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Abstract 

Evaporative cooling has the potential to address extreme heat fluxes expected in high performance 

electronics, as it takes advantage of the enthalpy of vaporization. Despite being extensively studied for 

decades, the fundamental understanding of evaporation, which is necessary for making full use of 

evaporation, remains limited up to date. We designed and microfabricated an ultrathin nanoporous 

membrane as an experimental platform to fundamentally probe the evaporation kinetics. Our nano device 

consisted of an ultrathin free-standing membrane (~200 nm thick) containing an array of nanopores (pore 

diameter ~100 nm). It realizes accurate and yet non-invasive interface temperature measurement, decouples 

the interfacial transport resistance from the thermofluidic resistance in the liquid phase and the diffusion 

resistance in the vapor phase, and mitigates the blockage risk of the liquid-vapor interface due to non-

evaporative contaminants. We utilized the kinetic theory with the Boltzmann transport equation to model 

the evaporative transport. With both experiments and modeling, we demonstrated that the kinetic limit of 

evaporation is determined by the pressure ratio between the vapor in the far field and that generated by the 

interface. The improved fundamental understanding of evaporation that we gained indicates the significant 

promise of utilizing an ultrathin nanoporous design to achieve high heat fluxes for evaporation in thermal 

management, desalination, steam generation, and beyond. 

Background and Concept 

Evaporation is an effective cooling mechanism commonly found in nature and widely used in thermal 

management of electronics as it takes advantage of the enthalpy of vaporization. Even for cooling solutions 

such as pool boiling [1-5] and flow boiling [6-11], it is still evaporation that governs the transport process 

at the interface level. Fundamental understanding of evaporation is necessary to fully exploit this phase 

change phenomenon, which however remains limited despite decades of studies. Some critical experimental 

challenges include: (1) realizing accurate and yet non-invasive interface temperature measurement; (2) 

decoupling the interfacial transport resistance from the thermofluidic resistance in the liquid phase and the 

diffusion resistance in the vapor phase; and (3) mitigating the blockage risk of the liquid-vapor interface 

due to non-evaporative contaminants. Here, we developed a nano device consisting of an ultrathin free-

standing membrane (~200 nm thick) that contains an array of nanopores (pore diameter ~100 nm) to address 

these issues. 

The uncertainty in temperature measurement δT can be estimated as 

 
L

T q
k



=   (1) 
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where q̇″ is the interfacial heat flux, k is the thermal conductivity of the working fluid, and ΔL is the 

uncertainty in where the temperature measurement is taken. When q̇″ becomes higher, δT also increases. 

When q̇″ = 100 W/cm2 and k = 0.6 W/m-K (for water), we obtain that ΔL < 3 μm is necessary for δT < 5 °C, 

which has been difficult to achieve in previous work [12-17]. 

It is also necessary to minimize the transport resistance associated with the heat supply and liquid refilling. 

Otherwise, it is not possible to reach a high flux across the interface. For example, Xiao et al. proposed a 

nanoporous configuration [18] for evaporation studies, where ΔL was reduced to the pore radius (≈75 nm), 

but their evaporative flux was still limited by the viscous loss in the refilling liquid flow along the pore due 

to the large pore length (>50 μm). In addition, the evaporation rate is very sensitive to contamination in the 

system. If the contaminants do not evaporate, the liquid-vapor interface accumulates the contaminants and 

eventually clogs the pores. 

To address these issues, we designed and fabricated an ultrathin nanoporous membrane device. Figure 1a 

shows the nanodevice design that allows the liquid to wick into the nanopores in the membrane with 

capillarity, where it is resistively heated by a metal layer and evaporates. The ultrathin nanoporous 

membrane was microfabricated starting from a double side polished silicon wafer with both sides coated 

with silicon nitride (≈300 nm thick) using low pressure chemical vapor deposition (Figure 2a). A nanopore 

array was patterned in the front silicon nitride layer using interference lithography and reactive ion etching 

(RIE) with tetrafluoromethane gas (Figure 2b). The silicon nitride layer was not etched through, which 

protected the front side when the sample was etched from the back side using potassium hydroxide solutions 

(Figure 2c). After that, two gold contact pads were deposited onto the sample with e-beam evaporation and 

shadow masking (Figure 2d). Using another shadow mask, we etched through the pores from the front side 

with RIE and deposited a gold layer to serve as the resistive temperature detector (RTD) as well as the 

heater (Figure 2e-f).  

 

Figure 1 Nanoporous evaporation device. (a) Schematic of evaporation from a nanopore (not to scale). The gold layer 

is resistively heated to induce evaporation from a pinned meniscus in each nanopore. (b) Image of device with two 

gold contact pads connected by a free-standing membrane (≈200 nm thick). (c) Magnified view of free-standing 
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membrane where the central part is porous and coated with gold. (d) Scanning electron microscope image of the 

nanoporous membrane with ≈140 nm diameter pores. 

 

Figure 2 Schematics of the fabrication process. (a) Low pressure chemical vapor deposition of silicon nitride on both 

sides of a double side polished silicon wafer. (b) Interference lithography on the front side to define nanoporous 

patterns which were partially etched into the silicon nitride layer via RIE. (c) Back etching using potassium hydroxide 

solutions with the front side protected due to the partial etch of the silicon nitride layer. (d) Contact pad deposition, 

(e) through pore etching and (f) RTD/heater deposition with shadow masking. 

In our previous report, we demonstrated the reliability of this research platform with diffusion limited 

evaporation in air. We showed good agreement between experiments and the Maxwell-Stefan equation. 

Here, to induce kinetically limited evaporation, the device was placed in an environmental chamber to 

enable controlled vapor temperature and pressure of the far field (Figure 3a-b). A custom test fixture 

interfaced the device to the liquid ports and electrical connections, while facilitating visualization of the 

membrane surface during operation (Figure 3c). Deionized water was used as the working fluid. We 

characterized evaporation with three ambient vapor pressures: P∞ = 2.643 kPa, 4.935 kPa, and 10.428 kPa, 

and the associated saturation temperatures are T∞ = 22.0 °C, 32.6 °C, and 46.6 °C, respectively.  

The environmental chamber that we used in this study was equipped with liquid feedthroughs, electrical 

feedthroughs, thermocouple feedthroughs, viewports, and pressure transducers (Figure 4a). It was 

connected to a rotary vane vacuum pump and a boiling canister which was used as the liquid reservoir tank 

in the current work (Figure 4b). Prior to the experiments, the liquid reservoir tank was filled with deionized 

water (Water for HPLC, Sigma-Aldrich) and then heated to > 100 °C for thermal degassing. The liquid 

reservoir was subsequently sealed from the ambient. Meanwhile, we calibrated the RTD to an industrial 

temperature sensor (P-L-A-1/4-6-1/4-T-6, Omega) in a convection oven. During the experiments, the 

environmental chamber was first pumped down to <0.5 Pa (confirmed by 925 Micro Pirani™ vacuum 

transducer, MKS) and then backfilled with pure water vapor from the reservoir. The vapor pressure in the 
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far field was regulated by the chamber wall temperature and measured by a capacitance pressure transducer 

(740C Baratron® Manometer, MKS). We waited ~30 min to ensure that the vapor ambient reached a steady 

state. Using a peristaltic pump (UX-77921-77, Masterflex), we supplied liquid to the sample with the inlet 

flow rate maintained at 1 mL/min. We applied a four-point method to measure the total Joule heating power 

and obtain the interface temperature from the RTD.  

 

Figure 3 Experimental setup. (a) Schematic showing device placed in a custom test fixture in an environmental 

chamber which allows for liquid feedthrough, electrical connection, and visualization. (b) Image of the experimental 

setup. (c) Top-down image of the nanoporous membrane device during an experiment. 

 

Figure 4 (a) Environmental chamber that provides the pure vapor ambient (b) Boiling canister used as the liquid 

reservoir tank. 

The measurements in this study were conducted in such a way that a set temperature was maintained. After 

setting the heating power to a higher value, the membrane temperature would increase, resulting in more 
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intense evaporation at the interface. This served as a feedback loop as the cooling rate also increased. When 

the cooling rate matched the heating power, the system reached a steady state. We recorded the temperature 

and the heating power after maintaining the steady state for one minute. On the other hand, due to the 

ultralow thermal mass of the membrane, the thermal time constant τ was very small: 

 
pmc

UA
 =   (2) 

where m is the mass of the membrane, cp is its specific heat, A is the interface area ,and U is the overall heat 

transfer coefficient. In our setup, m < 10-8 kg, cp < 2 J/g-K, and UA ≫ C, such that τ < 0.01 s. The heating 

power in the experiment was limited by the onset of nucleation in the superheated liquid beneath the 

membrane. Throughout the experiment, the uncertainty in vapor pressure measurement was ±138 Pa and 

the error of the interface temperature measurement was ±0.52 K. 

 

Figure 5 Experimental results of interfacial heat flux q̇″ as a function of temperature rise ΔT for select ambient 

temperatures. The green crosses represent the results from evaporation into an air ambient reported in our previous 

work [19], and the red triangles, blue squares, and orange circles are the evaporation data in the present study of 

evaporation into a vapor ambient for T∞ = 22.0 °C, 32.6 °C, and 46.6 °C, respectively. The error bars in q̇″ were 

smaller than the symbol size and generally less than 2%. The dashed lines are used to guide the eyes. 

Figure 5 shows the interfacial heat flux q̇″ as a function of the temperature difference between the membrane 

and the ambient ΔT for a few different working conditions. The green crosses represent the results from 

evaporation in an air ambient, as also reported in our previous work [19]. The red triangles, blue squares, 

and orange circles are the experimental data in the present study of vapor ambient evaporation for T∞ = 

22.0 °C, 32.6 °C, and 46.6 °C, respectively. Comparing the red triangles to the green crosses, we note that 
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for similar far field vapor temperatures, the heat transfer coefficient (h = q̇″ / ΔT) associated with 

evaporation into vapor is much higher than that in the air, because the former is kinetically limited and the 

latter is diffusion limited. Moreover, among different working conditions for evaporation into vapor, h 

increases significantly as T∞ increases. Based on Eqs. (3) and (4), a larger ρ0usΔhlv leads to more efficient 

evaporative heat transfer, which explains that h becomes larger for higher T∞ as ρ0 increases sharply with 

temperature. 

Theoretically, the interfacial heat transfer has been modeled by the Boltzmann Transport Equation (BTE) 

which governs the evolution of distribution functions of vapor molecules in the Knudsen layer [20, 21]. 

Moment solutions [22, 23], semi-analytical results [20, 24] as well as numerical solutions [25] of the BTE 

have been reported for the Knudsen layer problem which can be characterized by the following three 

parameters: PK/P0, TK/T0, and MK. Here, PK, TK, and MK are the pressure, temperature, and Mach number 

of the vapor adjacent to the Knudsen layer, respectively, and P0 and T0 are the pressure and temperature of 

the vapor in equilibrium with the liquid. A key finding from previous studies [22-25] is that one of these 

three parameters uniquely determines the other two. Based on this result, the interfacial heat flux q̇″ can be 

nondimensionlized as 

 
0 s lv

q
q

u h


 =


  (3) 

where ρ0 is the density of vapor in equilibrium with the liquid, us is in the vapor sonic speed evaluated at 

T0, Δhlv is the enthalpy difference between two phases. Accordingly, we show that q̇̇̅ ″ is a function of the 

above three parameters, and thus can be determined from any one of them. As a result, 

 
0

P
q f

P

 
 =  

 
  (4) 

where ΔP = PK – P∞.  In this form, ΔP/P0 can be considered as the dimensionless driving potential with q̇̇̅ ″ 

being the dimensionless flux. This nondimensionalization scheme is generally applicable to any kinetically 

limited evaporation.  

To obtain the explicit form of f in Eq.(4), we consider the boundary condition of BTE at the liquid-vapor 

interface, which is set by the evaporation coefficient and condensation coefficient (σe and σc) [25-27]. At 

equilibrium conditions, σe = σc  [28]. We carried on this equality in our analysis as the Knudsen layer can 

be considered in near equilibrium for q̇̇̅ ″≪1, where q̇̇̅ ″ can also be interpreted as a flux-based Mach number. 

Given σe and σc, we solved the BTE in the Knudsen layer using the Direct Simulation Monte Carlo (DSMC) 

method [29], with the variable soft sphere collision model [30] and the Borgnakke-Larsen method [31] to 

DISTRIBUTION A: Distribution approved for public release.



account for the temperature dependent properties and internal degrees of freedom of water molecules. 

Previous theoretical studies mostly assumed the molecules to be monatomic, but more recently, Frezzotti 

[25, 32] showed significant differences of evaporation kinetics between polyatomic molecules and 

monatomic ones. This signifies the effect of the internal degrees of freedom of vapor molecules, which has 

generally not been properly considered in previous works when interpreting experimental data. 

Figure 6 shows the collapse of our results in both experiments and DSMC modeling with water, when 

plotting q̇̇̅ ″ as a function of ΔP/P0 for different working conditions. The red triangles, blue squares, and 

orange circles represent the experimental data in a vapor ambient from Figure 5, where we approximated 

PK as P∞ (which is more experimentally accessible) since q̇̇̅ ″ ≪ 1, based on continuum gas dynamics [22, 

33]. The dashed lines represent the least-square fit of the DSMC calculation, which gives σe = σc = 0.32±0.04. 

Molecular dynamics simulations of water generally yielded σe and σc on the same order of magnitude. 

Although various values have been reported [34-36], which might be due to different intermolecular 

potential models used, the simulation results generally suggest no significant variation of σe and σc for the 

temperature range that we considered. Previous experimental studies, on the other hand, reported σe and σc 

across three different orders of magnitude (0.002-1) [37]. Restricting the comparison to the studies with 

dynamically renewing interfaces [37-41], the results become more similar to the current work (0.1-1), 

indicating contamination could be a severe challenge in many previous studies. There are several transient 

evaporation studies with liquid water exposed to vacuum, which simplifies the vapor transport into the free 

molecular flow. Hickman [38] studied evaporation into vacuum from falling water, with only bulk liquid 

temperature measurement using thermocouples and obtained σe = 0.254-0.532.  More recently, Smith et al. 

used Raman thermometry to probe the surface temperature of evaporating water droplet in vacuum and 

reported σe = 0.62 ± 0.09. However, their thermal model did not account for the size change of the droplet 

and the large Biot number of the droplet, which makes it difficult to interpret their results. For vapor ambient 

studies, Narusawa and Springer [42] measured the evaporation rate of water in a cylindrical container in a 

vacuum chamber, determined the interface temperature with thermal radiation, and reported σe = 0.19. 

Nevertheless, the Schrage model that they used is known to overpredict the interfacial flux due to violation 

of momentum and energy conservation [43], which means their σe should be higher than what they reported. 

Kobayashi et al. [44] reported σc = 0.71-0.84 with shock tube experiments and numerical simulations of the 

Gaussian-BGK Boltzmann equation. Since their model did not account for the energy exchange due to the 

rotational modes of water molecules and underpredicted the interfacial heat flux, their σc should in fact be 

smaller than what they reported. In general, even though the present work obtains similar σe and σc 

compared to many previous studies, it represents quite different interfacial heat transfer as the Knudsen 

layer non-equilibrium and internal degrees of freedom of water molecules were generally not properly taken 

into account when interpreting the experimental data in prior works. 
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Figure 6 Dimensionless interfacial flux q̇̇̅ ″ as a function the dimensionless driving potential ΔP/P0. The red triangles, 

blue squares, and orange circles represent the experimental data in the present study for T∞ = 22.0 °C, 32.6 °C, and 

46.6 °C, respectively. The black dashed line is from the DSMC modeling result with σe = σc = 0.32. The error bars in 

q̇̇̅ ″ are smaller than the symbol size. 

Fundamentally, our work elucidates the unifying relationship between the flux and the driving potential for 

evaporation in a dimensionless form. More practically, when designing an evaporative system, we can now 

consider ρ0usΔhlv in Eq.(3) as the figure of merit of interfacial heat transfer, which assists in choosing the 

working conditions and fluid. Our ultrathin nanoporous configuration provides an example of 

simultaneously minimizing thermal resistance and viscous loss while generating high capillary pressure. 

This work offers insights that can improve the performance of membrane-based cooling [45, 46], steam 

generation [47], and desalination [48] devices. 
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