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Abstract:

This project, kicked off in September of 2015, aimed at developing analytical and computational tools to
infer optimal representations for decision and control actions based on visual data. Specifically,
corresponding to (classes of) tasks, different representations can be designed. For localization tasks, EO
imaging and inertial sensors can be used to develop a representation that is minimal-sufficient (an
attributed point cloud) and invariant to changes of illumination and partial occlusion. The result is a
posterior estimate of the sensor trajectory in SE(3) given all measurements up to the current time,
marginalized with respect to all nuisance variability. Semantic understanding of the scene requires more
sophisticated representations than point cloud. The project has developed a hierarchy of
representations, from low-level (photometric descriptors, point-cloud reconstruction) to mid-level
(textures, multi-view descriptor) to high level (optimal representation learned from data directly in an
end-to-end fashion). The arc of this project coincided with the ascent of deep learning as a tool to infer
representations, and the project has leveraged on empirical progress to develop a coherent theory of
deep learning, in synergy with other projects, that connects basic principles of statistical decision theory
to the current practice of deep learning, including deriving the first known bound on invariance and
minimality of the representation learned by a deep network. Additional breakthroughs, not anticipated
in the initial proposal, include analysis of the optimization of deep networks and is described in the body
of this report.

Description of results:

A representation is a function of the data that is useful (i.e., informative) for a task. Clearly, that
depends on the task. A representation that is suitable for localization of the camera frame in 3D is not
suitable for recognizing objects within, and vice-versa. The task informs the classes of nuisance
variability affecting the data. While this is exquisitely task-dependent, there are common invariances
shared among many tasks. For instance, for most task (but not all, for instance lossless video
compression), applying monotonic transformations to the range space of the data should have no effect;
for recognition tasks, small diffeomorphic deformations of the domain space of the data also has no
effect, but it does for localization tasks, for the sake of example.

In the first aim of this project, we developed low-level geometric and photometric representations. The
former is designed to be invariant to photometric variability, the latter to geometric variability. We then
have designed more articulate descriptor for mid-level statistics, that are beyond local neighborhood of
the image.

However, during the course of this project the power of using convolutional deep neural network
architectures as a function class of approximants, with parameters estimated through simple stochastic
gradient descent (SGD), has become evident. We have therefore explored whether there are
connections between basic principles of statistical decision and information theory guiding the design of
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representation, and the result of training deep networks. Surprisingly, there are profound relationships,
which we have explored and unraveled, and have led to the Emergence Theory of Deep Learning, which
provides the first and only known bound between invariance properties of the learn representation
(which is a function of test data, or future data that has not yet seen) and computable functions of past
data, or training set. This work has opened the door to a more principled approach to the analysis and
designed of representations using deep neural networks, which is the focus of our investigations moving
forward beyond the project just completed.

Aim 1: Low-level Photometric Representations

In order to maintain a model of scale and of the relative pose between the sensor platform and objects,
a persistent reference frame is needed. To this end, the minimal sufficient invariant representation is an
attributed point cloud. Because of occlusions, the number of visible points changes, causing singular
perturbations, and because of mismatches, the inference entailed in reconstructing this point cloud is
highly non-convex. Nevertheless, in [1], we have provided the first provably convergent algorithms for
reconstructing such attributed point cloud, despite adversarial perturbations. This solved a long-
standing open problem, albeit for the case when camera orientation is known. In practice, this
assumption can be made realistic with the use of inertial and rotational pose estimates, which are well
observable and easy to infer along a separate channel (no double-integration, no gravity, no problems
with lack of visual parallax).

Designing low-level descriptors is now a mature field, and has been subsumed by representation
learning, so we moved on from this line of work.

Aim 2: Mid-Level Photometric Representations: Textures, MV-DPM

Mid-level representations capture non-local statistics such as stationarity. While these should support a
wide variety of tasks downstream, the most stringent task is reconstruction of data from the
compressed representation. The most challenging case is that of textures, whereby one is interested in
capturing ensemble properties of statistically homogeneous regions such as foliage of clouds, but not
necessarily the individual pixels, for a variety of tasks. In [2,3] we have developed representations for
mid-level descriptions of textures and shown their effectiveness in reconstruction based on perceptual
metrics.

Aim 3: Robust Filtering and Fusion

Local and non-local spatial representations must be integrated over time in order to arrive at a
persistent model of the scene. The first step is to establish a persistent reference frame, for which we
use visual and inertial measurements. In [4,5], we have developed a state-of-the-art visual-inertial fusion
system operating in real time and beating commercial applications such as Google Tango on commodity
hand-held hardware. Furthermore, we have given a characterization of the observability of pose, an in-
depth analytical work that was awarded Best Conference Paper (best overall) at ICRA 2015, the largest
robotics conference.

Aim 4: High-level Description: Co-visible surfaces and objects.

Moving from a spatially local sparse representation to a global persistent one also requires spatial
integration, and in particular going from points to surfaces. This is an inverse problem the most difficult
part of which is dealing with changes of topology due to occlusions and reconstruction errors. In [6,7],
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we have developed solid modeling tools for topology estimation and surface fitting in sparse point
cloud, leveraging occlusions.

In [8], we have presented the first 3D object detector to operate in real time with knowledge of scale
and occlusion. While there is a lot of talk about ““image recognition', most of the (thousands) of papers
published every years refer to recognition of *images* of objects. Since there are no objects in images,
just pixels, none of these methods are cognizant of scale and occlusion, so they cannot distinguish, for
instance, a real car from a toy car, and as soon as an object disappears from views, it ceases to exist
(there is no memory nor temporal coherence).

We have shown empirically that, contrary to popular belief, these deep networks are not particularly
effective at marginalizing scale and visibility. These should, therefore, be represented and modeled
explicitly. The system we have developed, analyzed and implemented, exploits both visual AND inertial
sensors, so it can discriminate between objects of different size (e.g. a real car from a toy car). It also has
memory, so when an object becomes occluded, it remains in the memory of the system, which can
predict when it will return into view, and perform long-term data association. This work re-interprets
modern deep convolutional networks as likelihood functions, an interpretation put forth in an ICLR
paper in 2016 [9], that functions as an implicit measurement equation in a nonlinear Bayesian filter,
implemented with particles.

Unanticipated Breakthroughs

During the course of this project we have been able to make significant advances in a theoretical
framework for deep learning. In [10], we have shown that one can define optimal representations
starting from first principles (minimality, sufficiency, invariance, independence), arriving at a variational
optimization problem that is, at face value, intractable. However, in [11], we have shown that one can,
rather than compute and optimize the regularization functionals of this variational functional, directly
control it, by injecting noise during the learning process. This is highly unintuitive but can be proven, and
empirically verified, to yield representations that are invariant and with maximally independent
components.

The complete theory relates these first principles to the practice of Deep Learning. In [10], we show that
the information in the weights, which is the regularizer just describes, bounds from above the
minimality of the representation, and therefore its invariance, as proven in the paper. This program has
been extended from decision to control tasks in [12].

In order for this program to be enacted, first-order optimization needs to be developed to converge to
so-called "flat minima", or minima with low information content. In [13] chaudhariAl17 we have shown
that a simple modification of SGD, which has deeply-rooted connections to statistical physics, converges
to such flat minima with high probability and represents now the state-of-the-art.

This has shown to significantly speed up convergence compared to current methods. The paper has also
inspired a number of spin-offs and copycats that are currently being explored by practitioners. In
addition, connections of this method to PDEs has triggered much interest. Although the paper has just
been submitted, its technical report version has gathered attention and we expect to continue
developing it in the year to come. We have also summarized these contributions in the context of the
current literature in [14].
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