

 ARL-TR-8589 ● DEC 2018

 US Army Research Laboratory

Extraction and Comparison of Vertical Profiles
from Global and Mesoscale Models

by J Cogan

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8589 ● DEC 2018

 US Army Research Laboratory

Extraction and Comparison of Vertical Profiles
from Global and Mesoscale Models

by J Cogan
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2018
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Extraction and Comparison of Vertical Profiles from Global and Mesoscale
Models

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

J Cogan
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIE
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8589

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Evaluation of numerical weather prediction models commonly considers the surface and near surface layers where more
observations with greater detail are often available. For larger-scale models, publically available comparisons mostly consist
of certain standard levels at set time intervals. Comprehensive and sophisticated statistical packages are available that can
generate a variety of statistical measures, although they mostly consider the surface, near surface, and a limited number of
higher levels, mostly within or near the boundary layer or at standard pressure levels. Evaluation of vertical soundings from
model output at user-defined intervals vertically through the atmosphere up or near to the uppermost model output level would
allow a more complete evaluation of model performance. An ability to readily compare profiles from two or more sources of
data, such as a model and a radiosonde, will assist evaluation over those levels or layers. This report describes a series of
methods for extraction of vertical soundings from the output of several representative models, including the Global Forecast
System, the Global Air Land Weather Exploitation Model, and the Weather Research and Forecast model, as well as methods
to evaluate single or multiple soundings from model output.
15. SUBJECT TERMS

meteorological model evaluation, user-defined profiles, extraction of vertical profiles, sounding statistics, sounding
comparisons

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

45

19a. NAME OF RESPONSIBLE PERSON

J Cogan
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-2304
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

List of Tables v

1. Introduction 1

2. Extraction and User Definition of Vertical Profiles from GFS,
GALWEM, and WRF Output 2

2.1 Create a Small GRIB2 File from the Input File 2

2.2 Extract Vertical Profile Data 4

2.3 Convert the Output File into a User-Friendly Form 6

2.4 Compute Sounding with User-Defined Height or Pressure Levels and
Layers 7

2.5 Combining Python 3 Scripts and C programs using Bash Scripts 10

2.5.1 Processing GFS or GALWEM Output Files 10

2.5.2 Processing WRF Output Files 11

2.5.3 Processing RAOB Data 12

3. Statistics of Differences Between Vertical Profiles 13

3.1 Computation of Differences 13

3.2 Statistics by Variable and Data Line 19

4. Conclusion 21

5. References 23

Additional Resources 24

Appendix A. Programs and Scripts 25

Appendix B. Flowcharts for the Bash Scripts 29

List of Symbols, Abbreviations, and Acronyms 36

Distribution List 37

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. B-1 Flowchart of the set of Bash scripts when used as a single package
from extraction of soundings through generation of statistics for
multiple sounding comparisons .. 30

Fig. B-2 Flowchart of the raob.sh Bash script for conversion of a radiosonde
sounding from the University of Wyoming weather website or from
the National Oceanic and Atmospheric Agency’s (NOAA) radiosonde
observation (RAOB) archive into user-defined height or pressure level
and layer vertical profiles of meteorological variables. The output
profiles include either wind speed and direction and virtual
temperature (Tv) or horizontal wind components (u, v) and relative
humidity (RH). .. 31

Fig. B-3 Flowchart of the wgrb2.sh Bash script for extraction of a sounding
from a GRIB2 output file (Global Forecast System [GFS] or Global
Air Land Weather Exploitation Model [GALWEM]) and conversion
into user-defined height or pressure level and layer vertical profiles.
The output profiles include either wind speed and direction and virtual
temperature (Tv) or horizontal wind components (u, v) and relative
humidity (RH). .. 32

Fig. B-4 Flowchart of the wrf_extract.sh Bash script for extraction of a
sounding from a netCDF output file (WRF) and conversion into user-
defined height or pressure level and layer vertical profiles of
meteorological variables. The output profiles include either wind
speed and direction and virtual temperature (Tv) or horizontal wind
components (u, v) and relative humidity (RH). 33

Fig. B-5 Flowchart of the prof_compare.sh Bash script for comparison of two
soundings from model and RAOB output or from two different models
or model configurations. The output may include differences in either
wind speed and direction and virtual temperature (Tv) or horizontal
wind components (u, v) and relative humidity (RH). However, when
the comparison is derived from soundings having wind components,
the user can choose to compute and output vector wind differences
instead of RH differences.. 34

Fig. B-6 Flowchart of the profstats.sh Bash script for generation of tables of
basic statistics such as mean and standard deviation by data line and
variable. The user may choose to compute the statistics for the
absolute values of the differences computed using prof_compare.sh. 35

Approved for public release; distribution is unlimited.
v

List of Tables

Table 1 Sample of output from the wgrib2 process for extraction of a sounding
from a GRIB2 file. Only 9 lines of a total of greater than 400 lines are
shown. Many lines have variables that are not used for the user-
defined meteorological soundings (e.g., icing severity). 5

Table 2 Sample of output from the script gg_wg2.py. The header and the first
11 data lines are shown. P is pressure, Hgt is height above mean sea
level (MSL), Tmp is temperature, RH is relative humidity, and U and
V are the horizontal components of the wind (relative to Earth). The
units are as indicated. .. 6

Table 3 Vertical profile (sounding) extracted from a GFS output file (0.25°
horizontal grid) for the 12-h forecast starting at 00 UTC on 17 August
2018 for the National Weather Service site at Dulles Airport, Virginia.
The first 10 data lines are shown. The variables and units are as in
Table 2. ... 9

Table 4 The sounding of Table 3 converted to a user-defined height structure.
Virtual temperature is computed for all levels, and then all variables
are interpolated to the listed heights. Wind direction and wind speed
(Wind_Dir and Wind_Speed, respectively) and virtual temperature
(Virt_Temp) are displayed. The number shown for the date has the
date and time of the “0-h” forecast of the model and the time has the
model forecast hour (i.e., 12). Elevation is in m, Time in h, and
Latitude and Longitude are in degrees. The ceiling and visibility in the
header are for potential future use and the values shown indicate
missing data. At this time, wind speed is in knots. The first nine data
lines (0–8) are shown. ... 9

Table 5 The sounding of Table 3 converted to a user-defined structure of
pressure layers. The values of the variables shown are weighted mean
values for the listed layers as indicated by the pressure midpoints
except for the surface (level 0), which has the surface values. The u
and v wind components (U-wind and V-wind) and relative humidity
(Rel-Humidity) are displayed. The pressure (P) value shown is for the
midpoint pressure of the layer (average of boundary values) and the
height value is the midpoint height (Midpt) of the layer, except for
“layer” 0, which has the surface values. The level and layer values of
the variables other than P are computed relative to ln (P). Also, the
pressures at the height midpoints may be somewhat different from the
midpoint pressures displayed since pressure is not linear with height.
The first 16 data lines (0–15) are shown. .. 10

Table 6 A difference table based on pressure level input files, plus basic
statistics, for the input files listed in the first header line. The
differences were between soundings based on pressure levels that
contained wind components and RH. The first 20 and last 5 data lines
are shown, plus the column statistics. ... 17

Approved for public release; distribution is unlimited.
vi

Table 7 A difference table based on height layer input files, plus basic
statistics, for the input files listed in the first header line. The
differences were between soundings from Tucson (TUS), Arizona,
based on height levels that contained wind components and RH, and
where the column for RH differences was replaced with one for vector
wind speed differences (Vector_W-spd). A WRF derived sounding
was compared with that from the coincident RAOB. The first 12 and
last 3 data lines are shown, plus the column statistics. 18

Table 8 Sample screen display from duplichk.py. The first line is the query to
the user and the entered name of the file to be checked. In this example
one file was duplicated one time. If the same file is duplicated more
than once, then the line after “Table ID” will be repeated (e.g., if
duplicated three times, the same line is repeated three times). 19

Table 9 Tables of basic statistics (mean, median, SD, and RMSE) for the
difference tables of the diff_profiles append file. For brevity, only the
first 10 data lines are shown for each statistic, except that the last table
(RMSE) has some additional lines that show the change from 6
samples to 2... 20

Approved for public release; distribution is unlimited.
1

1. Introduction

Evaluation of numerical weather prediction (NWP) models on finer scales
commonly considers the surface and near surface layers where a larger number of
observations are available, often in greater detail. For larger-scale models, such as
those run at weather centers, publically available comparisons mostly consider data
at certain standard levels at set time intervals. The National Center for
Environmental Prediction (NCEP; http://www.emc.ncep.noaa.gov/gmb/STATS_
vsdb/) and the European Centre for Medium-Range Weather Forecasting
(ECMWF; https://www.ecmwf.int/en/forecasts/charts/catalogue/) have readily
accessible verification websites. Worldwide comparisons are available for
deterministic forecasts at the ECMWF (http://apps.ecmwf.int/wmolcdnv/) and for
ensemble forecasts at the Japan Meteorological Agency (JMA; http://epsv.kishou.
go.jp/ EPSv/). Those comparisons generally apply only to surface and standard
pressure levels. Comprehensive and sophisticated statistical packages are available
that can generate a variety of statistical measures, although those also mostly
consider the surface, near surface, and a limited number of higher levels. However,
Model Evaluation Tools (MET) users can select a specific vertical level for
analysis. For example, the Weather Research and Forecasting model (WRF)
Developmental Test Center (DTC) has used the MET and a Unified Post Processing
system for analysis of output and statistical evaluation. Similar tools are available
at other centers such as NCEP. The DTC websites (http://www.dtcenter.org/met/
users/ and http://www.dtcenter.org/upp/users/) contain links to extensive user’s
guides, other documentation, and tutorials.

NWP model output is frequently compared with radiosonde observations where the
entire sounding is often referred to with the acronym for radiosonde observation
(RAOB). Ingleby et al. (2018) have up-to-date information on available RAOB data
as well as data from other sources such as aircraft. The aforementioned verification
websites, which are maintained at major weather centers, mostly compare model
output for levels above the surface with data from RAOBs. Many field experiments
and tests involve comparisons of output from finer scale (e.g., mesoscale) models
such as the WRF model (herein WRF) with RAOB data (e.g., Dutsch 2012;
Kilpelainen et al. 2012; Cuevas et al. 2011). Skamarock, et al. (2008) describe
details of the WRF, and although there have been upgrades since then, the basics
as described remain much the same. Details on available output products from the
National Oceanic and Atmospheric Agency (NOAA), and more specifically on the
Global Forecast System (GFS) as used at NOAA, may be found at
http://www.nco.ncep.noaa.gov/pmb/products/ and http://www.nco.ncep.noaa.
gov/pmb/products/gfs/#GFS, respectively, and via included links. The Global Air

http://www.emc.ncep.noaa.gov/gmb/STATS_%20vsdb/
http://www.emc.ncep.noaa.gov/gmb/STATS_%20vsdb/
https://www.ecmwf.int/en/forecasts/charts/catalogue/
http://apps.ecmwf.int/wmolcdnv/
http://www.dtcenter.org/met/%20users/
http://www.dtcenter.org/met/%20users/
http://www.dtcenter.org/upp/users/
http://www.nco.ncep.noaa.gov/pmb/

Approved for public release; distribution is unlimited.
2

Land Weather Exploitation Model (GALWEM) has no similar readily available
website. However, GALWEM is a version of the UK Met Office’s Unified Model
and the Met Office has a public website that includes links that give overviews of
the model and its application (https://www.metoffice.gov.uk/ research/modelling-
systems/unified-model).

This report presents a set of computer scripts and programs that allow the user to
extract vertical profiles of meteorological variables from GFS and GALWEM
output in GRIB2 format and convert them into profiles with a height or pressure
level and layer structure as defined by the user. A related program also extracts
vertical profiles from WRF output and converts them into profiles at user-defined
levels and layers. RAOB soundings can also be converted into forms having user-
defined height or pressure levels and layers. Those profiles may include wind speed
and direction plus virtual temperature or u and v wind components plus relative
humidity (RH). Both forms have temperature and pressure (or height) for the
respective height (or pressure)-based profiles. An additional set of scripts generates
tables of differences between any two profiles with the same user-defined structure
and produces basic statistics over multiple tables by variable and by height or
pressure level or layer.

2. Extraction and User Definition of Vertical Profiles from GFS,
GALWEM, and WRF Output

The procedure for extraction of vertical profiles of meteorological variables
(“soundings”) from GFS and GALWEM (GRIB2) and WRF (netCDF) output files,
as well as the process for generation of vertical profiles at user-defined levels and
layers, is described for separate Python 3 scripts and C programs, and for combined
sets of scripts and programs using Bash scripts. Sections 2.1–2.4 describe the means
to extract vertical profiles from GRIB2 output files (GFS, GALWEM) and
Section 2.5 presents methods to largely automate the process through the use of
Bash scripts, including one for processing of WRF output files. Appendix A
contains a list of the programs and scripts with very brief descriptions of their
functions. It also contains attached listings of the Python 3 scripts (files with
extension .py) and Bash scripts (extension .sh). The C program source codes
(extension .c) are described elsewhere (Cogan 2017).

2.1 Create a Small GRIB2 File from the Input File

The extraction of a sounding (i.e., vertical profiles of meteorological variables from
one geographical location for one model time) from a GRIB2 output file employs
the wgrib2 program developed at NOAA, which is described in some detail at

https://www.metoffice.gov.uk/%20research/modelling-systems/unified-model
https://www.metoffice.gov.uk/%20research/modelling-systems/unified-model

Approved for public release; distribution is unlimited.
3

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2 and included links. The
first step in the process is to create a very small GRIB2 (.grb2) file from the larger
global or regional GRIB2 file. As used here, wgrib2 with –new_grid in the
command line will generate a smaller grid whose grid points are interpolated from
the grid points of the parent grid. The values at the horizontal grid points of the
smaller (new) grid are computed by bilinear interpolation from the data at the points
of the larger grid, unless the user specifies another method (e.g., change to nearest
neighbor).

The command line for GFS and standard GALWEM output is as follows with
uppercase denoting generic names such as for input or output files (e.g.,
OUTPUT_FILE):

 wgrib2 INPUT_GRIB2 –set_grib_type same –new_grid_winds earth –new_grid latlon LON:X

 DIRECTION POINTS:DX(LON) LAT:Y DIRECTION POINTS:DY(LAT) SMALLER_GRIB2

where INPUT_GRIB2 is the input GRIB2 file, SMALLER_GRIB2 is the smaller
output GRIB2 file, LON and LAT are longitude and latitude in decimal degrees
specifying the lower-left corner of the output grid, X and Y DIRECTION POINTS
refer to the number of grid points in the x- and y-directions in the output grid, and
DX and DY refer to the distance between grid points in the output grid in the
respective directions in units of longitude and latitude. The distance between grid
points can be very small (e.g., 0.0001o).

In the command line, “same” for –set-grib_type results in a GRIB2 output file with
the same GRIB packing as the input file and “earth” for –new_grid_winds leads to
winds relative to the Earth versus to the grid or undefined. Use of “latlon” for
–new_grid results in a new grid interpolated from the parent (old) grid, where the
listed latitude and longitude are those for the new grid’s lower-left (approximately
southwest) corner.

The following is an example using a GFS input file for a location near the US East
Coast:

 wgrib2 gfs_4_20170404_000_012.grb2 –set_grib_type same –new_grid_winds earth –new_grid

 latlon -76.12:2:0.0001 39.10:2:0.0001 small_file.grb2

As is apparent in the example, the file small_file.grb2 has a two-by-two horizontal
grid 0.0001° apart, which translates to a separation on the order of 10 m (for latitude
~11.2 m and for longitude ~11.2 m within a few degrees of the equator decreasing
to ~5.6 m near 60°). Information on these and many other arguments used for
wgrib2 may be found via http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
long_cmd_list.html.

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2

Approved for public release; distribution is unlimited.
4

However, this wgrib2 command will not work for GALWEM files of the type used
for input to the artillery meteorological system, the Profiler Virtual Module (PVM).
Those GALWEM files have a different format with respect to the horizontal wind
components. Instead of the u and v data for a given data level being contiguous, all
the u and all the v data lines are in separate sections. As a consequence, additional
code is required to manipulate the input file and sort the u and v component values
so that they are in the proper order for processing by a similar wgrib2 command.
This more complicated procedure uses the Unix/Linux sed command along with a
Linux sort process. Details and examples may be found at http://www.
cpc.noaa.gov/products/wesley/wgrib2/new_grid.html. Information on sed may be
found at https://www.gnu.org/software/sed/manual/sed.html#Command_002dLine
-Options. The wgrib2 and other commands are as follows:

 wgrib2 GALWEM_PVM_INPUT |sed -e 's/:UGRD:/:UGRDa:/' -e 's/:VGRD:/:VGRDb:/' | \

 sort -t: -k3,3 -k5,8 -k4,4 | \

 wgrib2 GALWEM_PVM_INPUT -i -new_grid_winds earth -new_grid latlon LON:X DIRECTION

 POINTS:DX(LON) LAT:Y DIRECTION POINTS:DY(LAT) SMALLER_GRIB2

where many of the parameters for the wgrib2 commands are the same as before.
UGRD and VGRD (UGRDa and VGRDb) are the identifiers for the u and v wind
components in the input (modified input) file. GALWEM_PVM_INPUT is a
generic name for a GALWEM output file that is compatible with the PVM. The
sort command is standard in Linux. The parameter –i means read STDIN to get the
inventory (output from previous commands).

The following is an example for a location near the center of the US East Coast
using a GALWEM file downloaded from the relevant website for input to the
artillery meteorological system:

 wgrib2 GAL_test_NA_PVM.gr2 |sed -e 's/:UGRD:/:UGRDa:/' -e 's/:VGRD:/:VGRDb:/' | \

 sort -t: -k3,3 -k5,8 -k4,4 | \

 wgrib2 GAL_test_NA_MET.gr2 -i -new_grid_winds earth -new_grid latlon -77.3:2:0.0001

 38.55:2:0.0001 small_test.grb2

This procedure produces a very small grid with the dimensions noted previously
for the unmodified GRIB2 files (GFS and GALWEM), that is, 0.0001o or a distance
on the order of 10 m between grid points.

2.2 Extract Vertical Profile Data

Next, we extract a sounding from the small GRIB2 file. This process applies to both
GFS and GALWEM, and is accomplished using another wgrib2 procedure:

https://www.gnu.org/software/sed/manual/sed.html#Command_002dLine%20-Options
https://www.gnu.org/software/sed/manual/sed.html#Command_002dLine%20-Options

Approved for public release; distribution is unlimited.
5

 wgrib2 SMALLER_GRIB2 –v –s –lon LON LAT,

where SMALLER_GRIB2 is the output from the procedure of the previous section,
‒v refers to verbose output (includes the data values), ‒s refers to simple inventory
(listing of the output variables and parameters), and ‒lon produces data for the
nearest grid point to the stated longitude (LON) and latitude (LAT). With a grid
separation of approximately 10 m, the values are essentially for the stated
coordinates. This wgrib2 process produces a list of the variables, data values, and
other information for the output grid point and prints it on the screen. To save the
output, redirect the data to a separate file as shown in the example:

 wgrib2 small_file.grb2 –v –s –lon -76.41 39.10 >SiteA_profile.

The output is very verbose and contains additional variables not used here.
Table 1, which shows a few lines out of a total of over 400, indicates the complexity
of the output. Each line of output begins with the line number. Note that each line
is numbered followed by information on date and time (d=2018022812 in
yyyymmddhh format, where yyyy is the four-digit year, and mm, dd, and hh are the
two-digit month, day, and hour, respectively). The date and time field is followed
by the variable label, variable name, units, and so on. Longitude (lon) is in degrees
east and is always a positive number, from 0 to 360 (e.g., 90W or –90 is expressed
as 270). The number (after val=) at the end is the value of the variable.

Table 1 Sample of output from the wgrib2 process for extraction of a sounding from a
GRIB2 file. Only 9 lines of a total of greater than 400 lines are shown. Many lines have
variables that are not used for the user-defined meteorological soundings (e.g., icing severity).

141:29276:d=2018022812:HGT Geopotential Height [gpm]:450 mb:15 hour
fcst:: lon=283.880000,lat=39.970000,i=1,ix=1,iy=1,val=6348.67
142:29486:d=2018022812:TMP Temperature [K]:450 mb:15 hour
fcst:: lon=283.880000,lat=39.970000,i=1,ix=1,iy=1,val=247.584
143:29696:d=2018022812:RH Relative Humidity [%]:450 mb:15 hour
fcst:: lon=283.880000,lat=39.970000,i=1,ix=1,iy=1,val=26.6564
144:29906:d=2018022812:VVEL Vertical Velocity (Pressure) [Pa/s]:450 mb:15 hour
fcst:: lon=283.880000,lat=39.970000,i=1,ix=1,iy=1,val=0.0119045
145:30116:d=2018022812:UGRD U-Component of Wind [m/s]:450 mb:15 hour
fcst:: lon=283.880000,lat=39.970000,i=1,ix=1,iy=1,val=30.6803
146:30326:d=2018022812:VGRD V-Component of Wind [m/s]:450 mb:15 hour
fcst:: lon=283.880000,lat=39.970000,i=1,ix=1,iy=1,val=-6.00326
147:30536:d=2018022812:ABSV Absolute Vorticity [1/s]:450 mb:15 hour
fcst:: lon=283.880000,lat=39.970000,i=1,ix=1,iy=1,val=0.000162359
148:30746:d=2018022812:CLWMR Cloud Mixing Ratio [kg/kg]:450 mb:15 hour
fcst:: lon=283.880000,lat=39.970000,i=1,ix=1,iy=1,val=0
149:30956:d=2018022812:ICSEV Icing severity [non-dim]:450 mb:15 hour
fcst:: lon=283.880000,lat=39.970000,i=1,ix=1,iy=1,val=0

Approved for public release; distribution is unlimited.
6

2.3 Convert the Output File into a User-Friendly Form

The output from the wgrib2 process of the previous section is very wordy and not
readily useable for additional processing, such as to create a vertical profile with a
height structure similar to a computer meteorological message (METCM). A
Python 3 program (often called a Python 3 script) converts the output into a readily
useable and readable form. It reads in the aforementioned output file, extracts
appropriate information, and lists the extracted information in a readable tabular
form.

To run the script for the wgrib2 output from either a GFS or a GALWEM file, type
the program and input filenames:

 python3 gg_wg2.py INPUT_FILE,

where INPUT_FILE is a generic name for the file created by wgrib2 (Section 2.2)
and gg in the program name refers to ability to process either GFS or GALWEM
derived output, for example,

 python3 gg_wg2.py GAL_test,

which produces the output file GAL_test_out. Table 2 shows part of the output file
GAL_test_out including header information.

Table 2 Sample of output from the script gg_wg2.py. The header and the first 11 data lines
are shown. P is pressure, Hgt is height above mean sea level (MSL), Tmp is temperature, RH
is relative humidity, and U and V are the horizontal components of the wind (relative to
Earth). The units are as indicated.

6 hour forecast after model start at: 2018032800
Latitude: 37.000 Longitude: -77.000

P (hPa) Hgt (m) Tmp (K) RH (%) U (m/s) V (m/s)
 1019.9 25.0 277.00 94.6 1.00 2.20
 1013.0 81.0 277.32 93.5 2.20 3.90
 1000.0 186.0 277.46 89.2 4.50 6.10
 975.0 392.0 278.53 68.5 8.90 6.40
 950.0 605.0 279.32 73.7 10.70 4.10
 925.0 825.0 282.17 68.9 11.80 1.60
 900.0 1053.0 284.84 61.6 12.30 -0.60
 875.0 1289.0 283.63 68.1 12.60 -2.40
 850.0 1530.0 282.19 78.4 11.80 -3.40
 825.0 1776.0 280.58 87.3 10.40 -2.80
 800.0 2029.0 278.98 84.7 9.60 -1.80

Note that GFS output files from NOAA starting on 12 Coordinated Universal Time
(UTC) 11 May 2016 extend up to 1.0 hectoPascal (hPa), but before then the data
lines ended at 10 hPa. The aforementioned methods work for both. Also, data lines
in recent GALWEM files reach up to over a 50-km altitude. Pressure in the

Approved for public release; distribution is unlimited.
7

GALWEM output files is to the nearest hPa so that the value at the highest level
for, say, 53 km is listed as 0 hPa. To try to make the top level a little more realistic,
a pressure listed as 0 is arbitrarily changed to 0.5 hPa. Based on the US standard
atmosphere (1976) (https://www. engineeringtoolbox.com/standard-atmosphere-
d_604.html), the pressure at 50 km is about 0.80 hPa and at 60 km is about
0.22 hPa. Using the standard hypsometric formula to compute the pressure at the
highest output level (~53.1–53.2 km) for three soundings led to pressures of
0.5±0.1 hPa. However, for nearly all terrestrial applications (not space weather),
the minimum pressure is very likely to be greater than or equal to 1 hPa.

2.4 Compute Sounding with User-Defined Height or Pressure
Levels and Layers

ARL_MET-profile_Converter programs (https://github.com/usarmyresearchlab),
or similar ones available on request, may be used to produce a table of user-defined
levels or layers from the output sounding of Section 2.3. My previous work (Cogan
2015, 2017) and included references describe these C programs and their
application, and present samples of output. One version produces output for height
levels and layers above ground level, and a second provides output for pressure
levels and layers. The user provides a text file that contains the height or pressure
levels, respectively, which also serve as the vertical boundaries of the included
layers. A second set of programs was added later to output profiles of horizontal
wind components (u, v) instead of wind speed and direction. The second set
replaces the profile of virtual temperature with a profile of RH. Both sets of
programs are run in the same way.

The complete input and output directories are defined in the input_parameters file,
which is in the same directory as the C program executable. The complete path
starts from the base directory (e.g., /data/programs/input/) versus the relative path
(e.g., input/). The / mark at the end of the path name is required. For height-based
output, the file usrhgt_lvls contains the heights, which are also the bounding levels
for layer computations, starting with the surface through the highest level listed. It
is also in the same directory as the C program. Note that the first data line (listed as
line 0) in the layer output has values for the surface only. Consecutive lines have
weighted mean layer values. For the pressure-based output, the parameter file is
usrprs_lvls, also in the same directory as the C program. As with the height-based
output, the first line (line 0) has values for the surface only. Both GFS- and
GALWEM-derived soundings are processed using the same executable
(convertgfs) since the format of the input files is the same.

Approved for public release; distribution is unlimited.
8

The program is run using the following command line for height based output:

./convertgfs INPUT_FILE

and for pressure based output:

./convertprsgfs INPUT_FILE

For a height-based example, the command line could read

./convertgfs ETGB_2017081506_out

Note that some operating systems may not use the “./” before the executable name.

The output files have the following extensions appended to the input filename:
_USRLVL, _USRMSG, _USRLVL_P, and _USRMSG_P for height-based level
and layer profiles and pressure-based level and layer profiles, respectively.

For example,

 ./convertprsgfs ETGB_2017081506_out

produces the level and layer output files ETGB_2017081506_out_USRLVL_P and
ETGB_2017081506_out_USRMSG_P, respectively.

For output with columns of u and v wind components and RH use programs having
the same names, but with “1” appended to the end. For example, a sounding derived
from GFS output could use the following:

 ./convertprsgfs1 ETCB_2917081506_out

The output files have the number 1 appended to the end of the filenames. For
example ETGB_2017081506_out_USRLVL_P1 and ETGB_2017081506_out_
USRMSG_P1 for the level and layer pressure-based output, respectively. For
height-based output, the files would end in USRLVL1 and USRMSG1.
Tables 3–5 present examples of an extracted sounding, a user-defined sounding
based on height with wind speed and direction, and a similar sounding based on
pressure with u and v wind components.

Approved for public release; distribution is unlimited.
9

Table 3 Vertical profile (sounding) extracted from a GFS output file (0.25° horizontal grid)
for the 12-h forecast starting at 00 UTC on 17 August 2018 for the National Weather Service
site at Dulles Airport, Virginia. The first 10 data lines are shown. The variables and units are
as in Table 2.

12 hour forecast after model start at: 2018081700
Latitude: 38.980 Longitude: -77.460

 P (hPa) Hgt (m) Tmp (K) RH (%) U (m/s) V (m/s)
 1007.1 97.1 297.62 77.8 0.25 1.01
 1000.0 158.6 296.79 76.7 0.41 1.50
 975.0 380.0 296.20 74.7 2.16 2.30
 950.0 608.0 298.23 59.8 5.01 3.55
 925.0 842.2 297.38 56.5 7.16 3.83
 900.0 1081.7 295.78 56.0 7.74 3.60
 850.0 1576.4 291.87 59.4 7.44 2.69
 800.0 2093.4 287.64 64.3 7.03 1.75
 750.0 2635.4 283.74 67.6 7.98 2.36
 700.0 3207.2 280.33 65.7 9.67 3.31

Table 4 The sounding of Table 3 converted to a user-defined height structure. Virtual
temperature is computed for all levels, and then all variables are interpolated to the listed
heights. Wind direction and wind speed (Wind_Dir and Wind_Speed, respectively) and virtual
temperature (Virt_Temp) are displayed. The number shown for the date has the date and time
of the “0-h” forecast of the model and the time has the model forecast hour (i.e., 12). Elevation
is in m, Time in h, and Latitude and Longitude are in degrees. The ceiling and visibility in the
header are for potential future use and the values shown indicate missing data. At this time,
wind speed is in knots. The first nine data lines (0–8) are shown.

USER DEFINED LEVEL OUTPUT (MODEL)

Date: 2018081700 Time: 12 Latitude: 38.980 Longitude: -77.460
Elevation: 97.10 Ceiling: -999.0 Visibility: -999.0

Level Height Wind_Dir Wind_Speed Virt_Temp Pressure Temperature
 (m) (degrees) (kn) (K) (hPa) (K)

 0 0.0 193.9 2.02 300.33 1007.10 297.62
 1 200.0 217.0 4.87 298.91 984.30 296.42
 2 500.0 234.4 11.65 300.45 951.15 298.13
 3 1000.0 245.2 16.55 297.60 898.41 295.66
 4 1500.0 250.3 15.32 293.38 847.95 291.70
 5 2000.0 256.0 14.10 289.07 799.65 287.61
 6 2500.0 253.7 16.03 285.28 753.46 284.02
 7 3000.0 251.5 19.15 282.05 709.40 280.99
 8 3500.0 251.4 21.56 279.00 667.49 278.04

Approved for public release; distribution is unlimited.
10

Table 5 The sounding of Table 3 converted to a user-defined structure of pressure layers.
The values of the variables shown are weighted mean values for the listed layers as indicated
by the pressure midpoints except for the surface (level 0), which has the surface values. The u
and v wind components (U-wind and V-wind) and relative humidity (Rel-Humidity) are
displayed. The pressure (P) value shown is for the midpoint pressure of the layer (average of
boundary values) and the height value is the midpoint height (Midpt) of the layer, except for
“layer” 0, which has the surface values. The level and layer values of the variables other than
P are computed relative to ln (P). Also, the pressures at the height midpoints may be somewhat
different from the midpoint pressures displayed since pressure is not linear with height. The
first 16 data lines (0–15) are shown.

USER DEFINED PRESSURE LAYER OUTPUT (MODEL)

Date: 2018081700 Time: 12 Latitude: 38.980 Longitude: -77.460
Elevation: 97.10 Ceiling: -999.0 Visibility: -999.0

Layer Pres-Midpt Hgt-Midpt U-wind V-wind Rel-Humidity Temperature
 (hPa) (m) (m/s) (m/s) (%) (K)

 0 1007.1 0.0 0.25 1.01 77.80 297.62
 1 1003.5 30.8 0.33 1.25 77.25 297.21
 2 995.0 105.4 0.76 1.66 76.30 296.67
 3 982.5 216.1 1.63 2.06 75.30 296.38
 4 962.5 396.9 3.59 2.92 67.25 297.22
 5 937.5 628.0 6.09 3.69 58.15 297.80
 6 912.5 864.8 7.45 3.72 56.25 296.58
 7 887.5 1106.5 7.67 3.38 56.84 294.82
 8 862.5 1353.9 7.52 2.92 58.54 292.86
 9 837.5 1606.6 7.34 2.46 60.61 290.83
 10 812.5 1865.1 7.13 1.99 63.06 288.71
 11 787.5 2129.6 7.26 1.90 65.11 286.68
 12 762.5 2400.6 7.74 2.21 66.76 284.73
 13 737.5 2678.8 8.40 2.59 67.13 282.90
 14 712.5 2964.7 9.24 3.07 66.18 281.20
 15 687.5 3258.9 9.99 3.40 67.17 279.46

2.5 Combining Python 3 Scripts and C programs using Bash
Scripts

The several scripts and programs may be combined via Bash scripts that also allow
the user to enter needed parameters such as filenames and whether the output is to
go to a separate file or is appended to a file for later processing. Appendix B
contains flowcharts for the several Bash scripts as well as a generalized chart for
the complete set of Bash scripts when used as a single package from extraction of
soundings to generation of tables of basic statistics.

2.5.1 Processing GFS or GALWEM Output Files

A Bash script combines the Python 3 and C programs for processing GFS or
GALWEM output, and allows the user to optionally run the complete set of
programs or skip the last part that generates soundings with user-defined structures
and only save the sounding extracted from the GFS or GALWEM output (e.g.,

Approved for public release; distribution is unlimited.
11

Table 3). In the current version, the user is prompted to input several input
parameters such as the input filename and location’s latitude and longitude.

The script for processing GRIB2 output is run by entering its name:

./wgrb2.sh

The first item entered is the name of the input file (GFS or GALWEM), the second
is whether the input is the artillery meteorological system compatible GALWEM
file, and the third is the name of the output file without extensions. The output
filenames follow the same convention as for Section 2.3, that is, “_out” is added to
the user-defined filename. The soundings produced with a user-defined height or
pressure structure have filenames that follow the convention of Section 2.4, that is,
extended with, for example, “_USRLVL”, “USRMSG_P, “USRLVL_P1”, and so
on. Other items requested of the user include the bounding latitudes and longitudes,
which, as noted previously, can have a spacing of 0.0001° or about 10 m, whether
output should include wind speed and direction or u and v wind components, and
the input and output directories (can be the same) for the external C programs for
generation of profiles for user-specified height or pressure levels and layers. The
user can choose default values for some of the other parameters or they may be
entered as appropriate. The location latitude and longitude are in decimal
degrees (e.g., 45.26) and have to be within the bounds –90° < latitude <90° and
–180° ≤ longitude ≤ 180°, respectively. The user has the options of skipping the
computation of user-defined profiles and saving only the extracted profile as noted
previously, or generating them based on height, pressure, or both height and
pressure in separate files.

2.5.2 Processing WRF Output Files

A separate Bash script combines a National Center for Atmospheric Research
Common Language (NCL) script (Reen 2017) and the C programs for processing
WRF output, and allows the user to optionally run the complete set of programs or
skip the generation of user-defined vertical profiles and only save the extracted
sounding. The data lines in the extracted sounding are at model output pressure
levels. The user is prompted to input several input parameters such as the input
filename and location’s latitude and longitude. Other parameters needed for the
NCL program include a string containing the model date and time of the output file
in a specified format (i.e., yyyy-mm-dd_hh:mm:ss, where, for example, a specific
date and time could be 2018-08-25_12:00:00).

The script is run by entering its name:

 ./wrf_extract.sh

Approved for public release; distribution is unlimited.
12

The user is prompted for several options not provided via the other Bash scripts.
They include, for example, whether to use latitude and longitude or to use x and y
grid indices. Normally latitude and longitude are chosen. Another option is the
method for interpolating, or not, between grid points for the specified location. The
methods include nearest grid point (no interpolation), inverse distance weighting,
and bilinear. For consistency with the wgrib2 default method, select bilinear. The
included C programs generate soundings at user-defined height or pressure levels
and layers defined by those levels. Parameters for the C program include the
complete input and output paths for the input and output files, respectively, and the
user-defined list of heights or pressure levels. The user is prompted for the paths,
but the user-defined heights or pressures are in a parameter file as noted in
Section 2.4 (e.g., “usrhgt_lvls”). A complete path starts from the base directory.
For example, a user running a program from the program_files directory would
enter /data/user/program_files/input/, not the relative path input/. As with
soundings extracted from a GRIB2 output file, the filenames follow the same
convention as for Section 2.3, that is, “_out” is added to the user-defined filename.
The same holds for soundings produced with a user-defined height or pressure
structure, that is, they have filename extensions that follow the convention of
Section 2.4 (e.g., “_USRMSG1”, “USRMSG_P, “USRMSG_P1”).

2.5.3 Processing RAOB Data

The Bash script raob.sh produces a sounding for user-defined height or pressure
levels and layers from RAOB data using the included C programs. The output
soundings may contain either wind speed, wind direction, and virtual temperature
(Tv) or u and v wind components and RH.

The script is run by entering its name:

 ./raob.sh

The script prompts the user for input information such as input filename; source of
the data, which at this time is either the U of Wyoming weather website or the
NOAA archive website (http://weather.uwyo.edu/upperair/sounding.html or
https://ruc.noaa.gov/raobs/, respectively); whether output should have wind speed
and direction (and Tv) or u and v wind components (and RH); and the full input and
output paths for the C program input and output files. The format of the output
soundings and the naming convention are the same as presented in Section 2.4.

http://weather.uwyo.edu/upperair/sounding.html
https://ruc.noaa.gov/raobs/

Approved for public release; distribution is unlimited.
13

3. Statistics of Differences Between Vertical Profiles

The following Bash scripts run Python 3 scripts that compute 1) the differences by
variable and data line (i.e., height or pressure level or layer) between user-defined
vertical profiles from any two sources and calculate basic statistics by variable over
all data lines, and 2) statistics by variable and data line over multiple tables of the
differences. An example could be the root-mean-square error (RMSE) (or root-
mean-square difference) of temperature at 1500 m (or 850 hPa) over, say, 20 tables
of differences, where each table is the result of the respective comparison between
two soundings. For this example, the sample size would be 20 for temperature at
1500 m (or 850 hPa). Flowcharts for the following Bash scripts are found in
Appendix B along with the Bash scripts of Section 2.5 plus the chart for the entire
package from extraction of soundings to generation of statistics.

3.1 Computation of Differences

The Bash script prof_compare.sh computes the differences between two user-
defined soundings that were generated using wgrb2.sh, wrf_extract.sh, or raob.sh.
The height or pressure structure for both must be based on the same usrhgt_lvls or
usrprs_lvls parameter file (see Section 2.4). The script asks for the input filenames;
a character that indicates whether the input files are height or pressure based;
another character for whether 1) wind speed and direction and Tv or 2) u and v wind
components and RH should be in the output file; and if the output is to be written
as a single file for each comparison or appended to a file that may contain multiple
comparisons. For pressure-based input soundings, the script also asks if the user
wants to manually enter a baseline pressure that normally is a user-input pressure
from the usrprs_lvls list of pressure levels that equals or is less than the highest
pressure (lowest pressure level) that is expected to be encountered in the input files.
If yes, then the pressure in hectopascals is entered. If the user-entered value is
higher than the highest common pressure for both input soundings, then the highest
common value is selected. If no, the script uses the highest pressure common to
both soundings. To run the program, enter the name of the script:

 ./prof_compare.sh

The output filename for a single file is currently Diff:INPUT_FILE1-
INPUT_FILE2 indicating that values from the second input file are subtracted from
the respective ones from the first file. An example could be Diff:WRF1_
2018052512_USRMSG-R_2018052512_USRMSG for an output “sounding” of
layer values from a WRF integration compared with a coincident RAOB. The
output file includes the mean, median, standard deviation (SD), and RMSE of the

Approved for public release; distribution is unlimited.
14

values for each variable over all heights or pressures (i.e., over the entire column).
For this report, the term “error” in RMSE refers to the difference between
respective values from the two input soundings. If appended, the output goes to a
file named diff_profiles (default name).

The included Python 3 scripts may be run separately, that is, prof_compare_height.
py, prof_compare_baseprs.py, or prof_compare_pressure.py. The script for height-
based input is run by entering the script name followed by the two input filenames
and two characters, plus an optional character:

 python3 prof_compare_height.py INPUT_FILE1 INPUT_FILE2 Y W -v

where INPUT_FILE1 and INPUT_FILE2 are the input files from which the
differences are computed, Y is a character that tells the program to append (a) the
output or write (w) to its own file, and W is a character that directs the script to
compute and output differences in vector wind speed (v) instead of relative
humidity (any other character) from input soundings with horizontal (u, v) wind
components and RH. If the input soundings have wind speed and direction (and Tv)
the script ignores W without producing an error message. The character for W may
be omitted, but in that case the script defaults to keeping RH and not computing
vector wind speed differences. The two files must have the same height intervals
(used the same usrhgt_lvls file noted in Section 2.4 to set up the height structure).
The –v is optional and represents the argument –verbosity that if “true” means
something will be displayed on the screen, in this case, the command-line input
(e.g., the filenames). For information on usage of the script, type –h (--help) after
the script name (thereafter the script will end). Details and some examples of the
use of –v and –h may be found at, for example, https://docs.python.org/3/howto/
rgparse.html#id1 and included links. The following is an example of use of the
script:

 python3 prof_compare_height.py WRF1_2018052512_USRLVL R_2018052512_USRLVL w n -v

where each difference value is from the WRF-derived, height-based sounding less
that from the RAOB sounding, the output goes to a separate file named Diff:
WRF1_2018052512_USRLVL-R_2018052512_USRLVL, and since the input
files have wind speed and direction, the character with respect to vector wind speed
is ignored. If the output is appended (Y = a), it goes to the file diff_profiles. If a
character other than an “a” or “w” is entered, an error message is printed and the
script exits. In this example, –v is used and the names of the input files and the
characters w (write to a single file) and n (do not replace RH differences) are printed
to screen with an explanation of their meaning.

https://docs.python.org/3/howto/%20rgparse.html#id1
https://docs.python.org/3/howto/%20rgparse.html#id1

Approved for public release; distribution is unlimited.
15

There are two Python 3 scripts for pressure, one with and one without a user-entered
maximum allowable pressure (lowest pressure level). Since the pressure at the
surface can vary from day to day for the same location, and vary considerably
between multiple locations, the user can either enter a pressure value that represents
the lowest user-defined pressure level (highest user-defined pressure) or let the
program select the lowest pressure level (highest pressure). The procedure for
running the script with user input of the highest pressure is as follows:

 python3 prof_compare_baseprs.py INPUT_FILE1 INPUT_FILE2 PPP Y W -v

where INPUT_FILE1 and INPUT_FILE2 are the input files from which the
differences are computed, PPP is the lowest pressure level (highest pressure) in
hectopascals (or mb), Y is a character that tells the script to append (a) the output
or write (w) to its own file, and W is a character to direct the script to compute and
output vector wind speed differences (v) instead of RH differences (any other
character) as with prof_compare_height.py when the input files contain the
horizontal wind components. The argument –v is optional, and if used additional
information is printed to the screen, as noted previously. The value of PPP
normally should be the lowest user chosen pressure level (highest user-chosen
pressure) in the file usrprs_lvls (Section 2.4) that is common to both input
soundings for a single comparison, or all input soundings for two or more appended
comparisons. As before, if the input soundings have wind speed and direction and
Tv, the script ignores W. The parameter W does not determine whether or not the
output has differences in the horizontal wind components or wind speed and
direction; that is determined by the type of input.

The following is an example:

 python3 prof_compare_baseprs.py WRF1_2018052512_USRLVL_P R_2018052512_USRLVL_P 925 w n

where the input files beginning with WRF1 and R (RAOB) files are based on
pressure levels, 925 is the highest common user-defined pressure in hectopascals
selected from the file usrprs_lvls, w indicates the output is written to a single file
and not appended, and although n means do not compute and output vector wind
speed differences it is ignored since the input files have wind speed and direction.
The verbosity parameter (–v) is not used in this example.

The second script to compute differences using pressure-based input files lets the
software select the highest pressure (lowest pressure level). For this version the
command line is as follows:

 python3 prof_compare_pressure.py INPUT_FILE1 INPUT_FILE2 Y W -v

Approved for public release; distribution is unlimited.
16

where, as before, INPUT_FILE1 and INPUT_FILE2 are the input files from which
the differences are computed, Y is a character that tells the program to append (a)
the output or write (w) to its own file, W indicates whether or not to compute and
output vector wind speed differences, and –v is the optional verbosity argument, as
noted previously. An example is as follows:

 python3 prof_compare_pressure.py WRF1_2018052512_USRMSG1 R_2018052512_USRMSG1 a v -v

where both input files have height based layers, the output is appended to
diff_profiles, and since the input soundings have wind components the last
parameter (v) means that vector wind speed differences replace RH differences in
the output. Here –v is used and the names of the input files and the parameters a
(append) and v (compute and output vector wind speed differences) are printed to
screen with an explanation of their meaning.

As noted in Section 2.4, the output from the C programs may have wind
components and RH instead of wind speed, wind direction, and Tv. However, both
the height- and pressure-based programs handle either type of input file. The Bash
script prof_compare.sh directs the input to the correct version of the Python 3 script
for height or pressure depending on user responses to the several requests for
information. To avoid appending difference tables from both height- and pressure-
based versions, or wind components and wind speed and direction output, the user
should copy the “final” set of difference tables to a file with a different name (e.g.,
copy diff_profiles to diff_profiles_hgt-values). The Bash script will ask whether or
not the user is starting a new set. If yes, then the current append file is deleted if it
has the same name. Table 6 presents a sample difference table computed from files
based on pressure levels along with the statistics for each column of differences.
Note that if the parameter W was set to v, the column with Rel_Humidity (RH
difference) would be replaced by a column with Vector_W-spd (vector wind speed
difference). Table 7 shows an example with Vector_W-spd output.

Approved for public release; distribution is unlimited.
17

Table 6 A difference table based on pressure level input files, plus basic statistics, for the
input files listed in the first header line. The differences were between soundings based on
pressure levels that contained wind components and RH. The first 20 and last 5 data lines are
shown, plus the column statistics.

Compared output from fintest/BNA/BNA_GFS_2018-05-08_12_out_USRLVL_P1 and
fintest/BNA/R_BNA_2018050812_USRLVL_P1
Difference values for listed variables in diff_profiles
Number of data levels 68
 Level Pressure Height U-wind V-wind Rel-Humidity Temperature Prs(not_diff)
 (hPa) (m) (m/s) (m/s) (%) (K) (hPa)
 0 0.0 20.1 2.57 -0.96 9.26 -1.13 950.00
 1 0.0 19.4 0.94 -1.60 -1.00 -0.73 925.00
 2 0.0 18.6 0.72 0.00 10.46 -0.98 900.00
 3 0.0 18.5 -0.80 0.45 0.23 -0.40 875.00
 4 0.0 18.1 -2.45 0.08 -12.20 0.27 850.00
 5 0.0 18.2 -2.03 -0.24 -27.74 1.14 825.00
 6 0.0 19.3 -0.51 -1.02 1.38 0.74 800.00
 7 0.0 18.7 -0.70 -0.24 9.94 -0.14 775.00
 8 0.0 18.8 -0.99 0.30 4.80 -0.26 750.00
 9 0.0 18.6 0.00 -1.19 -1.38 0.00 725.00
 10 0.0 19.3 1.42 -2.06 0.60 0.24 700.00
 11 0.0 19.0 1.01 -1.10 -1.01 -0.11 675.00
 12 0.0 22.0 0.71 -0.12 -3.81 -0.04 650.00
 13 0.0 20.9 0.05 1.56 -12.65 0.66 625.00
 14 0.0 22.6 0.00 2.55 -10.49 0.39 600.00
 15 0.0 23.1 1.78 2.40 5.05 -0.34 575.00
 16 0.0 26.3 2.94 3.12 1.67 -0.28 550.00
 17 0.0 24.8 0.40 2.43 1.65 -0.33 525.00
 18 0.0 23.2 -1.36 2.32 1.20 -0.36 500.00
 19 0.0 21.1 3.06 1.21 1.76 -0.46 475.00
.
.
.
.

 63 0.0 6.7 6.92 1.79 0.30 -0.86 30.00
 64 0.0 9.2 3.44 -3.22 0.03 0.38 25.00
 65 0.0 -0.1 -0.85 6.60 -0.30 -1.26 20.00
 66 0.0 5.1 0.45 -0.37 -0.47 0.65 15.00
 67 0.0 -9.3 0.45 3.18 -0.70 -0.36 10.00

Column Statistics
Mean 0.0 16.0 -0.07 0.45 11.34 -0.01
Median 0.0 18.3 0.03 0.64 1.79 -0.04
Std Dev 0.0 6.8 2.49 2.21 18.86 0.90
RMSE 0.0 17.3 2.47 2.24 21.89 0.89

Approved for public release; distribution is unlimited.
18

Table 7 A difference table based on height layer input files, plus basic statistics, for the
input files listed in the first header line. The differences were between soundings from Tucson
(TUS), Arizona, based on height levels that contained wind components and RH, and where
the column for RH differences was replaced with one for vector wind speed differences
(Vector_W-spd). A WRF derived sounding was compared with that from the coincident
RAOB. The first 12 and last 3 data lines are shown, plus the column statistics.

Compared output from fintest/TUS/TUS_WRF_2016042900_0km_USRMSG1 and
fintest/TUS/R_TUS_2016042900_USRMSG1
Difference values for listed variables in diff_profiles
Number of data levels 26
Layer Height Pressure U-wind V-wind Vector_W-spd Temperature Hgt(not_diff)
 (m) (hPa) (m/s) (m/s) (m/s) (K) (m)
 0 0.0 3.0 5.33 0.85 5.40 -0.66 0.00
 1 0.0 2.7 2.55 2.37 3.48 -1.03 100.00
 2 0.0 2.6 1.44 2.83 3.18 -0.65 350.00
 3 0.0 2.5 2.08 1.48 2.55 -0.82 750.00
 4 0.0 2.2 1.84 -1.67 2.48 -0.90 1250.00
 5 0.0 1.9 2.27 -2.07 3.07 -1.22 1750.00
 6 0.0 1.4 1.64 0.30 1.67 -1.05 2250.00
 7 0.0 1.1 0.22 -1.30 1.32 -0.31 2750.00
 8 0.0 0.9 3.58 -1.87 4.04 0.37 3250.00
 9 0.0 1.0 7.20 -1.63 7.38 1.34 3750.00
 10 0.0 1.1 7.53 -0.85 7.58 2.12 4250.00
 11 0.0 1.3 8.64 -1.39 8.75 2.50 4750.00
.
.
.
.
 23 0.0 0.4 1.44 -4.74 4.95 -0.72 16500.00
 24 0.0 0.2 4.44 -3.06 5.39 -1.89 17500.00
 25 0.0 0.0 -3.00 -2.70 4.04 -1.27 18500.00

Column Statistics
Mean 0.0 1.38 2.47 -1.95 5.23 -0.02
Median 0.0 1.34 2.17 -1.65 5.17 -0.48
Std Dev 0.0 0.84 3.39 3.66 2.60 1.40
RMSE 0.0 1.60 4.14 4.08 5.81 1.37

The script, duplichk.py, is used to detect duplicated files in the file with appended
tables of differences. It compares the path and filenames in the first header line of
each appended table and, if a duplicate is found, prints those names and the number
of duplicates on the screen. To run this script, enter its name as follows:

 python3 duplichk.py

The script queries the user for the name of the file to be checked. For example, if
the file diff_profiles_test is to be checked the user enters its name after the query
“Enter name of file to check for duplication:”. Table 8 shows an example for TUS
on 29 April 2016 at 00 UTC.

Approved for public release; distribution is unlimited.
19

Table 8 Sample screen display from duplichk.py. The first line is the query to the user and
the entered name of the file to be checked. In this example one file was duplicated one time. If
the same file is duplicated more than once, then the line after “Table ID” will be repeated (e.g.,
if duplicated three times, the same line is repeated three times).

Enter name of file to check for duplication: diff_profiles_TUS

Starting search for duplicate cases (1 case = 1 site at 1
date/time).

 Difference tables duplicated
 Table ID
/data/pyfiles/fintest/TUS/TUS_WRF_2016042900_100N_USRLVL-
/data/pyfiles/fintest/TUS/R_TUS_2016042900_USRLVL

Number of duplicates: 1

END OF DUPLICATION CHECK

3.2 Statistics by Variable and Data Line

The Bash script profstats.sh is used to generate basic statistics of the differences by
variable and data line over all the appended difference tables in diff_profiles (or
other filename for the appended output). The statistics computed at this time are
mean, median, SD, and RMSE. Here, error refers to the difference relative to the
“truth” sounding, which is often a RAOB, but could be, for example, a sounding
derived from another configuration of the model. In addition, the number of
samples used in the computation of the aforementioned statistics for each data line
appears in the last column of each of the output statistics tables. The script asks for
the input filename (appended file from prof_compare.sh), a character that indicates
whether the files are height or pressure based, and a string that tells the script
whether or not to convert input differences into their absolute values. This script in
turn calls profstats.py. The output is a file named profile_stats or profile_stats_abs
if absolute values are used. To run the Bash script, type the name as follows:

 ./profstats.sh

and enter the information as requested. Note that the previous copy of the output
file is deleted if the user indicates it’s the first use of the output file so as to avoid
appending multiple tables for each statistic.

The Python 3 script may be run separately as follows:

 python3 profstats.py INPUT_FILE X Y -v

where INPUT_FILE is the input file that holds the appended difference tables
(default name is diff_profiles); X is either h or p for height- or pressure-based input,
respectively; and Y indicates whether to convert the differences in the input tables

Approved for public release; distribution is unlimited.
20

to absolute values (for absolute values Y = abs). The optional argument –v operates
as described in Section 3.1. The current program processes both forms of output,
that is, differences in wind components and RH (or vector wind speed) or
differences in wind speed and direction and Tv. The output filename currently is
profile_stats, except that for absolute value output the name is profile_stats_abs.
Since each table for each statistic such as mean or standard deviation is appended
to the same file, a new run will continue to append, leaving a file with multiple sets
of tables for the four statistics. The user should delete the file profile_stats or
profile_stats_abs (or other name if not the default) before starting a new run to
produce a set of tables as a separate file. To save separate files for different runs,
copy the completed set to another file (e.g., profile_stats01) and then delete
profile_stats or profile_stats_abs. The Bash script will delete the file if the user
indicates it is the first use of the output file. Table 9 shows a sample of the output
arrays or tables derived from a diff_profiles file produced via prof_compare.sh.

Table 9 Tables of basic statistics (mean, median, SD, and RMSE) for the difference tables
of the diff_profiles append file. For brevity, only the first 10 data lines are shown for each
statistic, except that the last table (RMSE) has some additional lines that show the change
from 6 samples to 2.

Statistics for profile differences by variable and data line.

Mean values
 Level Pressure Height U-wind V-wind Rel-Humidity Temperature Prs(not_diff) Samples
 (hPa) (m) (m/s) (m/s) (%) (K) (hPa)
 0 0 5.93 1.61 -0.58 3.74 -0.50 950.0 6
 1 0 5.47 0.63 -1.26 -5.43 -0.30 925.0 6
 2 0 5.00 0.99 -0.16 4.07 -0.54 900.0 6
 3 0 5.27 0.18 0.13 -0.32 -0.29 875.0 6
 4 0 4.70 -1.05 0.00 -9.23 0.13 850.0 6
 5 0 4.73 -1.08 0.20 -21.75 0.74 825.0 6
 6 0 5.57 -0.14 -0.04 -4.61 0.72 800.0 6
 7 0 5.27 -0.34 0.51 2.01 0.17 775.0 6
 8 0 5.60 -0.62 0.61 2.77 -0.01 750.0 6
 9 0 5.50 -0.01 -0.50 -0.23 0.03 725.0 6

Median values
 Level Pressure Height U-wind V-wind Rel-Humidity Temperature Prs(not_diff) Samples
 (hPa) (m) (m/s) (m/s) (%) (K) (hPa)
 0 0 9.55 2.42 -0.57 5.61 -0.34 950.0 6
 1 0 9.20 0.94 -1.61 -8.15 -0.20 925.0 6
 2 0 8.75 0.95 -0.24 1.51 -0.49 900.0 6
 3 0 9.25 -0.14 0.19 -0.47 -0.25 875.0 6
 4 0 8.40 -1.23 -0.04 -11.18 0.13 850.0 6
 5 0 9.05 -0.96 0.29 -24.14 0.89 825.0 6
 6 0 9.65 -0.21 -0.51 -0.28 0.97 800.0 6
 7 0 9.35 -0.51 0.56 3.61 0.26 775.0 6
 8 0 9.40 -0.92 0.76 2.71 -0.01 750.0 6
 9 0 9.30 -0.01 -0.76 -0.35 0.04 725.0 6

Approved for public release; distribution is unlimited.
21

Table 9 Tables of basic statistics (mean, median, SD, and RMSE) for the difference tables
of the diff_profiles append file. For brevity, only the first 10 data lines are shown for each
statistic, except that the last table (RMSE) has some additional lines that show the change
from 6 samples to 2 (continued).

Statistics for profile differences by variable and data line.

Standard Deviation values
 Level Pressure Height U-wind V-wind Rel-Humidity Temperature Prs(not_diff) Samples
 (hPa) (m) (m/s) (m/s) (%) (K) (hPa)
 0 0 10.28 1.36 0.25 14.21 0.44 950.0 6
 1 0 10.23 0.59 0.75 11.27 0.34 925.0 6
 2 0 10.11 1.22 0.71 4.36 0.24 900.0 6
 3 0 10.02 1.48 0.75 3.57 0.11 875.0 6
 4 0 10.00 1.05 0.09 4.95 0.08 850.0 6
 5 0 10.27 0.61 2.48 10.77 0.38 825.0 6
 6 0 10.24 1.13 0.95 7.44 0.66 800.0 6
 7 0 10.44 0.76 0.85 5.95 0.66 775.0 6
 8 0 10.38 0.52 0.62 1.23 0.70 750.0 6
 9 0 11.20 0.73 0.79 6.02 0.93 725.0 6

Root Mean Square Error values
 Level Pressure Height U-wind V-wind Rel-Humidity Temperature Prs(not_diff) Samples
 (hPa) (m) (m/s) (m/s) (%) (K) (hPa)
 0 0 11.87 2.11 0.63 14.69 0.67 950.0 6
 1 0 11.60 0.86 1.47 12.51 0.45 925.0 6
 2 0 11.28 1.57 0.73 5.97 0.59 900.0 6
 3 0 11.32 1.49 0.77 3.58 0.31 875.0 6
 4 0 11.05 1.48 0.09 10.48 0.15 850.0 6
 5 0 11.31 1.24 2.48 24.27 0.83 825.0 6
 6 0 11.66 1.13 0.95 8.76 0.98 800.0 6
 7 0 11.69 0.83 0.99 6.28 0.68 775.0 6
 8 0 11.79 0.81 0.87 3.03 0.70 750.0 6
 9 0 12.47 0.73 0.94 6.03 0.93 725.0 6
.
.
.
 55 0 10.83 2.52 3.82 0.57 1.64 70.0 6
 56 0 11.40 2.55 3.10 0.73 1.87 65.0 6
 57 0 13.88 3.60 2.17 0.76 0.26 60.0 6
 58 0 11.69 3.74 5.50 1.12 0.67 55.0 6
 59 0 8.20 6.22 0.55 1.52 1.22 50.0 2
 60 0 9.53 6.14 0.81 1.23 1.46 45.0 2
 61 0 24.22 0.90 4.56 1.29 1.07 40.0 2
 62 0 21.59 1.47 2.37 0.83 1.31 35.0 2
 63 0 4.74 7.36 1.44 0.47 0.90 30.0 2

4. Conclusion

A set of Python 3 and Bash scripts are presented that together may be used to extract
vertical profiles (aka soundings) of meteorological variables from meteorological
model output files in GRIB2 (GFS and GALWEM) and netCDF (WRF) formats.
The NOAA set of programs, known as wgrib2, is used in the extraction of vertical
profiles from the GRIB2 files, and an NCL script provided by Reen (2017) is used
in the extraction of profiles from the netCDF files. A set of C programs mostly
developed earlier converts those profiles into soundings with user-defined height
or pressure structures. Output from these programs may be in terms of height or
pressure levels, or height or pressure layers defined by those levels. In turn, Python
3 scripts produce tables of the differences of the variables by height or pressure
levels or layers. Another Python 3 script can generate basic statistics for each

Approved for public release; distribution is unlimited.
22

variable at each common height or pressure level or layer, if the output for similar
tables is appended to a single file, where similar refers to the same user-defined
structure though not necessarily the same number of levels or layers. Many of these
Python 3 scripts and C programs are called by Bash scripts that combine several of
the Python 3 scripts and C programs into a single entity.

The several scripts and programs may be found on ARL’s GitLab Sitcore site and
those may be made available on request. The listings of the Bash and Python 3
scripts are attached in Appendix A. The source code of many of the C programs
that generate wind speed and direction, and so on, output at user-defined levels and
layers are available via the US Army Research Laboratory open GitHub site
(https://github.com/ usarmyresearchlab) under the repository name
ARL_MET_profile_Converter; descriptions of the methods with input and output
samples may be found in my previous work (Cogan 2015, 2017).

https://github.com/%20usarmyresearchlab

Approved for public release; distribution is unlimited.
23

5. References

Cogan J. A generalized method for vertical profiles of mean layer values of
meteorological variables. Adelphi Laboratory Center (MD): Army Research
Laboratory (US); 2015. Report No.: ARL-TR-7434.

Cogan J. Evaluation of model-generated vertical profiles of meteorological
variables: method and initial results. Meteorol Appl. 2017;24:219–229.

Cuevas O, Chacon A, Cure M. Radiosonde campaign in Paranal Observatory 2011:
PWV measurement. Valparariso (Chile): AstroMeteorology group, Physics
and Astronomy Dept, Universidad de Valparaiso; 2011.

Dutsch ML. Evaluation of the WRF model based on observations made by
controlled meteorological balloons in the atmospheric boundary layer of
Svalbard. Bergen (Norway): Meteorologisk Institutt, Bergen; 2012.

Ingleby B, Isaksen L, Kral T, Haiden T, Dahoui M. Improved use of atmospheric
in situ data. In: ECMWF Newsletter. 2018;155:20–25.
doi:10.21957/cf724bi05s.

Kilpelainen T, Vihma T, Mannienen M, Sjoblom A, Jakobson E, Palo T, Maturilli
M. Modelling the vertical structure of the atmospheric boundary layer over
Arctic fjords in Svalbard. Q J R Meteorol Soc. 2012;138:1867–1883.

Reen B. Army Research Laboratory (US), Adelphi Laboratory Center, MD.
Personal communication, 2017.

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG,
Huang X-Y, Wang W, Powers JG. A description of the Advanced Research
WRF Version 3. Boulder (CO): National Center for Atmospheric Sciences;
2008. Report No.: NCAR/TN-475+STR.

Approved for public release; distribution is unlimited.
24

Additional Resources

In addition, the following websites provide information on aspects of model
evaluation and processing:

• http://www.emc.ncep.noaa.gov/gmb/STATS_vsdb/, verification website of
NCEP.

• https://www.ecmwf.int/en/forecasts/charts/catalogue/, verification website
of the ECMWF.

• http://apps.ecmwf.int/wmolcdnv/ at the ECMWF for worldwide
comparisons for deterministic forecasts.

• http://epsv.kishou.go.jp/EPSv/ at the JMA for comparisons of ensemble
forecasts.

• http://www.dtcenter.org/met/users/ and http://www.dtcenter.org/upp/users/
contain links to extensive user’s guides, tutorials, and other documentation
at the WRF DTC for their Model Evaluation Tool and Unified Post
Processing system for analysis of output and statistical evaluation. Similar
tools are available via NCEP.

http://www.emc.ncep.noaa.gov/gmb/STATS_vsdb/
https://www.ecmwf.int/en/forecasts/charts/catalogue/
http://apps.ecmwf.int/wmolcdnv/
http://epsv.kishou.go.jp/EPSv/
http://www.dtcenter.org/met/users/
http://www.dtcenter.org/upp/users/

Approved for public release; distribution is unlimited.
25

Appendix A. Programs and Scripts

Approved for public release; distribution is unlimited.
26

This appendix lists the several programs and scripts that produce vertical profiles
of meteorological variables (soundings) from numerical weather prediction (NWP)
model output and radiosonde observations (RAOBs). The listings of the Bash and
Python 3 scripts are attached alongside the respective script as text files (.txt
extension). The National Center for Atmospheric Research Common Language
(NCL) script also is attached. The basic C program listings (source files) may be
found on the US Army Research Laboratory GitHub site (https://github.com/
usarmyresearchlab) and are not repeated here. The changes noted to output, for
example, u and v wind components versus wind speed and direction, are in the
output routine only.

A-1 Bash Scripts

wgrb2.sh - extracts a "sounding" from a GFS or GALWEM output file and converts it to a
sounding with user height or pressure levels and layers. Includes options for the user.

wrf_extract.sh - extracts a sounding from a WRF output file and converts it to a sounding with

user height or pressure levels and layers. Includes options for the user. The included NCL
program was written by B Reen as were parts of this Bash script.

raob.sh - takes a radiosonde sounding from the University of Wyoming's weather website or

from the NOAA archive website and converts it to forms with user height or pressure
levels and layers. Includes options for the user.

prof_compare.sh - computes the differences between height or pressure based soundings from

different sources (e.g., between two models or a model and a raob) and generates a
table of differences by height or pressure level or layer. It includes the Python 3 scripts
prof_compare_height.py. for(1) height levels and layers, and (2)
prof_compare_pressure.py and prof_compare_baseprs.py for pressure levels and layers
(program or user selects highest pressure respectively). Basic statistics are computed
for each variable over all heights. Output may be appended to a single file for later
processing by profstats.sh

profstats.sh - computes basic statistics for a set of appended difference tables generated by

prof_compare.sh. The statistics (e.g., mean, standard deviation) are for each variable at
each level or layer over all the tables. For example, the mean value of temperature for
the 1000-1500m layer over all the appended difference tables. It handles all versions of
the output from prof_compare.sh. Also, it can compute the statistics for the absolute
values of the differences. It includes the profstats.py script.

A-2 Python 3 Scripts (or Programs)

gg_wg2.py - extracts a sounding from a GFS or a GALWEM output file and writes it in a user-
friendly format. At the maximum wind level and tropopause height RH is not in the
input file. Consequently RH was assumed to be 50% at those levels.

https://github.com/%20usarmyresearchlab
https://github.com/%20usarmyresearchlab

Approved for public release; distribution is unlimited.
27

prof_compare_height.py - computes the differences between 2 height based soundings from
different sources (e.g., between two models or a model and a raob) and generates a
table of differences by height level or layer. If the comparison is derived from soundings
having wind components the user can choose to compute and output vector wind
differences instead of RH differences. Basic statistics are computed for each variable
over all heights. Output may be appended to a single file for later processing by
profstats.py.

prof_compare_pressure.py - computes the differences between pressure based soundings from

different sources (e.g., between two models or a model and a raob) and generates a
table of differences by pressure level or layer. If the comparison is derived from
soundings having wind components the user can choose to compute and output vector
wind differences instead of RH differences. Basic statistics are computed for each
variable over all pressures. Output may be appended to a single file for later processing
by profstats.py.

prof_compare_baseprs.py - also computes the differences between pressure based soundings

from different sources (e.g., between two models or a model and a raob) and generates
a table of differences by pressure level or layer. However, the user chooses a lowest
pressure level (highest pressure) that is entered as a command line argument vs. having
the program determine that value. If the comparison is derived from soundings having
wind components the user can choose to compute and output vector wind differences
instead of RH differences. Basic statistics are computed for each variable over all
pressures. Output may be appended to a single file for later processing by profstats.py.

profstats.py - computes basic statistics for a set of appended difference tables generated by

prof_compare_*.py. The statistics (e.g., mean, standard deviation) are for each
variable at each level or layer over all the tables. For example, the mean value of
temperature for the 1000-1500m layer over all the appended difference tables. It
handles both versions of the output from prof_compare_*.py. Also, it can compute the
statistics for the absolute values of the differences. Here * indicates height, pressure, or
baseprs.

duplichk.py - checks the file of appended difference tables for duplicate tables.

A-3 NCL Script

extract_profile.ncl - written by B Reen (private communication) and is called from the Bash script
wrf_extract.sh. It extracts a sounding from a WRF output file given the user input
requested by wrf_extract.sh.

A-4 C Programs

The C programs have two versions, one for output of wind speed, wind direction,
and virtual temperature, and a second for output of u and v wind components and
relative humidity. The programs in the second set (e.g., wind components) are
identified by the number 1 at the end of the filename (e.g., convertgfs1 vs.
convertgfs). Only the first set is described here, since both use the same input and
parameter files, and are run the same way. The input_parameters file is produced

Approved for public release; distribution is unlimited.
28

using the wgrb2.sh script, but also may be generated manually if running one of the
C programs by itself. In that case, the user has to ensure that the complete input and
output paths are in the input_parameters file with the path ending with a “/” (e.g.,
/home/user/input-output_data/).

convertgfs - converts a sounding derived from GFS or GALWEM output into a form having user

defined height levels and layers defined by those levels. (Use convertgfs1 for u, v and
RH output.)

convertprsgfs - converts a sounding derived from GFS or GALWEM output into a form having user

defined pressure levels and layers defined by those levels. (Use convertprsgfs1 for u, v
and RH output.)

convertwrf - converts a sounding derived from WRF output into a form having user defined

height levels and layers defined by those levels. (Use convertwrf1 for u, v and RH
output.)

convertprswrf - converts a sounding derived from WRF output into a form having user defined

pressure levels and layers defined by those levels. (Use convertprswrf1 for u, v and RH
output.)

convertnoaa - converts a radiosonde observation sounding (RAOB) from the NOAA archive into a

form having user defined height levels and layers defined by those levels. (Use
convertnoaa1 for u, v and RH output.)

convertprsnoaa - converts a radiosonde observation sounding (RAOB) from the NOAA archive

into a form having user defined pressure levels and layers defined by those levels. (Use
convertprsnoaa1 for u, v and RH output.)

convertwyo - converts a radiosonde observation soundings (RAOB) from the U of Wyoming's

weatherwebsite into a form having user defined height levels and layers defined by
those levels. (Use convertwyo1 for u, v and RH output.)

convertprswyo - converts a radiosonde observation sounding (RAOB) from the U of

Wyoming'sweather website into a form having user defined pressure levels and layers
defined by those levels. (Use convertprswyo1 for u, v and RH output.)

Notes:

• The versions that output wind components (u, v) and relative humidity are
denoted with the number 1 at the end of the filename (e.g., convertprswyo1).

• The C programs require certain parameter files. One named
input_parameters is generated via the wgrb2.sh script. Two others provide
the vertical structure of the height or pressure level and layer output. They
are usrhgt_lvls and usrprs_lvls, respectively. Those can be modified by the
user for the needed height or pressure levels. The programs (height or
pressure based) will not run if the respective parameter file is missing.

Approved for public release; distribution is unlimited.
29

Appendix B. Flowcharts for the Bash Scripts

Approved for public release; distribution is unlimited.
30

This appendix contains a flowchart for the entire package of Bash scripts when
applied from extraction of soundings through the generation of statistics (Fig. B-1),
and for the several individual Bash scripts (Figs. B-2–B-6).

Fig. B-1 Flowchart of the set of Bash scripts when used as a single package from extraction
of soundings through generation of statistics for multiple sounding comparisons

Approved for public release; distribution is unlimited.
31

Fig. B-2 Flowchart of the raob.sh Bash script for conversion of a radiosonde sounding from
the University of Wyoming weather website or from the National Oceanic and Atmospheric
Agency’s (NOAA) radiosonde observation (RAOB) archive into user-defined height or
pressure level and layer vertical profiles of meteorological variables. The output profiles
include either wind speed and direction and virtual temperature (Tv) or horizontal wind
components (u, v) and relative humidity (RH).

Approved for public release; distribution is unlimited.
32

Fig. B-3 Flowchart of the wgrb2.sh Bash script for extraction of a sounding from a GRIB2
output file (Global Forecast System [GFS] or Global Air Land Weather Exploitation Model
[GALWEM]) and conversion into user-defined height or pressure level and layer vertical
profiles. The output profiles include either wind speed and direction and virtual temperature
(Tv) or horizontal wind components (u, v) and relative humidity (RH).

Approved for public release; distribution is unlimited.
33

Fig. B-4 Flowchart of the wrf_extract.sh Bash script for extraction of a sounding from a
netCDF output file (WRF) and conversion into user-defined height or pressure level and layer
vertical profiles of meteorological variables. The output profiles include either wind speed
and direction and virtual temperature (Tv) or horizontal wind components (u, v) and relative
humidity (RH).

Approved for public release; distribution is unlimited.
34

Fig. B-5 Flowchart of the prof_compare.sh Bash script for comparison of two soundings from
model and RAOB output or from two different models or model configurations. The output
may include differences in either wind speed and direction and virtual temperature (Tv) or
horizontal wind components (u, v) and relative humidity (RH). However, when the
comparison is derived from soundings having wind components, the user can choose to
compute and output vector wind differences instead of RH differences.

Approved for public release; distribution is unlimited.
35

Fig. B-6 Flowchart of the profstats.sh Bash script for generation of tables of basic statistics
such as mean and standard deviation by data line and variable. The user may choose to
compute the statistics for the absolute values of the differences computed using
prof_compare.sh.

Approved for public release; distribution is unlimited.
36

List of Symbols, Abbreviations, and Acronyms

NCEP National Center for Environmental Prediction

JMA Japan Meteorological Agency

RAOB radiosonde observation

DTC Developmental Test Center

ECMWF European Centre for Medium-Range Weather Forecasting

GALWEM Global Air Land Weather Exploitation Model

GFS Global Forecast System

LAT latitude

LON longitude

MET Model Evaluation Tools

NCL National Center for Atmospheric Research Common Language

NOAA National Oceanic and Atmospheric Agency

NWP numerical weather prediction

PVM Profiler Virtual Module

RH relative humidity

RMSE root-mean-square error

SD standard deviation

UTC Coordinated Universal Time

WRF Weather Research and Forecasting model

Approved for public release; distribution is unlimited.
37

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 ARL
 (PDF) RDRL CIE
 J COGAN

	List of Figures
	List of Tables
	1. Introduction
	2. Extraction and User Definition of Vertical Profiles from GFS, GALWEM, and WRF Output
	2.1 Create a Small GRIB2 File from the Input File
	2.2 Extract Vertical Profile Data
	2.3 Convert the Output File into a User-Friendly Form
	2.4 Compute Sounding with User-Defined Height or Pressure Levels and Layers
	2.5 Combining Python 3 Scripts and C programs using Bash Scripts
	2.5.1 Processing GFS or GALWEM Output Files
	2.5.2 Processing WRF Output Files
	2.5.3 Processing RAOB Data

	3. Statistics of Differences Between Vertical Profiles
	3.1 Computation of Differences
	3.2 Statistics by Variable and Data Line

	4. Conclusion
	5. References
	Additional Resources
	Appendix A. Programs and Scripts
	A-1 Bash Scripts
	A-2 Python 3 Scripts (or Programs)
	A-3 NCL Script
	A-4 C Programs

	Appendix B. Flowcharts for the Bash Scripts
	List of Symbols, Abbreviations, and Acronyms

#!/bin/env python3

#Name: duplichk.py

#This python3 script checks the appended output from prof_compare.py

#for duplicate cases where each case is for 1 time at 1 site. An example

#of 1 case could be LMN_2018031512 (12 UTC on 15 March 2018 at Lamont, OK).

#

import re

import sys

from collections import defaultdict

import collections

multi_list=[] #Set up list for duplicated and not identifiers. Defining here makes it a global variable vs. local.

def find_duplicates(input_list):

 dup_list=[]

 ok_list=[]

 ok_set=set()

 x = str

 for x in input_list:

 if x not in ok_set: #Checking to find items not duplicated in set.

 ok_list.append(x)

 ok_set.add(x)

 else:

 dup_list.append(x) #If duplicated append to the dup_list.

 dup_list.sort()

 ok_list.sort()

 multi_list = [dup_list, ok_list]

 return multi_list

#End of definition

#The following line is omitted if using command line input.

file_name = input('\nEnter name of file to check for duplication: ')

print('\nStarting search for duplicate cases (1 case = 1 site at 1 date/time).\n')

#Use the following for command line input (sys_argv[1] replaces file_name).

#The open statement would be: with open(sys.argv[1], 'r') as f:

with open(file_name, 'r') as f:

 input_data = f.readlines()

#Generate a lists for header lines having the site and date/time.

current_list=[]

lin_list=[]

for currentline in input_data:

 testlist = currentline.split()

 if (len(testlist) > 0) and (testlist[0]=='Compared'):

 currentlin = re.sub('\n', '', currentline)

 lin_list = currentlin.split()

 lineitem = lin_list[3] + '-' + lin_list[5]

 current_list.append(lineitem)

length_curr = len(current_list)

#

#Find tables with same site and date/time (i.e., duplcates), if any.

#Note that indicies start with 0 so that the first line is denoted by line 0.

#

#Find the duplicates, if any, in the file (i.e., list of site-date/time identifiers).

#print('current_list ', current_list)

mlist=[]

mlist=find_duplicates(current_list)

#print('mlist ', mlist)

dup_list = mlist[0]

nodup_list = mlist[1]

OUTPUT section

#

if len(dup_list) == 0:

 print('\nNo duplicate lines found.')

else:

 print(' Difference tables duplicated')

 print(' Table ID ')

 for n in range(0, len(dup_list)):

 out_string = ' {0:140s} '.format(dup_list[n])

 print(out_string)

 print('\nNumber of duplicates: ', len(dup_list))

print('\nEND OF DUPLICATION CHECK\n')

;Name: extract_profile.ncl

;This ncl script extracts a vertical profile from a WRF output file.

;

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"

load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/contributed.ncl"

begin

 print("extract_profile: Code to extract a profile from an arbitrary time/place in WRF output")

; Amount to add to temperature in Kelvins to get temperature in Celsius

 k_to_c = -273.16

;

; The WRF ARW input file.

; This needs to have a ".nc" appended, so just do it.

 wrf_file_name = "./wrfout.nc"

 wrf_file = addfile(wrf_file_name,"r")

 print("Will read from WRF output file " + wrf_file_name)

 output_file_name = "wrf_profile"

; Determine spatiotemporal dimensions of file

 ;times = wrf_user_list_times(wrf_file) ; get times in the file

 times = wrf_user_getvar(wrf_file,"times",-1) ; get times in the file

 max_time_dim = dimsizes(times)-1 ; maximum extant index for time (since arrays are zero-based

 ; the total number of times in the file is max_time_dim+1

 ;Read initial temperature field just to get the dimensions

 temperature_c_ic = wrf_user_getvar(wrf_file,"tc",0) ; T in C

 ;Maximum extant index for spatial indices (since arrays are zero-based the total

 ;number of points in a given direction is max_?_dim+1)

 dims_temperature_c_ic = dimsizes(temperature_c_ic)

 max_x_dim = dims_temperature_c_ic(2)-1

 max_y_dim = dims_temperature_c_ic(1)-1

 max_z_dim = dims_temperature_c_ic(0)-1

 if(run_to_inform_user_of_options .eq. 1) then

 print("Available times in chosen WRF file:")

 print(" "+times)

 print("Model grid point in x-direction must be between 0 and "+max_x_dim+" inclusive.")

 print("Model grid point in y-direction must be between 0 and "+max_y_dim+" inclusive.")

 exit

 end if

; User command-line input determines: time_index_to_extract, x_index_to_extract, y_index_to_extract

; latitude_to_extract, longitude_to_extract, position_specifier_type, interp_option

; Make sure user choice of time is valid

 if((time_index_to_extract .gt. (max_time_dim)).or.(time_index_to_extract .lt. 0)) then

 print("Invalid time index")

 exit

 end if

 print("User chose to extract time: " + times(time_index_to_extract) + " (0-based)")

 latitude_decimal_degrees = wrf_user_getvar(wrf_file,"lat",time_index_to_extract) ; Latitude (decimal degrees)

 longitude_decimal_degrees = wrf_user_getvar(wrf_file,"lon",time_index_to_extract) ; Longitude (decimal degrees)

 if(position_specifier_type.eq.1) then

 opt = True

 closest_ij_one_based = wrf_user_ll_to_ij(wrf_file,longitude_to_extract,latitude_to_extract,opt)

 closest_ij_zero_based = closest_ij_one_based - 1 ;Convert from 1-based to 0-based

 x_index_to_extract = closest_ij_zero_based(0)

 y_index_to_extract = closest_ij_zero_based(1)

 if(interp_option.eq.0) then

 print("User chose to extract the closest point to latitude=" + latitude_to_extract + " longitude=" + longitude_to_extract)

 print("This point is: ")

 else if (interp_option.eq.1) then

 print("User chose to extract fields interpolated via inverse distance weight interpolation to latitude=" + latitude_to_extract + " longitude=" + longitude_to_extract)

 else if (interp_option.eq.2) then

 print("User chose to extract fields interpolated via bilinear interpolation to latitude=" + latitude_to_extract + " longitude=" + longitude_to_extract)

 else

 print("Unknown choice of interpolation option = " + interp_option)

 exit

 end if

 end if

 end if

 else if (position_specifier_type.eq.2) then

 print("User chose to extract point: ")

 else

 print("Unknown choice of position_specifier_type = " + position_specifier_type)

 exit

 end if

 end if

 if((x_index_to_extract .gt. max_x_dim).or.(x_index_to_extract .lt. 0)) then

 if(position_specifier_type.eq.1) then

 print("User chose latitude/longitude pair that is not within the domain!")

 else

 print("Invalid x index value")

 end if

 exit

 end if

 if((y_index_to_extract .gt. max_y_dim).or.(y_index_to_extract .lt. 0)) then

 if(position_specifier_type.eq.1) then

 print("User chose latitude/longitude pair that is not within the domain!")

 else

 print("Invalid y index value")

 end if

 exit

 end if

 ;If the user chose to interpolate to lat/lon then we do not have a specific point to extract

 ;However, we calculated one so that we could check if we were outside the domain

 ;Now that we have checked that, mark the point to extract variables as missing so we do not

 ;accidentally use them

 if((position_specifier_type.eq.1).and.(interp_option.gt.0)) then

 x_index_to_extract = -999

 y_index_to_extract = -999

 end if

 if(interp_option.le.0) then

 ;Determine x/y indices if using 1-based indices (rather than 0-based indices)

 x_index_to_extract_one_based = x_index_to_extract + 1

 y_index_to_extract_one_based = y_index_to_extract + 1

 print(" x=" + x_index_to_extract + ", y=" + y_index_to_extract + " (0-based)")

 print(" x=" + x_index_to_extract_one_based + ", y=" + y_index_to_extract_one_based + " (1-based)")

 print("This corresponds to latitude = "+latitude_decimal_degrees(y_index_to_extract,x_index_to_extract)+" longitude = "+longitude_decimal_degrees(y_index_to_extract,x_index_to_extract))

 end if

 print("Output will be written to "+output_file_name)

; Extract desired data

; Attributes

 model_dx_m = wrf_file@DX

 model_dy_m = wrf_file@DY

 small_dx_dy_diff_m = 0.0001

 if(abs(model_dx_m-model_dy_m) .gt. small_dx_dy_diff_m) then

 print("WARNING: Model DX does not match model DY")

 print("I.e., the model horizontal grid spacing is different in north-south than it is in west-east")

 print("NOTE that the horizontal grid spacing included in the output file will be DX")

 end if

; 3D data (x,y,z)

 temperature_c = wrf_user_getvar(wrf_file,"tc",time_index_to_extract) ; T in C

 rh_pct = wrf_user_getvar(wrf_file,"rh",time_index_to_extract) ; relative humidity (%)

 pressure_hpa = wrf_user_getvar(wrf_file, "pressure",time_index_to_extract) ; grid point full pressure (hPa)

 height_msl_m = wrf_user_getvar(wrf_file, "z",time_index_to_extract) ; grid point height (m, MSL)

 terrain_height_msl_m = wrf_user_getvar(wrf_file, "ter",time_index_to_extract) ; grid point terrain height (m, MSL)

 uv_mass_earth_ms = wrf_user_getvar(wrf_file,"uvmet",time_index_to_extract) ; earth-relative wind components averaged to mass points (m/s)

						 ; This is a 4D array where

						 ; uv_mass_earth_ms(0,:,:,:) is umet, and

						 ; uv_mass_earth_ms(1,:,:,:) is vmet, and

; Surface/Near-surface data (x,y)

 temperature_2m_k = wrf_user_getvar(wrf_file,"T2",time_index_to_extract) ; T in K

 temperature_2m_c = temperature_2m_k + k_to_c ; T in C

 rh_2m_pct = wrf_user_getvar(wrf_file,"rh2",time_index_to_extract) ; relative humidity at 2m AGL (%)

 pressure_0m_pa = wrf_user_getvar(wrf_file, "PSFC",time_index_to_extract) ; surface full pressure (Pa)

 pressure_0m_hpa = pressure_0m_pa/100.0 ; surface full pressure (hPa)

 uv_mass_earth_10m_ms = wrf_user_getvar(wrf_file,"uvmet10",time_index_to_extract) ; earth-relative wind components at 10m averaged to mass points (m/s)

						 ; This is a 3D array where

						 ; uv_mass_earth_10m_ms(0,:,:) is umet_10m, and

						 ; uv_mass_earth_10m_ms(1,:,:) is vmet_10m, and

; Split out u and v components

 u_mass_earth_ms = uv_mass_earth_ms(0,:,:,:)

 v_mass_earth_ms = uv_mass_earth_ms(1,:,:,:)

 u_mass_earth_10m_ms = uv_mass_earth_10m_ms(0,:,:)

 v_mass_earth_10m_ms = uv_mass_earth_10m_ms(1,:,:)

; Calculate wind direction

 wind_direction_degrees_from = wind_direction(u_mass_earth_ms,v_mass_earth_ms,0)

 wind_direction_10m_degrees_from = wind_direction(u_mass_earth_10m_ms,v_mass_earth_10m_ms,0)

; Calculate wind speed

 wind_speed_ms = sqrt(u_mass_earth_ms^2 + v_mass_earth_ms^2)

 wind_speed_10m_ms = sqrt(u_mass_earth_10m_ms^2 + v_mass_earth_10m_ms^2)

; Repeat terrain height for each vertical level

 terrain_height_msl_m_repeat = new(max_z_dim+1,typeof(terrain_height_msl_m),"No_FillValue")

 if(interp_option.le.0) then

 terrain_height_msl_m_repeat(0:max_z_dim)=terrain_height_msl_m(y_index_to_extract,x_index_to_extract)

 else

 terrain_height_msl_m_interpolated=rcm2points(latitude_decimal_degrees,longitude_decimal_degrees, \

 terrain_height_msl_m,latitude_to_extract, \

 longitude_to_extract,interp_option)

 terrain_height_msl_m_repeat(0:max_z_dim)=terrain_height_msl_m_interpolated

 end if

; Determine the latitude/longitude requested and the latitude/longitude at which

; WRF data was actually extracted

 if(interp_option.lt.0) then

 ;User chose model grid point from which to extract data

 latitude_requested = -999.0

 longitude_requested = -999.0

 latitude_extracted = latitude_decimal_degrees(y_index_to_extract,x_index_to_extract)

 longitude_extracted = longitude_decimal_degrees(y_index_to_extract,x_index_to_extract)

 else if(interp_option.eq.0) then

 ;User chose to extract closest model grid point to chosen lat/lon

 latitude_requested = latitude_to_extract

 longitude_requested = longitude_to_extract

 latitude_extracted = latitude_decimal_degrees(y_index_to_extract,x_index_to_extract)

 longitude_extracted = longitude_decimal_degrees(y_index_to_extract,x_index_to_extract)

 else if((interp_option.ge.1).and.(interp_option.le.2)) then

 ;User chose to interpolate to chosen lat/lon

 latitude_requested = latitude_to_extract

 longitude_requested = longitude_to_extract

 latitude_extracted = latitude_to_extract

 longitude_extracted = longitude_to_extract

 else

 print("Invalid interp_option = " + interp_option + " do not know what to print for lat/lon")

 exit

 end if

 end if

 end if

; Print to file

; Header

 if(interp_option.le.0) then

 data_to_print_header = [/ latitude_extracted, longitude_extracted, \

 terrain_height_msl_m(y_index_to_extract,x_index_to_extract), \

 times(time_index_to_extract), \

 model_dx_m , \

 latitude_requested, longitude_requested, interp_option/];

 else

 data_to_print_header = [/ latitude_extracted, longitude_extracted, \

 terrain_height_msl_m_interpolated, times(time_index_to_extract), \

 model_dx_m, \

 latitude_requested, longitude_requested, interp_option/];

 end if

 write_table(output_file_name,"w",data_to_print_header,"%9.4f %9.4f %9.2f %19s %8.1f %9.4f %9.4f %5i")

; "Surface" data

 if(interp_option.le.0) then

 data_to_print_sfc = [/ terrain_height_msl_m(y_index_to_extract,x_index_to_extract), \

 pressure_0m_hpa(y_index_to_extract,x_index_to_extract), \

 temperature_2m_c(y_index_to_extract,x_index_to_extract), \

 rh_2m_pct(y_index_to_extract,x_index_to_extract), \

 wind_speed_10m_ms(y_index_to_extract,x_index_to_extract), \

 wind_direction_10m_degrees_from(y_index_to_extract,x_index_to_extract) /];

 else

 data_to_print_sfc = [/ terrain_height_msl_m_interpolated, \

 rcm2points(latitude_decimal_degrees,longitude_decimal_degrees,pressure_0m_hpa, \

 latitude_to_extract,longitude_to_extract,interp_option), \

 rcm2points(latitude_decimal_degrees,longitude_decimal_degrees,temperature_2m_c, \

 latitude_to_extract,longitude_to_extract,interp_option), \

 rcm2points(latitude_decimal_degrees,longitude_decimal_degrees,rh_2m_pct, \

 latitude_to_extract,longitude_to_extract,interp_option), \

 rcm2points(latitude_decimal_degrees,longitude_decimal_degrees,wind_speed_10m_ms, \

 latitude_to_extract,longitude_to_extract,interp_option), \

 rcm2points(latitude_decimal_degrees,longitude_decimal_degrees,wind_direction_10m_degrees_from, \

 latitude_to_extract,longitude_to_extract,interp_option) /];

 end if

 write_table(output_file_name,"a",data_to_print_sfc,"%9.2f %7.2f %7.2f %7.2f %7.2f %7.2f")

; Profile data

 if(interp_option.le.0) then

 data_to_print_profile = [/height_msl_m(:,y_index_to_extract,x_index_to_extract), \

 pressure_hpa(:,y_index_to_extract,x_index_to_extract), \

 temperature_c(:,y_index_to_extract,x_index_to_extract), \

 rh_pct(:,y_index_to_extract,x_index_to_extract), \

 wind_speed_ms(:,y_index_to_extract,x_index_to_extract), \

 wind_direction_degrees_from(:,y_index_to_extract,x_index_to_extract) /];

 else

 data_to_print_profile = [/ rcm2points(latitude_decimal_degrees,longitude_decimal_degrees,height_msl_m, \

 latitude_to_extract,longitude_to_extract,interp_option), \

 rcm2points(latitude_decimal_degrees,longitude_decimal_degrees,pressure_hpa, \

 latitude_to_extract,longitude_to_extract,interp_option), \

 rcm2points(latitude_decimal_degrees,longitude_decimal_degrees,temperature_c, \

 latitude_to_extract,longitude_to_extract,interp_option), \

 rcm2points(latitude_decimal_degrees,longitude_decimal_degrees,rh_pct, \

 latitude_to_extract,longitude_to_extract,interp_option), \

 rcm2points(latitude_decimal_degrees,longitude_decimal_degrees,wind_speed_ms, \

 latitude_to_extract,longitude_to_extract,interp_option), \

 rcm2points(latitude_decimal_degrees,longitude_decimal_degrees,wind_direction_degrees_from, \

 latitude_to_extract,longitude_to_extract,interp_option) /];

 end if

 write_table(output_file_name,"a",data_to_print_profile,"%9.2f %7.2f %7.2f %7.2f %7.2f %7.2f")

end

#!/bin/env python3

#This python3 script can process either GFS or GALWEM output files.

#It has been tested on GFS from the NOAA site and GALWEM from

#the Army wx (AKO) site and from the 557th download site.

import re

import sys

from collections import defaultdict

#NOTE: sys.argv[0] is the script (aka program) name (e.g. gg_wg2.py).

with open(sys.argv[1], "r") as f:

 input_data = f.readlines()

output_file = sys.argv[1] + "_out"

print('Reading from file: ', sys.argv[1])

pa_to_hPa = 0.01 # 1 hPa = 1 mb

maxwind_pressure = 1999

tropo_pressure = 1999

p_val = defaultdict(dict)

other_val = defaultdict(dict)

pressvals=set()

#

Read complete file twice because the surface data may appear anywhere in the

input file from the first several data lines to the last ones. For one common

source of GALWEM output the surface data lines appear near the middle of the file.

for currentline in input_data:

 match = re.search(':surface', currentline)

 if match:

 match = re.search("PRES", currentline)

 if match:

 currentline_list = re.split('[=]', currentline)

 #print("currentline_list for surface", currentline_list)

 lon = currentline_list[2].replace(',lat','')

 lat = currentline_list[3].replace(',i','')

 if(float(lon) > 180):

 lon = str(float(lon) - 360)

 #print('lat and lon: \n', lat, lon)

 current_surfline = currentline_list[1]

 currentline_surf = re.split('[:]', current_surfline)

 #print("currentline_surf ", currentline_surf)

 model_start = currentline_surf[0] #Get the model start date and time.

 #print('currentline_surf[0], currentline_surf[3] ', currentline_surf[0], currentline_surf[3])

 fcst_time = currentline_surf[3] #Get time of forecast from model start.

 if(fcst_time == 'anl'): #If = anl(analysis) then 0-h forecast.

 fcst_time = '0 hour'

 else:

 fcst_time = fcst_time.replace('fcst', '')

 current_surface = currentline_surf[2].replace(':','') #Remove : from surface value.

 current_surf_press = currentline_list[7] #Get the surface pressure value.

 surface_pressure = float(current_surf_press)*pa_to_hPa #Convert to float for hPa value.

 #print("surface_pressure ", surface_pressure)

The following match to ':HGT' needed for GFS data.

 match = re.search(':HGT', currentline)

 if match:

 currentline_list = re.split('[=]', currentline)

 other_val['HGT'][current_surface]=currentline_list[7]

for currentline in input_data:

The following match for ':MTERH' needed for GALWEM data.

 match = re.search(':MTERH', currentline)

 if match:

 currentline_list = re.split('[=]', currentline)

 #print("currentline_list for surface", currentline_list)

 current_surf_hgt = currentline_list[7]

 other_val['HGT'][current_surface]=current_surf_hgt

 #print("current_surface ", current_surface)

 #print("current_surf_hgt ", current_surf_hgt)

 match = re.search(':2 m above ground:', currentline)

 if match:

 currentline_list = re.split('[=]', currentline)

 #print("currentline_list for ground", currentline_list)

 match = re.search(':TMP', currentline)

 if match:

 current_surf_temp = currentline_list[7]

 other_val['TMP'][current_surface]=current_surf_temp # Actually 2 m AGL temperature.

 #print("current_surf_temp ", current_surf_temp)

 match = re.search(':RH', currentline)

 if match:

 current_surf_rh = currentline_list[7]

 other_val['RH'][current_surface]=current_surf_rh # Actually 2 m AGL relative humidity.

 #print("current_surf_rh ", current_surf_rh)

 match = re.search(':10 m above ground:', currentline)

 if match:

 currentline_list = re.split('[=]', currentline)

 #print("currentline_list for ground", currentline_list)

 match = re.search(':UGRD', currentline)

 if match:

 current_surf_u = currentline_list[7]

 other_val['UGRD'][current_surface]=current_surf_u # Actually 10m AGL U-component of wind.

 #print("current_surf_u ", current_surf_u)

 match = re.search(':VGRD', currentline)

 if match:

 current_surf_v = currentline_list[7]

 other_val['VGRD'][current_surface]=current_surf_v # Actually 10 m AGL V-component of wind.

 #print("current_surf_v ", current_surf_v)

 match = re.search(':tropopause', currentline)

 if match:

 currentline_list = re.split('[=]', currentline)

 #print("currentline_list for tropopause", currentline_list)

 current_trop_line = currentline_list[1]

 currentline_trop = re.split('[:]', current_trop_line)

 #print("currentline_trop ", currentline_trop)

 current_trop = currentline_trop[2]

 #print("current_trop ", current_trop)

 match = re.search(':HGT', currentline)

 if match:

 current_trop_hgt = currentline_list[7]

 other_val['HGT'][current_trop]=current_trop_hgt

 #print("current_trop_hgt ", current_trop_hgt)

 match = re.search('PRES', currentline)

 if match:

 current_trop_prs = currentline_list[7]

 other_val['PRES'][current_trop]=current_trop_prs

 tropo_pressure = float(current_trop_prs)*pa_to_hPa #Convert to float for hPa value.

 #print("tropo_pressure ", tropo_pressure)

 match = re.search('TMP', currentline)

 if match:

 current_trop_tmp = currentline_list[7]

 other_val['TMP'][current_trop]=current_trop_tmp

 #print("current_trop_tmp ", current_trop_tmp)

 other_val['RH'][current_trop] = 50 # No RH data line for tropopause. Set at some value.

 #print('tropopause RH {0:7.2f}\n'.format(other_val['RH'][current_trop]))

 match = re.search('UGRD', currentline)

 if match:

 current_trop_u = currentline_list[7]

 other_val['UGRD'][current_trop]=current_trop_u

 #print("current_trop_u ", current_trop_u)

 match = re.search('VGRD', currentline)

 if match:

 current_trop_v = currentline_list[7]

 other_val['VGRD'][current_trop]=current_trop_v

 #print("current_trop_v ", current_trop_v)

 other_val['RH'][current_trop] = 50 # No RH data line for tropopause. Set at some value.

 #print('tropopause RH {0:7.2f}\n'.format(other_val['RH'][current_trop]))

 match = re.search(':max wind', currentline)

 if match:

 currentline_list = re.split('[=]', currentline)

 #print("currentline_list for max wind level", currentline_list)

 current_maxwind_line = currentline_list[1]

 currentline_maxwind = re.split('[:]', current_maxwind_line)

 current_maxwind = currentline_maxwind[2]

 #print("current_maxwind ", current_maxwind)

 match = re.search(':HGT', currentline)

 if match:

 current_maxwind_hgt = currentline_list[7]

 other_val['HGT'][current_maxwind]=current_maxwind_hgt

 #print("current_maxwind_hgt ", current_maxwind_hgt)

 match = re.search(':PRES', currentline)

 if match:

 current_maxwind_prs = currentline_list[7]

 other_val['PRES'][current_maxwind]=current_maxwind_prs

 #print("current_maxwind_prs ", current_maxwind_prs)

 maxwind_pressure = float(current_maxwind_prs)*pa_to_hPa #Convert to float for hPa value.

 #print("maxwind_pressure ", maxwind_pressure)

 match = re.search(':TMP', currentline)

 if match:

 current_maxwind_tmp = currentline_list[7]

 other_val['TMP'][current_maxwind]=current_maxwind_tmp

 #print("current_maxwind_tmp ", current_maxwind_tmp)

 match = re.search(':UGRD', currentline)

 if match:

 current_maxwind_u = currentline_list[7]

 other_val['UGRD'][current_maxwind]=current_maxwind_u

 #print("current_maxwind_u ", current_maxwind_u)

 match = re.search(':VGRD', currentline)

 if match:

 current_maxwind_v = currentline_list[7]

 other_val['VGRD'][current_maxwind]=current_maxwind_v

 #print("current_maxwind_v ", current_maxwind_v)

 other_val['RH'][current_maxwind] = 50 # No RH data line for max wind level. Set at some value.

 #print('max wind RH {0:7.2f}\n'.format(other_val['RH'][current_maxwind]))

Begin "regular" data lines arranged by pressure levels.

 match = re.search('mb:', currentline)

 if match:

print("currentline ", currentline)

 currentline_list = re.split('[=]', currentline)

print("currentline_list ", currentline_list)

 current_pline = currentline_list[1]

 currentline_prs = re.split('[:]', current_pline)

print("currentline_prs ", currentline_prs)

 current_press = currentline_prs[2].replace(' mb','') #Remove mb from pressure value.

 pressvals.add(float(current_press))

 match = re.search(':HGT', currentline)

 if match:

 currentline_hval = currentline_list[7]

 p_val['HGT'][str(int(current_press))]=currentline_hval

print("currentline_press ", current_press)

print("currentline_hval ", currentline_hval)

 match = re.search(':TMP', currentline)

 if match:

 currentline_tval = currentline_list[7]

 p_val['TMP'][str(int(current_press))]=currentline_tval

print("current_press ", current_press)

print("currentline_tval ", currentline_tval)

 match = re.search(':RH', currentline)

 if match:

 currentline_tval = currentline_list[7]

 p_val['RH'][str(int(current_press))]=currentline_tval

print("current_press ", current_press)

print("currentline_tval ", currentline_tval)

 match = re.search(':UGRD', currentline)

 if match:

 currentline_tval = currentline_list[7]

 p_val['UGRD'][str(int(current_press))]=currentline_tval

print("current_press ", current_press)

print("currentline_tval ", currentline_tval)

 match = re.search(':VGRD', currentline)

 if match:

 currentline_tval = currentline_list[7]

 p_val['VGRD'][str(int(current_press))]=currentline_tval

print("current_press ", current_press)

print("currentline_tval ", currentline_tval)

 sorted_pressvals=reversed(sorted(pressvals)) # Sort data levels in reverse order, that is, highest to lowest.

#

#OUTPUT SECTION: output generated here although some output strings composed earlier in program.

with open(output_file, "w") as fo:

 print('Writing to file: ', output_file, '\n')

 header_string='\n{0:9s}{1:25s}{2:12s}\n'.format(fcst_time,'forecast after model start at: ', model_start)

 fo.write(header_string)

 header_string='{0:10s}{1:7.3f}{2:14s}{3:8.3f}\n\n'.format('Latitude: ', float(lat), ' Longitude: ', float(lon))

 fo.write(header_string)

 header_string='{0:9s}{1:9s}{2:10s}{3:8s}{4:8s}{5:8s}\n'.format(' P (hPa)', ' Hgt (m)', 'Tmp (K)', 'RH (%)', 'U (m/s)', 'V (m/s)')

 fo.write(header_string)

 try:

 surface_string = '{0:7.1f}{1:9.1f} {2:7.2f} {3:7.1f} {4:7.2f} {5:7.2f}\n'.format(float(surface_pressure), float(other_val['HGT'][current_surface]),

 float(other_val['TMP'][current_surface]), float(other_val['RH'][current_surface]),

 float(other_val['UGRD'][current_surface]), float(other_val['VGRD'][current_surface]))

 fo.write(surface_string)

 except KeyError:

 print("Surface data KeyError ", surface_pressure)

 if tropo_pressure < 1999:

 try:

 print('Tropopause pressure ', tropo_pressure)

 tropo_string = '{0:7.1f}{1:9.1f} {2:7.2f} {3:7.1f} {4:7.2f} {5:7.2f}\n'.format(float(tropo_pressure), float(other_val['HGT'][current_trop]),

 float(other_val['TMP'][current_trop]), float(other_val['RH'][current_trop]),

 float(other_val['UGRD'][current_trop]), float(other_val['VGRD'][current_trop]))

 except KeyError:

 print("Tropopause data KeyError")

 error_string = '{0:46s}{1:7.2f}\n'.format('Incomplete tropopause data. tropo_pressure = ', float(tropo_pressure))

 print(error_string)

 else:

 print('No tropopause level data available.\n')

 if maxwind_pressure < 1999:

 try:

 print('Maxwind pressure ', maxwind_pressure)

 maxwind_string = '{0:7.1f}{1:9.1f} {2:7.2f} {3:7.1f} {4:7.2f} {5:7.2f}\n'.format(float(maxwind_pressure), float(other_val['HGT'][current_maxwind]),

 float(other_val['TMP'][current_maxwind]), float(other_val['RH'][current_maxwind]),

 float(other_val['UGRD'][current_maxwind]), float(other_val['VGRD'][current_maxwind]))

 except KeyError:

 print("Maximum wind data KeyError")

 error_string = '{0:46s}{1:7.2f}\n'.format('Incomplete max wind data. maxwind pressure = ', float(maxwind_pressure))

 print(error_string)

 else:

 print("No maximum wind level data available.\n")

 last_pressure = 1999.0 # Initialize last_pressure with a improbable value as a start for the for loop.

 for press_now in sorted_pressvals:

 if(press_now > surface_pressure):

 continue

 if(tropo_pressure > press_now and tropo_pressure < last_pressure) and (maxwind_pressure > press_now and maxwind_pressure < last_pressure):

 if(tropo_pressure > maxwind_pressure):

 fo.write(tropo_string)

 fo.write(maxwind_string)

 else:

 fo.write(maxwind_string)

 fo.write(tropo_string)

 elif tropo_pressure < 1999 and tropo_pressure > press_now and tropo_pressure < last_pressure:

 fo.write(tropo_string)

 elif maxwind_pressure < 1999 and maxwind_pressure > press_now and maxwind_pressure < last_pressure:

 fo.write(maxwind_string)

 try:

 if press_now == 0: #This if block replaces the pressure of the highest data level from 0 to a rough estimate of the actual.

 cur_press = 0.5

 else:

 cur_press = press_now

 data_string = '{0:7.1f} {1:8.1f} {2:7.2f} {3:7.1f} {4:7.2f} {5:7.2f}\n'.format(float(cur_press), float(p_val['HGT'][str(int(press_now))]),

 float(p_val['TMP'][str(int(press_now))]), float(p_val['RH'][str(int(press_now))]),

 float(p_val['UGRD'][str(int(press_now))]), float(p_val['VGRD'][str(int(press_now))]))

 fo.write(data_string)

 last_pressure = press_now

 except KeyError:

 print("Key error for dictionary variable found at pressure level: ", str(int(press_now)))

#!/bin/bash

#Filename: prof_compare.sh

#This script used for producing difference files from two vertiical sounding files

#generated by the wgrb2.sh or wrf_extract.sh scripts.

#

echo

echo This script is used to produce difference files from two vertical

echo 'soundings from model and/or RAOB (or other similar measurement system).'

echo

echo 'Enter first input file (include path name).'

read input_file1

echo

echo 'Enter second input file (include path name).'

read input_file2

echo

echo -n 'Are the input files based on height (h) or pressure (p)? Enter h or p only: '

read Hgt_Prs

if [$Hgt_Prs != "h"] && [$Hgt_Prs != "p"]

then

 echo 'User did not choose either h or p. Need to restart.'

 exit

fi

if [$Hgt_Prs == "p"]

then

 echo -n 'Do you want to manually enter the highest pressure (lowest pressure level). Enter y for yes. '

 read base

 if [$base == 'y']

 then

 echo

 echo -n 'Enter baseline pressure (lowest press level = highest press) that appears in all soundings: '

 read base_pressure

 fi

fi

echo

echo 'Do the input files have wind speed/dir and virtual temp (w) or wind component and relative humidity (c)?'

echo -n 'Enter w or c for the respective type of input: '

read output_type

if [$output_type != "w"] && [$output_type != "c"]

then

 echo 'User did not choose either w or c. Need to restart.'

 exit

fi

if [$output_type == "c"]

then

 echo -n 'Do you want relative humidiy (r) or vector wind (v) difference output? Enter r or v. '

 read vectwind

else

 vectwind='x' #Need a character for vectwind in any case even if not used by the python3 script.

fi

echo

echo Output to a separate file or append to a single file.

echo -n 'Enter s for a separate file and a for append: '

read outfile_type

echo

if [$outfile_type == "a"]

then

 echo -n 'Is this run the first one for appending (enter y for yes): '

 read firstappend

 if [$firstappend == "y"]

 then

 echo 'Deleting diff_profiles for new start.'

 rm diff_profiles

 fi

fi

echo

if [$Hgt_Prs == "h"] #Run a height based version.

then

 python3 prof_compare_height.py $input_file1 $input_file2 $outfile_type $vectwind

fi

if [$Hgt_Prs == "p"] #Run a pressure based version.

then

 if [$base == "y"] #Output has maximum pressure as entered by user.

 then

 python3 prof_compare_baseprs.py $input_file1 $input_file2 $base_pressure $outfile_type $vectwind

 else

 python3 prof_compare_pressure.py $input_file1 $input_file2 $outfile_type $vectwind

 fi

fi

echo

echo End of script to produce difference table \(default output name is diff_profiles\).

echo

#!/bin/env python3

#Name: prof_compare_baseprs.py

#This python3 script compares two soundings having the same pressure based

#structure of levels and layers. The user enters the maximum pressure

#(lowest pressure level) vs. letting the script select the appropriate value.

#There are some options. The user can select different output variables as

#follows: wind speed/direction and virtual temperature differences, or

#wind component (u,v) and relative humidity differences, or wind component (u,v)

#and vector wind differences. Height and temperature differences are always

#part of the output. The pressure levels or layer midpoints also are in the output.

#

#To run the script enter its name and command line arguments as follows.

#

#python3 prof_compare_baseprs.py INPUT_FILE1 INPUT_FILE2 PPP Y V -v

#

#where INPUT_FILE1 and INPUT_FILE2 are generic file names, PPP is the lowest

#pressure level (highest pressure) selected by the user, Y is a character that

#tells the script to append (a) or write (w) the output to its own file, and V is

#a character that directs the script to compute and output differences in vector

#wind speed (v for vector) in place of relative humidity (any other character). V only

#applies for input soundings with wind components (u,v), otherwise it is ignored.

#A character for V is not necessary. If it is missing the default is to output RH.

#However, a character for V is not necessary. If it is missing the default is to output RH.

#Use of -v (verbosity) leads to the output of additional information to the screen. Use

#of -v is optional. Entering the script name followed by -h (help) will print to screen

#information on script usage and other details. The program will exit after printing.

#

#The following function is useful for checking what is actually in a line of input.

#--

xyz = repr(currentlist) #Checks for what is actually in the line (shown and hidden).

print('xyz\n', xyz)

#--

import re

import os

import sys

import operator

import ntpath

import statistics

from math import sqrt

import argparse

var_list = []

v_list = []

udif = []

vdif = []

vspd_list = []

#Definition to check if a string represents a number (integer or float).

def is_number(x):

 try:

 float(x)

 except ValueError:

 return False

 return True

#Begin definition for RMS.

def rms(v_list):

 length = len(v_list)

 sq_list = []

 for n in range(0, length):

 sq_list.append(v_list[n] * v_list[n])

 meansq = sum(sq_list)/float(length)

 rmsq = sqrt(meansq)

 return rmsq

#Begin definition for vector wind speed difference.

def vectdif(udif, vdif):

 length = len(udif) #Lists udif and vdif should have the same lengths.

 for n in range(0, length):

 vspd_list.append(sqrt(udif[n]*udif[n] + vdif[n]*vdif[n]))

 return vspd_list #This list holds vector wind differences.

#Begin definition for wind direction differences > 180 deg (>3200 mils).

def wdiff(dr1, dr2):

 if abs(dr2-dr1) > 180:

 if dr2 > dr1:

 sign = 1

 else:

 sign = -1

 x = sign*360

 else:

 x = 0

 drdif = dr1 - dr2 + x

 return drdif

#Begin definition for reading variables into a list.

def var_read(input_dat, base_pressure):

 n_list = []

 a_list = []

 b_list = []

 c_list = []

 d_list = []

 e_list = []

 f_list = []

 for currentline in input_dat:

 linecheck = currentline.strip()

 if not linecheck: # Line is blank.

 continue

 current_list = currentline.split()

 #print('current_list ', current_list)

 if is_number(current_list[0]):

 if float(current_list[1]) < float(base_pressure)+0.001:

 n_list.append(int(current_list[0]))

 a_list.append(float(current_list[1]))

 b_list.append(float(current_list[2]))

 c_list.append(float(current_list[3]))

 d_list.append(float(current_list[4]))

 e_list.append(float(current_list[5]))

 f_list.append(float(current_list[6]))

 var_list = [n_list, a_list, b_list, c_list, d_list, e_list, f_list]

 return var_list

#Begin definition for removal of non-matching pressure levels.

def prs_check(data_list1, data_list2):

 n_list1 = data_list1[0]

 n_list2 = data_list2[0]

 p_list1 = data_list1[1]

 p_list2 = data_list2[1]

 b_list1 = data_list1[2]

 b_list2 = data_list2[2]

 c_list1 = data_list1[3]

 c_list2 = data_list2[3]

 d_list1 = data_list1[4]

 d_list2 = data_list2[4]

 e_list1 = data_list1[5]

 e_list2 = data_list2[5]

 f_list1 = data_list1[6]

 f_list2 = data_list2[6]

 if len(p_list1) > len(p_list2):

 length = len(p_list2)

 else:

 length = len(p_list2)

 for m in range(0, length-1):

 if p_list1[0] == p_list2[0]:

 break

 if p_list1[0] > p_list2[0]:

 n_list1.remove(n_list1[0])

 p_list1.remove(p_list1[0])

 b_list1.remove(b_list1[0])

 c_list1.remove(c_list1[0])

 d_list1.remove(d_list1[0])

 e_list1.remove(e_list1[0])

 f_list1.remove(f_list1[0])

 if p_list2[0] > p_list1[0]:

 n_list2.remove(n_list2[0])

 p_list2.remove(p_list2[0])

 b_list2.remove(b_list2[0])

 c_list2.remove(c_list2[0])

 d_list2.remove(d_list2[0])

 e_list2.remove(e_list2[0])

 f_list2.remove(f_list2[0])

 if len(n_list1) > len(n_list2):

 nlength = len(n_list2)

 else:

 nlength = len(n_list1)

 if len(n_list1) != len(n_list2):

 print('Number of data lines in modified input files not the same!')

 print('len(n_list1), len(n_list2) ', len(n_list1), len(n_list2))

 num_list1 = []

 num_list2 = []

 for n in range(0, nlength):

 num_list1.append(n)

 num_list2.append(n)

 data_list1 = [num_list1, p_list1, b_list1, c_list1, d_list1, e_list1, f_list1]

 data_list2 = [num_list2, p_list2, b_list2, c_list2, d_list2, e_list2, f_list2]

 data_list = [data_list1, data_list2]

 return data_list

#Begin definition for basic statistics of single difference table.

def stat_comp(variable_list):

 var_mean = float(statistics.mean(variable_list))

 var_median = float(statistics.median(variable_list))

 var_stdev = float(statistics.stdev(variable_list))

 var_rms = rms(variable_list)

 stat_list = [var_mean, var_median, var_stdev, var_rms]

 return stat_list

#End of definitions.

#Set up argparse command line parameters.

parser = argparse.ArgumentParser(description='Computes differences in listed variables for each pressure level or layer\nwhere the maximum common pressure is < or = the base pressure.')

parser.add_argument('infile1', help = 'The first input file.')

parser.add_argument('infile2', help = 'The second input file.')

parser.add_argument('basepress', type = float, help = 'Base pressure > or = highest pressure common to both input files.')

parser.add_argument('append', choices = ('a', 'w'), help='Write to single file (w) or append (a)?')

parser.add_argument("vectwind", nargs = '?', help = 'Vector wind speed differences (v) or RH differences (other character)?')

parser.add_argument('-v', '--verbosity', action = 'store_true')

args = parser.parse_args()

#Initialize some lists for use later in acript.

hdif_list = []

wdirdif_list = []

wspddif_list = []

vtdif_list = []

pdif_list = []

tdif_list = []

#Open the input files.

with open(args.infile1, "r") as fx, open(args.infile2, "r") as fy:

Get header information and pass over unused lines at begining of files.

 for inputline1 in fx:

 linecheck = inputline1.strip()

 if not linecheck: #Remove blank line if found.

 continue

 line = inputline1.split()

 if line[0] == 'Level' or line[0] == 'Layer':

 headerlineA = inputline1

 if line[0] == '(hPa)' or line[0] == '(mb)' and (line[2] == '(degrees)' or line[2] == '(m/s)'):

 headerlineB = inputline1

 break

 for inputline2 in fy:

 linecheck = inputline2.strip()

 if not linecheck: #Remove blank line if found.

 continue

 line = inputline2.split()

 if line[0] == 'Level' or line[0] == 'Layer':

 headerlineC = inputline2

 if line[0] == '(hPa)' or line[0] == '(mb)' and (line[2] == '(degrees)' or line[2] == '(m/s)'):

 headerlineD = inputline2

 break

Check for comparison of level to level or layer to layer.

 headerlistA = headerlineA.split()

 headerlistB = headerlineB.split()

 headerlistC = headerlineC.split()

 headerlistD = headerlineD.split()

 if headerlistA[0] != headerlistC[0] or headerlistB[2] != headerlistD[2]:

 print('Appears level data being compared to layer (= line) data\nor mixed wind spd/dir and component data. Check input.')

 exit()

Create headerlines for later use including for output.

 headerline = headerlineA.split()

 headerline1 = headerlineB.split()

Read in the remaining data lines.

 input_data1=fx.readlines()

 input_data2=fy.readlines()

Read in baseline pressure.

 base_press = args.basepress

Read parameter for append or write to single file.

if args.append== 'a':

 x = 'a'

 output_file = 'diff_profiles'

elif args.append == 'w':

 x = 'w'

 output_file = 'Diff:' + ntpath.basename(args.infile1) + '-' + ntpath.basename(args.infile2)

else:

 print('Choose a (append) or w (write w/o appending) for the last item in the command line.')

 print('Restart the script to continue.')

 exit()

vect = args.vectwind #Define here to avoid using args.vectwind several times.

if args.verbosity:

 print("\nInput file1: {}\nInput file2: {}\nAppend or Write? {}\nOutput vector wind speed difference? {}\n".format(args.infile1, args.infile2, args.append, args.vectwind))

#Derive data lists with all pressures < or = base pressure.

data_list1 = var_read(input_data1, base_press)

data_list2 = var_read(input_data2, base_press)

#Remove pressure levels or layers that are not the same between the two profiles.

#Usually at the surface and levels or layer immediatly above. The prs-check

#definition handles the work of modifying the profiles if/as needed.

#

data_list = []

data_list = prs_check(data_list1, data_list2)

data_list1 = data_list[0]

data_list2 = data_list[1]

wd_list1 = data_list1[3]

wd_list2 = data_list2[3]

prs_list1 = data_list1[1]

num_list1 = data_list1[0]

#

#Compute the differences. The map and operator functions handle lists of

#unequal length.

pdif_list = list(map(operator.sub, data_list1[1], data_list2[1]))

hdif_list = list(map(operator.sub, data_list1[2], data_list2[2]))

wdirdif_list = list(map(operator.sub, data_list1[3], data_list2[3]))

wspddif_list = list(map(operator.sub, data_list1[4], data_list2[4]))

vtdif_list = list(map(operator.sub, data_list1[5], data_list2[5]))

tdif_list = list(map(operator.sub, data_list1[6], data_list2[6]))

#If have wind component input, wdirdif_list is list of u dif values and wspddif_list of v dif values.

if vect == 'v':

 vectspdif_list = []

 vectspdif_list = vectdif(wdirdif_list, wspddif_list)

#Need a means to account for direction differences > 180 deg (3200 mils).

#

if headerline[2] == 'Wind_Dir':

 wdirlength = len(wdirdif_list)

 for n in range(0, wdirlength):

 wdirdif_list[n] = wdiff(wd_list1[n], wd_list2[n])

#Compute basic statistics for each column of variables (not line numbers).

stat_list = ['Mean', 'Median', 'Std Dev', 'RMSE']

h_list = stat_comp(hdif_list)

wd_list = stat_comp(wdirdif_list)

ws_list = stat_comp(wspddif_list)

if vect == 'v' and headerline[3] == 'U-wind':

 vt_list = stat_comp(vectspdif_list)

else:

 vt_list = stat_comp(vtdif_list)

p_list = stat_comp(pdif_list)

t_list = stat_comp(tdif_list)

#Find which length is smaller if not equal - number of paired levels or layers (lines).

if len(data_list1[0]) == len(data_list2[0]) or len(data_list1[0]) < len(data_list2[0]):

 length = len(data_list1[0])

 num_list = data_list1[0]

else:

 length = len(data_list2[0])

 num_list = data_list2[0]

#

#Output section.

#

if headerline[3] == 'Wind_Dir':

 headerlineN = headerline[0]+' '+headerline[1]+' '+headerline[2]+' '+headerline[3]+' '+headerline[4]+' '+headerline[5]+' '+headerline[6]

 headerlineM = headerline1[0]+' '+headerline1[1]+' '+headerline1[2]+' '+headerline1[3]+' '+headerline1[4]+' '+headerline1[5]

else:

 if vect == 'v' and headerline[3] == 'U-wind':

 headerline[5] = 'Vector_W-spd'

 headerline1[4] = '(m/s)'

 headerlineN = headerline[0]+' '+headerline[1]+' '+headerline[2]+' '+headerline[3]+' '+headerline[4]+' '+headerline[5]+' '+headerline[6]

 headerlineM = headerline1[0]+' '+headerline1[1]+' '+headerline1[2]+' '+headerline1[3]+' '+headerline1[4]+' '+headerline1[5]

with open(output_file, x) as fo:

 print('\nWriting to output file ', output_file, '\n')

 header_title = 'Compared output from ' + sys.argv[1] + ' and ' + sys.argv[2] + '\n'

 fo.write(header_title)

 header_string = '{0:42s}{1:22s}\n{2:20s}{3:4d}\n'.format('Difference values for listed variables in ', output_file, 'Number of data levels ', length)

 fo.write(header_string)

 headerlineP = headerlineN + ' Prs(not_diff)\n'

 fo.write(headerlineP)

 headerlineU = ' ' + headerlineM + ' (hpa)\n'

 fo.write(headerlineU)

 for n in range(0, length):

 if vect == 'v' and headerline[3] == 'U-wind':

 vtdif_list[n] = vectspdif_list[n]

 data_string = '{0:4d} {1:7.1f} {2:9.1f} {3:9.2f} {4:9.2f} {5:9.2f} {6:11.2f} {7:11.2f}\n'.format(num_list[n], pdif_list[n], hdif_list[n], wdirdif_list[n], wspddif_list[n], vtdif_list[n], tdif_list[n], prs_list1[n])

 fo.write(data_string)

 header_string = '\nColumn Statistics\n'

 fo.write(header_string)

 for n in range(0, 4):

 stat_string = '{0:7s}{1:5.1f} {2:9.1f} {3:9.2f} {4:9.2f} {5:10.2f} {6:12.2f}\n'.format(stat_list[n], p_list[n], h_list[n], wd_list[n], ws_list[n], vt_list[n], t_list[n])

 fo.write(stat_string)

 fo.write('\n\n')

 print('End of Sounding Compare Script!\n')

#!/bin/env python3

#Name: prof_comp_h.py

#This python3 script compares two soundings having the same height based

#structure of levels and layers. Theres are some options. The user can

#select different output variables as follows: wind speed/direction and

#virtual temperature differences, or wind component (u,v) and relative

#humidity differences, or wind component (u,v) and vector wind differences.

#Pressure and temperature differences are always part of the output.

#The height levels or layer midpoints also are in the output.

#

#To run the script enter its name and command line arguments as follows.

#

#python3 prof_compare_height.py INPUT_FILE1 INPUT_FILE2 Y V -v

#

#where INPUT_FILE1 and INPUT_FILE2 are generic file names, Y is a character that

#tells the script to append (a) or write (w) the output to its own file, and V is

#a character that directs the script to compute and output differences in vector

#wind speed (v for vector) in place of relative humidity (any other character). V only

#applies for input soundings with wind components (u,v), otherwise it is ignored.

#However, a character for V is not necessary. If it is missing the default is to output RH.

#Use of -v (verbosity) leads to the output of additional information to the screen. Use

#of -v is optional. Entering the script name followed by -h (help) will print to screen

#information on script usage and other details. The program will exit after printing.

#

#The following function is useful for checking what is actually in a line of input.

#--

xyz = repr(currentlist) #Checks for what is actually in the line (shown and hidden).

print('xyz\n', xyz)

#--

import re

import argparse

import sys

import operator

import ntpath

import statistics

from math import sqrt

var_list = []

v_list = []

stat_list = []

udif = []

vdif = []

vspd_list = []

#Begin definition for RMS.

def rms(v_list):

 length = len(v_list)

 sq_list = []

 for n in range(0, length):

 sq_list.append(v_list[n] * v_list[n])

 meansq = sum(sq_list)/length

 rmsq = sqrt(meansq)

 return rmsq

#Begin definition for vector wind speed difference.

def vectdif(udif, vdif):

 length = len(udif) #Lists udif and vdif should have the same lengths.

 for n in range(0, length):

 vspd_list.append(sqrt(udif[n]*udif[n] + vdif[n]*vdif[n]))

 return vspd_list #This list holds vector wind differences.

#Begin definition for wind direction differences > 180 deg (>3200 mils).

def wdiff(dr1, dr2):

 if abs(dr2-dr1) > 180:

 if dr2 > dr1:

 sign = 1

 else:

 sign = -1

 x = sign*360

 else:

 x = 0

 drdif = dr1 - dr2 + x

 return drdif

#Definition to check if a string represents a number (integer or float).

def is_number(x):

 try:

 float(x)

 except ValueError:

 return False

 return True

#Begin definition for reading variables into a list.

def var_read(input_dat):

 n_list = []

 a_list = []

 b_list = []

 c_list = []

 d_list = []

 e_list = []

 f_list = []

 for currentline in input_dat:

 linecheck = currentline.strip()

 if not linecheck: # Line is blank.

 continue

 current_list = currentline.split()

 #print('current_list ', current_list)

 if is_number(current_list[0]):

 n_list.append(int(current_list[0]))

 a_list.append(float(current_list[1]))

 b_list.append(float(current_list[2]))

 c_list.append(float(current_list[3]))

 d_list.append(float(current_list[4]))

 e_list.append(float(current_list[5]))

 f_list.append(float(current_list[6]))

 var_list = [n_list, a_list, b_list, c_list, d_list, e_list, f_list]

 return var_list

#Begin definition for basic statistics of single difference table.

def stat_comp(variable_list):

 var_mean = float(statistics.mean(variable_list))

 var_median = float(statistics.median(variable_list))

 var_stdev = float(statistics.stdev(variable_list))

 var_rmse = float(rms(variable_list))

 stat_list = [var_mean, var_median, var_stdev, var_rmse]

 return stat_list

#End of definitions.

#Initialize some lists used in the script.

hdif_list = []

wdirdif_list = []

wspddif_list = []

vtdif_list = []

pdif_list = []

tdif_list = []

headerlistA = []

headerlistC = []

#Set the argument parser statements.

parser = argparse.ArgumentParser(description='Computes differences in listed variables for each height level or layer.')

parser.add_argument("infile1", help="The first input file.")

parser.add_argument("infile2", help="The second input file.")

parser.add_argument("append", choices=('a', 'w'), help="Write to single file (w) or append (a).")

parser.add_argument("vectwind", nargs='?', help="Vector wind speed (v) or RH (other character).")

parser.add_argument("-v", "--verbosity", action="store_true")

args = parser.parse_args()

#Open the input files.

with open(args.infile1, "r") as fx, open(args.infile2, "r") as fy:

Get header information and pass over unused lines at begining of files.

 for inputline1 in fx:

 linecheck = inputline1.strip()

 if not linecheck: #Remove blank line if found.

 continue

 line = inputline1.split()

 if line[0] == 'Level' or line[0] == 'Layer':

 headerlineA = inputline1

 if line[0] == '(m)'and (line[1] == '(m/s)' or line[1] == '(degrees)'):

 headerlineB = inputline1

 break

 for inputline2 in fy:

 linecheck = inputline2.strip()

 if not linecheck: #Remove blank line if found.

 continue

 line = inputline2.split()

 if line[0] == 'Level' or line[0] == 'Layer':

 headerlineC = inputline2

 if line[0] == '(m)' and (line[1] == '(degrees)' or line[1] == '(m/s)'):

 headerlineD = inputline2

 break

Check for comparison of level to level or layer to layer.

 headerlistA = headerlineA.split()

 headerlistB = headerlineB.split()

 headerlistC = headerlineC.split()

 headerlistD = headerlineD.split()

 if headerlistA[0] != headerlistC[0] or headerlistB[1] != headerlistD[1]:

 print('Appears level data being compared to layer (= line) data,\nor mixing components and speed/direction. Check input.')

 exit()

Create headerlines for later use including for output.

 headerline = headerlineA.split()

 headerline1 = headerlineB.split()

Read in the remaining data lines.

 input_data1=fx.readlines()

 input_data2=fy.readlines()

if args.append == 'a':

 x = 'a'

 output_file = 'diff_profiles'

elif args.append == 'w':

 x = 'w'

 output_file = 'Diff:' + ntpath.basename(args.infile1) + '-' + ntpath.basename(args.infile2)

else:

 print('Choose a (append) or w (write w/o appending) for the last item in the command line.')

 print('Restart the script to continue.')

 exit()

vect = args.vectwind #Define here to avoid using args.vectwind several times.

#Write out input files and parameters (command line arguments).

if args.verbosity:

 print("\nInput file1: {}\nInput file2: {}\nAppend or Write: {}\nOutput vector wind speed difference: {}\n".format(args.infile1, args.infile2, args.append, args.vectwind))

#Produce lists from input data files.

data_list1 = var_read(input_data1)

data_list2 = var_read(input_data2)

if len(data_list1[1]) > len(data_list2[1]): #Find hgt_list for output purposes.

 hgt_list = data_list2[1]

else:

 hgt_list = data_list1[1]

wd_list1 = data_list1[2]

wd_list2 = data_list2[2]

#Compute the differences. The map and operator functions handle lists of

#unequal length.

hdif_list = list(map(operator.sub, data_list1[1], data_list2[1]))

wdirdif_list = list(map(operator.sub, data_list1[2], data_list2[2]))

wspddif_list = list(map(operator.sub, data_list1[3], data_list2[3]))

vtdif_list = list(map(operator.sub, data_list1[4], data_list2[4]))

pdif_list = list(map(operator.sub, data_list1[5], data_list2[5]))

tdif_list = list(map(operator.sub, data_list1[6], data_list2[6]))

#If have wind component input, wdirdif_list is list of u dif values and wspddif_list of v dif values.

if vect == 'v':

 vectspdif_list = []

 vectspdif_list = vectdif(wdirdif_list, wspddif_list)

#Need a means to account for direction differences > 180 deg (3200 mils).

#

if headerline[2] == 'Wind_Dir':

 wdirlength = len(wdirdif_list)

 for n in range(0, wdirlength):

 wdirdif_list[n] = wdiff(wd_list1[n], wd_list2[n])

#Compute basic statistics for each column of variables (not line numbers).

stat_list = ['Mean', 'Median', 'Std Dev', 'RMSE']

h_list = stat_comp(hdif_list)

wd_list = stat_comp(wdirdif_list)

ws_list = stat_comp(wspddif_list)

if vect == 'v':

 vt_list = stat_comp(vectspdif_list)

else:

 vt_list = stat_comp(vtdif_list)

p_list = stat_comp(pdif_list)

t_list = stat_comp(tdif_list)

#Find which length is smaller if not equal - number of paired levels or layers (lines).

if len(data_list1[0]) == len(data_list2[0]) or len(data_list1[0]) < len(data_list2[0]):

 length = len(data_list1[0])

 num_list = data_list1[0]

else:

 length = len(data_list2[0])

 num_list = data_list2[0]

#Output section.

#

if headerline[2] == 'Wind_Dir':

 headerlineN = headerline[0]+' '+headerline[1]+' '+headerline[5]+' '+headerline[2]+' '+headerline[3]+' '+headerline[4]+' '+headerline[6]

 headerlineM = headerline1[0]+' '+headerline1[4]+' '+headerline1[1]+' '+headerline1[2]+' '+headerline1[3]+' '+headerline1[5]

else:

 if vect == 'v':

 headerline[4] = 'Vector W-spd'

 headerline1[3] = '(m/s)'

 headerlineN = headerline[0]+' '+headerline[1]+' '+headerline[5]+' '+headerline[2]+' '+headerline[3]+' '+headerline[4]+' '+headerline[6]

 headerlineM = headerline1[0]+' '+headerline1[4]+' '+headerline1[1]+' '+headerline1[2]+' '+headerline1[3]+' '+headerline1[5]

with open(output_file, x) as fo:

 print('\nWriting to output file ', output_file, '\n')

 header_title = 'Compared output from ' + sys.argv[1] + ' and ' + sys.argv[2] + '\n'

 fo.write(header_title)

 header_string = '{0:42s}{1:22s}\n{2:20s}{3:4d}\n'.format('Difference values for listed variables in ', output_file, 'Number of data levels ', length)

 fo.write(header_string)

 headerlineP = headerlineN + ' Hgt(not_diff)\n'

 fo.write(headerlineP)

 headerlineU = ' ' + headerlineM + ' (m)\n'

 fo.write(headerlineU)

 for n in range(0, length):

 if vect == 'v':

 vtdif_list[n] = vectspdif_list[n]

 data_string = '{0:4d} {1:7.1f} {2:9.1f} {3:9.2f} {4:9.2f} {5:9.2f} {6:9.2f} {7:11.2f}\n'.format(num_list[n], hdif_list[n], pdif_list[n], wdirdif_list[n], wspddif_list[n], vtdif_list[n], tdif_list[n], hgt_list[n])

 fo.write(data_string)

 header_string = '\nColumn Statistics\n'

 fo.write(header_string)

 for n in range(0, 4):

 stat_string = '{0:7s}{1:5.1f} {2:9.2f} {3:9.2f} {4:9.2f} {5:9.2f} {6:9.2f}\n'.format(stat_list[n], h_list[n], p_list[n], wd_list[n], ws_list[n], vt_list[n], t_list[n])

 fo.write(stat_string)

 fo.write('\n\n')

 print('End of Sounding Compare Script!\n')

#!/bin/env python3

#Name: prof_compare_pressure.py

#This python3 script compares two soundings having the same pressure based

#structure of levels and layers. There are some options. The user can

#select different output variables as follows: wind speed/direction and

#virtual temperature differences, or wind component (u,v) and relative

#humidity differences, or wind component (u,v) and vector wind differences.

#Height and temperature differences are always part of the output.

#The pressure levels or layer midpoints also are in the output.

#

#To run the script enter its name and command line arguments as follows.

#

#python3 prof_compare_pressure.py INPUT_FILE1 INPUT_FILE2 Y V -v

#

#where INPUT_FILE1 and INPUT_FILE2 are generic file names, Y is a character that

#tells the script to append (a) or write (w) the output to its own file, and V is

#a character that directs the script to compute and output differences in vector

#wind speed (v for vector) in place of relative humidity (any other character). V only

#applies for input soundings with wind components (u,v), otherwise it is ignored.

#However, a character for V is not necessary. If it is missing the default is to output RH.

#Use of -v (verbosity) leads to the output of additional information to the screen. Use

#of -v is optional. Entering the script name followed by -h (help) will print to screen

#information on script usage and other details. The program will exit after printing.

#

#The following function is useful for checking what is actually in a line of input.

#--

xyz = repr(currentlist) #Checks for what is actually in the line (shown and hidden).

print('xyz\n', xyz)

#--

import re

import os

import sys

import operator

import ntpath

import statistics

from math import sqrt

import argparse

var_list = []

v_list = []

udif = []

vdif = []

vspd_list = []

#Definition to check if a string represents a number (integer or float).

def is_number(x):

 try:

 float(x)

 except ValueError:

 return False

 return True

#Begin definition for RMS.

def rms(v_list):

 length = len(v_list)

 sq_list = []

 for n in range(0, length):

 sq_list.append(v_list[n] * v_list[n])

 meansq = sum(sq_list)/float(length)

 rmsq = sqrt(meansq)

 return rmsq

#Begin definition for vector wind speed difference.

def vectdif(udif, vdif):

 length = len(udif) #Lists udif and vdif should have the same lengths.

 for n in range(0, length):

 vspd_list.append(sqrt(udif[n]*udif[n] + vdif[n]*vdif[n]))

 return vspd_list #This list holds vector wind differences.

#Begin definition for wind direction differences > 180 deg (>3200 mils).

def wdiff(dr1, dr2):

 if abs(dr2-dr1) > 180:

 if dr2 > dr1:

 sign = 1

 else:

 sign = -1

 x = sign*360

 else:

 x = 0

 drdif = dr1 - dr2 + x

 return drdif

#Begin definition for reading variables into a list.

def var_read(input_dat):

 n_list = []

 a_list = []

 b_list = []

 c_list = []

 d_list = []

 e_list = []

 f_list = []

 for currentline in input_dat:

 linecheck = currentline.strip()

 if not linecheck: # Line is blank.

 continue

 current_list = currentline.split()

 #print('current_list ', current_list)

 n_list.append(int(current_list[0]))

 a_list.append(float(current_list[1]))

 b_list.append(float(current_list[2]))

 c_list.append(float(current_list[3]))

 d_list.append(float(current_list[4]))

 e_list.append(float(current_list[5]))

 f_list.append(float(current_list[6]))

 var_list = [n_list, a_list, b_list, c_list, d_list, e_list, f_list]

 return var_list

#Begin definition for removal of non-matching pressure levels.

def prs_check(data_list1, data_list2):

 n_list1 = data_list1[0]

 n_list2 = data_list2[0]

 p_list1 = data_list1[1]

 p_list2 = data_list2[1]

 b_list1 = data_list1[2]

 b_list2 = data_list2[2]

 c_list1 = data_list1[3]

 c_list2 = data_list2[3]

 d_list1 = data_list1[4]

 d_list2 = data_list2[4]

 e_list1 = data_list1[5]

 e_list2 = data_list2[5]

 f_list1 = data_list1[6]

 f_list2 = data_list2[6]

 if len(p_list1) > len(p_list2):

 length = len(p_list2)

 else:

 length = len(p_list2)

 for m in range(0, length-1):

 if p_list1[0] == p_list2[0]:

 break

 if p_list1[0] > p_list2[0]:

 n_list1.remove(n_list1[0])

 p_list1.remove(p_list1[0])

 b_list1.remove(b_list1[0])

 c_list1.remove(c_list1[0])

 d_list1.remove(d_list1[0])

 e_list1.remove(e_list1[0])

 f_list1.remove(f_list1[0])

 if p_list2[0] > p_list1[0]:

 n_list2.remove(n_list2[0])

 p_list2.remove(p_list2[0])

 b_list2.remove(b_list2[0])

 c_list2.remove(c_list2[0])

 d_list2.remove(d_list2[0])

 e_list2.remove(e_list2[0])

 f_list2.remove(f_list2[0])

 if len(n_list1) > len(n_list2):

 nlength = len(n_list2)

 else:

 nlength = len(n_list1)

 if len(n_list1) != len(n_list2):

 print('Number of data lines in modified input files not the same!')

 print('len(n_list1), len(n_list2) ', len(n_list1), len(n_list2))

 num_list1 = []

 num_list2 = []

 for n in range(0, nlength):

 num_list1.append(n)

 num_list2.append(n)

 data_list1 = [num_list1, p_list1, b_list1, c_list1, d_list1, e_list1, f_list1]

 data_list2 = [num_list2, p_list2, b_list2, c_list2, d_list2, e_list2, f_list2]

 data_list = [data_list1, data_list2]

 return data_list

#Begin definition for basic statistics of single difference table.

def stat_comp(variable_list):

 var_mean = float(statistics.mean(variable_list))

 var_median = float(statistics.median(variable_list))

 var_stdev = float(statistics.stdev(variable_list))

 var_rms = rms(variable_list)

 stat_list = [var_mean, var_median, var_stdev, var_rms]

 return stat_list

#End of definitions.

#Set up argparse command line parameters.

parser = argparse.ArgumentParser(description='Computes differences in listed variables for each pressure level or layer.')

parser.add_argument('infile1', help = 'The first input file.')

parser.add_argument('infile2', help = 'The second input file.')

parser.add_argument('append', choices = ('a', 'w'), help='Write to single file (w) or append (a).')

parser.add_argument("vectwind", nargs = '?', help = 'Vector wind speed differences (v) or RH differences (other character).')

parser.add_argument('-v', '--verbosity', action = 'store_true')

args = parser.parse_args()

#Initialize some lists for use later in acript.

hdif_list = []

wdirdif_list = []

wspddif_list = []

vtdif_list = []

pdif_list = []

tdif_list = []

#Open the input files (sys.argv[0] is the name of the script [aka program])

with open(args.infile1, "r") as fx, open(args.infile2, "r") as fy:

Get header information and pass over unused lines at begining of files.

 for inputline1 in fx:

 linecheck = inputline1.strip()

 if not linecheck: #Remove blank line if found.

 continue

 line = inputline1.split()

 if line[0] == 'Level' or line[0] == 'Layer':

 headerlineA = inputline1

 if line[0] == '(hPa)' or line[0] == '(mb)' and (line[2] == '(degrees)' or line[2] == '(m/s)'):

 headerlineB = inputline1

 break

 for inputline2 in fy:

 linecheck = inputline2.strip()

 if not linecheck: #Remove blank line if found.

 continue

 line = inputline2.split()

 if line[0] == 'Level' or line[0] == 'Layer':

 headerlineC = inputline2

 if line[0] == '(hPa)' or line[0] == '(mb)' and (line[2] == '(degrees)' or line[2] == '(m/s)'):

 headerlineD = inputline2

 break

Check for comparison of level to level or layer to layer.

 headerlistA = headerlineA.split()

 headerlistB = headerlineB.split()

 headerlistC = headerlineC.split()

 headerlistD = headerlineD.split()

 if headerlistA[0] != headerlistC[0] or headerlistB[2] != headerlistD[2]:

 print('Appears level data being compared to layer (= line) data\nor mixed wind spd/dir and component data. Check input.')

 exit()

 headerline = headerlineA.split() #Split here for later use.

 headerline1 = headerlineB.split()

Read in the remaining data lines.

 input_data1=fx.readlines()

 input_data2=fy.readlines()

if args.append == 'a':

 x = 'a'

 output_file = 'diff_profiles'

elif args.append == 'w':

 x = 'w'

 output_file = 'Diff:' + ntpath.basename(args.infile1) + '-' + ntpath.basename(args.infile2)

else:

 print('Choose a (append) or w (write w/o appending) for the last item in the command line.')

 print('Restart the script to continue.')

 exit()

vect = args.vectwind #Define here to avoid using args.vectwind several times.

if args.verbosity:

 print("\nInput file1: {}\nInput file2: {}\nAppend or Write: {}\nOutput vector wind speed difference: {}\n".format(args.infile1, args.infile2, args.append, args.vectwind))

#Produce data lists from input data.

data_list1 = var_read(input_data1)

data_list2 = var_read(input_data2)

#Remove pressure levels or layers that are not the same between the two profiles.

#Usually at the surface and levels or layer immediatly above. The prs-check

#definition handles the work of modifying the profiles if/as needed.

#

data_list = []

data_list = prs_check(data_list1, data_list2)

data_list1 = data_list[0]

data_list2 = data_list[1]

wd_list1 = data_list1[3]

wd_list2 = data_list2[3]

prs_list1 = data_list1[1]

num_list1 = data_list1[0]

#

#Compute the differences. The map and operator functions handle lists of

#unequal length.

pdif_list = list(map(operator.sub, data_list1[1], data_list2[1]))

hdif_list = list(map(operator.sub, data_list1[2], data_list2[2]))

wdirdif_list = list(map(operator.sub, data_list1[3], data_list2[3]))

wspddif_list = list(map(operator.sub, data_list1[4], data_list2[4]))

vtdif_list = list(map(operator.sub, data_list1[5], data_list2[5]))

tdif_list = list(map(operator.sub, data_list1[6], data_list2[6]))

#If have wind component input, wdirdif_list is list of u dif values and wspddif_list of v dif values.

if vect == 'v':

 vectspdif_list = []

 vectspdif_list = vectdif(wdirdif_list, wspddif_list)

#Need a means to account for direction differences > 180 deg (3200 mils).

#

if headerline[2] == 'Wind_Dir':

 wdirlength = len(wdirdif_list)

 for n in range(0, wdirlength):

 wdirdif_list[n] = wdiff(wd_list1[n], wd_list2[n])

#Compute basic statistics for each column of variables (not line numbers).

stat_list = ['Mean', 'Median', 'Std Dev', 'RMSE']

h_list = stat_comp(hdif_list)

wd_list = stat_comp(wdirdif_list)

ws_list = stat_comp(wspddif_list)

if vect == 'v' and headerline[3] == 'U-wind':

 vt_list = stat_comp(vectspdif_list)

else:

 vt_list = stat_comp(vtdif_list)

p_list = stat_comp(pdif_list)

t_list = stat_comp(tdif_list)

#Find which length is smaller if not equal - number of paired levels or layers (lines).

if len(data_list1[0]) == len(data_list2[0]) or len(data_list1[0]) < len(data_list2[0]):

 length = len(data_list1[0])

 num_list = data_list1[0]

else:

 length = len(data_list2[0])

 num_list = data_list2[0]

#

#Output section.

#

if headerline[3] == 'Wind_Dir':

 headerlineN = headerline[0]+' '+headerline[1]+' '+headerline[2]+' '+headerline[3]+' '+headerline[4]+' '+headerline[5]+' '+headerline[6]

 headerlineM = ' '+headerline1[0]+' '+headerline1[1]+' '+headerline1[2]+' '+headerline1[3]+' '+headerline1[4]+' '+headerline1[5]

else:

 if vect == 'v':

 headerline[5] = 'Vector_W-spd'

 headerline1[4] = '(m/s)'

 headerlineN = headerline[0]+' '+headerline[1]+' '+headerline[2]+' '+headerline[3]+' '+headerline[4]+' '+headerline[5]+' '+headerline[6]

 headerlineM = ' '+headerline1[0]+' '+headerline1[1]+' '+headerline1[2]+' '+headerline1[3]+' '+headerline1[4]+' '+headerline1[5]

with open(output_file, x) as fo:

 print('\nWriting to output file ', output_file, '\n')

 header_title = 'Compared output from ' + sys.argv[1] + ' and ' + sys.argv[2] + '\n'

 fo.write(header_title)

 header_string = '{0:42s}{1:22s}\n{2:20s}{3:4d}\n'.format('Difference values for listed variables in ', output_file, 'Number of data levels ', length)

 fo.write(header_string)

 headerlineP = headerlineN + ' Prs(not_diff)\n'

 fo.write(headerlineP)

 headerlineU = ' ' + headerlineM + ' (hpa)\n'

 fo.write(headerlineU)

 for n in range(0, length):

 if vect == 'v' and headerline[3] == 'U-wind':

 vtdif_list[n] = vectspdif_list[n]

 data_string = '{0:4d} {1:7.1f} {2:9.1f} {3:10.2f} {4:9.2f} {5:11.2f} {6:10.2f} {7:11.2f}\n'.format(num_list[n], pdif_list[n], hdif_list[n], wdirdif_list[n], wspddif_list[n], vtdif_list[n], tdif_list[n], prs_list1[n])

 fo.write(data_string)

 header_string = '\nColumn Statistics\n'

 fo.write(header_string)

 for n in range(0, 4):

 stat_string = '{0:7s}{1:5.1f} {2:9.1f} {3:9.2f} {4:9.2f} {5:11.2f} {6:10.2f}\n'.format(stat_list[n], p_list[n], h_list[n], wd_list[n], ws_list[n], vt_list[n], t_list[n])

 fo.write(stat_string)

 fo.write('\n')

 print('End of Sounding Compare Script!\n')

#!/bin/env python3

#Name: profstats.py

#

#This script is used to generate tables of statistics by variable and data line (levels or layers)

#of either height or pressure based files. At this time the statistics are mean, median, standard

#deviation, and root mean square error. The script is run as follows.

#

python3 profstats.py INPUT_FILE X Y -v

#

#where INPUT_FILE is the generic name of the input file (e.g., diff_profiles), X is a parameter

#for height (h) or pressure (p) based input (data lines are for height or pressure levels or

#layers). Y is a parameter for output of statistics of absolute values (abs) or not (any

#other character or string). If Y is not entered the script defaults to regular (not absolute)

#values. The -v indicator refers to --verbosity which prints one or more explanatory statements

#to the screen. Typing -h (--help) after the script name will output information on usage and

#then exit the script. The output file name is profile_stats. Since the output is appended,

#remove an earlier output file if appending is not wanted. To retain the earlier output file

#save with another name before removing.

#

import re

import sys

import os

import statistics

import argparse

import numpy as np

currentlist = []

numberlist = []

itemlist = []

num_list = []

numbers_list = []

varh_list = []

linelist = []

linevalue_list = []

value_list = []

lastval_list = []

line_list = []

prs_list = []

elist = []

meanlist = []

medlist = []

stdlist = []

array_list = []

sample_list = []

#Definition to check if a string represents a number (integer or float).

def is_number(x):

 try:

 float(x)

 except ValueError:

 return False

 return True

#End is_number definition.

#Definition for generation of statistics from input tables (or arrays).

#Items beginlines and begintables are in case begin at data line higher

#than 0. Use if looking at statistics at upper levels only when some tables

#have fewer lines of data than others (e.g., most with 26 lines, but

#a few with 18 lines and others with 21 lines).

def stats(xlen, beginlines, numlines, begintables, numtables):

 for p in range(xlen-1, -1, -1):

 meanlist = []

 medlist = []

 stdlist = []

 rmslist = []

 for m in range(beginlines, numlines+1):

 elist = []

 for n in range(begintables, numtables):

 elmt = float(new_array[n,m,p])

 elist.append(elmt)

 ac = np.array((elist))

 mac = np.mean(ac)

 medac = np.median(ac)

 sdac = np.std(ac)

 rmsac = np.sqrt(np.mean(ac**2))

 meanlist.append(mac)

 medlist.append(medac)

 stdlist.append(sdac)

 rmslist.append(rmsac)

 meanarray = np.array(meanlist)

 medarray = np.array(medlist)

 sdarray = np.array(stdlist)

 rmsarray = np.array(rmslist)

 if p == length-1:

 meana = meanarray

 meda = medarray

 sda = sdarray

 rmsa = rmsarray

 else:

 meana = np.vstack([meanarray, meana])

 meda = np.vstack([medarray, meda])

 sda = np.vstack([sdarray, sda])

 rmsa = np.vstack([rmsarray, rmsa])

 meanaf = meana.T

 medaf = meda.T

 sdaf = sda.T

 rmsaf = rmsa.T

 array_list = [meanaf, medaf, sdaf, rmsaf]

 return(array_list)

#End of stats definition.

#Set up argparse command line arguments.

parser = argparse.ArgumentParser(description='Produces tables of basic statistics by variable and data line. Currently computes mean, median, standard deviation, and root mean square error.')

parser.add_argument('infile', help='Input file of meteorological variable differences (e.g., diff_profiles).')

parser.add_argument('input_type', choices=('h', 'p'), help='Parameter for height (h) or pressure (p) based data lines of input file')

parser.add_argument('absolute', nargs='?', help='Parameter for output of statistics of absolute values (abs) or not (other character or string).')

parser.add_argument('-v', '--verbosity', action='store_true')

arg = parser.parse_args()

#Open the input file (default is diff_profiles) to first obtain header information.

with open(arg.infile, 'r') as fx:

inputlines = fx.readlines()

 print('\nOpening input file ', arg.infile, '\n')

 if arg.input_type == 'h':

 HP_string = 'Hgt\(not_diff\)'

 elif arg.input_type == 'p':

 HP_string = 'Prs\(not_diff\)'

 else:

 print('Enter h or p on command line for height or pressure based input\n')

 print('Start script again.\n')

 exit()

 absval = arg.absolute # Parameter = abs if want to compute statistics for absolute values.

 if absval == 'abs':

 out_file = 'profile_stats_abs'

 else:

 out_file = 'profile_stats'

 header_list2 = []

 for inputline in fx:

 linecheck = inputline.strip()

 if not linecheck: # Remove blank line if found.

 continue

 line = inputline.split()

 match = re.search(HP_string, inputline)

 if match:

 headerline = inputline

headlength = len(varh_list)

 if line[0] == '(hPa)' or line[0] == '(mb)' or line[0] == '(m)':

 header_list2 = line

 if is_number(line[0]):

 length = len(line)

 break

#Write out input files and parameters (command line arguments).

if arg.verbosity:

 print("\nInput file: {}\nHeight or Pressure based (h or p): {}\nAbsolute values (abs)? {}\n".format(arg.infile, arg.input_type, arg.absolute))

#Open input file again to obtain data.

with open(arg.infile, 'r') as fy:

 inputlines = fy.readlines()

#

#Need to find the table with the fewest data lines for producing the

#multi-file statistics by variable and data line. Here we find

#the number of lines within each table and append to a list.

#

num = 0

for currentline in inputlines:

 # Check for blank lines. If blank then skip to next line, and so on to non-blank line.

 line_check = currentline.strip()

 if not line_check: # Line is blank.

 continue

 currentlist = currentline.split()

 numberlist = currentlist

 if is_number(currentlist[0]):

 for n in range(0, len(currentlist)):

 numberlist[n] = float(currentlist[n])

 linelist.append(numberlist[len(numberlist)-1]) #linelist lists the heights or pressures.

 if numberlist[0] == 0:

 num = 0

 prs_list.append(numberlist[len(numberlist)-1])

 else:

 num+=1

 itemlist.append(num)

number_input_tables=1

if arg.input_type == 'p':

 prs_max = min(prs_list)

print('prs_list\n', prs_list)

print('prs_max ', prs_max)

 lastprsval = 0

 removeitems_list = []

 x=0

 for currentline in inputlines:

 line_check = currentline.strip()

 if not line_check: # Line is blank.

 continue

 currentlist = currentline.split()

 numberlist = currentlist

 if not is_number(currentlist[0]):

 continue

 for n in range(0, len(currentlist)):

 numberlist[n] = float(currentlist[n])

 if numberlist[len(numberlist)-1] > prs_max:

 continue

 if numberlist[len(numberlist)-1] > lastprsval:

 x=0

 removeitems_list.append(numberlist[0])

 numberlist[0] = x

 lastprsval = numberlist[len(numberlist)-1]

 x+=1

print('removeitems_list ', removeitems_list)

#

#Use to help find the minimum length of lists within the input arrays or tables.

#The list num_list has the number of lines within each input table.

#The variable number_input_tables = number of difference tables or arrays in the

#input file. Starts as 1 since first table not counted in following for loop.

#

for n in range(1, len(itemlist)):

 if int(itemlist[n]) < int(itemlist[n-1]):

 numbers_list.append(itemlist[n-1])

 number_input_tables += 1

numbers_list.append(itemlist[-1])

#numvalue = []

if arg.input_type == 'p':

 for n in range(0, len(numbers_list)):

numbers_list[n] += 1

 num_list.append(int(numbers_list[n]) - int(removeitems_list[n]))

numbers_list[n] -= 1

else:

 num_list = numbers_list

#print('num_list ', num_list)

#

#Use the following to keep only wanted items in list (=ignore unwanted items).

#

#print('num_list ', num_list)

minlines = min(num_list)

#print('minlines ', minlines)

maxlines = max(num_list)

#print('maxlines ', maxlines)

bottomline = 0 #Initial first line (or row) number.

#

#Initialize the intermediate 2-D array that holds all the tables. The number of rows

#may be even larger in case of many very large input tables and/or very many tables.

max2d_rows=5000

a = np.zeros([max2d_rows,length])

a[::] = np.nan

#Initialize a 3-D array where each table is a separate 2-D array. Fill elements with nan.

#Can can change max3_rows for very large input tables.

max3d_rows = 100

new_array = np.zeros((number_input_tables,max3d_rows,length))

new_array[::] = np.nan

#

Produce the arrays from the input tables of differences and generate the statistics.

#

if arg.input_type == 'p':

 lastval = prs_max

 x=0

ind=0

for j in range(0, len(itemlist)-1):

 if arg.input_type == 'p':

 value_list = []

 line_list = []

 for currentline in inputlines:

 # Check for blank lines. If blank then skip to next line, and so on to non-blank line.

 line_check = currentline.strip()

 if not line_check: # Line is blank.

 continue

 currentlist = currentline.split()

 numberlist = currentlist

 if not is_number(currentlist[0]):

 continue

 for n in range(0, len(currentlist)):

 if absval == 'abs':

 numberlist[n] = abs(float(currentlist[n]))

 else:

 numberlist[n] = float(currentlist[n])

 length = len(numberlist)

If pressure based, remove data lines with pressures > prs_max.

 if arg.input_type == 'p':

 if numberlist[length-1] > prs_max:

 continue

 if numberlist[length-1] > lastval:

 x = 0

 numberlist[0] = x

 line_list.append(numberlist[0])

 value_list.append(numberlist[length-1])

 lastval = numberlist[length-1]

 lastval_list.append(lastval)

print('lastval ', lastval)

 x += 1

 if int(numberlist[0]) > bottomline-1:

 if ind == 0:

 b = np.array([numberlist])

 if ind != 0 and numberlist[0] < minlines+1 and numberlist[0] > bottomline-1:

 a = np.vstack([b,numberlist])

 else:

 a = b

 ind+=1

 b = a

#

#Reshape array into a 3-D array, 1 for each input table or array.

 minlinenum = minlines-bottomline

print('number_input_tables, minlinenum+1, length ', number_input_tables, minlinenum+1, length)

 asize = a.size

print('asize ', asize)

 try:

 new_array = a.reshape(number_input_tables, minlinenum+1, length)

 except:

 print('asize after except ', asize)

#The following print statements provide a check of the intermediate output.

if j == 0:

nar0 = new_array[0,...]

nar1 = new_array[1,...]

nar2 = new_array[2,...]

print('new_array next0 \n', nar0)

print('new_array next1 \n', nar1)

print('new_array next2 \n', nar2)

exit()

Generate list with number of samples per data line.

 linenumber_list = []

 max_number = min(num_list)+1

 min_number = bottomline

print('max_number, min_number ', max_number, min_number)

 for n in range(bottomline, max_number):

 sample_list.append(int(number_input_tables))

 array_list = stats(length, 0, minlinenum, 0, number_input_tables)

 if j == 0:

 meanaf = array_list[0]

 medaf = array_list[1]

 sdaf = array_list[2]

 rmsaf = array_list[3]

 else:

 meanaf = np.vstack([meanaf, array_list[0]])

 medaf = np.vstack([medaf, array_list[1]])

 sdaf = np.vstack([sdaf, array_list[2]])

 rmsaf = np.vstack([rmsaf, array_list[3]])

 num_list = [x for x in num_list if x > minlines]

bottomline = minlines

 bottomline = minlines+1

print('num_list ', num_list)

print('bottomline ', bottomline)

 try:

 minlines = min(num_list)

 except:

 break

print('minlines ', minlines)

 ind = 0

 number_input_tables = len(num_list)

print('number_input_tables ', number_input_tables)

#Replace standard deviations of line numbers (all 0).) that are in the first column

#(that is, column 0) with the respective line numbers. Not needed for the other

#statistical tables since mean, median, and RMSE have the line numbers themselves.

#Produce a list of the column numbers, convert to 1-D array, and replace first column

#in the sdaf array. Do the same for the heights or pressures using the values from

#the respective column in the meanaf array.

#

linecol = []

linecol = meanaf[:,7]

sdaf[...,7] = linecol

col_list = []

for n in range(0, maxlines+1):

 col_list.append(n)

sdaf[...,0] = col_list

#

#Add the list of sample numbers to the arrays as a column.

samples = np.array(sample_list)

meanaf = np.column_stack([meanaf, samples])

medaf = np.column_stack([medaf, samples])

sdaf = np.column_stack([sdaf, samples])

rmsaf = np.column_stack([rmsaf, samples])

#print('meanaf\n', meanaf)

#

#OUTPUT SECTION STARTS HERE.

#

Prepare the output headers.

header_list = headerline.split()

header2_string = ' ' + header_list[0]

for n in range(1, len(header_list)):

 if n == 3 or n == 4 or n == 5:

 header_list[n] = ' '+header_list[n]

 header2_string += ' '+header_list[n]

header3_string = ' '+header_list2[0]+' '+header_list2[1]+' '+header_list2[2]+' '+header_list2[3]+' '+header_list2[4]+' '+header_list2[5]+' '+header_list2[6]

header2_string = header2_string + ' Samples'

header2_string = header2_string + '\n' + header3_string + '\n'

Open and write to the output file.

with open(out_file, "a") as fo:

 print('\nWriting to output file ', out_file, '\n')

 header_string = 'Statistics for profile differences by variable and data line.\n\n'

 fo.write(header_string)

 outlabel='Mean values\n'

 fo.write(outlabel)

 fo.write(header2_string)

 np.savetxt(fo, meanaf, fmt='%4d %7.0f %10.2f %9.2f %9.2f %11.2f %10.2f %12.1f %10d', delimiter=' ')

 outlabel='\nMedian values\n'

 fo.write(outlabel)

 fo.write(header2_string)

 np.savetxt(fo, medaf, fmt='%4d %7.0f %10.2f %9.2f %9.2f %11.2f %10.2f %12.1f %10d', delimiter=' ')

 outlabel='\nStandard Deviation values\n'

 fo.write(outlabel)

 fo.write(header2_string)

 np.savetxt(fo, sdaf, fmt='%4d %7.0f %10.2f %9.2f %9.2f %11.2f %10.2f %12.1f %10d', delimiter=' ')

 outlabel='\nRoot Mean Square Error values\n'

 fo.write(outlabel)

 fo.write(header2_string)

 np.savetxt(fo, rmsaf, fmt='%4d %7.0f %10.2f %9.2f %9.2f %11.2f %10.2f %12.1f %10d', delimiter=' ')

 fo.write('\n')

#!/bin/bash

#Name: profstats.sh

#The bash script profstats.sh is used for producing tables of statistics by variable and height or

#pressure level or layer over multiple difference files generated using prof_compare.sh. The current

#statistics are the basic ones of mean, median, standard deviation, and root mean square error (or root

#mean square difference). Others could be computed in future versions. The standard deviation or

#root mean square error may not be strictly valid for wind speed since a roughly gaussian distribution

#is assumed and wind speed has no negative values (no such distribution around 0).

echo

echo -n 'Do you want to compute statistics of absolute differences (if yes then enter y or yes): '

read absolute

if [$absolute == 'y'] || [$absolute == 'yes']

then

 absval='abs'

else

 absval='no'

fi

echo

echo -n 'If you want to append to the same output file used previously enter y or yes: '

read append

if [$append == 'y'] || [$append == 'yes']

then

 echo Will append to the output file \(i.e., profile_stats or profile_stats_abs\).

else

 echo Removing previous version of output file \(i.e., profile_stats or profile_stats_abs\).

 if [$absval == 'abs']

 then

 rm profile_stats_abs

 else

 rm profile_stats

 fi

fi

echo

echo 'Enter name of input difference values file (default name: diff_profiles).'

read input_file

echo

echo -n 'Are difference values height (h) or pressure (p) based; enter h or p only: '

read Hgt_Prs

echo

if [$Hgt_Prs != 'p'] && [$Hgt_Prs != 'h']

then

 echo 'Enter h or p only for type of difference values. Ending script.'

 echo

 exit

fi

python3 profstats.py $input_file $Hgt_Prs $absval

echo

echo Completed computation of difference statistics.

echo Default output file is profile_stats or profile_stats_abs.

echo

#!/bin/bash

#

#This script is used to process RAOB files from the U of Wyoming or from the NOAA archive.

#

echo This program processes radiosonde observation \(RAOB\) data from either the U of Wyoming

echo web site or the NOAA archive site. The data from the U of Wyoming site may have missing

echo data fields which are left as blank spaces. The program for generation of user defined

echo profiles can account for many of these situations, but not all \(e.g, missing fields in the

echo middle of a sounding which should not occur, but they occasionally happen\).

echo NOTE: the U of Wyoming weather web site for upper air is http://weather.uwyo.edu/upperair/

echo and the NOAA archive site is https://ruc.noaa.gov/raobs/.

echo

echo -n 'Enter input RAOB file name (without path name): '

read raob_input

echo

echo -n 'Is the file from the U of Wyoming site (w) or NOAA site (n). Type w or n: '

read file_type

echo

echo -n 'Output with wind speed/dir and virtual temp (s) or u,v components and rel humidity (c): '

read output_type

if [$output_type != "s"] && [$output_type != "c"]

then

 echo

 echo Need to enter s or c for type of output.

 echo

 exit

fi

if [$file_type == "w"] # Determine if U Wyoming or NOAA sounding being processed.

then # Also, if wind spd/dir and Tv or u, v and RH in output.

 if [$output_type == "s"]

 then

 convert=convertwyo

 convertp=convertprswyo

 elif [$output_type == "c"]

 then

 convert=convertwyo1

 convertp=convertprswyo1

 fi

elif [$file_type == "n"]

then

 if [$output_type == "s"]

 then

 convert=convertnoaa

 convertp=convertprsnoaa

 elif [$output_type == "c"]

 then

 convert=convertnoaa1

 convertp=convertprsnoaa1

 fi

else

 echo

 echo Need to enter w or n to obtain a user defined vertical profile.

 echo

 exit

fi

#Fill the input_parameters file with the input and output paths.

echo

echo 'Enter full input path for use by profile generation program (no / at end of path name).'

read inpathname

echo $inpathname"/" > input_parameters

echo

echo -n 'Enter y or yes if want output path = input path: '

read path_choice

if [$path_choice == "y"] || [$path_choice == "yes"] # Select output path = input path.

then

 outpathname=$inpathname

 echo User chose to use same path for input and output.

else

 echo Enter output path for use by profile generation program.

 read outpathname

fi

echo $outpathname"/" >> input_parameters

echo $outpathname

echo

echo -n 'For the output profiles, enter h for height based, p for pressure based, or b for both: '

read prof_type

if [$prof_type == "b"]

then

 ./$convert $raob_input

 ./$convertp $raob_input

elif [$prof_type == "h"]

then

 ./$convert $raob_input

elif [$prof_type == "p"]

then

 ./$convertp $raob_input

else

 echo No user defined profile selected. Need to rerun script and enter h, p, or b to obtain profile\(s\).

fi

echo

echo End of user defined profile from RAOB sounding script.

echo

#!/bin/bash

#Name: wgrb2.sh

#The bash script wgrb2.sh is used to process both GFS and GALWEM output files,

#but extra processing within the script is performed when GALWEM files are used

#as input to PVM. That GALWEM version has a somewhat different format which makes

#wgrib2 ignore the wind component data (i.e., u and v wind components are in separate

#sections vs. being contiguous for the same data level). The extra processing

#resolves that issue.

#

echo

echo Enter input grib2 file including path if not in the same directory.

read grib2_input

echo

echo -n 'Is the input file GALWEM output in the PVM compatible format? Enter y or yes if PVM compatible: '

read pvm_format

echo

echo Enter name of output file without the \"_out\" extension.

read input_file

echo

echo To obtain a profile very close to the desired location use a separation that

echo is very small, such as 0.0001 degrees. Use a grid size of 2 by 2 grid points.

echo

echo -n 'Enter latitude in decimal degrees (-90<lat<90): '

read lat

echo -n 'Enter longitude in decimal degrees (-180<lon<180): '

read lon

echonumb

#echo $lat $lon

#echo

echo 'Enter y or yes if default values to be used for number of x and y grid points '

echo -n 'and x and y grid separation distances: '

read choice

if [$choice == 'y'] || [$choice == 'yes'] #Check if defaults to be used.

then

 xnumber=2

 ynumber=2

 xgrid_space=0.0001

 ygrid_space=0.0001

else

 #Currently assumes a square grid where number x pts = number y pts.

 echo 'Enter number of grid points for x and y (assumes square grid, e.g., 2 x 2 points).'

 read xnumber

 ynumber=$xnumber

 #Curretly assumes latitude interval in degrees = longitude interval in degrees.

 echo Enter x and y grid interval in degrees \(assumes equal intervals\).

 read xgrid_space

 ygrid_space=$xgrid_space

fi

#echo

#echo $xnumber $ynumber $xgrid_space $ygrid_space

echo

lon_grid=$lon':'$xnumber':'$xgrid_space

lat_grid=$lat':'$ynumber':'$ygrid_space

echo $lon_grid $lat_grid

echo

#Perform the wgrib2 calculations to extract sounding data for a specified location.

if [$pvm_format == 'y'] || [$pvm_format == 'yes'] #Use for PVM compatible GALWEM files only.

then

 wgrib2 $grib2_input | sed -e 's/:UGRD:/:UGRDa:/' -e 's/:VGRD:/:VGRDb:/' | \

 sort -t: -k3,3 -k5,8 -k4,4 | \

 wgrib2 $grib2_input -i -set_grib_type same -new_grid_winds earth -new_grid latlon $lon_grid $lat_grid small_file.grb2 > Category_data

else

 #Use with all other GFS and GALWEM files encountered to date. May need other "special cases" in future.

 wgrib2 $grib2_input -set_grib_type same -new_grid_winds earth -new_grid latlon $lon_grid $lat_grid small_file.grb2 > Category_data

fi

wgrib2 small_file.grb2 -v -s -lon $lon $lat > $input_file #This command works for both of the previous processes.

#Perform the conversion of input_file into a user friendly tabular form.

 python3 gg_wg2.py $input_file

#Rest of program assumes output from gg_wg2.py is in file input_file_out.

#

#Decide on whether or not to generate a user defined profile.

echo

echo -n 'Enter y or yes if want to compute user defined profiles: '

read user_profile

echo

if [$user_profile == "y"] || [$user_profile == "yes"] # Decide if uesr defined profile generated.

then

#Fill the input_parameters file with the input and output paths.

 echo Enter complete input path for use by profile generation program.

 echo For example, \'/data/user/files/\' will work, \'files/\' will not.

 echo Exception to rule: \'./\, works if C executable and input file

 echo are in the same directory.

 echo

 read inpathname

 echo $inpathname > input_parameters

 #echo $inpathname

 if [$inpathname != './']

 then

 cp $input_file $inpathname

 cp $input_file'_out' $inpathname

 fi

 echo

 echo -n 'Enter y or yes if want output path = input path: '

 read path_choice

 #echo $path_choice

 if [$path_choice == "y"] || [$path_choice == "yes"] # Select output path = input path.

 then

 outpathname=$inpathname

 echo User chose to use same path for input and output.

 else

 echo Enter complete output path for use by profile generation program.

 read outpathname

 fi

 echo

 echo $outpathname >> input_parameters

 echo $outpathname

 echo

 echo -n 'Wind spd/dir and Tv or components (u,v) and RH; enter s (spd/dir) or c (compnents): '

 read output_type

 if [$output_type == 's']

 then

 convertgfsh=convertgfs

 convertgfsp=convertprsgfs

 elif [$output_type == 'c']

 then

 convertgfsh=convertgfs1

 convertgfsp=convertprsgfs1

 else

 echo Need to rerun script and enter s \(wind spd/dir\) or c \(components\)to obtain profile\(s\).

 exit

 fi

 echo

 echo -n 'For the output profiles, enter h for height based, p for pressure based, or b for both: '

 read prof_type

 echo

 if [$prof_type == "b"] #convertgfs and convertprsgfs work for GALWEM as well as GFS since the

 then #extracted soundings have the same format.

 ./$convertgfsh $input_file'_out'

 ./$convertgfsp $input_file'_out'

 elif [$prof_type == "h"]

 then

 ./$convertgfsh $input_file'_out'

 elif [$prof_type == "p"]

 then

 ./$convertgfsp $input_file'_out'

 else

 echo No user defined profile selected. Need to rerun script and enter h, p, or b to obtain profile\(s\).

 fi

 if [$inpathname != './']

 then

 rm $input_file $input_file'_out' #Removes duplicate file from executables directory.

 fi

else

 echo No user defined profile generated at the user\'s request.

 echo Extracted profile \(_out file\) is in the same directory as the script.

fi

echo

echo End of GRIB2 vertical profile extraction and conversion script.

echo

#!/bin/bash

#Name: wrf_extract.sh

#The script wrf_extract.sh extracts vertical profiles of meteorological variables at a user

#selected location (lat and lon) from a WRF output file and converts it into a "sounding" for

#user selected levels or layers.

#Input file can be in the standard WRF output format (e.g., wrfout_d02_2018-05-09_12:00:00)

#or some other name. For ease of locating file date and time should use the standard date-time

#or something similar (e.g., 20180508_12-00-00). But need to remember: need to use standard

#format for date-time input (case_day_text) such as 2018-05-09_12:00:00.

echo "Enter the name of the input file"

read input_file

#Input path for input WRF output file.

echo "Enter the path to the input file (no / at end of path name)."

read input_path

echo

#Script to change which domain is linked to.

file_to_link_from='wrfout.nc'

wrf_out_base_dir=$input_path

echo "wrf_out_base_dir " $wrf_out_base_dir

echo

#If the file we wish to link from exists but is not a link

#error and exit.

if [-f "$file_to_link_from"] && [! -h "$file_to_link_from"]; then

 echo "ERROR: $file_to_link_from exists but is not a link."

 echo "Will not remove $file_to_link_from to avoid possibly removing a file that should not be removed"

 exit

#If the file we wish to link from exists and IS a link

#delete it.

elif [-h "$file_to_link_from"]; then

 rm -f $file_to_link_from

fi

#If the file remains after deleting error and exit.

if [-f "$file_to_link_from"]; then

 echo "ERROR: After removal link $file_to_link_from still exists!"

 exit

fi

#Arrays are zero-based but we ignore the 0 value here for simplicity.

#echo "WRF output is available from the following cases"

#case_day_choice=1. THIS SELECTION METHOD NOT USED IN THIS VERSON.

echo "WRF output is available for the following domains"

echo "1. Domain 01 (outer domain)"

echo "2. Domain 02"

echo "3. Domain 03"

echo "4. Domain 04"

echo "5. Domain 05"

echo "6. Domain 06"

echo "7. Domain 07"

echo -n "Choose a domain: "

read domain_choice

#Since case day entered by user there is only 1 case day. Original

#allowed > 1 case day that was entered or modified within the script.

#Text regarding date/time associated with case day.

echo

echo -n 'Enter a case day-time, for example 2017-06-26_18:00:00 (e.g., last part of WRF output file name): '

read case_day_text

echo

#Reading exp_num_text no longer used in this verson.

#echo -n 'Enter an experiment name which is the directory name holding the WRF output(e.g., LMN_2018051100): '

#read exp_num_text

#echo

domain_text[1]="d01"

domain_text[2]="d02"

domain_text[3]="d03"

domain_text[4]="d04"

domain_text[5]="d05"

domain_text[6]="d06"

domain_text[7]="d07"

echo "User chose to process WRF file beginning at ${case_day_text} for domain ${domain_text[$domain_choice]}"

echo

#Copy input file to "standard" name for wrf output file.

if [$input_path"/"$input_file != $input_path"/wrfout_"${domain_text[$domain_choice]}"_"$case_day_text]

then

 cp $input_path"/"$input_file $input_path"/wrfout_"${domain_text[$domain_choice]}"_"$case_day_text

echo $input_path"/wrfout_"${domain_text[$domain_choice]}"_"$case_day_text

echo "Different file name"

#else

echo "Same as standard wrf output file name."

fi

#echo "file name to be used"

#echo $input_path"/wrfout_"${domain_text[$domain_choice]}"_"$case_day_text

#file_to_link_to="wrfout_${domain_text[$domain_choice]}_${case_day_text[$case_day_choice]}"

file_to_link_to="wrfout_${domain_text[$domain_choice]}_${case_day_text}"

#file_to_link_to_with_path=${wrf_out_base_dir}${exp_num_text}"/"${file_to_link_to}

file_to_link_to_with_path=${wrf_out_base_dir}"/"${file_to_link_to}

#echo "file to link to with path"

#echo $file_to_link_to_with_path

echo

echo "Linking $file_to_link_from to $file_to_link_to_with_path"

ln -s $file_to_link_to_with_path $file_to_link_from

echo

echo End of part 1, generaton of wrfout.nc.

echo

echo -n 'If you want to continue and generate a profile, type y or yes: '

read indx

echo

if [$indx != "y"] && [$indx != "yes"]

then

 exit

fi

#Run once to get the available spatiotemporal ranges

eval ncl run_to_inform_user_of_options=1 time_index_to_extract=-999 position_specifier_type=-999 latitude_to_extract=-999 longitude_to_extract=-999 x_index_to_extract=-999 y_index_to_extract=-999 interp_optiont=-999 extract_profile.ncl

#Ask user where and when to extract a profile

echo -n "Enter the index to the desired time (0-based): "

read time_index_to_extract

echo "To choose the point to extract do you wish to choose:"

echo " 1) latitude / longitude "

echo " 2) x/y "

echo -n ": "

read position_specifier_type

if [$position_specifier_type -eq 1]; then

 echo -n "Enter the latitude to extract (decimal degrees): "

 read latitude_to_extract

 echo -n "Enter the longitude to extract (decimal degrees): "

 read longitude_to_extract

 x_index_to_extract=-999

 y_index_to_extract=-999

elif [$position_specifier_type -eq 2]; then

 echo -n "Enter the x-index to extract (0-based): "

 read x_index_to_extract

 echo -n "Enter the y-index to extract (0-based): "

 read y_index_to_extract

 latitude_to_extract=-999

 longitude_to_extract=-999

else

 echo "Invalid choice. Exiting."

 exit 1

fi

if [$position_specifier_type -eq 1]; then

 echo "Do you wish to:"

 echo " 0) Extract the point nearest to the chosen latitude/longitude"

 echo " 1) Use inverse distance weight interpolation to the chosen latitude/longitude"

 echo " 2) Use bilinear interpolation to the chosen latitude/longitude"

 echo -n ": "

 read interp_option

else

 interp_option=-999

fi

#Extract the profile

eval ncl run_to_inform_user_of_options=0 time_index_to_extract=$time_index_to_extract position_specifier_type=$position_specifier_type latitude_to_extract=${latitude_to_extract}d longitude_to_extract=${longitude_to_extract}d x_index_to_extract=$x_index_to_extract y_index_to_extract=$y_index_to_extract interp_option=$interp_option extract_profile.ncl

echo

#Decide on whether or not to generate a user defined profile.

echo

echo -n 'Enter y or yes if want to compute user defined profiles: '

read user_profile

echo

if [$user_profile == "y"] || [$user_profile == "yes"] # Decide if user defined profile generated.

then

#ncl function produces a profile with file name wrf_profile.

 echo "Do you want to use default file name (wrf_profile) for extracted WRF sounding?"

 echo "If yes enter y or yes."

 read default_name

 if [$default_name == "y"] || [$default_name == "yes"]

 then

 input_file='wrf_profile'

 else

 echo "Enter output file name."

 read input_file

 cp wrf_profile $input_file

 fi

#Fill the input_parameters file with the input and output paths.

 echo 'Enter input path for use by profile generation program (no / at end of path name).'

 read inpathname

 echo $inpathname"/" > input_parameters

 #echo $inpathname

 mv $input_file $inpathname"/"

 echo

 echo -n 'Enter y or yes if want output path = input path: '

 read path_choice

 #echo $path_choice

 if [$path_choice == "y"] || [$path_choice == "yes"] # Select output path = input path.

 then

 outpathname=$inpathname

 echo User chose to use same path for input and output.

 else

 echo "Enter output path for use by profile generation program (no / at end of path name)."

 read outpathname

 fi

 echo

 echo $outpathname"/" >> input_parameters

 echo $outpathname

 echo

 echo $outpathname >> input_parameters

 echo $outpathname

 echo

 echo -n 'Wind spd/dir and Tv or components (u,v) and RH; enter s (spd/dir) or c (compnents): '

 read output_type

 echo

 if [$output_type == 's']

 then

 convertwrfh=convertwrf

 convertwrfp=convertprswrf

 elif [$output_type == 'c']

 then

 convertwrfh=convertwrf1

 convertwrfp=convertprswrf1

 else

 echo Need to rerun script and enter s \(wind spd/dir\) or c \(components\)to obtain profile\(s\).

 exit

 fi

 echo

 echo -n 'For the output profiles, enter h for height based, p for pressure based, or b for both: '

 read prof_type

 if [$prof_type == "b"]

 then

 ./$convertwrfh $input_file

 ./$convertwrfp $input_file

 elif [$prof_type == "h"]

 then

 ./$convertwrfh $input_file

 elif [$prof_type == "p"]

 then

 ./$convertwrfp $input_file

 else

 echo No user defined profile selected. Need to rerun script and enter h, p, or b to obtain profile\(s\).

 fi

else

 echo No user defined profile generated at the user\'s request.

 echo

fi

echo

echo END OF WRF VERTICAL PROFILE EXTRACTION AND CONVERSION SCRIPT.

echo

