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Chapter 1

Summary of Accomplishments

Waveform design is one of the central aspects of radar systems. It can determine many of the radar
properties. A well-designed waveform can improve the signal-to-interference-plus-noise ratio (SINR),
enable suitable delay (range) resolution, and utilize the spectrum efficiently. Moreover, for multiple
array radar system, waveform diversity can be employed to enhance the flexibility of the transmit
beampattern design and enable efficient management of radar radiation power in directions of interest.
While unconstrained waveform design is straightforward, a key open challenge is to enforce some of
the significant practical constraints of constant modulus, waveform similarity and spectral interference
constraints. Incorporating these constraints in an analytically tractable manner is a longstanding
open challenge. This is due to the fact that the optimization problem subject to these constraints is
a hard non-convex problem. Decades of the past work have shown a stiff trade-off between analytical
tractability (achieved by relaxations to manageable constraints) and realistic design that exactly
obeys these practical constraints but is computationally troublesome. In this work, we propose a new
framework that breaks this classical trade-off.

In the first part, we address the problem of a joint transmit waveform and receive filter design for
radar systems under the important practical constraints of constant modulus and waveform similar-
ity. We develop a new analytical approach that involves solving a sequence of convex Quadratically
Constrained Quadratic Programing (QCQP) problems, which we prove converges to a sub-optimal
solution. Because an improvement in SINR results via solving each problem in the sequence, we call
the method Successive QCQP Refinement (SQR). We evaluate SQR against other candidate tech-
niques with respect to SINR performance, beampattern and pulse compression properties in a variety
of scenarios. Results show that SQR outperforms state of the art methods that also employ constant
modulus and/or similarity constraints while being computationally less burdensome.

In the second part, we address the problem of designing a beampattern for Multiple-Input-Multiple-
Output (MIMO) radar, which in turn is determined by the transmit waveform. A new approach is
proposed in our work, which involves solving the hard non-convex problem of beampattern design
using a sequence of convex equality constrained Quadratic Programs (QP), each of which has a closed
form solution. The converged solution achieves constant modulus and satisfies the KarushKuhnTucker
(KKT) optimality conditions, which we prove formally is possible under realistic assumptions. We
evaluate the proposed successive closed forms (SCF) algorithm against state-of-the-art MIMO beam-
pattern design techniques and show that SCF breaks the trade-off between desirable performance and
the associated computation cost.

In the third part, we address the problem of designing a beampattern for MIMO radar under a
spectral interference constraint, which in turn is determined by the transmitted waveform, as well as
the constant modulus constraint. One key challenge when jointly enforcing the spectral interference
constraint and the constant modulus constraint is to ensure feasibility of the optimization problem. A
new approach is proposed in our work, which also involves solving a sequence of constrained quadratic
programs, each of which results in a closed form solution. We formally prove that feasible set of each
QP problem in the proposed beampattern optimization under interference constraint and the con-
stant modulus constraint (BIC) algorithm is always non-empty. We evaluate BIC algorithm against
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the state-of-the-art MIMO beampattern design techniques under the constant modulus constraint and
show that BIC achieves a higher performance while maintaining a low spectral interference level in
the desired bands.

Significant highlights related to project personnel

• B. Kang finished his PhD at Penn State and joined as a Radar Research Mathematician at the
Wright State Research Institute (in Sep 2017) working closely with M. Rangaswamy and his
group at the US Air Force Research Lab in Dayton, OH.

• Dr. B. Kang received the 2016 Robert T. Hill Memorial Outstanding Dissertation Award from
the IEEE AESS for work supported by this project.

• O. Aldayel’s work has had two best student paper finalists at IEEE Asilomar 2015 and 2017
respectively. Aldayel defended and started his academic position in Fall 2018.
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Chapter 2

Successive QCQP Refinement for
MIMO Radar Waveform Design
Under Practical Constraints

2.1 Summary

The resolution and target detection performance of a radar are highly dependent on its signal waveform
shape. A well designed (optimized) waveform can significantly improve the signal-to-interference-plus-
noise ratio (SINR) [1, ?] and probability of detection [2, 3]. Other design criterion include desirable
autocorrelation[4], suitable ambiguity function shaping [5, 6, 7], mutual information [8, 9, 10, 3] and
beam pattern [11, 12, 13]. Further, with the advances in multiple-input multiple-output (MIMO) radar
sensing, waveform design becomes more challenging since the design must allow for exploiting spatial
diversity. Despite significant advances in radar waveform design, many practical challenges remain.
One such challenge is the hardware requirement of a constant modulus waveform signal. Another
challenge is to produce a design that does not compromise the autocorrelation properties by enforcing
a strong similarity constraint. A vast majority of existing work however either ignores or relaxes [14]
these constraints in favor of tractable analytical solutions. Meanwhile, this work achieves tractable
waveform design for MIMO radar in the presence of constant modulus and similarity constraints.
The central idea of the analytical contribution is to successively refine and achieve constant modulus
at convergence, while solving a sequence of quadratically constrained quadratic programs, such that
each optimization in the sequence satisfies a similarity constraint. This approach called SQR can
achieve superior SINR and beam pattern with desirable suppression results against state of the art,
remarkably at a lower computational cost. As an extension of the proposed SQR, we develop joint
optimization of the waveform and receive filter using the parametric programming approach.

2.2 Introduction

2.2.1 MIMO Signal Model

Consider a colocated narrow band MIMO radar system with NT transmit antennas and NR receive
antennas. Each transmit element emits a different waveform xm{n}, m = 1, ..., NT , n = 1, ..., N
where N is the number of samples. Let x{n} be an NT × 1 vector denoting the n-th sample of the
NT antennas. In addition, let x be the concatenated and complete NTN × 1 vector of the transmit
waveform, x = [xT {1}, . . . ,xT {N}]T . Then we have the following signal model[15]:

r = α0U(θ0)x +
K∑
k=1

αkU(θk)x + n (2.1)
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where r is an NRN × 1 receive waveform, n is an NRN × 1 circular complex Gaussian noise vector
with zero mean and covariance matrix σ2

nI, α0 and αk denote respectively to the complex amplitudes
of the target and the k-th clutter source, θ0 and θk are the angle of the target and the angle of the k-th
clutter source, respectively and U(θ) is the steering matrix of a uniform linear array (ULA) antenna
with half-wavelength separation between the antennas given as: U(θ) = IN ⊗ [ar(θ)at(θ)

T ] where IN
is the N ×N identity matrix, at and ar are the transmit and and receive steering vector, respectively,
as defined in [15].

The most common criterion in waveform design involves SINR maximization, which involves a
joint optimization of the transmit waveform and the receive filter. In particular, the receive filter is
assumed to be a linear finite impulse response (FIR) filter w ∈ CNRN . In this case, the output of
filter rf can be given by:

rf = wHr = α0w
HU(θ0)x +

K∑
k=1

αkw
HU(θk)x + wHn (2.2)

Therefore, the SINR can be expressed as:

SINR =
σ|wHU(θ0)x|2

wHΣ(x)w + wHw
(2.3)

where σ = E[|α0|2]/σ2
n and Σ(x) =

∑K
k=1 IkU(θk)xxHUH(θk) where Ik = E[|αk|2]/σ2

n.

2.2.2 Problem Formulation

Our objective is to optimize the SINR in eq. (2.3) subject to the CMC and SC, i.e, solve the following
optimization problem: 

max
w,x

σ|wHU(θ0)x|2
wHΣ(x)w+wHw

s.t.: ||x− x0||∞ ≤ ε
|x(k)| = 1/

√
NTN

(2.4)

where x(k) is the k-th element of x. It has been shown in [15] that the joint optimization problem of
eq. (2.4) is equivalent to the following optimization problem:

(P )

 maxx xHΦ(x)x
s.t.: ||x− x0||∞ ≤ ε

|x(k)| = 1/
√
NTN

(2.5)

where Φ(x) is the SINR matrix. As shown in [15], the positive-semidefinite SINR matrix can be
given as: Φ(x) = U(θ0)H [Σ(x) + I]−1U(θ0). Note that the similarity constraint can be rewritten as:
arg x(k) ∈ [γk, γk + δ], where γk = arg x0(k)− arccos(1− ε2/2), δ = 2 arccos(1− ε2/2), and 0 ≤ ε ≤ 2.
If ε = 0, the waveform x will be identical to the reference waveform x0. On the other hand, if ε = 2,
there will be no SC and the problem will have only a CMC.

In the existing literature [15, 16], the dependence of Φ(x) on the waveform x has been resolved
iteratively assuming Φ(x) = Φ for a fixed x and repeatedly optimizing x with a new Φ till convergence.
A key recent example is the sequential optimization algorithm (SOA) of Cui et al [15]. Nevertheless,
even for a fixed Φ, the optimization of x presents a hard non-convex problem, most popular solutions
of which involve SDR with randomization [17, 18, 19, 15].

2.3 Methods, Assumptions, and Procedures

2.3.1 Overview of Contribution

To overcome the challenges mentioned above, this work develops a new algorithm for MIMO waveform
design which jointly enforces CMC and SC. Specifically, this work makes the following contributions:

6
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• SQR: A new tractable analytical framework for waveform design that jointly en-
forces both CMC and SC. In contrast to existing work, which relies on SDR with random-
ization and its extensions [17, 18, 19, 15, 20], our approach involves solving a sequence of convex
problems (each a QCQP) such that in each iteration of the sequence the designed waveform
satisfies the similarity constraint. Constant modulus is successively achieved at convergence,
hence the method is called – Successive QCQP Refinement (SQR). No randomization is needed
in our algorithm, which in turn also leads to significantly reduced computational complexity.

• Analysis of the SQR based algorithm. We formally prove that the SINR resulting from
the proposed successive QCQP solution is non-decreasing in each step and converges (see [21]).

• Extensions of SQR to incorporate spectral interference constraint and to deal with
joint optimization of the waveform and the receive filter. The proposed SQR can
easily incorporate the practical interference constraints jointly with CMC and SC since the
spectral interference constraint is modeled as a convex quadratic constraint [22, 23] and the
SQR already relies on solving a QCQP. This work also develops the joint optimization of the
transmit waveform and the receive filter as an extension of the proposed SQR. We solve the
fractional quadratic optimization problem with the CMC and the SC using the parametric
programming approach.

2.3.2 Successive QCQP Refinement

The optimization problem in (2.4) can be relaxed to the following convex optimization problem (CP ):

(CP )

 maxx xHQx
s.t.: |x(k)|2 ≤ 1/(NTN)

ak Re(x(k)) + bk Im(x(k)) ≥ ck
(2.6)

where Q = (Φ − λI) while the parameters ak, bk and ck represents the line that intersects with the
constant modulus at the interval [γk, γk + δ]. This relaxation becomes closer to (NC) as the value of
δ becomes smaller. For instance, if δ = π

2 , then the feasible value of |x(k)| lies between 1√
2

and 1.

Therefore, this property can be used to make |x(k)| approach 1 by iteratively reducing δ.
Furthermore, the problem CP can be converted to the following problem with real variables [24]: maxv vTSv

s.t.: vTEkv ≤ 1/(NTN), k = 1, 2, .., NTN
Av � c

(2.7)

where:

S =

[
Re Q − Im Q
Im Q Re Q

]
, (2.8)

v = [Re(xT ) Im(xT )]T , c =
1√
NNT

[1 1 ... 1]T ,

A(i, j) =


ak if i = j = k,

bk if i = k, and j = k +NTN,

0 Otherwise.

Ek(i, j) =

{
1 if i = k, and j = k +NTN,

0 Otherwise.

Problem (2.7) is a real convex quadratically constrained quadratic program (QCQP), which can
be easily converted to second order cone program (SOCP) [25][26] and solved efficiently [26, 27].
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Successive QCQP Refinement- Binary Search (SQR-BS) Algorithm

Consider the following problem:

(RC(n))


maxv vTSv
s.t.: vTEkv ≤ 1/(NTN),

k = 1, 2, .., NTN
Anv � c

v(n−1)TPv ≥ v(n−1)TPv(n−1)

(2.9)

where v(n−1) is the optimal solution of RC(n−1) , S is negative-semidefinite, while P = S + λI is

positive definite. Note that, the SINR value of the n-th refinement is give as SINRn = v(n)TPv(n).
At n = 0, A0 is chosen such that arg x(k) ∈ [γk, γk + δ] as follows:

A0(i, j) =


cos(arg x0(k))

cos(δ/2) if i = j = k, k = 1, 2, ..., NTN
sin(arg x0(k))

cos(δ/2) if i = k, and j = k +NTN,

0 Otherwise.

which represents the straight line in Fig. 2.1 (a). Denote the solution of RC(0) by v(0) and denote
the complex solution of CP by x(0). In this case, there will be two possibilities:

1. If arg x(0)(k) ≥ γk + δ/2, we set the new SC as [γk + δ/2, γk + δ], i.e, the new constraint angles

γ
(1)
k = γk + δ/2 and δ(1) = δ/2.

2. If arg x(0)(k) < γk + δ/2, then we set the new SC as [γk, γk + δ/2], i.e, the new constraint angles

γ
(1)
k = γk and δ(1) = δ/2.

In other words, the feasible SC interval is reduced to half according to the location of arg x(0)(k). In

the next refinement we solve RC(1) same as problem RC(0) but with the new SC ([γ
(1)
k , γ

(1)
k + δ(1)]).

Continuing in the same fashion for RC(n), n = 2, 3, ..., F , the interval ([γ
(n)
k , γ

(n)
k + δ(n)]) will get

smaller and smaller (δ(n) = δ/2n) and eventually the modulus of x(n)(k) will converge to one, as
illustrated in Fig. 2.1. This is similar to a binary search for x(n)(k). The general form of An is given
by

An(i, j) =


cos(γ

(n)
k +δ/2n)

cos(δ/2n) if i = j = k,

sin(γ
(n)
k +δ/2n)

cos(δ/2n) if i = k, and j = k +NTN,

0 Otherwise.

(2.10)

The SINR of the SQR algorithm is non-decreasing with each refinement unlike the SOA1 algorithm
found in [15, 20] and also converges as shown in the following lemmas. For proofs of all lemmas in
this report, please refer [?].

Lemma 2.3.1. Let v(n−1) and v(n) be the optimal solutions of RC(n−1) and RC(n), respectively. then:

SINRn−1 = v(n−1)TPv(n−1) ≤ v(n)TPv(n) = SINRn. In other words, the sequence {SINRn}∞n=0 is
non-decreasing.

Lemma 2.3.2. The sequence SINRn converges to a finite value SINR?.

Successive QCQP Refinement - Non-Decreasing (SQR-ND) Algorithm

We propose an adjustment to the refinement part of SQR-BS which guarantees a non-decreasing
SINR even if it is combined with sequential updates of x and Φ(x). Furthermore, another advantage
of this new modification is an easier calculation for the feasible region when introducing an interference
constraint. The new algorithm is called SQR non-decreasing (SQR-ND). The affine constraint in the
nth refinement is given by:

8
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(a) Solution of problem RC(0) (b) SC interval reduced by half

(c) Solution of problem RC(1) (d) The new SC interval re-
duced by half

Figure 2.1: Illustration of the successive approximation of problem (2.5): (a) The convex hull of
problem (2.5) is the blue area. (b) The solution point of the convex problem (2.6) in red. Now, we
consider only the upper half of the similarity constraint and solve again. (c) Sconced refinement (d)
Third refinement, here solution in the third refinement is very close to unity.

An(i, j) =


cos(arg x(n−1)(k))

cos(δ/2) if i = j = k,
sin(arg x(n−1)(k))

cos(δ/2) if i = k, and j = k +NTN,

0 Otherwise.

with x(0) being any feasible point and x(n−1) is the complex version of v(n−1). In this algorithm,
the set of affine constraints Anv rotate according to v(n−1), which may violate the SC. Therefore,
two sets of affine constraints has been introduced to ensure SC is satisfied. The matrices for these
additional constraints are given as:

B±(i, j) =



±− sin(arg x0(k))− tan(δ/2) cos(arg x0(k))

if i = j = k,

± cos(arg x0(k))− tan(δ/2) sin(arg x0(k))

if i = k, and j = k +NTN,

0, Otherwise.

Finally, the refinement optimization problem is rewritten as:

(RCND(n))



maxv vTSv
s.t.: vTEkv ≤ 1/(NTN),

k = 1, 2, .., NTN
Anv � c
B+v � 0
B−v � 0

(2.11)

In particular, let x(n−1) be the complex version of the optimal solution to RCND(n−1), i.e. v(n−1) =
[Re(x(n−1)T ) Im(x(n−1)T )]T , the SQR-ND adjusts the affine constraints so that the feasible set of
next refinement will include what we call as the constant modulus version of x(n−1) given by x(n−1) =

exp(j arg(x(n−1)))/
√
NTN . Convergence is then guaranteed which establishes that the SINR sequence

that results by using the solution of each refinement, is in fact non-decreasing and converges.

9
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Lemma 2.3.3. Let x(n−1) and x(n) be the complex version of the optimal solutions v(n−1) and

v(n), respectively, where n is the refinement index. Define SINRn = x(n)HQx(n) then: SINRn−1 =

x(n−1)HQx(n−1) ≤ x(n)HQx(n) = SINRn. In other words, the sequence {SINRn}∞n=0 is non-decreasing
over refinements.

Lemma 2.3.4. The sequence SINRn defined converges to a finite value SINR?.

Lemma 2.3.5. If the solution converges to constant modulus, then the sequence SINRn is non-
decreasing over iterations and converges.

SQR-ND with Interference Constraint

A major advantage of our proposed convex formulation is the simplicity of adding a new convex
interference constraint. However, since the algorithm must be solved in several refinements, we need
to ensure that the feasible set is not empty before each refinement. Nevertheless, in the case of
interference constraint, we have a quadratic constraint that is shaped by RI . Fortunately, we can
compute the feasibility of the problem once and ensure that the problem will be feasible in each
refinement. For more details please refer to paper [21].

2.3.3 Joint Optimization of Waveform and Receive Filter

In this section, as an extension of the proposed SQR, we develop the joint optimization of the transmit
waveform and the receive filter based on the SQR and using the parametric programming approach.
First, recall the joint optimization problem of x and w (2.4). It can be rewritten as an optimization
problem of x for a fixed w, 

max
x

xHΣt(w)x

xHΣI(w)x
subject to ||x− x0||∞ ≤ ε

|x(k)| = 1/
√
NTN

(2.12)

where Σt(w) = σUH(θ0)wwHU(θ0) and ΣI(w) =
∑K
k=1 IkU

H(θk)wwHU(θk) + I
Now we discuss how to solve the fractional optimization problem (2.12). The objective function of

(2.12) is a quadratic fractional function with a positive denominator since ΣI(w) is positive definite.
Previous studies of nonlinear fractional programming [28, 29, 30] have shown that the quadratic
fractional programming problem (2.12) can be converted to the following parametric programming
problem. 

max
x,α

xHΣt(w)x− α(xHΣI(w)x)

s.t. |x(k)| = 1/
√
NTN

||x− x0||∞ ≤ ε
(2.13)

α and x in (2.13) can be alternately optimized through the generalized Newton method [30]. Specifi-
cally, for given xk, αk+1 can be updated by

αk+1 = αk −
xHk Σt(w)xk − αk

(
xHk ΣI(w)xk

)
−xHk ΣI(w)xk

(2.14)

=
xHk Σt(w)xk
xHk ΣI(w)xk

(2.15)

Then xk+1 can be obtained by solving (2.13) for given αk+1. The properties of convegence and non-
decreasing cost function of the parametric programming have already been proven in the literature
[28, 31]. That is, the sequence of the objective function of (2.13) is a strictly non-decreasing sequence
and converges to the maximum value of the objective function of (2.12).
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Now we focus on solving (2.13) to obtain x for a fixed α. The parametric programming problem
(2.13) is equivalent to the following problem.

max
x

xHΣt(w)x− α(xHΣI(w)x)

s.t. |x(k)| = 1√
NTN

, k = 1, . . . , NTN

arg x(k) ∈ [γk, γk + δ], k = 1, . . . , NTN

(2.16)

where γk and δ define the equivalent similarity constraint and are given by

γk = arg x0(k)− arccos(1− ε2/2) (2.17)

δ = 2 arccos(1− ε2/2) (2.18)

Note that (2.16) can be easily converted to the form of (2.6) and solved by the proposed SQR
method. The proposed algorithm optimizes the transmit waveform x and the receiver filter w al-
ternately. The optimization problem we solve is (2.4) with respect to x and w. The procedure is
following: First we obtain the optimal filter w for a given x. Then for a given w, we solve (2.12) and
obtain the optimal x by altenately updating x and α. During this process, α can be obtained by Eq.
(2.15) for a given x. Then for a given α, x can be updated by solving (2.13) via the SQR method which
involves the successive refinements of the constraint set to achieve the constant modulus constraint.

2.4 Results and Discussions

2.4.1 Experimental Setup and Methods Compared

The number of transmit and receive antennas are NT = 4 and NR = 8 elements, respectively. For the
reference signal x0, we considered the orthogonal linear frequency modulation (LFM) waveform. It
can be defined by the space-time waveform matrix:

X0(k, n) =
exp{j2πk(n− 1)/N} exp{jπ(n− 1)2/N}√

NNT
(2.19)

where k = 1, ..., NT and n = 1, ..., N . The reference waveform vector x0 is the generated by stacking
the column of X0. In section 2.4.2, we compare our algorithms (both SQR-BS and SQR-ND) to SDR
with randomization method for a fixed SINR matrix Φ, i.e. absence of signal dependent clutter. Then
we compare our algorithm to the Sequential Optimization Algorithm 1 and 2 (SOA1 and SOA2),
i.e. the sequential SDR and randomization approach of [15]. In both these scenarios, the number
of randomization trials used was 20000, as in [15] and our proposed SQR algorithms involved four
refinement steps, i.e. F = 4. The noise variance is σn = 0 dB. In section 2.4.2, we introduce a spectral
interference constraint and compare our method to the recently developed CRCO in [22].

2.4.2 Experimental Evaluation

Waveform design with Constant Modulus and Similarity Constraint

Our set up involves a target located at an angle θ0 = 15◦ with a reflecting power of |α0|2 = 10 dB.
Figure 2.2 shows the SINR behavior of the output waveform versus ε the similarity constraint

parameter – see (2.5). Clearly, the proposed SQR-BS and SQR-ND outperform the SDR with ran-
domization and the performance gap increases as ε increases. The SQR-BS has higher SINR values
particularly when the similarity parameter become large.

Moreover, the proposed algorithms achieve a higher SINR value when the similarity constraint is
strong, i.e. lower values of ε, even with one or two refinements. This is verified in Fig. 2.3, which
further reveals that SQR-BS with two refinements achieves better SINR than SDR with randomization
for ε ≤ 0.88 and for ε ≤ 0.43 in case of one refinement. SQR-ND is always better than SDR with
randomization for F = 2 refinements. Examining the performance of SQR-BS and SQR-ND for
varying F is insightful from a complexity standpoint.
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Figure 2.2: The SINR of the optimal waveform design versus the similarity parameter ε for constant
SINR matrix ( signal independent clutter). SQR-BS and SQR-ND are compared against SDR with
randomization [32, 15].

Figure 2.3: The SINR of the optimal waveform design versus the similarity parameter ε for constant
SINR matrix (no signal dependent clutter). SQR-BS and SQR-ND are compared against the SDR
with randomization.
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Table 2.1: Computational Complexity of One iteration
Method Order of Complexity Sim. Time (sec)

SOA1[15] O(NT
3.5N3.5) +O(LNT

2N2) 11.2 s

SOA2[15] O(NT
3.5N3.5) +O(LNT

2N2) 10 s

SQR-BS O(FNT
3.5N3.5) 6.3 s

SQR-ND O(FNT
3.5N3.5) 7.4 s

Figure 2.4: (a) The SINR of the optimal waveform design in each iteration and in (b) the beampattern
P (θ) for SOA1, SQR-BS and SQR-ND algorithms with ε = 0.5 for all of them.

Waveform design with Constant Modulus and Similarity Constraint Under Signal De-
pendent Clutter

For consistency with the results reported in [15], all parameter choices are as in [15] while comparing
SQR against with SOA1 and SOA2 [15, 20] in the presence of clutter. The target is located at an angle
θ0 = 15◦ with a reflecting power of |α0|2 = 20 dB and three fixed interferences located at θ1 = −50◦,
θ2 = −10◦ and θ3 = 40◦ reflecting a power of |α1|2 = |α2|2 = |α3|2 = 30 dB. Table 2.1 shows the
computational complexity and the simulation time of the different methods. To show the suppression
capability of the resulting waveform, the beam pattern is shown in Fig. 2.4 (b). The SQR optimized
beam pattern resulting from the proposed algorithms exhibits much better suppression performance
at θ = −50 and θ = −10 when compared to SOA1.

A plot of the final SINR value (at convergence) vs. the similarity constraint parameter ε for
sequential SQR-BS and SOA1 is shown in Fig. 2.5. Remarkably, the SOA1 increases approximately
linearly with ε while the SQR-BS exhibits a superlinear increase.

Waveform design with SC, CMC and Spectral Interference Constraint

First, we will compare our method with only CMC to a state of the art recent method that uses
an energy constraint: SQR-BS for Cognitive Radar Code Optimization (CRCO1) found in [22] for
SISO case NT = NR = 1 and no signal dependent interference to obtain some insight about how
much loss is incurred by incoporating the CMC. In this case, we use the following SINR matrix
Φ = σ0I +

∑KJ
k=1

σJ,k
∆fkJ

Rk
J , where RI =

∑K
k=1 wkR

k
I , σ0 = 0 dB is the noise level, KJ = 2 is the

number of active unlicensed radiators or jammers, σJ,k = 50 dB for k = 1, 2 is the energy of the k -th
active unlicensed radiators using the normalized frequency band BkJ = [fkJ,1, f

k
J,2] and ∆fkJ = fkJ,2−fkJ,1

is the bandwidth used by the k -th coexisting radiator. Furthermore, the normalized frequency band
of the first and second unlicensed radiator are B1

J = [0.2, 0.22] and B2
J = [0.6, 0.635], respectively. For

RI we used B1 = [f1
1 , f

1
2 ] = [0.05, 0.08], B2 = [f2

1 , f
2
2 ] = [0.4, 0.435], w1 = w2 = 1 and EI = 0.005.

Fig. 2.6 shows the the Energy Spectral Density (ESD) of the proposed algorithm SQR-ND-Int with
CMC against CRCO1 as well as the reference LFM waveform. Since CRCO1 does not enforce CMC,
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Figure 2.5: The converged SINR values of SQR-BS and SOA1 vs. ε

Figure 2.6: The plot ESD in dB for: 1) reference waveform x0 in black dashed line, 2) the output
waveform x? using CRCO1 in blue doted line, 3) the output waveform using SQR-ND-Int in red.

it manges to reduce the interference level in the unlicensed band (shown between the gray vertical
lines) by a larger amount although both SQR-ND-Int and CRCO1 achieve the same interference levels
in the licensed band. The SINR values correspnding to different waveforms are -0.0007 dB, -0.0262
dB and -0.5122 dB for the CRCO1, SQR-ND-Int and the LFM waveforms, respectively. In summary,
a relatively small loss (against CRCO1) in SINR value is seen via the proposed SQR-ND-Int even as
CMC is captured simultaneously with interference constraint and in an analytically tractable manner.

For the MIMO scenario, we include the signal dependent clutter, therefore, the signal waveform
design should reduces both the spectral coexistence interference and reject clutter. In this simulation,
we assumed a LFM pulse with N = 120 and MIMO antennas with NT = 2 and NR = 4. We assume
three clutter interferences with the same power and amplitudes as in Section 2.4.2. The covariance
matrix M of the signal-independent interference has been modeled as the MIMO generalization of
[23] as M =

∑K
k=1

σI,k
∆fk

U(ψk)Rk
IU

H(ψk), where ψk is the angle of the k -th radiator, K = 2 is the
number of licensed radiators, ψ1 = 30◦ while ψ1 = −20◦, σI,k = 10 dB for k = 1, 2 is the energy of
the k -th coexisting radiator using the normalized frequency band Bk = [fk1 , f

k
2 ] and ∆fk = fk2 − fk1

is the bandwidth used by the k -th coexisting radiator. Furthermore, the normalized frequency band
of the first and second coexisting radiator are B1 = [0.05, 0.08] and B2 = [0.4, 0.435], respectively.
As expected, the optimized waveforms from the proposed algorithm reduce the interference in the
specified frequency bands.
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Joint Optimization of Transmit Waveform and Receive Filter

In Fig. 2.7a and Fig. 2.7b, we compare our joint optimization algorithm against the previous waveform
design algorithm called sequential optimization algorithm (SOA) proposed by Cui et al. in the sense of
SINR and beampattern. In particular, we compare SOA2 in [15] since SOA2 solves the same fractional
quadratic optimization problem under the constant modulus constraint and the similarity constraint
by using semidefinite relaxation (SDR) with randomization. For SOA2, the number of randomization
trials is 20,000 as in [15].

Fig. 2.7a shows the SINR improvement in each iteration of x and w for SOA2 and the proposed
algorithm. It is shown that the proposed algorithm achieves a value of SINR 1.2 dB higher than SOA2.
Regarding covergence rate, the proposed algorithm converges after 8 iterations while the SINR value
of SOA2 still fluctuates after 20 iterations. Further, the proposed method shows the non-decreasing
SINR whereas the SINR of the SOA2 is not monotonically increasing.

number of iteration of x and w
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Figure 2.7: (a) The SINR of the proposed algorithm and SOA2 with ε = 0.8 vs. the number of
iteration. (b) Beampattern of the estimated waveform of the proposed algorithm and SOA2 with
ε = 0.8.

2.5 Conclusions

Our work achieves tractable waveform design for MIMO radar in the presence of constant modulus
and similarity constraints. The central idea of our analytical contribution is to successively refine
and achieve constant modulus (at convergence), while solving a sequence of quadratically constrained
quadratic programs, such that each optimization in the sequence satisfies a similarity constraint. We
also extend the proposed SQR algorithm to the joint optimization problem of the transmit waveform
and the receive filter using the parametric programming approach. We show this approach can achieve
superior SINR and beam pattern with desirable supression results against state of the art, remarkably
at a lower computational cost.
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Chapter 3

Tractable Transmit MIMO
Beampattern Design Under a
Constant Modulus Constraint

3.1 Summary

The management of the radar radiation power by shaping the beampattern has become crucial to
efficiently utilize consumed energy, reduce interference and increase the probability of detection [33, 5].

Optimization of MIMO waveform to achieve the desired beampattern design has been a topic of
much recent interest [34, 35, 36, 37, 38, 39, 11, 13, 12, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. Some
of these works focus on receive beampattern design [45, 46] while most others focus on the transmit
beampattern [47, 48, 49, 50, 51]. In practice, the transmit beampattern is more difficult to design due
to the requirement of a constant modulus constraint (CMC) on the radar transmit waveform, i.e. a
constant envelop transmit signal [52].

The importance of the waveform CMC has been well documented and analyzed in terms of per-
formance loss [52, 14, 16]. Most radar systems utilize non-linear power amplifiers which cannot be
efficiently utilized without CMC. Specifically, the output of the amplifier will be a clipped version of
the optimized waveform, which often leads to a significant degradation in the system performance.

Both narrowband and wideband MIMO transmit beampattern design under waveform CMC have
been studied in [39, 13, 11, 51]. It is well-known that the problem of minimizing deviation of the
designed beampattern vs. an idealized one subject to the constant modulus constraint (CMC) consti-
tutes a hard non-convex problem. To ensure tractability, some existing approaches pursue relaxations
of or approximations to the CMC. An exemplary approach in this category is [47, 51], where an
approximation to constant modulus was pursued using the peak-to-average ratio (PAR) waveform
constraint. While the CMC is not explicitly represented in the optimization process, the resulting
solution is converted to the nearest constant modulus solution. This indirect approximation makes
the problem more tractable, however, it degrades the design accuracy. Some recent efforts directly
enforce CMC and hence lead to better performance. However, they involve computationally expensive
procedures such as the gradient-based methods in [11] or Semidefinite Relaxation (SDR) with ran-
domization [19, 17, 18]. Moreover, the design criterion of some of the recent work does not allow full
control of power allocation such as [53] where the objective is to minimize radiation power in a few
selected directions. An interesting recent advance that forces CMC for (narrowband) beampattern
design has been proposed in [39] which sets up waveform design as a phase optimization problem and
solves it using a typical iterative numerical method but with no known analytical guarantees of the
resulting solution.
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Figure 3.1: Configuration of ULA antenna

3.2 Introduction

3.2.1 System Model

Consider a wideband MIMO radar with a Uniform Linear Array (ULA) of M antennas and equal
spacing distance of d, as shown in Fig. 3.1. The signal transmitted from the m-th element is denoted
by zm(t). Let zm(t) = xm(t)ej2πfct where xm(t) is the baseband signal and fc is the carrier frequency.
We assume that the spectral support of xm(t) is within the interval [−B/2, B/2] where B is the
bandwidth in Hz. The sampled baseband signal transmitted by the m-th element is denoted by
xm(n) , xm(t = nTs), n = 0, ..., N − 1 with N being the number of time samples and Ts = 1/B is
the sampling rate. The discrete Fourier Transform (DFT) of xm(n) is denoted by ym(p) and it can
be expressed as:

ym(p) =
N−1∑
n=0

xm(n)e−j2π
np
N , p = −N

2
, ..., 0, ...,

N

2
− 1 (3.1)

According to [51], the discrete frequency beampattern in the far-field is given by:

P (θ, p) = |aH(θ, p)yp|2 (3.2)

where
a(θ, p) = [1 ej2π( p

NTs
+fc)

d cos θ
c ... ej2π( p

NTs
+fc)

(M−1)d cos θ
c ]T (3.3)

and
yp = [y0(p) y1(p) ... yM−1(p)]T (3.4)

Note that a(θ, p) is continuous in phase. It can be expressed as a discrete angle vector by dividing
the interval [0◦, 180◦] to K angles. Using the same simplified notation found in [51], it can be written
as:

akp = a
(
θk,

p

NTs

)
, k = 1, 2, ...,K (3.5)

In this case, the beampattern can be given by the following discrete angle-frequency grid:

Pkp = |aHkpyp|2 = |aHkpFpx|2 (3.6)

where x ∈ CMN×1 is the concatenated MN × 1 vector i.e. x = [xT0 xT1 ... xTM−1]T where xm =
[xi(0) xm(1) ... xm(N − 1)]T and Fp is given by:

Fp = ep ⊗ IM (3.7)

where ⊗ is the Kronecker product, ep = [1 e−j2π
p
N ... e−j2π

(N−1)p
N ] and IM is the M ×M identity

matrix. The optimization problem can be formulated as the following matching problem:{
min

x

∑K
k=1

∑N
2 −1

p=−N2
[dkp − |aHkpFpx|]2

s.t.: |x| = 1
(3.8)

17

DISTRIBUTION A: Distribution approved for public release.



where dkp ∈ R is the desired beampattern and the constant modulus constraint (|x| = 1) implies that
|xm(n)| = 1 for m = 0, 1, ...,M and n = 0, 1, ..., N . These constraints are non-convex, non-linear and
it is well-known in the literature that (3.8) is a hard non-convex problem. He et. al. [51] proposed a
solution to problem (3.8) by instead employing a peak-to-average ratio constraint. However, they used

the cyclic algorithm [54, 55] to solve the unconstrained problem minyp

∑K
k=1

∑N
2 −1

p=−N2
[dkp − |aHkpyp|]2

in the first stage and then in the second stage they aim to find the constant modulus approximation
of the solution. The algorithm does not directly minimize the cost function under constant modulus
constraint or any relaxed version thereof. In this paper, we propose a new solution that minimizes
the cost function of interest by solving a sequence of problems under a relaxed convex constraint such
that constant modulus is still achieved at convergence. The proposed new solution has the ability to
break the computational cost-solution quality trade-off that has been demonstrated in past work such
as SDR with randomization [17, 18, 19, 15] or the simulated annealing approach [51].

Remark : The problem formulation of narrowband null forming is a straight forward modification
of the wideband case, and is covered in Section 3.3.2.

3.2.2 Problem Formulation

As shown in [51], it is more convenient to rewrite the objective function of eq. (3.8) as:

K∑
k=1

N
2 −1∑

p=−N2

|dkpejφkp − aHkpFpx|2 (3.9)

where φkp = arg{aHkpFpx}. Since x is unknown, φkp is also unknown for all values of k and p. In the
existing literature [51, 54, 55], this problem has been resolved by an iterative method. This method
minimizes eq. (3.9) by fixing the values of {φkp} and minimizing w.r.t. x and then fixing x and
minimizing w.r.t. {φkp}. It has been shown that such an iterative method, ensures that the cost
function is monotonically decreasing and converges to a finite value [51, 54, 55]. Therefore, we focus
on solving the following constrained problem for fixed values of {φkp}:

(P ′)

{
min

x

∑K
k=1

∑N
2 −1

p=−N2
|dkpejφkp − aHkpFpx|2

s.t.: |x| = 1
(3.10)

Now, let us define the following:

Ap =

aH1p
...

aHKp

, dp =

 d1pe
jφ1p

...
dKpe

jφKp

. (3.11)

3.3 Methods, Assumptions, and Procedures

3.3.1 Overview of Contribution

The principal aim is to develop an algorithmic approach that can design constant modulus MIMO
waveforms in a tractable manner while retaining high levels of performance in the sense of measures
such as closeness to an idealized beampattern. As argued above, existing work invariably trades
off performance vs. computation in a rigid manner. Specifically, this paper makes the following
contributions:

• Sequence of Closed Forms: A new algorithmic solution for both narrowband and
wideband beampattern design under waveform CMC. To overcome the challenges men-
tioned above, we develop a new algorithm for MIMO beampattern design that involves solving
the hard non-convex problem of beampattern design using a sequence of convex equality con-
strained Quadratic Programs (QP), each of which has a closed form solution, such that constant
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modulus is achieved at convergence. Because each QP in the sequence has a closed form, the
proposed successive closed forms (SCF) algorithm has significantly lower complexity than com-
peting methods that incorporate CMC. Moreover, the SCF algorithm can be used to minimize
power in selected directions or to allow full control of the power allocation as in [51].

• Convergence of the SCF Algorithm. We formally prove that the sequence of cost functions
representing deviation from the desired beampattern, that occurs in the proposed SCF algorithm
is non-increasing, i.e. an improvement is obtained by solving each problem in the sequence. We
further prove that the sequence of waveform solutions (via solving each QP) converges to constant
modulus.

• Properties of the SCF Solution. We prove that the SCF solution satisfies the KarushKuh-
nTucker (KKT) conditions of the non-convex optimization problem, which are necessary condi-
tions for optimality.

• Experimental insights and validation. Experimental validation is performed via numerical
simulations. We considered two scenarios: 1) Narrowband null forming where the SCF algorithm
shows significant power suppression in the desired directions. 2) Wideband beampattern design
where the proposed SCF is shown to achieve a beampattern much closer to the ground truth
unconstrained design against state of the art alternatives. In addition, the proposed SCF is
robust to the presence of noise in the designed waveform, making it even more appealing from
a practical standpoint.

3.3.2 Sequence of Closed Forms Solutions

The objective function of problem (3.10) can be rewritten in terms of Ap and dp as:

f(x) =
∑
p

‖dp −ApFpx‖22

=
∑
p

xHFHp AH
p ApFpx− dHp ApFpx− xHFHp AH

p dp

+
∑
p

dHp dp

=xH
(∑

p

FHp AH
p ApFp

)
x−

(∑
p

dHp ApFp
)
x

− xH
(∑

p

FHp AH
p dp

)
+
∑
p

dHp dp

=xHPx− qHx− xHq + r (3.12)

where P =
∑
p FHp AH

p ApFp, q =
∑
p FHp AH

p dp and r =
∑
p dHp dp. Problem P ′ is equivalent to the

following problem:

(P )

{
min

x
xHPx− qHx− xHq + r

s.t.: |x| = 1
(3.13)

which can be converted to the following problem with real (as opposed to complex) variables:{
min

u
uTGu− tTu− uT t + r

s.t.: u2
l + u2

l+L = 1, l = 1, 2, .., L
(3.14)

where u = [Re{x}T Im{x}T ]T , ul is the l-th element of u, L = MN ,

G =

[
Re{P} − Im{P}
Im{P} Re{P}

]
and t =

[
Re{q}
Im{q}

]
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Problem (3.14) can be rewritten as:

(RP )

{
min

s
sT (R + λI)s

s.t.: sTEls = 1, l = 1, 2, .., L+ 1
(3.15)

where λ is a positive number,

R =

[
G −t
−tT r

]
, s =

[
u
1

]
=

Re{x}
Im{x}

1

,
and El is a 2L+ 1× 2L+ 1 matrix given by:

El(i, j) =


1 if i = j = l, and l ≤ L,
1 if i = l, j = l + L, and l ≤ L,
1 if i = j = 2L+ 1, and l = L+ 1,

0 Otherwise.

Note that, since
∑
p ‖dp−ApFpx‖22 = xHPx−qHx−xHq+r ≥ 0, then, according to page 530 of

[56], R is positive semidefinite. Further, because the problem RP enforces sTEls = 1, l = 1, 2, .., L
then λsT s is a constant value (i.e. λsT s = λ(L + 1)). As a result, the optimal solution of P ′ and
(the complex version of) the optimal solution of RP are identical for any λ ≥ 0. Now, consider the
following sequence of equality constrained QPs:

(CP (n))

{
min

s
sT (R + λI)s

s.t.: B(n)s = 1
(3.16)

where B(n) = [b
(n)
1 ,b

(n)
2 , ...,b

(n)
L+1]T ∈ R(L+1)×(2L+1) such that the line defined by b

(n)T
l s = 1 is

a tangent to the circle sTEls = 1 for l = 1, 2, ..., L and b
(n)
L+1 = [0, ..., 0, 1]T . In particular, let

s(n) ∈ R(2L+1)×1 be the optimal solution of CP (n) and x(n) ∈ CL×1 be the complex version defined
as:

x
(n)
l = s

(n)
l + js

(n)
l+L, l = 1, 2, ..., L (3.17)

where x
(n)
l and s

(n)
l are the l-th element of x(n) and s(n), respectively. Thus, s(n) = [Re{x(n)}T Im{x(n)}T 1]T .

In this case, we define the matrix B(n) as:

B(n)(i, j) =


cos(arg x

(n−1)
l ) if i = j = l, l ≤ L,

sin(arg x
(n−1)
l ) if i = l, j = l + L, l ≤ L,

1 if i = L+ 1, j = 2L+ 1,

0 Otherwise.

Note that, problem CP (n) is a convex quadratic minimization with linear equality constraints. Using
the optimality conditions for problem CP (n) [26], we have:

K︷ ︸︸ ︷[
R̄ B(n)T

B(n) 0

] [
s(n)

v(n)

]
=

[
0
1

]
(3.18)

where R̄ = 2(R + λI) and v(n) ∈ R(L+1)×1 is the Lagrange multiplier associated with the equality
constraints. Solving (3.18) by block elimination gives:

s(n) = R̄−1B(n)T
(
B(n)R̄−1B(n)T

)−1
1 (3.19)
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Since b
(n)
1 ,b

(n)
2 , ...,b

(n)
L+1 by construction are linearly independent for all n and R̄ is positive definite

for any λ > 0, then according to theorem 2.1 of [57] all the eigenvalues of K in (3.18) are nonzero i.e.
K is nonsingular. As a consequence, equation (3.19) always has a unique solution s(n).

Although the problem in (3.16) does not result in a constant modulus solution, a sequence of such
problems (in the index n) can ensure a non-increasing sequence of cost function values, such that the
corresponding solution converges to constant modulus. To recognize this, let x(n−1) be the complex
version defined in eq. (3.17), i.e. s(n−1) = [Re(x(n−1))T Im(x(n−1))T 1]T . The affine constraints of
CP (n) are adjusted so that the feasible set of CP (n) includes what we call as the constant modulus
version of x(n−1) given by x(n−1) = exp(j arg(x(n−1))). If x(n) = x(n−1), then the constraints of the

next problem CP (n+1) are the same as problem CP (n) which means x(n+1) = x(n) and, hence, the
algorithm converges. Otherwise, the feasible set of CP (n) is adapted to include the constant modulus
version of x(n−1). Convergence is then guaranteed by Lemma 3.3.1 which establishes that the cost
function sequence that results by using the constant modulus version of the solution at each iteration,
is in fact non-increasing and converges. This procedure is visually illustrated in Fig. 3.2.

The structure of this work bears a high level conceptual similarity to our recent work in SINR
maximization [58] in that the solution in [58] also employs a sequence of convex problems approach.
However, the cost function (minimization of deviation from an idealized beampattern vs. SINR max-
imization) as well as the actual sequence of problems (particularly the update of equality constraints
in each iteration of the sequence) in this work are fundamentally different. Further, we establish new
optimality properties of the solution (see Lemma 3.2) which was not considered in [58].

(a) The initial problem CP (1) (b) Solution of problem CP (1)

(c) Rotation of the affine con-
straint

(d) The converged solution

Figure 3.2: Illustration of the successive solutions of eq. (3.16).

Convergence Analysis of SCF

The value of the objective function of problem (P ) as a function of the constant modulus version x(n)

is non-increasing in n. This can be proved via the following Lemma.

Lemma 3.3.1. Let x(n) be the complex version defined in (3.17). Denote by x(n) the constant modulus

version of x(n), i.e. x(n) = exp(j arg(x(n))). Define f(x) =
∑
p ‖dp − ApFpx‖22 and λP as the

maximum eigenvalue of P. If λ ≥ L
8 λP + ||q||2 then:

f(x(n−1)) ≥ f(x(n)) (3.20)

In other words, the sequence {f(x(n))}∞n=0 is non-increasing. Moreover, the sequence {f(x(n))}∞n=0

converges to a finite value f?.
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It is well known in constrained optimization [26], that the first order necessary conditions for
optimality are the so-called KarushKuhnTucker (KKT) conditions. So far, we have shown that our
solution is feasible, i.e. a constant modulus is guaranteed at convergence. Now, we prove that the final
converged solution of the proposed SCF algorithm is in fact KKT optimal.

Lemma 3.3.2. Let C be the smallest number of iterations needed for convergence, i.e. f(x(n−1)) =

f(x(n)) for n ≥ C. If λ ≥ L
8 λP + ||q||2, then for n ≥ C:

1. |x(n)| = 1 .

2. x(n) is a KKT point of (P ).

Narrowband null forming beampattern design

Narrowband null forming beampattern design can be seen as a special case of our wideband beam-
pattern design. In this case the beampattern design is conducted in spatial domain only i.e. N = 1.
However, unlike the problem formulation in (3.8) the goal of null forming beampattern design is to form
a beampattern with nulls in desired directions denoted by {θk}Kk=1. Let x = [x0 ... xM−1] ∈ CM×1

where xm is the coding waveform transmitted from the element m. The objective function can be
defined as [53]:

f(x) = xHVHΣVx (3.21)

where V and Σ are expressed as:

V =


v1(θ1) v1(θ2) ... v1(θK)
v2(θ1) v2(θ2) ... v2(θK)

...
...

. . .
...

vM (θ1) vM (θ2) ... vM (θK)

 (3.22)

and,
Σ = diag{σ1, ..., σK} (3.23)

where vm(θk) = ej2π(f+fc)
md cos θk

c and σk is the weight factor of the radiation power in the k-th
direction. Therefore, the problem can be formulated as:{

min
x

xHVHΣVx

s.t.: |x| = 1
(3.24)

In this case, the optimization problem reduces to problem CP (n) in (3.16) with:

R =

[
Re{VHΣV} − Im{VHΣV}
Im{VHΣV} Re{VHΣV}

]
, s =

[
Re{x}
Im{x}

]
,

and B(n) = [b
(n)
1 ,b

(n)
2 , ...,b

(n)
L ]T ∈ RL×2L given by:

B(n)(i, j) =


cos(arg x

(n−1)
l ) if i = j = l,

sin(arg x
(n−1)
l ) if i = l, j = l + L,

0 Otherwise.

Since VHΣV is positive semi-definite and there are no linear terms in the objective function (i.e.
q = 0), then both Lemma 3.3.1 and 3.3.2 hold for λ ≥ L

8 λP.
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3.4 Results and Discussions

3.4.1 Narrowband null forming beampattern

For narrowband beampattern design, the proposed method is compared to the state-of-the-art nar-
rowband phase-only variable metric method (POVMM) method [39] and SDR with randomization
[19].

• Experimental set up: A linear MIMO radar antenna array of M = 16 elements with half-
wavelength spacing and λ = 0.1. Two beamforming cases are considered Case I: K = 1,
θ1 = −20◦ and the wave factor σ1 = 1; Case II: K = 6, θ = [−60◦,−20◦, 20◦, 45◦, 60◦, 80◦] and
the wave factors σk = 1/6 for k = 1, 2, ..., 6.

• Experimental Evaluation: Figures 3.3 and ?? show the resulting beampattern for Case I and
Case II, respectively. Clearly, SCF outperforms both SDR with randomization and POVMM by
a significant amount. For example, in Fig. 3.3 at θ1 = −20◦, SCF has a null that is more than
100 dB lower than competing methods. The cost function defined by f(x(n)) = xH(n)V

HΣVx(n)

for the proposed SCF is non-increasing in each iteration as shown in Figure 3.6. Table 3.1
shows the cost function value as optimized via SCF as well as POVMM and their corresponding
computational run times as observed in practice. Although POVMM has lower complexity per
iteration, it needs orders of magnitude more iterations to achieve the same performance as SCF.
Hence, for a given cost function (designed beam pattern deviation from idealized) specification,
SCF can achieve it much sooner.
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Figure 3.3: Beampattern of SDR with randomization[19], POVMM [39] and SCF for Case I.
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Figure 3.4: Beampattern of SDR with randomization[19], POVMM [39], ADMM [59] and SCF for
Case III.
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Figure 3.5: Beampattern of SDR with randomization[19], POVMM [39], ADMM [59] and SCF for
Case III.
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Figure 3.6: The cost function versus iterations of the proposed SCF method.
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Table 3.1: Cost function in dB of SCF vs. POVMM, Case II
Method Cost Function (dB) Simu. Time (s)

POVMM (150 iterations) −26.70 0.0122
POVMM (250 iterations) −35.33 0.0178
POVMM (350 iterations) −53.10 0.0240

SCF (9 iterations) −121.5 0.0117

The effect of the number of antennas on the cost function is shown in Figure 3.7. In this case
we used K = 2, θ = [−60◦,−63◦] and the wave factors σk = 1/2 for k = 1, 2. Interestingly, the
performance of the proposed SCF method with M = 6 is comparable with the performance of
POVMM with larger number of antennas M = 10.
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Figure 3.7: The cost function versus number of antennas for the proposed SCF method and
POVMM[39].

Next, we consider the effect of random phase errors on the designed waveforms. The phase errors
are incurred during waveform transmission and can be modeled as a random noise added to the
designed waveform phase [53]. In the presence of phase errors hence, the actual transmitted
waveforms are:

x̃ = [exp(arg(x1) + e1) ... exp(arg(xM ) + eM )]T (3.25)

where em is the random phase error for the waveform transmitted from the m-th antenna
element. The random phase errors are modeled as statistically independent and Gaussian-
distributed with zero mean and a standard deviation of σe.

Figure 3.8 shows a comparison between the ideal and the actual radiation beampattern of the
SCF method with additive phase errors having a standard deviation of σe = 0.25 for Case II.
Fortunately, the average null depth of the actual radiation beampattern is about −61.34 dB
which is quite acceptable.

The average cost function over 1000 independent noise realizations of Case II (M = 16) is
listed in Table 3.2 for varying σe = 0.25. The SCF algorithm with 7 iterations outperforms the
POVMM method for realistic values of σe.

Table 3.2: Effect of random phase errors on the performance (Cost Function in dB)
σe 0 0.1 0.25 0.5 1

POVMM −35.33 −32.8 −31.11 −27.73 −22.77
SCF −72.51 −43.2 −35.15 −29.23 −23.07
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Figure 3.8: Effect of random phase error on the performance of SCF (Proposed) for Case II with
phase deviation σe = 0.25.
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Figure 3.9: Effect of random phase error on the performance of POVMM and SCF (Proposed) for
Case II with phase deviation σe = 0.25.

Figure 3.9 shows the actual radiation beampattern for waveform design for Case II with phase
errors of standard deviation σe = 0.25 of SCF compared to POVMM. The average null depth of
the actual POVMM radiation beampattern is about −55.83 dB which is about 5.51 dB higher
than the average null depth of the actual SCF radiation beampattern.

3.4.2 Wideband beampattern

For wideband beampattern design, we compare SCF to the state-of-the-art Wideband Beampattern
Formation via Iterative Techniques (WBFIT) method [51].

• Experimental set up: The following set-up is used in this numerical experiment: The number
of transmit antennas M = 10, the number of time samples N = 32, the carrier frequency of the
transmit signal fc = 1 GHz and the bandwidth B = 200 MHz. The spatial angle is divided into
K = 180 grid points and we set λ = 10.

To provide an upper bound on achievable performance, we also obtain the beampattern as
obtained by an unconstrained optimization of the transmit waveform, i.e. minimize (3.9) w.r.t
x but without any constraints on x.
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• Experimental Evaluation: Example 1: We consider the following desired transmit beampat-
tern:

d(θ, f) =

{
1 θ = [120◦]

0 Otherwise.

Fig. 3.10 shows the angle-frequency plot of the beampattern for (a) the unconstrained beam-
pattern design (No CMC), (b) WBFIT method, (c) SDR with randomization and (d) SCF. In
this somewhat favorable case, all three optimization methods produced a comparable radiation
beampattern with SCF slightly outperforming WBFIT.
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(b) WBFIT [51]
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(c) SDR with rand. [19]
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(d) SCF (Proposed)

Figure 3.10: Plot of the beampattern: (a) The unconstrained beampattern (b) WBFIT method (c)
SDR with randomization (d) Proposed method

Example 2: We consider the following desired transmit beampattern:
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d(θ, f) =

{
1 θ = [95◦, 145◦]

0 Otherwise.

Fig. 3.11 shows the angle-frequency plot of the beampattern. Clearly, SCF is closer to the
beampattern achieved by an unconstrained waveform and has higher suppression at the undesired
angles compared to WBFIT and SDR with randomization with 10,000 randomization trials.
Table 3.3 shows the the minimum cost function

∑
p ‖|dp| − |ApFpx

?|‖22 of the proposed method
compared to WBFIT method and SDR with randomization. SCF achieves a cost function value
that is 5.7 dB and 2 dB lower than WBFIT and SDR with randomization, respectively, which
indicates that the proposed method is much closer to the desired beampattern.
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(c) SDR with rand. [19]
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Figure 3.11: Plot of the beampattern: (a) The unconstrained beampattern (b) WBFIT method (c)
SDR with randomization (d) Proposed method

Example 3: We consider another example where we have different beampattern shape in different
frequency bands. In particular, we consider the following desired beampattern:
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Table 3.3: Cost function in dB of the proposed method vs. WBFIT (Case I)
Method Cost Function (dB)

Unconstrained 19.93
WBFIT[51] 29.24

SDR with rand.[19] 25.5
SCF 23.54

d(θ, f) =


1 θ = [30◦, 50◦],−B/2 + fc ≤ f ≤ fc
1 θ = [130◦, 150◦], fc < f ≤ B/2 + fc

0 Otherwise.

Fig. 3.12 shows the angle-frequency plot of the beampattern. Clearly, SCF is closer to the beam-
pattern achieved by an unconstrained waveform and has higher suppression at the undesired an-
gles compared to WBFIT. Table 3.4 shows the the minimum cost function

∑
p ‖|dp|−|ApFpx

?|‖22
of the proposed method compared to WBFIT method. In this case, the difference between SCF
and both WBFIT and SDR with randomization is higher, as SCF achieves a cost function value
that is 7.5 dB and 5 dB lower than WBFIT and SDR with randomization, respectively.
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(b) WBFIT [51]
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(c) SDR with rand. [19]
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Figure 3.12: Plot of the beampattern: (a) The unconstrained beampattern (b) WBFIT method (c)
SDR with randomization (d) Proposed method
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Table 3.4: Cost function in dB of the proposed method vs. WBFIT (Case II)
Method Cost Function (dB)

Unconstrained 19.38
WBFIT[51] 32.38

SDR with rand.[19] 29.2
SCF 24.1

3.5 Conclusions

Our work achieves tractable beampattern design by waveform synthesis for MIMO radar in the pres-
ence of constant modulus. The central idea of our analytical contribution is to successively achieve
constant modulus (at convergence), while solving an equality constrained quadratic program in each
step of the sequence. Because each such problem in the sequence has a closed form (SCF), this makes
our method computationally attractive. We establish new analytical properties of the SCF algorithm
as well as the converged solution. Further, we show experimentally that the proposed SCF can achieve
superior beampattern accuracy compared to state-of-the-art. Future work could consider the incorpo-
ration of more constraints on the beampattern design, such as a waveform similarity [16, 60] and/or
a spectral interference constraint.
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Chapter 4

Spatio-Spectral Radar Beampattern
Design for Co-existence with
Wireless Communication Systems

4.1 Summary

Co-existence of radar and telecommunication systems has been an emerging requirement recently
[61, 62, 63, 64, 65, 66, 67, 68, 69]. A priori knowledge about expected target locations and the radio
frequency environment enables MIMO radar systems to enhance the probability of detection while
ensuring compatibility with civilian wireless systems. Specifically, the MIMO radar should focus the
radiation beam in the expected target directions while maintaining a low spectral interference level
at specific bands used by other licensed wireless systems. These two objectives can be achieved by
constrained optimization of the radar transmit waveform [70, 71].

Two main research directions of radar beampattern/waveform optimization have been actively
pursued to ensure co-existence of radar and communication systems in the past years. First, opti-
mization of MIMO radar waveform to match the desired beampattern with an arbitrary spectrum
shape has been a topic of much recent interest [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86].
In these methods, the goal of the optimization problem is to minimize deviation of the optimized
beampattern to the desired one which is designed to reduce the transmit energy at spatial angles
where the communication systems are located. Some of these works focus on receive beampattern
design [79, 85, 86] while most others focus on the transmit beampattern design. On the other hand,
mitigation of the energy of the transmit waveform in the spectral frequency bands occupied by wireless
communication systems has also been studied [87]. This approach matches the spectral shape of the
optimized waveform to the desired one which is designed to limit the interference level on communica-
tion systems or to directly minimize the interference level at communication receivers. However, since
the beampattern is not considered, it is not able to control the radiation beam in spatial directions.

4.1.1 Motivation and Challenges

In practice, the transmit beampattern design is more challenging for two reasons. The first reason is
the requirement of the constant modulus constraint on the radar transmit waveform, i.e. a constant
envelope transmit signal [88]. The importance of the constant modulus waveform has been well
documented and analyzed in terms of performance loss [88, 89, 90]. A non-linear power amplifier
which is equipped in most radar systems cannot be efficiently utilized without the constant modulus
constraint since the output of the amplifier will be a clipped version of the optimized waveform. The
second reason is the requirement of spectral compatibility of radar and telecommunication systems,
which demands a spectral constraint on the radar waveform spectral shape. Designing the MIMO radar
beampattern in the simultaneous presence of constant modulus and spectral constraints remains a stiff
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Figure 4.1: Configuration of ULA antenna

open challenge.
It is well known that the MIMO transmit beampattern/waveform design subject to the constant

modulus constraint constitutes a hard non-convex problem. To ensure tractability, some existing
approaches pursue relaxations to energy constraint (using L2 norm) [61, 91] or approximations to
the constant modulus constraint [80, 83, 87]. This indirect approximation makes the problem more
tractable, however, it degrades the design accuracy. Some recent efforts directly enforce the constant
modulus constraint and hence lead to better performance. However, they invariably involve semi-
definite relaxation (SDR) with randomization [92, 93]. In this approach, a semi-definite programming
(SDP) is first solved to find a waveform distribution. Then a large number of random waveforms are
generated based on this distribution, which is followed by an exhaustive search to find the closest
waveform. Despite the success of SDR for constant modulus constrained problems, two issues remain:
1.) extensions to spectral constraints, which are quadratic inequalities are not straightforward, and
2.) the computational burden is high.

Beampattern design under the constant modulus constraint but without the spectral constraint
has been studied in [72, 74, 73, 83, 94, 84]. In the beampattern design problems, an approximation
to constant modulus was pursued using the peak-to-average power ratio (PAPR) waveform constraint
[80, 83]. While the constant modulus constraint is not explicitly represented in the optimization
process, the resulting solution is converted to the nearest constant modulus solution.

4.2 Introduction

4.2.1 System Model

Consider a wideband MIMO radar with a uniform linear array (ULA) of M antennas and equal spacing
distance of d as shown in Fig. 4.1. The signal transmitted from the m-th element is denoted by zm(t).
Let zm(t) = xm(t)ej2πfct where xm(t) is the baseband signal and fc is the carrier frequency. We assume
that the spectral support of xm(t) is within the interval [−B/2, B/2] where B is the bandwidth in Hz.
The sampled baseband signal transmitted by the m-th element is denoted by xm(n) , xm(t = nTs),
n = 0, ..., N − 1 with N being the number of time samples and Ts = 1/B is the sampling rate. The
discrete Fourier transform (DFT) of xm(n) is denoted by ym(p) and it is given by

ym(p) =

N−1∑
n=0

xm(n)e−j2π
np
N , p = −N

2
, . . . , 0, . . . ,

N

2
− 1 (4.1)

4.2.2 Far-Field Beampattern

According to [83], the discrete frequency beampattern at the angle θ in the frequency band p in the
far-field is given by

P (θ, p) = |aH(θ, p)yp|2 (4.2)

where
a(θ, p) = [1 ej2π( p

NTs
+fc)

d cos θ
c . . . ej2π( p

NTs
+fc)

(M−1)d cos θ
c ]T (4.3)

and
yp = [y0(p) y1(p) ... yM−1(p)]T (4.4)
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where c is the speed of wave propagation. Note that a(θ, p) is continuous in phase. It can be expressed
as a discrete angle vector by dividing the interval [0◦, 180◦] intoK angle bins. Using the same simplified
notation found in [83], it can be written as

akp = a(θk, p), k = 1, 2, . . . ,K (4.5)

In this case, the beampattern can be given by the following discrete angle-frequency grid

Pkp = |aHkpyp|2 = |aHkpWpx|2 (4.6)

where x ∈ CMN is the concatenated vector i.e. x = [xT0 xT1 ... xTM−1]T where xm = [xm(0) xm(1) . . . xm(N−
1)]T ∈ CN and Wp ∈ CM×MN is given by

Wp = IM ⊗ eHp (4.7)

where ⊗ is a Kronecker product operator, eHp = [1 e−j2π
p
N . . . e−j2π

(N−1)p
N ] ∈ CN and IM is an

M ×M identity matrix.

4.2.3 Formulation of the Spectral Constraint

The problem of spectral co-existence has been of great interest recently [61, 62, 63, 64, 65, 66, 67, 68, 69]
and involves minimization of interference caused by radar transmission at victim communication
receivers operating in the same frequency band. In this case, the beampattern of the transmit waveform
is required to have nulls in these bands to prevent interference. For J communication receivers, we
suppose that the j-th communication receiver operating on a frequency band Bj = [pjl , p

j
u], where pjl

and pju are the lower and upper normalized frequency, respectively. We denote the desired (discrete)
spectrum shape by ŷ = [ŷ−N2

, ŷ−N2 +1, ..., ŷN2 −1] ∈ CN×1 defined as

ŷp =

{
0 for p ∈ Bj = [pjl , p

j
u], j = 1, 2, ..., J

γ otherwise.

where γ is a scalar such that ŷHFFH ŷ = N and F is the DFT matrix. In SHAPE algorithm proposed
by Rowe et al. [87], a least-squares fitting approach for the spectral shaping problem for SISO has
been formulated by minimizing the following cost function

‖FHx− ŷ‖22 (4.8)

where the phase vector β is an auxiliary vector and � represents the element-wise product operation .
We extend (4.8) for MIMO radar and employ it as a constraint in the optimization problem as follows

‖(IM ⊗ FH)(1M ⊗ ŷ)− x‖22 = ‖F̄H ȳ − x‖22 ≤ ER (4.9)

where 1M = [1, 1, . . . , 1] ∈ RM×1, F̄ = IM ⊗FH , and ȳ = 1M ⊗ ŷ, and ER is the maximum tolerable
spectral error.

4.2.4 Problem Formulation

The optimization problem can be formulated as the following matching problem:
min

x

∑K
k=1

∑N
2 −1

p=−N2
[dkp − |aHkpWpx|]2

s.t.: |x| = 1
‖F̄H ȳ − x‖22 ≤ ER

(4.10)

where dkp ∈ R is the desired beampattern. The constant modulus constraints (|x| = 1) implies that
|xm(n)| = 1 for m = 1, . . . ,M and n = 0, . . . , N − 1. These constraints are neither convex nor
linear and it is well known in the literature that (4.10) is a hard non-convex problem even without
the spectral constraint. He et al. [83] proposed a solution to problem (4.10) without the spectral
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constraint by employing a peak-to-average ratio constraint as a relaxation of the constant modulus
constraint. However, they used the cyclic algorithm [95, 96] to solve the unconstrained problem

minyp

∑K
k=1

∑N
2 −1

p=−N2
[dkp − |aHkpyp|]2 in the first stage and then in the second stage they aim to find

the constant modulus approximation of the solution. The algorithm does not directly minimize the
cost function under constant modulus constraint or any relaxed version thereof. In this paper, we
propose a new solution that minimizes the cost function of interest subject to the constant modulus
constraint and the spectral constraint by solving a sequence of problems under a relaxed convex
constraint such that constant modulus is still achieved at convergence. The proposed new solution
has the ability to break the computational cost-solution quality trade-off that has been demonstrated
in past work such as SDR with randomization [93, 92] or the simulated annealing approach [83].

Remark : The cost function of (4.10) can be modified as follows:
∑K
k=1

∑N
2 −1

p=−N2
wkp[dkp−|aHkpWpx|]2

to control the relative importance of certain frequency bands or angles; where wkp are positive weights

such that
∑K
k=1

∑N
2 −1

p=−N2
wkp = 1. Note such a modification can also be easily accommodated in the

analytical development presented next.

4.3 Methods, Assumptions, and Procedures

4.3.1 Overview of Contribution

Our principal aim is to develop an algorithmic approach for spatio-spectral MIMO beampattern design.
Closeness to an idealized beampattern that minimizes radar energy in the direction of wireless com-
munication receivers captures the spatial component while the spectral component of our approach
involves explicitly forcing a spectral fidelity constraint.

Specifically, this paper makes the following contributions:

• A new algorithmic solution for spatio-spectral beampattern design under both the
spectral constraint and the constant modulus constraint. To overcome the challenges
mentioned above, we develop a new algorithm for MIMO beampattern design that involves
solving the hard non-convex problem of beampattern design using a sequence of convex equality
and inequality constrained quadratic programs (QP), each of which has a closed form solution,
such that constant modulus is achieved at convergence. Because each QP in the sequence has a
closed form solution, the proposed beampattern with interference control (BIC) algorithm has
significantly lower complexity than most competing methods.

• Feasibility of the sequence of QPs. Assuming that the original non-convex problem of
beampattern design is feasible, i.e. the intersection set of constant modulus and spectral con-
straints is non-empty; we formally prove that each QP we formulate in the aforementioned BIC
sequence is also guaranteed to be feasible.

• Convergence of the BIC algorithm. We establish that the sequence of cost functions repre-
senting a deviation from the desired beampattern, that occurs in the proposed BIC algorithm, is
non-increasing, (i.e. an improvement is always obtained by solving each problem in the sequence)
and converges.

• Experimental insights and validation. Experimental validation is performed across two
scenarios: 1) null forming where the BIC algorithm shows significant power suppression in the
desired directions even in the presence of the spectral constraint, and 2) full beampattern design
where the proposed BIC is shown to achieve a beampattern much closer to the ground truth
against state of the art alternatives that have no spectral interference constraint.
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4.4 Beampattern Design under Constant Modulus and Spec-
tral Constraints

4.4.1 Non-convex Optimization Problem

As shown in [83], it is more convenient to rewrite the objective function of (4.10) as

K∑
k=1

N
2 −1∑

p=−N2

|dkpejφkp − aHkpWpx|2 (4.11)

where φkp = arg{aHkpWpx}. Since x is unknown, φkp is also unknown for all k and p. In the existing
literature [83, 95, 96], this problem has been resolved by an iterative method. This method first
minimizes Eq. (4.11) w.r.t. x for a fixed values of {φkp} and then finds the optimal {φkp} for the
fixed x obtained in the previous iteration step. It has been shown that such an iterative method
ensures that the cost function is monotonically decreasing and converges to a finite value. Therefore,
we focus on solving the following constrained problem for a fixed {φkp}.

min
x

∑K
k=1

∑N
2 −1

p=−N2
|dkpejφkp − aHkpWpx|2

s.t.: |x| = 1
‖F̄H ȳ − x‖22 ≤ ER

(4.12)

First, let us define the following

Ap =

aH1p
...

aHKp

, dp =

 d1pe
jφ1p

...
dKpe

jφKp

 (4.13)

Then the objective function of (4.12) can be rewritten in terms of Ap and dp [84]

f(x) =
∑
p

‖dp −ApWpx‖22 (4.14)

=xHPx− qHx− xHq + r (4.15)

where P =
∑
p WH

p AH
p ApWp, q =

∑
p WH

p AH
p dp and r =

∑
p dHp dp. Moreover, the spectral

constraint can also be simplified as

‖F̄H ȳ − x‖22 = (F̄H ȳ − x)H(F̄H ȳ − x)

= xHx− 2 Re{ȳHF̄x}+ ȳHF̄F̄H ȳ

= 2L− 2 Re{ȳHF̄x}

where L = MN . Hence, the spectral constraint can be rewritten as

Re{ȳHF̄x} ≥ (1− ER/2)L

The optimization problem (4.12) is equivalent to the following problem.
min

x
xHPx− qHx− xHq + r

s.t.: |x| = 1
Re{ȳHF̄x} ≥ (1− ER/2)L

(4.16)

Moreover, f(x) can be converted to the following function with real (as opposed to complex) variables.

fR(u) = uTGu− tTu− uT t + r (4.17)
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where
u = [Re{x}T Im{x}T ]T (4.18)

G =

[
Re{P} − Im{P}
Im{P} Re{P}

]
(4.19)

t =

[
Re{q}
Im{q}

]
(4.20)

The problem (4.16) can be rewritten as
min

s
sT (R + λI)s

s.t.: sTEls = 1, l = 1, 2, . . . , L
s̄T s ≥ (1− ER/2)L

(4.21)

where λ is an arbitrary positive number,

s̄ = [Re{F̄H ȳ}T Im{F̄H ȳ}T 0]T , (4.22)

R =

[
G −t
−tT r

]
, (4.23)

s =

Re{x}
Im{x}

1

, (4.24)

and El is a 2L+ 1× 2L+ 1 matrix given by

El(i, j) =


1 if i = j = l

1 if i = l + L, j = l + L

0 otherwise.

(4.25)

Note that, since

sTRs = xHPx− qHx− xHq + r (4.26)

=
∑
p

‖dp −ApWpx‖22 (4.27)

≥ 0 (4.28)

, R is positive semi-definite. Further, because the problem (4.21) enforces constant modulus, i.e.,
sTEls = 1 for l = 1, 2, . . . , L, λsT s is a constant value (λsT s = λ(L + 1)). As a result, (4.10) and
(4.21) are the identical optimization problems and the optimal solution of (4.10) and (the complex
version of) the optimal solution of (4.21) are also identical for any λ ≥ 0.

4.4.2 Sequence of Closed Form Solutions

Now we focus on solving (4.21). Though it is minimization of a convex objective function, it is still
non-convex because of the constant modulus constraint. We propose a new sequential approach to
solve (4.21) which involves solving a sequence of convex problems. Let us consider the following
sequence of constrained QPs where the n-th QP is given by

(CP )(n)


min

s
sT (R + λI)s

s.t.: B(n)s = 1
s̄(n)T s ≥ (1− ER/2)L

(4.29)

where s̄(n) is given by:
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s̄(n) =

Re{(F̄H ȳ)� e{j arg(x(n−1))−arg(F̄H ȳ)}}
Im{(F̄H ȳ)� e{j arg(x(n−1))−arg(F̄H ȳ)}}

0

 (4.30)

and B(n) = [b
(n)
1 ,b

(n)
2 , ...,b

(n)
L+1]T ∈ R(L+1)×(2L+1) such that the line defined by b

(n)T
l s = 1 is a

tangent to the circle sTEls = 1 for l = 1, 2, . . . , L. Specifically, bl is given by

b
(n)
l (i) =


cos(γ

(n)
l ) if i = l

sin(γ
(n)
l ) if i = l + L

0 otherwise.

(4.31)

for l = 1, . . . , L and b
(n)
L+1 = [0, . . . , 0, 1]T where γ

(n)
l = 2 arg(x

(n−1)
l ) − γ

(n−1)
l and x

(n)
l is the l-

th elements of x(n) which is the complex version of the optimal solution of (4.29), s(n), that is,

x
(n)
l = s

(n)
l + js

(n)
l+L and conversely s(n) = [Re{x(n)}T Im{x(n)}T 1]T .

Although the problem (4.29) does not result in a constant modulus solution, a sequence of such
problems (in the index n) ensures a non-increasing sequence of cost function values, such that the
sequence of the corresponding optimal solutions converges to constant modulus for large enough λ1.
To recognize this, we first show that the constraints of CP (n) in (4.29) are adjusted so that the feasible
set of CP (n) includes x(n−1).

Lemma 4.4.1. The feasible set of problem CP (n) contains the optimal solution of problem CP (n−1).

Proof. Let s(n−1) be the optimal solution of CP (n−1). Then B(n−1)s(n−1) = 1 and s̄(n−1)T s(n−1) ≥
(1− ER/2)L. Let x

(n−1)
l = ρle

jψl , then (B(n−1)s(n−1))l, the l-th element of B(n−1)s(n−1), should be
equal to 1. That is,

(B(n−1)s(n−1))l = Re{x(n−1)
l } cos(γ

(n−1)
l )+

Im{x(n−1)
l } sin(γ

(n−1)
l ) (4.32)

=ρl cos(ψl) cos(γ
(n−1)
l )+

ρl sin(ψl) sin(γ
(n−1)
l ) (4.33)

=1 (4.34)

where γ
(n)
l = 2 arg(x

(n−1)
l )− δx(n−1)

l . This implies

ρl =
1

cos(ψl) cos(γ
(n−1)
l ) + sin(ψl) sin(γ

(n−1)
l )

(4.35)

Note that s(n−1) belongs to the feasible set of CP (n) if and only if B(n)s(n−1) = 1 and s̄(n)T s(n−1) ≥
(1− ER/2)L. We have

(B(n)s(n−1))l =ρl cos(ψl) cos(γ
(n)
l )

+ ρl sin(ψl) sin(γ
(n)
l ) (4.36)

=ρl cos(ψl − γ(n)
l ) (4.37)

=ρl cos(ψl − 2ψl + γ
(n−1)
l ) (4.38)

=ρl cos(ψl − γ(n−1)
l ) (4.39)

=ρl cos(ψl) cos(γ
(n−1)
l )

+ ρl sin(ψl) sin(γ
(n−1)
l ) (4.40)

=1 (4.41)

1For a formal proof of this, see [97]
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To show s̄(n)T s(n−1) ≥ (1−ER/2)L, let x̄ denote the complex version of s̄, that is, s̄ = [Re{x̄}T Im{x̄}T ]T .
Then we have

(1− ER/2)L ≤ s̄(n−1)T s(n−1) (4.42)

= Re{x̄(n−1)Hx(n−1)} (4.43)

= Re{
L∑
l

x̄
∗(n−1)
l ρle

jψl} (4.44)

≤
∣∣∣ L∑

l

x̄
∗(n−1)
l ρle

jψl
∣∣∣ (4.45)

≤
L∑
l

∣∣∣x̄∗(n−1)
l ρle

jψl
∣∣∣ (4.46)

≤
L∑
l

∣∣∣x̄∗(n−1)
l

∣∣∣ρl (4.47)

=
L∑
l

|x̄∗(n−1)
l |e−jψlρlejψl (4.48)

=
L∑
l

x̄
∗(n)
l ρle

jψl (4.49)

= Re{x̄(n)Hx(n−1)} (4.50)

= s̄(n)T s(n−1) (4.51)

Note that the equality between (4.48) and (4.49) holds because we define s̄(n) such that arg(F̄H ȳ) =
arg(x(n−1)). Eqs. (4.41) and (4.51) confirm B(n)s(n−1) = 1 and s̄(n)T s(n−1) ≥ (1− ER/2)L.

Lemma 4.4.1 proves that the feasible set of each iteration is updated such that it contains the
optimal solution of the optimization problem at the previous iteration step. If |x(n)| = 1, then the
constraints of the next problem CP (n+1) are the same as problem CP (n), which means x(n+1) = x(n)

and, hence, the algorithm converges. Lemma 4.4.3 further establishes that the cost function sequence
is in fact non-increasing and converges. This procedure is visually illustrated in Fig. 4.2.

Now we focus on how to solve the optimization problem (4.29) at each iteration step. Note that
the problem (4.29) is a convex quadratic minimization with linear equality constraints. Using the
optimality conditions for problem (4.29), the sufficient and necessary Karush-Kuhn-Tucker (KKT)
conditions [98] of (4.29) give the following.

2(R + λI)s(n) + B(n)Tv(n) − µ(n)s̄ = 0 (4.52)

B(n)s(n) = 1 (4.53)

µ(n)
(
s̄(n)T s(n) − (1− ER/2)L

)
= 0 (4.54)

s̄(n)T s(n) − (1− ER/2)L ≥ 0 (4.55)

µ(n) ≥ 0 (4.56)

We can directly solve these equations to find s(n), v(n) and µ(n). The complementary slackness
condition (4.54) implies that either µ(n) = 0 or s̄(n)T s(n) − (1−ER/2)L = 0 must be satisfied. In the
case of µ(n) = 0, from Eqs. (4.52) and (4.53), we have[

R̄ B(n)T

B(n) 0

] [
s(n)

v(n)

]
=

[
0
1

]
(4.57)
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(a) The initial problem
CP (1)

(b) Solution of problem
CP (1)

(c) Rotation of the affine
constraint (Contains

x
(1)
l )

(d) The converged solu-
tion

Figure 4.2: Illustration of the successive solutions of Eq. (4.29).

where R̄ = 2(R + λI) and v(n) ∈ R(L+1)×1 is the Lagrange multiplier associated with the equality
constraints. Solving (4.57) by block elimination gives

ŝ(n) = R̄−1B(n)T
(
B(n)R̄−1B(n)T

)−1
1 (4.58)

If ŝ(n) satisfies s̄(n)T ŝ(n) − (1 − ER/2)L ≥ 0, then s(n) = ŝ(n) is the optimal solution of problem
(CP (n)). However, if s̄(n)T ŝ(n)− (1−ER/2)L < 0, then ŝ(n) is not the solution since it violates (4.55).
Thus, µ(n) = 0 can not be valid and, therefore, it is the case that s̄(n)T s(n) − (1− ER/2)L = 0 must
holds. In this case, the KKT conditions (4.52) through (4.54) are given in the matrix form by R̄ B(n)T −s̄(n)

B(n) 0 0
−s̄(n)T 0 0

s(n)

v(n)

µ(n)

 =

 0
1

−(1− ER/2)L

 (4.59)

Using block elimination to solve (4.59) gives

s(n) = µ(n)R̄−1(I−B(n)T R̂B(n)R̄−1)s̄(n) + ŝ(n) (4.60)

where
R̂ =

(
B(n)R̄−1B(n)T

)−1
(4.61)

µ(n) =
1

α(n)

(
s̄(n)T ŝ(n) − (1− ER/2)L

)
(4.62)

α(n) = −
[
s̄(n)

0

]T [
R̄ B(n)T

B(n) 0

]−1[
s̄(n)

0

]
(4.63)

Note that (4.55) always holds since s̄T s(n) − (1 − ER/2)L = 0 in this case. To confirm all KKT
conditions are satisfied, we have to show the dual feasibility condition (4.56) holds. The following
lemma proves this.

Lemma 4.4.2. If s̄T ŝ(n) − (1− ER/2)L < 0 then µ(n) > 0.
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Proof. First, let

K =

 R̄ B(n)T −s̄(n)

B(n) 0 0
−s̄(n)T 0 0

 (4.64)

K11 =

[
R̄ B(n)T

B(n) 0

]
(4.65)

If s̄(n) is linearly dependent on b
(n)
1 ,b

(n)
2 , . . . ,b

(n)
L+1 and s̄T ŝ(n) − (1 − ER/2)L < 0, then there will

be no solution to CP (n) which contradicts Lemma 4.4.1. Therefore, b
(n)
1 ,b

(n)
2 , . . . ,b

(n)
L+1, and s̄ must

be linearly independent. Moreover, since R̄ is positive definite, all the eigenvalues of K are nonzero
according to Theorem 2.1 in [99], which means K is nonsingular. Since K is nonsingular, the Schur
complement of the block K11 in K is also non-singular (nonzero in our case) according to Section C.4
in [98] and equals to α(n). This implies

α(n) 6= 0 (4.66)

Using the block inverse to the matrix K11, Eq. (4.63) can be rewritten as

α(n) = −s̄(n)T (R̄−1 − R̄−1B(n)T R̂B(n)R̄−1)s̄(n) (4.67)

= −s̄(n)T R̄−
1
2 (I− R̄−

1
2 B(n)T R̂B(n)R̄−

1
2 )R̄−

1
2 s̄(n) (4.68)

= −yT (I− R̄−
1
2 B(n)T

(
B(n)R̄−1B(n)T

)−1
B(n)R̄−

1
2 )y (4.69)

= −yT (I−C(CTC)−1CT )y (4.70)

where y = R̄−
1
2 s̄(n) and C = R̄−

1
2 B(n)T . Note that Cp = C(CTC)−1CT is an idempotent matrix

with eigenvalues of either 0 or 1 [100]. This implies that (I−Cp) is positive semidefinite. Therefore,

α(n) ≤ 0 (4.71)

Combining (4.66) and (4.71) implies that α(n) < 0 and, hence, µ(n) > 0.

Computational Complexity: Based on the computational cost of solving (4.59) in each iteration,
the overall computational complexity of BIC is O(FL2.373)−O(FL3) [101] where F is the total number
of iterations.
Convergence Analysis: The value of the objective function of the problem (4.16) as a function of
the x(n), i.e. the optimal solution of the QP at iteration n, is non-increasing in n. This is proven next.

Lemma 4.4.3. Define g(s) = sT (R + λI)s. Then

g(s(n−1)) ≥ g(s(n)) (4.72)

In other words, the sequence {g(s(n))}∞n=0 is non-increasing. Moreover, the sequence {g(s(n))}∞n=0

converges to a finite value g?.

Proof. Denote the feasible sets of CP (n−1) and CP (n) by Fn−1 and Fn, respectively. From Lemma
4.4.1, s(n−1) ∈ Fn. Since CP (n) is a convex problem and s(n) is the optimal solution of CP (n),

s(n−1)T (R + λI)s(n−1) ≥ s(n)T (R + λI)s(n) (4.73)

Therefore, the sequence {g(s(n))}∞n=0 is non-increasing. Since g(s) ≥ 0 for all values of s, it is bounded
below. Hence, it converges to a finite value s? according to the monotone convergence theorem
[102].

Fig. 4.3 verifies the cost function is non-increasing and converges. We plot the cost function in
dB (blue line) and actual values (red line). The blue and red lines clearly show the non-increasing
property and convergence of the proposed algorithm, respectively.
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Figure 4.3: Value of cost function vs. iteration (red curve for the linear scale and blue curve for the
log scale).

4.4.3 Special Case: Nullforming Beampattern Design

Null forming beampattern design can be seen as a special case of our full beampattern design. However,
unlike the problem formulation in (4.10), the goal of null forming beampattern design is to form a
beampattern with nulls in desired directions denoted by {θk}Kk=1. Here, the objective function can be
defined by

f(x) =

N
2 −1∑

p=−N2

‖ApWpx‖22 (4.74)

= xHVx (4.75)

where V is expressed as

V =

N
2 −1∑

p=−N2

WH
p AH

p ApWp (4.76)

Therefore, the minimization problem can be formulated as
min

x
xHVx

s.t.: |x| = 1
‖F̄H ȳ − x‖22 ≤ ER

(4.77)

In this case, the optimization problem reduces to problem CP (n) in (4.29) with R and s redefined as:

R =

[
Re{V} − Im{V}
Im{V} Re{V}

]
(4.78)

s =

[
Re{x}
Im{x}

]
(4.79)

Since V is positive semi-definite and there are no linear terms in the objective function (i.e. q = 0
and r = 0 ), then all the lemmas in Section 4.4.2 hold.
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Figure 4.4: Nullforming beampattern design

4.5 Results and Discussions

We examine the performance of the proposed BIC by comparing it against the following well-known
methods:

• Phase-only variable metric method (POVMM) [72]: POVMM performs null forming
beampattern design by optimizing phases of the waveform under the constant modulus constraint
but no spectral constraint is involved.

• SHAPE [87]: The SHAPE algorithm is a computationally efficient method of designing se-
quences with desired spectrum shapes. In particular, the spectral shape is optimized as a cost
function subject to the constant modulus constraint but the resulting beampattern is an outcome
(not explicitly controlled).

• Wideband beampattern formation via iterative techniques (WBFIT) [83]: The WB-
FIT synthesize wideband MIMO beampattern under the constant modulus or low PAR. They
first find the Fourier transformed waveform in the frequency domain and then fit the DFT of
the waveform to the result of the first step subject to the enforced PAR constraint.
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4.5.1 Nullforming Beampattern Design

We compare the proposed BIC to the state-of-the-art phase-only variable metric method (POVMM)
method [72] and the SHAPE algorithm [87]. The experimental set up is as follows: We simulate a
linear MIMO radar antenna array of M = 16 elements with half-wavelength spacing and number of
time samples N = 32. We consider K = 3, θ = [10◦, 40◦, 120◦]. We assume a carrier frequency of
fc = 300 MHz and we have access to the 225-328.6 MHz and 335-400.15 MHz bands allocated for the
U.S. Federal Government. We then place a notch in the band 328.6-335 MHz.

Fig. 4.4 shows the results for nullforming beampattern of BIC versus POVMM and SHAPE. Fig.
4.4a, we plot the resulting beampattern versus the angle. Note that the BIC and POVMM have
nulls in the desired angles while the SHAPE captures the spectral constraint without beampattern
control. On the other hand, Fig. 4.4b plots the spectrum versus the frequency. Here, BIC and SHAPE
effectively suppress the energy in the frequency bands where the transmission should be mitigated.
Unsurprisingly, POVMM does not provide the desired suppression in the frequency bands of interest
because it is not designed for the same. In summary, only the proposed BIC enables the desired
spatio-spectral control.

In Fig. 4.4c, we investigate a more practical scenario. We assume we have access to licensed
television broadcasts (UHF) that occur from 470 to 698 MHz as well as the 225-328.6 MHz and 335-
400.15 MHz bands as in Fig. 4.4a. Each television station is allocated 6 MHz of bandwidth and we
assume there are 7 stations are licensed for operation (Ch. 21-23, 512-536 MHz and Ch. 36-39, 602-626
MHz). We plot the spectrum as achieved by different methods with different threshold (ER) values
in Fig. 4.4c and as expected a smaller threshold (ER value) leads to a tighter spectral constraint.

It is also shown in Fig. 4.4c that the spectral constraint can be set to incorporate the information
of the distance of a TV station/wireless interferer to the radar . In particular the results in Fig.
4.4c assume that the stations of Ch. 36-39 are closer to the radar than Ch. 21-23. ȳ in (4.77) is
appropriately set (see red curve in Fig. 4.4c) to control the relative importance of frequency bands.

In Fig. 4.4d, we show the cost function value corresponding to POVMM and the proposed BIC
(recall, they optimize the same cost function in the nullforming case). The BIC method achieves
similar cost function values or lower when ER ≥ 0.03. This is particularly remarkable because BIC
additionally enforces the spectral constraint.

4.5.2 Full Beampattern Design

For wideband beampattern design, we compare BIC to the state-of-the-art WBFIT method [83]. The
experimental set-up used in Fig. 4.5 and Fig. 4.6 is following. The number of transmit antennas
M = 10, the number of time samples N = 32, the carrier frequency of the transmit signal fc = 1 GHz
and the bandwidth B = 200 MHz and the spatial angle is divided into K = 180 grid points.

In Fig. 4.5, we place a notch in the band 910-932 MHz and consider the following desired transmit
beampattern

d(θ, f) =

{
1 θ = [95◦, 120◦]

0 Otherwise.
(4.80)

Fig. 4.5 shows the angle-frequency plot of the beampattern for WBFIT method (no spectral con-
straint) and BIC with the spectral constraint (ER = 0.01). The BIC method is able to keep the
energy of the waveform in particular frequency band low enough as well as achieve higher suppression
at the undesired angles compared to WBFIT.

In Fig. 4.6, we simulate a more challenging practical scenario. We assume that the beampattern
should be suppressed at the angles of 40◦ through 80◦ in the frequency band [943.75 MHz, 981.25
MHz] and at 120◦ through 160◦ in [962.5 MHz, 1,000 MHz], that is,

d(θ, f) =


0 θ = [40◦, 80◦] and f = [943.75, 981.25]

0 θ = [120◦, 160◦] and f = [962.5, 1000]

1 Otherwise.

(4.81)
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This ideally appears as black boxes in the angle-frequency beampattern plots. We also assume that
transmission should be restricted at all directions in the frequency band [1.025 GHz, 1.0625 GHz]. This
restriction can be performed by the spectral constraint. First, as shown in Fig. 4.6b, since WBFIT
does not have the spectral constraint, the notch of frequency band [1.025 GHz, 1.0625 GHz] does not
appear. Second, the black boxes are not seen so clearly in Fig. 4.6b. Lastly, WBFIT suppresses the
energy of the waveform unnecessarily in the frequency band where we do not have any restriction (e.g.
[1.0625 GHz, 1.1 GHz]). On the other hand, the proposed BIC effectively suppresses and restricts the
transmitted energy in the desired frequency bands and angles and generate enough power elsewhere.

Table 4.1: Converged cost function values in dB
Method cost function (dB)

Unconstrained 15.4681
WBFIT 34.7744

BIC (ER = 0.01) 32.6461
BIC (ER = 0.02) 31.3286
BIC (ER = 0.03) 30.8468

Finally, we compare values of the cost function of each algorithm for the same scenario in (4.81)
and the results are reported in Table 4.1. In Table 4.1, unconstrained wideband beampattern design
(not even a constant modulus constraint) plays the role of a lower bound. BIC outperforms WBFIT
even as it incorporates an additional spectral constraint.

4.6 Conclusion
Our work achieves tractable spatio-spectral beampattern design by waveform optimization for MIMO
radar in the presence of constant modulus and spectral constraints. The central idea of our analytical
contribution is to successively achieve constant modulus (at convergence), while solving a quadratic
program with linear equality and inequality constraints in each step of the sequence. Because each
problem in the sequence has a closed form, this makes our method computationally attractive. We
establish new analytical properties of the BIC algorithm such as non-increasing cost function in each
iteration and guaranteed convergence. Further, we show experimentally that the proposed BIC can
achieve superior beampattern accuracy compared to many state-of-the-art methods even as BIC solves
a spectrally constrained problem. Future work could consider the incorporation of additional con-
straints such as waveform similarity [90, 103] and explore further optimality properties of the BIC
solution.
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Figure 4.5: Plot of the beampattern. (a) unconstrained (b) WBFIT method (c) BIC (Proposed
method)
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Figure 4.6: Plot of the beampattern. (a) unconstrained (b) WBFIT method (c) BIC (Proposed
method)
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