e.g., memory or stack usages) to more sophisticated potential functions (where tokens are spread
across different parts of an abstract state).

One current limitation of CertiKOS is that it does not model any physical devices, interrupt
controllers, device drivers, or kernel daemon threads. We developed thread objects, a new class of
layered object, to model these kernel features. A thread object has its own abstract state, resource
model, and adaptive invariants, but its behaviors follow a particular communication protocol. Each
thread object is given a formal specification using technologies based on session types. We then
used these thread objects to build accurate “layered” models for all kinds of hardware or virtual
devices and interrupt controllers.

We developed a new extensible architecture for building certified OS kernels with device
drivers. Instead of mixing the device drivers with the rest of the kernel (since they both run on
the same physical CPU), we treat the device drivers for each device as if they were running on a
“logical” CPU dedicated to that device. This novel idea allows us to build up a certified hierarchy
of extended abstract devices over the raw hardware devices, meanwhile, systematically enforcing
the isolation among different “devices” and the rest of the kernel. All device layers were then con-
nected to existing CertiKOS layers so they can be programmed and accessed at higher abstraction
layers.

We introduced a notion of container, inspired by container objects in HiStar [Zeldovich et al.,
2006]. Whenever a new agent (which will be a thread object) is created, a container is created
for the agent that dynamically keeps track of its resource usage (e.g., memory, time slices). An
agent’s usage may increase for a few reasons, including a direct request for dynamically-allocated
resources, or a successfully-handled page fault. Each container object is initialized with some
maximum quota; any attempt for an agent to increase its usage beyond this quota will be denied
by the kernel. Furthermore, the kernel maintains a mapping of agent ids to containers using a
hierarchical tree structure. Whenever an agent’s process makes a request to spawn a new process,
the new container is added as a child to the requesting agent’s container, and the new container’s
quota is taken from the requester’s. Using this notion of container, we proved a theorem that agents’
requests for additional resources will always be fulfilled as long as their quota is not exceeded.

Certified Concurrent Abstraction Layers Despite the importance of concurrent objects and
a large body of recent work on shared-memory concurrency verification, there are no certified
programming tools that can specify, compose, and compile concurrent layers to form a whole
system [Chong et al., 2016]. Formal reasoning across multiple concurrent layers is challenging
because different layers often exhibit different interleaving semantics and have a different set of
observable events. Reasoning across these different abstraction levels requires a general, unified
compositional semantic model that can cover all of these concurrent layers. It must also support
a general “parallel layer composition rule” that can handle explicit thread control primitives (e.g.,
sleep and wakeup). It must also support vertical composition [Anderson and Dahlin, 2011] of these

3
Approved for Public Release; Distribution Unlimited.

concurrent layer objects [Herlihy and Shavit, 2008] while preserving both the linearizability and
progress (e.g., starvation-freedom) properties.

Under the seedling project, we developed Certified Concurrent Absyraction Layers (CCAL)—
a fully mechanized programming toolkit implemented in Coq [Barras et al., 1998] for building
certified concurrent abstraction l ayers. CCAL consists of a novel compositional semantic model
for concurrency, a collection of C and assembly program verifiers, a l ibrary for building layered
refinement proofs, a thread-safe verified C compiler based on CompCertX [Gu et al., 2015], and a
set of certified linking tools for composing multithreaded or multicore layers.

We define a certified concurrent abstraction layer as a triple (L1[A], M, L2 [A]) plus a mecha-
nized proof object showing that the layer implementation M , running on behalf of a thread set A
over the interface L1, indeed faithfully implements the desirable interface L2 above.

The key novelty of our work is to build a formal compositional semantics model based upon
ideas from game semantics [Murawski and Tzevelekos, 2016]. The observable behavior of each
run of a program can be viewed as playing a game involving members of multiple threads: each
participant contributes its play by appending an event into the global log; its semantics (a.k.a.
strategy) is a deterministic partial function from the current log to its next move whenever the
control is transferred back to the current thread. In other words, the semantics of a specific thread
is defined over t hose t hreads i n i ts e nvironment. Our semantics i ntroduces formal environment
models that specify how a thread would behave relative to the behavior of its environment.

Following Gu et al. [2015], certified concurrent layers enforce termination-sensitive contextual
correctness property. In the concurrent setting, this means that every certified concurrent object
satisfies not only a safety property (e.g., linearizability) [Herlihy and Wing, 1990, Filipovic et al.,
2010] but also a progress property (e.g., starvation-freedom) [Liang et al., 2013].

Real-Time CertiKOS with Temporal and Spatial Isolation Real-time systems are computer
systems that interact with their environment at a speed given by the environment, not the system
itself. In particular, they must exhibit a predictable behavior in their reaction to environment events.

We consider hard real-time, namely all real-time tasks must meet their deadlines, given their
periods and budgets. In a hard real-time system, there are usually many different components
interacting with various parts of the environment at different rates. Ensuring that all interactions
are done at the correct pace cannot be reduced to independent checks as various interactions may
compete for shared resources, the first of which is the processor.

Under this seedling grant, we studied hard real-time operating system kernels from the
perspective of formal methods. Our first goal is to specify temporal isolation between tasks of a
real-time OS kernel, which means that each task is given its full amount of budget within each
period. This is essential for the proper operation of critical subsystems such as auto braking, flight
control, etc. Despite the rich literature in formal reasoning of real-time scheduling or temporal
properties of OS kernels [Andronick et al., 2016, Xu et al., 2016, Dutertre, 2000, Cerqueira et al.,
2016], none of these works tackle the connection between the high-level temporal property and the
low-level assembly code that is actually running on the hardware. Unlike them, we aim to bridge
the gap. Our second goal is to prove spatial isolation between processes, ensuring that there is
no information leak. Combining both goals together, we achieve a fully verified preemptive OS

4
Approved for Public Release; Distribution Unlimited.

kernel with both temporal and spatial isolation, and all properties we prove on the abstract model
will carry down to the assembly code level, which is connected with an extended machine model
based on CompCert [Leroy, 2005–2014].

To this end, we build upon CertiKOS [Gu et al., 2016], an OS kernel formally verified in the
Coq proof assistant [Barras et al., 1998], which provides formal proofs of correctness and non-
interference between user processes [Costanzo et al., 2016]. Our contributions are the following:
(1) an extended machine model that supports interrupts and enables us to reason about preemptions
in user mode; (2) a fully verified OS kernel with fixed-priority real-time scheduling; (3) a novel
application of supply functions [Liu, 2000] to reason about each task in isolation and connect
temporal properties with the actual code; (4) formal proofs that our schedulability test (the Critical
Instant Theorem [Liu and Layland, 1973] expressed in a different setting) indeed ensures that all
tasks meet all deadlines; (5) a proof of non-interference between processes (both user and kernel
ones); and (6) the implementation of a system call that provides resource measurement in a non-
interfering way.

5
Approved for Public Release; Distribution Unlimited.

3 Methods, Assumptions, and Procedures

3.1 Basic Methodology and Assumptions
Modern computer systems consist of a multitude of abstraction layers (e.g., OS kernels, hypervi-
sors, device drivers, network protocols), each of which defines an interface that hides the imple-
mentation details of a particular set of functionality. Client programs built on top of each layer
can be understood solely based on the interface, independent of the layer implementation. Despite
their obvious importance, abstraction layers have mostly been treated as a system concept; they
have almost never been formally specified or verified. This makes it difficult to establish strong
correctness properties, and to scale program verification across multiple layers.

Under the DARPA High Assurance Cyber Millitary Systems (HACMS) program, the CertiKOS
team at Yale developed a novel language-based account of abstraction layers and show that they
correspond to a strong form of abstraction over a particularly rich class of specifications which we
call deep specifications. Just as data abstraction in typed functional languages leads to the impor-
tant representation independence property, abstraction over deep specification is characterized by
an important implementation independence property: any two implementations of the same deep
specification must have contextually equivalent behaviors.

We take compositionality (especially semantic compositionality) as the most important struc-
turing principle. Existing programming languages contain many features that are not composi-
tional. Existing software development practices do not structure their software components based
on their semantic dependencies. We insist on using compositional programming language features,
compositional semantics, compositional linking mechanisms, compositional verified compilers,
compositional concurrency constructs, and compositional program logics.

Our key principle is to decompose the specifications, the semantics, and the proofs of any large
complex (software and hardware) system using certified abstraction layers. These layers corre-
spond to traditional notions of components, but they are certified, meaning that they come with
formal deep specifications and certified implementation. They can be composed horizontally and
vertically; they also support concurrency (i.e., general parallel composition); and they can be com-
piled from one implementation language (e.g., C) into another (e.g., assembly). We use contextual
refinement as a unifying mechanism to support certified linking and prove end-to-end functional
correctness properties. We also use fully abstract deep specifications so security properties proved
at higher abstraction levels can be propagated to the actual low-level implementation.

In the following, we give an overview of our abstraction-layer-based approach on verifying sys-
tem software, first introduced in [Gu et al., 2015]. As in any other system verification, we associate
every code module (a piece of code) a specification, and prove that the code meets its specification,
or more formally, there is a forward simulation [Lynch and Vaandrager, 1995] from the module
implementation to its specification. A specification of a module is a logical abstract representation
of the module’s behavior with the concrete implementation details hidden. For example, to specify
operations on a doubly linked list stored in memory, we may logically interpret the complex in-
memory data structure as a simple logical list and specify its push and pop operations as a simple
list append and remove operations. To support this, the framework needs to provide a system-
atic way to hide the private memory state from its client, and replace them with abstract states

6
Approved for Public Release; Distribution Unlimited.

to specify the full functionality of each operation in the interface in terms of the abstract states.
Furthermore, a complex system like a kernel module is normally implemented in a combination
of the C and assembly language. Thus, the framework ought to be instantiated in both languages
and provide a way to certifiably compile the C-based framework into the assembly-based one. The
certified abstraction layers provide exactly such support.

C and Assembly Languages Used Our framework supports both a C-like language and an x86
assembly language called Clight and LAsm, respectively.

Clight [Blazy and Leroy, 2009] is a subset of C and is formalized in Coq as part of the
CompCert project [Leroy, 2005–2014]. Its formal semantics relies on a memory model [Leroy
and Blazy, 2008] that is not only realistic enough to specify C pointer operations, but also de-
signed to simplify reasoning about non-aliasing of different variables. From the programmer’s
point of view, Clight avoids most pitfalls and peculiarities of C such as nondeterminism in ex-
pressions with side effects. On the other hand, Clight allows for pointer arithmetic and is a true
subset of C: valid Clight programs are valid C programs with the same semantics. Such simplic-
ity and practicality turn Clight into a solid choice for certified programming. Furthermore, the
CompCert verified compiler provides strong guarantees on code obtained by compilation of Clight
programs. However, Clight provides little support for abstraction, and proving properties about a
Clight program requires intricate reasoning about data structures. This issue is addressed by our
layer infrastructure. Our Clight code is automatically generated from standard C code through a
tool called clightgen provided by CompCert. We directly verify the generated Clight code. Thus,
correctness of the clightgen does not affect the correctness of the verified code.

LAsm is a superset of the CompCert x86 assembly language with more machine-dependent
registers and instructions needed for implementing low level system software.

Layer Interface A layer interface L consists of the abstract states, primitives, a set of invariants
on the abstract states, and proofs that all the primitives in the layer interface preserves the layer
invariants. An abstract state could be a logical state that does not correspond to any physical state
in the machine, but in most cases, it is a logical state that is abstracted from a concrete state in the
registers or memory. Each primitive operates on the abstract states and is associated with an atomic
specification. It is abstracted from a concrete, verified piece of the actual code. The invariants are
preserved by all the primitives, the abstract states can only be accessed through calling one of
the primitives, and the primitives execute atomically; therefore, the invariants hold at any moment
during the system execution.

Code Module A code module M corresponds to a concrete piece of code in Clight or LAsm
assembly. Note that a module M implemented on top of a layer interface L may call any of the
primitives defined in L. However, the standard Clight semantics is unaware of either the abstract
states or the abstract primitives defined in the layer interface. While we would like to support the
new abstract states and primitives, we seek to minimize the impact on the existing proof infras-
tructure for program and compiler verification. Thus, we do not modify the semantics of basic

7
Approved for Public Release; Distribution Unlimited.

L1
abstract
state s primitive i …Memory data

M

L2
abstract
state s’Memory new primitive p …

- +

use
contextual

refinementUnderlay

Overlay

Data Invariants

hide
+

Figure 1: Layer-based contextual refinement

operations of Clight, but access the abstract states exclusively through the Clight’s external func-
tion mechanism provided in CompCert. In addition, the external function mechanism is also used
to model the interaction with the devices, such as input/output. Indeed, CompCert models compiler
correctness through traces of events which can be generated only by external functions. CompCert
axiomatizes the behaviors of external functions without specifying them, and only assumes they do
not behave in a manner that violates compiler correctness. We use the external function mechanism
to extend Clight with our primitive operations, and supply their specifications to make the seman-
tics of external functions more precise. The semantics of LAsm is also instrumented accordingly to
support the primitive calls in the assembly code. The verified Clight source code can be compiled
by our extended CompCertX compiler [Gu et al., 2015] to the corresponding LAsm assembly in
such a way that all proofs at the Clight level are preserved at the LAsm level. Then, the compiled
LAsm modules and their proofs can be linked with the ones directly developed in LAsm.

Certified Layer A certified layer is a new language-based module that consists of a triple (L1,M,L2)
plus a mechanized proof object showing that the layer implementation M that is built on top of the
layer interface L1 (the underlay interface), denoted JMKL1, is a contextual refinement of the de-
sirable layer interface L2 above (the overlay interface), as shown in Figure 1. A deep specification
of L2 captures everything contextually observable about running M over its underlay L1. Once a
certified layer (L1,M,L2) with its deep specification is built, there is no need to ever look at M
again, since any property about M can be proven using L2 alone.

The contextual refinement is proven by showing a forward simulation from L2 to JMKL1 over
a refinement relation. Thus, for every contextual refinement, we need to find a refinement relation
R that can relate the system’s states (including the abstract states) between the layer interface L1

and L2. In the above doubly linked list example, R needs to relate the in-memory doubly linked
list of L1 to the abstract logical list in L2. In the case when there is no data abstraction between
L1 and L2, R is simply an identity relation. To prove forward simulation, we need to prove that
for every state (s1, s2) in R, and for every primitive p in L2, if p takes the state from s2 to s′2, then
there exists zero or more steps in M which can take the state s1 to s′1, where (s′1, s

′
2) is also in R.

In addition, the contextual refinement also needs to guarantee that the context code running
on the overlay interface does not accidentally damage the underlay in-memory data by directly
accessing the relevant memory. As shown in Figure 1, we achieve this by utilizing the CompCert

8
Approved for Public Release; Distribution Unlimited.

memory permissions [Leroy and Blazy, 2008] to hide the relevant memory region at overlay, which
prevents the context code from accessing the relevant memory. These logical permissions do not
correspond to any physical protection mechanism, but are used to ensure that the abstract machine
at overlay gets stuck if any code tries to directly access this portion of memory. The safety proof
of our entire system (the system never gets stuck) guarantees that such a situation never happens.
Thus, the only way to affect the abstracted memory by any context code running over the overlay
interface L2 is to explicitly call relevant primitives in L2.

Verification of Clight and LAsm functions Given that the majority of the system software are
developed in C (Clight in our case), we need a good framework-level automation support to
verify that C modules meet their specifications. In our f ramework, this proof i s achieved semi-
automatically through Coq tactic libraries implemented in the Coq’s tactical language Ltac. Our
primary proof tactic cauto consists of many components.

One main component is a verification condition generator that decomposes all the Clight ex-
pressions and statements, and produces conditions as subgoals for the further expression evaluation
and statement execution based on the big-step semantics defined in C ompCert. The only exception
is the loop, whose verification c onditions c annot b e g enerated b y s imply a pplying t he semantic
rules. We developed a separate logic for loops, which requires the user to provide the loop invari-
ants that are preserved on every iteration of the loop execution. Our proof is termination sensitive.
Thus, the logic also requires a termination metric, a well-founded order of the type of the provided
metric, and a proof that the metric decreases at every iteration of the loop according to the provided
well-founded order.

The language Clight strictly follows the C standard and disallows the undefined behaviors
described in the standard C semantics. Thus, these all become the preconditions in the semantic
rules of the Clight language. For a reasonably realistic C module, many verification conditions
are generated. Discharging the conditions after they are fully generated would be very inefficient.
Instead, our cauto tactic integrates many of the theory solvers to discharge the subgoals on the fly
as soon as they become provable.

First, to prevent the integer overflow, the Clight semantics requires every intermediate value in
the middle of expression evaluations to be within the range regarding its type. In this way, most of
the Clight code generates a huge set of arithmetic subgoals for checking value ranges. However,
the standard omega tactic is too weak to prove most of the goals. We have incorporated the cauto
tactic a powerful arithmetic solver that can handle division, modular operations, bitwise operations,
machine finite precision integers, et cetera.

Clight semantics also uses partial maps and Coq lists to represent the local variable environ-
ments and arguments. We also use partial maps and Coq lists in the abstract states to abstract many
of the concrete data structures in memory. To support those, the tactic contains theory solvers to
discharge proof goals for properties related to partial maps and Coq lists. The tactic also contains
a number of domain specific libraries which handle items such as device transitions and logs.

The automation library is easy to learn and use, and is exercised extensively by many students
and researchers in our group to prove thousands of lines of C code in our verified OS kernel.

We have also developed an automation library to semi-automatically prove the modules directly

9
Approved for Public Release; Distribution Unlimited.

1 struct ConsoleBuffer {
2 char buffer[CB_SIZE];
3 unsigned int rpos;
4 unsigned int wpos;
5 };
6

7 // in-memory circular buffer
8 struct ConsoleBuffer cons_buf;
9

10 // console buffer module M
11 void cons_buf_init() {
12 cons_buf.rpos = 0;
13 cons_buf.wpos = 0;
14 }
15

16 char cons_buf_read () {
17 unsigned int rv = CB_EMPTY;
18 if (cons_buf.rpos != cons_buf.wpos) {
19 rv = cons_buf.buffer[cons_buf.rpos];
20 cons_buf.rpos = (cons_buf.rpos + 1) %

CB_SIZE;
21 }
22 return rv;
23 }
24

25 void cons_buf_write (char c) {
26 cons_buf.buffer[cons_buf.wpos] = c;
27 cons_buf.wpos = (cons_buf.wpos + 1) %

CB_SIZE;
28 if (cons_buf.rpos == cons_buf.wpos) {
29 cons_buf.rpos = (cons_buf.rpos + 1) %

CB_SIZE;
30 }
31 }

Figure 2: Console circular buffer implementation

implemented in LAsm. The automation support for LAsm is not as mature and powerful as the
support for Clight, as the assembly code is much less structured in nature compared to the Clight
programs. In practice, it is not a big issue since the part of system code directly implemented in
assembly is relatively small.

Example: Verification of Console Circular Buffer To better illustrate how the certified ab-
straction layers work, we demonstrate how we can utilize the techniques to verify a console circu-
lar buffer implementation used in our verified device d rivers. As shown in Figure 2, in memory,
the circular buffer is implemented as a circular array (to store the received input characters) with
two additional fields t o mark t he head (rpos) and t he t ail (wpos) of t he c ircular b u ffer. Since the
console buffer module M in Figure 2 does not use any layer primitives, we can view M as running
on a layer interface Llow with empty abstract state and primitives.

Now we define a new layer interface Lhigh with an abstract state d representing the circular
buffer, and a list of abstract primitives cb init, cb read, and cb write that operate on the

abstract buffer. First, we define d = (cons b uf : l ist Z), i .e., we simply abstract the in-memory
circular buffer as a simple logical list. Next, we give specifications t o t he s et o f p rimitives as
shown in Figure 3. Here, we use the notations [·] and ++ to represent a singleton list and list
concatenation, respectively. The specification shown in Figure 3 is much cleaner and simpler than
the actual implementation; this simplifies future reasoning about code modules that use the data
structure.

Next, we can define a refinement relation R to relate the concrete circular buffer in the memory

10
Approved for Public Release; Distribution Unlimited.

d′ = d[cons buf nil]

cb init(d) = d′
(cb init)

c :: tl = d.cons buf d′ = d[cons buf tl]

cb read(d) = (d′, c)
(cb read char)

nil = d.cons buf

cb read(d) = (d,CB EMPTY)
(cb read empty)

l = d.cons buf length l < CB SIZE
d′ = d[cons buf l++[c]]

cb write(d, c) = d′
(cb write char)

c :: tl = d.cons buf length l = CB SIZE
d′ = d[cons buf tl ++ [c]]

cb write(d, c) = d′
(cb write overflow)

Figure 3: Specifications of abstract console buffer primitives

Memory

Lhigh

Llow

cb_read

cb_write

cb_init

v

rpos
wpos

…

…

Lmid rpos
wpos

ZMap
i1 undef
i2 val
… …

cb_read

cb_write

cb_init

…

M :: cb_read M :: cb_write M :: cb_init

v

Memory

Memory

R

R

Figure 4: The layer hierarchy of circular console buffer

and the abstract list, then prove the contextual refinement between JMKLlow and Lhigh over the
simulation relation R. We complete forward simulation proof, one primitive at a time. This proof
is also complex, because R is nontrivial.

The complexity may further explode when this logical complexity gets mixed with the com-
plexity of handling the accesses to the memory. CompCert’s memory model is an axiomatized
model where the properties are defined through a big list of axioms without a specific implemen-
tation. Any concrete implementation of this memory model needs to satisfy all the axioms. Thus,
one cannot perform any simple evaluations on the memory, but needs to keep applying appropriate
axioms to derive any desired properties. This severely limits the room for proof automation and
significantly increases the proof size and memory consumption for proof compilation as the proof
gets more complex. To separate the complexity that comes from the CompCert memory model
from the actual complexity of the proof, in our layered approach, we always make the gap between

11
Approved for Public Release; Distribution Unlimited.

the underlay and overlay interface as small as possible when it comes to data abstraction, i.e., when
a piece of memory gets abstracted into an abstract state at the overlay interface.

In the case of the circular console buffer, instead of directly jumping from the in-memory im-
plementation to a logical list, we introduce an intermediate layer interface where the representation
of the circular buffer in the abstract state is very similar to the one in the memory. We define the
intermediate layer interface Lmid with the abstract state d and the primitive specifications as shown
in Figure 5. Here, for any type T , ZMap.t T is the type of partial map from integer keys to the
values of type T . One can easily observe that the representations shown in Figure 5 are extremely
similar to the actual implementations shown in Figure 2. Given the similarity, one can easily come
up with a refinement relation R which maps the concrete values in the memory to their appropri-
ate logical values in d. The simulation proof over R is also relatively easy and there is no other
complex factors interfering with the ones from handling the CompCert memory.

Once the contextual refinement between JMKLlow and Lmid is proven, the contextual refine-
ment between Lmid and Lhigh can be proven with no code module involved. Thus, this part of
proof is completely logical and the refinement relation Rcons buf (shown in Figure 6) in this case
only needs to relate two sets of abstract states. In Figure 6, Abs is the type of the abstract states
in each layer interface. The overall layer hierarchy of entire console buffer is shown in Figure 4.
This kind of two-stage proof strategy significantly reduces the complexity of the proof and lifts the
main complex proof effort to pure logical level.

3.2 Resource-Aware CertiKOS
Under this seedling project, we extended each CertiKOS abstraction layer with a detailed resource
specification. Figure 7 shows the device hierarchy of CertiKOS. Here the white boxes represent
raw hardware devices; the green boxes denote the device drivers, and the gray boxes are the data
structures used by the drivers. The purple/black lines show how these device and driver compo-
nents are related. Note that the drivers in CertiKOS are not verified; they are implemented in about
1,600 lines of C and assembly code, and would be considered as part of the trusted computing base
(if they are kept inside the kernel).

We take CertiKOS’s lowest level machine model, LAsm, and extend it with device models.
We model devices as finite state transition systems interacting with the processor and the external
environments. Since devices run concurrently with the processor, parts of the device state change
without the processor explicitly modifying them. Though these “volatile” device states can change
nondeterministically, the processor itself only ever observes a “current” state when it reads the
device data via an explicit I/O operation. The processor does not, and in fact cannot, care about
any states that the device may enter between these observed states. Therefore, instead of designing
fine-grained small-step transition systems that model all possible interleaved executions amongst
the processor and devices, our devices simply perform an atomic big-step transition whenever they
are observed, i.e., when there is a device read/write operation from the CPU.

Next, the machine model needs to be extended with the hardware interrupt model. The proces-
sor responds to an interrupt by temporarily suspending the current execution and then jumping to
another routine (i.e., an interrupt handler). Interrupts can be triggered by both hardware and soft-
ware. Software interrupts (e.g., exceptions, system calls) are relatively easy to reason about, since

12
Approved for Public Release; Distribution Unlimited.

d = (cons buf concrete : ZMap.t Z, B Concrete console buffer
rpos : Z, B The head of the buffer
wpos : Z). B The tail of the buffer

d′ = d[rpos← 0][wpos← 0]

cb init(d) = d′
(cb init)

i = d.rpos i 6= d.wpos
c = d.cons buf concrete[i] d′ = d[rpos← (i+ 1) mod CB SIZE]

cb read(d) = (d′, c)
(cb read char)

d.wpos = d.rpos

cb read(d) = (d,CB EMPTY)
(cb read empty)

i = d.wpos i′ = (i+ 1) mod CB SIZE d.rpos 6= i′

d′ = d[cons buf concrete[i 7→ c]] d′′ = d′[wpos← i′]

cb write(d, c) = d′
(cb write char)

i = d.wpos i′ = (i+ 1) mod CB SIZE d.rpos = i′

i′′ = (i′ + 1) mod CB SIZE d′ = d[cons buf concrete[i 7→ c]]
d′′ = d′[wpos← i′][rpos← i′′]

cb write(d, c) = d′′
(cb write overflow)

Figure 5: Intermediate specifications of console buffer primitives

1 Fixpoint match_cons_buf (cons_buf: list Z) (cons_buf_concrete: ZMap.t Z) (rpos wpos
: Z) : Prop :=

2 match cons_buf with
3 | nil => rpos = wpos
4 | bv :: cons_buf’ =>
5 ZMap.get rpos cons_buf_concrete = bv /\
6 match_cons_buf cons_buf’ cons_buf_concrete ((rpos + 1) mod CB_SIZE) wpos
7 end.
8

9 Inductive R_cons_buf: L_high.Abs -> L_mid.Abs -> Prop :=
10 | MATCH_CONS_BUF:
11 forall d_high d_mid,
12 match_cons_buf d_high.cons_buf d_mid.cons_buf_concrete d_mid.rpos d_mid.wpos

->
13 R_cons_buf d_high d_mid.

Figure 6: The definition of refinement relation between Lhigh and Lmid in Coq

13
Approved for Public Release; Distribution Unlimited.

PCI DeviceTimer

TSC

IDT
CPU
freq

DMA
OwnershipLAPIC IOAPIC

APIC

PCI Root

PCI Function List

Serial Kbd

Video

Console

PCI Device …AHCIDisk

CPU
Memory

Heap BIOS DMALocal
APIC

I/O
APIC AHCI

PCI

USB NIC …
Serial Key-

board VGA…

Memory Mapped
Reg Base

mptable Console Buffer

Legend
Hardware

Global
Data

Driver

drive

use

Figure 7: The device driver hierarchy of CertiKOS

their behaviors are always deterministic. For example, a page fault exception occurs whenever the
accessed address belongs to an unmapped page or a page with wrong permission, and a system
call is triggered by an explicit instruction. However, hardware interrupts (IRQs) are unpredictable;
when we execute some code with interrupts turned on, at every fine-grained processor step, the
machine state (e.g., registers and memory) may undergo significant changes. Recent work on ver-
ified operating systems (including CertiKOS) neglects this kind of reasoning, ignoring one of the
largest kernel threat-surfaces [Gu et al., 2015, Klein et al., 2009, Alkassar et al., 2010]. Finally,
modeling interrupts is important because it also opens the way toward enabling interrupts within
the kernel.

On top of this lowest-level machine model, each kernel module can be related to either device
drivers (denoted as DD) or the rest of the kernel (denoted as K, representing non-device-related
kernel components). To introduce, verify, and abstract each such kernel module into an abstract
object with atomic logical primitive transitions, we need to prove the following isolation properties:

• For each function in K or user space, which has interrupts turned on, the interrupt must not
affect the behavior of the function. Although the code can be interrupted at any moment,
and the control flow transferred to a place outside the function, it will eventually return with
states (which the function relies upon) unchanged.

• Devices which directly change the memory through Direct Memory Access (DMA), do not
change any memory that the execution of any function in K depends on.

• For each interruptible device driver function in DD, any interrupt not related to the current
device must not change any state related to the current device.

• In case that all interrupts related to a device are masked out, no interrupts can affect the state
of the interrupt handler for the device.

For a particular fixed set of functions, the proof of the above properties may not seem hard.
However, they have to be proven repeatedly for all possible combinations of currently introduced

14
Approved for Public Release; Distribution Unlimited.

P

P

CPU Memory D1 D2

module <container> :: c_init() { … EE …}. …

MBoot md1 ⇢⇢11
11

…
MContainerP md2 ⇢⇢11

DSerialIntroP mdi ⇢⇢11
module <serial> :: s_putc() { … EE …}. …P 11

DSerialP mdi+1 ⇢⇢11

data abstraction

new primitive

?

? Legend
Hardware

Driver

module

Context

Layer

Primitive

11 Link

EE interrupt

use

refinement

introduce

Figure 8: Abstraction layers w. interrupts: a failed attempt

sets of functions and devices. This immediately makes the verification of an interruptible operating
system with device drivers unscalable.

Furthermore, it is not obvious how to apply techniques presented in Section 3.1 to handle
hardware interrupts. Figure 8 shows one such attempt. Here, P denotes the kernel/user-level
context code; MBoot, MContainer, DSerialIntro, and DSerial denote several kernel and driver
layers. With interrupts turned on in the kernel, it is immediately unclear how to show contextual
refinement among different layers. For a kernel function like c init, it cannot be easily refined
into an atomic specification as the code can be interrupted at any point during the execution by
a device interrupt, unless all possible interleaving of interrupts are encoded into the specification
itself. Similarly, for a device driver function like puts, the code can be interrupted at any moment
by interrupts triggered from other devices or the device itself.

Under this seedling project, we developed a systematic way that strictly enforces isolation
among different entities by construction. Our approach consists of the following two key ideas.

First, rather than viewing drivers as separate modules that interact with the CPU via in-memory
shared-state, we instead view each driver as an extended device. We utilize abstraction layers and
contextual refinement to gradually abstract the memory shared between a device and its driver into
the internal abstract states of a more general device. Furthermore, we use the same technique to
abstract those driver functions that manipulate these data into the abstract primitives of a higher
level device. After this, our approach ensures that those abstract states can no longer be accessed
by the other entities, through, e.g., memory reads and writes, but, rather, can only be manipulated
via explicit calls to the device interface. We repeat these procedures so we can incrementally
refine a raw device into more and more abstract devices by wrapping them with the relevant device
drivers (see Figure 9). We call this extended abstract device a device object, to distinguish it from
the raw hardware device. Note that in our model, device objects are indeed treated similarly to raw
devices, and both have quite similar interfaces.

15
Approved for Public Release; Distribution Unlimited.

Extended Device Object (Driver)

Raw Device Object

trans state local logs
(+) state

code
read/
write

(+)primitive

C
on

te
xt

C
od

e

Figure 9: The driver as an extended device

P

P

logical
CPU 0

Kernel logical
Memory

module <c> :: c_init() { !!}

MBoot md ⇢⇢11
11

…
MContainerP md ⇢⇢11

MShareOpP md ⇢⇢11
data abstraction

new primitive

…

CPU Memory D1 D2

P 11
P 11 …

logical
CPU 1

D1 logical
Memory

M <d1> :: f1() { !!}

D1_Raw s

…
D1_Func s

D1_Intr s

M <d1> :: puts() { … EE …}

D1_Puts s D1_puts

`̀

`̀

`̀

`̀

logical
CPU 2

D2 logical
Memory

M <d1> :: f1() { !!}

D2_Raw s

…
D2_Func s

D2_Intr s

`̀

`̀

`̀

…
…

logical
separation

critical area critical area

Figure 10: Building certified abstraction layers with hardware interrupts: our new approach

Second, we introduce and verify the interrupt handler for each device at the lowest machine
model, which is not yet suitable for reasoning about interruptible code. This is possible because,
for each device, we require that either the interrupt be disabled or its corresponding interrupt line
be masked inside the interrupt handler of the device. Next, we introduce a new abstract machine
with a more abstract interrupt model, that provides strong isolation properties amongst different
device objects and the kernel, in which any future (context) code with interrupts turned on can
be reasoned about naturally. We prove a strong contextual refinement property between these two
abstract machines: any context code running on the machine with the abstract interrupt model
(overlay) retains an equivalent behavior when it is running on top of the machine with the concrete
hardware interrupt model (underlay).

Figure 10 shows the layer hierarchy of our interruptible kernel with device drivers. We treat
the driver code as if it runs on its own device’s “logical CPU,” and each logical CPU operates on
its own separate internal states. Thus, the approach provides a systematic way of assuring isolation

16
Approved for Public Release; Distribution Unlimited.

among different device objects (running on its own local logical CPUs) and the rest of the kernel.
On the kernel side (the layer hierarchy on the left hand side of Figure 10), the contextual

refinement is achieved in the same way as shown in Section 3.1 since the hardware interrupts
(from the other logical CPUs with separate states) no longer affect the execution of any kernel
primitive (like c init), i.e., the kernel is completely interrupt-unaware.

Similarly, the device driver functions are no longer affected by the hardware interrupts triggered
from other devices. For each device D running on top of its own logical CPU, we first introduce
and verify part of the driver in the critical area, i.e., the low-level device functions that should not
be interrupted by the same device, and the interrupt handler of the device. Next, we use contextual
refinement to introduce a new layer that has a more abstract interrupt model. On this layer, we can
introduce and verify interruptible driver code (e.g., puts) while still enforcing strong isolation and
providing clean interface to the kernel.

3.3 Certified Concurrent Abstraction Layers
We have successfully extended our methods and tools for certified abstraction layers to support
concurrency. We parameterize each layer interface L with an “active” thread set A (where A ⊆ D
and D is the domain of all thread and CPU IDs). The layer machine based on a concurrent layer
interface L[A] specifies the execution of threads in A (with threads outside A considered as the
environment).

A concurrent layer interface extends its sequential counterpart with a set of abstract atomic
objects, a global log l, and a set of valid environment contexts. Unlike calls to thread-local objects
which are not observable by other threads, each method call to an atomic object (together with
its arguments) is recorded as an observable event appended to the end of the global log. Each
environment context specifies the observable behaviors of the execution of those threads/CPUs in
the environment under one possible interleaving.

To define the semantics of a concurrent program P in a generic way, we developed a novel
compositional (operational) model based upon ideas from game semantics. Each run of P over
L[D] can be viewed as playing a game involving members of D (plus a scheduler): each partic-
ipant t ∈ D contributes its play by appending an event into the global log l; its strategy ϕt is a
deterministic partial function from the current log l to its next move ϕt(l) whenever the last event
in l transfers control back to t.

The semantics of the (concurrent) layer machine based on an interface L[A] can be defined
over its set of valid environment contexts. Each environment context E provides a strategy for its
“environment” (i.e., the union of the stategies by the scheduler plus those participants not in A).

For example, Figure 11 shows a system with two threads (t1 and t2) and a scheduler. On the left,
it shows one execution of method foo over the layer machine L′[t1] under a specific environment
context E ′1. Here, E ′1 is the union of the strategy ϕ′

0 for the scheduler and ϕ′
2 for thread t2. In the

middle, it shows the execution of foo (invoked by t2) over L′[t2] under the environment context E ′2.
On the right, it shows the interleaved execution of two invocations to foo over L′[{t1, t2}] where
the environment context E ′ is just the scheduler strategy ϕ′

0.
Given an environment context E which also contains a specific scheduler strategy, the execution

of P over L[A] should be deterministic; the concurrent machine will run P when the control is

17
Approved for Public Release; Distribution Unlimited.

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●

●

●
●
●

L’[t₂]

L[t₂]

M:foo(){

}

●

●

●

●

E 0
2 = '0

1 � '0
0

L’[t₁]

L[t₁]

M:foo(){

}

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●

●

●
●
●

●

●

●

●

E 0
1 = '0

0 � '0
2

)
R R

●
●
●
●
●
●
●
●
●
●
●
●
●

M:foo(){

}

●

●

●

●

L’[{t₁,t₂}]

L[{t₁,t₂}]

M:foo(){

}

●

●

●

●

R RE 0 = '0
0

Figure 11: Environment contexts and parallel layer composition

transferred to any member of A, but will ask E for the next move when the control is transferred to
the environment.

The semantics [[P]]L[A] is then just the set of global logs generated from running P over L[A]
under all valid environment contexts. The definition of validity here can be customized by each
layer interface. It corresponds to a generalized version of the “rely” (or “assume”) condition in
rely-guarantee-based reasoning [Feng et al., 2007, Vafeiadis and Parkinson, 2007, Feng, 2009,
Fu et al., 2010, Sergey et al., 2015]. Each layer interface can also provide its own “guarantee”
condition which is simply expressed as invariants over its atomic objects and global log.

Using these ideas, we developed a fully mechanized programming toolkit (called CCAL) for
specifying, composing, compiling, and linking certified concurrent abstraction layers. CCAL con-
sists of three technical novelties: a new game-theoretical, strategy-based compositional semantic
model for concurrency (and its associated program verifiers), a set of formal linking theorems for
composing multithreaded and multicore concurrent layers, and a new CompCertX compiler that
supports certified thread-safe compilation and linking. The CCAL toolkit is implemented in Coq
and supports layered concurrent programming in both C and assembly. It has been successfully
applied to build our fully certified concurrent OS kernel, CertiKOS, with fine-grained locking.

3.4 Real-Time CertiKOS
Preemptive Priority-Based Scheduling A real-time system associates a deadline to each real-
time task (and a period in the case of periodic ones) and requires that its execution finishes by the
deadline. We use task or process interchangeably to denote the basic scheduling unit of a real-time
system. From the OS kernel’s point of view, a task corresponds to a process. Scheduling is done
with a basic time unit called time slot or time quantum, corresponding to the interval between two
timer interrupts.

In our seedling research, we consider real-time requirements for periodic tasks and assume
that the deadline is the start of the next period (called implicit deadlines). We also do not allow
the creation of new real-time tasks at runtime. In other words, the number of real-time tasks and
their parameters are fixed before the system starts. This is the most common case in control-loop
systems, which represents the majority of real-time systems.

18
Approved for Public Release; Distribution Unlimited.

In our setting, each real-time task is defined by a period, a budget of execution time within each
period, and a priority level. Higher priority levels correspond to smaller numbers, in particular,
priority level 0 is the highest one. When there are multiple pending tasks, the one with the highest
priority will be scheduled. Each priority level contains at most one task, so that we can identify
tasks with their priority level. In particular, we abbreviate “task at priority level p” into “task p”.

The OS kernel is responsible for cutting off the execution of a task when it has used up its
budget in its current period. A real-time task meeting its deadline means that it will be allocated
the exact number of execution time slots it has declared by the end of its period. If the budget it has
initially is high enough, it will meet its deadline; otherwise it will be prevented from overrunning,
thus not jeopardizing other real-time tasks. Finally, a system is schedulable if all tasks are given
their exact budget during each period. While no real-time task is pending, we allow batch tasks to
run without any sort of real-time guarantee.

To do so, we extend the machine model to support reasoning about interrupts, in particular
timer interrupts that can preempt the current user process and schedule a new one. This is a
substantial change compared to the verification of a cooperative kernel, where a user process cannot
be interrupted and has to explicitly invoke a system call to suspend itself: in a preemptive setting,
a user process can be preempted after the execution of any assembly instruction.

Schedulability Analysis Schedulability analysis tests statically whether a group of tasks can be
scheduled on a given system without missing any deadline (or equivalently, are given the right
amount of execution time per period). A sound schedulabiltiy analysis usually performs checking
on certain task parameters, such as priorities, periods and budgets, and concludes that the task set
is schedulable only when each task can be scheduled for its full budget in all periods.

Reusing an existing schedulability analysis, we focus on connecting the analysis (which is
usually done within an abstract model) with the concrete code that is running on the machine. In
particular, we interpret schedulabiltiy as a safety property: whenever the kernel decides to refill
the budget of a task, it must have been depleted, meaning that the task was scheduled during
this past period for its budget worth. We insert such an assertion in the specification of the OS
kernel, and prove that it never fails if task parameters pass the schedulability test. In this way, the
schedulability analysis is faithfully connected to the state transition of the verified OS kernel, and
is carried down all the way to generated assembly code.

Yet, proving schedulability alone is not the end of the verification. We need a way to encap-
sulate schedulabiltiy into the specification, so that it can in turn be used to deduce other temporal
properties, such as liveness for all real-time processes. Furthermore, we want to minimize the
proof effort by doing it in a compositional way, despite the fact that scheduling itself is a whole
system functionality.

To achieve the above reasoning, we reuse the time supply function to isolate different tasks
from each other. Supply functions, as presented in [Liu, 2000, Lehoczky et al., 1989, Audsley
et al., 1993], compute the response time of a task (the duration from the start of a period to the end
of execution in the current period) by finding the intersection of its time demand and time supply.
Time demand counts the execution time of this particular task and all higher priority ones, which
may span multiple periods. Time supply represents the total available time that can be allocated to

19
Approved for Public Release; Distribution Unlimited.

them, and is usually expressed as the identity map for fixed-priority scheduling (except for instance
in hierarchical scheduling).

We reuse and adapt this idea, which allows us to easily deduce liveness for all real-time tasks.
Their adoption also helps in the proof of schedulability analysis, which suggests that it is indeed
a suitable abstraction of fixed-priority scheduling, and is most suitable to serve as the connection
between schedulability analysis and the verified OS kernel.

Information-Flow Non-Interference Information-flow non-interference is a crucial property
for mixed-criticality systems, ensuring that non-critical tasks cannot affect critical ones. It is also
very useful in shared systems, avoiding eavesdropping between users and preventing certain types
of denial of service.

In practice, system calls may reveal information about the internal state of the machine, such
as the amount of allocated memory through malloc or the number of processes created through
process id (pid) assignment. To solve these problems, we can use, for instance, memory quotas and
random or fixed pid assignment, respectively. These techniques have been used to prove that the
single-core CertiKOS kernel is indeed information-flow secure [Costanzo et al., 2016]. However,
this previous work assumes a cooperative OS.

Preemption requires special treatment. In the previous work, non-interference is guaranteed
by assuming that two executions of the same process are always synchronized. They execute the
same sequence of instructions, and yield to another process at the same instant w.r.t. the number
of instructions already executed (not the physical time). This is no longer true with a preemptive
scheduler where yielding might happen non-deterministically.

To demonstrate the expressiveness of our reasoning framework, we extend the non-interference
guarantee to the presence of a get_usage system call for resource accounting. The specific type of
resource is irrelevant, we only assume a cost model for each instruction, which must be determin-
istic in order to preserve non-interference. Valid examples of resources include time, I/O, money,
or fuel (ethereum for instance). We implement two examples: one with time, the other with the
instruction count.

The time version works in a similar way as the clock_gettime system call in Linux with
the option CLOCK_THREAD_CPUTIME_ID enabled. The caveat is that the determinism assumption
on the cost model is not very realistic for time, particularly so for the x86 platform. It makes
more sense on ARM platforms that exhibit a more deterministic timing behavior, such as the ARM
Cortex R or M series.

We implement the instruction count version of get_usage on x86 using the INST RETIRED
performance monitoring counter. It counts the number of retired instructions (instructions that
have completed and whose effects are valid in contrast to incorrect speculative guesses) executed
in rings 1 through 3. In this case, the cost model is the constant function 1.

Evaluation We developed a fully verified preemptive OS kernel with both spatial and temporal
isolation. The extracted assembly code is further compiled by gcc, and runs on an Intel Sandy
Bridge based x86 machine, with timer interrupts configured to arrive every 1 ms. Although our
focus is not currently on experimental evaluation, our experiments report that the get_usage sys-

20
Approved for Public Release; Distribution Unlimited.

Feature LoC Files Touched
Interrupts/Preemption 10,533 161
Real Time Scheduler 26,142 22
Schedulability Analysis 1,398 4
get_usage System Call 4,401 28
Non-Interference 28,458 28
Total 70,932 243

Figure 12: Changes with respect to the non-interference version of CertiKOS.

tem call is indeed non-interfering: invocations from the observer process always return the same
sequence of values regardless of how we change other processes in the system.

We developed the following Coq proofs:

• Extension of CertiKOS with a model of a cost register and a generic interrupt mechanism.
This involves changing the machine model to parametrize it over operations that increase the
resource usage, trigger and handle interrupts, as well as instantiations of these operations at
each layer.

• Formalization of the schedulability analysis.

• Functional correctness of the new priority based scheduler, and the successive refinement
between the concrete implementation, the virtual time based scheduler, and the dedicated
scheduler for any particular priority level.

• Non-interference of user processes. We extend the framework of previous work by Costanzo
et al. [2016] to a preemptive scheduler and fix an existing bug in the kernel.

• Functional correctness proof of the get_usage system call, while preserving non-interference.

The summary of the extent of these changes is given in Figure 12. The lines represent the
modification as given by the git diff tool. For the sake of simplicity, we attribute each file only
to one category, even though in some cases the modifications clearly belong to several ones. We
think these figures still give a good estimate of the amount of work involved.

From this table, one can notice several things. First, although the introduction of interrupts
only account for about 15% of the changes, it represents 2/3 of the modified files. Indeed, the
modification of the machine model for the x86 assembly entails small changes at most layers of
CertiKOS. Switching from a cooperative round-robin scheduler to a preemptive priority-base one
changes some invariants of the kernel and introduces 9 new abstraction layers, hence the high
number of line count although there is a relatively small number of files. Similarly, the high-
level non-interference proof had to be redesigned completely because of preemption, thus the high
number of changes. Taking advantage of the framework developed for the real-time scheduler, the
work required for the get_usage system call is much smaller but spans a fair amount of files as its
existence must be propagated through all upper layers. Finally, the schedulability analysis part is

21
Approved for Public Release; Distribution Unlimited.

completely self-contained and covers only the formalization of the analysis of the rate monotonic
scheduling policy, the connection with CertiKOS being accounted for under the scheduler.

Subtleties Found in the Kernel During the proof development, we found certain subtleties in
the implementation of the kernel, which either warns us of limitations of our semantics models, or
helps us prevent bugs that could invalidate the whole system.

The kernel uses a timer counter to keep track of the number of timer interrupts that have oc-
curred, providing a time measure for the scheduler. However, since the system can run indefinitely,
a fixed-sized counter (which we call a bounded counter) will eventually overflow, leading to an
inconsistent state and invalidating the schedulability guarantee.

We handle this problem by observing that the scheduling result is identical after each hyper-
period, that is, the least common multiple of periods of all processes. Indeed, assuming the system
is schedulable, after each hyper-period, the system can be seen as starting from scratch since every
process has fulfilled its current budget and all periods are about to end.

We then introduce an unbounded counter in the system, which resides only in the abstract state.
The unbounded counter keeps increasing, while the bounded counter will be reset every time it hits
the hyper-period. We prove that as long as those two counters are equal modulo the hyper-period,
the result of the scheduler is the same.

Finally, since we do not allow dynamic allocation of real-time tasks, the value of the hyper-
period can be computed statically. Therefore, given the value of the hyper-period, we can always
find a bounded counter with the proper size to store it and thus, the kernel is functionally correct.
Since the reasoning of temporal properties only relies on the unbounded version, it is not affected
by such low level details.

Another bug we found is related to the context switch primitive. The context switch primitive
can satisfy non-interference in a cooperative setting without being correct at all. And this is actually
exactly what happened: the existing context switch primitive of CertiKOS is incorrect because it
does not save enough registers although it does satisfy non-interference in a cooperative setting.
The missing registers are the CR register (where the test flags are set for instance) and the floating
point ones.

On the one hand, not saving floating point registers by default is a common optimization in OS
as most programs do not use them. When the first floating point instruction is executed, it traps into
the kernel to enable the floating point operations for this process and also set the saving/restoring
of floating point registers on context switches. Nevertheless, this optimization is not currently
implemented in CertiKOS so their context switch routine was incorrect.

On the other hand, being able to observe (part of) the CR register is required as conditional
jumps access it so it is already indirectly observable.

The fact that non-interference with preemption requires to prove that the saved and restored
contexts are identical prevents this kind of mistakes.

Limitations Our current implementation only allows for preemption at the user level. This
means that interrupts can be disabled for a long time if system calls are expensive, which can
be detrimental to the responsiveness of the system.

22
Approved for Public Release; Distribution Unlimited.

A solution is to adopt the deferred post method used in µC/OS-III, where the interrupt handler
is only responsible to record the event in a request queue, and the actual handling is performed
by a user process which iterates over the queue. The benefit o f t his d esign i s t o m inimize the
interrupt disable time, thus achiving better responsiveness while still only requiring preemption in
user mode, so that the current functional correctness proof would still be applicable.

In our current machine model, the resource consumed by kernel primitives is not taken into
account. This allows us to avoid modifying the existing correctness proofs but is clearly unre-
alistic, in particular when the kernel executes a costly operation on behalf of a user process. The
problem is then that our resource accounting will drift each time a system call happens, so that it
does not track accurately what each user process is (even indirectly) using.

The solution is quite simple: bite the bullet and add a resource component to the specifications
of each system call. Then we would remove the kernel-mode-only assembly semantic rule, thus
enabling the resource accounting everywhere.

A lighter solution would be to simply determine a correct upper bound on the cost of each
system call and assume its correctness. We would then use this bound to extend the cost model to
system calls at runtime, thus giving us a more accurate resource accounting for user processes at
the cost of using empirical values instead of certified ones for system calls.

Even more than a proper tracking of resources in kernel mode, not accurately tracking the
time spent by the kernel can severely undermine our schedulability guarantees, although ignoring
kernel time (especially for context switch and interrupt handlers) is a fairly common assumption
for schedulability analysis in first approximation.

Indeed, the preemption of a running user process relies on the timer interrupt, which is triggered
at a constant rate. However, if the interrupt happens in the middle of a system call, its handling
will be delayed until control is given back to user mode. This means that the next process is given
slightly less than one full time quantum to execute. Similarly, the interrupt handler itself also
consumes time intended for running user processes. This small overhead may in turn jeopardize
the proper operation of a task if it relies on executing for the full budget.

To account for this overhead, we could reserve a little bit of each time quantum for interrupts
and system calls and ensure that the kernel cannot use more than this share.

23
Approved for Public Release; Distribution Unlimited.

4 Results and Discussion
We have achieved three kinds of results:

1. Scientific/engineering methods/techniques for security and correctness verification of resource-
aware system software;

2. Tools that embody these techniques so they can be applied in the field; and

3. Demonstrations of these methods and tools in specific verifications of interest to the BRASS
community.

Specific examples have been discussed in Section 3 and its subsections (pages 6–23). We
summarize here:

1. Methods/techniques

• Compositional specification and verification with certified abstraction layers

• Game-semantics-based strategies and environment contexts for building and compos-
ing certified concurrent abstraction layers

• Proof by refinement: certified concurrent abstraction layers with functional-programs-
as-functional specs

• Observation function and security-preserving simulation for specifying, propagating,
and reasoning about end-to-end information-flow security properties such as spatial
and temporal isolation.

2. Tools

• CCAL, for modular refinement-based proofs of concurrent C and assembly programs

3. Verifications

• Resource-Aware CertiKOS with verified device drivers and interrupt handlers

• Concurrent CertiKOS hypervisor and OS kernel, verified using CCAL.

• Real-Time CertiKOS with spatial and temporal isolation.

The success of these verification efforts demonstrates that it is now possible to build high-
assurance resource-aware OS kernels.

24
Approved for Public Release; Distribution Unlimited.

4.1 Publications
The following publications resulted from our BRASS-supported research.

[Gu et al., 2018] Certified Concurrent Abstraction Layers
Concurrent abstraction layers are ubiquitous in modern computer systems because of the
pervasiveness of multithreaded programming and multicore hardware. Abstraction layers
are used to hide the implementation details (e.g., fine-grained synchronization) and reduce
the complex dependencies among components at different levels of abstraction. Despite
their obvious importance, concurrent abstraction layers have not been treated formally. This
severely limits the applicability of layer-based techniques and makes it difficult to scale
verification across multiple concurrent layers. In this paper, we present CCAL—a fully
mechanized programming toolkit developed under the CertiKOS project—for specifying,
composing, compiling, and linking certified concurrent abstraction layers. CCAL consists
of three technical novelties: a new game-theoretical, strategy-based compositional semantic
model for concurrency (and its associated program verifiers), a set of formal linking theo-
rems for composing multithreaded and multicore concurrent layers, and a new CompCertX
compiler that supports certified thread-safe compilation and linking. The CCAL toolkit is
implemented in Coq and supports layered concurrent programming in both C and assem-
bly. It has been successfully applied to build a fully certified concurrent OS kernel with
fine-grained locking.

[Liu et al., 2018] RT-CertiKOS: A Fully Verified Preemptive OS Kernel with Temporal and Spatial
Isolation
Mathematical proofs carry much stronger guarantees of correctness than testing. In the set-
ting of critical systems, this is of paramount importance because the consequences of failure
are dire (loss of lives or failure of the mission). From this perspective, the complete for-
mal verification of a real-time operating system is an attractive solution. Nevertheless, it
remains a challenge to this day. For instance, preemption alone requires careful modeling
of the interrupt behavior. Furthermore, schedulability is a whole system property, making
it difficult to compose and scale program verification on top of such real-time kernels. And
indeed, even if these challenges have been separately addressed in the past, they have never
been verified in tandem. We present here the, to our knowledge, first fully-verified pre-
emptive kernel with formal proofs of both temporal and spatial isolation. Furthermore, our
verification is not limited to the C code but carries down to the assembly code generated
by the compiler, further strengthening the provided guarantees. More precisely, we build
upon the fully-verified single-core non-preemptive kernel CertiKOS, and we extend it with
a generic exception mechanism, user-level preemption, and real-time scheduling. We then
formally prove in the Coq proof assistant that, on top of the existing functional correctness
proof, this new kernel also enjoys spatial and temporal partitioning. For temporal partition-
ing, we use a variant of the supply bound function that we call a virtual timeline to connect
the scheduling with concrete states of the system, and to isolate the reasoning of a process
from interference by others. For spatial partitioning, we extend the existing non-interference
proof of CertiKOS to handle the preemptive setting. As an illustration of the benefits of this

25
Approved for Public Release; Distribution Unlimited.

framework, we also introduce a secure implementation of a getusage system call for resource
accounting.

[Gu et al., 2016] CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Ker-
nels
Complete formal verification of a non-trivial concurrent OS kernel is widely considered a
grand challenge. We present a novel compositional approach for building certified concur-
rent OS kernels. Concurrency allows interleaved execution of kernel/user modules across
different layers of abstraction. Each such layer can have a different set of observable events.
We insist on formally specifying these layers and their observable events, and then verify-
ing each kernel module at its proper abstraction level. To support certified linking with other
CPUs or threads, we prove a strong contextual refinement property for every kernel function,
which states that the implementation of each such function will behave like its specification
under any kernel/user context with any valid interleaving. We have successfully developed
a practical concurrent OS kernel and verified its (contextual) functional correctness in Coq.
Our certified kernel is written in 6500 lines of C and x86 assembly and runs on stock x86
multicore machines. To our knowledge, this is the first proof of functional correctness of a
complete, general-purpose concurrent OS kernel with fine-grained locking.

[Carbonneaux et al., 2017] Automated Resource Analysis with Coq Proof Objects
This paper addresses the problem of automatically performing resource-bound analysis,
which can help programmers understand the performance characteristics of their programs.
We introduce a method for resource-bound inference that (i) is compositional, (ii) produces
machine-checkable certificates of the resource bounds obtained, and (iii) features a sound
mechanism for user interaction if the inference fails. The technique handles recursive pro-
cedures and has the ability to exploit any known program invariants. An experimental eval-
uation with an implementation in the tool Pastis shows that the new analysis is competitive
with state-of-the-art resource-bound tools while also creating Coq certificates.

[Kim et al., 2017] Safety and Liveness of MCS Lock—Layer by Layer
The Mellor-Crummey and Scott (MCS) Lock, a small but complex piece of low-level soft-
ware, is a standard algorithm for providing inter-CPU locks with First In First Out (FIFO)
ordering guarantee and scalability. It is an interesting target for verification—short and sub-
tle, involving both liveness and safety properties. We implemented and verified the MCS
Lock algorithm as part of the CertiKOS kernel, showing that the C/assembly implementa-
tion contextually refines atomic specifications of the acquire and release lock methods. Our
development follows the methodology of certified concurrent abstraction layers. By split-
ting the proof into layers, we can modularize it into separate parts for the low-level machine
model, data abstraction, and reasoning about concurrent interleavings. This separation of
concerns makes the layered methodology suitable for verified programming in the large, and
our MCS Lock can be composed with other shared objects in CertiKOS kernel.

[Chen et al., 2018] Toward compositional verification of interruptible OS Kernels and device
drivers

26
Approved for Public Release; Distribution Unlimited.

An OS kernel forms the lowest level of any system software stack. The correctness of the OS
kernel is the basis for the correctness of the entire system. Recent efforts have demonstrated
the feasibility of building formally verified general-purpose kernels, but it is unclear how
to extend their work to verify the functional correctness of device drivers, due to the non-
local effects of interrupts. In this paper, we present a novel compositional framework for
building certified interruptible OS kernels with device drivers. We provide a general device
model that can be instantiated with various hardware devices, and a realistic formal model
of interrupts, which can be used to reason about interruptible code. We have realized this
framework in the Coq proof assistant. To demonstrate the effectiveness of our new approach,
we have successfully extended an existing verified non-interruptible kernel with our frame-
work and turned it into an interruptible kernel with verified device drivers. To the best of our
knowledge, this is the first verified interruptible operating system with device drivers.

27
Approved for Public Release; Distribution Unlimited.

5 Conclusion
In our BRASS seedling project we set out to tackle two major technical challenges for building
long-lived resource adaptive system software:

• Formal resource and environment model. A formal resource and environment model is a pre-
requisite for reasoning about the resource usage of a program and its adaptation to changes
in its ecosystem. Unfortunately, due to the low-level nature of hardware resources, such a
model often does not exist, and even if it does, it is informal and too low level; and it has a
huge gap with the high-level notions of resources in today’s programming languages.

• Compositional specification for communicating threads and hardware devices. Modern sys-
tem software often relies on a collection of communicating threads so it can best adapt to the
available CPU resources on multicore machines. It is unclear how to specify the behaviors
and resource usage of these threads in a modular way using existing technology.

We demonstrated methods and verification-engineering tools that accomplished a variety of
application verifications useful to the BRASS vision. We have obtained the following important
results.

We extended each CertiKOS abstraction layer with a detailed resource specification. We devel-
oped a novel compositional framework for reasoning about the end-to-end functional correctness
of device drivers in a certified interruptible kernel. Our formalization of interrupts follows the
abstraction-layer-based approach and includes a realistic hardware interrupt model and an abstract
model of interrupts (which is suitable for reasoning about interruptible code). We have proven that
the two interrupt models are contextually equivalent. We have successfully extended an existing
verified non-interruptible kernel with our framework and turned it into an interruptible kernel with
verified device drivers. The implementation, specification, and proofs are all performed in a unified
framework (realized in the Coq proof assistant), yet the mechanized proofs verify the correctness
of the assembly code that can run on the actual hardware.

We have also developed CCAL—a novel programming toolkit developed under the CertiKOS
project for building certified concurrent abstraction layers. We have developed a new composi-
tional model for concurrency, program verifiers for concurrent C and assembly, certified linking
tools, and a thread-safe verified C compiler.

Finally, we developed a fully verified preemptive OS kernel with temporal and spatial isolation.
Our extended machine model features an interrupt mechanism as well as a generic cost model for
assembly instructions. We extended the existing work with a real-time scheduler (fixed-priority
scheduling), proved functional correctness of the system, and also connected a schedulability anal-
ysis with the system. In doing so, we introduce a notion of virtual time to reason about each task in
isolation while encapsulating interference from other processes in the virtual time map. We prove
that all services provided by our kernel preserve the integrity and confidentiality of user processes,
by showing that non-interference holds for this kernel.

28
Approved for Public Release; Distribution Unlimited.

References
Eyad Alkassar, Mark A. Hillebrand, Wolfgang J. Paul, and Elena Petrova. Automated verification

of a small hypervisor. In Proc. 3rd International Conference on Verified Software: Theories,
Tools, Experiments, pages 40–54, 2010.

Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. Recursive
Books, 2011.

June Andronick, Corey Lewis, Daniel Matichuk, Carroll Morgan, and Christine Rizkallah.
Proof of OS Scheduling Behavior in the Presence of Interrupt-Induced Concurrency, pages
52–68. Springer International Publishing, Cham, 2016. ISBN 978-3-319-43144-4. doi:
10.1007/978-3-319-43144-4 4. URL https://doi.org/10.1007/978-3-319-43144-4_4.

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying new scheduling
theory to static priority pre-emptive scheduling. Software Engineering Journal, 8(5):284–292,
Sept 1993. ISSN 0268-6961. doi: 10.1049/sej.1993.0034.

Bruno Barras et al. The Coq Proof Assistant reference manual. Technical report, INRIA, 1998.

Sandrine Blazy and Xavier Leroy. Mechanized semantics for the Clight subset of the C language.
J. Automated Reasoning, 43(3):263–288, 2009.

Quentin Carbonneaux, Jan Hoffmann, Tom Reps, and Zhong Shao. Automated resource analysis
with coq proof objects. In Proc. 29th International Conference on Computer-Aided Verification
(CAV), Part II, pages 64–85, 2017.

F. Cerqueira, F. Stutz, and B. B. Brandenburg. Prosa: A case for readable mechanized schedu-
lability analysis. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS), pages
273–284, July 2016. doi: 10.1109/ECRTS.2016.28.

Hao Chen, Xiongnan Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu. Toward composi-
tional verification of interruptible os kernels and device drivers. Journal of Automated Reason-
ing, 61:141–189, 2018.

Stephen Chong, Joshua Guttman, Anupam Datta, Andrew Myers, Benjamin Pierce, Patrick Schau-
mont, Tim Sherwood, and Nickolai Zeldovich. Report on the NSF workshop on formal methods
for security. people.csail.mit.edu/nickolai/papers/chong-nsf-sfm.pdf, 2016.

David Costanzo, Zhong Shao, and Ronghui Gu. End-to-end verification of information-flow secu-
rity for c and assembly programs. In PLDI ’16: 2016 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 648–664, 2016.

B. Dutertre. Formal analysis of the priority ceiling protocol. In Proceedings 21st IEEE Real-Time
Systems Symposium, pages 151–160, 2000. doi: 10.1109/REAL.2000.896005.

Xinyu Feng. Local rely-guarantee reasoning. In POPL, pages 315–327, 2009.

29
Approved for Public Release; Distribution Unlimited.

https://doi.org/10.1007/978-3-319-43144-4_4
people.csail.mit.edu/nickolai/papers/chong-nsf-sfm.pdf

Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the relationship between concurrent separation
logic and assume guarantee reasoning. In Proc. 2007 European Symposium on Programming
(ESOP’07), volume 4421 of LNCS, pages 173–188. Springer-Verlag, April 2007.

Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for concur-
rent objects. Theor. Comput. Sci., 411(51-52):4379–4398, 2010.

Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. Reasoning about
optimistic concurrency using a program logic for history. In Proc. 21st Inter-
national Conference on Concurrency Theory (CONCUR’10). Springer-Verlag, 2010.
flint.cs.yale.edu/publications/roch.html.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan(Newman) Wu, Shu-
Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifications and certified abstraction lay-
ers. In Proc. 42nd ACM Symposium on Principles of Programming Languages, pages 595–608,
2015.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg,
and David Costanzo. CertiKOS: An extensible architecture for building certified concurrent OS
kernels. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pages 653–669, GA, 2016. USENIX Association. ISBN 978-1-931971-33-1.

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jeremie Koenig, Vilhelm Sjober,
Hao Chen, David Costanzo, and Tahnia Ramananandro. Certified concurrent abstraction layers.
In PLDI ’18: 2018 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 646–661, 2018.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,
April 2008.

Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

Jieung Kim, Vilhelm Sjoberg, Ronhui Gu, and Zhong Shao. Safety and liveness of mcs lock—
layer by layer. In Proc. 15th Asian Symposium on Programming Languages and Systems (APLAS
2017), page (to appear), November 2017.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al. seL4: Formal
verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 207–220. ACM, 2009.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact characterization
and average case behavior. In [1989] Proceedings. Real-Time Systems Symposium, pages 166–
171, Dec 1989. doi: 10.1109/REAL.1989.63567.

30
Approved for Public Release; Distribution Unlimited.

Xavier Leroy. The CompCert verified compiler. http://compcert.inria.fr/, 2005–2014.

Xavier Leroy and Sandrine Blazy. Formal verification of a c-like memory model and its uses for
verifying program transformations. Journal of Automated Reasoning, 41(1):1–31, 2008.

Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao. Characterizing progress properties
of concurrent objects via contextual refinements. In CONCUR, pages 227–241, 2013.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM, 20(1):46–61, January 1973. ISSN 0004-5411. doi: 10.1145/321738.
321743. URL http://doi.acm.org/10.1145/321738.321743.

Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
edition, 2000. ISBN 0130996513.

Mengqi Liu, Lionel Rieg, Zhong Shao, David Costanzo, and Ronghui Gu. Rt-certikos: A fully
verified preemptive os kernel with temporal and spatial isolation. Technical report, Dept. of
Computer Science, Yale University, New Haven, CT, July 2018.

Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I. Untimed systems.
Inf. Comput., 121(2):214–233, 1995.

Andrzej S. Murawski and Nikos Tzevelekos. An invitation to game semantics. ACM SIGLOG
News, 3(2):56–67, 2016.

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Specifying and verifying concurrent
algorithms with histories and subjectivity. In ESOP’15, pages 333–358, 2015.

Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separation logic. In
18th International Conference on Concurrency Theory, pages 256–271, September 2007.

Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and Zhaohui Li. A Practical
Verification Framework for Preemptive OS Kernels, pages 59–79. Springer International Pub-
lishing, Cham, 2016. ISBN 978-3-319-41540-6. doi: 10.1007/978-3-319-41540-6 4. URL
https://doi.org/10.1007/978-3-319-41540-6_4.

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making information
flow explicit in HiStar. In OSDI, pages 263–278, 2006.

31
Approved for Public Release; Distribution Unlimited.

http://compcert.inria.fr/
http://doi.acm.org/10.1145/321738.321743
https://doi.org/10.1007/978-3-319-41540-6_4

List of Symbols, Abbreviations, and Acronyms
ADT Abstract Data Type

API Application Programmer Interface

BRASS Building Resource Adaptive Software Systems (a DARPA program that ran from 2015-
2019)

CCAL Certified Concurrent Abstraction Layers, a tool for developing certified concurrent system
software built at Yale University

CertiKOS Certified Kit Operating System, a project at Yale University

CiC Calculus of Inductive Constructions, a dependently typed constructive logic

Clight a high-level intermediate language of CompCert

CompCert Compilateur Certifié, that is, Certified Compiler, a proved-correct optimizing C com-
piler developed at INRIA

Coq An interactive theorem prover developed at INRIA.

CPU Central Processing Unit

DARPA Defense Advanced Research Projects Agency

DMA Direct Memory Access

FIFO First In First Out

HACMS High-Assurance Cyber-Military Systems (a DARPA program that ran fro m 2012 to
2017)

HOL Higher-order logic

IA-32 Intel Architecture, 32 bits (the instruction set also known as “x86”)

IDE Interactive Development Environment

IL Intermediate language

INRIA Institut national de recherche en informatique et en automatique, a French national re-
search institution focusing on computer science and ap plied mathematics

IRQ Interrupt Request Line

ISA Instruction-Set Architecture

Isabelle/HOL A proof assistant, developed in England and Germany, based on higher-order logic

32
Approved for Public Release; Distribution Unlimited.

LAsm Lower-level Assembly Language used by the CertiKOS project at Yale University

L4 a family of second-generation microkernels

MCS a locking protocol invented by John Mellor-Crummey and Michael Scott at University of
Rochester in 1991

ML a functional programming language (originally the MetaLanguage of the Edinburgh LCF
proof assistant)

NIST National Institute of Standards and Technology

OS Operating system

pid process id

seL4 A verified-correct microkernel operating system (“security-enhanced L4”), developed in
Australia

VM Virtual machine

33
Approved for Public Release; Distribution Unlimited.

	Summary
	Introduction
	Basic Methodology and Assumptions
	Resource-Aware CertiKOS
	Certified Concurrent Abstraction Layers
	Real-Time CertiKOS

	Results and Discussion
	Publications

	Conclusion
	References
	List of Symbols, Abbreviations, and Acronyms

