
EER
D

C
/C

R
R

EL
 T

R
-1

8
-1

5 

ERDC 6.2 Geospatial Research and Engineering (GRE) ARTEMIS DRTSPORE 

Dynamic Representation of Terrestrial Soil 
Predictions of Organisms’ Response to the 
Environment 

C
ol

d
 R

eg
io

n
s 

R
es

ea
rc

h
 

an
d

 E
n

gi
n

ee
ri

n
g 

La
b

or
at

or
y 

Robyn A. Barbato, Lauren Waldrop, Komi Messan,  
Robert Jones, Stacey J. Doherty, Karen Foley,  
Christopher Felt, Michael Morgan, and Youl Han  

September 2018

Approved for public release; distribution is unlimited. 



  

The U.S. Army Engineer Research and Development Center (ERDC) solves 
the nation’s toughest engineering and environmental challenges. ERDC develops 
innovative solutions in civil and military engineering, geospatial sciences, water 
resources, and environmental sciences for the Army, the Department of Defense, 
civilian agencies, and our nation’s public good. Find out more at 
www.erdc.usace.army.mil. 

To search for other technical reports published by ERDC, visit the ERDC online library 
at http://acwc.sdp.sirsi.net/client/default. 

http://www.erdc.usace.army.mil/
http://acwc.sdp.sirsi.net/client/default


ERDC 6.2 Geospatial Research and 
Engineering (GRE) ARTEMIS DRTSPORE 

ERDC/CRREL TR-18-15 
September 2018 

Dynamic Representation of Terrestrial Soil 
Predictions of Organisms’ Response to the 
Environment 

Robyn A. Barbato, Lauren Waldrop, Komi Messan, Robert Jones, Stacey J. Doherty, 
Karen Foley, Christopher Felt, Michael Morgan, and Youl Han 
Cold Regions Research and Engineering Laboratory 
U.S. Army Engineer Research and Development Center 
72 Lyme Road 
Hanover, NH 03755 

 

Final report 

Approved for public release; distribution is unlimited.  

Prepared for U.S. Army Corps of Engineers 
Washington, DC 20314-1000 

 Under ERDC 6.2 Geospatial Research and Engineering (GRE) Army Terrestrial-
Environmental Modeling and Intelligence System (ARTEMIS), “Dynamic 
Representation of Terrestrial Soil Predictions of Organisms’ Response to the 
Environment” (DRTSPORE) 



ERDC/CRREL TR-18-15  ii 

Abstract 

The Dynamic Representation of Terrestrial Soil Predictions of Organisms’ 
Response to the Environment (DRTSPORE) platform was created to char-
acterize soil activities in barren, vegetated, and complex environments, 
predict biological-impacted processes in soil, and generalize the frame-
work to solve a range of Army-relevant problems. Key biological processes 
include soil stabilization, emerging power sensors, brown out abatement, 
pathogen emergence, and contaminant and threat degradation. These ca-
pabilities are a new essential aid to national security, as they currently do 
not exist. The primary objective of this research effort, DRTSPORE, was to 
develop an environmental intelligence tool that adds a biochemical layer to 
current high resolution remotely sensed terrain and sophisticated weather 
model products. The mathematical models developed serve as libraries 
added to the existing graphic user interface. The improved environmental 
intelligence platform will provide Commanders a tactical decision aid to 
make better informed decisions about mobility, the placement and con-
struction of a forward operating base, the placement of sensors, and the 
avoidance of areas where there is a potential for exposure to mobilized 
toxic materials in the soil. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

Dynamic Representation of Terrestrial Soil Predictions of Organisms’ Re-
sponse to the Environment (DRTSPORE) is a comprehensive applied re-
search work unit under the 6.2 Geospatial Research and Engineering 
Army Terrestrial-Environmental Modeling and Intelligence System 
(ARTEMIS) work package. Its purpose is to create a tactical decision aid 
that forecasts biological activity as a geospatial layer on a terrain map 
(Figure 1). It uses remotely sensed terrain data and weather models to pre-
dict soil function. Soil function ranges from general soil activity to specific 
biochemical function acquired through high resolution datasets. These da-
tasets pertain to the transformation and fate of military relevant com-
pounds of concern. Both the general and specific biochemical data were 
then mathematically modeled. The modeling frameworks within the plat-
form ranged from a nonlinear approach, population-based model, or prob-
abilistic simulated models in order to break through different modeling 
shortcomings and obtain robust results. The models are stored in the 
DRTSPORE Platform as libraries or look-up tables. Through the graphical 
user interface in ArcMap, the DRTSPORE platform acquires soil tempera-
ture and moisture data and then provides predictions of soil function. The 
DRTSPORE platform will provide Commanders a visualization platform to 
assess mobility, the placement and construction of a forward operating 
base which may be built by expeditionary forces, the placement of sensors, 
and the avoidance of areas where there is a potential for exposure to mobi-
lized toxic materials in the soil.  

DRTSPORE has six components listed below developed by the CRREL Soil 
Microbiology team. 

1. Testbed for Soil Science Research to acquire environmental measure-
ments and test sensors 

2. Empirical Data Collection to develop a model of soil activity and create 
a robust dataset of microbial composition 

3. Mathematical Model of Soil Activity to predict soil activity and micro-
bial trends according to soil temperature and moisture 

4. DRTSPORE Platform geospatial intelligence decision aid 
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FFigure 1. DRTSPORE Platform Concept to provide Army capability to inform 
persistence of hazards across the landscape and baseline soil activity. 

1.2 Objective 

1.3 Approach 
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better predictions of soil moisture and in turn soil activity. The soil tem-
perature resolution is at the 1 km grid space, which is coarser and further 
resolution is required to provide more accurate predictions of soil activity. 
The final output of the platform is hosted in ArcMap in red-amber-green 
output to coordinate with the Signal Physics Representation in Uncertain 
and Complex Environments (SPRUCE) sensor placement within 
ARTEMIS. Additionally, the Soil Microbiology DNA Tracking Technology, 
to assess the utility of using microbes to track materials in lofted soil, 
serves as direct input to high resolution modeling products under the 
Dust-TERRASIM work unit. Finally, the plume modeling of biological and 
chemical hazards through SCIPUFF was implemented through the 
SPRUCE work unit.  

1.4 Army relevance 

The DRTSPORE platform was created to characterize soil activities in bar-
ren, vegetated, and complex environments, predict biological-impacted 
processes in soil, and generalize the framework to solve a range of Army-
relevant problems. Key biological processes include soil stabilization, 
emerging power sensors, brown out abatement, pathogen emergence, and 
contaminant and threat degradation (Figure 2). These capabilities cur-
rently does not exist and are a new essential aid to national security. The 
CRREL DRTSPORE System is the first of its kind mainly because of the 
technical challenges associated with modeling complex and dynamic bio-
logical processes occurring at the soil surface.  

Figure 2. Army relevant biological processes relevant to the ARTEMIS 
intelligence system. 

  



ERDC/CRREL TR-18-15 4 

2 CRREL Soil Microbiology Testbed for Soil 
Science Research 

FFigure 3. Preparation of the field site. A) Heavy equipment used to create soil lanes.
B) Hole for soil moisture and temperature probes. C) Data loggers for probes. 

D) Installation of towers to host sensor-suites. E) Field site with sensors. 
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Soil temperature and moisture probes were installed at 16 locations within 
and between the lanes to provide data for both vegetated and cleared soil 
(Figure 3B, C). HOBO U30 data loggers with associated Onset 12-bit tem-
perature smart sensors and soil moisture smart sensors were installed at 
depths of 2.5 cm, 5 cm, 10 cm, 15 cm and 20 cm. Using an auger, holes 
were excavated for installation of the probes (Figure 3B). The soil sur-
rounding each probe was sieved when installing and the soil between 
probe depths was not sieved. All soil used in probe installation was of the 
lane’s soil type. After all probes for a location were installed, a shallow 
trench was dug from the probe site to a metal pole, upon which a datalog-
ger was mounted (Figure 3C). For future permanent mounting of data col-
lection devices, such as terrestrial laser scanners, instrument towers were 
installed at two locations within the site in autumn of 2012 (Figure 3D). To 
ensure a stable base for accurate data collection, each tower was embed-
ded in a 1.5 m deep concrete footing.  

Maintenance strategies to keep the soil lanes barren include weeding the 
lanes, applying glyphosate if necessary, and mowing the areas between the 
lanes. 

2.1 Water release curves for each soil  

In the laboratory, a water release curve was obtained for the SL+OM, SL, 
L-OM, and SL-OM soils. To do so, soils were saturated and then held at a 
particular pressure, or matric potential using a pressure kettle device. The 
gravimetric water content was measured at each point. Four matric poten-
tial values were tested for each soil to develop the water release curve. 
With this information, the water content of the soil could be transformed 
to matric potential, which is a more meaningful measure of soil water that 
is available to organisms (Moyano et al. 2013). As seen in Figure 4, each 
soil has its own water release curve. At a matric potential of -33 kPa, the 
optimal water availability for organisms, it is important to note that each 
soil has a very different gravimetric water content. The SL+OM soil has the 
best water holding capacity, with the SL soil slightly behind (Figure 4). The 
low organic matter soils, L-OM and SL-OM, have a reduced ability to hold 
water (Figure 4).  
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FFigure 4. WWater release curves for determining matric potential of
L-OM, SL, SL+OM, and SL-OM. 

2.2 Soil temperature and moisture data collection 
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content. When a soil has a high sand content and low silt, clay, and organic 
matter, it will have a low water holding capacity compared to soils that are 
able to maintain saturation longer with higher clay, silt and organic matter 
content. 

Figure 5. Soil temperature data from all four soil types at a depth of 2.5 cm. 

 

Figure 6. Soil temperature data from all four soil types at a depth of 5 cm. 
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Figure 7. Soil temperature data from all four soil types at a depth of 10 cm. 

 

Figure 8. Soil moisture data from all four soil types at a depth of 2.5 cm. 
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Figure 9. Soil moisture data from all four soil types at a depth of 5 cm. 

 

Figure 10. Soil moisture data from all four soil types at a depth of 10 cm. 
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3 CRREL Soil Microbiology Empirical Data 
Collection  

A laboratory incubation study was designed to collect soil biological attrib-
utes at varying conditions of soil temperature, moisture, and organic mat-
ter content, which are critical drivers of microbial community 
composition. Soil biological attributes measured include soil respiration, 
through the efflux of CO2, as well as bacterial and fungal microbial com-
munities through DNA sequencing. Only bacteria will be discussed in this 
section. Detailed information of the experimental set-up and CO2 data can 
be found in Barbato et al. (2015).  

The aim of this task was to use DNA technology to assess changes in bacte-
rial taxonomy according to the changing variables of soil moisture and 
temperature.  High resolution datasets such as the bacterial DNA dataset 
could be added to the DRTSPORE Platform. The purpose of this study was 
to investigate if changes in microbial communities were predictable and 
consistent. To do so we combined high throughput DNA sequencing tech-
niques with bioinformatics and data analysis to visualize the communities 
from multiple soil types across the temperature and moisture gradient. We 
expected that alterations in temperature and moisture would have pro-
nounced effects on the composition of the soil microbial community. It is 
possible that these alterations would be so pronounced they would create 
unique bacterial communities that could serve as a fingerprint for their en-
vironmental condition of origin. We explored the both the validity and 
composition of these potential fingerprint communities through super-
vised learning methods (algorithms that use known data to make predic-
tions about unclassified data) and taxonomic classification through high 
throughput sequence alignment analysis. Together, these methods would 
identify which environment condition, if any, had the strongest impact on 
microbial diversity i.e., created the most unique community and which mi-
crobial taxa made up that community.  

3.1 Laboratory incubation set-up 

Samples for this study originated from four soils at the CRREL Soil Micro-
biology Testbed. They include a sandy loam with an organic matter 
amendment (SL+OM), an unamended sandy loam (SL), a loam with low 
detectible concentrations of organic matter (L-OM), and a sandy loam 
with very little to no detectible organic matter (SL-OM). For each soil 
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group, four temperatures and five moisture conditions were tested: 5°C,  
15 °C, 25 °C, and 30 °C and -500, -100, -33, -10, and -5 kPa, respectively. 
Samples were incubated in quadruplicate while connected to a Micro-Ox-
ymax Respirometer (Columbus Instruments, Columbus OH, USA) to 
measure CO2 efflux. At the end of the incubation, they were destructively 
sampled for DNA extraction (Barbato et al. 2015).  

3.2 DNA extraction and sequencing 

Genomic DNA was extracted from soil using the PowerSoil DNA Isolation 
Kit and protocol (MoBio Laboratories, Carlsbad, CA). DNA concentration 
was measured using a Qubit 3.0 Fluorometer (ThermoFisher Scientific, 
Grand Island, NY) and adjusted to standardize the concentration within a 
treatment set. Sequence amplification was performed to target the 16S 
rRNA gene for bacteria. Sequences were run on a MiSeq Sequencer (Illu-
mina, San Diego, CA) at Argonne National Laboratory using the paired 
end protocol, producing forward and reverse readings.  

3.3 Taxonomic and diversity analysis methods 

Sequences were processed through a pipeline within the open source pro-
gram Quantitative Insights Into Microbial Ecology (QIIME) (Caporaso et 
al. 2012). The forward and reverse sequences were mapped to overlapping 
sections and joined together into one sequence using fastq-join (Aronesty 
2011). The joined reads were then quality filtered and demultiplexed to 
match their original samples. Using the QIIME open reference picking 
workflow, taxonomy in the form of operational taxonomic units (OTUs) 
was assigned at 97% identity, the database used for taxonomic assignment 
was the Greengenes database (DeSantis et al. 2006). OTUs are a taxo-
nomic clustering classification scheme that allows us to make probabilistic 
assumptions on the identity of specific sequences and group highly similar 
sequences together to a common identity.  

Beta Diversity metrics, how similar or disparate samples within and be-
tween treatments, were analyzed using the core diversity pipeline script in 
QIIME, resulting in a summary table of the assigned taxa and their relative 
abundance proportional to total OTUs assigned per sample. Principle co-
ordinate analysis plots and coordinate files were calculated using the 
weighted unifrac metric for bacteria (Lozupone et al. 2005). 
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3.4 Supervised learning methods 

We tested the potential for soil microbial communities to serve as indica-
tors of environmental conditions using supervised learning methods. In 
our attempts to use machine learning to classify the samples, we used the 
random forests (Breiman 2001) algorithm which utilizes hundreds of deci-
sion trees grown on random subsampling of OTUs from each sample to 
understand which mixture of OTUs were unique to each classification. 
OTU tables from samples were separated into their respective soil groups 
(SL+OM, SL, L-OM, and SL-OM) and the temperature and moisture varia-
bles were tested individually. For each of the four temperatures and five 
moistures within each soil set, the random forest algorithm generated 500 
decision trees, each tree being a random subsampling of OTUs from the 
sample. For each unit, the algorithm judged the importance of that OTU 
for accurate classification of the sample (i.e., if you remove ‘species X’ 
from this decision tree do you still arrive at an accurate classification?) Af-
ter 500 iterations, the algorithm produced a binary decision tree diagram 
which was then used as a model to classify the original data. The validation 
of the classifier was checked via ten fold cross validation where the original 
data were randomized and divided into a training set and a test set. The 
training set was used to generate the model via random forests. Once the 
model was complete it was validated against the test data set for accuracy 
and repeated ten times. Afterwards a confusion matrix (a comparison of 
the actual vs predicted classification) was generated to demonstrate the 
predictions and accuracy of the model. 

3.5 Class level significant taxonomic analysis methods 

After receiving the results of the supervised learning, we assessed the pat-
terns of the microbial taxa using temperature as the basis for statistical 
comparison. Summarized relative abundance OTU tables of each soil at 
the class level were filtered to only include units with positive identifica-
tion (i.e., hits with no distinctive class or defined as “other” were removed) 
and recalculated to equal 100%. Using these identifications an analysis of 
variance was performed using the microbial abundance, as the y variable, 
and temperature, as the x variable. Based on the probability of significance 
from the variance analysis, the top 15 most abundant taxa with a probabil-
ity of less than 0.05 were selected and normalized to 100% for each soil 
class. They were then grouped by phylum and plotted as stacked bar 
charts. 
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3.6 Supervised learning results: Are the communities according to 
temperature and moisture unique enough to allow for accurate 
classification? 

We expected the random forest algorithm to be able to determine the mix-
ture of OTUs unique to a temperature or moisture group in order to clas-
sify them accordingly. The temperature and moisture confusion matrices 
identify the accuracy of random forest model by taking the ratio of the cor-
rect predictions to the incorrect classifications, with 100% indicating that 
the model correctly identified each sample according to its environmental 
variable without knowing the identity. 

For SL+OM, classification according to temperature was largely successful 
having an average accuracy of 85% (Table 1). The errors in the predictions 
likely resulted from the classifier mistaking a sample for one at a slightly 
lower temperature. For SL+OM, the classifier had a much more difficult 
time with moisture and was only able to achieve an average accuracy of 
72% (Table 1). Only the low moisture condition was predicted with 100% 
accuracy indicating a distinctive community (Table 1).  

Table 1. Random forest classification confusion matrices for SL+OM.  
The header row indicates the actual identity of the sample whereas the first column 
indicates the predicted identity. The color shading indicates the weight of the count 

(hotter indicating more counts). Accuracy corresponds to the ratio of correct 
classifications to total classifications. 

 

For SL, the average accuracy for temperature predictions was low (78%), 
but the classifier accurately identified the 30 °C samples (Table 2). How-
ever, misclassifications do not seem to follow a pattern for the other tem-
peratures. For moisture, the classifier performed poorly with an average of 
44% accuracy, indicating that moisture changes did not promote disparate 
communities in the SL soil in a repeatable way (Table 2).  

Temperature 05°C 15°C 25°C 30°C Accuracy (%)
05°C 19 0 1 0 95
15°C 6 14 0 0 70
25°C 1 0 19 0 95
30°C 0 0 4 16 80
Moisture 1 Very Low 2 Low 3 Medium 4 High 5 Very High Accuracy (%)
1 Very Low 10 3 0 0 3 62.5
2 Low 0 16 0 0 0 100
3 Medium 0 1 8 4 3 50
4 High 0 0 2 12 2 75
5 Very High 3 0 1 0 12 75
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Table 2. Random forest classification confusion matrices for SL. 
The header row indicates the actual identity of the sample whereas the first column 
indicates the predicted identity. The color shading indicates the weight of the count 

(hotter indicating more counts). Accuracy corresponds to the ratio of correct 
classifications to total classifications. 

 

The classifier had the greatest success with the L-OM soil with the excep-
tion of the 25 °C samples (Table 3). For the 25 °C samples, there may have 
been many microbial communities that were abundant, so no particular 
group stood out as a source of classification. Contrary to the moderate suc-
cess with temperature, the moisture based classifier on average had more 
misclassifications than correct classifications compounding evidence that 
moisture is not as strong a variable for classification (Table 3).  

Table 3. Random Forest Classification Confusion Matrices for SL. 
The header row indicates the actual identity of the sample whereas the first column 
indicates the predicted identity. The color shading indicates the weight of the count 

(hotter indicating more counts). Accuracy corresponds to the ratio of correct 
classifications to total classifications. 

 

The SL-OM soil had the lowest average accuracy (75%) for any of the tem-
perature-based classifications (Table 4). However, all misclassifications 
occurred within one step (higher or lower) of the actual temperature. This 
could be indicative of overlapping communities between the temperature 
regimes. Similar to the other soils tested, moisture was difficult to classify 
in the SL-OM soil, with an average accuracy of 48% (Table 4).  

Temperature 05°C 15°C 25°C 30°C Accuracy (%)
05°C 15 4 1 0 75
15°C 0 16 4 0 80
25°C 1 2 13 4 65
30°C 0 0 0 20 100
Moisture 1 Very Low 2 Low 3 Medium 4 High 5 Very High Accuracy (%)
1 Very Low 5 3 0 3 5 31.25
2 Low 1 10 1 1 3 62.5
3 Medium 3 4 2 5 2 12.5
4 High 2 1 7 5 1 31.25
5 Very High 2 0 1 0 13 81.25

Temperature 05°C 15°C 25°C 30°C Accuracy (%)
05°C 20 0 0 0 100
15°C 2 18 0 0 90
25°C 8 4 8 0 40
30°C 0 0 2 18 90
Moisture 1 Very Low 2 Low 3 Medium 4 High 5 Very High Accuracy (%)
1 Very Low 10 3 3 0 0 62.5
2 Low 2 10 4 0 0 62.5
3 Medium 0 7 8 1 0 50
4 High 0 4 3 6 3 37.5
5 Very High 0 1 6 1 8 50
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Table 4. Random forest classification confusion matrices for SL-OM. 
The header row indicates the actual identity of the sample whereas the first column 
indicates the predicted identity. The color shading indicates the weight of the count 

(hotter indicating more counts). Accuracy corresponds to the ratio of correct 
classifications to total classifications. 

 

3.7 Class level significant taxa results: What are the significant taxa 
contributing to difference in classification? 

Soil is one of the most diverse media in terms of microbial diversity, with 
upwards of 400 individual genera within a soil sample. However, while 
many members may be present, it is not necessarily indicative of their im-
portance or contribution to the community function. A greater abundance 
of a microbial group usually indicates that is well situated to survive under 
the environmental conditions for that sample. As was indicated in the 
prior section, the community makeup may be unique to each environmen-
tal condition and could potentially be used to guide classification algo-
rithms.  

Analysis of Variance was used to obtain the top 15 significant bacterial taxa 
at the 95% confidence interval under the premise that they contributed to 
the majority of the total community. In these soils, certain phyla domi-
nated the microbial profile for the entire sample regardless of temperature 
or moisture, which could be considered to be the core microbiome of that 
soil. Other microbial members only became abundant under certain condi-
tions e.g., changes in temperature or moisture, particularly in the L-OM 
soil. Furthermore, small changes in temperature and moisture elicited a 
dramatic response in the microbial community.  

For the SL+OM soil, Actinobacteria (orange) made up almost the entirety 
of middle three moistures in the 30 °C sample set (Figure 11). While Bac-
teroidetes was also abundant (10-30%), members within that group 
seemed to have moisture and temperature constraints above 5 °C (Figure 

Temperature 05°C 15°C 25°C 30°C Accuracy (%)
05°C 15 5 0 0 75
15°C 0 14 6 0 70
25°C 0 0 17 3 85
30°C 0 0 6 14 70
Moisture 1 Very Low 2 Low 3 Medium 4 High 5 Very High Accuracy (%)
1 Very Low 11 5 0 0 0 68.75
2 Low 3 12 1 0 0 75
3 Medium 1 2 6 4 3 37.5
4 High 0 0 5 6 5 37.5
5 Very High 4 0 0 8 4 25
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11). Acidobacteria, Gemmatimonadetes, and Planctomycetes were gener-
ally stable between temperature and moisture groups with the exception of 
the 30 °C samples which showed more moisture-dependent shifts. Soils 
incubating at 5 °C had the most stability in terms of similar community 
profiles across the moisture gradient (Figure 11). 

For the SL soil, Acidobacteria and Proteobacteria were the principle play-
ers occupying between 20-60% and 20-30% of the community in each 
sample, respectively (Figure 12). With the exception of Actinobacteria and 
Chloroflexi, the other groups retained approximately the same proportions 
across temperature and moisture regimes only having individual shifts of 
1-5% (Figure 12). 

Similarly to SL+OM, the L-OM soil was largely dominated by Actinobacte-
ria followed closely by Proteobacteria (Figure 13). The intergroup variabil-
ity of Proteobacteria was far larger than Actinobacteria, as Beta-, Delta-, 
and Gamma-proteobacteria varied greatly with moisture and temperature 
(Figure 13). Actinobacteria was represented entirely by one member. Gem-
matimonadetes was also a principle taxa particularly in the warmer sam-
ples while Chloroflexi become abundant in the middle temperatures (15-
25°C, Figure 13 ). 

Proteobacteria were most abundant in the SL-OM soil, which was similar 
to what occurred in the L-OM soil (Figure 14). Both of these soils have low 
organic matter content. However, unlike the L-OM, the Proteobacteria 
were the uncontested dominant group with the exception of the lower 
moisture tested (Figure 14). Under those conditions, Actinobacteria rose 
as high as 50% of the total community (Figure 14). Bacteroidetes showed a 
clear preference under higher moistures conditions and 15 °C (Figure 14). 
Examining Proteobacteria further we observed that the proportions of Al-
pha-, Beta-, and Delta-proteobacteria remained relatively stable (varying 
within 5-7%) across temperatures and moistures only, with changes in 
their patterns evident for the lowest moistures for the 25 °C and 30 °C 
samples (Figure 14).
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Figure 11. Top 15 Significant Taxa for SL+OM. The size of each bar represents the percent abundance of that class and 
each bar is colored by phylum and shaded by class. Samples are divided into replicate (Ex: R1, R2), moisture (Ex: 1VL, 2L), 

and temperature (Ex: 15 °C, 25 °C). Moisture designations have been abbreviated for visualization purposes, 1VL (Very 
Low) corresponds to the driest moisture content whereas 5VH (Very High) corresponds to the wettest moisture content, all 

other moisture designations are in order from driest to wettest from left to right. 
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Figure 12. Top 15 Significant Taxa for SL. The size of each bar represents the percent abundance of that class and each bar 
is colored by phylum and shaded by class. Samples are divided into replicate (Ex: R1, R2), moisture (Ex: 1VL, 2L), and 
temperature (Ex: 15 , 25 °C). Moisture designations have been abbreviated for visualization purposes, 1VL (Very Low) 

corresponds to the driest moisture content whereas 5VH (Very High) corresponds to the wettest moisture content, all other 
moisture designations are in order from driest to wettest from left to right.  
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Figure 13. Top 15 Significant Taxa for L-OM. The size of each bar represents the percent abundance of that class and each 
bar is colored by phylum and shaded by class. Samples are divided into replicate (Ex: R1, R2), moisture (Ex: 1VL, 2L), and 
temperature (Ex: 15 °C, 25 °C). Moisture designations have been abbreviated for visualization purposes, 1VL (Very Low) 

corresponds to the driest moisture content whereas 5VH (Very High) corresponds to the wettest moisture content, all other 
moisture designations are in order from driest to wettest from left to right.  
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Figure 14. Top 15 Significant Taxa (SL-OM): The size of each bar represents the percent abundance of that class and each 
bar is colored by phylum and shaded by class. Samples are divided into replicate (Ex: R1, R2), moisture (Ex: 1VL, 2L), and 
temperature (Ex: 15 °C, 25 °C). Moisture designations have been abbreviated for visualization purposes, 1VL (Very Low) 

corresponds to the driest moisture content whereas 5VH (Very High) corresponds to the wettest moisture content, all other 
moisture designations are in order from driest to wettest from left to right. 
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3.8 Discussion 

Supervised learning algorithms are a powerful tool in classification of eco-
logical data to uncover the specific aspects of a sample that are defining or 
unique. We aimed to determine which of the two environmental variables, 
temperature and moisture, created more distinctive changes in microbial 
community structure and the influence of soil type. The goal of the ran-
dom forest classification tests was to gain validation of the predictive 
power of the classification of microbial communities. Variables that do not 
elicit distinctive responses from the community resulted in misclassifica-
tion. The strength of temperature and moisture in regards to classification 
was tested. For all soil the soil groups in this study, the average accuracy 
was greatest in the temperature based classification, with the highest aver-
age being 85%. While around 90-95% would be best, in our study, changes 
in microbial communities due to temperature were more effective indica-
tors than moisture. The accuracy was not ubiquitous for all temperatures, 
5 °C and 30 °C for example had a consistently high accuracy across soil 
types. This may be due to a few members that defined the community. In 
addition to higher accuracy, temperature also has less predictive sway than 
moisture. As was mentioned before, the misclassifications tended to fall on 
temperatures within 1 step of the actual, e.g. classified as 5 °C or 25 °C 
when in reality it was 15 °C, which could mean that with changing temper-
atures the communities were more defined but there was significant over-
lap. In general, moisture had a greater amount of predictive sway which 
could be attributed to the biological importance of available moisture, 
meaning that community members normally unable to survive at certain 
temperatures could do so under optimal moisture conditions. To further 
expand on the impact of temperature on the microbial community, we ex-
plored patterns in the class level taxa of the soil samples.  

The profiles of significant taxa strongly varied across soil types. This kind 
of feedback, knowing who the principal taxa are and how and why they 
may change, is integral to the DRTSPORE Platform as it can inform the 
state of the microbial community and its ability to respond to changes. 
Each soil had one to three dominate groups making up 20-60% of the total 
community that were consistent across the temperature and moisture re-
gimes, suggesting a core soil microbiome. In the SL+OM, the Actinobacte-
ria were dominant. Members from this phylum are decomposers and have 
the ability to utilize an array of nutrient sources which could be why they 
were pervasive in this soil rich in organic matter (Wang 2016). Another 
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common bacterial phylum present was Acidobacteria, which are character-
istically predisposed to tolerate acidic conditions. Temperature was an in-
tegral driver in the shifts observed for Acidobacteria. Overall, both 
machine learning and relative abundance metrics revealed that tempera-
ture changes would be the determining factor to predict the community re-
sponse to disturbance. This information is imperative to accurately predict 
microbial community dynamics in response to environmental variables. 

3.9 Conclusion 

In both the classification analysis and class level taxa analysis, the soils 
surveyed demonstrated that the influence of temperature and moisture 
was critical, though not equivalent in its impact. The classification algo-
rithms showed that temperature was the most accurate variable for classi-
fication. However, when examining the significant taxa at the class level, 
there appeared to be dynamic changes due to temperature and moisture. 
These observations suggest that there was an interplay between the two 
variables that provide conditions for particular microbial populations. The 
extent of these shifts should be further explored. Additionally, organic 
matter content played a role in the microbial response to particular condi-
tions. The soils without organic matter (L-OM and SL-OM) were noticea-
bly impacted by temperature and moisture specifically in the emergence of 
underrepresented taxa which could suggest that lower organic matter pro-
moted more specialized strategies in the soil communities. Temperature 
and moisture are indeed driving forces behind community composition 
and can therein be traced back to the varying temperature regimes. With 
more research, it may be possible to further classify the unique microbial 
communities that specialize at each temperature and moisture step and 
begin utilizing the community makeup to more accurately validate the en-
vironmental conditions they experienced. 
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4 CRREL Soil Microbiology Mathematical 
Model of Soil Activity 

The objective of this task was to model the respiration and community 
composition datasets generated from the empirical incubation study de-
scribed in Section 3. Understanding the behaviors generated by organisms 
in soils is a complex phenomenon (Paul 2014) requiring connectivity be-
tween different organisms, soil topology, and ambient weather attributes. 
Many studies have looked into the temperature dependence of soil respira-
tion, often referred to as 𝑄𝑄10 and its appropriate relationship to both tem-
perature and respiration (Fang and Moncrieff 2001; Lloyd and Taylor 
1994; Tjoelker et al. 2001). The non-dimensional sensitivity measure 𝑄𝑄10 is 
a constant round value of 2 but increases exponentially with respect to 
temperature (Fang and Moncrieff 2001). Moreover, another variable that 
has been of interest is microbial community composition as measured by 
diversity of bacteria or fungi in the soil. In soil, Shannon and Simpson di-
versity indices have been used to measure diversity, which is the richness 
and evenness of organisms (Grice et al. 2009). We sought to determine re-
lationships between 𝑄𝑄10 and the diversity indexes. We explored the empir-
ical dataset of soil activity in Barbato et al. (2015) by calculating the 
temperature sensitivity index 𝑄𝑄10 and study how it is related to diversity 
indexes (Shannon and Simpson) calculated from phylum-level sequencing 
datasets described in Section 3 of this report. In addition, clear statistical 
approaches to do such a comparison and the limitations encountered in 
our study are provided. 

4.1 Is the relationship between Shannon diversity H and 𝑄𝑄10 linear? 

In what follows, we used a calculated 𝑄𝑄10 value with the formula: 

𝑄𝑄10 = �
𝑅𝑅2
𝑅𝑅1
�

10
𝑇𝑇2−𝑇𝑇1

 

and Shannon diversity index H  

𝐻𝐻 = −�𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖

𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖) 
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with 𝑝𝑝𝑖𝑖 being the proportion of the bacteria/fungi 𝑖𝑖 and 𝑙𝑙 is the total num-
ber of bacteria/fungi. The objective of this research was to establish a rela-
tionship between 𝑄𝑄10 and H. 

First, we transformed the data and proceeded to calculate the 𝑄𝑄10 using 
the linear regression formula: 

𝐿𝐿𝑙𝑙(𝑌𝑌) = 𝛼𝛼𝛼𝛼 + 𝛽𝛽   and   𝑄𝑄10 = 𝑒𝑒10𝛼𝛼 

as illustrated in Pavelka et al. (2006). Note that “Ln” is the natural loga-
rithm and “T” is for temperature. The SL+OM soil was used as an example 
and the results are presented in Table 5. 

Table 5. Values of R2, α, Q10, H with respect to change in temperature for soil SL+OM. 

 Very Low 
Moisture  

Low 
Moisture  

Medium 
Moisture 

High 
Moisture  

Very High 
Moisture 

R2 0.91699 0.9799 0.9604 0.9401 0.9475 

α 0.0599 0.0635 0.0567 0.07918 0.06437 

Q10 1.82 1.88 1.76 2.21 1.9 

H 1.964 1.766 1.750 1.811 1.820 

 

The 𝑄𝑄10 calculated corresponded to high values of 𝑅𝑅2 which illustrates the 
accuracy of our result based on the formula above (Table 5). Each mois-
ture level had a slightly different α, which is the coefficient in the relation-
ship between temperature and respiration.  In addition, all 𝑄𝑄10 values 
ranged from 1.7 to 2.2, as reported in the literature. Interestingly, under 
the High Moisture condition, a 10 °C change in temperature resulted in the 
greatest change in respiration/soil activity. 

The diversity index (H) values were calculated for both bacteria and fungi 
grouped by moisture condition as well. Therefore, five H values were ob-
tained within each soil group. Again, the SL+OM soil served as an example 
and yielded bacterial diversity values ranging from 1.75 to 1.964 (Table 5). 
Interestingly, the low moisture soil had the highest diversity. 

Now that Q10 and H values were acquired for each soil group, a Spearman 
correlation was used to test the relationship between 𝑄𝑄10 and bacterial di-
versity (H). For SL+OM, the correlation was 0.3 (p= 0.68). For SL, the 
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correlation was 0.4 (p= 0.52).  For L-OM, the correlation was 0.1 (p= 
0.95), and for SL-OM, the correlation was -0.5 (p= 0.45). Spearman be-
tween Q10 and fungal diversity was also calculated. For SL+OM, the corre-
lation was 0.6 (p= 0.35) and for SL, the correlation was 0.3 (p= 0.68). For 
L-OM, the correlation was 0.4 (p= 0.52) and for SL-OM, the correlation 
was -0.9 (p= 0.08). 

While some of the correlation coefficients were relatively high (i.e. > 0.6), 
the Spearman correlation showed that there was not a linear relationship 
between 𝑄𝑄10 and H (for bacteria and fungi) at a confidence interval of 
α=0.05. Therefore, we tested the possibility of a nonlinear relationship be-
tween 𝑄𝑄10 and H through visualization and nonparametric fitting.  

4.2 Nonlinear relationship between microbial diversity H and 𝑄𝑄10  

Linearity was tested by plotting Q10 by diversity. All soils tested followed 
different nonlinear patterns for both the bacteria (Figure 15) and the fungi 
(Figure 16). Therefore the relationship between 𝑄𝑄10 and bacterial diversity 
was nonlinear and such nonlinearity varied with respect to soil groups. 
This result was expected given that no clear pattern emerged from the bac-
terial and fungal diversity given the changes in temperature and moisture. 
Moreover, the observed nonlinearity did not take any known form; thus it 
could not be established parametrically. 

Figure 15. Modified Q10 values (as presented in Table 5) with respect to the 
Shannon diversity index H of bacteria for all soil types. The red line indicate a spline 

interpolation of the data points. 
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Figure 16. Modified Q10 values (as presented in Table 5) with respect to the fungal 
diversity index H for all soil types. The red line indicate a spline interpolation 

of the data points. 

 

4.3 Interaction effects between bacterial and fungal diversity  

In the work of Rousk et al. (2010), it was found that the relative abun-
dance and diversity of bacteria were positively related to pH while the rela-
tive abundance of fungi were unaffected by pH. In order to determine how 
bacteria and fungi diversity are related, we investigated the relationship 
between the Shannon diversity of bacteria and fungi through data visuali-
zation with spline interpolation. In addition, through a spline interpola-
tion, the interaction effect of the Shannon diversity of bacteria and fungi 
on Q10 was explored. A linear relationship did not exist between bacterial 
and fungal diversity (Figure 17). Furthermore, the nonlinear relationship 
observed varied with respect to soil groups. Bacterial and fungal diversity 
exhibited a positive correlation for the SL and SL-OM soils (Figure 17). 
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Figure 17. Plot showing the Shannon diversity index H of bacteria against fungi for all 
soil types. The red line indicate a spline interpolation of the data points. 

 

A linear relationship did not exist between the Shannon diversity H of the 
bacteria and fungi, as tested through Spearman correlation.  For SL+OM 
and SL, the correlations were 0.7 (p= 0.23) and 0.3 (p= 0.68), respec-
tively. Also, for L-OM, the correlation was 0.2 (p= 0.78) and for SL-OM, 
the correlation was -0.7 (p= 0.23).   

Notice in Figure 18 that the relationship between 𝑄𝑄10 and the interaction 
of Shannon diversity index for bacteria and fungi is not linear or mono-
tonic. While the correlation was shown to be high, such values do not have 
any explicit meaning. This result showed the importance of verifying the 
monotonic or linear relationship assumption when calculating the correla-
tion coefficient. No clear relationship could be obtained from the diversity 
(H) of fungi and bacteria or 𝑄𝑄10 and the interaction of diversity indexes of 
bacteria and fungi. A further analysis must be performed to establish such 
result. 
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Figure 18. Plot showing the interaction effect of the Shannon diversity index H of 
bacteria and fungi on Q10 for all soil types. H_f*H_b on the y-axis denotes the 
interaction and the red line indicate a spline interpolation of the data points. 

 

4.4 Relationship between 𝐐𝐐𝟏𝟏𝟏𝟏 vs. change in Shannon diversity 
index 𝜟𝜟𝜟𝜟 

Considering that 𝑄𝑄10 and the diversity index have a one to one relation-
ship, we attempted to transform the diversity indices to make them com-
parable. Note that 𝑄𝑄10 is a rate and dimensionless while diversity index is 
the opposite. Therefore, we converted the diversity index into rates by tak-
ing the present value and dividing by the previously calculated value. Di-
versity was converted into a rate by performing 𝛥𝛥𝐻𝐻 = 𝐻𝐻𝑗𝑗+1

𝐻𝐻𝑗𝑗
 where 𝑗𝑗 

represents the temperature index across the relative abundance of the mi-
crobes. For instance, from the diversity value obtained at temperature 5 °C 

and 15 °C, 𝛥𝛥𝐻𝐻 = 𝐻𝐻(15)
𝐻𝐻(5)

 in the same way that 𝑄𝑄10 = �𝑅𝑅2
𝑅𝑅1
�
� 10
𝑇𝑇2−𝑇𝑇1

�
.  Now the di-

versity 𝛥𝛥𝐻𝐻 is dimensionless and has a one to one relationship with 𝑄𝑄10. A 
linear relationship did not exist between 𝑄𝑄10 and the change in Shannon 
diversity index 𝛥𝛥𝐻𝐻 for both bacteria and fungi (Figure 19and Figure 20). 
Based on these findings we continued the investigation using the Simpson 
diversity index (D), which takes the relative abundance of the organisms 
into account, giving more weight to more dominant ones. 
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Figure 19. Q10 vs. the change in Shannon bacterial diversity. The red line indicates 
the spline interpolation of the data. 

 

Figure 20. Q10 vs. the change in Shannon fungal diversity. The red line indicates the 
spline interpolation of the data. 

 

Simpson’s diversity was calculated using the following formula. 

𝐷𝐷 =
1

∑ 𝑝𝑝𝑖𝑖𝑠𝑠
𝑖𝑖=1

 

We then changed the diversity index into rates by taking the present value 
of D divided by the previous calculated value the formula is denoted by 
𝛥𝛥𝐷𝐷 = 𝐷𝐷2

𝐷𝐷1
. We obtained the change in D and compared it to 𝑄𝑄10. The results 

for the Simpson diversity followed a similar trend as the Shannon diver-
sity, but with different magnitude.  There they were not presented. 
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4.5  Relationship between the 𝐂𝐂𝐂𝐂𝐂𝐂 efflux (respiration rate) and 
Shannon diversity index 

After exploring the existing relationship between 𝑄𝑄10 and the diversity in-
dex, the results indicated that there was not a linear relationship between 
these two variables. Also, the nonlinear relationship had not been estab-
lished. In what follows, we investigated the relationship between the Shan-
non diversity index, H, and respiration rate.  

The Spearman correlation was performed to study the monotonic relation-
ship between the respiration rate (𝐶𝐶𝑂𝑂2 efflux) and Shannon diversity in-
dex. For the soil SL+OM, the correlation was -0.66 (p= 0.002). For SL, the 
correlation was 0.37 (p= 0.1076).  For L-OM and SL-OM, the correlations 
were 0.49 (p= 0.02) and -0.36 (p= 0.12), respectively. 

Figure 21. Plot of the CO2 efflux (respiration rate) vs. the Shannon diversity in 
bacteria. The red line indicates the spline interpolation of the data. 

 

A nonlinear relationship was observed between diversity and respiration 
for all soils (Figure 21). Such relationship follows a logistic pattern for SL 
(Figure 21B) and L-OM (Figure 21C). The SL+OM exhibited a slight expo-
nential decay pattern (Figure 21A). However, a rigorous statistical analysis 
must be done to establish such a functional relationship and this has not 
yet been explored in our analysis. In addition, Spearman correlation re-
vealed a monotonic relationship between respiration and diversity H only 
in SL+OM and L-OM. Such result suggests the importance of considering 
soil properties when modeling microbial activity within different soils. 
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4.6 Discussion 

Soil samples used in our study differed by their textures (e.g. silt, clay, 
sand percentage) and chemical properties (magnesium, calcium, potas-
sium, etc.). These properties can alter the microbial response under differ-
ent temperatures and moisture content. We used several different 
methodologies to test whether a relationship existed between the micro-
bial diversity and the temperature sensitivity index Q10. Two diversity in-
dexes were used in our analysis: Shannon diversity, denoted 𝐻𝐻, and 
Simpson diversity, denoted 𝐷𝐷. Both diversities were calculated for bacte-
rial and fungal communities while 𝑄𝑄10 remained the same as it pertains to 
the rate of change of a biological system with respect to an increase in tem-
perature by 10 °C.  

A correlation test was performed first. A monotonic dependence did not 
exist between 𝑄𝑄10 and both diversity indexes H and D. In addition, a spline 
interpolation between 𝑄𝑄10 and diversity index H indicated that soil proper-
ties affect the microbial response to temperature and moisture. 𝑄𝑄10 was 
calculated using a linear regression formula as illustrated in Pavelka et al. 
(2006). A Spearman correlation between the diversity indexes and the 
newly calculated 𝑄𝑄10 revealed that no linear relationship existed between 
the variables. This result again emphasizes the presence of soil properties 
affecting the relationship between 𝑄𝑄10 and the diversity index. Further-
more, the relationship between respiration rate and microbial diversity 
may be inverse or proportional, depending on the characteristics of the 
soil. This was corroborated by the Spearman correlation.  

4.7 Conclusion 

Several methods were explored to reveal the relationship between 𝑄𝑄10 and 
diversity indexes (mathematical measures of the diversity of a species in a 
community). From the analysis, the relationship between 𝑄𝑄10 and diversity 
followed a nonlinear pattern. However, the nonlinearity was dependent 
upon the topology of the soil, ambient temperature, and other variables 
that may not have been taken into account in our analysis. While the omit-
ting variable may be a limitation of our work, we believe this may be the 
first analysis in the direction of establishing a robust relationship between 
𝑄𝑄10 and species diversity. Determining the soil attributes that played 
strong roles in the relationship between microbial diversity and 𝑄𝑄10 could 
lead us in the direction of discovering which species can be present under 
what conditions. This should be the focus in future studies. 
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5 CRREL Soil Microbiology DRTSPORE 
Platform and Validation 

FFigure 22.  Conceptual flow of information for DRTSPORE platform.  
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Figure 23. GUI of the DRTSPORE platform in ArcMap.  

 

Once the AOI has been selected, the platform reaches to the Creare, Inc 
GeoWatch Tool Webservice and obtains information regarding soil tex-
ture, soil moisture, and soil temperature. These are current datasets or 
predictions that are forecasted up to three days in advance. There are 16 
soil classifications available in the GeoWatch Tool aligning with the United 
States Department of Agriculture classifications. We have soil respiration 
models for four of these soil types and have grouped our four to the re-
maining 12 classifications available. This is an area where the DRTSPORE 
Platform can grow significantly in the future. By including more soil da-
tasets, we will have a better fundamental dataset from which to draw more 
accurate predictions.  The soil temperature and moisture data are then fed 
into the soil microbial respiration model which supplies a respiration rate. 
These rates are calculated per the grid space selected by the user and are 
then populated onto the map.  

We used an example to demonstrate the platform that includes an AOI 
near CRREL (Hanover, NH, USA) that encompasses Vermont and New 
Hampshire. The soil type map for this AOI is displayed in Figure 24A. In 
this particular area, five soil textures were represented. In the GeoWatch 
Tool, sixteen soil textures were available. Then, the DRTSPORE platform 
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FFigure 24. Output of DRTSPORE platform in ArcMap. A) Soil texture, B) soil 
temperature, C) soil moisture, and D) predicted soil activity of the AOI.  
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6 Validation of Soil Activity 

6.1 Method 

Field microbial respiration measurements were started at the CRREL field 
site on 25 September 2017 using an ADC BioScientific LCi-SD field respi-
rometer. Each lane contains four measurement areas separated from the 
surrounding soil by polyvinyl chloride (PVC) collars. Measurements were 
collected from each replicate of all lanes at least once per week until snow 
began to fall. Measurements occurred at no set time and on different days 
of the week, generally during periods with the clearest weather for that 
week. 

The field respirometer was operated using an area setting of 182.49 cm2 
which is equivalent to the area inside the PVC collars. Airflow rate was set 
to 200 𝜇𝜇𝜇𝜇𝜇𝜇𝑙𝑙 ∙ 𝑠𝑠−1. For each measurement, the field respirometer leaf 
chamber was securely sealed to the PVC collars using a custom made alu-
minum ring with a rubber seal. Once sealed, the operator waited at least 
20 minutes on each repetition to allow microbial generated CO2 to stabi-
lize inside the chamber before recording CO2 and temperature readings. 
Temperature was measured at a depth of ~2.5 cm below the soil surface 
near each repetition using the temperature probe accessory attached to the 
field respirometer. Additional temperature and volumetric water content 
(VWC) measurements were recorded by in situ probes installed at the 
CRREL field site, at depths of 2.5 cm, 5 cm, and 10 cm below the soil sur-
face, described in Section 2.  

Starting on 3 Oct 2017, measurements were collected with the LCi-SD’s 
automated logging feature enabled. The automated logging feature records 
all measurements the field respirometer takes, including ΔC where ΔC = 
(CO2atmospheric - CO2leaf chamber). Both values are measured in units of 

𝜇𝜇𝜇𝜇𝜇𝜇𝑙𝑙 (of CO2) ∙ 𝜇𝜇𝜇𝜇𝑙𝑙−1(of atmosphere) as well as soil and air temperature. 
Measurements were recorded every 48 seconds over the 20 minute meas-
urement interval for each repetition, then saved to the local memory card 
on the LCi-SD in a CSV format.  

Over the course of the field measurements, moss grew inside the PVC col-
lars on all four lanes, and likely affected the CO2 concentration readings in 
the leaf chamber to an unknown degree. Moss was removed on 9 Nov 2017 
and measurements resumed one week later. At the time of removal, moss 
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in the SL and L-OM lanes covered most (>90%) of the soil surface inside 
the PVC collars. Several measurements with extremely positive ΔC values 
taken during the first week were later considered to be the result of an er-
ror with the LCi-SD. When the fan inside the leaf chamber failed, the LCi-
SD began to record extremely positive ΔC values accompanied by an error 
message. Although no error message was noted for these values, it is as-
sumed that this was due to user error. Graphs for which these values have 
been removed based on the criteria above were marked with “adjusted”.  

6.2 Results 

Over the course of the fall 2017 season, ΔC values generally became more 
positive over time. This suggests that microbial respiration may largely be 
controlled by temperature variability, as the soil temperature generally de-
creased towards the winter (Figure 25). However, this downward trend 
may also be related to the increase of moss over time and a resulting in-
crease in photosynthetic respiration. As noted above, the L-OM lane in 
particular seems to be an outlier, with ΔC values suspected to be respond-
ing more to weather conditions/time of day and the associated changes to 
photosynthetic respiration due to moss.  

The ΔC values measured by the LCi-SD were also compared with soil tem-
peratures from both the respirometer and in situ probes, as well as VWC of 
the soil as measured by the permanent probes. These probes recorded a 
temperature value every 15 minutes. The values were taken at multiple 
depths along the site and averaged. Because the temperature probe on the 
respirometer recorded close to the PVC collar and at the same time as the 
ΔC values, it likely provided a more accurate temperature localized to each 
individual repetition. For this reason, the following ΔC value vs. tempera-
ture graphs include only temperature as measured by the respirometer. 

The ΔC values in all lanes were less correlated with temperature after the 
moss was removed. At this point, there was only one week of measure-
ments taken before the soil began to reach freezing temperatures. On 
sunny days during this colder period, the top ~1 cm of soil tended to thaw, 
creating a slick, muddy top layer, with generally more negative ΔC values, 
indicating increased microbial respiration. However, temperatures meas-
ured by both the respirometer and in situ probes were taken below this 
layer and were typically close to or below freezing. Therefore, there was a 
disconnect between ΔC values and soil temperature because the respirom-
eter measured surface soil respiration where there was daily soil thaw and 



ERDC/CRREL TR-18-15 37

FFigure 25. Average C ( molCO2 / molatmosphere) variability as measured at the soil 
lanes through time. More negative C values indicate higher microbial respiration. 

Moss was removed on 09 November 2017.  
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Figure 26. ΔC (μmolCO2 / molatmosphere) variability vs. soil temperature (°C at 2.5 cm 
below soil surface) of the soil lanes. More negative ΔC values indicate higher 

microbial respiration.  

 

When ΔC values were compared to VWC, the expected bell-shaped curve 
from Moyano et al. (2013) was not observed (Figure 27). The ΔC values 
compared to VWC at the SL+OM lane appeared to come the closest of the 
four soil types, but still failed to yield the expected curve. It seems likely 
that the effect of photosynthetic respiration on ΔC was the biggest contrib-
utor to this disparity. In the future, maintenance to reduce photosynthetic 
activity is paramount. Higher VWC values also appeared to have generally 
occurred towards the end of the fall, around the time the moss was re-
moved, which may have compounded the effect. The median VWC values 
for each lane also appeared to be inconsistent, this difference is likely due 
to the fact that soils with finer texture and/or organic matter tend to have 
a higher water capacity (Weil and Brady, 2016). 
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Figure 27. Average ΔC (μmolCO2 / molatmosphere) vs. average VWC (m3/m3 at 2.5 cm 
below soil surface) of all lanes. Error bars indicate the standard error of averaged ΔC 

values. More negative ΔC values indicate higher microbial respiration. 
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7 CRREL DRTSPORE Application: Microbial 
Fuel Cells 

Available power is a consistent limitation to the Warfighter in theater. 
Therefore, there are ongoing efforts to develop smaller, longer-lasting bat-
teries. The rapidly growing technology of microbial fuel cells (MFCs) is one 
example of a paradigm shift. MFCs are bioelectrochemical systems that 
convert energy contained in organic matter into electrical energy. They not 
only can provide electrical generation but also waste clean-up, via the mi-
crobial degradation of organic matter in the waste. From its inception over 
100 years ago, the MFC technology development was very slow, and only 
recently accelerated, especially over the last two decades. The technology 
is now at an exciting point of showing great potential for clear cut practical 
and commercial applications. Our prior laboratory study showed that soil 
based MFCs could maintain performance at high and low temperatures 
(Barbato et al. 2017), considering their potential to be implemented under 
dynamic field conditions. However, there is still much effort required to 
take the technology from the laboratory to field scale. 

The aims of this task were to: (1) understand physical and biological driv-
ers in laboratory-based MFC performance and (2) adapt the laboratory 
MFCs for implementation at the CRREL Soil Micro Field Site described in 
Section 2. Research questions included which soil type produced the most 
power, whether Envirotac (a common soil strengthening polymer used by 
the Army) improved soil MFC performance, and could the MFCs be sus-
tained in the field under highly variable environmental conditions (e.g., 
temperature and precipitation)? 

7.1 Test polymer on MFC performance 

Envirotac is a soil-binding polymer that has been used on roads for mili-
tary purposes. We used it to line a section of the soil to limit water loss 
(Figure 28). In order to test this, each soil type was used to construct two 
sets of MFCs with and without polymer lining. Before the MFC was built, 
the polymer was set to dry and harden overnight. Figure 28 shows a photo 
of a MFC with polymer. 
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Figure 28. Photo of an MFC with polymer lining in a plastic bin. Sieved soil was used 
for the MFC and the soil surrounding was not sieved. 

 

Polymer-lining increased power output of the MFCs, except for the L-OM 
MFC. The SL MFC power increased as high as 27 mW (Figure 29). By lin-
ing the soil with polymer, it is possible that the water exiting the MFC was 
minimized and the soil under the anode remained anoxic, which is key to 
optimal MFC performance. A microbial anode may involve strictly anaero-
bic bacteria, which are killed by the presence of oxygen. On the other 
hand, some electroactive bacteria can tolerate oxygen. In this case, the 
presence of oxygen diverts them from electron transfer to the anode and 
electrons are preferentially released to oxygen (Harnisch and Schröder et 
al. 2009). They prefer oxygen, their natural electron acceptor, over the 
electrode material. In supplement, oxygen can also support the develop-
ment of non-electroactive bacteria (Qu et al. 2012), which may hinder elec-
tron transfer, resulting in low power output. Therefore, the polymer 
improved performance (Figure 29) and therefore was selected for the field 
implementation of the MFCs. 

Figure 29. Power output of soil MFCs with and without polymer-lining. 
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7.2 Adapt MFCs for the field 

Soil MFCs were implemented at the CRREL Soil Microbiology Testbed to 
determine their performance under dynamic field conditions. Replicate 
soil MFCs were implemented in each soil lane in July of 2017 and meas-
urements have been collected at different temporal frequency, from twice 
a day to a few times a month.  Diurnal voltage changes were observed dur-
ing the summer of 2017 (Figure 30). Morning readings were consistently 
lower than afternoon readings with an average voltage difference of up to 
+ 17.7 mv.  This strongly suggests environmental factors (e.g. temperature 
(air and soil), humidity, and wind) have a direct effect on MFC perfor-
mance.   

Figure 30. Summer diurnal voltage performance across all soil types for the period of 
one week. 

 

Voltage measurements have fluctuated over time, most likely due to 
weather and soil conditions, but the overall trend has been negative 
(Figure 31). During the initial week, the L-OM lane showed promising re-
sults averaging +20 mV with the highest positive voltage reaching 
+24.69mV on day twelve, while all other soil types trended toward more 
negative values. After 30 days in the field, all lane voltages grew increas-
ingly negative. A visual inspection on day 60 revealed noticeably drier soils 
in all MFCs and most of the cathode felts were beginning to curl. On 7 Sep-
tember 2017, the surface cathodes of all MFCs were cleaned by removing 
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any loose debris from lane runoff and burrowing insects. To fix the cath-
ode issue, toothpicks were used to pin them down to help maximize cath-
ode-soil surface contact. Another important consideration was that the 
MFCs were losing water, resulting in aerobic processes at the anode. 
Therefore, 20ml of deionized water was added to the center of the anode 
soil, along with 60ml added to the center of the cathode soil to reestablish 
the moisture contents within these soils to their original values. After one 
week, all lane voltages began to stabilize and show a positive trend with 
the SL-OM soil performing the best (Figure 31). This is most likely due to 
the increased soil moisture and the renewed breathability of the cathode. 
Winterizing was performed on 11 December 2017 to prepare for the up-
coming snowfall. This involved placing a small plastic liner over the top of 
the MFCs along with a weighted tin to prevent MFCs from being smoth-
ered with snow. Most soils generated stable voltages after winterization 
and through the winter months (December – March) except for the 
SL+OM soil, which grew increasingly negative throughout the winter. 
Spring thaw could have solicited more moisture infiltrating the MFC soil, 
and therefore, inducing a positive trend in voltage.  Interestingly, it was 
also the SL+OM that showed a markedly positive increase during the 
spring thaw starting on 1 March 2018 (Figure 31). However, the SL, L-OM, 
and SL-OM soils sustained similar voltage values. In early to mid-spring, 
voltages began to show an increasingly positive trend in all soil types and 
then flattened during late spring (Figure 31). 

Figure 31. Average voltage (mV) readings and trends for all field lanes from 
July, 2017 – June, 2018. 

 



ERDC/CRREL TR-18-15  44 

 

7.3 Future directions for field MFCs 

Our previous experiments using soil MFCs incubated under controlled 
conditions in the laboratory have shown that a single MFC could reach a 
steady state in three days and produce enough energy to power a small 
LED light (Barbato et al. 2017). This shows promise for the future of ter-
restrial-based MFCs, and warrants more extensive testing in a field envi-
ronment. Multiple MFCs could be wired together to produce the desired 
power. Most likely several MFCs will need to be clustered together to 
achieve optimal and sustainable power. 

The negative trend in polarity could be caused by the loss of moisture con-
tent in the soil. As the battery remained in the ground, it was subjected to 
evaporation and loss of water through small cracks in the Envirotac poten-
tially caused by the ground shifting or burrowing insects puncturing the 
lining. The addition of a more secure cover may provide a more controlled 
environment for the electrochemical reaction, keeping oxygen away from 
the anode. Despite these issues, the MFCs tested exhibited a strong nega-
tive voltage potential that could be solved by switching the polarity on the 
intended device or incorporating smart switching technology into the elec-
tronics themselves.  

Further lab tests will be conducted using soils that have the greatest poten-
tial for microbial activity. So far, SL-OM and L-OM soils have been the 
yielded the greatest power output and therefore will be selected for in 
depth study. One key component of these experiments will be to isolate the 
factors that create a positive voltage potential. These factors may include 
soil moisture content, soil composition (organic matter, etc.), and altera-
tions to MFC construction. Other experiments will include building MFCs 
on a larger scale. This would involve increasing the size and surface area of 
the cathode and anode and increasing the volume of soil for each. Theoret-
ically, increasing the number of microbes on the surfaces of the cathode 
and anode would yield higher voltages. 
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8 Conclusion 

Current geospatial models are limited because they do not incorporate bio-
logical processes that affect the behavior of soils. Organisms play a signifi-
cant role in these soil behaviors and in turn control the attenuation of 
materials on surface soils, the recalcitrance of deposited asymmetric 
agents, and the mechanical properties and stability of soil. Therefore, their 
incorporation in modeling is paramount to more effectively predict Army 
relevant processes at the air-soil interface.  

The DRTSPORE platform is a comprehensive decision aid that incorpo-
rates sophisticated weather models and terrain information to predict soil 
activity in a geospatial format. Different phases of the tasks are in various 
stages with the ultimate goal of improving the resolution and fidelity of the 
platform. It hosted six major tasks: CRREL Soil Microbiology Testbed for 
Soil Science Research, Empirical Data Collection, Mathematical Model of 
Soil Activity, DRTSPORE Platform, Validation of Soil Activity, and Sensor 
Technology Development.  

For future development, we propose to significantly advance the 
DRTSPORE platform by adding high resolution data to predict specific soil 
functions and to incorporate Arctic and alpine soils to increase its repre-
sentation of global soils. We will use our high resolution datasets devel-
oped from the Empirical Data Collection and DNA Tracking Technology 
tasks to quantify specific soil microbial functions such as the generation of 
exopolysaccharides for soil stability, the generation of electrons for ad-
vanced biosensors, and the degradation of deposited hazards for threat 
mitigation. These high resolution datasets will be used to mathematically 
model degradation rates and, by coupling knowledge of specific microbial 
generation and degradation pathways, we will increase our resolution to 
address the fate of military relevant compounds of concern. The models 
will serve as libraries that will be added to the existing graphic user inter-
face. The improved environmental intelligence platform will provide Com-
manders a tactical decision aid to make better informed decisions about 
mobility, the placement and construction of a forward operating base 
which may be built by expeditionary forces, the placement of sensors, and 
the avoidance of areas where there is a potential for exposure to mobilized 
toxic materials in the soil.  
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