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1.0 Introduction 

NRL has, for some time, been engaged in the development of analytical methods to perform fuel 
quality surveillance within Navy fuel supply chains. This approach offers significant advantages 
over the current state-of-the-art, not only by reducing the time and manpower required to routinely 
measure critical specification properties, but also by providing a means by which to initially 
identify and characterize discrete fuel handling and performance challenges in an efficient manner. 
It is already known that a great deal of information regarding fuel composition and performance 
can be obtained from GC-MS,1,2,3 rendering it a useful analytical technique upon which to base an 
in-depth analysis strategy. 

Both fuel-based performance property modeling and fuel failure investigations at least potentially 
require the proper discrimination of hundreds, if not thousands, of discrete compounds, and 
chromatography combined with fully mass analyzed MS data provides this level of discrimination, 
as GC-MS’s pre-existing status as a primary tool for the analysis and compositional 
characterization of mobility fuels already attests. Earlier work4,5 performed at NRL laid the basic 
groundwork for the use of GC-MS in fuel modeling before the development of an effective and 
robust modeling strategy,6 based on applying the PLS variant UVE-PLS7 to data abstractions 
referred to herein as metaspectra. A metaspectrum is effectively a streamlined list of compounds, 
along with associated peak areas, derived from the original GC-MS data by comparing mass 
fragment data from individual chromatographic time slices with reference data from the 
NIST/EPA/NIH Mass Spectral Library.8 This is useful in the context of predictive fuel property 
modeling because translating two-dimensional data (with a chromatographic axis and a mass 
spectral axis) to one-dimensional data (with a single compound identity axis) via library matching 
allows robust chemometric modeling techniques such as UVE-PLS to be utilized, because, as 
implied by their name, sets of metaspectra can be mathematically modeled in much the same way 
that sets of more standard spectra can be. 

With in-depth fuel analysis as an explicitly targeted goal, NRL internally developed9,10 FCAST, a 
comprehensive software package, to extract a wide variety of information from GC-MS data via 
mathematical, statistical, and chemometric modeling strategies, including detailed compositional 
assessments and calculated distillation curves for individual fuel samples, as well as composition-
based comparisons of fuel sample pairs. The aforementioned UVE-PLS metaspectral modeling 
strategy is specifically utilized within FCAST to estimate critical fuel performance properties. 
Each of these software features can individually be invaluable when comprehensive fuel analyses 
are required but only limited sample volumes are available, and collectively provide a self-
contained methodology for rapid fuel identification and characterization. The software has been 
an invaluable resource in the context of NRL fuel-based research programs, and its effectiveness 
has been proven during applications running the gamut from routine analyses to critical 
investigations into discrete fuel failures. 

__________
Manuscript approved December 14, 2018.
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DLA Energy has made efforts to expand upon in-house fuel analytics in order to more ably address 
fuel analysis challenges in an efficient manner. GC-MS instrumentation, capable of providing 
detailed compositional information, is already a staple of most practicing fuel laboratories. 
Automated and high-throughput GC-MS analysis strategies and associated data analysis software 
packages, such as FCAST, can enhance the capabilities of all practicing DLA Energy laboratories 
to rapidly address a wide array of fuel analytic challenges, simultaneously, with minimal operator 
training. To this end, FCAST underwent additional development during the present work to allow 
the software to robustly produce fuel characterization information in an automated fashion, i.e. in 
the absence of a priori operator inputs, allowing results obtained from the software to be reliably 
compared across multiple laboratories while also minimizing the likelihood of operator error. 
 
Moreover, recent in-house advances in GC-MS peak deconvolution have allowed for significant 
increases in the quality of the compositional information that can be obtained from GC-MS data 
sets. Fuel chromatography is inherently limited by the high complexity of petroleum fuel 
compositions, and, in practice, almost no individual fuel constituents are fully resolved from other 
components. Due to an insufficient peak capacity for the large number of individual components 
that need to be assessed within time and chromatographic efficiency constraints, as well as an 
insufficient resolving power of the stationary phase in the gas chromatography column relative to 
the many structurally similar isomers or homologs present in typical fuels, co-eluting component 
peaks will tend to overlap to a non-trivial degree along a data set’s retention time axis. Depending 
upon the degree of overlap, the mass spectral database search algorithms employed by FCAST 
could respond to this co-elution by either completely discarding insufficiently resolved chemical 
information, or incorrectly assigning specious component identities to mangled mass spectral data. 
Obviously, then, there were significant improvements to be had by fully implementing in-house 
deconvolution algorithms into FCAST, and additionally accounting for their effects on associated 
software operations, such as fuel property predictions. 
 
This document serves as a complement to previous NRL Memorandum reports11,12 as it details 
some of the additional features incorporated into the latest version of FCAST. However, in order 
to maintain a streamlined software-based reporting series that can double as an up-to-date user 
manual, a proper FCAST update will also appear as its own NRL Memorandum report13 concurrent 
with this report. 
 

2.0 FCAST Chromatographic Peak Deconvolution 
 
For many reasons, not least of which being that predictive fuel property models are generally only 
as good as the GC-MS data upon which they are based, the performance boundaries of fuel 
chromatography become a significant limiting factor for the downstream performance of fuel 
characterization tools such as FCAST. While multidimensional approaches, longer columns and 
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slower heating rates can offer some benefits, they will not necessarily fully resolve co-eluting fuel 
compounds, let alone in a manner suitable for practical, real-world fuel analysis applications. 
 
When multiple compounds co-elute, their chromatographic peaks overlap, and the mass spectral 
data used for library comparisons will thus contain contributions from all co-eluting compounds. 
Depending on the degree of overlap, library searches either yield incorrect peak assignments due 
to comingled mass spectral data, or result in information loss via the elimination of poorly resolved 
mass spectral data within overlapped peaks. The end user will not see the discarded compounds in 
the library search report, but will see occurrences of misidentified compounds. In the case of 
FCAST, at least, these convolved mass spectra can theoretically be discriminated against by means 
of a NIST/EPA/NIH Mass Spectral Library search-based goodness-of-fit metric known as the 
match factor, or MF. Briefly, the library searches used to produce compound identifications are 
conducted by comparing the distances of the experimental mass spectrum from any given library 
mass spectrum, after data preprocessing, in a multidimensional m/z space. These identifications 
utilize MF values, which scale from 0 to 1000 in the present work and are inversely proportional 
to the distances indicated previously, to determine how closely any given mass spectrum matches 
with any given library entry, and the match resulting in the highest MF value, indicating the closest 
shape-based correspondence, is typically reported to the practitioner as the most likely 
identification result. However, by virtue of the sheer number of discrete mass spectral data 
collections within a typical GC-MS data set, fuel assessments at NRL have previously uncovered 
significant numbers of instances in which high (i.e. favorable) MF values were obtained from 
nonsensical library matches. Co-elution is also responsible for the reporting of multiple instances 
of the same compound, at significantly different retention times, throughout a single analysis, as 
the mingling of mass spectra from co-eluting compounds can exacerbate instances of poor 
discrimination between similar compounds or isomers in the NIST/EPA/NIH Mass Spectral 
Library. 
 
Previous work at NRL14 indicated that the deconvolution methodology utilized by the freely 
available AMDIS software package15 was sub-optimal for thorough fuel analysis efforts, which 
suggested the necessity of a more customized peak deconvolution solution. While the challenge of 
mathematically deconvolving co-eluting mass spectral data is well-known and has been addressed 
previously in the literature using many different approaches,16,17 the complexity and 
unpredictability of fuel compositions leaves both more basic techniques and techniques that rely 
upon a priori knowledge18,19,20 with a somewhat limited applicability in the context of realistic fuel 
modeling applications. In a similar vein, applying an individually customized deconvolution 
strategy to every single sample’s data within an overall data set prior to modeling is impractical. 
What was deemed necessary, instead, was a robust technique that is as generally applicable as 
possible, across both the entirety of a single fuel’s GC-MS data and entire GC-MS data sets, such 
that it can be relied upon to extract meaningful chemical information across the diverse fuel data 
sets in an automated fashion. 
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2.1 EWFA-MCR Algorithm Summary 
 
The algorithmic development of Evolving Window Factor Analysis (EWFA)21 and Multivariate 
Curve Resolution (MCR)22 into a novel, integrated technique suitable for the automated, 
unsupervised deconvolution of GC-MS fuel data has been covered in greater detail 
elsewhere.23,24,25 At a conceptual level, EWFA is used to track the appearances, disappearances, 
and overlap of underlying data factors, known as loadings, across the retention time axes of multi-
peak chromatographic data; MCR is used to refine the shapes of these loadings to more accurately 
reflect underlying chemical phenomena; and NIST/EPA/NIH library searches are used to produce 
MF values that serve as quality control metrics by which to filter out superfluous data artifacts, 
leaving only the loadings that can serve as meaningful representations of the individual mass 
spectra convolved within the parent GC-MS data. The basic outline of the combined EWFA-MCR 
algorithm developed to address the fuel peak deconvolution task at hand can be found in Figure 1. 
 
 
 

 
 
Figure 1. Visual representation of the EWFA-MCR peak deconvolution algorithm. 
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EWFA-MCR algorithm description. The algorithm proceeds by first locating peaks in the TIC 
produced from the original GC-MS data set and defining corresponding analysis window sizes as 
the number of variables corresponding to the width of the individual peak to be analyzed plus two 
variables, with even-numbered widths being rounded up by an additional variable to ensure the 
existence of central variables in subsequent analysis windows. A window of the defined size is 
then moved across the peak, with the mandated central variable of the window beginning at one 
end of the peak along the retention time axis and ending at the opposite end, allowing for additional 
retention time variables outside of the TIC peak to inform deconvolution procedures to further 
account for cross-peak chemical information. 
 
At each possible window location, a full evolving factor analysis (EFA) operation is performed 
within the window, in the form of repeated SVD operations performed on increasingly large 
portions of a data matrix, proceeding in both the forward and reverse directions. In the forward 
direction, SVD is performed on a data subset, initially defined starting from the first row/column, 
which increases in size by one row/column per SVD operation until the last row/column is included 
in the SVD. In the reverse direction, the same stepwise increase in data subset size proceeds in the 
opposite direction from the last row/column instead. These overlapping EFA operations inherently 
include the thorough interrogation of contiguous data subsets within individual peaks, which ably 
allows for the identification of compounds that do not themselves contribute to any given peak’s 
entire TIC area. It should also be noted here that this methodology allows the combined EWFA-
MCR algorithm to function without a pre-defined preset value for either parent peak width or 
component peak width, thus allowing for a level of automation-friendly flexibility unavailable to 
deconvolution methodologies and/or software applications requiring such preset values. 
 
SVD mathematically breaks a given data matrix down into its underlying LVs, which can be 
represented as scores, loadings, and singular values. The core decomposition of SVD can be 
represented by the following equation: 
 

R = USVT     (1) 
 
In this equation, R is the original data set (in this case, the portion of the GC-MS data being 
analyzed), VT is the transposed matrix of loadings that the developed algorithm uses to estimate 
the shapes of deconvolved mass spectral data, and US is the product of the scores and singular 
values that, combined, indicate the significance of the corresponding loadings to the variance 
within the original data set. 
 
The EWFA portion of the combined algorithm relies upon these multiple executions of SVD for 
two primary uses. First, the absolute values of the loadings can be interpreted along the original 
mass spectral data axis to assess underlying sources of mathematical variance which should, in 
turn, correlate to underlying sources of chemical variance. Second, the US product can be 



 

6 
 

subjected to a seemingly trivial threshold value of 1x10-15 to ensure that deconvolved mass spectral 
loadings have at least a minimal significance to the original data set before being collected during 
the course of the EWFA-MCR algorithm, thus reducing the number of superfluous compound 
identifications. 
 
Prior to interpreting the loadings as actually being informative of sources of chemical variance, 
however, individual SVD loading results are refined by means of MCR, applied to the data as it 
exists within the analysis window, with initial loading results serving as the initial estimates to be 
refined. The MCR portion of the overall algorithm performs ALS-based refinements repeatedly 
over the course of 1,000 iterations, though, as a stringent test for convergence, the algorithm is 
also designed to terminate early if an iteration produces a set of results whose maximum difference 
from the previous set of results is only 10-10 of the maximum result value, or if the average root 
mean square difference between the data as reconstructed from the refined results and the original 
data subset itself is only 10-10. 
 
The number of loadings that can be obtained from any given EWFA window is only limited by 
the size of the window itself. This means that large windows can produce large numbers of 
loadings, and all of these loadings could theoretically be subjected to further evaluations. However, 
not only would this be time consuming, but it is not likely that loadings associated with lower 
significances, as described above, will yield chemically meaningful information. An output 
constraint was thus implemented in the EWFA-MCR algorithm in which only chemical compound 
identifications obtained from the three most significant loadings obtained from any given window 
would be further considered for the purposes of overall chemical profiling. This substantially 
reduces the total number of SVD operations (and, incidentally, overall algorithm calculation times) 
while still allowing for substantial data deconvolution capabilities. 
 
The shape refined loadings thus far collected are then interpreted as if they actually were the mass 
spectra required to identify individual components by means of NIST/EPA/NIH Mass Spectral 
Library searches. This library matching provides a built-in quality control methodology, an 
internal, MF-based metric that can be used to interrogate loadings in a manner more directly 
relevant towards characterizing complex compositions. As might be apparent from considering the 
large number of SVD operations performed for any given TIC peak, such an extensive procedure 
produces far more information than is useful in the present context. In the MF-based algorithm, 
only the results corresponding to the highest MF value are maintained for any given retention 
time/LV combination. The maintenance of retention time-specific results also allows for the 
subsequent derivation of retention time information for deconvolved component sub-peaks, 
information that can inform downstream FCAST operations such as fuel property modeling. 
However, these deconvolved results can also be further summarized to apply to the respective TIC 
peaks from which they were derived, providing proportional information regarding peak 
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composition. This proportional peak composition information, in turn, can be used to assign the 
proportional contributions of identified compounds to the original TIC peak areas. 
 
FCAST itself will report to the end-user any compound identifications that represent at least some 
user-selected threshold of the data’s TIC area, though such values falling below 0.1% will be 
reported as <0.1%. The compound identifications obtained via the EWFA-MCR deconvolution 
algorithm in the present work were initially assigned a threshold value of 0.001%, which served 
as an additional safeguard against superfluous compound identifications. It will be shown later in 
this report that such a threshold value also makes an effective default FCAST threshold value in a 
more general sense. 
 
Comparison of EWFA-MCR peak deconvolution results with AMDIS software outputs. The 
automated peak deconvolution algorithm thus developed at NRL requires hours to fully 
deconvolve a typical GC-MS data set when it is run through FCAST, not primarily as a 
consequence of its repeated performance of SVD across various subsets within the entirety of such 
a data set, but primarily as a consequence of the large number of times it must consult a NIST mass 
spectral database to evaluate SVD results. This is as opposed to the minutes required to deconvolve 
these same data sets using the freely available AMDIS software, which is commonly utilized in 
GC-MS data deconvolution operations. Because a generally comprehensive understanding of fuel 
composition can be found to be very important in the context of fuel investigations, the longer 
analysis times associated with the NRL-developed peak deconvolution algorithm are defensible, 
provided that the additional analysis times required by the EWFA-MCR algorithm are, in fact, 
providing more comprehensive results than can be achieved using AMDIS. As indicated earlier in 
this report, previous work at NRL has indicated as much, but only indirectly, i.e. because AMDIS 
was not providing sufficiently comprehensive results during preliminary work, NRL developed its 
own data deconvolution strategies, and thus a side-by-side comparison was done during the present 
work. As the AMDIS software is sometimes relied upon for peak deconvolution in non-AMDIS 
software applications as well, any comparison between NRL-developed peak deconvolution 
algorithms and AMDIS outputs might also productively inform comparisons between FCAST and 
said software applications. 

 
To perform a meaningful and realistic deconvolution comparison, AMDIS was used to analyze 
twelve different petrochemical fuel samples, covering a wide range of jet and diesel fuel grades 
and fuel compositions, selected from our internal GC-MS data archives. When the AMDIS 
software allowed for as much, analysis settings were adjusted to closely mimic the parameters 
either found to be optimal at NRL (see sections 2.2 and 3.2 of the present report) or otherwise 
utilized during the EWFA-MCR algorithm’s development work: the mass range to examine was 
kept at 35-356 m/z, the Match Factor (MF) threshold was set to 750, the peak threshold was set at 
0.001%, the type of analysis was defined as “Simple” (with no internal standards or other 
calibration inputs), and the NIST 2011 Mass Spectral Library was utilized. Otherwise, the AMDIS 
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software’s analysis setting were adjusted in an attempt to maximize the number of components 
expected to be found: no adjacent peak subtractions were employed, “High” resolution was utilized 
(the highest setting), and “Very High” sensitivity was utilized (again, the highest setting). Because 
preliminary work did not indicate that shape requirements had a consistent impact on component 
predictions, these requirements were simply set to “Medium.” Finally, because individual 
chemical components might possess one of a large number of widths in a convolved GC-MS data 
set, component width values of 8, 16, and 32 (the maximum allowed value) were each evaluated 
and are reported upon separately herein. While it might be possible to aggregate the results 
obtained when utilizing multiple component width values in an attempt to identify components 
that might not appear when using any single given value, such an operation would not typically be 
performed by an end-user of the AMDIS software. 
 
In Table 1, the AMDIS results thus obtained are compared to the deconvolved results found when 
utilizing the developed EWFA-MCR peak deconvolution algorithm. It can be seen in this table 
that the number of unique compounds that can be identified via the AMDIS software, regardless 
of component width utilized, are, on average, lower than the number of unique compounds 
identified after utilizing the EWFA-MCR algorithm, thus indicating the enhanced utility of the 
EWFA-MCR algorithm thus developed. AMDIS only outperforms EWFA-MCR by greater than 
12 compounds identifications in the case of a single fuel. 
 
 
 

 
 
Table 1. Deconvolution outputs obtained from both the AMDIS software and NRL’s automated 
algorithms. 
 
 
 
 

Grade

unique compounds 
found before 

deconvolution via 
FCAST

unique compounds 
reported by AMDIS 

(component width = 8)

unique compounds 
reported by AMDIS 

(component width = 16)

unique compounds 
reported by AMDIS 

(component width = 32)

unique compounds 
identified via 
EWFA-MCR

JP-5 108 250 247 260 342
JP-5 89 228 231 226 333
JP-8 122 286 278 273 376
JP-8 129 347 338 353 394
Jet A 119 294 295 299 366
Jet A 80 232 237 243 324
F-76 101 284 289 282 367
F-76 72 199 207 205 293
MGO 111 386 407 410 398
MGO 117 348 368 359 387

Alt. Diesel (CHCD) 112 337 367 387 383
Alt. Diesel (HEFA) 110 250 249 255 228
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2.2 Software Automation Considerations of EWFA-MCR Algorithm 
 
While the majority of steps taken during the present work to enhance FCAST’s automated analysis 
capabilities will be reported upon in a separate section of the present report, specific work 
regarding the implementation of the EWFA-MCR algorithm into the current iteration of FCAST 
will be reported upon here. It should be noted, however, that this work also informed the selection 
of FCAST’s default MF threshold value, which has implications outside of fuel property modeling. 
 
Improved Fuel property modeling via UVE-PLS. Before discussing fuel property modeling, 
some details must be conveyed regarding how said modeling was performed. UVE-PLS was 
employed, as opposed to basic PLS, because the technique was found during previous GC-MS 
data modeling work to more ably focus subsequent models on the chemical compounds that would 
be expected to influence the fuel properties being predicted. In UVE-PLS, the amount of relevant 
information possessed by individual compounds in a metaspectral data set is determined by using 
regression coefficients derived from the overall stability found during LOO-CV. To determine this 
stability, a number of randomized variables equal to a third of the total possible size of any given 
metaspectrum are added to the original metaspectral data. After this, the actual variables 
determined to be as inconsistently informative as their randomized counterparts during cross-
validation are eliminated from the final model. In the present work, being inconsistently 
informative is defined as having a regression coefficient average/regression coefficient standard 
deviation ratio lower than that obtained for 85% of the random variables. The value of 85% was 
chosen to maintain consistency with the statistical F-test which, when applied to interim 
CUMPRESS results with an 85% confidence interval and utilizing a maximum of 10 LVs, was 
used to select a number of LVs to be employed for the final UVE-PLS models that would minimize 
model overfitting (i.e. models too well-calibrated to the initial training data that they are no longer 
optimal for use with non-training data). 
 
Investigation into the default match factor to employ for fuel property modeling. Obviously, 
the use of data deconvolution significantly impacts the compositional information contained within 
the metaspectra produced downstream of the compound identifications performed via library 
matching. The UVE-PLS models to be employed for the FCAST fuel property modeling thus were 
required to be reconstructed after deconvolving the metaspectra used as the training data. One 
aspect of this model reconstruction was a reconsideration of the MF threshold to employ. In other 
words, an updated decision was required as to how high a quality any given loading-based library 
match would be required to be in order to contribute to a corresponding metaspectrum. This is 
because the deconvolved loading information would be expected to be of a different quality than 
the original convolved mass spectral data. Although it would be possible to assign an individually 
optimized MF threshold for each model, it is believed that tailoring modeling solutions to this 
extent would unacceptably risk model overfitting. In addition, the MF threshold settled upon via 
this portion of the present work would be expected to be an acceptable default value for FCAST 
in a general sense. 
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The UVE-PLS modeling results obtained for thirty-five fuel properties can be found in Table 2. 
The results shown in this table are actually the most favorable results found from among three 
modeling operation replicates, as the variances inherent in the use of random variables for UVE-
PLS can impact individual modeling results. These results include RMSEP error values (lower 
values indicate lower errors and, hence, more accurate models), correlation coefficient (R2) values 
calculated from predicted and calibration property values, and, for certain entries, the numbers of 
compounds, out of the first ten most significant (see Equation 1 and its description) in each model, 
that would be expected to correlate to the fuel property being modeled (such as aromatic 
compounds in the case of the aromatics models). In addition, the modeling results reported for the 
detection of FSII as per ASTM D5006 indicate how significant FSII itself is in the corresponding 
model, with lower FSII compound number / total compound number ratios indicating a higher 
significance. Table 3 further summarizes Table 2’s results by tabulating the number of green-
highlighted, and thus most accurate, modeling metrics found in Table 2. 
 
Interestingly, the RMSEP and R2 values would seem to indicate that the use of MF threshold values 
of about 600 would provide for more accurate quantitative modeling results. However, modeling 
results that would more accurately reflect underlying chemical phenomena might be better pursued 
by employing a higher MF threshold value of about 700-750 (with 850 not being similarly 
considered due to its inability to reliably provide low RMSEP values). This latter observation 
would be consistent with higher MF thresholds excluding the maximum possible numbers of 
unwanted interferences, thus allowing models to more directly focus upon compounds of interest. 
 
Because FCAST is intended for use with as wide a variety of fuel samples as possible, it is 
considered somewhat more important for FCAST’s practical applicability that it accurately assess 
future fuel samples at the compound level. When this is considered alongside the fact that an MF 
threshold value of 750 is the second-most effective threshold to use for quantitative property 
modeling after 600 (i.e. in the context of producing low RMSEP results), a default MF threshold 
value of 750 is deemed appropriate for use in FCAST with respect to both fuel modeling and non-
fuel modeling applications. 
 
It is also apparent from Table 2 that lubricity and sulfur content are not accurately modeled from 
GC-MS data. This is not unexpected, since lubricity is a function of trace levels of carboxylic acids 
and other surface active agents, and GC-MS is not necessarily diagnostic for such species. It may 
be possible to more accurately model lubricity with a GCxGC model, but that would be the topic 
of a future research effort. Similarly, organosulfur (and organonitrogen) compounds are not easily 
detected in standard unit resolution GC-MS and would probably require specific detectors, which, 
again, would be the topic of additional research efforts. 
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Table 2 (part 1). UVE-PLS prediction results obtained for thirty-five fuel properties with various 
MF thresholds. Modeling metrics in each row indicative of the most accurate results in green. 

600 650 700 750 800 850

Density RMSEP 0.0031 0.0036 0.0034 0.0036 0.0038 0.0038

(ASTM D4052) R
2 0.98 0.98 0.98 0.98 0.97 0.97

Flash Point RMSEP 5.0306 4.9861 4.9893 5.0845 5.1655 5.3533

(ASTM D56 & D93) R
2 0.83 0.83 0.83 0.82 0.82 0.80

Viscosity, -20C RMSEP 0.7123 0.4671 0.4255 0.3851 0.3634 0.4948

(ASTM D445) R
2 0.59 0.83 0.85 0.88 0.89 0.80

Viscosity, 40C RMSEP 1.0301 1.0882 1.0401 0.8390 1.0748 1.1288

(ASTM D445) R
2 0.65 0.60 0.64 0.77 0.61 0.57

Pour Point RMSEP 5.5614 5.3798 5.6692 5.1629 5.3286 5.7850

(ASTM D97 & D5949) R
2 0.91 0.91 0.90 0.92 0.91 0.90

Cloud Point RMSEP 3.0381 3.1305 3.2973 3.4205 3.4868 3.6472

(ASTM D2500 & D5773) R
2 0.80 0.78 0.76 0.74 0.73 0.71

Freeze Point RMSEP 2.2023 2.2273 2.2354 2.2953 2.1642 2.1664

(ASTM D2386 & D5972) R
2 0.84 0.84 0.83 0.82 0.84 0.84

Cetane Index RMSEP 1.5040 1.5058 1.6179 1.5130 1.5580 1.5426

(ASTM D976) R
2 0.87 0.87 0.85 0.87 0.86 0.86

Aromatics, FIA RMSEP 0.5611 0.4059 0.7685 0.7881 0.5533 1.1136

(ASTM D1319) R
2 0.94 0.97 0.90 0.89 0.95 0.78

Aromatics (of 1 st  10) 7 7 8 8 8 6

Aromatics, RMSEP 0.4437 0.4793 0.3890 0.3803 0.8162 0.9428

HPLC R
2 0.99 0.99 0.99 1.00 0.98 0.97

(ASTM D6379) Aromatics (of 1 st  10) 6 4 4 4 6 6

Olefins, FIA RMSEP 0.7024 0.6980 0.5928 0.6430 0.6993 0.3406

(ASTM D1319) R
2 0.87 0.88 0.91 0.89 0.87 0.97

Olefins (of 1
st

 10) 1 2 3 4 4 6

Saturates, FIA RMSEP 0.9464 0.7191 0.8842 0.7592 0.5875 1.6901

(ASTM D1319) R
2 0.96 0.98 0.97 0.97 0.99 0.88

Saturates (of 1
st

 10) 4 5 5 7 5 6

Naphthalene RMSEP 0.2373 0.2143 0.2585 0.1813 0.2845 0.3103

Content R
2 0.90 0.92 0.88 0.94 0.86 0.83

(ASTM D1840) Naphthalenes (of 1 st  10) 4 4 4 2 2 3

Hydrogen Content RMSEP 0.3732 0.4515 0.4354 0.4518 0.4632 0.4954

(ASTM D3343 & D3701) R
2 0.98 0.96 0.97 0.96 0.96 0.96

Fuel System Icing RMSEP 0.0201 0.0195 0.0205 0.0209 0.0237 0.0237

Inhibitor, FSII R
2 0.58 0.61 0.57 0.55 0.42 0.42

(ASTM D5006) FSII # / Total # 136/563 75/401 41/274 51/178 103/163 68/99

Ash Content RMSEP 0.0015 0.0018 0.0016 0.0019 0.0017 0.0018

(ASTM D482) R
2 0.68 0.54 0.61 0.50 0.58 0.52

Smoke Point RMSEP 0.6657 0.8883 1.6160 0.2764 0.7312 1.0334

(ASTM D1322) R
2 0.93 0.88 0.60 0.99 0.92 0.83
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Table 2 (part 2). UVE-PLS prediction results obtained for thirty-five fuel properties with various 
MF thresholds. Modeling metrics in each row indicative of the most accurate results in green. 

600 650 700 750 800 850

Distillation, IBP RMSEP 7.7751 7.8725 7.9236 9.0739 8.0901 8.2605

(ASTM D86) R
2 0.81 0.81 0.80 0.74 0.80 0.79

Distillation, 10% RMSEP 6.3601 6.3304 6.2913 6.2534 6.3395 7.9354

(ASTM D86) R
2 0.94 0.94 0.94 0.94 0.94 0.90

Distillation, 20% RMSEP 4.4267 4.4373 4.4463 4.6547 5.0372 5.1180

(ASTM D86) R
2 0.98 0.98 0.97 0.97 0.97 0.97

Distillation, 50% RMSEP 4.6961 5.1436 4.8903 5.1366 5.1733 5.6745

(ASTM D86) R
2 0.98 0.98 0.98 0.98 0.98 0.98

Distillation, 90% RMSEP 7.2654 7.5152 7.9337 7.7594 8.3251 8.7608

(ASTM D86) R
2 0.97 0.97 0.97 0.97 0.97 0.96

Distillation, FBP RMSEP 9.6089 9.7122 9.7573 9.3430 10.4595 11.0333

(ASTM D86) R
2 0.96 0.96 0.96 0.96 0.95 0.94

Existent Gum RMSEP 1.5327 1.5836 1.5996 1.7661 1.5130 1.8145

(ASTM D381) R
2 0.64 0.62 0.61 0.53 0.65 0.50

Lubricity RMSEP 0.0416 0.0482 0.0398 0.0405 0.0504 0.0617

(ASTM D5001) R
2 0.56 0.41 0.60 0.58 0.35 0.03

Acid Number RMSEP 0.0523 0.0521 0.0496 0.0540 0.0552 0.0571

(ASTM D974 & D3242) R
2 0.60 0.60 0.64 0.57 0.55 0.52

Storage Stability RMSEP 0.9090 0.8443 0.9737 0.9954 1.0387 0.9878

(ASTM D5304) R
2 0.31 0.40 0.21 0.17 0.10 0.18

Particulates (ASTM RMSEP 4.4994 4.5444 4.5673 4.4679 4.6687 4.5320

D2276, D5452 & D6217) R
2 0.35 0.33 0.33 0.36 0.30 0.34

K.F. Water Titration RMSEP 11.4125 8.7232 15.6786 12.5989 7.0911 10.9182

(ASTM D6304) R
2 0.74 0.85 0.51 0.69 0.90 0.76

Carbon Residue RMSEP 0.0186 0.0254 0.0244 0.0223 0.0237 0.0287

(ASTM D4530) R
2 0.80 0.64 0.66 0.72 0.68 0.53

Carbon Residue RMSEP 0.0181 0.0188 0.0158 0.0197 0.0166 0.0212

(ASTM D524) R
2 0.74 0.72 0.80 0.69 0.78 0.64

Demulsification RMSEP 2.8584 2.8236 2.7572 2.8374 3.1170 2.9826

(ASTM D1401) R
2 0.26 0.27 0.31 0.27 0.11 0.19

Sulfur, RMSEP 153.71 153.39 204.76 246.51 342.29 282.01

Wave. Dis. XRF R
2 0.88 0.88 0.79 0.69 0.40 0.59

(ASTM D2622) S-Containing (1
st

 10) 0 0 0 0 0 0

Sulfur, by mass RMSEP 0.0625 0.0630 0.0673 0.0736 0.0846 0.0999

(ASTM D1 and R
2 0.91 0.90 0.89 0.87 0.83 0.76

ASTM D4294) S-Containing (1
st

 10) 0 1 0 1 0 1

Water Index RMSEP 1.6898 2.0568 1.2604 1.7378 1.8587 3.8847

(ASTM D3948) R
2 0.94 0.91 0.97 0.94 0.93 0.70
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Table 3. Summary of Table 2 results, obtained by tabulating the number of green-highlighted, and 
thus most accurate, modeling metrics found in Table 2. 
 
 
 
Fuel property model reconstruction. After deciding upon an MF threshold value of 750 for the 
production of metaspectra, each fuel property model reported upon in Table 2 was reconstructed 
100 times to compensate for the random variance associated with UVE-PLS. The model providing 
the lowest RMSEP amongst the 100 reconstructions, for each fuel property, was thus selected as 
the best model, and the corresponding lists of compounds will be utilized in FCAST. It should be 
noted, however, that although 35 distinct fuel properties were modeled during development work, 
fewer fuel properties, corresponding to what would typically be assessed during routine fuel 
analyses, will be represented in the final FCAST software, at least until it is deemed appropriate 
to accommodate additional fuel properties. Further, although development work utilized 
distillation value and FSII prediction models constructed via UVE-PLS, FCAST itself utilizes 
alternative, compositionally-focused methodologies to predict these fuel properties. 
 

2.3 Mass Channel Analysis 
 
The first iteration of FCAST compositional profiler attempted to implement the full algorithm 
developed by NIST for AMDIS.26 Unfortunately, as implemented, very few of the peaks identified 
had enough masses associated with them to identify the corresponding chemical component 
properly and would thus return poor results. This resulted in the algorithm spending a great deal 
of time identifying peaks, only to then disregard these peak identifications in favor of sending the 
entire raw scan to the NIST/EPA/NIR Mass Spectral database for compound identifications. To 
accelerate that process in the initial version of FCAST, the mass channel analysis was skipped and 
a simpler peak finding algorithm was used with the TIC to identify peaks and subsequently send 
the corresponding data for analysis. Returning to the initial research done with the profiler, the 
parameters of the algorithm were adjusted to allow more masses to be selected during the analysis. 
This resulted in a sufficient number of masses to be used during the search to provide good 
identification results. 
 

600 650 700 750 800 850

Number Of Times This Match Factor 
Yields The Lowest RMSEP Value

11 5 5 8 5 1

Number Of Times This Match Factor 
Allows For The Most Appropriate 
Compounds To Influence Modeling

2 2 3 3 2 3
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The fuels used for comparing the EWFA-MCR algorithm versus AMDIS were used to compare 
the default compound search using the Agilent ChemStation software provided with in-house GC-
MS instrumentation versus the three FCAST search algorithms. All results reported in Table 4 are 
unique names, with a match factor threshold of 750, and an area > 0.001% of the total sample. All 
of the FCAST search algorithms reported more compounds identified than the default 
ChemStation results. Mass Channel Analysis reported more peaks identified then the simple 
method while approaching the numbers reported by the EWFA-MCR algorithm. The FCAST 
implementation of the EWFA-MCR algorithm reported fewer results in Table 4 than seen 
previously due to some constraints placed on the algorithm to reduce the analysis time to a more 
manageable number. The average time for FCAST analysis of the three methods listed are minutes, 
tens of minutes, and hours, respectively, based on the recommended GC-MS method.  
 
The Mass Channel Analysis was implemented in the FCAST as a less computationally intensive 
alternative to EWFA-MCR peak deconvolution that could provide improved chromatographic 
resolution in less time. EWFA-MCR would be thus used when the most detailed resolution is 
required, such as when comparing two fuels for minor compositional differences. 
 
 
 

Grade 
Agilent 

ChemStation 
FCAST  
Simple 

FCAST Mass 
Channel  

FCAST 
EWFA-MCR 

JP-5 57 115 189 224 
JP-5 50 118 213 233 
JP-8 71 132 238 275 
JP-8 84 159 279 372 
JetA 82 150 243 289 
JetA 69 110 213 222 
F-76 78 132 186 157 
F-76 57 115 128 98 
MGO 106 141 235 237 
MGO 104 116 172 222 

Alt. Diesel (CHCD) 84 153 251 197 
Alt. Diesel (HEFA) 80 122 222 213 

 
Table 4. Number of compounds reported for standard Agilent ChemStation analysis, vs FCAST 
simple, mass channel and EWFA implementations. 
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3.0 FCAST Software Automation 
 
The following section reports upon recent FCAST modifications as they are related to the 
enhancement of the FCAST’s automated capabilities. 
 

3.1 Automation of Comparison Sub-Routines 
 
FCAST incorporates two inter-sample comparison sub-routines, which can both be utilized to 
quickly find the differences between fuels. The deltaCompare sub-routine was designed to quickly 
and quantitatively compare the magnitudes of area-normalized TICs of two fuel samples, 
subjecting the higher-magnitude mass spectrum corresponding to any given retention time to a 
NIST database search for identification purposes if the difference between the two relevant TIC 
values is greater than the standard deviation of the differences in the two TICs at all retention times 
multiplied by a constant value. In contrast, the feature selection strategy based on contrasting 
ANOVA results collected from between-sample and within-sample variances was designed to use 
the relative differences between larger replicate data populations to isolate more subtle yet still 
informative data features for further analysis and assessment, providing a more thorough 
comparative analysis in exchange for the collection of several replicate GC-MS data sets. 
 
deltaCompare. The deltaCompare comparative sub-routine currently offers only a single analysis 
option, i.e. the ability to adjust the standard deviation multiplication constant associated with its 
statistical functions. However, previous reporting12 has already indicated that 2.33 (consistent with 
a one-tailed z-test at a 99% confidence interval) is a suitable default value. It would thus be a 
straightforward software change simply to move the standard deviation multiplication constant 
adjustment capability to a less accessible sub-menu to encourage result uniformity across multiple 
iterations of the software. 
 
ANOVA sub-routine. The ANOVA sub-routine provides the means to compare the compositions 
of two fuels using an Analysis of Variance (ANOVA)27 technique wherein the ratio of the between-
sample to within-sample variance is used to determine which data points in the GC-MS total ion 
chromatogram are statistically different between the two samples. This algorithm requires the 
informed selection of several critical parameters, most notably an F-ratio threshold value that is 
used to determine which data features are indicative of categorical change. An F-ratio is calculated 
for each comparable data point in the GC-MS data collected for multiple samples, and the highest 
values within these F-ratio collections indicate the most prominent differences between sample 
categories. A more detailed explanation of F-ratio values and ANOVA can be found in a previous 
NRL Memorandum Report.12 In summary (see below for details), it was found that a reasonable 
F-ratio threshold can be automatically selected for any given GC-MS data comparison by first 
calculating all of the F-ratios for a given class comparison, then taking the natural logarithms of 
all of these collected values to minimize the effects of overly large F-ratios, then normalizing all 
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of these collected and transformed values to the maximum possible post-transform value, and then 
finding the mean and standard deviation of the collected values. The automated F-ratio threshold 
is thus defined as the mean value plus the standard deviation value multiplied by 1.96. 
 
There are two additional analysis options associated with the ANOVA sub-routine: whether or not 
to normalize the data, and whether or not to align the data prior to running the actual comparison 
algorithms. Given that the F-ratio threshold selection methodology itself makes use of 
normalization, and given that normalization and alignment are prudent preprocessing steps to take 
in the context of comparing newly collected data sets to pre-existing ones, especially when strict 
data quality measures might be difficult to implement across multiple laboratories, there is 
currently no reason to suspect that these two preprocessing options should not be applied as default 
options in widely distributed versions of FCAST. However, as with all default options, the ability 
to deselect these two preprocessing steps should be maintained in the final software in at least 
some capacity for use by advanced software operators. 
 
Details of Fisher-ratio (F-ratio) threshold determination work. Because the goal is to 
determine which F-ratios in any given F-ratio collection are different from the overall population 
of F-ratios, one possible course of action is to simply calculate the mean and standard deviation of 
the entirety of a data comparison’s collected F-ratios. One can then add the mean to the standard 
deviation, multiplied by a constant value associated with the desired confidence interval (as is done 
in the deltaCompare sub-routine), and use the resulting value as the F-ratio threshold value against 
which to compare the F-ratios within the original collection. Pursuing this course of action, thus 
producing a threshold value that appropriately scales with the data without user intervention, 
requires the determination of a suitably robust constant by which to multiply the standard 
deviation, one that is as large as possible to eliminate as many undesirable results as possible while 
still allowing for the reliable identification of relevant compound changes. 

 
Initially, it was believed that the most prominent challenge associated with automatically selecting 
an F-ratio threshold in this way would be that ANOVA data comparisons can potentially produce 
extremely large F-ratios, corresponding to extremely prominent changes, which might interfere 
with the appropriate reporting of smaller yet still realistically significant F-ratios. To accommodate 
these extremely large values, the natural logarithms of the calculated F-ratios for an entire 
categorical comparison can be calculated, effectively reducing the relative intensities of extremely 
large values. Experiments were thus performed to assess what the effects of such a data 
transformation would be on ANOVA-based comparison results, as opposed to results obtained via 
untransformed (control) F-ratio collections. 

 
Two different permutations of the logarithmic transformation were utilized during the present 
work to determine their relative impacts on mean and standard deviation calculations, and thus 
final comparison results. One permutation leaves negative post-logarithmic transformation values 
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intact, while the alternative permutation adds, to the entire collection of transformed F-ratios, the 
minimum constant value necessary to eliminate all negative values in an attempt to improve upon 
mean and standard deviation determinations. An MF threshold value of 750 is applied to individual 
compound identifications, as was previously shown to be optimal. It should also be noted that, 
during preliminary work, it was realized that 1-methynaphthalene was likely to have sometimes 
been misidentified as 2-methylnaphthalene via NIST database searches, regardless of MF 
threshold value, due to the similarities between the 1-methylnaphthalene and 2-methylnaphthalene 
library mass spectra, and these misidentifications were thus accounted for in the results as 1-
methylnaphthalene. 
 
The ANOVA technique itself is typically deployed in scenarios involving only two fuels between 
which more subtle differences are being sought. In these scenarios, provided that the necessary 
time and resources are available, replicate GC-MS data sets are explicitly collected for the 
purposes of performing ANOVA-based comparisons. Thus, it was decided to evaluate possible 
standard deviation multiplication constant values with replicate-based surrogate fuel classes. 
Pursuant to this decision, Table 5 displays the compositions of the three surrogate fuels, numbered 
in-house as 29, 30, and 31, from which five suitable replicate data sets each were collected. These 
three fuels can be variously paired and compared with each other via ANOVA, as two classes of 
five-replicate sets, to yield three meaningful comparisons upon which to gauge the effectiveness 
of the automated threshold selection methodology. It should be stated here that these comparisons 
were performed both by defining the lower-numbered surrogate fuel as class 1 and the higher-
numbered surrogate fuel as class 2, and vice versa, but this ordering did not appear to have an 
impact on the results reported herein. 
 
 
 
 

 
 
Table 5. Percent compositional contents (v/v) of the three surrogate fuels evaluated to develop the 
automated F-ratio threshold determination methodology. 
 
 
 

Surrogate Fuel 29 Surrogate Fuel 30 Surrogate Fuel 31
n-dodecane 15% 5% 10%
1-dodecene 5% 10% 0%
toluene 40% 40% 0%
1,2,4-trimethylbenzene 20% 0% 30%
tetralin 0% 40% 30%
1-methylnaphthalene 20% 5% 30%
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Figure 2 shows three sets of results, corresponding to control results that do not make use of 
logarithmic data transforms (though the other steps required to define the threshold value are 
carried out in the same manner as described previously), depicted as a red line, and results obtained 
with the two different permutations of the logarithmic transformation described previously, 
depicted as the blue and green lines, with the green line showing the results which include the 
elimination of negative values. To investigate how to define optimal F-ratio threshold values, the 
potential standard deviation multiplication constant was scaled from 0.5 to 10, in steps of 0.5 in 
this figure, to determine the most suitable constant value by which to multiply the standard 
deviations of all variable-specific ANOVA values within any given comparison to help define the 
overall threshold value. The goal, at least initially, was to find the maximum constant value that 
would provide as much discriminatory capability as possible (suggesting a relatively high value) 
while still allowing for even the small differences between classes, as shown in Table 5, to be 
detected (suggesting a relatively low value). Figure 2 also includes dashed lines indicating the 
maximum numbers of relevant compounds that might be identified within any given set of results, 
as also indicated by Table 5. If, as is desired, all relevant compounds are identified within a given 
set of results, the line corresponding to said results will overlap with the corresponding dashed 
line. 
 
Interestingly, however, Figure 2 would seem to indicate that the most effective methodology, that 
of utilizing the logarithmic transform without the additional corrective step (again, as represented 
by the blue line), provides a great deal of leeway with respect to which constant value might be 
implemented, as it allows for all possible class differences to be identified along the widest ranges 
of possible multiplication constants, up to a constant of at least 7 across all three class comparisons. 
 
In order to obtain a more definitive understanding of which multiplication constant would best 
serve as an optimized default value, one can reinterpret ANOVA comparison results based on 
whether or not the sums of the original, non-normalized data at the retention times corresponding 
to the ANOVA results are greater for class 1 or class 2, thereby pinpointing within which class 
(i.e. which fuel) more of any given compound can be located. These results can further be summed 
along the mass spectral data axis to produce TIC results, up to and including entire TIC spectra, 
corresponding to all data increases found in one class compared to another class, as well as 
individual compound increases and decreases across classes as determined via NIST/EPA/NIH 
database searches. Such class-specific TIC results can be found plotted in Figures 3a through 4c 
for all three surrogate fuel comparisons, when utilizing the multiplication constant values of 0.5 
(for the sub-figures of Figure 3) and 6.0 (for the sub-figures of Figure 4). What is made apparent 
by cross-referencing these figures with the fuel compositions shown in Table 5 is that the larger 
compound-specific peaks within each class pair always correspond to larger amounts of the 
corresponding compounds known to be within any given class comparison, thus further indicating 
the fundamental effectiveness of the ANOVA class comparison strategy. 
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Figure 2. Summaries of the total numbers of compounds found that would have been expected to 
change between pairings of three surrogate fuels, utilizing multiple standard deviation 
multiplication constants and three different F-ratio transformations, including the control, which 
skipped logarithmic transformation. 
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Figure 3a. Class-sorted TIC results, obtained for the Surrogate Fuel 29 (red) / Surrogate Fuel 30 
(blue) comparison, whose corresponding logarithmic ANOVA values exceed the threshold 
logarithmic value defined for a multiplication constant value of 0.5. 
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Figure 3b. Class-sorted TIC results, obtained for the Surrogate Fuel 29 (red) / Surrogate Fuel 31 
(blue) comparison, whose corresponding logarithmic ANOVA values exceed the threshold 
logarithmic value defined for a multiplication constant value of 0.5. 
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Figure 3c. Class-sorted TIC results, obtained for the Surrogate Fuel 30 (red) / Surrogate Fuel 31 
(blue) comparison, whose corresponding logarithmic ANOVA values exceed the threshold 
logarithmic value defined for a multiplication constant value of 0.5. 
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Figure 4a. Class-sorted TIC results, obtained for the Surrogate Fuel 29 (red) / Surrogate Fuel 30 
(blue) comparison, whose corresponding logarithmic ANOVA values exceed the threshold 
logarithmic value defined for a multiplication constant value of 6.0. 
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Figure 4b. Class-sorted TIC results, obtained for the Surrogate Fuel 29 (red) / Surrogate Fuel 31 
(blue) comparison, whose corresponding logarithmic ANOVA values exceed the threshold 
logarithmic value defined for a multiplication constant value of 6.0. 
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Figure 4c. Class-sorted TIC results, obtained for the Surrogate Fuel 30 (red) / Surrogate Fuel 31 
(blue) comparison, whose corresponding logarithmic ANOVA values exceed the threshold 
logarithmic value defined for a multiplication constant value of 6.0. 
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What is also apparent in Figures 3a through 4c, however, is that the TIC spectra do not look overly 
different when comparing the results identified when employing the two disparate multiplication 
constant values of 0.5 and 6.0. Note in particular that the scales of corresponding figures do not 
even need to be modified when considering the results obtained using the two different values. 
The most obvious apparent change when using these two multiplication constant values is that the 
toluene-based differences found between Surrogate Fuels 29 and 30 are not apparent when using 
a value of 6.0, as can be seen in Figure 4a, whereas they are apparent when using a value of 0.5, 
as can be seen in Figure 3a. However, even when detected, this difference is orders of magnitude 
below the other differences found between the two surrogate fuel replicates, as might be expected 
given that both of these surrogate fuels should contain nearly identical amounts of toluene 
according to Table 5. This toluene difference is thus not considered a sufficient metric upon which 
base the selection of a default multiplication constant value. 
 
Despite these visual similarities, however, there are small differences to be found when employing 
different multiplication constants, and these differences can be further analyzed to select a default 
multiplication constant. In order to more ably consider these small differences in aggregate, and 
because the goal of this analysis is to assess unambiguous discriminatory capability, one can first 
subtract the compound-specific ANOVA-selected class 1 TIC values from the compound-specific 
ANOVA-selected class 2 TIC values seen in Figures 3 and 4, then find these differences’ absolute 
values. The sum of these differences can then be obtained for the smallest tested multiplication 
constant of 0.5. Similar sums can then be produced while utilizing other multiplication constants. 
These sums would be expected to decrease in magnitude as multiplication constants increase 
because fewer individual ANOVA comparison results would be able to exceed the thresholds thus 
defined. For a visual representation, one can thus subtract these sums from the sum obtainable 
when using the smallest tested multiplication constant (i.e. 0.5) to determine how much 
discriminatory capability is lost when larger multiplication constants are employed. This operation 
produces results that are more negative as more discriminatory capability is lost when higher 
multiplication constants are employed, as can be seen in Figure 5 for all three class comparisons. 
 

Figure 5 shows that the TIC differences that can be unambiguously associated with the expected 
changes between the compounds known to be different between the two classes decrease 
exponentially with increases in multiplication constant. This would seem to indicate that erring on 
the side of caution (i.e. lower multiplication constants) would be advisable in selecting a default 
constant value, thus helping to ensure that meaningful class differences continue to be identified, 
even if those class differences are subtle. 
 

 

 

 



 

27 
 

 
 
 
Figure 5. Sum absolute TIC differences between classes, for compounds known to be different 
between classes, with losses being reported relative to the results obtained when a constant of 0.5 
is employed. 
 
 
 
The TIC differences seen in Figure 5 when employing a constant value of 2 remain very close to 
zero, which means that the overall TIC difference results obtained when using a multiplication 
value of 2 do not differ a great deal from the results obtained when using a value of 0.5. A 
multiplication constant value of 2 can be altered slightly to the proximal value of 1.96 in order to 
conform the constant to a one-tailed z-test at a 97.5% confidence interval, which is a fairly standard 
constant employed in statistical analyses. Given available evidence, then, a standard deviation 
multiplication constant value of 1.96 would seem to be a reasonable default value to employ in the 
context of the ANOVA comparison strategy. 
 

3.2 Default Peak Area Threshold Selection 
 
Because of the need for reliably optimized analysis parameters in automated software applications, 
and because data deconvolution is being implemented into FCAST specifically, work was 
undertaken during the present work to determine whether or not FCAST’s pre-existing default 
peak area threshold, 0.001%, should be redefined to perform more optimally with the most up-to-
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date version of the software. It was initially suspected that adjusting this threshold between values 
of similarly small magnitudes would not overly affect peak identification and modeling results 
when the relatively restrictive MF threshold of 750 is employed. Thus, the peak area thresholds 
tested covered a somewhat more expansive logarithmic progression of 0.1%, 0.01%, 0.001% 
(previously determined default), 0.0001%, and 0.00001%. While utilizing the four threshold 
values not previously investigated, deconvolved compositional results from the eighty fuel 
samples required to model five different compositional properties (naphthalene content via ASTM 
D1840, aromatics content via ASTM D6379, and aromatics, olefins and saturates contents via 
ASTM D1319) were recollected and subjected to the same UVE-PLS modeling shown previously, 
for three replicate calculations. RMSEP and R2 values were collected, as well as how many of the 
ten most prominent compounds in each model actually represent the targeted compound class, and 
the results from the three replicates indicating the highest modeling accuracy were determined. 
These modeling results, alongside the original 0.001% results shown in Table 2, are shown in 
Table 6. 
 
 
 
 

 
 
Table 6. UVE-PLS prediction results obtained for five fuel properties while utilizing various peak 
area thresholds. Most favorable results of three replicates reported for each value. The modeling 
metric(s) in each row indicative of the most accurate modeling results are highlighted in green. 
 
 
 

0.10% 0.01% 0.001% 0.0001% 0.00001%

Aromatics, FIA RMSEP 0.5275 0.7847 0.7881 0.791 0.7737

(ASTM D1319) R
2 0.95 0.89 0.89 0.89 0.89

Aromatics (of 1 st  10) 5 8 8 8 8

Aromatics, RMSEP 0.4789 0.3873 0.3803 0.3794 0.3858

HPLC R
2 0.99 0.99 1.00 1.00 0.99

(ASTM D6379) Aromatics (of 1 st  10) 2 4 4 4 4

Naphthalene RMSEP 0.245 0.1808 0.1813 0.2567 0.1811

Content R
2 0.89 0.94 0.94 0.88 0.94

(ASTM D1840) Naphthalenes (of 1 st  10) 4 2 2 2 2

Olefins, FIA RMSEP 0.6865 0.708 0.6430 0.7117 0.6451

(ASTM D1319) R
2 0.88 0.87 0.89 0.87 0.89

Olefins (of 1
st

 10) 4 2 4 2 4

Saturates, FIA RMSEP 0.7419 0.7833 0.7592 0.7642 0.7769

(ASTM D1319) R
2 0.98 0.97 0.97 0.97 0.97

Saturates (of 1
st

 10) 5 4 7 6 4
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Table 6 shows that the threshold value of 0.1%, despite providing the most accurate quantitative 
modeling results, provides the least compositionally accurate modeling results, and is thus not an 
optimal threshold value to employ within FCAST for reasons already indicated in section 2.2. With 
respect to the other potential threshold values, as was initially suspected, the choice between them 
would seem to have little systematic impact on overall fuel property model quality, at least in the 
context of accurate quantitative modeling predictions. Although different peak area thresholds do 
indeed provide slightly different prediction results for each of the fuel properties, it cannot be said 
that any given threshold value provides a clear analytical advantage over the others. However, 
because the original threshold value of 0.001% provides the highest degree of compositional 
fidelity to the fuel property being modeled, it was deemed prudent to leave the peak area threshold 
at this value. 
 

3.3 Other Automation-Friendly Optimizations 
 
FCAST possesses additional minor analysis parameters that should presently be addressed in the 
context of automation. 
 
Solvent delay. While a solvent delay can be manually entered into the software to minimize 
adverse effects on distillation curve calculations, this value should remain at a default value of 
zero. If solvent delays must be accommodated in any given analysis, either the raw data itself can 
be manipulated using the software used to collect the data in the first place, or the parameter can 
be changed in FCAST via a less accessible option screen. 
 
Mass Range. Mass spectral mass ranges, to be utilized for NIST/EPA/NIH Mass Spectral Library 
searches and correlated compound identifications, can also be manually adjusted, but a default 
option of reading the mass range used from the method file itself, if available, was added. The 35-
400 m/z range is left as the default values since those are the recommendations for the preferred 
method for data collection. 
 
MS Mass Factors. Mass factor corrections were determined empirically in earlier work10 to 
account for different mass analyzer ionization efficiencies to convert peak areas to mass percent 
values. This conversion is necessary to achieve accurate quantitative results and thus remains as a 
default option in the software. 
 
Multiple Compound Identifications. FCAST allows for the detection of multiple iterations of 
the same compound across multiple retention times throughout a given data set to allow for the 
compound-level characterization of specific peaks, if as much were deemed necessary. However, 
despite the fact that multiple compound identity iterations can be a consequence of column bleed, 
which may become significant as a column ages or degrades with use, said iterations are not to be 
expected in most realistic and routine scenarios, simply by virtue of how chromatography 
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functions. Because multiple identified iterations of the same compound are almost invariably the 
result of library misidentifications, the default protections currently in place to disallow multiple 
such compound identifications will remain in place in the software. As the majority of the 
mismatches are usually due to closely-related isomers, combining these compounds results in 
limited downstream analysis issues. 
 
Column Bleed and Peak Overloading. FCAST currently has algorithms in place to accommodate 
both column bleed and overloaded peaks. As with the solvent delay, data collection should be done 
that limits the need for these options. These options will remain unselected as defaults to allow for 
the accommodation of as diverse a set of future fuel data sets as possible. 
 
False Compound Identifications. FCAST currently has the option to automatically exclude 
selected names and partial names from possible compound identities as a default setting. At 
present, the compounds to ignore are those possessing the following names or partial names: 
“methylene chloride,” “siloxane,” “silane,” “silicic,” “silyl,” “trifluoroacetate,” and “TMS 
derivative.” As might be expected, the majority of these exclusions explicitly target silicon-
containing compounds that are the result of chromatographic column bleed, while methylene 
chloride is a solvent typically employed in GC-MS analysis work. “Trifluoroacetate” and “TMS 
derivative,” meanwhile, are partial compound names that should be impossible to find in realistic 
fuel populations. These compounds thus discriminated against provide virtually no meaningful 
compositional information with respect to the actual fuel being analyzed. Although the option to 
re-include these compounds in potential FCAST-based analyses will be maintained, to 
accommodate possible circumstances in which non-fuel samples might be analyzed, their 
exclusion will remain the default setting. 
 
NIST/EPA/NIH Mass Spectral Library database searches are based on individual mass spectra 
from parent GC-MS data sets. However, it is possible to obtain individual mass spectra that, due 
to lack of analyte signal, appear to consist only of a single peak. Such mass spectra produce 
database search results indicating that some material that also possesses a single peak, such as 
argon, has been identified. However, because these types of materials are typically nonsensical in 
the context of fuel analyses, a parameter in the software can be adjusted to disallow database 
searches utilizing anything less than three distinct m/z peaks. At present, it remains prudent to 
retain this as a default analysis option. 
 
Distillation Curve Calculations. An alternative automated n-alkane calibration procedure is 
available in FCAST in order to properly model the distillation curves of samples containing few if 
any of the n-alkane compounds typically utilized as markers. This alternative procedure will be 
disabled as a default setting because the end user would be expected to be analyzing samples with 
sufficient n-alkane compounds to define the retention times of most of these C6-C24 markers. 
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3.4 Software Optimizations 
 
In addition to the analysis-specific determinations made throughout the present report, several 
smaller changes were also made to FCAST regarding its overall usability, and some of these are 
reported upon here. A fuller reporting of such changes, especially as they relate to actual software 
use, can be found in a concurrent NRL Memorandum Report.13 

 
The automated EWFA-MCR algorithm requires that SVD be performed repeatedly, over 
overlapping data sections, across the entirety of any given GC-MS data set. While SVD does not, 
in and of itself, require a great deal of time to reach completion on most modern computers, the 
sheer number of times that SVD must be performed to achieve a comprehensive level of data 
deconvolution greatly increases overall computational requirements, to the point that the analysis 
of a GC-MS data set for a single fuel might require hours of calculation time. During the present 
work, however, an alternative SVD sub-routine was implemented into the deconvolution algorithm 
that is faster than the previous SVD sub-routine used in FCAST. This alternative SVD sub-routine 
could also be used to accelerate non-deconvolution FCAST functionalities if an accelerated 
version of SVD is deemed necessary. It should be noted here that, despite this acceleration step, 
the deconvolution algorithm still requires hours to fully deconvolve a typical GC-MS data set. 
However, sample data can be fully deconvolved autonomously on a computer that would otherwise 
be relatively idle, such as on a workstation running overnight. This time restriction is thus not 
considered a critical shortcoming for FCAST-based data deconvolution. 
 
Also, to provide end-users with complete information, the masses identified by deconvolution are 
explicitly highlighted within the visual mass spectral display of the full scan on the FCAST screen. 
This allows the end user to see which masses are part of the compound and which masses were 
not used, and most likely part of an overlapping compound. 
 

4.0 Conclusions 
 
The compositional characterization of fuels has always been limited by the inherent limitations of 
gas chromatography to resolve similar compounds or isomers. One of the primary goals of the 
present work was thus to overcome this limitation to the extent possible in FCAST by 
implementing improved algorithms to deconvolve co-eluting peaks. Two deconvolution methods 
were developed and implemented for the NRL FCAST application, thus providing three options 
for peak deconvolution: a simple peak detection, a mass channel analysis that provides improved 
resolution, and an automated EWFA-MCR analysis to provide the highest chromatographic 
resolution. 
 
A second primary goal was to improve FCAST’s automated analysis capabilities by selecting 
initial default analysis parameters for various operations, including the detailed comparisons of 
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two fuel populations by the Fisher Ratio ANOVA method and the more streamlined deltaCompare 
statistical analysis of two GC-MS TICs. These default parameters were specifically selected to 
allow for a robust automated GC-MS analysis without the need for extensive user training. The 
peak deconvolution and automation upgrades implemented during the course of this work will 
improve the results obtained by FCAST to characterize the compositions of fuels in the DoD fuel 
library, which includes the fuel forensics library. 
 
The improved FCAST software can consequently be provided to DLA Energy for routine use to 
provide a more detailed and comprehensive analysis of fuels by standard Agilent GC-MS 
instrumentation and can potentially allow field laboratories to transmit data instead of sending 
samples to DLA during remediation efforts associated with real-world fuel quality issues. 
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