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ABSTRACT

Investigating Emergent Design Failures Using a Knowledge-Action-Decision
Framework

by

Colin P. F. Shields

Chair: David J. Singer

Cost growth and schedule delays frequently impact the design of naval vessels as well

as other physically-large and complex products. In vessel design, many instances

of cost growth, performance loss, and delays occur suddenly and are unexpected,

causing significant damage to an acquisition program. These outcomes are not caused

by physical product failure. Instead, they are symptoms of design failures and are

characterized by emergent rework, inability to integrate disparate information, and

unexpected design difficulty.

Design failures emerge from learning and decision-making that occurs during a

design activity. In naval acquisitions, failures are frequently caused by the complexity

of the naval design activity. Design approaches, processes, methods, and tools attempt

to manage this complexity, but no methods exist to address it directly. To address the

root-cause of design failures, new capabilities are needed to understand the knowledge-

based relationships that drive their emergence.

This thesis proposes a Knowledge-Action-Decision (K-A-D) Framework that en-

ables a knowledge-centric perspective of design. The K-A-D Framework decomposes

xv
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design into an endogenous knowledge structure that describes the changing relation-

ships between the ideas, concepts, and evidence designers use to progress a design

activity. Analysis of the K-A-D Framework through a network representation allows

the importance of knowledge structure elements to be measured, the trajectory of

a design activity to be identified, and opportunities to prevent design failures to be

found.

The K-A-D Framework, its network representation, and network analysis provide

insight into the complex design dynamics that create unexpected design outcomes.

First, results and methods from design science and the study of path dependence

are synthesized to create the theoretical basis of the K-A-D Framework. The frame-

work is constructed to capture the temporal relationships in knowledge structure

development that can ingrain and lock-in design outcomes through path dependence.

Second, the framework is applied to investigate the complex behaviors of an agent de-

signing a solution to the Traveling Salesman Problem. Using network analysis of the

K-A-D Framework, the agent’s solution development and decision-making behaviors

are identified and, in some cases, predicted. Third, the knowledge-centric perspective

is applied to a naval distributed system design scenario by using the framework to

define an approximate knowledge structure for distributed system integration. Fi-

nally, ensemble analysis is used to investigate the potential distributed system de-

sign knowledge structure characteristics under different early-stage design conditions.

Examining the knowledge structure characteristics identifies design conditions that

have elevated risk for late-stage design failures. Analysis of path dependence in the

knowledge structure development identifies conditions where the risk of failure may

be reduced by decisions made by the designer during the distributed system design

activity.

xvi
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CHAPTER I

Introduction

Naval vessel design requires an integration of disciplines ranging from structures

to cyber security and is spread across a sprawling body of vendors, contractors, and

government entities. Successful design requires that the needs of all constituents and

disciplines are balanced within a set of requirements and satisfactory vessel specifi-

cation. While the scope of this is immense, the difficulty of the naval design activity

is further convoluted by its ‘wickedness’ (Andrews , 2011). This means that defining

achievable and affordable requirements can only be done by exploring solution con-

cepts, which in turn can lead to requirement changes and a re-interpretation of the

problem itself (Rittel and Melvin, 1973). In practice, the scope of the naval design

activity and its wicked nature make on-budget and on-schedule design completion elu-

sive. Engineering and design issues cause significant cost growth and schedule delays

in U.S. Navy vessel procurement (Under Secretary of Defense Acquisition Technology

and Logistics (US[AT&L]), 2013, 2014). Table 1.1 shows a number of examples.

Naval design cost growth and delays are not caused by failures of the physical ves-

sel; they occur in the overarching design activity and arise unexpectedly during design

and integration. Their root cause is emergent design failure. Design failures, in gen-

eral, are characterized by excessive rework, the inability to integrate the design, and

increasing design effort (Braha and Bar-Yam, 2007). The design failures in Table 1.1

1
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Ship Initial budget ($M)
Total cost
growth ($M)

Cost growth as a percent
of initial budget (%)

CVN 77 4, 975 847 17
LCS 1-2 472 603 128
LHD 8 1, 893 303 16
LPD 18-23 6, 194 1, 548 25

Table 1.1: Cost growth in program budgets for ships under construction in fiscal year
2007 (Government Accountability Office, 2007).

emerged from the history of development, integration, and decision-making preced-

ing their failure. While some design failures are non-emergent, caused by significant

events that would be expected to cause failure, emergent failures are unexpected,

but potentially preventable. To understand emergent design failures and what can

be done to prevent them, the underlying interactions and relationships of knowledge,

decisions, and actions that produce them must be understood.

In this dissertation, formal design theories and design cognition research are syn-

thesized into a framework for tracking how design knowledge is created and used to

make design decisions through time. The framework enables complex design behav-

iors to be identified and measured as they occur in a design activity. The goal of this

dissertation is to use the proposed framework and analysis to provide new insights

into how emergent design failures arise and what designers can do to prevent them.

1.1 Background and Motivation

The motivation for this dissertation arose from discussions with Robert Keane,

former U.S. Navy Chief Naval Architect, about unexpected emergent cost and work

content growth in vessel design. Keane has produced a large body of work on U.S.

Navy cost drivers and costing improvements (Keane, 2011; Keane et al., 2015, 2016,

2017). This work and his experiences have repeatedly identified vessel complexity,

characterized by the density of shipboard systems, as a reliable predictor of increased

2
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design, engineering, and production work content and cost Keane (2011).

Vessel complexity has driven cost growth for decades. Arena et al. (2006)’s analysis

of naval acquisition cost growth, shown in Table 1.2, found that increasing vessel,

system, and mission complexity has significant contributions to annual cost escalation,

near 20% for surface combatants (Arena et al., 2006). This corroborates findings that

vessel complexity causes long-term cost growth between vessel acquisitions programs

and unexpected near-term cost growth (First Marine International , 2005).

Ship type
Annual escalation rate
due to characteristic
complexity (%)

Total annual
growth rate
(%)

Portion of annual
growth rate due
to complexity (%)

Surface combatants 2.1 10.7 19.6
Attack submarines 1.6 9.8 16.3
Amphibious ships 1.7 10.7 15.9

Table 1.2: Contribution to annual cost escalation rate by characteristic complexity,
1950-2000 (Arena et al., 2006).

Nearly half the cost of naval vessel is spent on its installed systems (Miroyan-

nis , 2006) and these systems are significant sources of ship complexity (Keane et al.,

2017). The systems installed in a vessel must be designed individually and then inte-

grated within a functional vessel design. The difficulty of this design and integration

frequently leads to extreme cost growth (Government Accountability Office, 2007).

Design difficulty and failures in system design stem from the interaction between

systems within the integrated vessel design (Rigterink , 2014). Changing the configu-

ration or requirements of one system can have ramifications across the many potential

interacting systems. The effect is that changing system design or replacing equipment

within the system is costly and difficult (Schank et al., 2009).

Typically, the cost implications of system integration are captured in vessel com-

plexity measures. Figures 1.1 shows the relationship between outfit density, a com-

plexity characterization, and ship production hours (Keane, 2011). Figure 1.2 shows

compensated gross tonnage coefficient, which is based in complexity metrics, for ves-

3

FINAL TECHNICAL REPORT 
N00014-14-1-0712



sel cost approximations (Craggs et al., 2004). The take away of both figures is that as

the systems in the vessel becomes more tightly packed the cost increases non-linearly.

Figure 1.1: Relationship between outfit density and ship production hours (Keane,
2011).

Figure 1.2: Compensated gross tonnage coefficient by ship type (Craggs et al., 2004).

The complexity measures used to estimate cost implications quantify the inter-

actions between systems within the vessel. The relationship between cost growth

and these complexity measures are based on the product that is designed (a vessel

in naval design). They are a surrogate for the underlying causes of knowledge-based
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design failures. High levels of system interaction require more designer knowledge to

understand the integrated system. As the number of system interactions grow, so

does the knowledge requirement on the designer. The resulting design failure mode,

explosive growth in the required design effort, emerges from this relationship.

The unwanted effects of complexity are not limited to vessel design. Table 1.3

shows Bar-Yam’s documentation of a number of large-scale system engineering and

design failures. Bar-Yam (2003a) identifies that current engineering practices break-

down in the face of complex system design. Specifically, designing a complex system

becomes exponentially difficult as the system environment and desired system be-

haviors increases in complexity (Bar-Yam, 2003b). In essence, the design of complex

systems fails because large complex systems are hard to understand. From this per-

spective, designing a complex system is a complex task and complex tasks can only be

accomplished by another complex system (Bar-Yam, 2003b). Because of this, design

can be understood and represented as a complex system itself.

If design is a complex system, what is it a system of, and what is a design fail-

ure? Mavris and DeLaurentis (2000) provide insight into the former by defining and

representing design as a relationship between designer knowledge and freedom, see

Figure 1.3. Gillespie (2012) and Parker (2014) identified that the knowledge-freedom

relationship is complementary. Over time, designer actions generate knowledge which

can be used to make decisions about the product specification. Decisions reduce the

set of potential products, limiting freedom, but facilitating more targeted knowledge

generation. This breaks the design complex system into interdependent relationships

between knowledge, decisions, and the actions that create and use them. Thus, de-

sign failure occurs when this system is unable to converge on a fully defined and

understood product.

Like all complex systems, understanding the knowledge-action-decision design de-

composition must be approached from the bottom-up. This requires that each element
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System function - organization Years of work
(outcome)

Approximate
cost
$M=Million,
$B=Billion

Vehicle Registration, Drivers
license - California DMV

1987-1994
(scrapped)

$44M

Automated reservations, tick-
eting, flight scheduling, fuel
delivery, kitchens, and general
administration - United Air
Lines

Late 1960s -
Early 1970s
(scrapped)

$177M

State wide Automated Child
Support System - California

1991-1997
(scrapped)

$110M

Hotel reservations and flights
- Hilton, Marriott, Budget,
American Airlines

1988-1992
(scrapped)

$125M

Advanced Logistics System -
Air Force

1968-1975
(scrapped)

$250M

Taurus Share trading system -
British Stock Exchange

1990-1993
(scrapped)

$100− $600M

IRS Tax Systems Moderniza-
tion projects

1989-1997
(scrapped)

$4B

FAA Advanced Automation
System

1982-1994
(scrapped)

$3− $6B

London Ambulance Service
Computer Aided Dispatch Sys-
tem

1991-1992
(scrapped)

$2.5M, 20 lives

Table 1.3: List of large-scale engineering design failures (Bar-Yam, 2003b).
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Figure 1.3: The relationship between design knowledge and design freedom through
time (Mavris and DeLaurentis , 2000).

of the system and their potential interactions are defined and the resulting structures

can be understood in the context of the macro-level design activity. However, in naval

design, design knowledge is traditionally communicated through product models. To

quote the NAVSEA (2012),

As the design evolves from initial concept through construction, delivery,

and, eventually, disposal, the type and amount of information stored in the

product model is ever increasing. Specific design products are extracted

from the product model in electronic format to document the design, trade

studies, and analyses, and design decisions made throughout each design

phase.

Product models are a reduction of the final product. The traditional approach is

to capture generated design knowledge in these reductions and then use the reduc-

tions to make decisions about the final product. This approach is product-centric.
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To understand if the knowledge underpinning the product models will cause emer-

gent design failures, a knowledge-centric approach is required. How knowledge is

developed and used needs to be tracked through the entire design activity. This can

be accomplished with the knowledge-action-decision design decomposition. Once the

system is defined and its behaviors better understood, it can be applied to naval

design problems.

The knowledge-centric design perspective can provide new insights into why ship

complexity causes design failures and how these failures can be addressed. The goal

of this dissertation is to introduce the knowledge-based complex system design per-

spective, provide the theory to define the system, develop an actionable mathematical

foundation, and demonstrate the theory on canonical and naval design problems.

1.2 Current Research

The main challenge of this research was to create a new way to represent design

activities, analyze design activity behaviors, and predict how those behaviors could

lead to emergent design failures. The created methods had to capture the complex

system underlying design activities in a way that could be applied to general and

naval specific cases. This research attempts to develop a method and supporting

theories similar to analysis used in studies of design cognition, but applicable to large-

scale and long-term design and engineering efforts. The goal is to decompose design

activities into three interrelated types of elements, without necessitating the detailed

classification of elements or a fixed scale of analysis. This allows the method to be

used in the general study of design and provide new insight into the characteristics

and behaviors of complex system design. Such a method would enable designers to

identify potential causes of costly design failures in early-stage design and take action

to mitigate the associated risks.
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1.2.1 Scope

Three broad problems have been identified:

• Emergent and costly design failures arise from the act of designing a product,

not from the product’s attributes.

• Avoiding emergent design failures requires that knowledge-based design com-

plexity is understood and analyzed; it is insufficient to only consider the product.

• Complexity in shipboard system design and integration is the proximate cause

for extreme, unexpected late-stage cost and work content growth. Preventing

these outcomes depends on the the knowledge-centric design perspective and

requires a new analysis perspective.

These problems can be restated as three research questions:

1. Can an objective characterization of the design activities that cause or increase

the chance of emergent design failures be developed?

2. Can knowledge-based design complexity be represented, understood, and used?

3. Can complex design activity dynamics provide new insight into emergent naval

design failures?

The scope of this thesis is to address these questions by introducing a knowledge-

based design perspective rooted in theories of design science and cognition, and fa-

cilitated by the study of complex systems. Addressing these questions represents a

paradigm shift away from the traditional product-centric design perspective that is

reliant on product models to a knowledge-based perspective. This shift requires a

fundamental re-framing of the naval design activity as well as the supporting theory

and analysis to make it actionable.
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1.3 Contributions

This thesis expands the scope of naval design considerations and analysis from

the product-centric perspective to a more encompassing knowledge-centric perspec-

tive. It is the author’s belief that the expanded view allows designers to more deeply

understand the causes of design outcomes and how they can affect them. That is,

emergent design outcomes are a function of product information within the context

of the designer’s body of knowledge. As information is used and understood by de-

signers, it becomes knowledge that expands the body of knowledge. Thus design

can be leveraged towards better outcomes by examining the larger knowledge-based

system. The primary contribution of this thesis is a knowledge-based design frame-

work to represent the design activity and ground it in design science and cognition.

Supporting contributions include methods for modeling the knowledge-based design

decomposition, verification of the framework and model, and analysis tools for mea-

suring design activity behavior in general and naval-domain instances. The specific

contributions addressing the research question are:

1. Can an objective characterization of the design activities that cause or increase

the chance of emergent design failures be developed?

(a) Introduction of a knowledge-centric design perspective and corresponding

knowledge-based description of design activities.

(b) Recognition that the temporal emergence of interdependencies within the

knowledge-based system, called knowledge structures, control design out-

comes through path dependence.

(c) Redefined design failure in terms of knowledge structure characteristics

and growth.

(d) Classification of the factors influencing knowledge structure development.
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2. Can knowledge-based design complexity be represented, understood, and used?

(a) Formulated Knowledge-Action-Decision Framework to design activities.

i. Defined designer knowledge, action, and decisions as the fundamental

interdependent elements of knowledge structure development.

ii. Structured the definitions of knowledge, action, and decisions so that

they could be studied temporally to elicit emergent behaviors in the

design activity.

(b) Demonstrated analysis capabilities of the Knowledge-Action-Decision Frame-

work on a simulated design problem.

i. Defined a network representation of the Knowledge-Action-Decision

Framework.

ii. Applied the network representation to track simulated design activi-

ties.

iii. Introduced interpretations of network analysis methods to measure

complex system behaviors in design knowledge structures.

iv. Demonstrated that network-based knowledge structure analysis can

identify emergent designer behavior through time, as modeled in the

design simulation.

3. Can complex design activity dynamics provide new insight into emergent naval

design failures?

(a) Re-framed early-stage ship system design as an ensemble analysis of pos-

sible late-stage system configuration network representations to identify

how early-stage decisions influence late-stage product characteristics.

i. Expanded network-based models of a vessel physical architecture, log-

ical architecture, and physical system configuration.
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ii. Created methods to generate ensembles of physical system configura-

tions in early-stage ship design.

iii. Formulated system density analysis to create leading indicators of late-

stage design trade-offs between physical system configuration and ves-

sel layout.

(b) Structured ship system design and integration as a design problem within

the Knowledge-Action-Decision Framework.

i. Identified the knowledge structure characteristics developed during

distributed system design using the law of functional complexity.

ii. Created analysis methods to convert distributed system network rep-

resentations into knowledge structure characteristics.

iii. Measured the probabilistic characteristics of system design knowledge

(c) Measured the potential for emergent design failures in distributed system

design activities and identified opportunities for designers to prevent them.

i. Identified the potential for late-stage design failures by applying en-

semble knowledge structure analysis to relate early-stage decisions to

increased knowledge generation and unpredictable knowledge struc-

tures.

ii. Demonstrated that product-centric analysis cannot elicit the potential

for design failures and that knowledge-centric analysis is required.

iii. Measured the drivers of knowledge structure characteristics to iden-

tify opportunities for designers to avoid design failures through their

actions.
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1.4 Overview of Dissertation

This dissertation is divided into 8 chapters in 2 core sections. The first section,

Chapters 2-5, provide the theoretical background to represent design activities, ana-

lyze design activity behaviors, and predict how those behaviors could lead to emergent

design failures. The second section, Chapters 5-7, illustrates how the proposed ap-

proach can help prevent emergent failures in naval design. These chapters detail the

application of the developed theory to a naval distributed systems design example.

• Chapter II introduces the knowledge-centric perspective of design activities and

differentiates it from the product-centric perspective. The chapter demonstrates

how a knowledge-centric perspective can provide new insights into emergent de-

sign failures and identifies the work needed to make the perspective actionable.

• Chapter III presents a theoretical framework for modeling the knowledge-centric

design perspective using knowledge structure development. Knowledge struc-

ture development is decomposed into three types of interrelated elements: knowl-

edge, actions, and decisions. It is proposed that the growing set of relationships

between these elements captures how path dependence can influence design

outcomes and how design failures can arise during a design activity.

• Chapter IV defines a mathematical representation of knowledge structure growth

during a design activity, called the Knowledge-Action-Decision (K-A-D) Frame-

work. A multilayer network representation of the K-A-D Framework is intro-

duced along with a number of analysis methods. The mathematical model,

network representation, and analyses are demonstrated on a small design activ-

ity.

• Chapter V applies the K-A-D Framework to an agent-based designer solving

the Traveling Salesman Problem. Four computational experiments are used
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to model learning, decision-making, and path dependence in a design activity.

Analysis of the agent’s knowledge structure development shows that the mod-

eled design behaviors can be measured and identified with the K-A-D Frame-

work.

• Chapter VI explains the knowledge-centric perspective of naval distributed sys-

tem design and details how and why it frequently causes emergent design fail-

ures. Then, the K-A-D Framework is applied to model and analyze knowledge-

based design complexity in an early-stage naval distributed system design.

• Chapter VII uses the distributed system knowledge structure model to identify

the potential for emergent design failure and provides new insight into how

design failures can be prevented.

• Chapter VIII summarizes the body of work presented and offers suggestions for

future research.
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CHAPTER II

Naval Design, Knowledge-Based Complexity, and

Emergent Design Failures

1 Over the last 20 years, engineering and design issues have significantly increased

cost growth and delays in U.S. Navy acquisition (Under Secretary of Defense Acqui-

sition Technology and Logistics (US[AT&L]), 2013, 2014) and other large-scale sys-

tem acquisitions (Bar-Yam, 2003b). These issues represent design failures which are

characterized by unexpected excessive rework, inability to integrate a product, and

increased design effort (Braha and Bar-Yam, 2007). Numerous studies have linked

design failures to product complexity and have provided guidelines for avoiding them,

for example (Gaspar et al., 2012; Keane et al., 2015, 2017). This is a product-centric

perspective that focuses on the relationship between design outcomes and the prod-

uct’s constituent parts. While the product-centric view of complexity is instructive,

design failures are based in the act of designing the product, not the product itself.

Thus to better understand what causes design failures, the system of designing must

be considered, not just the system being designed.

Fundamentally, designing is a learning and decision-making activity (Gero, 1990).

Over time, designers generate knowledge to facilitate decisions about the product

1The following chapter is an adaptation of a submission to Naval Engineers Journal for publication
under the title, NAVAL DESIGN, KNOWLEDGE-BASED COMPLEXITY, AND EMERGENT
DESIGN FAILURES.
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(Hansen and Andreasen, 2004). Together, these descriptions highlight that design

creates a growing knowledge-based system. Design failures occur when the design

activity enters unproductive cycles, becomes intractable, or requires too much effort

to sustain. Design failure states are emergent, caused by the interdependent web of

designer knowledge and their decisions, not by an overarching flaw in design prac-

tices. When decisions are made or new knowledge is created, it must be integrated

into the existing designer knowledge. In extreme cases, integration causes design fail-

ures through incompatible knowledge and cascading decision changes or knowledge

rework. Because of this, many root-causes of design failures can only be identified by

understanding this knowledge-based complexity.

This chapter presents the theoretical basis for describing naval design as a knowledge-

based system. Section 2.1 proposes a knowledge-based system model of design and

provides example applications to naval design. Section 2.2 identifies emergence as the

complex behavior behind design failures and Section 2.3 discusses how current design

practices mitigate unwanted emergence. Section 2.4 presents conclusions and future

work.

This chapter seeks to answer the following:

• What drives design failures in the design of complex naval systems?

• What strategies are available to mitigate and prevent design failures?

• How can these strategies be improved?

While the knowledge-centric perspective provides new insights into the research

questions, further studies into the methods of implementing possible improvements

will be needed. The research questions and their answers aim to advance the broader

question of how the current U.S. Navy design practices can be augmented to avoid

extreme, unexpected cost growth and delays.
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2.1 Naval Design as a Knowledge-Based System

Theoretical models of design can help introduce a knowledge-centric perspective of

naval design. Mavris and DeLaurentis (2000) describe the system acquisition process

as a relationship between design knowledge and design freedom. Design knowledge is

the information and ideas used by the designer. Design freedom is how much of the

product is undefined, or conversely, how much of the product specification has been

decided. Design knowledge and decision are created by designer actions that progress

the design (Oxman, 1990).

Shown in Figure 2.1, which expands on the knowledge-freedom relationship, the

design starts with limited knowledge which grows through learning. When decisions

are made based on design knowledge, the freedom of potential design outcomes de-

creases. The resulting relationship is circular - gain knowledge, make a decision,

repeat until convergence or failure (Gillespie, 2012; Parker , 2014). In formal theories

of design, this relationship is described as a co-evolution of the problem and solution

concept knowledge (Dorst and Cross , 2001; Maher et al., 1996).

Figure 2.1: Progression of design knowledge, freedom, and action. Knowledge grows
through learning actions and is used for decision-making to specify parts
of the solution. Decisions reduce the freedom of future concepts to facili-
tate further development and may also predicate additional decisions.
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During the design activity, designers use their knowledge and solution concept

ideas to learn about the design problem and support further design development

(Hatchuel and Weil , 2003, 2009). The patterns of knowledge generation and usage

create a set of relationships between ideas, evidence, and concept functions, called

the knowledge structure (Dong , 2016).

Interdependencies within the knowledge structure create path dependencies to-

wards certain solutions. A path dependent process is one where the order of events

in the system change the probability of future outcomes (Page, 2006). In design, this

means that the sequence of actions that design a technology will ultimately affect

the defined problem and its solution (Dosi , 1982). As path dependencies grow, they

create preferences toward concept ideas and the knowledge to support them (Rycroft

and Kash, 2002).

This dissertation refers to cascading design changes that result from information,

knowledge, and decisions as path dependent. In some cases, a single decision, piece

of information, or introduction of a new technology could be classified as tipping

points. This would be the case if the distribution over possible designs changed

dramatically as opposed to the more gradual accumulated changes described in the

thesis Lamberson and Page (2012). For example, the introduction of knowledge about

a flawed reduction gear in the Freedom-class Littoral Combat Ship design would be

an example of a tipping as it resulted in fundamental changes to the ships design,

integration, and manufacturing plan.

The relationship between knowledge structure development and solution concepts

can be thought of in terms of fitness landscapes. On a fitness landscape, the quality

of each solution for a given problem is represented by its “height”. To represent

a design problem, each concept is evaluated against the designer’s current problem

understanding (which includes the current design requirements).

Easy problems have peaked landscapes, shown in Figure 2.2a, with a distinct
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Figure 2.2: Classes of design problem landscapes. Each point on the landscape repre-
sents a solution concept and the point’s height represents its fitness based
on the designer’s problem understanding (Shields et al., 2016a).

optimal solution that is readily found. Hard problems have rugged landscapes, shown

in Figure 2.2b, with many locally good solutions that obscure the true optimal (Grim

et al., 2013; Page, 2010).

The study of complex systems distinguishes complicated problems, that can be

completely understood given sufficient time and resources, from complex problems

that cannot. Complex problems can never be solved because they have dancing

landscapes with dynamic optima (Figure 2.2c), which are effected by interacting,

diverse variables that change over time (Page, 2008).

Nontrivial design, where problems are ill-defined and solutions are more than

combinations of existing technologies are complex problems with dancing landscapes.

Here, concept quality may change due to forces outside the designer’s control, the way

the problem is approached, and the sequence of actions used to approach it. These

three factors - external, internal, and temporal - can be applied to naval design by

considering events in a notional ship design process:
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• External factors: Changes in the landscape due to forces outside of the de-

signer’s control. For instance, congressional budget changes or new mission

requirements may alter a vessel’s fitness by making it unaffordable or ill-suited

for planned operations.

• Internal factors: Changes in the landscape due to the designer’s understanding

of the problem or decisions. This is the wicked problem effect; efforts to solve

a problem may reveal, create other problems, or contradict existing decisions

(Andrews , 2012). For instance, refining a concept may reveal a new technical

challenge that was previously unknown, such as wet deck slamming in multi-hull

vessels.

• Temporal factors: Changes in the landscape due to path dependencies. These

are often created by the build up of internal and external factors over time.

For instance, a promising high-voltage weapon system leads to all-electric ship

development and expertise, which motivates further weapons systems develop-

ment and exploration.

Unlike static problems, complex problems have unpredictable optima and cannot

be solved in the traditional sense of locating a highest point. In the best possible case,

the nature of the complexity can be understood and the actors, interactions, and pro-

cesses that produce it can be harnessed (Axelrod and Cohen, 2000). During a design

activity, designers try to guide knowledge-based dynamics to define a satisfactory

problem and produce a solution. Thus, understanding these dynamics requires that

the underlying knowledge-based complex system is investigated. To make this idea

more concrete, the knowledge-centric design perspective is applied to two examples.

These examples illustrate the general influence of the three factors of complexity on

design activities.
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Figure 2.3: Relationship between design knowledge and management influence,
adapted from (Wheelwright and Clark , 1992).

Temporal Complexity: Design Manager Influence

Knowledge generation, decision-making, and path dependencies explain the chang-

ing influence managers have on design outcomes. Figure 2.3 illustrates the phe-

nomenon. At the outset of design, the manager leading the design effort has signif-

icant power to influence the design’s trajectory. However, as the design progresses

influence is reduced (Wheelwright and Clark , 1992). While this has been well stud-

ied from process and organizational standpoints, a knowledge-centric perspective can

provide additional context.

When the knowledge supporting design is first created, the manager can guide

what is investigated and control decision-making. Over time, the knowledge structure

builds to support and refine a particular problem and corresponding concepts. The

result is path dependencies towards a particular set of design outcomes. Reworking

the knowledge structure requires revisiting a large body of interdependent knowledge

and decisions.
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This accounts for both the early manager control and later lack thereof. Guiding

the creation of path dependencies that define the problem and solution concepts gives

managers significant influence. Once the path dependencies are created, the influence

is diminished and changing course becomes more difficult. The influence of path

dependence, as well as the other factors influencing design, can be seen in the U.S.

Navy’s Littoral Combat Ship acquisition program.

Factors of Complexity in the Littoral Combat Ship Design Changes

Announced in 2001, the Littoral Combat Ship (LCS) was to be a speed and

stealth oriented vessel as part of the US Navy’s DD(X) surface combatant family

(Work , 2014). LCS concept development continued from 2001 to 2003 and a number

of key elements were defined. Among them was the belief that the LCS would rely on

integration with the broader fleet architecture for its effectiveness and survivability

(Work , 2014).

However, as vessel requirements developed there was a new emphasis placed on

temporary aviation capabilities as well as reduced manning goals (Work , 2014). Ad-

ditionally, the original survivability requirements were increased to make individual

vessels more survivable as opposed to relying on the fleet (United States Navy , 2003).

While the above is a significantly abridged section from the LCS design history,

internal, external, and temporal factors are apparent. Much of the concept evolution

was internal, caused by a better understanding of how the LCS would be used. Some

of the evolution was external, the defense community required more survivability.

Finally, development was clearly temporal, building off of the initial concept instead

of restarting at each change.
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2.1.1 Complexity and Design Failures

Knowledge-based complexity can cause design failures when internal, external,

or temporal factors lead to knowledge structure rework or the inability to integrate

information. Broken down by factor, these failure modes are:

• External factors: New requirements or knowledge can cause successive knowl-

edge generation. The resulting knowledge has to integrate with the existing

knowledge structure which may cause integration difficulties and increased de-

sign effort.

• Internal factors: Changing design understanding and decision-making can in-

validate previous knowledge or decisions. When large portions of the knowledge

structure are effected it can cause significant delays and prevent design comple-

tion.

• Temporal factors: Path dependencies can lock-in undesirable or unstable solu-

tions. Redirecting these path dependencies may cause design failures because

rework has implications on previous design decisions. Additionally, changing

course away from well-developed knowledge and concepts may require signifi-

cant design effort.

Defining design as a knowledge-based complex system introduces a new way of

looking at design and its failures. Using ideas from the broader study of complex

systems, the three causal factors of complexity can be translated into a single core

behavior, called emergence, that drives failures.

2.2 Emergent Design Failures

Miller and Page (2008) define a complex systems as a system with interactions

between diverse actors with interdependent behaviors who adapt to one another.
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Emergence describes how system-level properties can arise from these lower-level in-

teractions.

Design outcomes and failures are caused by behaviors of a knowledge-based com-

plex system. This implies that design failures are negative behaviors that arise from

underlying interactions between knowledge, decisions and how they are used by the

designer. The idea of emergence helps explain how those behaviors can be studied.

Emergence describes the system as a result of its parts. This is described in Bedau’s

definition of weak emergence (Bedau, 1997):

Macrostate, P , of system, S, with microdynamic, D, is weakly emergent

if and only if P can be derived from D and S’s external conditions but

only by simulation.

Emergent properties are greater than the properties of single subsystems and

result from interactions between system elements, people, and subsystems. In naval

architecture, emergence is seen in many properties of the physical vessel, e.g. cascading

system failures, but emergence in vessel design stems from designers and teams that

work to create a product.

Emergence properties do not have governing equations, they must be composed

from the interaction of multiple elements and simulated. The same logic applies to

the knowledge-centric design perspective and its knowledge and decisions.

Design failures are strongly affected by the relationships of the information and

tasks in a design activity (Braha and Bar-Yam, 2007). In some cases, design failures

can be understood and addressed through the way knowledge is used and created

during the design activity (Braha and Reich, 2003). For example, emergent design

rework can be prevented by controlling knowledge generation (Mihm and Loch, 2006;

Smith and Eppinger , 1997) and design innovation difficulties can be mitigated by

managing the patterns of knowledge structures (Dong , 2016).
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Preventing failures depends on the emergent knowledge structure and correspond-

ing design landscape behavior. The design knowledge dynamics that drive emergent

failures can only be observed through the underlying system. Because of this, emer-

gent design behaviors and failures need to be identified through the knowledge-based

system. This knowledge-centric perspective is in contrast to the traditional product-

centric perspective. The product-centric perspective focuses on the level of solution

definition that is defined within the context of an actual instantiation of the material

solution. The following examples illustrate this point by comparing the product-

centric and knowledge-centric perspectives of emergence.

Knowledge-Based Emergence: LCS Modifications

As a result of new requirements and budgetary pressures, the Navy announced

plans to modify the LCS designs in 2014. The modified vessels were designated as

frigates, with enhanced survivability and lethality. In many ways, this appears to a

product-based change, the LCS vessel is slightly altered to a frigate. However, there

has been a significant design effort required to generate the knowledge to under-

stand how the new requirements impact the vessel design United States Government

Accountability Office (2015). This is an example of knowledge-based emergence.

In 2010, the Navy planned to test two LCS variants: a trimaran designed by

General Dynamics and a monohull designed by Lockheed Martin (Work , 2014). The

most desirable variant would be contracted for extended production and the less

desirable would be phased out of production (Work , 2014). From the product-centric

perspective, the goal was to identify all emergent performance characteristics and

select the best concept.

However, the more relevant emergent behavior was knowledge-based. Operating

the two vessels showed designers that increased survivability and lethality were needed

for both variants (O’Rourke, 2017b). This represents an internal factor of complex
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design behavior. When the design problem was better understood, the fitness of

vessel concepts changed. The design outcome will depend on the integration of the

LCS knowledge structure with the knowledge structure development that supports

the modifications. This is far removed from the product-based outcome, which is

dependent on the differences between the parts that compose the original LCS and

its frigate modification.

Knowledge-Based Emergence: Design Instability

The Navy’s CVN-78 design had a goal to integrate 16 new and untested tech-

nologies into its as-built design (Government Accountability Office (GAO), 2009).

These technologies were designed, built, and tested concurrently with the vessel design

(O’Rourke, 2017c). This introduced significant risk into the vessel design and system

integration, leading to considerable cost and schedule growth (O’Rourke, 2015).

The Navy’s testimony indicated that the cost growth was driven by design re-

quirements changes associated with the developing technologies (O’Rourke, 2017c).

The negative effects of design changes are not limited to the CVN-78. They have been

seen repeatedly in studies of over-budget and behind schedule acquisition programs

(Government Accountability Office (GAO), 2009).

From a product-centric perspective, design changes are relevant when they change

the attributes of the material solution. From a knowledge-centric perspective, design

changes can cause emergent behavior in the entire design activity. Knowledge struc-

ture growth means that initial ideas and evidence are used to create knowledge to

facilitate future designer actions. This creates patterns of interdependent knowledge.

If parts of the knowledge structure change, other parts must also change. The scope

of this propagation can cause emergent design difficulty and rework.

Attempts to prevent emergent failures driven by design changes have been notice-

ably product-centric. During the CVN-79 design, there was a program-wide effort to
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complete 100% of the product models and 80% of initial engineering drawings by the

time of construction contracting (O’Rourke, 2017a). This drive to reach 100% solu-

tion definition is product-centric and representative of the belief that design outcomes

are controlled by the product that is created. However, due to the complexities of

large-scale design, it is impractical to reach 100% product definition. Additionally, the

product model cannot account for the knowledge and decision interdependencies that

created it. This leaves design outcomes vulnerable to knowledge-based emergence.

Knowledge interdependencies and the internal factors of complexity mean that

fixing a large portion of the product does not guarantee the corresponding knowledge

is also fixed. New design knowledge may propagate across the knowledge structure

and result in significant rework of the “fixed” product. Thus, without the capability

to directly consider the knowledge-centric perspective, it is impossible to evaluate if

the remaining 20% of the CVN-79 drawings have the potential to cause emergent

design failures.

2.2.1 Linking Product and Knowledge-Based Emergence

Emergence illustrates why both product-centric and knowledge-centric perspec-

tives must be used to ensure positive design outcomes. Product-based analysis pro-

vides valuable information about how alternatives will perform and their associated

characteristics. Knowledge-based analysis can help designers understand the overall

design activity. While not explicit, there has been a push in naval design to link the

product to its knowledge-centric implications.

Measures of product and process complexity help to bridge the gap between the

product- and knowledge-centric design perspectives. Keane has identified, through

multiple studies (Keane et al., 2015, 2016, 2017), the importance of minimal vessel

(product) complexity in acquiring vessels at cost. He and his team identified that

the issue is that complex products have substantial cost growth associated with their
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design and production. This insight is a surrogate for the underlying knowledge-based

system.

Complexity measurements quantify the amount of information required to under-

stand a system (Mitchell , 2009). Applied to product concepts, complexity measures

allow a designer to ask, “how much knowledge will I need to generate to understand

this alternative?” In essence, this question helps designers translate the product-

centric perspective to a knowledge-centric one.

Complexity measures are also used to translate design processes into a knowledge-

centric perspective. Analyses can translate interactions between process activities into

a quantification of the process complexity (Doerry , 2009). This is another surrogate

of the knowledge-based design description. More complex processes require more

generation effort to achieve a particular level of designer knowledge. The key insight

behind this analysis is that the knowledge structures designers create can significantly

impact design outcomes.

Product and process complexity help navigate the design of complex products by

providing information about emerging behaviors in the underlying knowledge-based

system. However, there are cases where product and process level analyses are unable

to explain emergent design behaviors. In the face of emergent design failures, this

leaves designers to fall back on design practices that mitigate the negative effects of

design complexity.

2.3 Mitigating Knowledge-Based Complexity

The effects of design complexity did not become a problem in naval programs

suddenly; they have grown with the increasing scale of naval products and the inter-

dependencies of systems and stakeholders behind them (Arena et al., 2006; Dobson,

2014; Kana et al., 2016). Over time, practices have evolved to manage complex de-

sign behaviors and mitigate the risk of failure. Using the McKenney-Singer design
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taxonomy (McKenney and Singer , 2014), these practices can be broken into parts:

• Design Approach: Overarching guiding principle of a design effort.

• Design Process: A series of structured steps to implement the design approach.

• Design Method: The way in which design alternatives are understood, analyzed,

and selected for a particular approach and process.

• Design Tool: In support of a design activity, tools provide information that

enables designer decision-making.

All four parts of the taxonomy must exist to complete a design activity. When

implemented correctly, each of the four parts can help prevent emergent design fail-

ures. This section will discuss how Set-Based Design design activities and Systems

Engineering design activities implicitly use different parts of the taxonomy to avoid

knowledge-based complexity.

2.3.1 Set-Based Design

Set-Based Design was developed at The Toyota Motor Corporation (Ward et al.,

1995) and have since been applied to aerospace (Bernstein and Deyst , 1998) and

naval ship design (Singer et al., 2009). The premise of Set-Based Design is product

discovery by way of elimination instead of selection. The method is characterized by:

(1) communicating broad sets of design values, (2) developing sets of design solutions,

and (3) delaying design decisions until adequate information is known (Singer et al.,

2009).

Set-Based Design, visualized in Figure 2.4, uses separate groups of experts to

continuously provide opinions for design values within the design space. Intersec-

tions between these groups’ feasible and preferred regions are identified and retained.

Infeasible or dominated regions are removed from further consideration. Using the
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more concentrated set of alternatives higher quality information is created (McKen-

ney , 2013). When all sets are feasible, and all tradeoffs are explored, the best possible

design can be selected (Bernstein and Deyst , 1998).

Figure 2.4: Set-Based communication and convergence Bernstein and Deyst (1998).

Design activities using Set-Based Design implement a Concurrent Engineering

approach. Concurrent Engineering advocates for considering all aspects of a prod-

ucts lifecycle from the outset of design. This enables designers to identify errors and

redesign early when the project is flexible (Kusiak , 1993). The Set-Based Design

method uses the knowledge generated in Concurrent Engineering to enable the elim-

ination of infeasible and dominated sets of alternatives. Over time, this reduces and

refines the number of alternatives until a fully understood concept is converged.

Set-Based Design is often facilitated by specific execution tools that negotiate

knowledge generated by traditional engineering tools. However, Set-Based Design

does not specify a design process for its implementation. This leaves the designer to

develop a tailored process for each design activity. For example, the Ship to Shore

Connector design activity used the Decision-Oriented Systems Engineering process
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to develop the execution steps and tasks needed to implement Set-Based Design

(Buckley , 2009; Singer et al., 2009), while the Amphibious Combat Vehicle used the

U.S. Navy Concept Design Process to develop the process needed to execute Set-Based

Design (Doerry et al., 2014).

Set-Based Design controls temporal factors that can lead to emergence by account-

ing for unexpected internal and external factors. The set-based convergence method

accomplishes this by guiding how design knowledge is generated. This creates two

unique knowledge structure properties:

1. Eliminating dominated or infeasible regions promotes design progression from

well-understood regions. In Set-Based Design, solutions can only be eliminated

if no new information would change the outcome. Thus, only low-risk knowledge

is used to generate new design knowledge. This reduces the probability that

internal or external factors of complexity will cause emergent behavior.

2. Knowledge about overlapping regions between sets is generated in parallel. This

prevents temporal factors from creating path dependencies towards knowledge

about a single well-developed solution concept and accounts for internal and

external factors.

Implementing the set-based convergence method requires that sets are understood

and defined. Sets are typically established at the outset of the design activity, after

knowledge interdependencies between relevant disciplines are identified. The Concur-

rent Engineering design approach and a tailored process facilitates this step.

In terms of the knowledge structure, Set-Based Design creates relevant knowledge

interdependencies early in the design activity. The knowledge structure is first created

using groups of experts to generate a large body of initial knowledge. This refines the

design problem and creates a knowledge structure encapsulating relevant disciplines,

their interdependencies, and their possible external factors. In Set-Based Design, the
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initial knowledge is used to generate sets which control future knowledge generation

and decision-making actions.

During concept development, experts repeatedly evaluate and refine the estab-

lished sets. Regions within a set are classified as dominated or infeasible when they

are un-preferred by designers and no new knowledge is likely to change the evalua-

tion. When this occurs, designers decide to stop developing the associated knowledge.

Over time, decisions converge the knowledge structure on a stable defined solution.

Elimination decisions create a low-risk knowledge structure. Only making decisions

when the supporting knowledge is well-understood and is unlikely to change leaves

stable knowledge to be further developed. In the face of internal or external factors of

complexity, this knowledge is unlikely to need to be refined to support a design shift.

In this way, set-based convergence builds the knowledge structure from a diverse and

stable body of knowledge. While this requires a significant amount of knowledge

generation and decision-making, it enables designers to prevent design failures by

leveraging temporal factors.

When Set-Based Design is properly executed, knowledge is generated from all re-

maining and overlapping sets. This eliminates path dependencies created by knowl-

edge generation focused on a specific part of a solution concept. Generating knowl-

edge from all overlapping sets also helps account for internal and external factors

of complexity. If the design problem changes (internal) or something outside of the

designers control changes the design landscape (external), its effects are considered

for all remaining sets. Because the sets are supported by low-risk knowledge, it is less

likely that complexity will drastically change the sets. Additionally, it should require

less knowledge generation to adjust the sets because they are refined in parallel, as

opposed to being focused on a single concept. This enables designers to manage un-

certainty or changes in the design problem while maintaining the developed solution

concepts.
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Figure 2.5: Department of Defense Systems Engineering Process Model (ACQuipedia,
n.d.).

Set-Based Design delays the development of path dependencies while inherently

accounting for complex design behaviors. This helps designers understand the chang-

ing design landscape and reduces the knowledge generation effort required to converge

on a high-quality concept. Compared to traditional selective methods where knowl-

edge structures evolve to support previous decisions, set-based elimination methods

create path dependencies away from risky alternatives. In doing so, Set-based Design

delays temporal factors. This helps mitigate internal and external factors of complex-

ity. When the design landscape shifts, a flexible knowledge structure allows designers

to quickly transition knowledge generation towards more promising areas. In effect,

this lifts the “freedom line” in Figure 2.1 so that the designers can better respond to

the dancing landscape in Figure 2.2.

2.3.2 Systems Engineering

Systems Engineering focuses on defining customer needs and required functional-

ity early in the development cycle, documenting requirements, then proceeding with

design syntheses and system validation while considering the complete problem (IN-

COSE , n.d.). Figure 2.5 visualizes this definition in its classic Vee.
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Systems Engineering design activities follow the Systems Engineering process to

rigorously implement a Concurrent Engineering design approach. The System Engi-

neering Vee guides designers through specifying a suitable product. The decompo-

sition stage is concerned with understanding the desired product attributes and de-

termining the resources needed to create them. Proceeding through the Vee, desired

attributes are translated into the final product. In the realization stage individual

attributes are integrated into the product. Finally, the defined product is verified and

validated to insure that the integration actually produced the desired results.

Systems Engineering does not specify a design method, instead it suggests that

an appropriate multicriteria decision-aiding technique be used (Bahill and Gissing ,

1998). This leads to the use of decision-making tools that facilitate design pro-

cess decisions such as Quality Function Deployment and Analytic Hierarchy Process

(Dickerson and Mavris , 2016; Kossiakoff , 2011).

System Engineering decision-making tools are typically iterative, helping design-

ers select the best alternative to further develop. This selection relies on traditional

engineering tools to model and understand alternatives. Design execution uses Sys-

tems Engineering specific tools. Generated design information is used by a project

managers who are responsible for frequent process validation and integrating multi-

ple perspectives into a balanced design (Kossiakoff , 2011). Together, these steps can

reduce the potential for unexpected landscape dynamics.

Systems Engineering controls knowledge structure development and prevents de-

sign failures through the Systems Engineering process. The process defines how design

knowledge should be generated and grouped into modules to limit complex design be-

havior. In effect, this creates a pattern of knowledge and decisions that is repeated

throughout the knowledge structure given reasonably predictable design behavior.

Before the pattern can be implemented, the underlying knowledge structure must be

created.
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Initial design learning starts by generating knowledge about the design require-

ments. Following a Concurrent Engineering approach, the relevant disciplines are

identified and a large body of interdependent knowledge is generated to decide on a

set of requirements. To achieve this, information about product uncertainty must be

well characterized. This starting condition provides a stable knowledge structure to

begin generating concept knowledge.

Once concept development begins, Systems Engineering uses the repeatable knowl-

edge generation and decision-making pattern defined by decomposition to generate

the knowledge structure. Decomposition modularizes the generation of knowledge

along sub-systems so that the composite system can be understood. This reduces the

required knowledge generation efforts by limiting knowledge interdependencies. The

realization side of the Vee uses the knowledge structure developed for each sub-system

to validate the sub-system performance. The pattern is repeated for the lowest-level

sub-systems and then integrated up to larger composites. Because knowledge inter-

dependencies are limited during decomposition, the propagation of the knowledge

generated during these actions is also limited. Limiting knowledge propagation pre-

vents emergent rework and integration failures.

Knowledge modularization also guides decision-making. Using the segmented

knowledge structure to make decisions limits how they propagate in the knowledge

structure. This further reduces the potential for emergent failures.

Frequent design reviews and validation steps built into the System Engineering

process help identify and address unexpected design behavior. When the knowledge

decomposition and integration is impacted by changes to the design problem by any of

the three factors, it is identified through validation. Once identified, new knowledge

is generated and integrated to address any incompatibilities in the knowledge struc-

ture. When executed properly, Systems Engineering creates a repeatable pattern of

knowledge generation that limits emergent design failures. The pattern and resulting
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knowledge structure controls external and internal factors of complexity and helps

managers track temporal factors. This reduces the potential for emergent failures

and limits the effect if they occur.

2.3.3 Mitigation Differences

Design activities that utilize Set-Based Design and Systems Engineering both

control knowledge-based complex behavior and mitigate design failures. Set-Based

Design achieves this through a method for investigating alternatives. Systems Engi-

neering achieves this through a design process that controls how the design activity

is executed.

When Set-Based Design and Systems Engineering are executed correctly, they

both yield products that satisfy the design problem. However, the complexity miti-

gations provided by each are different. Set-Based Design controls the development of

temporal factors towards robust knowledge structures. Systems Engineering controls

internal factors to ensure design decisions are well-defined and understood.

For certain circumstances, one mitigation strategy may be better suited than

another. So far, choosing how they are applied is based on manager intuition or

organizational practice. A better understanding of knowledge-based complexity could

identify when and how each strategy should be leveraged. Further, nowhere in these

design practices is knowledge-based design directly addressed. Identifying emergent

behaviors that cause design failures will require more explicit techniques.

2.4 Conclusions

Avoiding emergent rework, inability to integrate, and unexpected design difficulty

are critical objectives in naval design practices. Preventing these failures requires that

the behaviors that cause them are well defined and understood. Examining design

as a knowledge-based system illustrates that many observed failures are driven by
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complex knowledge generation and decision-making behaviors, not from the product

itself. While the current state-of-the-art design practices implicitly mitigate some of

this complexity, a more thorough perspective is needed. Returning to the research

questions proposed in the introduction to the chapter:

• What drives emergent design failures in the design of complex naval systems?

Defining design as the act of generating knowledge for decision-making through

time shows that emergent design failures have three potential causes: external

factors that require new designer knowledge; internal factors that change de-

signer knowledge of the problem and solution concepts; temporal factors that

drive a solution and limit designers’ ability to affect design outcomes. Fail-

ures occur when one or more of these factors cause a significant increase in the

amount of knowledge required to complete the design activity or makes a large

portion of designer knowledge incompatible. When these behaviors emerge,

extensive work and rework can be required to understand and integrate the

design.

• What strategies are available to mitigate and prevent design failures?

Design practices have evolved to handle the factors that cause emergent design

failures. Rigorously managing internal factors, limiting exposure to external

factors, and executing design to leverage beneficial temporal factors all help

prevent failures. Towards this goal, analyzing product complexity measures

knowledge-centric impact and can help identify the potential for failure earlier

in the design activity.

• How can these strategies be improved?

Existing practices and analyses can implicitly address knowledge-based causes of

design failures. However, as the structure of knowledge generation and decision-

making increases in complexity, they become lacking. Tools and techniques to
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explicitly model and analyze design’s knowledge-based complexity may help

identify emergent failures before they develop.

To implement these improvements, a mathematical framework is needed to define

design as a knowledge-based complex system. This will provide a basis for the direct

study of the causal factors of design complexity. Developing these techniques and

analyses will support knowledge-based design analysis as a usable perspective for

improving naval design. The following chapters will develop the required framework,

demonstrate its efficacy, and apply it to the naval distributed system design problem.
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CHAPTER III

Knowledge Structures and Path Dependence

The previous chapter described how naval design failures emerge from the knowl-

edge structure created during a design activity. The emergence of design failure is

influenced by internal, external, and temporal factors of complexity. To concretely

and quantitatively understand how design failures develop, a formal framework for

studying design knowledge structures is needed. First, a definition of knowledge

structure elements is needed. Second, the mechanisms relating knowledge structures

and design failures must be more clearly defined. Third, a framework for tracking

knowledge structures during a design activity is required.

In this chapter, knowledge structures are defined as a set of interdependent knowl-

edge and decisions that are expanded through designers’ actions. Establishing a

definition for knowledge structures also requires a definition for product structures.

Product structures describe a product’s constituent elements and their relationships.

There is not a correct form of a product structure, it only has to be sufficient for the

design activity at hand. For example, a rectangle can be described by length and

width elements, or it can be described as an aspect ratio and scalar. In naval design,

some product elements may be length, beam, and draft variables that are related by

geometric relationships. Other examples are the spaces and components within the

vessel and their relationships to one another by distributed systems.
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Design outcomes are the knowledge structure and product structure created during

a design activity. Together, they describe how a product was developed and the

products definition. However, design activities are typically approached solely from

a product perspective. The product perspective is concerned with the quality of a

product structure and the best approach to define it. Systems Engineering is a prime

example - it prescribes how requirements should be decomposed directly into product

elements and relationships. This product perspective neglects the knowledge-based

behaviors that drive the product structure definition. In contrast, the knowledge

perspective is concerned with the development of the information, ideas, and decisions

that allow the designer to define a product structure.

The purpose of this chapter and Chapter IV is to provide clarity on form and func-

tion of knowledge structures so that a knowledge perspective can be applied to design

activities. This chapter will discuss similar and overlapping research on knowledge

structures. Previous research will frame the current research and allow recognition

of its unique attributes. Additionally, the review will help establish the components

of a knowledge structure so that a more rigorous definition can be presented in the

next chapter.

The first subject is the general application of knowledge structures, Section 3.1,

which have been used heavily to study human cognition and the behavior of business

firms. Understanding this background will help build the foundation for understand-

ing how knowledge structures can be applied to naval design. Previous design research

will also be discussed and relevant knowledge structure insights are identified. Section

3.2 discusses the relationship between knowledge structures and path dependencies.

Path dependence provides a mechanism to understand how and why knowledge struc-

tures influence design activities. Section 3.3 identifies a number of research gaps that

limit the scope of knowledge structure analysis and application in design. Section

3.4 takes a step towards bridging those gaps by describing how design activities can
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be recorded and understood through their knowledge structures. A brief summary

concludes the chapter.

3.1 Knowledge Structures

The concept of knowledge structures was developed to improve understanding of

how individuals recall information based on their knowledge and its cognitive organi-

zation (Chi , 1978). This made knowledge structures an important idea in education,

where the goal was to help individuals acquire and use new knowledge (Bernstein,

1996). In tangential research, investigations occurred to ascertain how knowledge

structures developed. It was found that different experiences could shape in individ-

ual’s knowledge structure that would in turn influence how they perceived the world.

This was well illustrated in a study of the relationship between knowledge structures

and gender (Markus et al., 1982).

More generally, the concept of the knowledge structure linked how information

was stored, to how it would be used (Schank and Abelson, 2013). The relationships

between an individual’s knowledge grow over time (Maton, 2007) and significantly

influences the way new information is processed, understood, and used (Bernstein,

1999). This relationship makes it possible to consider how an individual will solve

problems based on the development and composition of their knowledge structure.

Knowledge structures have similar implications for organizations. Organization

strategy studies the relationships between people, teams, and entities within a firm

(Miles et al., 1978). These works found that the ideas behind studying an individual’s

knowledge structure could be applied to organizations and the people within them

(Lyles and Schwenk , 1992; Sparrow , 1999). Primarily, this idea was leveraged to

measure a firm’s ability to innovate and learn (Cohen and Levinthal , 1990; Galunic

and Rodan, 1998). These studies found that knowledge structures influence learning

and decision-making behaviors at the individual, team, and organizational levels.
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Knowledge structures create an interesting linkage between the past, present, and

future. Experiences and the acquisition of knowledge shape an individual’s knowledge

structure. That knowledge structure then affects how new knowledge is acquired and

used. The result is a relationship and feedback between what is known now and how

an individual or organization might behave in the future.

Applied to naval design failures, the knowledge structure encapsulated in the Navy

and participating entities influences the outcomes of naval acquisition and design.

The knowledge structure built from past experiences will change how new ship design

activities will be approached, how new information will be used, and what decisions

will be made. Because of this, design failures are not just a function of an unfortunate

knowledge structure shift, they can be primed by existing knowledge and emerge from

knowledge structure growth.

The study of knowledge structures in design activities provides some insight into

how this occurs. Design research that investigates how individuals or teams design

often implicitly rely on the idea of a growing knowledge structure that influences

design outcomes.

It is well documented that design activities begin with some initial knowledge

based on designer experience and subject matter expertise (Laxton, 1969). Over the

course of the design activity, designers build on their existing knowledge. For example,

concept exploration is used to grow and refine knowledge about the problem and

possible solutions (Goldschmidt and Weil , 1998). This describes an initial knowledge

structure the designer brings to a design activity that is incrementally developed.

Studying how this growth occurs has been a fruitful branch of research in design

cognition, named design studies, that examine how individuals and teams design

(Cross , 2001).

Generally, design studies observe, encode, and analyze human behaviors during

a short design activity (Cross et al., 1996). For example, studying how knowledge
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is developed can provide insight into how the designer approached the design activ-

ity (Goldschmidt , 1995; Goldschmidt and Weil , 1998; Kan and Gero, 2008). Similar

methods investigate growing knowledge relationships to qualitatively describe how

the design activity was completed (van der Lugt , 2001; Cash et al., 2014) and quan-

titatively measure how knowledge is used by the designer (Kim and Kim, 2015; Cash

and Štorga, 2015).

Design studies and their employed analyses provide two insights into studying

emergent naval design failures. First and fortunately, an entity’s or individual’s

knowledge structure does not need to be defined a priori. Instead, tracking how

elements of the knowledge structure are used during the design activity can capture

the relevant behaviors. This means that the Navy’s knowledge structure does not

need to be defined before design failures can be prevented.

Second, the actual product being designed is largely irrelevant to knowledge struc-

ture analysis. Design analysis extracts information from the design activity by exam-

ining the knowledge structure’s development, not the product structure’s (the speci-

fied product’s elements and relationships). Knowledge about the product structure is

used by the designer with other knowledge structure elements to further develop the

design. As a corollary, tracking product models will not describe the complexities of

a design activity because they only describe a subsection of the knowledge structure.

Thus, product models are not likely to provide real insight into potential design fail-

ures. The question is, how does the knowledge structure provide this insight? This

can be addressed through the concept of path dependence.

3.2 Knowledge Structures and Path Dependence

Casually, path dependence implies that history matters (Pierson, 2000, 2004).

Described in Chapter II as the temporal factor of design complexity, path dependence

means that the sequence in which design is approached will influence design outcomes.
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Specifically, the order of historical events matters, not just the set of historical events

(Page, 2006). For path dependence to exist, externalities give past events influence on

future events is necessary (Page, 2006). This means that recognizing temporal factors

and path dependence in design requires that design externalities are identified.

The realities of path dependence can be observed in large- and small-scale design

activities. Dosi describes technology arcs, the path by which a technology is devel-

oped, as path dependent (Dosi , 1982). He observed that path dependence towards

ideas and solutions become encoded in the technology design knowledge structures.

Creating the knowledge to support technology innovation requires costly research

and development efforts. Once development for an idea begins, the relative value of

alternative ideas decreases. This is can be a simultaneously a self-reinforcing posi-

tive externality and a negative externality on other parts of the knowledge structure

that were not developed. These externalities also establish the necessary conditions

for path dependence (Page, 2006; Mahoney , 2000). The same feedback mechanism

occurs in small-scale design.

In studies of individual designers, Lawson identified that the sequence of design can

change the designer’s solution quality and difficulty of reaching that solution (Lawson,

1979). This is caused by the knowledge relationships created during a design activity.

If a part of the knowledge structure is used frequently, it will be better developed and

thus may have more value to the designer relative to an unused part. This conclusion is

supported by multiple experiments observing that well-developed knowledge structure

elements are likely to be used repeatedly to progress the design activity (Goldschmidt ,

1990; van der Lugt , 2000; Cross , 2001; Akin and Lin, 1995; Kroll et al., 2014). Parker

and Singer (2015) identified similar behavior in structured design processes. For

example, Parker found that a few design parameters were capable of driving ship

design processes towards certain configurations. These highly-influential elements

are called design drivers. Knowledge structure development, design drivers, and path
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dependence creates a way to understand how the design activity history will influence

future design outcomes.

In the early-stages of design activities, many outcomes are possible. These out-

comes can be classified as successes or failures. Design success occurs when a satisfac-

tory product is defined and understood. Design failure occurs when there is excessive

rework, the inability to integrate the design, and significantly increasing design ef-

fort. Reaching a successful outcome requires design development, that the designers

take actions to generate knowledge and make decisions. Some of these actions will

influence future actions. Others will cause design failure outright. However, in most

instances, actions themselves will only shift the probability of reach the possible de-

sign outcomes. This is the condition that creates path dependence. Emergent design

failures occur when the set of past actions shift the design outcome into failure. This is

different than non-emergent failures when an action causes failure outright, no matter

the circumstances. Shifts toward emergent failure can happen slowly, incrementally

narrowing in on failure, or quickly, resulting in sudden failure. Lamberson and Page

(2012) differentiate between path dependence, where the shift towards outcomes hap-

pens slowly, tipping points, where the shift happens quickly, and contextual tipping

points, where stage is set for a shift to occur quickly.

This dissertation focuses on the role of path dependence in design and emergent

failures, but path dependence, tipping points, and contextual tipping points can all

shift design activities towards emergent failure. For example, much of the cost over-

runs and delays for the LCS-1 have been attributed to an incorrectly made reduction

gear (O’Rourke, 2017b). The reduction gear appears to be a tipping point that

suddenly caused massive rework and other suboptimal design choices. However, pre-

ceding the reduction gear flaws, a contextual tipping point was created by the LCS

programs attempt at a rapid acquisition strategy where ships were being constructed

before the design was completed. Once that acquisition strategy was decided on, it
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is likely that any flaw or delay in a semi-major or major component would cause the

tip into design failure. Looking back further into the LCS acquisition history, the

decision to pursue a rapid acquisition strategy was a result of path dependence that

can be tracked back to the early vessel concepts. One key aspect of the LCS was that

it would employ a Speed-to-Fleet strategy of using many quickly produced LCSs to

fill the Navys capability gaps Work (2014). This contributed to a long series of design

actions and decisions that led the LCS program to pursue the high risk acquisition

strategy that may have ultimately set the stage for a tip into failure. In isolation,

the faulty reduction gear is not a cause for design failure, massive cost overruns, and

significant delays. Instead, the LCS design failure was emergent. The failure was the

result of the knowledge, actions, and decisions that make up the LCS design history.

In order to understand how this type of failure develops and, more importantly, move

towards preventing emergent failures in the future, a knowledge-based perspective of

naval design is required.

Path dependence in large- and small-scale design activity can arise from the history

of knowledge structure growth. In a design activity, the designer incrementally grows

the knowledge structure through their actions. The developed knowledge and rela-

tionships defines how future action will alter the current state of the design (Levinthal

and Warglien, 1999). This feedback can develop path dependencies that favor certain

outcomes and the knowledge that supports them (Rycroft and Kash, 2002). Applying

the lessons learned from design studies, it is suggested that design drivers and path

dependencies are fundamentally intertwined.

Path dependence and design drivers introduce a number of opportunities to un-

derstand and analyze emergent naval design failures:

• Because the relative value of knowledge and its relationships increases as it is

used, shifting away from an undesirable outcome may require massive design

rework to develop and use other knowledge.
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• Naval design happens across many entities, each with their own pieces within

the design knowledge structure. If two entities have incompatible design drivers,

integration may be impossible.

• Some paths may be more arduous, require more knowledge structure growth,

than others. Taking a certain series of actions early in the design activity may

increase the probability to future design difficulty.

Knowledge structure development is far from the only way path dependencies

could arise in design, but it exists in all non-trivial design activities. Because of this,

it is critical to understand how knowledge structures can create path dependencies

that will allow design failures. Creating tools and methods to consider these failures

requires that a number of research gaps are filled.

3.3 Research Gap

Predicting and preventing emergent design failures hinges on two concepts. First,

that knowledge structure growth accurately describes design activities and second, the

history of growth influences design activity outcomes. However, the implementation

and application of these concepts is not within the scope of current theories and

methods. There are three primary gaps:

1. No method exists to track knowledge structure growth within a design activity

and to relate that growth to design outcomes.

2. There is no analysis for capturing the path dependence of knowledge structure

growth.

3. No methods exist to investigate how knowledge structure growth occurs during

a design activity.
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Until these gaps are filled, designers will not be able to systematically understand

how they can influence design outcomes and prevent design failures. These gaps are

amplified in their application to naval design. Naval design requires the integration

of many disciplines, concurrent technology development, and designing with limited

information over long time periods. This means that the knowledge structure is large,

distributed across many entities and individuals, and its growth may be highly vari-

able. These complications are most relevant in ship systems design and integration.

The complexity measures used to estimate cost implications, shown in Chapter I,

quantify the interactions between systems within the physical product. Product-based

complexity represents the underlying requirements on knowledge structure growth.

High levels of system interaction require more knowledge structure growth to under-

stand the integrated concepts. As the number of system interactions grow, so does

the number of size of the knowledge structure that must be developed.

Unfortunately, knowledge relationships are solidified by earlier decisions about

the vessel’s configuration and components. By the time information about the sys-

tem design knowledge interdependencies are available, it may be too late to change

the knowledge and product structure to accommodate them. This is a fundamental

issue in applying knowledge structure analysis to naval design. Early decisions are

made with limited information, but can predicate future knowledge-based failures.

The issue is compounded by the uncertainty of knowledge growth tied to technology

development and the integration of multiple disciplines and entities.

Emergent naval design failures need to be considered early, before path dependen-

cies ingrain undesirable outcomes and can only be found through knowledge structure

development. The remainder of this dissertation defines a framework for tracking

knowledge structure growth and knowledge-based path dependencies and then ap-

plies the framework to consider emergent failures in distributed system design. The

following section will step towards that goal by describing the proposed framework.
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3.4 Recording Design Through Knowledge Structures

Knowledge structures have been described and represented in a myriad of ways

depending on the discipline using them and the objective. Here, the objective is to

track the history of a design activity through knowledge structure growth so that the

distribution of design outcomes can be considered. In this section, that objective will

be decomposed to identify what elements of knowledge structure growth need to be

tracked. To facilitate this, the following definition of design will be used:

Design is the act of generating knowledge for decision-making through time.

This characterization has been observed and stated in various ways in a multi-

tude of design theories (Gero, 1990, 1996; Hatchuel and Weil , 2003), design studies

(Visser and Trousse, 1993; Oxman, 1990; Ward et al., 1997; Kim and Kim, 2015),

and design process analyses (Mavris and DeLaurentis , 2000; Gillespie et al., 2013;

Parker , 2014; Parker and Singer , 2015). It can be separated into relevant parts of a

growing knowledge structure (bolded):

Design is the act of generating knowledge for decision-making through time.

Knowledge is the building blocks that allows the designer to progress the design

activity. The design activity is progressed through designer actions, which use existing

knowledge to grow the knowledge structure and make decisions. Decisions commit the

design to product structure elements and relationships. Used through time, knowledge

and decision elements compose the design knowledge structure that grows through

designer actions and create design outcomes.

Knowledge is defined as, “what a system has that allows it to attain its goals”

(Reich, 1995). In design activities, the goal is to define a satisfactory solution to a
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design problem (Simon, 1969). To achieve this goal, designers use product concepts,

evidence, and ideas to progress towards a solution (Hatchuel and Weil , 2003, 2009).

Thus, design knowledge can be defined as the ideas, concept elements, and evidence

used by the designer.

There are three different ways a designer can possess or acquire knowledge: it

can already exist in the designers’ knowledge structure, it can be external to the

design activity, and it can be generated by the designers. Pre-existing knowledge, or

precedents, allows designers to negotiate problems by providing references to previous

solutions, problem-solving elements, and context to help understand the design situ-

ation (Oxman, 1990; Visser and Trousse, 1993; Visser , 1995). External knowledge is

simply put into the design activity, for instance a manager says there is an additional

budgetary constraint. Generated knowledge is created by the designer. For example,

when the designer is learning, exploring concept ideas, or refining previous knowl-

edge (Gero, 1996; Sim and Duffy , 2004; Kim and Kim, 2015). Refining knowledge

is a specific case of knowledge generation, where existing knowledge is adjusted or

adapted, as opposed to being novel to the designer.

Knowledge is created through designer actions. Designer actions can generate,

inspect, and adjust designer knowledge (Goldschmidt and Weil , 1998; Goldschmidt ,

2014). Other actions introduce precedents or external knowledge into the knowledge

structure. Over time, actions enable the design to progress by building on each other

throughout the design activity (Cash and Štorga, 2015). Knowledge added by one

action will be used in future actions and so on. Thus, actions are incremental steps

that may use elements of the knowledge structure to create or refine new knowledge

elements.

Actions that add to designer knowledge can be differentiated from design decisions.

Decisions are a choice between alternatives (Hazelrigg , 1996; Hansen and Andreasen,

2004). Decisions imply a commitment to using the chosen alternative in the future.
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This can be the decision to use specific knowledge structure elements in the design

activity. For example, doing system analysis with a specific model or calculating ship

resistance with regression versus standard series. Decisions also apply to committing

to product structure elements. Designers define a product structure by deciding on

a set of elements or relationships in the product structure. For example, deciding on

the length of a ship. Decisions are the knowledge structure elements that interface

between ideas, concepts, and evidence and the product solution and arise in two ways.

Designer create some decisions through decision-making choices that leverage existing

knowledge and decision. External factors can also mandate decision. Both types of

decisions can create new product structure elements or relationships or refine existing

decisions.

To summarize, knowledge structures are composed of knowledge and decisions.

Knowledge structures are developed by actions and decision-making. The definition

of each type of element is:

• Knowledge: the ideas, concept elements, and evidence used by the designer.

• Actions: incremental steps that may use elements of the knowledge structure

to create or refine new knowledge elements.

• Decisions: commitment to a segment of the knowledge structure, this often

applies to knowledge about the elements and relationships in the product struc-

ture.

Definitions for knowledge, action, and decision elements and their relationships

enable a description of knowledge structure development in design:

1. Design begins with knowledge of previous solutions, problem solving elements,

and an initial understanding of the design problem.
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2. Design is progressed through actions that use existing and external knowledge

and decisions to learn, explore, refine, and make decisions about the design

solution, which are then accumulated in the knowledge structure.

3. Design is completed when decisions specify a solution and it is known that

the solution satisfies the design problem, or it is decided that no satisfactory

solution exists. The design outcome is design activity’s knowledge structure

and the committed product structure.

This description provides a path towards defining a formal framework that cap-

tures knowledge structure development and the factors that influence it. Relation-

ships between elements can be tracked through the actions and decisions that use

and create the knowledge structure. Applied over the course of a design activity the

resulting knowledge structure growth can capture the factors of design complexity

that influence outcomes, see Figure 3.1.

Discussed in Chapter II, knowledge structures are influenced by external, inter-

nal, and temporal factors of complexity. External factors are outside of the designer’s

control, but must be integrated into the design activity. Internal factors arise from

the knowledge structure development, especially when design drivers or ingrained

knowledge is refined or revised. Temporal factors are path dependencies which in-

grain solutions and ideas over time. Representing these factors through knowledge

structure development facilitates a knowledge perspective of design that can enable

the identification and prevention of design failures.

3.5 Conclusion

This chapter provided the necessary background to establish how and why knowl-

edge structures can be used to understand design activities. The review of similar and

overlapping research framed the current research and its unique perspective. Previ-
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Figure 3.1: Relationship between knowledge structure development and factors of
design complexity.

ous applications of knowledge structures to design science have been largely implicit,

relying on the fact that the content of, and relationships between, an individual’s

knowledge will influence design outcomes. Research in path dependence provided in-

sight into why this influence exists. This thesis proposes that explicit consideration of

the development of knowledge structures can reveal the path dependence of decisions

and help reduce design failures.

The distinguishing characteristics of this approach include explicitly tracking

knowledge structure growth and its relationship to design outcomes, so that the tra-

jectory of a design activity can be understood. The second distinguishing feature

is analysis based on knowledge structure growth to identify the path dependencies

influencing outcomes. The third feature is a new perspective on how to explore the

relationship between potential knowledge structure growth and future design out-
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comes. The objective of these features is to link the past, present, and future of a

design activity, which will ultimately enable designers to measure the potential for

design failures and leverage the complex factors of design towards better outcomes.
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CHAPTER IV

Formal Framework for Mapping Design Knowledge

Structures

This chapter introduces a formal framework for describing knowledge structure

development during design. Application of this framework, its network representation,

and network analyses can quantify how a knowledge structure grows through time

and identify design drivers in the design activity. Thus, this framework provides the

foundation for investigating the potential for design failures. Section 4.1 introduces

the formal K-A-D Framework for describing design knowledge structure development.

Section 4.2 defines a network representation of the framework that enables knowledge

structure analysis, which is introduced in Section 4.3. Section 4.4 demonstrates the

K-A-D Framework, its network representation, and analyses on an example design

activity.

4.1 Knowledge-Action-Decision Framework

When designers solve design problems, they develop a knowledge structure of the

knowledge they use and decisions they make. The composition and development of

this knowledge structure creates design outcomes; the specified solution and the deci-

sions that define the specification. Tracking how a knowledge structure develops can
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help measure design drivers, identify path dependencies, and predict the emergence of

design failures. This is enabled by the K-A-D Framework, which describes knowledge

structure development in context of external, internal, and temporal factors of design

complexity so that the emergence of design outcomes can be understood.

The previous chapter defined three primary types of knowledge structure elements

and their sub-types:

• Knowledge: the ideas, concept elements, and evidence used by the designer.

– Precedents: previous solutions, problem solving elements, and an initial

understanding of the design problem.

– External: information added to the design activity from outside of a de-

signer’s control.

– Generated: new ideas, concept elements, and evidence created by using

the existing knowledge structure.

– Refined: new knowledge that is a small change to existing knowledge.

• Actions: incremental steps that may use elements of the knowledge structure

to create or refine new knowledge structure elements.

• Decisions: commitment to a segment of the knowledge structure, this often

applies to knowledge about the elements and relationships in the product struc-

ture.

– External: decision added to the design activity from outside of a designer’s

control.

– Generated: decision that uses the existing knowledge structure to commit

to a new product structure element or relationships

– Refined: decision that is a small change to an existing decision.
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Recording how these types of elements are used by the designer during the design

activity captures how the factors of complexity impact design. External factors are

captured in the use of external knowledge and decisions. Internal factors are captured

by the actions that generate knowledge and decisions. Temporal factors are captured

by the growing relationships between knowledge and actions and their use in designer

decisions.

Quantitatively investigating this description is best done with a formal frame-

work. The goal of this section is to define the Knowledge-Action-Decision Framework

that provides definitions of knowledge structure development through a dynamic pro-

cess. The process incrementally grows the knowledge structure at discrete time steps

t = 1, 2, 3 . . . . The knowledge and decision elements contained in the knowledge

structure in a given time step is Kt. For example, in the design of an engine room the

knowledge structure may be Kt = {Engine weight in range [41500kg, 62200kg], power

in range [3600kW, 5400kW ]}. The knowledge structure is acted upon by a generative

function Gt, that represents the designer’s action at t. The generative function adds

new knowledge elements to the knowledge structure. The history of knowledge struc-

ture development is a series of the generative functions on acting on the knowledge

structure. This is defined as

Kt+1 = Gt(k, r) +Kt; k, r ∈ Kt, (4.1)

which can be rearranged to solve for ∆Kt = Kt+1 −Kt, the knowledge structure

elements added by Gt,

∆Kt = Gt(k, r); k, r ∈ Kt, (4.2)

where k represents the subset of the existing knowledge structure used by the

action and r is used to denote if the added element is a refinement of a previously
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existing element. For instance, if some designer knowledge is ki=“Engine weight in

range [41500kg, 62200kg]” and an action uses ki to create a new element kj=“Engine

weight is range 48400kg,” then kj could be represented as a refinement of ki. In

this case, the growth equation would be Kt+1 = Gt(ki, ki), where Kt+1 would contain

the knowledge element kj. This general equation can be applied to the sub-types of

knowledge structure elements.

Precedent knowledge, which the designers bring to the activity are not generated

by an action, but they are introduced to the design knowledge structure before they

are used. In terms of the generative function, introducing a precedent is

∆Kt = Gt(∅, ∅). (4.3)

Generated knowledge is created when the designer uses the existing knowledge

structure. Creation of a new idea, concept element, or piece of evidence, creates the

mathematical form

∆Kt = Gt(k, ∅). (4.4)

Knowledge refinement uses the existing knowledge structure to make an adjust-

ment to a knowledge element. This is defined above in Equation 4.2 and is applied

when r 6= ∅.

Decisions are mathematically described in the same way as knowledge generation,

but are denoted as a generative functionDt. The knowledge structure change equation

for a decision is thus

∆Kt = Dt(k, r); k, r ∈ Kt. (4.5)

Decisions follow the logic and definitions for design knowledge. External decisions

are defined as in Equation 4.3. New decisions affecting non-specified parts or elements
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Figure 4.1: Structure of the K-A-D Framework network representation and its supra-
adjacency matrix AKAD. Layers Ak, AA, AD contain nodes of individual
design elements and in their relationships. Inter-layer connections are
contained on the off-diagonal elements.

of the product structure are defined as in Equation 4.4 and refinements on previous

decisions as in Equation 4.2. Through the same reasoning described above, new

decisions and decision refinement are internal factors that define how the knowledge

structure is used to generate a product.

4.2 K-A-D Framework: Network Representation

Mathematical definitions of knowledge structure growth describe the design ac-

tivity history. Representing the growth functions as a growing network of knowledge,

action, and decision elements and their relationships can help analyze the mathemat-

ical description. Networks are defined as a collection of objects, or nodes, and the

connections between them, called edges, that represent a system (Newman, 2003).

Network science provides a mathematical framework to study structure and creation

of these relationships (Newman, 2003). Systems can then be studied by analyzing

the structure of the network representation (Newman, 2010). Applied to the K-A-D

Framework, network representations and analyses provide a powerful toolset for quan-

tifying a design activity.
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Mathematically, networks are defined by an [N×N ] adjacency matrix A where N

is the number of objects represented in the network (Newman, 2010). Relationships

between objects, called edges, are denoted by non-zero matrix elements. Networks

with undirected edges represent only that two objects are related and thus have a

symmetric adjacency matrix. Directed edges represent that one node acts on another.

For example, if node i influences node j, the matrix element Aij = 1, but Aji = 0.

Networks may also be layered into multilayered networks to encompass multi-

ple types of relationships, temporal dynamics, and other complicated connectivities

(Kivelä et al., 2014). Multilayer networks enable the analysis of multiple channels

of connectivity, each channel is represented by a layer with its own respective nodes

and edges (Boccaletti et al., 2014). Each layer is represented by an [n × n] matrix

Aα where n is the number of objects in layer α. Layer adjacency matrices are on the

diagonal of the larger multilayer adjacency matrix, called the supra-adjacency matrix.

Relationships between layers are off-diagonal; edges from the elements of channel α

to β are in the sub-matrix Aαβ of the supra-adjacency matrix.

The K-A-D Framework can be represented as a growing multilayer network. Types

of framework elements - knowledge, actions, and decisions - are represented in sepa-

rate layers and their relationships are connections within or between layers. In this

network, knowledge, actions, and decisions nodes represent individual elements of

the knowledge structure. The corresponding knowledge, action, and decision layers

are represented in submatrices AK , AA, and AD, respectively. Edges within layers

represent refinement connections, when one element is a small change to a previous

element. Edges between layers represent the relationships created by actions that

use knowledge and decision elements to develop the knowledge structure. Figure 4.1

shows the general form of the resulting K-A-D network AKAD.

Design activities and their knowledge structure need to be decomposed in to ele-

ments to be represented by the K-A-D Framework and network. Knowledge structure
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elements are roughly self-contained sections of the knowledge, actions, and decisions

that are defined by the person investigating the design activity. Referring to defini-

tions used in the studies of design cognition, the types of elements are:

• Knowledge element: coherent segment of knowledge used by the designer (van der

Lugt , 2001).

• Action element: discrete step taken by the designer that changes the state of

the knowledge structure (Goldschmidt , 1995; Cash et al., 2015).

• Decision element: commitment to a cohesive segment of the knowledge structure

for use in future development, this often applies to knowledge about the elements

and relationships in the product structure.

The application of these definitions is subjective and tied to the fidelity of knowl-

edge structure description. For fine-grained descriptions, knowledge elements may

represent a word, action elements are captured in sentences, and decision elements

describe a verbal commitment. In large-scale design activities, this level of detail is

impossible to achieve and a coarse-grained description is necessary. For example, in

the design of a naval vessel’s hullform, knowledge elements may represent monohull

and multihull concepts, hull parameters, and resistances, action elements may repre-

sent creating a hullform model or doing engineering calculation, and decision elements

may represent the choice to move forward with a particular hullform concept. While

this decomposition is subjective and requires a degree of common sense to define ele-

ments, it has proven to be an effective method in the study of design cognition (Dinar

et al., 2015) and thus is sufficient for modeling knowledge structure development.

The K-A-D network is created through the series of designer actions that occur

during the design activity as described by Equation 4.1 and its variants. The general

growth functions for knowledge and decisions define how knowledge structures develop
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by using existing elements and external factors to create new elements. The K-A-D

network represents each instance of 4.1 and 4.5 with the following sequence:

1. Designer’s action: create a new node in the action layer i.

2. Knowledge structure element usage: add edges Aji from each node, j = 1 . . . k,

to i.

3. Generated element: create new node l in the knowledge or decision layer corre-

sponding the growth function; Gt for an action or Dt for a decision.

4. Growth relationships: add edges Ail, from the designer’s action to the new

element, and Arl from the refined element (if r 6= ∅).

If the knowledge structure growth equation introduces a precedent or external

knowledge (k = ∅ and r = ∅), the representation is simplified to just add the node

l without an action node or edges (only step 3). The K-A-D network representation

describes the knowledge structure growth through time as a series of interdependent

relationships between knowledge, decisions, and the actions that use and create them.

The network structure can then be analyzed using the network science toolset.

4.3 K-A-D Framework: Network Analysis

Network analysis quantifies the structure of a network to help understand the rep-

resented system’s behavior. It is important to note that this means network analysis

is only meaningful in the context of what the network represents. With this in mind,

network analysis can be applied to the K-A-D network to help understand the de-

sign activity through its knowledge structure. Network science provides an expansive

toolset of analysis theories and methods that could be applied to the K-A-D network.

Thorough reviews can be found in (Boccaletti et al., 2014) and (Newman, 2010).
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Analysis in this thesis leverages the concept that networks can be measured to

identify design drivers. Applying network measures of importance, called centrality

metrics, to the K-A-D network enables knowledge, action, and decisions design drivers

to be identified. The most basic centrality measure is the degree of a node - the

number of edges associated with it. Out-degree measures importance of a node by

the number of edges going out of it and in-degree measures the number of edges

pointing towards it (Newman, 2010). These can be calculated using the network

adjacency matrix and edge notation, Aij = 1 if there is an edge from i to j. In- and

out-degree can be written

kinj =
n∑
i=1

Aij, kouti =
n∑
j=1

Aij (4.6)

Variants on this type of edge count were used by Goldschmidt (1990), Cross (1997),

van der Lugt (2001), Kim and Kim (2015), and elsewhere to identify actions or

knowledge that drove the design activity. Degree measures of the K-A-D network

tells us which aspects of the design process are important to the knowledge structure

growth:

• Out-Degree: The number of edges pointing away from the node describes how

many times a knowledge structure element is used to grow the knowledge struc-

ture.

• In-Degree: The number of edges pointing at a node describes how many knowl-

edge structure elements were used to generate that element.

In-degree and out-degree are straightforward measures of importance, but do not

provide any quantification of the temporal nature of the knowledge structure. For

example, a knowledge element could be used very frequently in the beginning of a

design activity, but then not used later. Early in the activity, that knowledge is likely

a design driver, but later it likely is not. However, node degree does not capture that
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time-dependent dynamic. Hyperlink-Induced Topics Search (HITS) is an extension

of degree centralities that quantifies the information content of a node (Kleinberg ,

1999). In the K-A-D network, HITS can help quantify the importance of knowledge

structure elements based on the temporal growth of relationships.

HITS measures importance with reinforcing ideas of hubs and authorities. When

the HITS algorithm is run, each node is given a hub and authority score. Important

hubs are nodes that point to important authorities. Conversely, important authori-

ties are nodes that are pointed at by important hubs. The corresponding centrality

metrics, hub centrality and authority centrality, are the hub and authority scores

normalized over all nodes in the network. Authority centrality x and hub centrality

y are calculated using

xi = α
∑
j

Aijyj, yi = β
∑
j

Ajixj, (4.7)

where and are constants and A is the network adjacency matrix. Applied to a

matrix notation, Equation 4.7 becomes

x̄ = αAAAȳ, ȳ = βAAAx̄, (4.8)

which can be combined to obtain

AATAATAAT x̄ = λȳ, ATAATAATAȳ = λx̄, (4.9)

where λ = (αβ)−1. This defines AATAATAAT and ATAATAATA as having the same eigenvalue λ,

with their eigenvectors being the authority and hub centralities, respectively.

Identifying network hubs and authorities show the flow of information within

its structure. Applying this measure to the K-A-D network identifies parts of the

knowledge structure which create important elements and those that use important

elements:
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• Hub: Measures node importance by the importance of authorities it points to.

Thus, in the K-A-D network identifies elements of the knowledge structure that

have been used to generate other important elements.

• Authority: Measures node importance by the importance of hubs that points

to it. Within the K-A-D network, this identifies knowledge structure elements

that were generated by other important elements.

Hub and authority centralities provide measure of recent importance to the de-

sign activity. Hub centrality identifies nodes that are important contributors to recent

knowledge structure growth. Authority centrality identifies nodes that were recently

created by important nodes. For example, the design action of parametrically calcu-

lating resistances for a hullform would increase the hub centrality of length, beam,

and draft knowledge and create new resistance knowledge with elevated authority

centrality.

When nodes are first created, they can only be pointed at by other nodes, increas-

ing their authority centrality. As these nodes are used, their hub centrality increases,

but their authority centrality is likely to decrease. If a node is heavily used through a

recent part of the activity, it will have high hub centrality because it generates many

nodes. These nodes will have high authority scores as a result. However, if that node

is no longer used, its hub score will decrease as other nodes are used to grow the

knowledge structure. This dynamic allows hub and authority centralities to capture

the design drivers for a snap shot of the knowledge structure and measure temporal

design driver dynamics when applied to a series of snap shots.

Both degree centrality and HITS analysis enable designer drivers to be measures

and path dependencies to be identified. In a design activity, design drivers are ele-

ments that dominate the creation of design outcomes. Design drivers are repeatedly

used knowledge structure elements that arise during the design activity. Path de-

pendent influences develop when design drivers become ingrained, committing design
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outcomes to particular solution elements or ideas. In terms of the described net-

work analysis, design drivers are expected to be identified as important nodes in the

K-A-D network. Path dependencies are expected to take the form of design drivers

that maintain or grow in importance over an extended period of time. For example,

knowledge about two battery technologies that are being tested for use in a new vessel

would be used frequently, giving them a high hub centrality. The decision to use one

battery technology over the other would refer to the knowledge developed about each

technology, giving the decision-making action a high authority centrality.

4.4 K-A-D Framework Demonstration

To demonstrate the K-A-D Framework, its network representation, and the de-

scribed analyses, they are applied to a small design activity. The following example

is replicated from (Goldschmidt , 2014) and is derived from a recording of an architect

named Martin, who was describing his thought process while designing a library site.

The activity is broken into three spoken sentences each representing a designer action:

1. G1: “We start by creating a hierarchy: the large trees, the parking lots, the

pedestrians, an entry axis.”

2. G2: “I would then look for a direct relationship between entrance and exterior,

because here, the real edge is not this [edge of building], for me it’s that [edge

of site].”

3. D3: “I would try to have an important element; would therefore make the axis

I mentioned before, this one [points to sketch].”

Goldschmidt (2014) used this example to demonstrate how relationships between

designer actions can be described. Here, the example is reused to show how the re-

lationships between knowledge, actions, and decisions can be described. When the
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Figure 4.2: K-A-D network visualization for the library design activity. Nodes for
each layer are positioned over their respective label.

K-A-D Framework is applied, the activity is first decomposed into elements of knowl-

edge, actions, and decisions. For this activity, the decomposition of knowledge and

decision elements is described in Table 4.1. The K-A-D Framework decomposition

and growth equations is mapped to a K-A-D network in Figure 4.2. The K-A-D net-

work is analyzed using out-degree, in-degree, hub centrality, and authority centrality

whose results are shown in Table 4.2.

Label Decomposition description Growth equation

S Site architecture precedent knowledge, generated
by an initializing action G0.

G0(∅, ∅)

T Trees existence and location, generated during sen-
tence 1.

G1(S, ∅)

P Pedestrian existence and location, generated dur-
ing sentence 1.

G1(S, ∅)

PL Parking lot existence and location, generated dur-
ing sentence 1.

G1(S, ∅)

EA Entry axis existence and location, generated dur-
ing sentence 1.

G1(S, ∅)

EAR Entry axis refined in reference to exterior, gener-
ated during sentence 2.

G2([EA, S], EA)

EAD Entry axis location decision, generated during sen-
tence 3.

D3([EAR, EA, S], ∅)

Table 4.1: Decomposition of knowledge, action, and decision elements in the library
design activity.
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Node (layer:label) Out-degree kout In-degree kin Hub y Authority x

K : S 3 0 0.366 0.0
K : T 0 1 0.0 0.0
K : P 0 1 0.0 0.0
K : PL 0 1 0.0 0.0
K : EA 3 1 0.385 0.0
K : EAR 1 2 0.165 0.188
A : G1 4 1 0.0 0.145
A : G2 1 2 0.08 0.3
A : D3 1 3 0.0 0.366
D : EAD 0 1 0.0 0.0

Table 4.2: Network analysis results for the library design activity.

K-A-D network degree analysis is straightforward for such a small network, but

still useful. Out-degree quantifies how many times an element was used to build

the knowledge structure and identified three major contributors: knowledge elements

S and EA, as well as action G1, which were connected to 3, 3, 4 other knowledge

structure elements, respectively. Essentially, elements that are referenced many times

or actions that create many elements have a high out-degree in the K-A-D network.

When out-degree is high, it indicates that the element has a large contribution to the

knowledge structure development. The reverse guideline applies to in-degree. Ele-

ments that reference many other knowledge structure elements have higher in-degrees,

indicating they are heavily interdependent with the existing knowledge structure. For

example, D3, that committed to the entry axis location, has the highest in-degree,

kinD3
= 3, and use integrates a significant portion of the knowledge structure in a single

decision.

Hub and authority centrality provide a different perspective on the knowledge

structure. Hub centrality identifies elements that are important to recent knowledge

structure growth and picked out two significant nodes, general site knowledge S and

the initial entry axis knowledge EA, yS = 0.366 and yEA = 0.385. In terms of the

design activity, these results are intuitive. Site knowledge, S, facilitates every step

of the design and entry axis knowledge, making is a hub of the knowledge structure
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development. The entry axis knowledge, EA, is the primary designer focus and is

used three times in the final two steps the design activity. Authority centrality iden-

tifies elements that were recently created from important hubs. This identified two

highly scored elements, the actions xG2 = 0.3, that refined the entry axis knowledge,

and xD3 = 0.366, that committed to its location. In both cases, these elements used

the most important hubs to develop new knowledge structure elements. The high

authority centrality indicates that these elements integrate important parts of the

knowledge structure and represent a significant step in the knowledge structure de-

velopment. It follows that the decision in the final step of the design activity appears

as the most important authority.

Comparing degree analysis and hub and authority centrality highlights the differ-

ences between them. G1 has the highest out-degree koutG1
= 4, but no hub centrality

(yG1 = 0.0). This indicates that while it generated a significant number of elements,

it is not important to the current knowledge structure growth. This illustrates that

degree and HITS analysis provide contrasting perspectives on the node’s importance.

Each perspective is based on how they quantify the knowledge structure’s K-A-D net-

work: Degree analysis is time-independent and HITS is highly time-dependent. This

can be useful in understanding how and why certain knowledge structure elements

are design drivers. Using the library example, in terms of contribution to the design

activity G1, which generated the initial knowledge structure, a is design driver, but

the entry axis knowledge EA (yEA = 0.385) may be a more important driver for the

designer’s immediate actions.

The analysis demonstrated here can be applied during a design activity to measure

the importance of specific elements to the knowledge structure. This information can

be tracked over time to identify when and how path dependencies develop. The

following sections explore this type of temporal knowledge structure analysis.
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CHAPTER V

Testing the K-A-D Framework

The primary objective of K-A-D Framework is to enable designers to understand

how path dependencies will influence design outcomes towards success or failure This

chapter tests the K-A-D Framework on an agent-based design simulation that learns,

solves problems, and makes design decisions. This agent designer is programmed to

exhibits path dependent behavior towards its solution. Analyzing the agent’s design

activity with the K-A-D Framework and network demonstrate that path dependent

design behaviors can be identified by tracking knowledge structure development and

measuring design drivers.

Simulation tools have previously been used to explore the influence of organiza-

tional structure, design approach, and problem structure on design outcomes (Parker ,

2014; Austin-Breneman et al., 2015; Sobieszczanski-Sobieski and Haftka, 1997). In

this chapter an iterative design activity is simulated by an agent solving the Trav-

eling Salesman Problem (TSP). The TSP asks for the shortest route between a list

of cities that visit each city exactly once. This represents one of the most difficult

combinatorial optimization problems and is NP-Hard. In this experiment, it provides

a difficult close-form problem for the agent designer to learn and solve. Analyzing

how the agent designs a solution to the TSP with the K-A-D Framework provides a

baseline for one to examine design knowledge structures with the K-A-D Framework.
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To simulate a design activity, the agent designer will explore routes through the

cities, learn the path distance between cities, develop preferences towards promising

paths, and make decisions to specify its route solution. The route solution specified by

these decisions and is the agent’s product structure. The agent’s knowledge structure

is the information it uses to learn paths, develop preferences, and make decisions.

The K-A-D Framework is used to track knowledge structure development during the

design activity simulation. Using the K-A-D network representation, this captures

the learning and decision-making that enables the agent designer to create a solution

to the TSP. Four experiments are conducted to designer behaviors with different

degrees of path dependence. These experiments model design by simulating different

problem-solving strategies develop knowledge to define design solutions. Analyzing

the resulting K-A-D networks illustrate that design drivers can be measured and used

to identify when path dependencies emerge.

Section 5.1 describes the design activity simulation and the designer agent, which

is based on Ant Colony Optimization methods. Section 5.2 defines the K-A-D Frame-

work mapping for the simulated design activity. Section 5.3 describes the expected

designer behaviors and corresponding knowledge structure characteristics. Section 5.4

described and conducts four experiments that test the K-A-D Frameworks efficacy.

Section 5.5 concludes the chapter.

5.1 Simulation Structure

To simulate a design activity, the agent designer is given a TSP with a known

number of cities and a fixed starting point, but no information about the distance

between each city. During the simulation, the agent creates a route through the TSP

cities in a series of timesteps. After a route is created, the designer then calculates the

route’s length and records its preference towards the paths used in the route based

on that length. If previously unused paths between cities are used in the route, the
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path distances are learned by the agent. In subsequent routes, path preferences and

learned distances are used to guide the route creation. When the designer develops

a strong preference for a path, it makes a decision to always include that path in its

route. Over the course of the simulation, these decisions specify the product (TSP

route solution) defined by the designer. The general structure of the simulation is

shown in Figure 5.1.

Figure 5.1: Design simulation structure.

For the ease of K-A-D analysis and the comparison of results, the experiments

use a specially formatted TSP. For a TSP with N cities, the distance dij of the path

between City i and j is defined as

dij =


1, if i or j = 0,

|i− j|, otherwise,

(5.1)

where City 0 is the starting city for every route. In this TSP, the solution route must

visit all cities once and does not return to the starting city. Thus, two shortest routes

exist, one goes from City 0 to City 1 and moves to the city at the next largest location
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until arriving at City N , the other goes from City 0 to City N and moves to the next

smallest city location until arriving at City 1. The length of both routes is N − 1.

Any deviation from these two routes will incur increased route distance.

Path distances are fixed, but when the design activity is initialized, the path

distances are unknown to the designer. Before the designer creates a route containing

path dij, the agent believes the path length is e, a simulation parameter. Once a path

is included in a route, the agent learns the true path distance defined in Equation

5.1. Figure 5.2 shows how this occurs in the first simulation timestep.

Figure 5.2: Designer path learning in the simulated design activity with 5 TSP cities.
Initially, the designer believes that all path distances are e. Path distance
dij is learned after a path is used in a route.

The designer agent is implemented using Ant Colony Optimization (ACO) meth-

ods. ACO methods are a class of biology inspired genetic algorithms originally devel-

oped to solve the TSP (Dorigo et al., 1996). Ant agents explore the possible solution

paths through the TSP based on digitized pheromones τ and local heuristics η. Here,

a variation will be used to better model a designer. Dorigo et al. (1996) provides a

thorough description of the original ACO methods and algorithms.
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Pheromones are a mechanism to encode agent preference to parts of a solution.

This is similar to how a designer will prefer certain solution elements based on the

designer’s experiences and biases, as well as the solution element’s perceived quality.

Each time a path is used in a route its pheromone level is increased. The pheromone

is increased relative to the overall route length. This mechanism was chosen because

it models designer’s behavior during solution development - frequency of use indicates

designer preference Goldschmidt (2014).

The local heuristic is based on the action of choosing a single path within a

route. Given a choice of possible paths from a city, the heuristic favors shorter paths.

This mechanism allows the simulation to model the effect of designer learning - if the

initial path distance e is low, the designer is likely to favor exploring new paths versus

exploiting known paths.

Solution routes are created through repeated probabilistic steps where the de-

signer moves from its current city in the TSP to another unvisited city following the

transition rule,

pij =
ταij · η

β
ij∑

h∈Ω τ
α
ih · η

β
ih

, (5.2)

where pij is the probability that the designer goes from City i to City j, τij is the

pheromone level on path (i, j) and is scaled by the factor α. ηij is the local heuristic

1/dij which is based off of the designer current belief about the distance of path (i, j)

and is scaled by the factor β. Ω is the set of cities that the designer has not visited

on this route.

After an ant creates a solution, the total route distance Γ is evaluated with the

true path distances in 5.1 and the designer learns the distance of any newly used

paths. Then, the designer’s path pheromones are updated following the rule,

τ ′ij = (1− ρ) · τij + ∆τij, (5.3)
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where the pheromone level on every edge is dissipated by the factor ρ and paths in

the designer’s route are incremented by ∆τ = 1/Γ. After each pheromone is updated,

τ ′ replaces the previous pheromone values. This process reinforces pheromones for

the last path based on the route length and guides subsequent transition rules.

In this simulation, the designer makes a decision about a solution element when

pheromones are strong enough. Designer decisions are controlled by a probability

convergence threshold c. Decisions specify a path in the agent designer’s solution

that will be used in all future routes. This models design decisions, which are a

commitment to an element or relationships in the product structure. Generally, the

decision rule for City i is defined as

X1 −X2 ≥ c, (5.4)

where X is a descending list of transition probabilities from City i, X1 is the first

elements in the list, and X2 is the second element in the list. If 5.4 is satisfied, the

designer decides that the path represented by the transition probability X1 is an

element of the route solution (design product structure).

Because City 0 is the fixed starting point, the first path decision is selected from

City 0 by applying Equation 5.4. Using a modification of Equation 5.2 to only consider

pheromones, the possible transition probabilities p0j, j = 1 . . . N , are put into the

descending list X. If the first element X1 is c greater than the second element X2, a

decision is made to always include the path (0, k), where k is represented by X1. Only

pheromone values are used in this calculation to prevent the heuristic from distorting

the calculation of the agent designer’s preference.

When Equation 5.4 is satisfied and a decision is made to include path (i, j) in

the solution, it is locked-in by adjusting path pheromones. This models the agent’s

commitment to the solution element. The pheromones are set to 0.0 on all paths from

City i that are not path (i, j). This ensures the designer will only travel to City j
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from City i because pij = 1.0. The decision rule is applied each timestep, after new

paths are learned and the pheromones are updated.

Equation 5.4 is applied starting with City 0 and if it is satisfied, a decision is

made to select the preferred city. Then, Equation 5.4 reapplied to the next city in the

route. This continues until an entire route is decided or the decision criteria is not

satisfied. The decision process is then applied in the next timestep starting from the

last city in the decided route. If the simulation stops without completely specifying

a route, the paths used in the last timestep are defined as the set of design decisions.

5.2 K-A-D Framework Network Mapping

The simulated design activity is tracked through the K-A-D Framework’s network

mapping. This section goes through the steps of the simulation described in Figure

5.1 and defines their mathematical growth equations in the K-A-D Framework. The

K-A-D network can then be constructed from those equations and analyzed during

the design activity simulation. Figure 5.3 visualizes the application of these growth

equations in steps 2-5.

1. Initialize agent : The designer begins the simulations with knowledge that N

cities exist and there are paths between each city with distance e. This is mod-

eled as precedent knowledge in the K-A-D Framework, [P01, . . . , Pij] = G0(∅, ∅),

where Pij represents the agent designer’s knowledge about the path distance

between City i and City j.

2. Create route: In the simulation, a route is created by iterating Equation 5.2

to select paths through the TSP. At each path selection, the agent designer

uses knowledge for about path distance corresponding to the set of unvisited

cities in the route Ω and knowledge about the previous paths selected in the

route. The selection action for path s in the current route generates knowledge
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about the route created at the current timestep t, Rst. Using this description,

path selection s from City i to City j ∈ Ω for timestep t is modeled as, Rst =

Gst([R1t, . . . , R(s−1,t), Pij, . . . , PiΩ], ∅).

3. Evaluate route: After a route is completed, the designer evaluates its distance

using the series of path selection steps s that defined the path. This action

generates knowledge about the route score for that timestep and is modeled

as, St = GSt([R1t, . . . , Rst], ∅). If a decision has been made about a path in the

route, the decision element is used in place of the corresponding route selections

and path knowledge.

4. Learn new paths : If the agent uses a previously unvisited path in the route for

timestep t, the agent learns the path’s true distance. For the path from City

i to City j, this is modeled as a knowledge refinement that uses the previous

path knowledge Pij and the route selection knowledge Rst that used the path

and is thus, Pij = Gijt([Pij, Rst], Pij).

5. Make decision: If a path selection has sufficiently converged for the agent to

make a decision, the agent takes a decision-making action that creates a decision

committing it to a path in the TSP solution. If this is the first decision, a new

decision node is created. If it is not the first decision, the previous decision is

refined. The decision-making action to include the path from City i to City j

as the dth path in the solution route uses the set of path from i to all cities Ω

that are not included in decided paths. Using this description the action that

creates the decision for the dth path is, Φd = Ddt = ([Pij, . . . , PiΩ],Ωd−1), where

Φd−1 is the previous decision or ∅ if Φd is the first decision.
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Figure 5.3: Development of the K-A-D network for simulation steps 2-5. These steps
are repeated during each simulation timestep.

5.3 Expected design drivers and path dependencies

The definition of TSP cities, distances between cities, and agent behavior encode a

repeatable pattern of path dependencies that ingrain design activity outcomes. Dur-

ing the design activity, the pheromone mechanism creates preferences toward certain

solution elements. This process is path dependent, which should be reflected in the

design drivers, knowledge structure elements that are important to knowledge struc-

ture development. If analysis of the K-A-D network can identify path dependencies

through the design drivers, it will be a step towards demonstrating that the proposed

methods are able to help designers understand how their design outcomes develop. In

larger and more complex design activities, this modeling and analysis will enable the

measurement of design outcomes and the prediction and prevention of design failures

through the identification of path dependencies.

In the simulated design activity, solution path dependence comes from the ACO

pheromone mechanism. Paths with high levels of pheromones are more likely to be
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used throughout the design activity than paths with low levels of pheromones. This

makes convergence on a route solution a path dependent process, which is governed

by the ACO pheromone update in Equation 5.3. To see this, consider a path that is

used once in two sequential route creations. Assuming both routes are of equal length

and dissipation factor, ρ, used in Equation 5.3 is not 0.0 or 1.0, the pheromone level

on that path will be different if the path is used in the first route or in the second. For

example, if τ0 = 0.5, Γ = 5, ρ = 0.2; τ2 = 0.48 if the path is used first and τ2 = 0.52

if the path is used second.

Path dependencies propagate in the sequence of route creation during the simu-

lation. Based on the order of route creation, certain paths will be more likely to be

used in subsequent routes. In the timespan of the design simulation, this defines the

route generation and solution convergence as path dependent processes. In terms of

the design activity simulation, designer knowledge corresponding to preferred paths

are expected to be design drivers. Similarly to a designer preferring to use knowledge

about favorable solution, the knowledge associated with paths that have a

high level of pheromones will be used more frequently. As path dependencies

that converge the ACO develop, the knowledge used to create those path dependen-

cies is expected to maintain their importance to knowledge structure development.

This should be reflected in the K-A-D network analysis.

Setting a fixed starting city creates a secondary type of design driver. The agent’s

first step in every route is to move from City 0. To make this move, the designer takes

an action using its knowledge about the paths that originate from City 0. Because

this exact action happens every time a route is created, designer knowledge and

actions pertaining to starting paths should also be design drivers. However, when the

designer makes a decision, this set of design drivers should shift. In the simulation,

a decision removes the reliance on knowledge for a path selection action. The first

decision always specifies the path taken from City 0. Thus, this decision will shift
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importance from knowledge about starting paths to knowledge about paths leaving

from the second city in the route.

The following section will implement the design activity simulation in four cases

that exhibit different degrees of path dependence. Examining the corresponding

knowledge structures and comparing their differences will demonstrate that the K-A-D

Framework and analysis can identify path dependencies in the simulated design ac-

tivity by measuring design drivers in knowledge structure development.

5.4 Results and Discussion

Design simulation was used to conduct four experiments that illustrate how the

K-A-D Framework can be applied to identify design driver and path dependencies in

the knowledge structure. The experiments are described below and their parameters

are shown in Table 1:

1. Random: Parameters are set so the agent designer creates random routes at each

timestep, simulating an unintelligent designer that defines a product randomly.

This provides a baseline analysis of the K-A-D network, which will be used as

a comparison for other designer behaviors.

2. Initial Route Dependence: Parameters are set so the agent designer immediately

locks into the first route taken and only uses that route in subsequent timesteps.

This simulates a designer that fixates on the first solution they come across.

The result is an extreme case of path dependence that illustrates how path

dependencies can be identified through K-A-D network analysis.

3. No Decision: Parameters are set so the agent designer learns paths, explores

possible routes, and converges on a solution, but does not make decisions com-

mitting to a solution route until the final timestep. This enables analysis of
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design drivers as they reach a converged steady state, without the distortion of

decisions on the knowledge structure development.

4. Decision: Parameters are set the same as the No Decision experiment, except

the agent designer makes path decisions when preference reaches a threshold.

Comparing the Decision and No Decision experiments demonstrates that the

K-A-D network analysis can identify shifting design drivers and path dependen-

cies.

Simulation name (label) N c ρ e α β

Random (R) 6 1.0 0.0 1.0 0.0 0.0
Initial Route Dependence (IRD) 6 1.0 1.0 1.0 1.0 1.0
No Decision (ND) 6 1.0 0.2 1.0 1.0 1.0
Decision (D) 6 0.7 0.2 1.0 1.0 1.0

Table 5.1: Designer agent behavior parameters.

The first two experiments bound the study by exploring edge cases, one where

path dependencies do not exist and the other where they immediately exist. The

third experiment looks at a case where the designer is learning and problem-solving.

In this experiment, the emergence of design drivers and path dependencies can be

observed. The last experiment demonstrates how decisions can shift design drivers

and how this shift can be measured. Testing under these parameters showed that

the agent converged to a solution by the 50th timestep. To ensure that convergence

was captured, each experiment instances were run for 60 timesteps. For each set of

experiment parameters, the experiment was simulated 100 times so that trends in

agent behavior could be identified and compared statistically. Figure 5.4 and the

optimality results in Table 5.2 demonstrate the agent designer’s ability to generate

an adequate solution to the TSP, when simulation parameters allow. Each K-A-D

network created by a simulation run is analyzed with the four centrality metrics de-

scribed in Section 4.3: In-degree, out-degree, hub centrality, and authority centrality.

Results are aggregated over the 100 simulation instantiations.
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Figure 5.4: Agent’s solution quality in 6-City TSP (95% confidence interval (CI)
for mean); progression of the routing length during the design activity
timesteps.

Simulation name (label) Runs converged on the optimal (%)

Random (R) 2
Initial Route Dependence (IRD) 1
No Decision (ND) 37
Decision (D) 45

Table 5.2: Optimality results for experiments after 60 timesteps.

Figure 5.4 demonstrates that each experiment is behaving as intended. In the

6-City TSP with distances defined by Equation 5.1, the two optimal paths are 0−1−

2−3−4−5 and 0−5−4−3−2−1, with a total length Γ = 5. In general, the agent

is not guaranteed to converge on the optimal due to the nature of the ACO heuristic

(Dorigo et al., 1996), which is known to get stuck in local optima. Furthermore, the

parameters in the R and IRD both prevent the designer from improving its solution

by preventing the agent from learning. In contrast, ND and D experiments showed

that the agent is capable of improving its routing, converging to the optimal solution

37% of the time in ND and 45% of the time in D. The optimization improvement

seen in D is attributed to the decision-making behavior, which allows more focused
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optimization on the a smaller selection of paths. Both the ND and D results show

that the design can uncover TSP path distances and use them to incrementally reduce

the route length over the simulation. This indicates that the knowledge structure

captured in the K-A-D Framework represents the design behaviors of an agent that

is learning, problem-solving, and making informed decisions. The remainder of this

section discusses the knowledge structure patterns that arise from these behaviors.

Discussed in Section 5.3, the TSP solution design activity is expected to have two

types of design drivers. First, as the designer converges on a solution, the knowledge

elements associated with preferred paths will be drivers. Second, knowledge and

action elements associated with the starting paths will be drivers. After the first

path decision is made, it is expected that these drivers will shift from starting paths

to other TSP paths.

The first type of design drivers can be measured by the distinction between knowl-

edge for TSP paths in the designer’s final solution and paths that are not in the final

solution. To properly compare these segments, the K-A-D network knowledge layer

nodes Pij are separated into the following groups based on their location in the TSP

and if their represented paths were included in the designer’s final route Rf :

• Starting Path, Solution: Path that leaves from City 0 and is in the final route,

P(0,·) ∈ Rf .

• Starting Path, Non-Solution: Paths leaving City 0 and not included in the final

route, P(0·) /∈ Rf .

• Non-Starting Path, Solution: Paths that do not include City 0 and are in the

final route, Pij ∈ Rf ; i, j 6= 0.

• Non-Starting Path, Non-Solution: Paths that do not include City 0 and are not

in the final route, Pij /∈ Rf ; i, j 6= 0.
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These segments were evaluated using out-degree and hub centrality for the first

three experiments, Random, Initial Route Dependence, and No Decision, which each

elicit different convergence behaviors. The network measures at each timestep were

averaged over the nodes within the segment and the results were aggregated over all

simulation runs.

In the Random experiment, the agent creates a solution at random. Thus, there

is no convergence in the agent’s behavior and there no difference between the knowl-

edge represented in the solution and the knowledge that is not represented in the

solution. The result is seen in hub centrality analysis in Figures 5.5 and 5.6 that

show near identical results for the importance of solution and non-solution segments

to knowledge structure development. Because the designer is unable to use previous

routes to learn and improve route generation, solution and non-solution knowledge is

used identically by the designer agent. This means that, besides variations caused by

the number of knowledge elements in each segment, there no meaningful differences

between them.

In Figure 5.5, starting path knowledge has low initial importance to knowledge

structure development. Its importance grows as the knowledge is used for route gen-

eration and distance learning. The agent’s distance learning actions use the initialized

path knowledge to learn the true distance between cities. These learning action in-

crease the importance of the knowledge they use and cause the ruggedness in the

curves that are highlighted in the red circle. Starting path knowledge importance

levels off as the knowledge structure development reaches a steady state, where the

knowledge is used equally in design development. The initial difference in starting

path importance between the two segments is caused by the number of knowledge

elements in the segments. In each experiment, the starting path solution segment

has one knowledge element and the non-solution segment has four. Thus, it is more

likely that the agent uses path knowledge from the non-solution segment than the
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Figure 5.5: Importance of starting path knowledge (95% CI for mean); hub centrality
in the K-A-D network based on inclusion in the agent designer’s solution
for the R experiment. The area circled in red highlights where learning
actions are influencing the importance of knowledge elements.

Figure 5.6: Importance of non-starting path knowledge (95% CI for mean); hub cen-
trality in the K-A-D network based on exclusion from the agent designer’s
solution for the R experiment. The area in red highlights where the
stopping criteria raises the importance of the knowledge elements in the
solution segment during the last timestep.
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solution segment. This causes the non-solution segment to grow in importance faster

than the solution segment for the first few timesteps. Once, knowledge elements from

both segments are used, they become identical.

In Figure 5.6, non-starting path knowledge has relatively high initial importance

that decreases over time. The initial importance is caused by the small amount of

knowledge in the knowledge structure when the design activity begins. When there is

a small number of knowledge elements, those that are used have a high importance.

However, as the knowledge structure develops, the non-starting path knowledge is

used less often than the starting path knowledge. This lowers the importance of non-

starting path knowledge to the knowledge structure development, which is reflected in

the centrality results. The difference in means and 95% confidence intervals between

solution and non-solution knowledge, is caused by the difference in the number of

knowledge elements in each segment. The solution path knowledge segment contains

four knowledge elements and the non-solution knowledge element segment contains

16. This reduces the variance of the non-solution segment relative to the solution

segment and can produce differences in segment means over short timespans. The

difference between segments in the final timestep, highlighted in the red circle, results

from the route solution being defined by the final route produced in the design activity.

This means the knowledge that supports the final route will have relatively higher

centrality for the last timestep.

In the Initial Route Dependence experiments, there is an extreme difference be-

tween segments because the solution is completely path dependent based on the first

route. This immediately makes the path knowledge that creates the first route knowl-

edge structure design drivers, see Figure 5.7. Hub centrality analysis shows marked

difference between solution and non-solution knowledge because the agent fixates on

a solution after the first route. The solution path knowledge clearly appears as a

design driver with high network importance relative to non-solution path knowledge.
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Figure 5.7: Importance of starting path knowledge (95% CI for mean); hub centrality
in the K-A-D network based on inclusion in the agent designer’s solution
for the IRD experiment. The area highlighted in red shows where the
creation of the first route leads to briefly sustained importance in the
Non-Solution segment.

While the non-solution starting path knowledge is used by the agent to create the

first route, that knowledge is not used in subsequent routes. This creates the briefly

sustained importance, highlighted in red, that quickly decreases as the non-solution

knowledge is goes unused. Similar design driver behaviors in the non-starting path

knowledge is shown in non-starting path knowledge. However, in the non-starting

path knowledge segment, the large number of knowledge elements reduces the initial

importance of non-solution knowledge seen in Figure 5.7.

The No Decision experiment exhibits controlled solution convergence, which is

reflected in the K-A-D network analysis. Figure 5.8 demonstrates that hub centrality

analysis captures the divergence of knowledge importance as the agent develops path

preferences. When the agent develops a preference towards a path, the corresponding

knowledge is used more frequent to develop solutions. This causes that knowledge
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to increase in importance within the knowledge structure development. The result

is that knowledge structure development is highly influenced by the knowledge that

is included in the solution. This is reflected in the statistically significant difference

between solution and non-solution segments for the 95% confidence intervals shown in

the graphs. The larger confidence interval for the non-solution elements in Figure 5.8

is caused by variations in the decrease of non-solution knowledge importance. Some

knowledge may become immediately unused by the agent and other knowledge may

be used frequently until convergence occurs. Conversely, in Figure 5.9 the solution

path knowledge has a larger confidence interval than non-solution knowledge. This

occurs because the agent converges on non-starting paths over different timespans.

The agent may develop preferences toward some non-starting paths quickly and other

preferences may be delayed.

Figure 5.10 and 5.11 shows similar results in out-degree analysis. The divergence

of knowledge importance occurs as the designer develops path preferences. The results

show that designer actions used solution path knowledge often than non-solution path

knowledge. This difference starts early in the design activity and increases during the

design activity. This is seen though the statistically significant difference between

solution and non-solution segments for the 95% confidence intervals shown in the

graphs.

In both starting and non-starting path knowledge, there are no clear design drivers

when the design activity begins. This resembles the Random experiment results.

As the agent designer develops preferences, design drivers emerge in the knowledge

structure development. This captures path dependence in the solution generation.

When the path dependencies develop, the network importance begins to move towards

the Initial Route Dependence results, where solution knowledge has higher importance

than non-solution knowledge.

Design drivers can be shifted by designer decisions that commit to the product
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Figure 5.8: Importance of starting path knowledge (95% CI for mean); hub centrality
in the K-A-D network based on inclusion in the agent designer’s solution
for the ND experiment.

Figure 5.9: Importance of non-starting path knowledge (95% CI for mean); hub cen-
trality in the K-A-D network based on exclusion from the agent designer’s
solution for the ND experiment.
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Figure 5.10: Importance of starting path knowledge (95% CI for mean); out-degree
in the K-A-D network based on inclusion in the agent designer’s solution
for the ND experiment.

Figure 5.11: Importance of non-starting path knowledge (95% CI for mean); out-
degree in the K-A-D network based on exclusion from the agent de-
signer’s solution for the ND experiment.
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structure and change the knowledge structure development. In these experiments, this

design driver behavior is created by the order of path selection actions. Because the

agent always starts the route at City 0, the path knowledge P0· has greater influence

than non-starting path knowledge. This difference can be confirmed by measuring

starting and non-starting path knowledge and actions that generate that knowledge.

Comparing these types of knowledge structure elements is best done by grouping

parts of the K-A-D network into four segments:

1. Starting Path Knowledge - knowledge layer nodes representing paths P0·.

2. Starting Path Actions: action layer nodes representing learning action for start-

ing paths. These nodes represent the action Gt([P0j, Rst], P0j), as described by

K-A-D network mapping in Section 5.2.

3. Non-Starting Path Knowledge: knowledge layer nodes representing non-starting

paths Pij; i, j 6= 0.

4. Non-Starting Path Actions: action layer nodes representing learning action for

non-starting paths. These nodes represent the action Gt([Pij, Rst], Pij), where

i, j 6= 0 as described by K-A-D network mapping in Section 5.2.

To quantify segment differences, hub and authority centralities were applied to

the K-A-D network and their results were averaged over the nodes in each segment.

Figures 5.8 and 5.10 show the results for the No Decision experiment. The authority

centrality results for knowledge layer nodes and hub centrality results for action layer

nodes are not displayed because they are negligible. In Figure 5.12, mean of au-

thority centrality for actions that learn path distances have some initial importance,

but decrease quickly as the design activity progresses. Early in the design, actions

that learn the true path distances are identified as important actions because they

use important knowledge. However, the actions quickly became unimportant as the
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Figure 5.12: Importance of path learning (95% CI for mean); authority centrality of
action layer nodes that represent path learning in the ND experiment.

knowledge they used is ignored in subsequent actions. This occurs because the de-

signer stops using their initial path knowledge (dij = e), after the true path distance

is learned.

Figure 5.13 shows how the designer uses the path knowledge generated by the

actions in Figure 5.12 to solve the design problem. Mean of hub centrality shows that

after the first few timesteps, starting path knowledge is significantly more important

to the knowledge structure development than non-starting path knowledge. In sim-

ulation ND, starting path knowledge guides route generation during every timestep.

This makes it considerably more important to the designer’s actions than non-starting

path knowledge, which is only used in some routes.

In simulation D, a different design driver dynamic occurs. Shown in Figure 5.14,

the agent’s decision to commit to a starting path from City 0 shifts the design drivers.

This decision is denoted in the figure by the vertical red line. Compared to simulation

ND, starting-path knowledge decreases in importance and non-starting path knowl-

edge increases in importance. This is shown by the statistically significant divergence

between the importance of starting and non-starting knowledge segments. The results
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Figure 5.13: Importance of path distance knowledge (95% CI for mean); hub central-
ity of designer path knowledge for the ND experiment.

indicate that the agent is using knowledge about the undecided paths more heavily

in the route creation process. It is suggested that this shift in importance accounts

for the agent converging on the optimal path more than 20% more frequently in the

D experiment than in the ND experiment.

In the Decision experiments, the decision shifts knowledge usage from the starting

path knowledge to the non-starting path knowledge. This decreasing the importance

of starting path knowledge to the knowledge structure development and increases non-

starting path knowledge. The changing importance is shown in the hub centrality

for the segment in Figure 5.14. Variations in when the first decision occurs causes

the increased confidence interval in the Decision experiment compared to the No

Decision experiment. The inflection points and subsequent divergence between the

two experiments indicate a noticeable shift in what is important to the agent designer.

Both sets of design driver analyses match the expected design driver behavior.

When the designer begins to develop certain elements of the knowledge structure

during the design activity, it becomes a driver that can be identified in the K-A-D

Framework.
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Figure 5.14: Importance of starting path knowledge (95% CI for mean); hub centrality
comparison of starting path knowledge that is represented in the agent’s
solution for D and ND experiments.

Figure 5.15: Importance of non-starting path knowledge (95% CI for mean); hub
centrality comparison of non-starting path knowledge that is represented
in the agent’s solution for D and ND experiments.
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5.4.1 Identifying Path Dependence

In the simulation, the designer converges on a solution by reusing preferred paths

to help refine better routes. Discussed in Section 5.3, this process is path dependent.

When the path dependencies develop, they should appear as sustained design drivers

that are more important than comparable knowledge elements. Figures 5.8 and 5.9

correctly identify this behavior. However, it is not just the final outcome that is path

dependent, the pheromones on each TSP path are also path dependent. Thus, if the

K-A-D network is properly capturing the agent designer’s path dependent behavior,

centrality analysis should be able to replicate the designer’s pheromone mechanisms.

Network centrality results cannot be directly compared to the pheromones for

the TSP paths because the pheromone dissipation factor and route length introduce

distortions in how the pheromones are updated. Instead, the agent’s most likely

route (MLR) can be used to make a reasonable comparison. The MLR is the route

that has the highest probability of being taken given the transition rule in Equation

5.2. The MLR can be constructed from pheromones or the pheromone values can be

substituted for another set of values, in this case network centrality measures. The

structure of Equation 5.3 and fixed TSP starting city guarantees that the highest

value path selection replicates the most likely route based on a set of path values.

Starting at City 0, the path with the highest value is chosen. This leads to the next

city, where the highest value path to an unvisited city is chosen. The highest value

selection process continues until a full route is constructed.

MLRs are compared between the network centrality of nodes representing path

knowledge and the pheromones for those paths. This comparison evaluates capability

of different network centralities to measure path dependencies in the agent designer’s

actions and the design outcomes. To quantify the comparison, the error between the

two sets of values is the percent of paths in the centrality-based MLR that are not in

the pheromone-based MLR. Route error E was calculated for R, ND, and D.
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Figure 5.16, shows the error for the Random experiment. In this experiment, the

agent does not produce design drivers and thus the network analysis cannot replicate

the agent behavior. It is expected that the MLRs are not comparable between the

centrality and pheromone paths. This provides the expected error of the path pre-

diction process if paths are created at random, E ≈ 80%, which provides a baseline

to judge the performance of ND and D experiments.

Figure 5.16: Most likely path comparison (95% CI for mean); route error between
pheromone and centrality MLRs, experiment R. This identifies a baseline
error rate of 79.8% for random route selection.

Figures 5.17 and 5.18 show the path error for No Decision and Decision experi-

ments. This indicates that path dependencies in the designer’s behavior can be iden-

tified and measured through out-degree and hub centrality analyses. In-degree and

authority centrality do not make accurate predictors of path dependencies. This is to

be expected. Out-degree and hub centrality measure importance by how a knowledge

structure element is used. In-degree and authority centrality measure importance by

how an element is created. Path dependencies develop from the repeated use of a

knowledge structure element, thus out-degree and hub centrality are better suited for

measuring their development.
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Figure 5.17: Most likely path comparison (95% CI for mean); route error between
pheromone and centrality MLRs, experiment ND. At t = 1, there is no
error between solutions because only one route has been created.

Figure 5.18: Most likely path comparison (95% CI for mean); route error between
pheromone and centrality MLRs, experiment D. At t = 1, there is no
error between solutions because only one route has been created.
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Focusing on out-degree and hub centrality, the path dependence results are ini-

tially imperfect, only predicting approximately 50% of the correct paths in the most

likely routes, which is almost 40% better than random. As path dependencies de-

velop, the error decreases and both out-degree and hub centralities more accurately

predict the strongest path. In the decision experiment, ingrained preferences are ex-

plicitly locked-in by the designer to create a fixed path in the route. This reinforces

the existing path dependencies and reliably increases the accuracy of the centrality-

based routes. The result is that the error rate in D decreases to E ≈ 0.0 and does so

consistently after decisions are made.

The four experiments and their knowledge-based analysis through the K-A-D

Framework have demonstrated the following:

• Random Experiment: unintelligent agent randomly creates routes and does not

learn or explore. Because of this, the agent is unable to develop a solution to

the TSP outside of the random chance that an good solution is chosen in the

final timestep.

– When knowledge-based path dependencies do not exist, there are no design

drivers in the knowledge structure development.

• Initial Route Dependence: agent immediately commits the first route to the

product structure. The solution lock-in also prevents the agent from developing

a good solution to the TSP because the first route is created at random.

– The influence of path dependencies that ingrain design outcomes appear

as knowledge structure elements that have sustained importance relative

to other knowledge structure elements.

– Design drivers that influence the generation of knowledge structure ele-

ments can be identified with out-degree and hub centrality analysis of the

K-A-D network.
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• No Decision: agent learns paths, explores possible routes, and converges on a

solution, but does not commit to a product structure until the last timestep. In

this experiment, the agent incremental improves its solution towards an optima

by increasing its preference towards paths that are used in short routes.

– Path dependent behaviors that converge the solution can be identified by

measuring the importance of knowledge structure elements to the knowl-

edge structure development.

– Determining the emergence of design drivers with K-A-D network analysis

indicates when path dependencies may ingrain design outcomes.

– Sustained design drivers suggest that the design outcome is ingrained by

the knowledge structure development.

– The dynamic influence of path dependent behaviors on design outcomes

can be measured with out-degree and hub centrality analysis of the K-A-D

network.

• Decision: agent learns paths, explores possible routes, converges on a solution,

and makes decisions committing to the product structure. In this experiment,

the agent improves its solution towards an optima by creating preference to-

wards promising paths. Heavily preferred paths are locked-in during the design

activity and shift importance to undecided paths.

– Decisions shift knowledge structure development by changing what knowl-

edge structure elements are important to the design activity.

– Knowledge structure development shifts caused by decisions can be iden-

tified with the K-A-D network.
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5.5 Conclusion

This chapter demonstrated the K-A-D Framework on a design activity simulation

where an agent designs a solution to the TSP. The simulations generated data to

test the framework’s ability to describe a design activity in such a way that design

drivers could be measured to identify the influence of path dependencies. The results

presented here demonstrate the capabilities of the K-A-D Framework in a repetitive

and well structured environment. While this does not necessarily represent all of the

complexities of a real-life scenario, the simulation does model some of the unique

aspects of design that create emergent design outcomes.

During the simulation, the agent designer learns, exploits knowledge to create

solutions, and uses knowledge to guide future learning, problem-solving, and decision-

making. This captures fundamental design behaviors. Using the K-A-D Framework

to describe these behaviors in terms of the knowledge structure development was

able to create network modeling of the design activity. Design drivers and path

dependencies were measure by analyzing the corresponding networks. These results

are an example of how the K-A-D Framework can elicit how knowledge structure

development influences design outcomes.

From a naval design perspective, the K-A-D Framework approach is useful in two

ways. First, it introduces the concept that knowledge structures drive design, not

the product being designed. This alone is a critical step to preventing design failures

caused by knowledge-based emergence. Second, the K-A-D Framework provides a

formal framework for describing a knowledge structure, measuring its development,

and identifying emergent influences on design outcomes. Application of the K-A-D

Framework to a naval design activity may enable the identification of design failures

and subsequent prevention measures. Demonstrating how this goal can be achieved

is the subject of the following chapters.
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CHAPTER VI

Distributed Systems Design Failure Analysis Using

the K-A-D Framework

Shipboard systems, associated engineering, and design work account for almost

half of the cost of a naval vessel (Miroyannis , 2006). Over the last 50 years, shipboard

systems have accounted for nearly 20% of the annual cost increase for procuring a

naval vessel (Arena et al., 2006). Within a naval procurement program, the design

and engineering of shipboard systems is volatile. Small decisions can propagate into

significant design, engineering, and construction work (Schank et al., 2009), which

often drives cost overruns and delays (First Marine International, 2005). These issues

are emergent design failures that start in early-stage design, but are realized in later-

stages.

During early-stage design, distributed systems are considered at low-fidelities to

measure concept feasibility and requirement satisfaction (Andrews , 2016). This al-

lows designers to make sizing and layout decisions with confidence that an acceptable

distributed system can be designed for the vessel. Detailed system configurations

are designed later, using better defined layout, components, and operational specifi-

cations. This means that early-stage decisions about component layout and system

routings have considerable influence on the late-stage distributed system design ac-

tivity.

101

FINAL TECHNICAL REPORT 
N00014-14-1-0712



Late-stage system design integrates separately engineered systems so that they

operate interdependently, fit together in the same physical space, and work correctly

in their locations. This design activity creates a knowledge structure supporting how

each system and its routings integrate with other components, systems, and spaces

within the vessel. Design failure occurs when developing this knowledge structure is

too difficult to complete in the allotted timeframe. Because early-stage design deter-

mines many of the systems, interdependencies, and physical interactions, early-stage

decisions may increase the potential for emergent late-stage design failure. How-

ever, current early-stage distributed system analysis only considers the attributes of

the product structure. Without considering the knowledge structure implications of

early-stage decisions, designers cannot address the risk of emergent design failures.

In this chapter, the K-A-D Framework is applied to the distributed system de-

sign activity to introduce potential late-stage knowledge structure development into

early-stage analysis. To facilitate this, Section 6.1 introduces a method for gener-

ating ensembles of many distributed system design representations for early-stage

design analysis. Section 6.2 proposes mathematical definitions for distributed system

design knowledge and actions that convert the design representations into approx-

imate knowledge structures. Section 6.3 discusses knowledge structure analysis for

investigating emergent design failures. Section 6.4 demonstrates the importance of

knowledge structure analysis for considering design failures by comparing knowledge

and product structure analysis methods.

In Chapter VII, these definitions and methods are implemented to simulate knowl-

edge structure growth during system design for a multi-system vessel concept. Anal-

ysis of the generated knowledge structures identifies decisions with a high risk for

design failures, design drivers behind the failures, and opportunities to leverage path

dependencies to prevent potential emergent failures.
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6.1 Generating Distributed Systems in Early-Stage Design

To create knowledge structures that accurately represent distributed system design

three types of information are needed: information about knowledge that will be

used, the actions that will use them, and the knowledge that will be created. These

elements define the pattern of knowledge structure development that may create

design failures. However, in early-stage design, information about these elements is

limited by the level of available detail. Rough ideas of components and systems are

often known, but the way knowledge will be used by designers is not. This makes it

difficult to anticipate how a knowledge structure will develop during system design.

Because knowledge structures determine the design outcomes, the ability to know how

knowledge structures unfold may be more important than knowing about potential

product structures.

The problem is two-fold. First, knowledge that is used in the design is dependent

on the interactions of systems within the vessel. Therefore, the layout of a vessel con-

cept may have a significant impact on the design knowledge structure. The distributed

system configuration details that define these interactions are not available until late-

stage design, when it is too late to avoid design failure. To develop the appropriate

knowledge structures in early-stage design, so that they can be used to decrease the

chance of early-stage design failure, configuration and integration information need

to be available earlier. The second problem is that there is a combinatorial explosion

of possible configurations as the level of design detail increases. Thus, a single dis-

tributed system configuration is unlikely to represent the knowledge structure that

will develop. To remedy this, many possible configurations need to be investigated

and a method to evaluate multiple configurations efficiently needs to be established.

Shields et al. (2017) presented a method for generating early-stage distributed sys-

tem configurations, called physical system solutions, that solves the aforementioned

problems. The method represents both the vessel layout, (physical architecture)
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and the systems’ functional interdependencies (logical architecture) as networks. The

Logical-Physical Architecture Translation L-PAT algorithm, was developed to quickly

convert these networks into physical system solutions through a stochastic routing

method. This approach creates ensembles, many randomly drawn instances from the

same conditions, of physical system solutions. Ensemble of configurations can be

analyzed to statistically quantify the expected configuration properties. This enables

the creation and analysis of potential future knowledge structures for a distributed

system design activity.

In this chapter, the ensemble approach is extended to knowledge structure anal-

ysis to investigate the expected properties of the future design activity. Ensembles

of simulated physical system solutions provides the system interaction information

needed to approximate knowledge structure creation. This enables characteristics of

late-stage knowledge structure development to be considered in early-stage design.

The complete methodology for generating physical system solutions and a demon-

stration can be found in Shields et al. (2017). The outline of the method follows

(configuration will be used in place of physical system solution).

Distributed system configurations can be thought of as a set of paths for resource

distribution between components within a vessel. A feasible configuration must fit

within the vessel geometry and enable all components to function. The physical ar-

chitecture of a vessel defines the vessel geometry and spatial definition. In this thesis,

the physical architecture is represented as the component layout and arrangement of

spaces. This constrains where the distributed system can pass through and where it

needs to connect to components. The nature of these connections is described in the

logical architecture. Here, the logical architecture is considered to be the functional

connections between components within the vessel (e.g. a computer needs electrical

power from a generator). This description reflects the findings of an ongoing research

program studying the design of naval distributed systems. Research collaborators
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Figure 6.1: Physical architecture composed of spaces within the vessel and its net-
work representation. Nodes in V represent spaces. Edges between nodes
represent adjacencies between spaces.

include students, researchers, and faculty at The University of Michigan, Virginia

Polytechnic Institute and State University, The University College London, and Delft

University of Technology.

Both the physical and logical architectures can be represented as networks. V

represents the physical architecture as a single-layer network that describes the rela-

tionships between vessel spaces, see Figure 6.1. S represents the logical architecture

as multi-layer network that describes the relationships between components within

different system types, see Figure 6.2. Components are represented as nodes S(·,i)

that exist in each system type layer l = 1, 2, . . . . Functional connections between

components for a given type of system are represented as S(l,ij). The following figures

demonstrate the physical and logic architectures with their network representations.

The distributed system configuration G is the set of paths through V that satisfy

every relationship between components in S. In this implementation, each path is

generated by a randomly selected shortest path routing. The selection for a single

component connectivity is shown in Figure 6.3. The L-PAT algorithm executes this

selection for every edge in each layer Sl. Using the K-A-D Framework, the distributed

system configuration output, G, can be converted into a corresponding knowledge

structure approximation.
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Figure 6.2: Logical architecture of two systems with three components and its net-
work representation. Nodes in Sl represent components in system l. Edges
within Sl represent connections between components in system l. Edges
between system layers represent components that are shared by multiple
systems (adapted from (Shields et al., 2017)).

Figure 6.3: From left to right: Structure of V and its components, enumeration of
possible shortest paths in V between components, randomly selected path
(Shields et al., 2017).
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6.2 Distributed System Design Knowledge Structures

The K-A-D Framework converts a distributed system configuration into a knowl-

edge structure by defining knowledge, actions, and their relationships in a system

design activity. Once these elements are defined, knowledge structure ensembles are

created from the distributed system configurations generated by the L-PAT algorithm.

This enables knowledge-based analysis of design outcomes and their emergence from

knowledge structure development.

The knowledge structure model does not incorporate decisions in the K-A-D

Framework. In a real design activity, decision could be included by tracking how

parts of the distributed system configuration are committed to product structure.

This would limit the set of potential product structures as decisions were made. When

a decision is made about configuration elements, the decided elements are removed

from the random generation of ensembles. This models that the element is always

included in the product structure. The differential between knowledge structure char-

acteristics between ensembles with and without decisions would provide insight into

how the decision influenced knowledge structure development.

The general knowledge structure model for distributed system design is rooted in

the integration of multiple systems and components. To understand an integrated

configuration, designers must evaluate how the distribution system routings and sys-

tem components operate within vessel environment, as well as in the presence of

other distribution systems. This requires that the designer develops knowledge that

integrates existing information about routings, components, vessel spaces, and the

connections between spaces. As the number of interactions between these elements

increases, so does the number of knowledge interdependencies that the designer is

expected to integrate.

The K-A-D Framework is used to model the knowledge integration actions. First,

existing knowledge is defined to represent routings, components, and environments.
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Figure 6.4: Distributed system configuration with two spaces (black boxes), two com-
ponents (blue circles), and a routing from component C1 to component
C2 (blue line). Knowledge elements for system environments Ei, system
components Con

i and Coff
i , and system routings Ron

i and Roff
i are labeled.

Environments are defined as the vessel spaces and the connections between them.

Individual elements in the knowledge structure represents knowledge about the prop-

erties and functions of each routing, component and environment instance. For ex-

ample, two different components would have their own knowledge structure elements.

Elements for routings or components are broken into knowledge representing ‘on’

and ‘off’ states. Knowledge elements for ‘on’ represent functional properties and ‘off’

represents physical properties. Existing elements are defined as precedent knowledge

in the form, k = G0(∅, ∅), where k is routing knowledge Ron or Roff , component

knowledge Con or Coff , and environment knowledge E. Figure 6.4 demonstrates how

knowledge structure elements are defined for a small distributed system configuration

representation.

The knowledge structure approximation assumes that designers generate knowl-

edge about the integrated configuration through actions that use interdependent

knowledge elements. Interdependencies are defined by the configuration. For ex-

ample, if a routing R1 passes through environment E1, then the knowledge associated

with both elements are interdependent. The complete knowledge structure for the in-

108

FINAL TECHNICAL REPORT 
N00014-14-1-0712



Figure 6.5: Knowledge structure approximation for a distributed system configura-
tion in Figure 6.4. This is created by the K-A-D Framework and its
network representation to model the integration of knowledge elements
required to understand the configuration. Precedent knowledge is inte-
grated though actions Ai that create integrated knowledge Ii.

tegrated configuration needs to contain elements that consider the interdependencies.

In this case, I1 = A1(Ron
1 , E1) and I2 = A2(Roff

1 , E1), where Ii represents knowledge

for a part of the integrated configuration that is generated by designer action Ai.

These actions can be combined with precedent knowledge to create a K-A-D network

that approximates the design activity based on distributed system configuration. Fig-

ure 6.5 demonstrates the knowledge structure approximation for the configuration in

Figure 6.4.

The proposed K-A-D Framework description characterizes the potential knowl-

edge structures in a way that is not predicated on a particular system design process.

This is possible because the knowledge structure approximation captures a fundamen-
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tal relationship between knowledge and system design, called the law of functional

complexity that defines how difficult a system is to design. It can be shown that the

K-A-D Framework captures this relationship by comparing the mathematical defini-

tion of the law of functional complexity to the knowledge structure model.

Bar-Yam (2003a) describes laws in complex systems as fundamental relationships

between qualities of system, action, environment, function, and information. The law

of functional complexity describes the amount of information needed to completely

specify the function of a system (Bar-Yam, 1997). Functional complexity is defined

as:

C(f) = C(a) · 2C(e) (6.1)

where for a given system whose function is to be specified, the environmental (input)

variables have complexity C(e), and the actions of the system have a complexity of

C(a). When designing a system, C(f) this is the amount of information needed to

fully understand the system’s behavior.

Functional complexity provides an intuitive check on the knowledge structure de-

fined in the K-A-D Framework. The estimated knowledge structure captures knowl-

edge required to understand each system environment within the vessel. Evaluated

across the entire vessel, the knowledge structure estimates the amount of knowledge

generated to understand the system configuration.

The K-A-D Framework for distributed system design articulates the functional

complexity relationship. Applied to each system environment, C(a) is the complexity

of component actions and C(e) is the complexity of the system routings. Specifically,

C(a) is the number of actions that could occur (e.g. ‘off’ if no component is present,

‘on’ or ‘off’ for a single component) and C(e) is the number of states the environment

could be in (e.g. ‘off’ if no routings are present, ‘on’ or ‘off’ for a single routing,

‘on-on’, ‘on-off’, ‘off-on’, and ‘off-off’ for two routings).
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The network-based definition of distributed system components and routings that

define the L-PAT’s physical system solutions can be readily mapped to the K-A-D

Framework. Each node and edge in the physical architecture representation Vij is a

system environment node Eij in the K-A-D Framework. Each component represented

by a node in the logical architecture, S·,i, is represented as its corresponding on and

off component knowledge nodes, Con
i and Coff

i . The routings between components i

and j in system l, Sl,ij, are represented as on and off routing knowledge nodes, Ron
l,ij

and Roff
l,ij .

The configuration of the physical system solution defines the knowledge interde-

pendencies created in the K-A-D Framework. For each system environment, knowl-

edge representing the components allocated to it and the system routings that use

it are integrated in the knowledge structure. The complete knowledge structure can

be created by iterating through each node and edge in the physical architecture and

creating the knowledge interdependencies for that element, Figure 6.6 describes this

process.

6.3 Distributed System Knowledge Structure Analysis

Chapter V showed how network-based knowledge structure analysis can measure

design drivers and identify path dependencies that influence design outcomes. The

same concepts can be used to measure emergent design drivers for the knowledge

structure developed during the design of a distributed system configuration. Applied

over an ensemble of knowledge structures, this can measure expected design drivers,

path dependencies, and the potential for design failure.

The distributed system design knowledge structures can approximate the knowl-

edge integration effort for a given configuration. When the integration effort is high,

the number of actions the designer must take is also high. Thus, the first measure

of interest is the number of actions needed to generate a configuration’s knowledge
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Figure 6.6: Process flowchart for converting an L-PAT distributed system representa-
tions into a knowledge structure approximation using the K-A-D Frame-
work.

structure. In the K-A-D network, this is the number of nodes in the action layer

NA. The second measure of interest is how knowledge elements contribute to de-

signer actions. This is represented by the out-degree of nodes in the knowledge layer

kkkout = [kout0 , kout1 , . . . , koutNK
], where NK is the number of nodes in the knowledge layer.

The number of designer actions estimates the effort required to design a distributed

system configuration. Actions integrate existing knowledge to account for all of the

knowledge interdependencies created by the configuration. As the number of interde-

pendencies increases, the number of actions will also increase, making it an estimator

of design effort. Out-degree of knowledge elements quantifies how knowledge was used

to complete the design activity. This measures the importance of individual elements

to knowledge structure development.

Expected knowledge structure characteristics are calculated by evaluating the

number of action and its distribution over an ensemble. These characteristics provide
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insight into how the conditions that define an ensemble influence the subsequent de-

sign activity. Comparing characteristics between different ensembles can reveal how

one set of early-stage design conditions may be more likely to create late-stage design

failures than another.

Unfortunately, the simple approach of measuring characteristics by generating

and analyzing K-A-D networks is not always possible. The size of the K-A-D net-

work grows exponentially with the number of routing interactions and can easily

become larger than is reasonable to store and evaluate. When this occurs, a more

tractable method is to measure characteristics by analyzing the distributed system

design representation, without generating the K-A-D network. The law of functional

complexity facilitates this analysis. The number of required actions can be calcu-

lated by iterating through the node and edge elements of the physical architecture

network representation. The network-based calculation of functional complexity for

distributed systems is described in Shields et al. (2016b). At each element Vij in

the vessel network, Cij(a) is the complexity of action for the corresponding system

environment knowledge Eij and is defined as

Cij(a) = 2Vij , (6.2)

where Vij is the number of components allocated to that element by the L-PAT

algorithm.

Complexity of the environment Cij(e) is the number of routing interactions that

occur on the element Vij. Using the routing paths G that are output by the L-PAT

algorithm, C(e) is a count of the number of times Vij appears in G. This can be

calculated as

Cij(e) =
∑
l

∑
s6=t

δstl(i, j), (6.3)
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where δstl(i, j) = 1 if the route between components s and t in system l contains Vij

and δstl(i, j) = 0 otherwise. Combining Equation 6.2 and Equation 6.3 into Equation

6.1 and rearranging the terms gives the functional complexity Cij(f) of element Vij

Cij(f) = 2Vij+
∑

l

∑
s6=t δstl(i,j). (6.4)

Cij(f) counts the estimated number of designer actions required to integrate the

distributed system configuration at the system environment represented by Vij in the

vessel network. Equation 6.4 can be applied to every element in the vessel network

to calculate the total number of designer actions required to integrate a prospective

distributed system design. The resulting quantity CV (f) is defined as

CV (f) =
∑
i,j

2Vij+
∑

l

∑
s6=t δstl(i,j). (6.5)

Complexity values in Equation 6.4 and Equation 6.5 are equivalent to K-A-D

network characteristics. Cij(f) is equal to the out-degree koutij of knowledge node Eij in

the K-A-D network. Thus, number of actions using each system environment element

is calculated by applying Equation 6.4 to each physical architecture element Vij.

The resulting degree sequence kkkoutE does not include component or routing knowledge

elements, but it can be calculated quickly and describes a critical part of knowledge

structure development. CV (f) is equal to NA, the number of action layer nodes.

Both kkkoutE and NA are emergent properties of the system design activity. They

arise from the knowledge interdependencies that need to be developed to understand

a system design concept. The L-PAT algorithm provides the necessary information

to predict how the knowledge structure properties emerge. In the following chapter,

NA will be used to estimate the effort required to design a distributed system and

kkkoutE will be used to identify design drivers. Together, they describe how early-stage

decisions influence design outcomes and the potential for failure.
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It needs to be reiterated that the described knowledge structure characteristics

are not predicated on how the design activity is executed. The characteristics are

calculated from a completed knowledge structure based on the precedent knowledge

and configuration. This does not model the order in which the knowledge structure

is developed. While additional details can be added to consider the execution of

development for a specific tool or process, the current form is more appropriate for a

general model.

6.4 Knowledge Structures Versus Product Structures

The knowledge structure created from the distributed system configuration in-

troduces knowledge generation requirements and knowledge interdependencies into

early-stage design analysis. Comparing the knowledge-based analysis to traditional

product-based analysis illustrates the value of this perspective. The product perspec-

tive only considers the elements within the product and their relationships, not the

ideas and information that they represent. In isolation, a product structure perspec-

tive masks the knowledge structure that support it.

Figure 6.7 demonstrates this issue with a product and knowledge structure com-

parison for a distributed system configuration. Comparing the knowledge and prod-

uct elements in Figure 6.7 shows the difference in the scope of each perspective. The

knowledge-based perspective describes the knowledge that is represented in the con-

figuration. The product-based perspective describes the elements that compose the

product. Emergent design failures arise from the interdependencies between design

knowledge and thus cannot be captured in the product structure. For example, the

Boeing 787 design suffered significant delays due to unexpected knowledge structure

interdependencies, not because the 787 had different product structure interdepen-

dencies than other Boeing airplanes (Kotha and Srikanth, 2013). In Figure 6.7, the

product structure has no interdependencies at the cut, only S1 exists. The knowledge

115

FINAL TECHNICAL REPORT 
N00014-14-1-0712



Figure 6.7: Knowledge and product structure comparison for distributed system de-
sign at the circled section. Knowledge structure describes the information
that required to understand the distributed system configuration. At the
cut, this is knowledge about each routing R12 between components C1 and
C2 and R13 between components C1 and C3. Product structure describes
the system elements at the highlighted section. This only includes that
System 1 exists that location, which is denoted by S1.

structure has four interdependencies: Ron
12−Ron

13 , Roff
12 −Ron

13 , Ron
12−R

off
13 , Roff

12 −R
off
13 .

The inability to account for these knowledge interdependencies inhibits the prevention

of emergent design failures.

Failure in distributed system design can be driven by a rapidly increasing amount

of knowledge required to understand a particular design. This increase is caused by

the explosion in the number of knowledge interdependencies that need to be under-

stood. In a more intricate configuration than shown in Figure 6.7, the product inter-

dependencies are essentially static and only vary with the number of system types.

In comparison, knowledge interdependencies are highly sensitive to the configuration

decisions. While this intuitively follows the modeling choices, the difference shows

why a knowledge-based perspective is required to understand interdependencies that

cause distributed system design failures.

This chapter leveraged the K-A-D Framework and network to approximate knowl-

edge structures for a distributed system design activity. The following chapter will

demonstrate how ensemble knowledge structure analysis can identify the potential for
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distributed system design failures and opportunities to prevent them. More broadly,

these methods introduce the ability to consider potential design outcomes, before

design activity takes place.

117

FINAL TECHNICAL REPORT 
N00014-14-1-0712



CHAPTER VII

Identifying and Preventing Emergent Design

Failures in Early-Stage Distributed System Design

In this chapter, the K-A-D Framework and K-A-D network model developed for

analyzing distributed system design activities are applied to a naval vessel concept.

The results demonstrate that knowledge structure analysis can be used to predict

naval design failures and identify prevention measures. Using ensemble analysis of

knowledge structure development, potential design failures are identified. Exploring

the design drivers behind those failures reveals how failures emerge and what can be

done to prevent them. The following study is conducted on a coarse-grained naval

vessel layout with a comprehensive distributed system. This model is also used in

Shields et al. (2016b). The level of detail is appropriate for early-stage design analysis

and can reveal potential late-stage design failures.

7.1 Demonstration Case

In this section, the physical and logical architectures of a naval vessel concept

are represented as networks. These networks and the Logical-Physical Architecture

Translation algorithm will be used for the knowledge structure analysis described in

Chapter VI. The vessel concept is shown in Figure 7.1 and its physical and logical
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Figure 7.1: Vessel concept modeled with structural zones, component locations, wa-
tertight bulkheads (red vertical lines), and a damage control deck (blue
horizontal line). Color coding on each component indicates the dis-
tributed systems the components connect with. Each component is as-
sumed to be accessible by shipboard personnel (Shields et al., 2017).

Figure 7.2: Physical architecture network representation V for the vessel in Figure
7.1. Structural zones separated by watertight bulkheads do not have
edges between them (Shields et al., 2017).

architectures are shown in Figures 7.2 and 7.3.

The demonstration of the K-A-D Framework methods will consider how poten-

tial future design outcomes for this vessel’s distributed system design activity are

influenced by changes to the physical architecture. In the vessel, three watertight

bulkheads constrain the distributed system configuration. This model assumes that

distributed system routings cannot pass through these bulkheads and must go around

them. In the demonstration, knowledge structure analysis will be applied to a range

of scenarios that relax this routing constraint to allows penetrations of watertight

bulkheads.

Allowing systems to route through watertight bulkheads is not intended to capture
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Figure 7.3: Physical architecture network representation S for the vessel in 7.1. Dis-
tributed system connectivity is defined by resource flow between compo-
nents, e.g. components that need chill water must be connected to the
chiller (Shields et al., 2017).

a specific naval architecture rationale. Instead, it represents a level of constraint on

the design activity. If the activity is highly constrained, the bulkheads are never pen-

etrated, there is a limited number of routing options. If the activity is unconstrained,

the bulkheads have penetrations, the number of routing options increases. Defining

a watertight bulkhead permeability parameter p allows the level of design constraint

to be controlled. Figure 7.4 shows how this is modeled in the physical architecture.

When bulkhead permeability is low, systems are unlikely to be able to pass through

watertight bulkheads. This constrains routings to pass horizontally over bulkheads

and makes it difficult to achieve the shortest path routings between components.

When permeability is high, systems are likely to be able to pass through bulkheads.

This allows routes to gravitate towards shortest path routings. In effect, permeabil-

ity models constraint and objective pressures. Measuring the relationships between

permeability and the number of designer actions needed to understand the integrated

system can help characterize how an early-stage decision about bulkheads can poten-
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Figure 7.4: Adjusting the physical architecture network for bulkhead permeability p.
For each instantiation of the physical architecture at given permeability,
the penetrating edges are included in the network V with probability p.

tially cause design failures.

Bulkhead permeability defines the knowledge structure ensembles that will be an-

alyzed. All knowledge structure instances generated for a given value of p arise from

the same set of design activity conditions. Aggregating knowledge structure analyses

by p provides insight into what design outcomes can be expected from those condi-

tions. Each instance of knowledge structure analysis is generated by first permuting

the physical architecture based on p (see Figure 7.5), then the L-PAT algorithm is

used to generate the distributed system configuration, which is analyzed using the

K-A-D network measures described in Section 6.3.

The following K-A-D Framework analyses investigate the knowledge structure

characteristics of eleven ensembles and the differences between them. Ensembles of

200 instances were created for permeability parameters p = [0.0, 0.1, . . . , 1.0]. Knowl-

edge structure analyses described in Chapter VI are applied to each instance to cal-

culate NA, the number of designer actions needed to understand the distributed sys-

tem configuration, and kkkE, the number of actions that use each system environment

knowledge element. The results are aggregated within each ensemble and investigated

with statistical methods. This enables probability of a potential design failure to be

calculated and possible prevention measures to be identified.
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Figure 7.5: Flowchart for adjusting the physical architecture V to account for bulk-
head permeability parameter (Shields et al., 2016b).

7.2 Emergent Design Failures

Design failures are caused by increasing design effort. Emergent design failures

arise when history of designer actions and decisions leads to an unexpected increase

in design effort. Chapter VI proposes that the design effort for a distributed system

design activity can be estimated using the K-A-D Framework. Interactions between

components, routes, compartments, and connections between compartments create

knowledge interdependencies. These interdependencies are understood through de-

signer actions that integrate the interdependent knowledge elements. The total num-

ber of actions need to integrate the interdependencies in a vessel’s distributed system

configuration is measured by NA, to number of nodes in the action layer of the K-A-D

network model, which is calculated using Equation 6.5. An increase in the number of

integration actions between two configurations suggests the design activity with the

larger number of actions will require more effort to complete. Applied to ensembles of
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Figure 7.6: Number of actions for distributed system design at each ensemble defined
by the level of watertight bulkhead permeability. Higher values of NA

show that more actions are required to complete the design activity and
indicate increased design effort.

configurations, this approximates the effort for designing a distributed system given

the level of bulkhead permeability.

Number designer action analysis was performed for 200 distributed system con-

figurations in ensembles denoted by bulkhead permeability p = [0.0, 0.1, . . . , 1.0]. In

this study, the number of systems, high level of system connectivity, and size of the

vessel model created a large number of designer actions. In some cases, NA ≈ 1028.

Due to the magnitude of number of actions in the design activity, it is more intu-

itive to explore the number of designer actions on by order of magnitude, OA, where

OA = log10(NA). The number of actions results are shown in Figure 7.6 and the order

of magnitude descriptive statistics are shown in Table 7.1.
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p ŌA σOA

0.0 25.10 0.68
0.1 22.64 2.57
0.2 20.62 2.57
0.3 18.69 2.04
0.4 17.58 1.57
0.5 17.03 1.55
0.6 16.45 1.33
0.7 15.87 1.06
0.8 15.72 1.00
0.9 15.28 0.78
1.0 15.11 0.71

Table 7.1: Mean and standard deviation of OA = log10(NA).

The first observation that can be made is the large number of actions required to

create a distributed system design knowledge structure. For the examined model, the

number of actions can approach 1028, which is large, but not unreasonable considering

the scope, timeline, and sophistication of naval design. The importance is that the

ranges observed in Figure 7.6 describe design activities that require significantly dif-

ferent numbers of actions to complete. While NA is far from an exact computation of

difficulty, this represents meaningful shifts in knowledge structure development. The

large shift in knowledge structure characteristics indicates a significant change in the

knowledge structure. This is reminiscent of critical thresholds observed in percolation

and network formation, for examples those seen in Grassberger (1983), Newman and

Ziff (2001), and Radicchi and Arenas (2013).

Table 7.1 shows there is a negative relationship between bulkhead permeability

and knowledge structure size. As permeability increases and the design activity is less

constrained because routing can pass through the watertight bulkheads. This results

in the knowledge structure size decreasing and the design activity becomes easier to

complete. For example, the mean order magnitude decreases by 1010 from p = 0.0 to

p = 1.0. The large number of designer actions at p = 0.0 is caused by the routing

constraints that force the distributed system to route horizontally over the bulkheads.
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This creates many routing interactions directly over the damage control deck, which

increases the number of knowledge interdependencies that must be integrated by

designer actions. Conversely, at p = 1.0, routings follow their shortest paths and

create less interactions and leads to a lower number designer actions. Extracting

this relationship before starting a design activity enables designers to consider early-

stage decisions based on the future design difficulty. This information is a potential

differentiator for early-stage design decision-making, but the trend does not identify

emergent design failures. For example, when the required design effort is high, but

consistent, the potential for design failure may be lessened. A design activities could

be hard and require considerable effort to complete, but not experience the explosive

cost growth and schedule delays associated with design failures.

It has been postulated that design failures occur when the required design effort

increases significantly during the design activity. The potential for design failure can

be measured within each ensemble. Here, a failure is be described as a design activ-

ity that requires more designer actions than expected. For example, a designer may

expect that 100 engineering calculations are needed to develop enough information to

make a decision about pump size for a chill water distribution system. However, dur-

ing the design activity, they realize it will require 1,000 calculations. This constitutes

a design failure due to increased design effort by one order of magnitude.

In the distributed system design analysis, this type of design failures can be quan-

tified by comparing the number of actions for a design activity to the expected number

of actions for that ensemble it came from. The number of action for a single design

activity instance is NA and the expected number of action for an ensemble is N̄A,

which is the average number of action across all instances in an ensemble. Consid-

ering that the number of actions is an approximation of a design activity and its

values are large, design failures can be measured by an order of magnitude difference

between the number of actions in a design activity instance and the expected number
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of actions for its ensemble. To quantify the probability of a potential design failure

in an ensemble, a failure threshold is used. For a given failure threshold t, a design

failure is said to occur when NA/N̄A ≥ 10t. Applied to an ensemble, this threshold

is used to assess the probability that a design failure on the order of t occurs during

a design activity given the ensemble’s permeability. Figure 7.7 shows the probability

of a design failure at different thresholds for each ensemble.
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Figure 7.7: Probability of design failure, 10t× increase from expected number of ac-
tion N̄A. The x-axis categorizes the ensembles by bulkhead permeability
and the y-axis defines the failure threshold. Each cell contains the prob-
ability that a design activity from ensemble p results in a design failure
on the order of 10t or greater

Based on Figure 7.7, distributed system design activities can be separated into

three segments: safe and hard, safe and easy, and unsafe. The most constrained

design activity, p = 0.0, has a low probability of experiencing a design failure outside

of the lowest threshold, t = 0.5, but has the highest expected number of actions.
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This ensemble is safe and hard; it is relatively difficult to complete a design activity

and the activity is unlikely to experience failure. This is due to the lack of bulk-

head permeability, routings are heavily constrained and there is little opportunity for

unexpected interdependencies to develop. The result is a decrease in the potential

large-scale design failure.

In the mostly unconstrained ensembles, p > 0.7, design activities are unlikely

to have design failures at thresholds t ≥ 1.0. This region also has the lowest ex-

pected number of design actions, indicating it is safe and easy. In these ensembles,

the shortest path routings are mostly uninhibited by bulkheads. This increases the

likelihood that routings can follow their unobstructed shortest paths. The result is

a decrease in the probability that interdependencies will develop and cause potential

design failures.

Design activities in the middle region of ensembles, 0.1 ≤ p ≤ 0.7, are unsafe.

They have a high probability of potential failure. Compared to p = 0.0, this region

has lower expected design effort (see Table 7.1), but has the potential to develop

failures at all thresholds. There are two distinct failure modes in this region. One at

p = 0.1, where there is a high probabilities of low-threshold failures (51% for a design

activity to require ≈ 3× the expected actions). This failure indicates that there is a

high chance the design activity will be harder than expected, but will not have a large-

scale failure. The other failure mode occurs in ensembles 0.2 ≤ p ≤ 0.7, where there

is a non-zero probability of extreme failures. This region has lower overall probability

of failure compared to p = 0.1, but the failures can be explosive. For example, when

p = 0.2, there is a 12% chance the design activity requires 10000× more actions than

the expected design activity.

In the high failure region, design conditions promote variable knowledge interde-

pendencies. When bulkheads open to allow routings to pass through a small number

of places, many horizontal paths between components will use these openings. This
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introduces the chance that a high number of knowledge interdependences unexpect-

edly develop. These interdependencies can drastically increase the number of required

actions and have greater potential for large-scale design failure.

Regions with low probability of failure develop from the ensemble’s consistency.

At low permeability, a large number of routings are constrained to pass over the

bulkheads when connecting horizontally between components. This increases the

knowledge interdependencies associated with certain system environments and drives

up the expected number of actions. However, the heavy routing constraints reduce the

variability of these interdependencies. This limits the potential for emergent failure.

The unconstrained region exhibits similar behavior, but the consistency driven by the

shortest routings. When the bulkheads are permeable, the shortest paths between

components are unlikely to be blocked by a bulkhead. This limits routing variability

which limits the variability in knowledge interdependencies. In both low and high

permeability regions, failures are less likely because the design conditions prevent

variable knowledge interdependencies.

These results suggest that design activities that are predictably constrained or

predictably dominated by an objective (e.g. shortest paths) are less likely to expe-

rience design failures. When the design conditions lead to unpredictability, design

failures can emerge.

Identifying the conditions that have increased potential to produce emergent de-

sign failures is the first step to preventing them. In this case, a small shift in the

design activities conditions, from p = 0.0 to 0.1, increases the potential for a design

activity to require 10× more actions by six-fold. Access to this information gives

designers the opportunity to make decisions that reduce the chance they will suffer

a design failure. The conditions that lead to emergent failures can be explored in

greater detail by identifying the design drivers that cause failures.
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7.3 Design Drivers and Design Failures

The distribution of knowledge structure size can elicit what knowledge elements

drive the potential for design failures. Described in Chapter VI, the distribution of

actions that use each system environment knowledge element can be calculated from

the knowledge structure analysis in Equation 6.5. The number of times each element

was used by an action that integrates interdependent distributed system knowledge

is given by the out-degree kij, where ij denotes the system environment knowledge

element Eij. The distribution of kij can be examined to determine design drivers

that cause design failures. Due to the scaling of kij, it is more intuitive to consider

the mean order of magnitude, Ōij, where Oij = log10(kij). Figure 7.8 shows the

distribution of Ōij in each ensemble using a violin plot.
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Figure 7.8: Distribution of the order of magnitude of knowledge structure develop-
ment actions Ōij, whereOij = log10(kij). The distribution of Ōij is plotted
over system environment knowledge element Eij. The plotted shapes il-
lustrate the kernel probability density, i.e. the width of the shaded area
represent the proportion of the data located there.
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The distribution of actions show that knowledge structure development is driven

by a small number of knowledge elements in the upper tails of each distribution.

These highly interdependent elements are the expected design drivers that account

for the majority of knowledge structure development.

Design failures are caused by an increasing number of actions required to under-

stand the highly interdependent knowledge elements at the upper tail of the distri-

bution. This occurs when unexpected interdependencies with one of these design

drivers emerge. Given the exponential scaling in the number of actions that use an

element, one additional interdependency with the largest design driver can effectively

double knowledge structure size (see Equation 6.4). While this sensitivity can cause

emergent failures, it also presents an opportunity to prevent them.

7.4 Design Outcomes and Path Dependencies

Knowledge structure development and the potential for design failure are primar-

ily controlled by a few critical elements. If interdependencies with design drivers

can be limited, then potential future design failures can be avoided and design effort

can be reduced. Ultimately, this is a question about path dependence. Knowledge

interdependencies can be predetermined by the design activity constraints, or they

can be created by options in the distributed system configuration. For example, when

p = 0.0, many interdependencies are guaranteed to exist by constraints that force sys-

tems to route horizontally over the damage control deck. In contrast, when p = 0.5,

the exact bulkhead penetrations and routings will heavily influence the developed

interdependencies. Variable interdependencies represent decisions made during the

design activity. Accounting for how these decisions affect knowledge structure devel-

opment models path dependence in the design activity. A similar approach is taken

in (Brown et al., 2005) to study path dependence in land usage.

Path dependent elements present opportunities to control knowledge structure de-
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velopment. In particular, path dependent design drivers may be leveraged to prevent

design failures and reduce design effort. There are two steps to achieving this. First,

the potential for design drivers to be path dependent needs to be evaluated. Path

dependent elements are expected to have large variations in their usage depending on

the exact configuration. Thus, path dependence appears as a large standard deviation

in the distribution of kij within an ensemble. Due to the scaling of kij, the standard

deviation of the order of magnitude σOij
, where Oij = log10(kij), is considered.

For this study, random and path dependent variations in the knowledge struc-

ture are differentiated by a standard deviation threshold. The threshold is set at

σOij
= 1 to demonstrate this analysis as it represents a standard deviation equal to

an order of magnitude difference from the expected value. If σOij
< 1, the element is

considered locked-in by the design activity constraints and the decisions represented

by the vessel’s physical and logical architectures. In this case, the outcome is the

result of realized path dependence and variations are treated as random. If σOij
≥ 1,

the element is treated as having potential path dependence because the variability

in outcomes suggesting that its influence on the knowledge structure development is

not determined by the decisions represented by the physical and logical architectures.

Thus future decisions, such as selecting a specific system routing, may significantly

shift the knowledge structure outcomes. This differentiation follows from the analysis

of realized and potential path dependence proposed in Bednar and Page (2017)

Second, knowledge structure elements that are interdependent with design drivers

must be identified. If two design drivers are path dependent, but negatively related,

shifting interdependencies from one element is likely to increase interdependencies on

the other elements. On the other hand, a positive relationship implies that reducing

interdependencies for one element is likely to reduce the other’s. The relationship

between knowledge structure elements can be evaluated by exploiting Equation 6.4,
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kij = Cij(f) = 2Vij+
∑

l

∑
s6=t δstl(i,j). (7.1)

Taking the log2 of both sides gives

log2(kij) = Vij +
∑
l

∑
s6=t

δstl(i, j), (7.2)

where Vij denotes if the physical architecture location has a component, and the

summation counts the number of system routings that pass through the location.

Equation 7.2 describes the number of knowledge elements that are interdependent

with system environment knowledge Eij. These relationships can be quantified by the

correlation of log2(kij) for different elements. The correlation coefficient ρklij denotes

the Pearson correlation of Equation 7.2 for knowledge element Eij with element Ekl.

Designers have the greatest influence over design outcomes when shifting the most

significant design driver. Here, the most significant design driver is defined as the sys-

tem environment knowledge node with the largest out-degree in the K-A-D network.

Out-degree indicates how many times that knowledge element was used in the knowl-

edge structure and thus how many knowledge interdependencies it has. The number

of interdependencies increases with the number of systems components and routings

that use a space or adjacency in the vessel. Because of this, the primary concern in

anticipating knowledge interdependencies is with the knowledge element correspond-

ing to the space or adjacency that has the highest kij, called kmax = argmaxi,j∈V kij.

Correlations to this element are ρmaxij .

Together Ōij, σOij
, and ρmaxij measure the importance of knowledge structure ele-

ments, the effect of path dependence, and how a change to the largest design driver is

expected influence to the element. Figures 7.9 and 7.10 apply these measures to each

ensemble. The results show which knowledge structure elements are path dependent,

those over the blue line. The color of each point shows how the importance of that
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permeability slope intercept r-squared p-value std-error

0.0 0.018 0.390 0.108 0.001 0.005
0.1 0.088 0.671 0.324 0.000 0.013
0.2 0.085 0.799 0.200 0.000 0.017
0.3 0.065 0.878 0.103 0.001 0.019
0.4 0.053 0.899 0.065 0.010 0.020
0.5 0.060 0.822 0.084 0.003 0.020
0.6 0.056 0.784 0.086 0.003 0.018
0.7 0.054 0.729 0.094 0.002 0.017
0.8 0.056 0.651 0.125 0.000 0.015
0.9 0.044 0.608 0.137 0.000 0.011
1.0 0.035 0.475 0.280 0.000 0.006

Table 7.2: Linear regression of σOij
by Ōij for each permeability.

knowledge element responds to changes of the largest design driver.

The results show that, in all but the edge cases of p = 0.0 and 1.0, design drivers

are path dependent. In the design activities that had the largest probability to

experience design failures 0.1 ≤ p ≤ 0.2, design drivers have high standard deviations.

The region that is less likely to experience failures, 0.3 ≤ p ≤ 0.9, still has path

dependent design drivers, but displays a different distribution of points. In this region,

design drivers are still path dependent, but have decreased variations. Table 7.2 shows

the reduced relationships between Ōij and σOij
≥ 1 as described by linear regression.

In the high failure region, the linear regression has a relatively high slope, suggesting

that design drivers vary significantly. In the low failure region, the slope decreases,

starting with a 25% drop in slope between p = 0.2 and p = 0.3. This indicates that

design drivers tend to have smaller shifts in their contribution to knowledge structure

development due to configuration variations.

The linear relationship between pmaxij , the correlation to the largest design driver,

and Ōij is shown in Table 7.3 . In the high failure regions, pmaxij has a statistically

significant positive linear relationship to Ōij. This indicates that positive relation-

ships to design drivers contributes to an increased chance of design failures. This

makes intuitive sense. If the unexpected interdependencies that cause design failures
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Figure 7.9: Contribution statistics of system environment knowledge Eij to the total
number of designer actions NA for each ensemble, 0.0 ≤ p ≤ 0.5. Knowl-
edge structure contribution Ōij is on the x-axis. Standard deviation of
contribution σOij

is on the y-axis. The correlation with largest design
driver pmaxij is denoted by the color of each point. The threshold of path
dependence, σOij

≥ 1, is shown by the blue line.
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Figure 7.10: Contribution statistics of system environment knowledge Eij to the total
number of designer actions NA for each ensemble, 0.6 ≤ p ≤ 1.0. Knowl-
edge structure contribution Ōij is on the x-axis. Standard deviation of
contribution σOij

is on the y-axis. The correlation with largest design
driver pmaxij is denoted by the color of each point. The threshold of path
dependence, σOij

≥ 1, is shown by the blue line.
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permeability slope intercept r-squared p-value std-error

0.0 0.005 -0.035 0.014 0.244 0.004
0.1 0.045 -0.152 0.313 0.000 0.007
0.2 0.039 -0.133 0.211 0.000 0.008
0.3 0.034 -0.138 0.137 0.000 0.008
0.4 0.022 -0.092 0.071 0.007 0.008
0.5 0.017 -0.086 0.041 0.040 0.008
0.6 0.020 -0.103 0.058 0.015 0.008
0.7 0.006 -0.031 0.007 0.410 0.008
0.8 0.004 -0.030 0.003 0.613 0.008
0.9 0.003 -0.016 0.002 0.624 0.007
1.0 0.004 -0.033 0.004 0.527 0.006

Table 7.3: Linear regression of pmaxij by Ōij for each permeability.

impact knowledge structure elements in the same way, small changes can significantly

influence design outcomes. In ensembles with higher permeability, there is not a sta-

tistically significant linear relationships in the correlation to the largest drivers. Addi-

tionally, the correlations in Figure 7.10 show a shift towards uncorrelated or negatively

correlated knowledge structure elements. This suggests that the design activities in

these ensembles are less likely to experience fluctuations caused by simultaneous shifts

in knowledge structure development. Additionally, design drivers have reduced orders

of magnitude in the low permeability region. This means that negatively correlated

elements have a greater relative influence on the overall knowledge structure size,

providing robustness to changes by counter-balancing design driver fluctuations. The

reduced design driver variation, reduced correlation, and the balancing effect can be

observed in the decreasing standard deviation of OA in Table 7.1 as well as in the

drop in the probability of failure seen in Figure 7.7.

These results suggest that design failures are driven by path dependencies. When

design drivers are highly variable and positively correlated, path dependencies can

drive massive swings in the design activity outcomes. Stability arises from lower

fluctuations and a dampened relationship between design drivers. When designers

are cognizant of how knowledge-based interdependencies develop, they may be able
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to leverage these relationships to systematically reduce the probability of late-stage

design failure.

Combined with the previous results in this chapter, this implies that preventing

failures can be addressed in two ways:

1. Make design outcomes predictable by limiting variability through design objec-

tives or constraints (e.g. highly constrained routings or shortest paths can be

followed).

2. Limit unexpected interdependencies by controlling the knowledge structure

around design drivers (e.g. make decisions that to avoid creating interdepen-

dencies with design drivers).

The first option may not be applicable for many design activities. Selecting a pa-

rameter range that makes design and engineering predictable, may not create feasible

products. Further, highly limited designs eliminate innovation and the potential for

revolutionary design. The analysis demonstrated here provides a way towards the

second, data-driven approach. Considering design drivers with knowledge-based de-

sign analysis describes how design outcomes develop. Leveraging patterns in design

drivers may help identify ways to reduce design difficulty and prevent emergent design

failures.

7.5 Conclusions

This section demonstrates how the K-A-D Framework can be used to identify

design failures and prevention measures in naval distributed system design activi-

ties. Starting with an early-stage vessel concept, ensembles of approximate late-stage

knowledge structures were generated. Analyzing those knowledge structures through

the K-A-D network enabled the measurement of design difficulty and the potential of

emergent design failures. Investigating design drivers that caused emergent failures
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identified regions of path dependence in the design activity. In these regions, designer

decisions have significant influence on design outcomes. Studying the patterns of de-

sign drivers, their level of path dependence, and knowledge interdependencies revealed

two ways to reduce the potential for late-stage design failures: limiting the possible

design outcomes with constraints or objectives and controlling knowledge structure

interdependencies. Using the K-A-D network analysis, design activities that achieve

the former can be identified and their expected failure behaviors can be measured.

The latter is addressed by calculating design drivers and how assessing how they im-

pact knowledge structure growth. This identifies how design failures emerge and what

knowledge interdependencies may need to be controlled to prevent their emergence.

To control the emergence of design failures, the path dependence that influences

design drivers need to be harnessed. As decisions about the system configuration are

made, they narrow the possible knowledge structure outcomes by locking-in system

routing and the knowledge interdependencies they create. Thus, decisions about

system routings should be made to reduce the variability of routings through the vessel

spaces that represent the path dependent design drivers in the knowledge structure.

These decision will narrow the possible outcomes towards overall knowledge structure

stability and reduce the potential for design failure. The formal theory behind this

process is outside of the scope of this dissertation, but is addressed as future work in

Chapter VIII in section “Quantifying and Guiding Design Outcomes”.

These methods did not require a detailed product model or expert input to assess

the design activity. Instead, characteristics of late-stage design were derived from

the early-stage knowledge structure and the knowledge structure development model.

This demonstrates the capability of a knowledge-based perspective in preventing the

extreme cost-growth and schedule delays caused by emergent design failures.
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CHAPTER VIII

Conclusions

Extreme, unanticipated cost growth and schedule delays plague the design of novel

naval vessels. Rapid cost increase and long-term delays are caused by design failures

that emerge from the integration of designer knowledge and decisions. Preventing

these outcomes requires a knowledge-centric perspective of design as opposed to the

traditional product-centric perspective. This thesis utilizes complex systems theory

to provide the conceptual foundation and mathematical framework to facilitate the

knowledge-centric perspective. This final chapter is divided into three parts: the first

highlights the major novel contributions of this dissertation; the second part reviews

all contributions in detail; and the third part presents areas for future research in

knowledge-centric design modeling and analysis

8.1 Major Novel Contributions

Three research questions were presented in Chapter I:

1. Can an objective characterization of the design activities that cause or increase

the chance of emergent design failures be developed?

2. Can knowledge-based design complexity be represented, understood, and used?
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3. Can complex design activity dynamics provide new insight into emergent naval

design failures?

The first major contribution addresses the first question, and was the introduc-

tion of a knowledge-centric perspective of naval design activities. This perspective

was introduced in Chapter I and expanded in Chapter II. The knowledge-centric

perspective of design recognizes that the ideas, concept elements, and evidence used

by designers motivate design outcomes, not just the product being designed. From

this perspective, many instances of cost overruns and schedule delays in large-scale

design activities are knowledge-based design failures. These failures are caused by

rapidly increasing design effort that results from the inability to integrate disparate

knowledge, excessive rework in the design activity, or other undesirable behaviors that

increase the design activity difficulty. Design failures are not inherent to a particular

part of a design activity. Instead they emerge from the integration of knowledge and

decisions during design. This insight led to a qualitative assessment of the factors of

knowledge-based design complexity that create emergent design failures and enabled

the quantitative approaches presented later in the dissertation.

The second major contribution ties the first question to the second through the

introduction of knowledge structures to understand knowledge-based design complex-

ity. The author argues that designer knowledge structures, the relationships between

knowledge that the designer uses to progress the design activity, provide the foun-

dation for considering how knowledge-based complexity influences design outcomes

and their success or failure. Chapter III describes knowledge structure elements,

how they are related to knowledge-based complexity, and how knowledge structure

development can be used to record complex design activity dynamics. Chapter III

also argues that path dependence in design activities allows the history of knowledge

structure development to be leveraged towards understanding how designer actions

and decisions will influence future design activity outcomes.
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The third major contribution addresses the second question, and was the defi-

nition of the Knowledge-Action-Decision Framework for mapping design knowledge

structures. Chapter IV used the qualitative knowledge structure discussions in Chap-

ters II and III to define a mathematical framework for describing knowledge structure

development during a design activity. The resulting K-A-D Framework enables design

activities to be represented and analyzed as networks in order to identify knowledge

structure elements that are important to the design activity’s development. These

important elements are design drivers that indicate the progression towards design

outcomes through path dependent processes. The K-A-D Framework, its network

representation, and network analysis were demonstrated on a small example to show

how it can be applied to a design activity.

The fourth major contribution addresses the second question, and was the appli-

cation of the K-A-D Framework to a simulated design activity. This was described in

Chapter V. The simulated design activity was formulated to recreate the generation

of knowledge for decision-making through time. Modeling the design activity using

the K-A-D Framework demonstrated that designer drivers and path dependencies

could be identified using network analysis. This showed that knowledge structure

development can provide valuable insight into the emergence of design outcomes and

that the dynamics behind that emergence can be measured and identified.

The fifth major contribution addresses the third question, and was the applica-

tion of the knowledge-centric perspective to design failures in naval distributed system

design. Chapter VI described an early-stage design technique for generating network-

based distributed system configuration models using limited information. Distributed

system configuration models were converted into approximate design activity knowl-

edge structures using the K-A-D Framework. These modeling and analysis methods

were applied in Chapter VII to a naval vessel concept design. Analysis of the resulting

knowledge structures measured the potential for late-stage design failures, identified
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the knowledge structure elements that were likely to cause design failures, and found

opportunities for designers to leverage path dependencies to prevent design failures.

8.2 All Contributions in Detail

1. Can an objective characterization of the design activities that cause or increase

the chance of emergent design failures be developed?

(a) Introduction of a knowledge-centric design perspective and corresponding

knowledge-based description of design activities.

(b) Recognition that the temporal emergence of interdependencies within the

knowledge-based system, called knowledge structures, control design out-

comes through path dependence.

(c) Redefined design failure in terms of knowledge structure characteristics

and growth.

(d) Classification of the factors influencing knowledge structure development.

2. Can knowledge-based design complexity be represented, understood, and used?

(a) Formulated Knowledge-Action-Decision Framework to design activities.

i. Defined designer knowledge, action, and decisions as the fundamental

interdependent elements of knowledge structure development.

ii. Structured the definitions of knowledge, action, and decisions so that

they could be studied temporally to elicit emergent behaviors in the

design activity.

(b) Demonstrated analysis capabilities of the Knowledge-Action-Decision Frame-

work on a simulated design problem.

i. Defined a network representation of the Knowledge-Action-Decision

Framework.
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ii. Applied the network representation to track simulated design activi-

ties.

iii. Introduced interpretations of network analysis methods to measure

complex system behaviors in design knowledge structures.

iv. Demonstrated that network-based knowledge structure analysis can

identify emergent designer behavior through time, as modeled in the

design simulation.

3. Can complex design activity dynamics provide new insight into emergent naval

design failures?

(a) Re-framed early-stage ship system design as an ensemble analysis of pos-

sible late-stage system configuration network representations to identify

how early-stage decisions influence late-stage product characteristics.

i. Expanded network-based models of a vessel physical architecture, log-

ical architecture, and physical system configuration.

ii. Created methods to generate ensembles of physical system configura-

tions in early-stage ship design.

iii. Formulated system density analysis to create leading indicators of late-

stage design trade-offs between physical system configuration and ves-

sel layout.

(b) Structured ship system design and integration as a design problem within

the Knowledge-Action-Decision Framework.

i. Identified the knowledge structure characteristics developed during

distributed system design using the law of functional complexity.

ii. Created analysis methods to convert distributed system network rep-

resentations into knowledge structure characteristics.

iii. Measured the probabilistic characteristics of system design knowledge
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(c) Measured the potential for emergent design failures in distributed system

design activities and identified opportunities for designers to prevent them.

i. Identified the potential for late-stage design failures by applying en-

semble knowledge structure analysis to relate early-stage decisions to

increased knowledge generation and unpredictable knowledge struc-

tures.

ii. Demonstrated that product-centric analysis cannot elicit the potential

for design failures and that knowledge-centric analysis is required.

iii. Measured the drivers of knowledge structure characteristics to iden-

tify opportunities for designers to avoid design failures through their

actions.

8.3 Future Topics of Interest

Extending to Acquisition

The knowledge-centric design perspective and K-A-D Framework are envisioned

as a way to understand the design outcomes in large-scale design and acquisition

programs. This thesis provides the foundation for the broader application of the

knowledge-centric perspective, but a full application is outside of the scope of a single

thesis. Naval vessel design is unique to the vessel being designed, the stakeholders, and

the geo-political landscape of the time. The uniqueness of this activity makes reliance

on past experiences an unreliable guide and incurs a greater cost of failure. This

makes a rigorous knowledge-centric perspective that can help understand emergent

outcomes and potential failures incredibly valuable.

Quantifying and Guiding Design Outcomes

This dissertation provides a new perspective of design outcomes and how they

are created. This was enabled, in part, by identifying the role of path dependence in
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incrementally shifting a design activity towards an outcome. Further formalizing this

concept by quantifying how designer actions and decisions change the probability of

future outcomes is an important next step. This can be achieved by using the change

in entropy over future outcomes to measure how the design activity is narrowing in

on a specific outcome. One approach would be to measure the entropy over out-

comes by the distribution of centrality over the K-A-D network. When the centrality

distribution is highly concentrated, it might indicate a high probability of a certain

outcome. This would be reflected by a low entropy. The reverse is also true, a flat

centrality distribution might indicate that all outcomes are relatively likely and would

have a high entropy. Investigating how potential actions or decisions would shift this

entropy measure may help anticipate emergent design failures and design activity

convergence. Combined with ensemble analysis, this would harness knowledge-based

design complexity to provide new methods to guide and control design outcomes.

Expanded K-A-D Network Analysis

The network analysis of the K-A-D Framework used in this thesis, described in

Chapter IV, relied on traditional analysis methods, which were interpreted for their

meaning in the multilayer K-A-D network. These methods proved to be sufficiently

powerful for the applications in Chapters IV, V and VII. However, there is a growing

body of research in multilayer network analysis. Using multilayer-specific analyses

may enable different insight into the design activity behaviors and lead to new meth-

ods for quantifying design activities.

Renormalization in the K-A-D Framework

Design activities can be described at different levels of detail (Cash et al., 2015).

Renormalization is roughly the analysis of how system properties change at differ-

ent levels of detail. Explorations into the impact of varying levels of detail on the

K-A-D Framework may reveal modeling and analysis opportunities. Two areas appear
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promising. The first is renormalizing the design activity based on Activity Theory,

which defines design activities as a series of tasks that are composed of designer actions

(Cash et al., 2015). The second promising area is the “information dual,” that was

developed for street network analysis (Rosvall et al., 2005). The information dual

converts a typical street network were road segments are edges and their intersec-

tions are nodes in to a representation where streets are nodes and their intersections

are edges (Rigterink , 2014). This approach has been used for naval system analysis

(Shields et al., 2015) and may have applications to naval design activity analysis.

Converting series of refined or repetitive knowledge structure elements into “streets”

in an information dual may elicit a useful perspective of design activity progression.

Quantifying Design Failure Mitigation

Chapter II qualitatively discussed how Systems Engineering and Set-Based De-

sign mitigate the factors of design complexity to prevent design failures. The au-

thor proposed that the respective design activities mitigate failure in different ways

based on the knowledge structures that they create. Moving forward, the knowl-

edge structure differences need to be quantified and demonstrated with the K-A-D

Framework. This should focus on the knowledge structure differences caused by it-

erative decision-making (System Engineering), that selects the best alternatives, and

convergent decision-making (Set-Based Design), that deselects the worst alternatives.

Studying the resulting knowledge structure attributes may reveal how Systems En-

gineering and Set-Based Design differ from each other and when one should be used

over the other.

Decisions in Distributed System Design

Chapter VI modeled naval distributed system design activities by approximating a

knowledge structure from possible distributed system configurations. This approach

did not incorporate the impact of decisions on the knowledge structure characteristics.
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A more realistic model of design failure in naval distributed system design should

model designer decisions through the K-A-D Framework. Decisions can be added by

“locking-in” parts of the configuration to understand how a decision that commits

an element in the product structure will change the resulting knowledge structure

characteristics and influence the potential for design failures.
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