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Report Title
Learning Mixed Membership Community Modelsin Social Tagging Networks through Tensor Methods

ABSTRACT

Community detection in graphs has been extensively studied both in theory and in applications.
However, detecting communities in hypergraphs is more challenging. In this paper, we propose a tensor
decomposition approach for guaranteed learning of communities in a special class of hypergraphs
modeling social tagging systems or folksonomies. A folksonomy is a tripartite 3-uniform hypergraph
consisting of (user, tag, resource) hyperedges. We posit a probabilistic mixed membership community
model, and prove that the tensor method consistently learns the communities under efficient sample
complexity and separation requirements.



Learning Mixed Membership Community Models
in Social Tagging Networks through Tensor Methods

Anima Anandkumar Hanie Sedghi
July 18, 2015

Abstract

Community detection in graphs has been extensively stud@ld in theory and in applications.
However, detecting communities in hypergraphs is morelehging. In this paper, we propose a ten-
sor decomposition approach for guaranteed learning of agmities in a special class of hypergraphs
modeling social tagging systems fmiksonomies A folksonomy is a tripartite 3-uniform hypergraph
consisting of (user, tag, resource) hyperedges. We posilzapilisticmixed membershipommunity
model, and prove that the tensor method consistently leesommunities under efficient sample
complexity and separation requirements.

Keywords: Community models, social tagging systems/folksonomiggsedmembership models, tensor
decomposition methods.

1 Introduction

Folksonomies or social tagging systems (Chakraborty €2@1.2) have been hugely popular in recent years.
These are tripartite networks consisting of users, resgsuand tags. The resources can vary according to
the system. For instance, in Delicious, the URLSs are theuress, in Flickr, they are the images, in LastFm,
they are the music files, in MovieLens, they are the reviewd,sm on. The collaborative annotation of these
resources by users with descriptive keywords, enablesrfasarch and retrieval (Chakraborty and Ghosh,
2013).

The role of community detection in folksonomies cannot berstated. Online social tagging systems
are growing rapidly and it is important to group the nodes. (iusers, resources and tags) for scalable
operations in a humber of applications such as personadigatth (Xu et al., 2008), resource and friend
recommendations (Konstas et al., 2009), and so on. Morgl@aening communities can provide an under-
standing of community formation behavior of humans, andrte of communities in human interaction
and collaboration in online systems.

Folksonomies are special instances of hypergraphs. Adotksy is a tripartite3-uniform hypergraph
consisting of hyperedges between users, resources andlegiable community detection in hypergraphs
is in general challenging, and most previous works are dichtb pure membership models, where a node
belongs to at most one group. This is highly unrealistic esinsers have multiple interests, and the tags
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and resources have multiple contexts or topics. A few workilwdo consider overlapping communities
in folksonomies are heuristic without any guarantees andalancorporate any statistical modeling (see
Section 1.2 for details).

In this paper, we propose a novel probabilistic approachnfodeling folksonomies, and propose a
guaranteed approach for detecting overlapping commariitithem. A naive model for folksnomies would
result in a large number of model parameters, and make fepintractable. Here we present a more
scalable approach where realistic conditional indepetel@onstraints are imposed, leading to scalable
modeling and tractable learning.

Our model is a hypergraph extension of the popalated membership stochastic blockmadéMSB),
introduced by Airoldi et. al (Airoldi et al., 2008). As one thfe main contributions, we remove the restric-
tive Dirichlet distribution assumption that played a celaiole in identifiablity for earlier works (Airoldi
et al., 2008; Anandkumar et al., 2014a). Therefore, we extba learning problem to a wider class of
models. We impose additional conditional independencetcaints, which are natural for social tagging
systems. We term our model asxed membership stochastic folksongiMySF). When hypergraphs are
generated from such a class of MMSFs, we show that the hyjggrsecan be muamore informativeabout
the underlying communities, than in the graph setting.itiwgly, this is because the hyper-edges represent
multiple viewsof the the hidden communities. In this paper, we show thatelpeoperties can be exploited
for learning via spectral approaches.

1.1 Summary of Results

We develop a practically relevant mixed membership hypgigrmodel and propose novel methods to
learn them with guarantees. We posit a probabilistic moalejéneration of hyper-edgés, u, ¢t} between
resourcesg, usersy and tags. We impose natural conditional independence assumptiatsonditioned on
the community memberships of individual nodes, the hymgegknerations are independent. In addition,
we assume that the users select tags for a given resouraa bashe context in which the resource is
accessed. For instance, consider the resource as a pajpiilghboth in theoretical and applied machine
learning, as shown in Figure 2. If a user accesses the resomaer the context of theory, he/she uses
tags that are indicative of theory. Note that we allow thersisad tags to be in multiple communities;
however, the actual realization of an hyper-edge depenlysamthe context in which the resource was
accessed. Depending on what kind of user is tagging the #edikelihood of choosing various tags such
as application, latent variable model etc changes. Theitional independence assumption states that once
a user accesses the paper in certain context (e.g. lookirapfdications), the probability of using tags in a
category (e.g. applications, experiments) only dependbairtontext. There are many other such examples.
For example, a movie can be a drama about a political figureerégm who is mostly into politics will watch
this movie in the context of politics and use political tafyg €xample name of the person, specific political
events that where illustrated in the movie), while a perstw 8 more into drama genre will use drama to
tag the movie.

While learning community models on general hypergraphsRshdrd, our setting is geared towards
the setting of folksonomies with users, resources and tagsthe assumptions we make naturally hold in
this setting. Importantly, we allow for general distritmris for mixed community memberships. The earlier
work by Anandkumar et al. (2014a) on MMSB models on graphsmgdd to the Dirichlet distribution.
Note that the Dirichlet assumption for community membggstdan be limiting and cannot model general
correlations in memberships. Without the Dirichlet asstiomp the earlier techniques, when applied di-
rectly, would yield tensors in the Tucker form, which do nospess a unique decomposition and thus, the
communities cannot be learnt from the tensor forms. In a@dibur moment forms are different since it



is the hypergraph setting and conditional independencengstfons are different. Thus, earlier work on
MMSB cannot be directly applied here.

In addition, we impose weak assumptions on the distributibthe community memberships. This is
required since the memberships are in general not idenéfi@hen they are mixed. While the original
MMSB model (Airoldi et al., 2008) assumes that the commanitire drawn from a Dirichlet distribution,
here, we do not require such a strong parametric assumpgtiere, we impose a weak assumption that a
certain fraction of resource nodes are “pure” and belongsiagle community. This is reasonable to expect
in practice. We establish that the communities are idebtdiander these natural assumptions, and can be
learnt efficiently using spectral approaches.

Here, we propose a novel algorithm to detect pure nodes gielgpio a single community. The presence
of pure nodes is natural to expect in practice and does naireethe Dirichlet assumption. Our method
consists of two main routines. First, we design a simple rask to identify pure resource nodes. The
algorithm involves first projecting hyperedges to subspddep-k eigenvectors. It then involves performing
rank test on the matricization of connectivity vectors afteeesource node, where rows correspond to users
and columns correspond to tags. We can then exploit thesetddtpure nodes to form tensors that can be
decomposed efficiently to yield the communities for all tloel@s (and not just the pure nodes). We prove
that our proposed method correctly recovers the parametéhe MMSF model when exact moments are
input. This two stage algorithm is expected to have much magelicability than the MMSB model which
is limited to the Dirichlet distribution. For this generalodel, we show a tight sample complexity that
n > k3 can recover the communities; wherek denote the number of nodes and number of communities,
respectively.

For the first step, we construct a matrix for each resource ,nodnsisting of its edges to users and
tags. We show that this matrix is raikin expectation (over the hyperedges) for a pure resource.ndus
property enables us to identify such pure nodes. We therircmha3-star count tensor using these estimated
pure resource nodes. We count the pure resource nodes, areidommon to triplets of (user,tag) tuples
to form the tensor. We show that in expectation this tenseradh@P decomposition form, and requiring this
decomposition yields the community memberships after ssimple post-processing steps.

We then carefully analyze the perturbation bounds undeirerapmoments, and show that the commu-
nities can be accurately recovered under some natural asisms The perturbation analysis for this step is
novel since it requires analyzing the effect of standardtsgkperturbations on matricization and the subse-
guent rank test. We use subexponential Hanson Wright ifiéigaao obtain tight guarantees for this step.
These assumptions determine how the number of nedeselated to the number of communitiesand a
lower bound on the separatign— ¢, wherep denotes the connectivity within the same community, wiile
denotes the connectivity across different communitieshSaquirements have been imposed before in the
graph setting, for stochastic block models (Yudong et 81,22 and mixed membership models (Anandku-
mar et al., 2014a). Here, we show that for MMSF, the requirgrigestronger, since intuitively, we require
concentration on a hypergraph instead of a graph. We employesponential forms of Hanson Wright's
inequality to get tight bounds in the sparse regime, whexetmnectivity probabilitiep, ¢ are small. Thus,
we obtain efficient guarantees for recovering mixed menfigemmunities from social tagging networks.

We establish that for the success of rank tesp = ¢, we need the network size to scaleras=
Q (k3) (when the correlation matrix of community membership distion is well-conditioned). For the
case wherey < p/k, we requiren = Q (k2). This is intuitive as the role of is to make the different
community components non-orthogonal for the rank test,q.acts as noise. Therefore, a smaljgesults
in better guarantees. For the success of tensor decongpositthod, we require = Q (k:3) whenp, ¢
are constants, in the well-conditioned setting. Note thatamparison, for learning mixed membership



stochastic block model graphs, we require= Q2 (k?), from Anandkumar et al. (2014a), which is lower

sample complexity. This is because we need to learn more auailparameters in the hypergraph setting.
Moreover, for sparse graphs, the parametegsdecay withn, and we also handle this setting, and provide
the precise bounds in Section 4.

1.2 Related Work

There is an extensive body of work for community detectiographs. Popular methods with guarantees
include spectral clustering (McSherry, 2001) and convelrapation (Yudong et al., 2012). For a detailed
survey, see (Anandkumar et al., 2014a). However, theseatiettannot handle mixed membership models,
where a node can belong to more than one community.

Our algorithm is based on the tensor decomposition approa¢Anandkumar et al., 2013) for pair-
wise MMSB model in graphs. The method has been implementethfmy real-world datasets and has
shown significant improvement in running times and accumagyr the state of art stochastic variational
techniques (Huang et al., 2013). The tensor consists af drster moments in the form of counts dftar
subgraphs, i.e., a star subgraph consisting of three leforesach triplet of leaves. The MMSB model as-
sumes a Dirichlet distribution for community membershasd in this case, a modifieddstar count tensor
is used. It is shown that this tensor haSR-decomposition form, and the components of the decompasiti
can be used to learn the parameters of the MMSB model. Howiivemethod cannot be extended easily
to general distributions, beyond the Dirichlet assumptigince for general distributions, tl3estar count
tensor only has a Tucker decomposition form, and not a CP.forrgeneral, the model parameters are not
identifiable from a Tucker form. Thus, in graphs, mixed mersbip models cannot be easily learnt when
general distributions (beyond the Dirichlet distribujidar mixed memberships are assumed. In this paper,
we show that in the hypergraph setting, more general digioibs of community memberships can be learnt,
when certain conditional independence relationships sseraed for hyper-edge generation.

Another limitation of the MMSB model is that due to the Didehassumption, only normalized com-
munity memberships can be incorporated. However, in thgg,clhe mixed nodes (i.e. those belonging to
more than one community) are less densely connected thgoutkenodes, as pointed out by (Yang and
Leskovec, 2013). In contrast, in our paper, we can handleasmalized community memberships vectors
(in a weighted graph), since we do not make the Dirichletmggion, and thus, this limitation is not present.
However, for simplicity, we present the results in the ndipea setting.

Scalable community detection in hypergraphs is in gendrallenging and most previous works are
limited to pure membership models, where a node belongs woat one group (Brinkmeier et al., 2007;
Lin et al., 2009; Murata, 2010; Neubauer and Obermayer, ;2@82quez, 2009). Clustering in multipartite
hypergraphs can be seen as extensions afdheusteringof matrices, where rows and columns are simul-
taneously clustered. In (Jegelka et al., 2009), extengibns-clustering to the tensor setting is considered.
However, this setting can only handle pure communities,revlaenode belongs to at most one community.
A few works which do consider mixed communities in hyperdpsjare heuristic without any guarantees,
and do not incorporate any statistical modeling (Wang efll0; Chakraborty et al., 2012; Papadopoulos
et al., 2010). They mostly use modularity based scores withmviding any guarantees. In this paper, we
present the first guaranteed method for learning commariitienixed membership hypergraphs.
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Figure 1: Overview of MMSF model for an example of machinan@s articles (resources) tagged by
users. One article (resource) and the corresponding tatysdoysers are shown. Two communites of The-
oretical machine learning and Applied machine learningaastimed. The mixed community membership
of resources, users and tags are also shown.

2 Mixed Membership Model for Folksonomies

Setup: We consider folksonomies modeled as triparditeniform hypergraphs over three sets of nodes,
viz., set of userd/, set of tagsl” and set of resourceB. An hyperedge{u, t,r} occurs when usex tags
resourcer with tagt. For convenience, we will considemaatricizedversion of the{0, 1} hyper-adjacency
tensor, denoted bgx € {0, 1}/UI"T1*I%l which indicates the presence of hyper-edges. The readuncbe
considering matricization along the resounsedewill soon become clear. We use the notat@®{«, ¢}, r)

to denote the entry corresponding to the hyper-edge, r }, and@({U, T'},r) to denote the column vector
corresponding to the set of hyper-eddés 7', r}.

We consider models with underlying (hidden) communities and ¢ := {1,2,...,k}. For nodei,
let 7; € R* denote itscommunity membership vectére., the vector is supported on the communities to
which the node belongs. Defiig; := [r; : i € U] € R¥*IUl denote the set of column vectors denoting the
community memberships of usersiih and similarly defindl; andIlg. LetIl := [7;: ¢ € UUT U R).

We now provide a statistical model to explain the presendeypér-edgeqw, t, 7} among users, tags
and resources through the community memberships. We anaidnixed memberships model, where
there are multiple communities for users, tags and ressutoguitively, users belonging to certain groups
(i.e. interested in certain topics) will tend to select rgses mainly comprised of those topics. The tags
employed by the users are dependent ornctir@extualcategory of the resource selected by the user. This
intuition is formalized under our proposed statistical midaklow.

Let z, (10} € R* be a coordinate basis vector which denotes the communitybeeship of usew
when posting tag and resource, and similarly letz, _, 1, 43, 21— {u,»} denote the memberships of resource
r and tagt when participating in the hyperedde, ¢, }.

Let P € R¥** be the community connectivity matrix, whefg ; denotes the probability that a user in
communityi selects a resource in communijty Similarly, let P € R¥** denote a matrix such that each
entryPM denotes the probability that a tag in communifg associated with resource in community

The proposed mixed membership stochastic folksonomy (MMS#&s follows:



e For each node in € U UT U R, draw its community membership vectey € R”, i.i.d. from some
distribution f;;.

e For each triplet{u,t,r}, draw coordinate basis vectots_, ;1 ~ Multinomial(m,), 2y, ~
Multinomial(;) andz,._, ,, 4y ~ Multinomial(,.) in a conditionally independent manner, givén

e Draw random variables

Er—)u;t ~ Bernou"i(zz—tr—){t,r} PzT_){u:t})

Byt ~ Bernoulli(z;{u,,,}PZH{u,t})- (1)

The presence of hyper-edg&{u,t},r) is given by the product
@({u, t}, T) - Er%u;t . Er%t;u- (2)

The use of variables,_,(; 1, 21— {u,} @Ndz,_ 1, allows for context-dependergelection of group
memberships as in the MMSB model. Given a resource and itexipra user may choose to access the
resource, and probability of using a tag on a resource depamdontext of the tag and the resource. Given
the context of user, tag and the resource, these two evenisdapendent. In order to have a hyper-edge,
we need both events to happen and this explains Eqgn. (2).

Ours is aresource centric model, where a resource can beleelgas comprising of martgpicsor com-
munities. Which tags get associated with the resource isrdmnt on the context of the resourge, ;,, ,,
and the tag;_, (., ,; and similarly, which user selects a resource is dependettitecontext of the user
(2u—{t,r}) @nd the resource,_,, ;3. The hyper-edges are drawn according to (2) and thus, nzatimn
along the resource mode is convenient for analysis. Our hi®desource centric and not user centric. The
intuition is that the tags associated with a resource arerdignt on the context that the resource is being
accessed and the likelihood of the user accessing a ressutependent on his/her current group and the
context of the resource. Figure 2 provides an instance ofpargyaph where the resource is a paper and
communities consist of theoretical and applied machineleg.

Unlike the pairwise MMSB model (Airoldi et al., 2008), whete edges are conditionally independent
given the community memberships, in the proposed MMSF mduleledgedBHt " andBHut contained
in the hyperedgédu, ¢, r} arenot conditionally independent given the community membeishéince they
are selected based on the common conigxt,, «, of the resource. Thus, the MMSF model is capturing
dependencies beyond the pairwise MMSB model. At the same, tine MMSF model has conditionally
independent hyperedges given the community membershipshueads to tractable learning.

We donot take the approach of modeling hyperedges directly, i.eoutih a community connectivity
tensor inP € R**#*k whereP, ;. would give the probability that a user in communitywould have
an hyperedge with resourdeand tage. This would lead tdk? unknown parameters, while our model has
only 2 unknown parameters. Moreover, if the user at a certain f®interested in some topic (i.e. draws
Zu—s{t,r} IN SOME community), then he looks for resources and tagsaigaignificant membership in that
topic (modeled through draws ef_, ,, ,; andz,_,(, ) and this will generate the hyper-edge- {t,r}.

We assume that the community vectors are drawn i.i.d. froenaigl unknown distribution: fare [n],

;"% £ (), supported on thé — 1-dimensional simplex\F—1

A= {r e RF, 7 (i) € [0,1), Y (i) =1},

%



Figure 2: Our moment-based learning algorithm uses 3-stamtdensor from sek  to setsA, B, C.

The performance of our learning algorithms will depend andistribution ofr. In particular, we assume
that with probabilityp, a realization ofr is a coordinate basis vector, and thus, alofstiction of the nodes
in the network ar@ure, i.e. they belong mostly to a single community. In this paperinvestigate how the
tractability of learning the communities dependsgon

3 Proposed Method

Notation: ~ For a matrix), if M = UDV" is the SVD of M, letk-svd(M) := UDV'" denote the
k-rank SVD of M, whereD is limited to top% singular values of\/. A matrix A € RP*? is stacked as a
vectora € RP? by thevec(-) operator,

a= VeC(A) ~ (I((’il — 1)q + ’LQ)) = A(’il,ig).

The reverse matricization operation is denotednbyt(-), i.e. aboveA = mat(a). Let A x B denote
the Hadamard or entry-wise product. Letvd(M) of a matrix M denote its restriction to top-singular
values, i.e. iftM = UAV T, k-svd(M) = UyA.V,', which denote the restriction of the subspaces and the
singular values to the top-ones.

In this paper, we consider the problem of learning the comtypurectors;, for i € [n], given a
realization of the (matricized) hyper-adjacency matix RIZI*IUITI We will employ a clustering-based
approach on the hyper-adjacency matrix, but employ a éiffieclustering criterion than the usual distance
based clustering. our method is shown in Algorithm 1.

Our method relies on findingure resource nodes and using them to find communities for theireso
tag and users. A pure resource node is a node that is mainlgspending to one hidden community.
Therefore, finding that node paves the way for finding resseammunities. In addition, since this is a
resource-centric model, looking at the subset of hyperhgsaiph pure resources, all tags and all users,
suffices to find the communities for users and tags as wellceSive assume knowledge of community
connectivity matrices, we can learn community membersfipsnixed resource nodes as well. We now
provide the details of our proposed method.

Projection matrix: ~ We partition the resource sé&tinto two partsX andY to avoid dependency issues
between the projection matrix and the projected vectors tlais is standard for analysis of spectral cluster-
ing. Now letk-svd(G({U, T},Y)) = MA.V, and we employroj := M, M, as the projection matrix.
We project the vector@({U, T}, x) for x € X using this projection matrix.

Rank test on projected vectors:  In the usual spectral clustering method, once we have gegje@ctors
ProjG({U,T},z) € RIVITI any distance based clustering can be employed to classifyectors into

7



different (pure) communities. However, when mixed memiipraodes are present, this method fails. We
propose an alternative method which considers a rank teseofmatricized form of) the projected vectors.
Specifically consider the matricized fonmat(Proj G({U, T}, ) € RIVIXITI and check whether

o1 (mat(Proj G{U, T}, z))) > and oy(mat(Proj G({U, T}, z))) <

and if so, declare the node € X as apurenode. Interchange roles of andY and similarly find pure
nodes inY".

Learning using estimated pure nodes: Once the pure nodes in resource Beire found, we can employ
the tensor decomposition method, proposed in (Anandkutredr,2014a), for learning the mixed member-
ship communities of all the nodes. The pure nodes are engbkoyebtain averagesghstar subgraph counts.
Partition{U, T'} into three sets!, B, C' as shown in Figure 2. Thestar subgraph count is defined as
~ 1 ~ ~ ~
Thsasc = E > G, AT ®G(rB) @G(r,C)T, (3)

reR

whereRR denotes the set of pure resource nodes. The method is eegbiaippendix B.

Reconstruction after power method: Since we do not have access to the exact moments we need to do
additional processing: the estimated community membgrsdgtors are then subject to thresholding so that
the weak values are set to zero. This modification makes @onstruction strong as we are considering
sparse community memberships. Also note that assuminglkdge of community connectivity matrices,

we can learn community memberships for mixed resource nasl@gll. This is shown in Algorithm 3 in

the Appendix.

Algorithm 1 {II} « LearnMixedMembershi@, k,T1,72)

Input:  Hyper-adjacency matri& € RIUINTI<IE £ is the number of communities, ang 7 are thresholds
for rank test.
Output: Estimates of the community membership vecfidrs
1: Partition the resource sé& randomly into two parts\, Y.
2. R =Pure Resource Nodes Detectioh Y, U, T').
3: II «+ TensorDecom(({U,T},-), R)
4: Returnll.

4 Analysis of the Learning Algorithm

Notation: Let O(-) denoteO(-) up to poly-log factors. We use the term high probability toamavith
probability 1 — n~¢ for any constant > 0.
4.1 Assumptions

For simplicity, we assume that the community membershipssdurces, tags and users are drawn from the
same distribution. Further, we consider equal expectedmamity sizes, i.eE[r] = 1/k-17. Additionally,



Procedure 2Pure Resource Nodes Detection
Input: X,Y,U,T.

1: Construct Projection matriRroj = M;M,| , wherek-svd(G({U, T},Y)) = MyA,V, .
2. Set of pure node® « 0.

3 forzeXdo L

4 if o1(mat(Proj G({U,T},z))) > 7 andog(mat(Proj G({U, T}, z))) < 72 then

5: R « RU {z}. {Notemat(Proj G({U, T}, z)) € RIVIXIT| is matricization

6: endif

7: end for

8: Interchange roles ok andY and find pure nodes K.

9: ReturnR.

we assume that the community connectivity matrifes® are homogeneotisind equal
P=P=(p—ql+qlll. 4

These simplifications are merely for convenience, and carabity removed.

Requirement for success of rank test: We require that

B 2
n=0 <ak(E[mT])3 k(B[ T]) 72 - (%) ) : (5)

wherex(-) denotes the condition number angl-) denotes thé™ singular value.
We assume thahax;c(, 7.(i) = 1 — ¢,¢ = O(1) and hence there exists no node such that thesr
between 1 and .

Requirement for success of tensor decomposition: Recall that the tensor method uses only pure re-
source nodes. Let be the fraction of such pure resource nodes. wet= P[r,.(i) = 1jr € R]. For
simplicity, we assume that; = 1/k. Again, this can be easily extended.

We require the separation in edge connectiyity ¢ to satisfy

a VE
p Vip - op(E[rrT]) |

Intuitively this implies that there should be enough sef@nabetween connectivity within a community
and connectivity across communities.

(6)

Dependence om, ¢:  Note that for the rank test, (5), in the well-conditionedisgtwe haver, (E[zr7']) =
O(1/k). Thenifp ~ g, we neech = Q (k?). For the case wherg< p/k, we will requiren = Q (k?). This
is intuitive as the role of is to make the components non-orthogonal, g@gts as noise. Therefore, smaller
q results in better guarantees. For the tensor decompogsitethod to be successful,i.e., Equation (6), in
the well-conditioned setting, if we have= Q (k3) this mean®, g are constants. Alternatively, for sparse

'Our results can be easily extended to the case whand P are full rank.
20), O represent?, O up to poly-log factors.



graphs, we wanp, ¢ to decay. According to the constraints, we need a largefhis is intuitive as in
case of sparse graphs we need fewer observations and leswatibn about unknown community mem-
berships. Therefore, we need more samptgst HS: replace with this: This is intuitive as in case of
sparse graphs we observations convey less information about unknown community memberships.
Therefore, we need more samples. ###

Note that Anandkumar et al. (2014a) require= O(k?) while we needn = O(k?). The reason is
that we are estimating a hypergraph (they estimate a gragghjva are estimating more parameters in this
model. Therefore, we need more samples.

4.2 Guarantees

We now establish main results on recovery at the end of oorigthgn. We first show that under the assump-
tions in the previous section, we obtain gnguarantee for recovery of the membership weights of source
nodes in each community. We should note that this result eaextended to recovery of membership for
tag and user nodes as well. In this case, there will be additiperturbation terms.

Let IT be the reconstruction of communities (of resources, useisags) using the tensor method in
Algorithm 3 in the Appendix, but before thresholding. For atrix M, let (M)’ denote the™ row. Recall
that (IT)’ denotes the memberships of all the nodes initheommunity, sincdl € RUEHUHTDxE we
have the following result:

Theorem 1 (Reconstruction of communities (before threshding)) We have w.h.p.

s (D) — (Dl — O [ VR (B[ )
r 1= max (1) — (1) H2—0< N TR ) (7)

Remark: Note that the/; norm above is taken over all the nodes of the network and weagxhis to be
O(y/n) if error at each node i©(1). AssumingE[r7 "] is well conditioned and whep, p,q = Q(1), we
get a better guarantee that= O(Vk).

Now we further show that when the distribution ofis “mostly” sparse, i.e. each node’s membership
vector does not have too many large entries, we can imprevalibve/s guarantees inté, guarantees via
thresholding.

Specifically, assuming that the distributionogatisfies

Pir(i) > 7] < %log(l/T), vi € [k]

form = O(e, - %), we have the following result. This is equivalent to the dhse the tailr is exponentially
small ink, i.e., sparsity.

Remark:  Dirichlet distribution satisfies this assumption whel) «; < 1, wherew; represent the Dirich-
let concentration parameters.

Theorem 2 (¢; guarantee for reconstruction after thresholding) We have

wom-o(e D) -o(SeBED),

wherell' is the result of thresholding with = O(ex - %).
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Remark: Note that the/; norm above is taken over all the nodes of the network and weagstpis to be

O(n) if error at each node i©(1). AssumingE[r~ '] is well conditioned and whep, p, ¢ = (1), we get

a better guarantee 6J(/n). Hence, we obtain good error guarantees in both casés amd/, norms.
For proof of the Theorems, see Appendix C.

5 Overview of Proof

5.1 Analysis of Graph Moments under MMSF
5.1.1 Overview of Kronecker and Khatri-Rao products:

We require the notions of Kronecker ® B and Khatri-Rao productd © B between two matriced and
B. First we define th&ronecker productd ® B between matriced € R™**1 andB € R"2**2_ |ts (i, j)"
entry is given by

(A® B)ij = Aiy j1 Biyjo, 1= 1{i1,i2} € [n1] X [n2],j = {Jj1,J2} € [k1] X [k2].
Thus, for two vectors andb, we have
(a®Db)i = a; bi,, 1= {i1,i2} € [m] x [na].
For the Khatri-Rao product ® B between matriced € R™**¥ andB € R"2**, we have itgi, j)" as
A® B(i,j) = Ai, jBiy . i={i1,is} € [n1] x [n2),5 € [K]-

In other words, we have
A@B::[a1®bl as ® by ...ak®bk],

whereq;, b; are the:™ columns ofA and B. Note the difference between the Kronecker and the Khaa-R
products. While the Kronecker product expands both the murobrows and columns, the Khatri-Rao
product preserves the original number of columns. We wilbalse another simple fact that

(A® B)(C ® D) = AC @ BD. 9)

5.1.2 Result on Correctness of the Algorithm

Recall thatP € [0, 1]¥** denotes the connectivity matrix between communities ofsuged resources and
P € [0,1]*** denotes the corresponding connectivity between comnesniti resources and tags. Define

F:=1I,P, F:=T1I}P. (10)

Let F, = 7, P be the row vector corresponding to useand similarly F; corresponds to taty Similarly,
let F4 = I}, P be the sub-matrix of".

We now provide a simple result on the average hyper-edgeectinity and the form of th8-star counts,
given the community memberships.

Proposition 1 (Form of Graph Moments) Under the MMSF model proposed in Section 2, we have that
the generated hyper-grapi € RIVITIxIEl satisfies

G :=E[G] = (F © F)lIx, (11)

11



where ® denotes the Khatri-Rao product. Moreover, for a given reseu € R, the column vector
G(r,{U,T}) has conditionally independent entries given the commuméynbership vector,. If R C R
is the set of (exactly) pure nodes, then 3kstar count defined i3) satisfies

Thoapce =ETh apcllll =Y wi(Hi® Hp® Ho), (12)
i€[k]

wherew; is ~
w; := P[m,.(i) = 1|r € R],

and Hy = Fyay ® Fr4), and similarly, H and He..

The above results follow from modeling assumptions in $ecH, and in particular, the conditional inde-
pendence relationships among the different variablesd€tails, see Appendix A.

In (11), note that a if column of(X; {U,T}) corresponds to a pure nodec X, then the matrix
has rank of one, since, corresponds to a coordinate basis vector. On the other lianthe case where
columns correspond to mixed nodes, the matrix has rank btgge one. Thus, the rank criterion succeeds
in identifying the pure nodes iX under exact moments.

Lemma 3 (Correctness of the method under exact momentshssumeF ® E' has full column rank, and
Iy has full row rank, wher&@” C R is used for constructing the projection matrix, then thegmeed method
LearnMixedMembership in Algorithm 1 correctly learns tloerenunity membership matrik.

Proof:  Using the form of the moments in Proposition 1, we have that & R is a pure node, then
G(r;{U,T}) = (F ® F)r, is rank one since it selects only one columnfof F. Thus, the rank test in
Algorithm 1 succeeds in recovering the pure nodes. The cimess of tensor method follows from (Anand-
kumar et al., 2014a). O

Since we only have sampled graphand not the exact moments, we need to carry out perturbation
analysis, which is outlined below.

5.2 Perturbation Analysis

Recall thatPQj = M;CM,;r is the projection matrix corresponding kesvd(@({U,T},Y)) = MkAkaT.
Define the perturbation between empirical and exact momgis projection as

my = | Proj G{U, T}, z) — GUU, T}, z)|, Va € X, erank := max |[my|. (13)
The above perturbation can be divided into two parts
Ima|| < [ Proi(G{U, T}, #) — GHU, T}, )| + ||(Proj — Prof) G{U, T}, z)|

The first term is commonly referred to distance perturbatiomnd the second term is tisetbspace pertur-
bation We establish these perturbation bounds below.
We begin our perturbation analysis by bounding as defined in Eqn. (13).

Lemma 4 (Distance perturbation) Under the assumptions of Section 4.1, with probability ¢, we have

forall z € X,

1/2

| PE(GU. T} 2) — GUU. T}, 2))]| < vVhp (1 T S—E <1og<n/a>>4) ,

for some constant’ > 0.

12



See Appendix C.1 and Appendix C.2 for details. Notice thatdibspace perturbation dominates.

Lemma 5 (Subspace perturbation) We have the subspace perturbation as

I(Proj — Proj)G({U, T}, 2)|| < 203 (Iy)\/||F © F|1.

Under the assumptions of Section 4.1, w.h.p. this reduces as

|(Proj — Proj)G({U, T}, z)|| < O ( vn : (p 4 q)) .

ok (E[rmT]) k

See Appendix C.2.

5.3 Analysis of Rank Test

Recall that from the perturbation analysis, we have baggg. on the error vectom,,, defined in (13). We
assume there exist no node such that;c ;) 7, (i) is between the threshold given in (14) and 1. We have
the following result on the rank test.

Lemma 6 (Conditions for Success of Rank TestWhen the thresholds in Algorithm 1 are chosen
0 <7 <min[(Fy)i| - I(Fr)ill = €Ranks T2 > €Rank,

then all the pure nodes pass the rank test. Moreover, any mage& passing the rank test satisfies

, T1 — T2 — 2 €Rank (14)
i€[k] — max; [|(Fy)al| - [[(Fr)ll

Proof: See Appendix C.3. O

The above result states that we can correctly detect puresnaging the rank test. The conditions stem
from the fact that we require the top eigen-value to passebeand the second top eigen-value to not
pass the test. For a pure node(mat(Proj G({Uy,Ti},x))) is min; || (Fy, )ill - ||(Fr, )ill. To account for
empirical error, we considefr.k. In addition, the second-top eigen-value can be as small &ge also
note the error in empirical estimation. This result allovgsta control the perturbation in ti8estar tensor
constructed using the nodes which passed the rank test.

max 7, () >

6 Conclusion

In this paper, we propose a novel probabilistic approactmiodeling folksonomies, and propose a guaran-
teed approach for detecting overlapping communities imthé/e present a more scalable approach where
realistic conditional independence constraints are i@o3 hese constraints are natural for social tagging
systems, and they lead to scalable modeling and tractadieimg. While the original MMSB model as-
sumes that the communities are drawn from a Dirichlet digtion, here, we do not require such a strong
parametric assumption. Note that the Dirichlet assumpfiiorcommunity memberships can be limiting
and cannot model general correlations in memberships., Merénpose a weak assumption that a certain
fraction of resource nodes are “pure” and belong to a singtensunity. This is reasonable to expect in prac-
tice. We establish that the communities are identifiablesutidese natural assumptions, and can be learnt
efficiently using spectral approaches. Considering futlirections, we note that social tagging assumes a
specific structure. Therefore, it is of interest to extend thodel to more general hypergraphs.
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A Moments under MMSF model and Algorithm Correctness

Proof of Proposition 1: We have

E[G ({u, t},7) |7, 70, 7] & EIE[G ({1, £}, 7) 21 futys Tt T ]

(b) 5 5
= [E[Br—nt;t : Br—>t;u|zr—>{u,t}a T, 7Tu]|7rr]

© ElFuzr (u} - Fezro uy o), (15)

where(a) and(b) are from the assumption (2) that
@({u, t}7 T) = Er%u;t : Er%t;m

whereB, _,.,;; andB,_, are Bernoulli draws, which only depend on the contextudbesz, , ¢, 11 2y (.1}
andz;,_,, ,}, and thereforef}({u, t},7) — zrSqusy — 7 form a Markov chain. This also establishes that

@({u,t},r) and@({u’,t/},r) are conditionally independent given the community mentbpreectorr,.,
for u # «' andt # .
For (c), we have that

~

E[Brut|2rs futy ®ul = EE[Br |2 sty Zuos oty 7]
= Elzy, (101 PZr—fut} 20— fut} Tl
=Ty P2y uny
= Fuzr s (un

from (1) and the fact that
Elzums ™) = o

Thus, we have

~ (a) -
E[G({U7 T}v T)|7T7“7 HT7 HU] = E[Fzrﬁ{u,t} b2 Fzrﬁ{u,t}‘ﬂ-r]

b ~
ORI(F & F) (2 0y @ 2 usy) 0]

DS 1 (i) (F @ F)(e; ®e)

1€[k]

—
=

:(F@F)T{'r,

where (a) follows from (15) and (b) follows from the fact (4¢) follows from the fact that, _, ;, ;, takes
valuee; with probability 7,.(i), wheree; € R” is the basis vector in th# coordinate. (d) follows from the
definition of Khatri-Rao product.
The form of the3-star moment is from the lines of (Anandkumar et al., 2014apR2.1), and relies on
the assumption thak consists of pure nodes.
O
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B Learning using Tensor Decomposition

We now recap the tensor decomposition approach proposenanflkumar et al., 2014a) here. This is
shown in Algorithm 3 with modifications specific to our framak:.

We partitionU, T into three sets for the different tasks explained in the Atgm 3. Also note that with
knowledge of community connectivity matrices, we can leemmmunity memberships for mixed resource
nodes as well.

Procedure 3(II) + TensorDecom(ts, i)
Let P ¢ R*** be the community connectivity matrix from user communitiesesource communities
and similarly P is connectivity from tag communities to resource commasitiR are estimated pure
resource nodes. Partitidd/, 7'} into {U;, T;} fori = 1,2, 3.
Compute whitened and symmetrized ten$os— GRA{A,B,C}(/WA7 WgSas, Wc@w), whereA, B, C
form a partition of{Us, 75 }. Use{Us, T3} for computing the whitening matrices.
{X, ®} «TensorEigeflr, {WJ@ZA},»@, N). {fIS is ak x k matrix with each columns being an estimated
eigenvector and is the vector of estimated eigenvalyes.
Mg < ThregDiag(\) '@ W] G}, 4, 7).
return (II).

C Perturbation Analysis: Proof of Theorems 1, 2

Notation:  For a vectomw, let ||v|| denote it2-norm. LetDiag(v) denote a diagonal matrix with diagonal
entries given by a vectar. For a matrix), let (M ); and (M) denote its™ column and row respectively.
Let ||M||; denote column absolute sum ajdi/ ||, denote row absolute sum aff. Let MT denote the
MoorePenrose pseudo-inverseidt

C.1 Distance Concentration: Proof of Lemma 4

The proof is along the lines of (McSherry, 2001, Theorem 1@8We apply Hanson-Wright bound in Propo-
sition 5 to get a better perturbation guarantee without tremrfor constructing the so-called combinatorial
projection, as in (McSherry, 2001).

We haveh, := G(z; {U,T}) — G(z; {U,T}) and leto? = max; E[h,(i)%|r,]. Note the simple fact

— —9 —
| Proj he|®> = h) Proj h, = h, Projh,,

sincePQj is a projection matrix. From Proposition 1, we have that thiies of h, are conditionally
independent given,.. Thus, the Hanson-Wright inequality in Proposition 5 islaggble, and we have with
probability1 — ¢, forall x € X,

hy P1oj hy < E[h] Proj ha|m,] + C'0?|| Proj ||z (log(n/5))* (16)
Now || Proj ||r < V|| Proj || = V. The expectation is

E[h, Proj he|ms] < tr(Proj)o? = ko2,

16



Procedure 4{\, ®} «+-TensorEige(l’, {v;};c[z], V) (Anandkumar et al., 2014a)

Input:  TensorT € R¥*F>k [ initialization vectors{v; };cr, number of iterationsv.
Output: the estimated eigenvalue/eigenvector p&ks®}, where) is the vector of eigenvalues addis
the matrix of eigenvectors.
for i =1tokdo
for r=1to L do
90 — VUr.
fort =1to N do
T+« T.
for j =1toi— 1 (wheni > 1) do
if |07, ¢,)| > & then
T T — X%,
end if
end for

) . P16, 00
Compute power iteration updas’) := — 010 1)
pUie P pdat I7(1,6,7,,0.7))]
end for
end for )
Let7* := arg maxTeL{T(H%), 95\;),95\;))}.
Do N power iteration updates starting fro&é\f*) to obtain eigenvector estimatg, and set\; :=
end for
return the estimated eigenvalue/eigenvectoxs®).

using the property tha?r/o\j is idempotent. Thus, we have from (16), with probability- 4, for all z € X,
h)] Proj hy < ko® + C'Vko? (log(n/8))* ,

and we see that the mean term dominates and the boung:is®).
Draw random variables

Er%u;t ~ BernOU|li(Z;,r—>{t,r}Pzrﬁ{uvt})

By ~ Bemnoulli(z,, ¢, 4 Pz u)-
The presence of hyper-edg&{u, ¢}, r) is given by the product

@({uv thr) = Erﬁu;t ) Erﬁt;u-
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The variance is on lines of proof of Lemma 10 and we repeatré.he

N2 o S > o n 2
Il’l;&XE[hx(’L) |7T:c] = ue%%}évE[Bxﬁu;tB:cﬁt;u ((F (O] F)Trx)ut]

< FOF
25055, ((F © Fymou

< max F(u, §)F(t, j)ms(5)

ueU,veV 4
JE[K]

< max P(i, )P (i, j)m(5)
JElk]

C.2 Proof of Lemmab

From Davis-Kahan in Proposition 6, we have
I(Proj ~I)G({U. T}, Y)| < 2|G({U.T}.Y) - G{U.T}Y)].
and thus
I(Proj —NG({U, T}, )| < 2|GUU,T},Y) = GUU. THLY)| - IGHU, T} Y)T - GHU, T}, @)

Now,
G{U,T}Y) = ((F ® F)Hy)T =1} (Fe ),

since the assumption is thAt® E has full column rank anélly- has full row rank. Thus, we have
GUU,TYLY) - GUU, T}, ) = TTL.(F © F)!(F © F)m, =T, - .

since (FF © F)'(F ® F) = I due to full column rank, whetl/| and|T’| are sufficiently large, due to
concentration result from Lemma 11. Note that under assompt3, the variance terms in Lemma 11 are
decaying and we have that® F' has full column rank w.h.p. From Lemma 10, we have the result.

C.3 Analysis of Rank Test: Lemma 6

Consider the test under expected momeénts- E[@\H]. For every node: € X (R is randomly partitioned
into X, Y), which passes the rank test in Algorithm 1, by definition,

| mat(G{U, T}, )| > 71, and oo(mat(G({U,T},z))) < 7.

We use the following approximation.

IF = /(0 — @212 + ng? + 2(p — q)allTTE ]
Recall the form of from Proposition 1

mat(G({U,T},z)) = Fy Diag(m,)F; .
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First we consider the case,~ ¢. Following lines of Anandkumar et al. (2014b), we have that

q
+¢)°] < ||| + erank

p—
‘0'1 - 7Tmaxn(

where

— E[x7 "]||¢? Elrr a2
IE| < Vi maxn(P q —i—q)2H [mm " ]llq py/EfrnT] + M .
’ k P4 3 P—q
(pkq+q) ( & +Q)

Hence, we have that

pb—q -
o9 > WQ,maxn( + Q)2 - ||EH — €Rank _(1/:U) €Rank _773,maxnp2HE[7T7rT”|a

k

~ 1 — i — F E
where we assumenax > (1 + ()72 max andj = %’2” LR = ||“Fi||“ L UE = %

™2 mdxn(
We note thatr,,x dominateq| £'|| and the last term. Therefore,

To — €Rank = Ug(mat(G({U, T}7 $))) > 7"'Q,maxn(lﬂ + Q)Q - (1 + 1/&) €Rank>

k
and
T1 + €Rank < ||FU Dlag(ﬂ'x)FZTH

- p—
< e 02X [|(Fr )| - [|(Fr)ill + 7o, maxn (—— + 0)°

k
< Tnax max || (Fy )il - I(Fr)ill + 72 + 1// €Rank -
Combining we have that any vector which passes the rankagsfies

1T — T2+ (1 - 1/:&) €Rank
max; [|(Fv)ill - [|(Fr)ill

Now, for the case where < p/k, the bound on| E|| is almost Our ~ 1 andur = 0. Hence Eqn. (C.3)
always holds. This is intuitive as the role @fis to make the components non-orthogonal, eacts as
noise. Therefore, smallgrresults in better guarantees.

With |U| = |T'| = ©(n), and using the concentration bounds in Lemma 11, we havevitigprobability

1-4,
|EDll- I Fr)ill = O (VIOT-TTTIELxR )l - (p — a + Vo) )

assuming homegenous setting.
For erank, the subspace perturbation dominates. From Lemma 11, vee hav

2
\|F®F||1=O<n2 (1%+q> >

Thus, we have the subspace perturbation from Lemma 5 as

ERank=0< ok(éier]) . <p;q +q>> )

Substituting for the condition thai = Q(erank), We obtain assumption (5). Thus, the rank test succeeds in
this setting.

Tmax =
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C.4 Perturbation Analysis for the Tensor Method

This is along the lines of analysis in (Anandkumar et al.,4%)1 However, notice here due to hypergraph
setting, we need to redo the individual perturbations. Réta w; := P[i = arg max; 7(j)|x is purg and
p = P[r is purd. The size of recovered set of pure nodes- O (np), assumingp > 1.

We provide the perturbation of the whitened tensor. ®et= W;{H A Diag(n)l/ 2 be the eigenvectors

of the whitened tensor under exact moments anek- Diag(n)_1/2 be the eigenvaluess, S respectively
denote the exact and empirical symmetrization matrix ffedint cases based on their subscript.

Lemma 7 (Perturbation of whitened tensor) We have w.h.p.

€T = ?R%{A,B,C}(WA’ WBS\AB, WC§AC) — Z 2\ dE3
i€[k]

=0 (mwmm - —pq>2 : akaa[mm) )
Proof:  LetT := E[T |l 5.0].
1 1= | T4, WsSas, WoSac) — T(Va, WiSas, WeSac)|
€2 1= HT(WAwaS\AByWCgAC) — T(Wa,WgSas, WCsAC)H

For ¢;, the dominant term in the perturbation bound is

Z (WA—(@A,Z — HAM)) H)

1 -
19

R

1 1 N
(wmin ‘R| ;
The second term is
Ew
€2 < ,
Wmin

since due to whitening property.
Now imposing the requirement that
€ < C) ()\min?”Q) ,
from Theorem 11 (Anandkumar et al., 20148),i, = 1/\/Wmax, and we have = (1) by initialization
using whitened neighborhood vectors (from lemma 25 (Anandk et al., 2014a)); is not the dominant
error, on lines of (Anandkumar et al., 2014a). Now égrwe require
Wmin

ew < Sl?

Wmax

and using Lemma 8, we have

(p—q)2 > VWmax 1
P Wmin  /np-ok(E[rmT])
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Lemma 8 (Whitening Perturbation) We have the perturbation of the whitening matffisy as w.h.p.

ew 1= || Diag () H (Wa — Wa)|| = O (\/m (p _I;)Q . Uk.(E[TI'?TT])> .

Proof:  From (Anandkumar et al., 2014a, Lemma 17), the whiteningupeation under the tensor method
is given by

. T 6
ew = || Diag(w)/2H (W4 — Wa)|| = O (ﬁ%) '
min R,A

Using the bounds from Section C.5, we have

ca+= |GUU.T).R) ~ GUUT) R = 04/ IF & Fll) = 0 ( (P2 +4) ).

and

omin(G R 4) = Q (\/ | R|twmin - Jmm(HA)>
— Qi Pl - Omin (HA))

From Lemma 12, we have

Umin(HA) = Umin(FA © FA) =0 <n(p - Q)2 Hjlgi (E[ﬂ-?] - E[ﬂ-iﬂj])> .

Finally note thatr(E[r7 ']) = © (min; j; (E[r?] — E[m;7;])). Substituting we have the result. O

2

LetII, be the reconstruction after the tensor method (beforeftbiesg) on resource subsgtc R—R
(we do not incorporaté? to avoid dependency issues), i.e.
Il = Diag(\) " '® ' W, G} 4.

Lemma 9 (Reconstruction of communities (before thresholdig)) We have w.h.p.

o= ) — (IIx)| = —=|lz]| =0 | —= - E . 18
er = max |(112)" — (1)) = Tzl = 0 (T valien 1)) (18)
Proof:  Thisis on lines of (Anandkumar et al., 2014a, Lemma 13). O

C.5 Concentration of Graph Moments

Lemma 10 (Concentration of hyper-edges)With probability 1 — §, given community membership vectors
11,

e = |GUU, T} Y) = GUU, T}, V)| = Omax(x/IIF © i, \/II(P + Py [))
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Remark: When number of nodes is large enough, the first term, viz/ | F' ® F||; dominates.

Proof:  The proof is on the lines of (Anandkumar et al., 2013, Lemmp®@ adapted to the setting of
hyper-adjacency rather than adjacency matricesnlet= G({U,T},y)—G{U,T},y) andM, := mye;/r

and thus
GH{U,TY,Y) - G{U,T},Y) Z

Note that the random matricég, are conditionally independent fgre Y sincem,, are conditionally inde-
pendent givenr,, and in each vectan,, the entries are independent as well. We apply matrix Beimist
inequality. We havéZ[M, |TI] = 0. We compute the variances, ., E[M, M,/ |TI] and ", E[M," M,|TI].
We have thad |, E[M/, MT|H] only the diagonal terms are non-zero due to independende, an

E[M,M, |11} < Diag((F ® F)m,) (19)
entry-wise, assuming Bernoulli random variables. Thus,

| > EMM | < max Y F(u,j)F(t5)m ()
yey T yeyjelk]

= ax > Flu,j)F (¢, )y (4,y)
yeY,j€[K]

<-max o Y P(i )P )Ty (,y)
M evem
= ||(P * P)Tly|oc, (20)

wherex indicates Hadamard or entry-wise product. Similary - E[MyTMy] =D ey Dlag(E[m my)) <
|(P % P)Iy||o. From Lemma 11, we have a boufidP * P)IIy||s.

We now bound| M, || = ||m,|| through vector Bernstein’s inequality. We have for BertioGl
<2
ug[l]atéTlG({u t}y) — G{u, t}y)| <
and

Y ElG(ut}y) - GHuthy)P < Y (FOF)m)u<|FoF|.

ueU,teT uelU,teT

Thus with probabilityl — §, we have

1My || < (1 + /8log(1/0)\/ | F © Fll1- + 8/3log(1/3).

Thus, we have the bound thad M, || = O(max(\/HF ® F||, \/H(P % Py ||s0)). O

For a givery € (0, 1), we assume that the séfsT andY C R are large enough to satisfy

U] ||
T>—1
VIOT-T7] 2 S 1o =

8. Y|
Y] > 2 log =
| |730g 5
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Lemma 11 (Concentration bounds)With probability1 — 6,

- ~ 8 Uul-|T
IF © Bl < U] 17 ma(P - Ela]) (P - Bl + |/ U171 Py -1og T

I1(F © F)il| < max [Hyl| - |[Tz]| - | 5] - 15

=0 (VIUT-TTIElxx |- (0 — g+ VEa))

for the homogeneous setting. Similarly for subset R, we have

8 Y
T < (] Bl 21 T g 2
T T 8 T1112 |Y|
(YT 2 Y] oy (Blra ")) — [ SI¥] - [Eler ]2 - log !
(P« PY 7Tyl < 1Y [ mas(E[r] - (P )+ 4 S¥1- Pl log

Remark: Note thato(P) = ©(p — ¢) and||P|| = ©(p + ¢) for homogeneou#’. Under Assumption A3,
the variance terms are small and the above quantities ase wdheir expectation.

Proof:  To bound on|F' ® F||;, we note thaf|E[F © F]||; < |U|- |T|max;(P" - E[x]);(P" - E[r]);.
Using Bernstein’s inequality, for each columnif® F, we have, with probability — 4,

Ul -7
\/ |U‘ max g 5 ’

by applying Bernstein’s inequality, sinde, (P);)(r, (P);) < max;(P'r);(P'x); < P2

[I(F © F)ill = U] - ITI(E[], (P):) (]

max ( > B((P) wumy (P)i] - EI(P) memy (PYilll, Y [Elry (P)i(P)] 7] 'E[WJ(P%(P);W])
ueU,teT ueUteT
<U[-|T|- P,

max

The other results follow similarly. O

The lowest singular value for the Khatri-Rao product is anhitre involved and we provide the bound
below.

Lemma 12 (Spectral Bound for KR-product)

> 8 5 U] -7
oi(F @ F) > U] - |[T|ok(T *T) — \/§|U| ATPIP - |IPIZ - [E[rr T2 - log —5
wherel’ := PTE[r7 | P and* denotes Hadamard product.

Proof:  The result in the Lemma follows directly from the concentmatresult. For the homogeneous
setting, we have for a matrik,

op(l+T) =© (minf('i,i)2 - m;xf(id)Q) :
) )

Substituting we have the result. O
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Remark:  For the homogeneous setting, with= P havingp on the diagonal and on the off-diagonal,
we have

I'= [(p —q)l + qllT} Efrm'] [(p —q)l + qllT]
=(p—@)’Elrm ']+ 2(p — 9)qul’ + @|E[rm ]|l sum11 ",

wherew is a vector wherey; = ||E[x7"]@|;, where M) denotes the" row of M. Thus, we have the
following bound

o0 1) = (min (07 - 5

-0 <(p —q)* ip (E(r7) — E[Wﬂj]f) )

assuming thak[r?] — E[m;7;] = O(E[r?]) for all i # j, and the other terms which are dropped are positive.
Thus, we have w.h.p.

o(FOF)=Q <n(p—q)2gjl.i;2 (E[x?) —E[ﬂﬂj])> (21)

D Standard Matrix Concentration and Perturbation Bounds

D.1 Bernstein’s Inequalities
One of the key tools we use is the standard matrix Bernsteiquiality (Tropp, 2012, thm. 6.1, 6.2).

Proposition 2 (Matrix Bernstein Inequality) SupposeZ = Zj W; where
1. W; are independent random matrices with dimensigpn< ds,
2. E[W;] = 0forall j,
3. || W; || £ R almost surely.

Letd = dy + dg, ando? = maX{H S EW WL | S, EW, W) H}, then we have

Pr]|| Z| >t <d-ex _—t2
- P o2+ Rt/3

2

§d~e$p{ S

p } t <o*/R,

—3t
<d-ea:p{%}, tZaQ/R

Proposition 3 (Vector Bernstein Inequality) Let z = (21, 29, ..., 2,) € R™ be a random vector with in-
dependent entrieg[z;] = 0, E[z?] = o7, andPr[|z;| < 1] = 1. LetA = [a1]as]| - |a,] € R™*" be a

matrix, then
Pr(|| Az || < (1+V8t), | > [lai || 07 + (4/3) max laillt] >1—e.
i=1 vein
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D.2 Hanson-Wright Inequalities
We require the Hanson-Wright inequality (Rudelson and Mans, 2013).

Proposition 4 (Hanson-Wright Inequality: sub-Gaussian baind) Let z = (21, 29,...,2,) € R" be a
random vector with independent entri@;z;] = 0 andPr[|z;| < 1] = 1 and letM € R™*™ be any matrix.
There exists a constant> 0 s.t.

T —E(:T emin [ L)}
Pr [|z Mz —E(z' Mz)| > t] < 2exp [ cmin (HM”IQF, T

Unfortunately the sub-Gaussian bound is not strong enougnwhas small variance?. In this case,
we get the perturbation &3(|| M ||r) instead ofO(c || M ||r), which is desired. This is because for a bounded
random variable, the sub-Gaussian parameter only depenitie doound and not on the variance.

We will consider an extension of the Hanson-Wright inedgyab sub-exponential random variables (Erdés
etal., 2012; Vu and Wang, 2013) and employ the sub-expaidatmulation for bounded random variables.
We first define sub-exponential random variable (Vershy20i0, Definition 5.13).

Definition 1 (Sub-exponential Random Variable) A zero-mean random variabl& is said to be sub-
exponential if there exists a paramet&rsuch thatf[eX/ K] < e.

Remark: There are other equivalent notions for sub-exponentiadaanvariables (Vershynin, 2010, Def-
inition 5.13), but this will be the convenient one for prayisub-exponential bound for Bernoulli random
variables. Itis easy to see that the centered Bernoullia@mnehriables are sub-exponential for some constant
K.

We will employ the following version of Hanson-Wright's igeality for sub-exponential random vari-
ables (Erdé6s et al., 2012, Lemma B.2).

Proposition 5 (Hanson-Wright Inequality: sub-exponentid bound) Let z = (z1, 22, ..., 2,) € R™ be
a random vector with independent entriégz;] = 0, E[2?] < o2 and z; are sub-exponential and let
M € R™ " be any matrix. There exists constan{g’ > 0 s.t.

Pr||z" Mz —E(z"Mz)| > taQHMHF] < Cexp [—ctl/ﬂ .

Remark:The result in the form above appears in (Vu and Wang, 2013) &l we setx = 1 in (Vu and
Wang, 2013, (13)). The parametgérabove differs from the sub-exponential paraméfdny only a constant
factor.

Comparing sub-exponential formulation in Proposition Shwsub-Gaussian formulation in Proposi-
tion 4, we see that in the former, the deviatiorDi§| M ||ro), while in the latter it is onlyO (|| M || ).

Thus, for centered Bernoulli random variables and we cari@niproposition 5, and we will use it for
distance concentration bounds.

D.3 Davis-Kahan Inequality
We also use the standard Davis and Kahan bound for subspdaebpéon.

Proposition 6 (Davis and Kahan) For a matrix A, let Pr/o\j be the projection matrix on to its top-eft
singular vectors. For any rank-matrix A, we have

I(Proj —I)A|| < 2| A - A]
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Proof:  This is directly from (McSherry, 2001, Lemma 12). By writing= A — (A — A), we have
I(Proj —1)A|l < ||(Proj —I)A| + [|(Proj —I)(A — A)],

and each of the terms is less thid — A|. For the first term, it is becauseroj A is the best rank
approximation ofA and sinceA is also rankk, the residual|(Proj —I)A| < ||A — A]|. For the second

term, ||(Proj —I)(A — A)|| < ||A — A|| since(Proj —I) cannot increase norm. O
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