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Abstract 

In support of the Terrain Characterization for Rendering and Field Evalua-
tion effort, the U.S. Army Corps of Engineers, Engineer Research and De-
velopment Center (ERDC), Cold Regions Research and Engineering La-
boratory (CRREL), assisted the Natick Soldier Research, Development, 
and Engineering Center (NSRDEC) in evaluating machine learning algo-
rithms to automatically classify three vegetation types (tree, shrub, and 
herbaceous), and a non-vegetated type in terrestrial images. In a previous 
partnership between CRREL and NSRDEC, researchers developed the 
Global Natural Background Image Database (GNBID), a collection of natu-
ral background images classified by vegetation attributes to include vege-
tation type and height, leaf shape, leaf color, and many others. Following 
deployment, the GNBID successfully improved on-the-ground under-
standing of natural background environments and quickly revealed the 
need for a larger database. Manual classification methods proved time in-
tensive and variable, thus CRREL explored the feasibility of automatically 
identifying features using machine learning algorithms. In this scope-of-
work study, we explore a multitude of computer vision techniques, settling 
on a supervised deep-learning technique. Here we present the advantages 
and disadvantages of various techniques, classification results from a sub-
set of images, and recommendations for future research in this area. 
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1 Introduction 

1.1 Background 

Terrain characterization has long been a critical research area for military 
applications. To improve clothing and vehicle camouflage performance, 
the U.S. Army Natick Soldier Research, Development, and Engineering 
Center (NSRDEC) has categorized terrain based on visual natural back-
grounds for field testing and evaluation. Although terrain characterization 
historically has been derived from overhead-collected data, this approach 
lacked the on-the-ground vantage point that is crucial for the evaluation of 
camouflage performance. In a partnership between the U.S. Army Cold 
Regions Research and Engineering Laboratory (CRREL) and NSRDEC, re-
searchers developed a database and subsequent Graphical User Interface 
(GUI), called the Global Natural Background Image Database (GNBID). 
This database is composed of crowd-sourced terrestrial photos manually 
classified by natural background attributes (Parker et al. 2017; Parker and 
Jarvis 2017). The GNBID enables the user to select continental United 
States (CONUS) natural background analogue locations for areas of inter-
est outside the continental United States (OCONUS). Following deploy-
ment, the GNBID successfully provided an improved on-the-ground un-
derstanding of natural background environments globally and quickly re-
vealed the need for a larger database to both expand global coverage and 
increase photos within specific classes. Manual classification methods are 
time intensive and variable because of their subjectivity, even with a 
trained set of subject matter experts (SMEs). Therefore, to expand the da-
tabase of images, new methods are required to decrease budget and labor 
requirements. 

To address this need, we turn to computer vision techniques, which have 
been developed for automated identification of features within scenes. 
New approaches are rapidly evolving with respect to deep-learning neural 
networks like the convolutional neural network, greatly improving the vis-
ual classification of scenes (Zhou et al. 2017). This report outlines a brief 
exploration of both unsupervised and supervised image segmentation 
techniques to determine the utility of machine learning algorithms for veg-
etation feature identification within terrestrial ground-based images.  
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1.2 Objectives 

To improve understanding of terrain types, beyond what’s available in the 
GNBID, requires a larger database that maintains photos with improved 
global coverage and more natural background types. With shifting priori-
ties and emerging areas of interest, greater global coverage within the 
GNBID would offer improved selection of natural background analogues 
and ultimately more accurate and realistic testing locations. Other critical 
gaps in the database include few photos from boreal environments and ur-
ban settings. Other program areas within NSRDEC might benefit from da-
tabase expansion, particularly as soldier and vehicle camouflage develop-
ment focuses on cold regions. However, expansion of the database by 
manual classification (as in the GNBID) would be both tedious and time-
consuming, requiring intensive training with a high likelihood of variabil-
ity. Instead, automated classification through machine learning techniques 
potentially reduces classification time, providing a substantial cost savings 
and enabling more accurate identification of natural background ana-
logues.  

To meet this need we identified the following objective: Explore the feasi-
bility of automatically identifying photos with similar visual natural 
backgrounds using unsupervised and supervised image segmentation 
techniques. To do so, we assessed the limitations and capabilities of sev-
eral machine learning models using the approach outlined below.  

1.3 Approach 

This project serves as a proof-of-concept study to identify the feasibility of 
unsupervised and supervised machine learning models to group photos 
with similar natural backgrounds. To meet this objective, we first re-
searched and assessed several models and used a selection of photos from 
the GNBID to evaluate their limitations and capabilities. Using those re-
sults, we selected the model with the best performance to conduct a more 
in-depth evaluation using the entire dataset. This report documents and 
reviews the exploration of machine learning algorithms for identifying 
vegetation features within images, including comparisons between multi-
ple models and techniques for improving performance. The report con-
cludes by outlining recommended future research directions.   
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2 Global Natural Background Database 

2.1 Classification attributes 

During the development of the GNBID, the goal was to categorize photos 
by visual features so that photos with similar natural backgrounds would 
group together. Initially, this involved placing photos into broad land 
cover categories based on the Global Land Cover 2000 (GLC2000) da-
taset. However, this classification scheme placed photos in classes that 
were either too broad (photos within the same class looked dissimilar) or 
too narrow (photos that looked similar were placed in different classes). 
To remedy this, CRREL SMEs developed a new classification scheme, one 
that identified quantitative and qualitative attributes within a photo; as-
signed metrics to each photo based on these attributes; and then sorted 
photos, via the GUI, with similar metrics. NSRDEC fielded this technology 
and found more consistent alignment between terrestrial photos of areas 
of interest and their corresponding analogues as compared to previous 
classification schemes. However, the methodology proved to be time con-
suming and labor intensive. Each SME required training to “think alike” 
and identify attributes similarly for the photo sorting to succeed. Because 
the end product was a useful tool to NSRDEC, they requested that CRREL 
explore the use of computer vision techniques to reduce the time involved 
and error derived from manual classification. 

The GNBID contains many detailed classification attributes; but, due to 
the short execution window for this project and the innovative nature of 
the research, the vegetation-type attribute served as a starting point for 
our investigation of machine learning. More specifically, photos in the 
GNBID are classified into one of four vegetation types: tree, shrub, herba-
ceous, or bare. During the development of the GNBDID, the SMEs used 
definitions from the Land Cover Classification System (LCCS) (Di Gregorio 
and Jansen 2005) to classify vegetation within the photos (Parker et al. 
2017). Parker et al. (2017) reviews the criteria for each vegetation type. 
Figures 1–3 show images of the three vegetation types, and Figure 4 illus-
trates representative non-vegetated photos. 

The SMEs initiated manual classification by placing photos into classes ac-
cording to the dominant vegetation. A vegetation type was considered 
dominant if it served as the uppermost canopy level and represented a 
canopy cover of greater than 10%. For example, if an image contained 5% 
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tree cover, 30% shrub cover, and 60% herbaceous cover, it was considered 
a shrub-dominant photo because the shrub layer is the uppermost canopy 
exceeding the 10% threshold (Parker et al. 2017). However, for the purpose 
of this project, CRREL researchers defined dominant vegetation according 
to pixel ratio (this is defined more clearly in section 4). 

2.2 Vegetation types from the GNBID 

To begin exploring computer vision techniques, we selected 3–4 repre-
sentative photos of each vegetation type (Figures 1–3) and for the non-veg-
etated category (Figure 4). Each selected photo represents a scene that 
contains one clearly dominant vegetation type (tree/shrub/herbaceous) or 
no vegetation at all. These were also selected based on ease of manual clas-
sification (human-based classification) (i.e., we did not select any sample 
photos that resulted in high variability amongst the SMEs).  

Figure 1.  Representative tree-dominant photos. 

 

There is quite a bit of variability in all three of the vegetation types. The 
most basic difference, specifically for trees and shrubs, is the deciduous 
versus coniferous seasonal cycle. While this characteristic is often easy to 
identify visually, it can be difficult given the lighting and scale of the pho-
tos. Trees can also look very different based on their habitat. For example, 
palm trees (common in warm/wet environments and low latitudes) are 
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structurally quite different from coniferous trees (common in cold envi-
ronments and at high latitudes/elevations). Additionally, seasonality af-
fects the color and presence or absence of foliage. For the purpose of this 
project, we focused solely on identifying the vegetation type and not these 
more detailed identifying features. 

Shrubs have much of the same variability described above (Figure 2). Like 
trees, shrubs have woody stems. The one key difference between a tree and 
a shrub is height. According to the LCCS, anything with a woody stem 
taller than 5 m is considered a tree while everything less than 5 m is a 
shrub (Di Gregorio and Jansen 2005). Many of the other characteristics 
are similar to those of trees. However, the height restriction can make dis-
tinguishing between trees and shrubs quite challenging, particularly when 
a photo lacks scale. This will also undoubtedly raise a challenge for the ma-
chine learning techniques. 

Figure 2.  Representative shrub-dominant photos. 
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Herbaceous plants lack the woody stem that defines trees and shrubs. 
However, there is still great variation across herbaceous plants, including 
color, leaf shape, and height, all making the identification process chal-
lenging (Figure 3). Because they are structurally quite different from trees 
and shrubs, these are probably the easiest vegetation type to classify man-
ually. It can be challenging though when interspersed with woody vegeta-
tion, mainly because the shorter herbaceous plants are often shadowed by 
the other, taller vegetation.  

Figure 3.  Representative herbaceous-dominant photos. 

 

Figure 4 shows a selection of representative, primarily non-vegetated pho-
tos. This category may contain sparse vegetation (<4% of the ground cover 
in the photo) but is dominated by non-vegetative features. The photos may 
include natural features, such as rock, soil, water, and ice, or man-made 
features, such as buildings, roads, and parking lots. SMEs assumed no veg-
etation beneath photos dominated by snow or ice (Figure 4, bottom right) 
and classified these photos as “bare” within the GNBID. 
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Figure 4.  Representative bare-dominant photos. 
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3 Image Segmentation Techniques 

In both the image processing and computer vision domains, a long-stand-
ing challenge is the problem of image segmentation. A useful image seg-
mentation algorithm groups perceptually similar regions (i.e., superpix-
els), which reflect global characteristics of an image. Furthermore, an im-
age segmentation algorithm should be efficient, running in a time that is 
linearly proportional to the number of image pixels (Felzenszwalb and 
Huttenlocher 2004). Efforts to satisfy these requirements resulted in two 
broadly different approaches to unsupervised image segmentation.   

Fundamentally, unsupervised image segmentation algorithms operate on 
either a graph-based or gradient-ascent approach (Achanta et al. 2012). A 
graph-based approach treats each pixel as a node in a graph. Edge weights 
between two nodes are proportional to the similarity between neighboring 
pixels. Minimizing a cost function defined over the graph generates super-
pixels. A gradient-ascent approach initially begins with a rough clustering 
of pixels relative to an estimate for the probability density function of the 
image feature space. Gradient ascent refines the initial clustering itera-
tively until a convergence criterion is satisfied. Upon convergence, clus-
tered data points define a superpixel. Sections 3.1–3.3 describe three ap-
proaches to unsupervised image segmentation. 

In contrast to unsupervised image segmentation, a highly sophisticated 
model built with a high-quality training dataset characterizes a supervised 
image segmentation algorithm. Commonly, models are neural networks 
built with a training dataset generated by expert annotation of images on a 
pixel-by-pixel basis. Section 3.4 describes one particular model (the di-
lated neural network).   

3.1 Felzenszwalb (Felzenszwalb and Huttenlocher 2004) 

Felzenszwalb’s algorithm is a graph-based method that clusters pixels into 
superpixels. The image grid defines a graph of pixel nodes connected to 
other nodes within a neighborhood. Color images, comprising three sepa-
rate intensity images (i.e., red, blue, and green channels), are segmented 
separately and then intersected for an overall image segmentation. The al-
gorithm builds upon classical clustering methods whereby an adaptive 
segmentation criterion quantifies the evidence for a boundary between two 
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regions (potentially superpixels). Evidence for a boundary between two re-
gions follows from the intensity differences across the regions and the in-
tensity differences within each region.   

A comparison function evaluates whether there is evidence of a boundary 
by weighting intensity differences within two regions and comparing this 
weighted result to the intensity differences across each region. The 
weighting of internal differences is a function of both region size and a 
tunable parameter. The tunable parameter, 𝑘𝑘, in Felzenszwalb and Hut-
tenlocher’s (2004) paper effectively sets a scale of observation. For large 
magnitudes of the tuning parameter, the algorithm tends to generate 
larger superpixels. 

This method adheres well to image boundaries although it produces highly 
irregular superpixel sizes and shapes. It is 𝑂𝑂(𝑁𝑁log𝑁𝑁) complex, where 𝑁𝑁 is 
the number of pixels, making this algorithm fast in practice. There is nei-
ther control over the number of superpixels nor their compactness, which 
is the ratio of area to perimeter (Achanta et al. 2012). 

As an illustrative example, Figure 5 shows image segmentations of repre-
sentative tree-, shrub-, and herbaceous-dominant images. An implementa-
tion of Felzenszwalb’s algorithm in the scikit-image software library (van 
der Walt et al. 2014) generated the segmentations. A coarse parameter  
search was conducted for both the scaling parameter, 𝑘𝑘 ∈ {100, 1000, 10000},  
and the level of Gaussian image smoothing, 𝜎𝜎 ∈ {0.1, 1, 10}. In general, 
perceptually similar regions are most clearly generated for 𝑘𝑘 = 100 and 
𝜎𝜎 = 1.0. Segmentation of the tree-dominant image, Figure 5(a), effectively 
demarcates the sky, wooded regions beyond the body of water, reflected 
trees from the body of water, and even lily pads on the water in Figure 
5(b). Segmentation of the shrub-dominant image, Figure 5(c), outlines the 
sky, upper and lower portions of shrubs, and several rocks on the sandy 
soil in Figure 5(d). Segmentation of the herbaceous-dominant image, Fig-
ure 5(e), largely captures the broad grassy field, the distant mountains, 
and distinct clouds in Figure 5(f). When the scaling parameter is larger, 
superpixels encompass multiple regions that are perceptually distinct, re-
sulting in a segmentation that is too coarse. The scaling parameter used 
here is consistent in magnitude with the scaling parameter used by 
Felzenszwalb and Huttenlocher (2004), which was 300. 
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FFigure 5. Image segmentations using Felzenszwalb’s algorithm,
with the scale parameter, k, set to 100 and Gaussian

smoothing, , set to 1.0: (a) tree-dominant image and (b)
segmentation, (c) shrub-dominant image and (d) segmentation,

and (e) herbaceous-dominant image and (f) segmentation.

 

3.2 Quick shift (Vedaldi and Soatto 2008) 
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Two common mode-seeking algorithms are mean shift and medoid shift. 
Mean shift evolves the trajectory of each data point by approximately fol-
lowing the gradient of the probability density function by maximizing a 
quadratic lower bound on the window used for the Parzen density esti-
mate. The primary drawback of mean shift is its computational complex-
ity, being 𝑂𝑂(𝑑𝑑𝑁𝑁2𝑇𝑇), where 𝑑𝑑 is the dimensionality of the data space and 𝑇𝑇 
is the number of iterations. Medoid shift constrains the trajectories of data 
points to go through other data points. The chief advantages resulting 
from this change are that only a single iteration is required, no stop-
ping/merging heuristic is required, and the data space may be non-Euclid-
ean. The complexity of a basic implementation of medoid shift is 𝑂𝑂(𝑁𝑁3 +
𝑑𝑑𝑁𝑁2). A major disadvantage of medoid shift is a possibility of misidentify-
ing modes of the underlying probability density function, which is termed 
an overfragmentation of modes.   

An alternative to mean shift and medoid shift is an algorithm called quick 
shift. In this case, each data point moves to the nearest neighbor, which 
has a higher probability density. All data points connect to form a single 
tree, and modes are distinguished by eliminating branches longer than a 
particular threshold, 𝜏𝜏. The algorithm adheres to boundaries relatively 
well; however, it is very slow with a complexity of 𝑂𝑂(𝑑𝑑𝑁𝑁2) (𝑑𝑑 being a small 
constant). It does not allow for control of the number or size of superpixels 
(Achanta et al. 2012). 

As an illustrative example, Figure 6 shows image segmentations of the 
same representative tree-, shrub-, and herbaceous-dominant images as in 
using the quick-shift algorithm (Figure 5). An implementation of the algo-
rithm in the scikit-image software library (van der Walt et al. 2014) gener-
ated the segmentations. Image conversion from RGB (red, green, blue) to 
CIELab color space occurs prior to segmentation. The algorithm has four 
tunable parameters: a ratio (𝑟𝑟) between color-space proximity and image-
space proximity, the Gaussian window width (𝑤𝑤) for generating the Parzen 
density estimate, the maximum data distance (𝜏𝜏 from above), and the level 
of Gaussian smoothing (𝜎𝜎). A coarse parameter search was conducted for 
the ratio, 𝑟𝑟 ∈ {0, 0.1, 1.0}; Gaussian window width, 𝑤𝑤 ∈ {10, 30}; and data 
distance, 𝜏𝜏 ∈ {10, 30}. Gaussian smoothing was set to 1.0, which represents 
a moderate level of smoothing. In general, perceptually similar regions are 
most clearly generated for 𝑟𝑟 = 1.0, 𝑤𝑤 = 10, and 𝜏𝜏 =  30. Segmentation of 
the tree-dominant image, Figure 6(a), separates the sky into three regions, 
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FFigure 6.  Image segmentations using the quick-shift algorithm 
with the ratio parameter, r, set to 1.0; Gaussian window width, 
w, set to 10; data distance, , to 30; and Gaussian smoothing, 
, set to 1.0: (a) tree-dominant image and (b) segmentation, (c) 

shrub-dominant image and (d) segmentation, and (e) 
herbaceous-dominant image and (f) segmentation. 
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3.3 Simple linear iterative clustering (Achanta et al. 2012) 

Simple linear iterative clustering (SLIC) adapts a k-means clustering ap-
proach for efficiently generating superpixels. The k-means clustering algo-
rithm is adapted with two distinct modifications: 

1. The search space is limited to a region proportional to the superpixel size. 
2. A weighted distance measure, combining color (CIELAB color space) and 

spatial proximity (x, y pixel locations), is used to control size and compact-
ness of superpixels. 

The weighted distance measure normalizes Euclidean distances for space 
by the maximum distance within a cluster and color by a constant value. 
The constant value weights the relative importance of color similarity to 
spatial proximity. When the constant (𝑚𝑚, called compactness) is large, 
spatial proximity is more important, resulting in more compact superpix-
els. When the compactness constant is small, the superpixels adhere more 
closely to image boundaries; however, they are more irregular or less com-
pact. The range of 𝑚𝑚 is [1, 40] when using the CIELAB color space. The 
computational complexity is 𝑂𝑂(𝑁𝑁), which is independent of the number of 
superpixels, making this algorithm very fast. Only Felzenszwalb’s algo-
rithm is comparable in complexity. 

As an illustrative example, Figure 7 shows image segmentations of the 
same representative tree-, shrub-, and herbaceous-dominant images, as in 
Figure 5, using the SLIC algorithm. An implementation of the algorithm in 
the scikit-image software library (van der Walt et al. 2014) generated the 
segmentations. Image conversion from RGB to CIELAB color space occurs 
prior to segmentation. The algorithm has three tunable parameters: the 
maximum number of superpixels (𝑘𝑘), the compactness parameter (𝑚𝑚), and 
the level of Gaussian smoothing (𝜎𝜎). A coarse parameter search was con-
ducted for the number of superpixels, 𝑘𝑘 ∈ {10, 100, 1000}; compactness 
parameter, 𝑚𝑚 ∈ {1, 10, 100} (where 100 is effectively 40); and Gaussian 
smoothing, 𝜎𝜎 ∈ {0.1, 1, 10}. In general, perceptually similar regions are 
most clearly generated for 𝑘𝑘 = 10, 𝑚𝑚 = 10, and 𝜎𝜎 =  1. Segmentation of 
the tree-dominant image, Figure 7(a), separates the sky into two regions, 
broadly segments the wooded regions beyond the body of water and re-
flected in the water, and generates a single superpixel for water reflecting 
the sky in Figure 7(b). An artifact of the post-processing imposed by the 
maximum number of superpixels is joining of superpixels for trees in the 
foreground and trees reflected in the water. Segmentation of the shrub-
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10100
FFigure 7.  Image segmentations using the SLIC algorithm, with 

the maximum number of superpixels, k, set to 10; compactness 
parameter, m, set to 10; and Gaussian smoothing, , set to 1.0: 

(a) tree-dominant image and (b) segmentation, (c) shrub-
dominant image and (d) segmentation, and (e) herbaceous-

dominant image and (f) segmentation. 
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3.4 Dilated neural network (Zhou et al. 2017) 

A dilated neural network model is a supervised image segmentation tech-
nique that also generates a semantic labeling (Zhou et al. 2017). The neural 
network model is a modification of the 16-layer neural network model, 
known as VGG-16, by dropping a couple of pooling operations and replac-
ing the following convolutions with dilated convolutions. A bilinear up-
sampling layer completes the last layer of the model. A comprehensive da-
taset comprising over 20,000 expertly annotated images, forms the train-
ing, validation, and test sets for the dilated neural network. An expert labels 
each image with object and part annotations on a pixel-level basis. From 
this dataset, a scene-parsing benchmark was created with the top 150 ob-
jects. The dilated neural network is trained on the benchmark dataset. 

As an illustrative example, Figure 8 shows image segmentations of the 
same representative tree-, shrub-, and herbaceous-dominant images, as in 
Figure 5, using the dilated neural network model (http://scenepars-
ing.csail.mit.edu/model). Appendix A describes in detail how to use the PyCaffe 
interface for testing and evaluating this model. Prior to segmentation, sev-
eral image preprocessing steps are required: resize to 384 by 384 pixels; 
subtract the RGB means of the training dataset; transpose the dimensions 
from height, width, and channel to channel, height, and width; set scale 
from [0, 1], to [0, 255]; and swap channel ordering from RGB to BGR. The 
model requires no tuning parameters besides the image itself. Here we 
conducted a test to evaluate the effect of Gaussian smoothing, 𝜎𝜎 ∈
{0.1, 1, 10}. In general, perceptually similar regions are most clearly gener-
ated for 𝜎𝜎 =  0.1, possibly as a consequence of maintaining a distinction 
between the pixel-level granularity of the original training dataset. This is  
in contrast to unsupervised image segmentation techniques where  𝜎𝜎 =  1.0  
generates perceptually similar regions. This segmentation of the tree-dom-
inant image, Figure 8(a), does very well in separating the sky, trees, grass, 
and water in Figure 8(b). Surprisingly, the water with tree reflections does 
not present a challenge to the model. Segmentation of the shrub-dominant 
image, Figure 8(c), outlines the sky and tops of shrubs and categorizes the 
lower portions of stems, grass, and rocks as plants in Figure 8(d). In gen-
eral, shrub-dominant images present the greatest challenge for the model. 
Segmentation of the herbaceous-dominant image, Figure 8(e), segments 
the broad grassy field cleanly and identifies the mountain range and sky in 
Figure 8(f). Interestingly, the variation in the sky cover does not present 
an issue for the dilated neural network as a consequence of the labeling 
scheme. 
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FFigure 8. Image segmentations using the dilated neural
network algorithm with Gaussian smoothing, , set to 0.1.: (a)

tree-dominant image and (b) segmentation, (c) shrub-dominant
image and (d) segmentation, and (e) herbaceous-dominant

image and (f) segmentation.

3.5 A comparison between unsupervised and supervised image 
segmentation techniques 
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on the selection of one or more tuning parameters. In general, superpixel 
generation may serve as a preprocessing step in further segmentation al-
gorithms (Achanta et al. 2012). For example, one method of multi-class 
image segmentation uses superpixels to compute color, texture, geometry, 
and location features to train classifiers for a finite number of object clas-
ses (Gould et al. 2008). Along these lines, state-of-the-art supervised im-
age segmentation algorithms solve the image segmentation problem very 
well. Here we reviewed and tested the dilated neural network model 
trained on a scene-parsing benchmark dataset (Zhou et al. 2017). Com-
pared to the unsupervised approaches, the dilated neural network seg-
ments images with greater success. Table 1 summarizes the characteristics 
of the techniques described above. Appendix B contains code listings for 
the generation of image segmentations by each algorithm. 

Table 1.  Summary of characteristics for unsupervised and supervised image 
segmentation techniques. 

Algorithm 
Unsupervised (U), 

Supervised (S) 
Speed1  

(slow, medium, fast) 
Number of 

parameters2 

Felzenszwalb U fast 1 
Quick shift U slow 3 
SLIC U fast 2 
Dilated neural network S fast 0 

1. The speed designation is on the order of hours, minutes, and seconds for slow, medium, and fast, respectively. 
2. Not including Gaussian smoothing. 

A visual comparison of Figures 5 through 8 demonstrates the advantages 
of a supervised image segmentation when compared to unsupervised im-
age segmentation. Additional benefits include fast speed and no parameter 
specification. For these reasons, we explore implementations of the dilated 
neural network and datasets used for semantic segmentation. The next 
section introduces semantic segmentation and relevant datasets broadly 
and specific implementation details further on.  
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4 Supervised Image Segmentation Datasets 
and Techniques 

4.1 Semantic segmentation and relevant networks 

In the field of computer vision, semantic segmentation takes as input an 
image and attempts to assign a label to each pixel. The resulting output is a 
mask, which is often easier to analyze because objects of the same class 
maintain the same pixel color and clear boundaries between objects are es-
tablished. Figure 9 demonstrates the semantic segmentation of a tree-
dominant-vegetation ground-based scene. 

Figure 9.  Semantic segmentation demonstration. The box on the left illustrates 
the initial image while the box on the right demonstrates a mask generated after 

semantic segmentation. 

 

Semantic comprehension of visual scenes and objects in an image is rele-
vant for many applications, including autonomous vehicle systems and 
land cover classification and boundary delineation on remotely sensed im-
ages. For our purposes, we were interested in generating a mask for each 
ground-based scenic image in the GNBID for which we had a dominant 
vegetation type ground truth label (bare-, herb-, shrub-, or tree-domi-
nant). Ultimately, we would look to the mask as a way of determining the 
dominant vegetation type for a given scene. In previous efforts related to 
this project (Parker et al. 2017; Parker and Jarvis 2017), these image-level 
ground truth labels were annotated by multiple experts, thereby exposing 
the labeling process to inconsistencies across annotators. Through the au-
tomation of dominant vegetation labeling by way of semantic segmenta-
tion, we hope to alleviate these inconsistencies.  
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Dense pixelwise semantic labeling is possible by the implementation of 
convolutional neural networks (CNNs). Examples of these include SegNet 
(Badrinarayanan et al. 2017), FCN-8s (Shelhamer et al. 2017), and Dilat-
edNet (Yu and Koltun 2016), each distinct in their respective architectures. 

4.2 Semantic segmentation datasets 

We set out initially to identify semantic segmentation datasets that would 
suit our primary purpose of providing masks whose dominant class corre-
sponded with that of the ground truth vegetation type. In our study of 
available semantic segmentation datasets, we identified four that align 
most closely with our ground truth dataset: CityScapes (Cordts et al. 
2016), Pascal-Context (Mottaghi et al. 2014), the SUN database (Xiao et al. 
2010), and the Massachusetts Institute of Technology (MIT) ADE20K 
(Zhou et al. 2017). 

Each of the four datasets maintain nuanced advantages and disadvantages 
when looking through the lens of our specific objective. More specifically, 
CityScapes, one of many semantic segmentation datasets with pixel-level 
labels, recognizes vegetation and terrain as classes but neglects to provide 
any specificity beyond those two categories. To the best of our assessment, 
the Pascal-Context dataset failed to provide the specificity needed for dis-
crete outdoor vegetation categories or “stuff” classes (i.e., classes derived 
from large regions of an image that are not defined by an explicit shape). 
Within Pascal-Context, “stuff” classes such as sand and snow and discrete 
object classes such as plant and tree are represented, but this dataset over-
looks any categories that might potentially align with the herbaceous 
ground truth category. One notable exception to these limitations is the 
SUN database, which does provide 131,067 images and 4479 object catego-
ries at the time of this writing. From those object categories, we could suf-
ficiently map to our ground truth labels; however, the SUN database re-
portedly maintains noisy labels at the object level (Zhou et al. 2017).  

In our hunt to find a pixel-level labeled image dataset, we landed on the 
MIT ADE20K and its subsequent benchmark, SceneParse150 (Zhou et al. 
2017). 



ERDC/CRREL TR-18-7  20 

 

4.3 SceneParse150 and the DilatedNet 

The SceneParse150 dataset was appealing for a couple of reasons. First, 
SceneParse150 provides 150 objects and is derived from the ADE20K da-
taset, which contains 22,210 densely labeled scene-centric images, all la-
beled by a single annotator with an unrestricted vocabulary. Second, 
SceneParse150 also presents the specificity of interest for “stuff” classes. 
“Stuff” classes are of high interest for this particular study as herbaceous- 
and bare-dominant photos maintain a large percentage of pixels that align 
with “stuff” classes. SceneParse150 maintains 35 “stuff” classes and 115 
discrete object classes. 

In their paper, Zhou et al. (2017) demonstrate that the DilatedNet outper-
forms both the FCN-8s and the SegNet in both pixel accuracy and mean 
intersection over union (IoU) on the SceneParse150 validation set. There-
fore, we wanted to initially test whether the DilatedNet trained on MIT’s 
SceneParse150 benchmark dataset could sufficiently provide masks whose 
dominant class corresponded with that of the ground truth vegetation 
type. 

Zhou et al. (2017) implement and integrate what they call a cascade seg-
mentation module to counter the long-tail distribution associated with the 
pixel ratios of objects. The justification for this distribution is that “stuff” 
classes tend to largely dominate the percentage of annotated pixels while 
smaller, more discrete objects occupy a smaller percentage of pixels. When 
integrated with other baseline networks such as the SegNet and the Dilat-
edNet, the cascaded versions outperform their non-cascaded counterparts 
in both pixel accuracy and mean IoU on the MIT SceneParse150 validation 
set. We were not able to obtain Zhou et al.’s DilatedNet with integrated 
cascade segmentation module at the time of this writing. Instead, we relied 
on Zhou et al.’s trained DilatedNet model (http://sceneparsing.csail.mit.edu/model/) 
and used PyCaffe to run the model (installation instructions are in Appen-
dix A of this report). 

To assess whether the DilatedNet trained on MIT’s SceneParse150 could 
identify the dominant ground truth vegetation type in an image, we ran all 
ground-based images with vegetation-dominant labels through the net-
work and implemented post-processing (discussed in the next section) on 
the output to identify dominant classes of particular interest. 
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4.4 Mapping object classes 

The SceneParse150 dataset maintains 150 object classes; however, only the 
following were of particular interest for this study: dirt track, earth, field, 
grass, palm, plant, rock, sand, and tree. We identified this set of classes as 
having the potential to map to one of our four ground truth classes. The 
ground truth classes for this study include bare, herb, shrub, and tree. To 
reconcile the differences between the sheer volume of classes available 
within the SceneParse dataset and those of particular interest, we recog-
nize that transfer learning is a highly applicable methodology; however, 
for this study, we attempted to leverage the trained network and post-pro-
cess the output. For each image, we ranked the classes in the output ac-
cording to the recorded pixel ratios and subsequently took the intersection 
of the output classes and the classes of interest to generate our final 
ranked list. We then recorded the class with the largest percentage of pix-
els as the dominant label for that image. 

After this preliminary manipulation, the resulting output, in some cases, 
revealed images whose dominant classification maps to a ground truth 
classification using the mapping scheme presented in Table 2. 

Table 2.  Mapping from classes of interest to ground truth classes. 

SceneParse150 Classes of Interest Ground Truth Classes 

Field, Grass Herb 
Dirt track, Earth, Rock, Sand Bare 
Tree, Palm Tree 
Plant Shrub 

4.5 Contrast enhancement and sharpening techniques 

4.5.1 Contrast-Limited Adaptive Histogram Equalization 

Global contrast enhancement via histogram equalization is beneficial 
when an entire image is bright or dark, or when the background is not eas-
ily distinguishable from the foreground. Generally, images within the 
GNBID are not low contrast images; but we wanted to employ a similar 
technique, Contrast-Limited Adaptive Histogram Equalization (CLAHE) 
(Zuiderveld 1994), for our herbaceous imagery in an attempt to enhance 
the edges of grass blades and crop stalks and the boundary between earth 
and herb. 
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Histogram equalization (Russ 1994) is an image enhancement technique 
that modifies image intensities to enhance global contrast. This is espe-
cially useful when an image maintains an intensity histogram with few dis-
tinct peaks, thereby signifying a high density of pixels with intensities in 
narrow ranges. Figure 10 illustrates an intensity histogram for a low con-
trast bare-dominant image. 

Figure 10.  Demonstration of an image’s pixel intensity 
histogram: low contrast bare-dominant image (a) and 

corresponding image histogram (b). 

 

In Figure 10(b), we can easily see that some intensity values are underuti-
lized, namely those below 0.4 and above 0.7. Histogram equalization 
works to equalize pixel frequency across all possible intensity levels by 
spreading out intensity values within peaks and condensing them in the 
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valleys. The intensity distribution achieves greater uniformity when each 
of the original pixel intensities is transformed to new values via the im-
age’s cumulative histogram. 

Adaptive Histogram Equalization (AHE) applies the same principles as 
histogram equalization to several segments of an image, thereby enhanc-
ing local contrast much like CLAHE. However, CLAHE is the preferred 
method as AHE can often produce artificial contrast variation in homoge-
neous regions of an image. For this particular project, we leveraged scikit-
image (van der Walt et al. 2014) to apply CLAHE to our herb-dominant 
images. We subsequently ran the resulting contrast-enhanced images 
through the pre-trained DilatedNet to assess whether we could increase 
the accuracy of predictions. Figure 11 demonstrates the effect of applying 
CLAHE on a ground truth herbaceous image. In Figure 11(b), the CLAHE 
technique effectively enhances local contrast of the grass blades in the 
foreground and local detail of the patch of white flowers off to the far right 
without introducing pronounced artifacts in uniform regions of the image. 

Figure 11.  Effect of applying CLAHE to a ground truth herbaceous image: (a) original herb-
dominant image and (b) resulting image after applying CLAHE. 

It is important to note that all of the techniques mentioned above typically 
operate on grayscale images. However, scikit-image’s CLAHE implementa-
tion provides default functionality whereby if the function is presented 
with an RGB image, it will convert the image to the HSV (Hue, Saturation, 
Value) color space and perform CLAHE on the value channel. Once the al-
gorithm completes, the image is converted back to the RGB color space. 

4.5.2 Unsharp masking 

In addition to enhancing local contrast of herb-dominant images, we 
wanted to explore whether image sharpening techniques, like unsharp 
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masking, could emphasize texture while enhancing local detail. The key to 
unsharp masking is the creation of a high-pass filter, or unsharp mask. In 
terms of implementation, first a Gaussian filter is used to blur the original 
image. The blurred image is then subtracted from the original image to 
create the unsharp mask. The value of blur-size, or 𝜎𝜎, applied to the Gauss-
ian filter dictates the amount of blur; and for landscape images, Wein-
mann and Lourekas (2014) recommend a 𝜎𝜎 between 1.0 and 1.5. 

Once an unsharp mask is generated, it is multiplied by a value called the 
amount, which is typically represented by a percentage. The amount dic-
tates the level of contrast added at edges. Recommended values for the 
amount for landscape images range from 100% to 150% (Weinmann and 
Lourekas 2014).  

To determine whether this technique had any effect on increasing the per-
centage of images with herb-dominant ground truth labels as having a 
dominant class of either grass or field, parameters on either side of the 
suggested ranges were tested for both the blur-size, 𝜎𝜎 ∈ {1.0, 1.5}, and the 
amount, 𝑎𝑎 ∈ {100, 150}. Figure 12 illustrates an herb-dominant image after 
applying the unsharp masking technique with a blur-size of 1.5 and an 
amount of 150%. The effects of unsharp masking with the suggested pa-
rameters both at the upper extremes are quite subtle. Enhanced local con-
trast within the field at the foreground is present; however, the effects are 
more subdued compared to the same image post-CLAHE (Figure 11[b]). 
Section 5.2.3 provides an assessment of unsharp masking on model per-
formance. 

Figure 12.  Effect of applying unsharp masking to a ground truth herbaceous image with blur-
size, σ, set to 1.5 and amount set to 150%: (a) original herb-dominant image and (b) resulting 

image after applying unsharp masking. 
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5 Identification of Dominant Vegetation 
Type via a Pre-Trained DilatedNet 

5.1 DilatedNet  

Initially, we wanted to assess whether the trained DilatedNet presented in 
Zhou et al. (2017) could sufficiently output a dominant (i.e., largest pixel 
ratio) SceneParse150 class of interest with our ground truth images. Recall 
that the following set contains the classes of interest from the 
SceneParse150 dataset: dirt track, earth, field, grass, palm, plant, rock, 
sand, and tree.  

The GNBID comprises 178 bare-, 411 herb-, 214 shrub-, and 353 tree-dom-
inant labeled images. Table 3 illustrates baseline results after we passed 
our unaltered images through the pre-trained network. It is important to 
note that the columns correspond to only those SceneParse150 classes of 
interest. The implications for this are as follows: some images may report 
the largest ratio of pixels allocated to the SceneParse150 class, “sky,” for 
example. Nevertheless, because “sky” is not in our set of classes of interest, 
we do not report it as “dominant” in any of the tables or figures presented 
here. 

Table 3.  Ground truth and DilatedNet classification comparison. Classes listed under “Actual 
Class” correspond to ground truth classifications while classes listed under “Predicted Class” 

correspond to DilatedNet classifications. 

Actual Class 

Predicted Class 
Dirt 

Track Earth Field Grass Palm Plant Rock Sand Tree 

Herb 2 123 155 96 1 13 1 4 16 
Tree 0 27 7 8 2 3 0 1 305 
Shrub 3 89 30 6 1 8 4 4 69 
Bare 2 91 6 0 0 0 10 66 3 

 
Images with bare-dominant ground truth labels maintained the largest ra-
tio of pixels allocated to the earth (91 images, 51.1% of all bare-dominant 
images) or sand (66 images, 37.1% of all bare-dominant images) catego-
ries. If both earth and sand SceneParse150 classes are mapped to the bare-
dominant ground truth category (as demonstrated in Table 2), then the 
DilatedNet correctly classifies 88.2% of all bare-dominant images. 
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As illustrated in Table 3, images with an herb-dominant ground truth label 
maintain the largest ratio of pixels allocated to either the field (155 images, 
37.7% of all herb-dominant images), earth (123 images, 29.9% of all herb-
dominant images), or grass (96 images, 23.4% of all herb-dominant im-
ages) SceneParse150 categories. In an attempt to increase the ratio of field 
or grass pixels for a single image and thereby increase the total percentage 
of herb-dominant classifications by the pre-trained network, we investi-
gate in section 5.2 whether contrast enhancement or image sharpening 
techniques briefed in sections 4.5.1 and 4.5.2 aide in the delineation of 
grass blade or earth–vegetation boundaries. 

For shrub-dominant ground truth images, the DilatedNet classified 89 im-
ages, or 41.6% of images, as earth; 69 images, or 32.2% of images, as tree; 
and 30 images, or 14.0% of images, as field. In our original mapping of 
SceneParse150 classes to ground truth classes, we had initially speculated 
that the SceneParse150 class, plant, would map in a straightforward man-
ner to the ground truth class, shrub. However, as evidenced here, a dispar-
ate assortment of SceneParse150 classes including earth, field, and tree, to 
name a few, compose the shrub output over all shrub-dominant images, 
possibly as a consequence of many factors. More specifically, the pre-
trained model has difficultly discerning a shrub from the earth in cases 
where sparse shrub vegetation is present in the foreground of the image. 
Furthermore, in many shrub-dominant images, shrub vegetation in the 
background is often mistaken by the model as field, likely due to the ap-
pearance of a high density of the shrub vegetation. Finally, scale is likely a 
contributing factor to the large percentage of shrub-dominant images la-
beled as tree. 

Lastly, for images with predominantly tree-type vegetation (tree-dominant 
ground truth label), the DilatedNet correctly classified 87.0% of images as 
tree- or palm-dominant. 

5.2 Contrast enhancement and sharpening 

5.2.1 Motivation 

As evidenced in the previous section, the pre-trained DilatedNet per-
formed poorly on both herb- and shrub-dominant images. More specifi-
cally, our ground truth labels did not align with our perceived mapping to 
classes in the SceneParse150 dataset. For example, we originally mapped 
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SceneParse150 classes field and grass to our ground truth class herb (Ta-
ble 2). However, we find that the earth category maintains the second larg-
est percentage of images (123 images, 29.9% of all herb-dominant images). 
We wanted to initially test whether contrast enhancement or sharpening 
techniques could improve the earth/herb margin or provide more local de-
tail to grass blades and crop stalks to ultimately decrease the number of 
pixels allocated to the earth class and increase those allocated to the field 
or grass class within each image. While shrub-dominant images suffer 
from a similar ambiguous mapping, we wanted to investigate the efficacy 
of these techniques on herb-dominant images first since the resulting 
mapping for shrub-dominant images is even more unclear. 

Figure 13 further motivates our case for exploring the techniques men-
tioned in 4.5.1 and 4.5.2. In Figure 13, the segmentation results (b) and (d) 
for the original images (a) and (c) indicate that for both images, the earth 
class maintains the largest number of pixels (not including sky). Taking a 
closer look at the segmentation results for Figure 13(a), we can see that 
while pixels in the left-hand portion of the foreground are classified as 
field, pixels in the right-hand portion of the foreground are classified as 
earth. Less one small oval-shaped section of the foreground in the center 
of the image, the texture and color appear to remain uniform across the 
foreground, and so one might expect the assignment of the majority of pix-
els in the foreground to the field class. The segmentation results for Figure 
13(c) illustrate a similar effect, but we also observe that the network does 
not easily parse individual tufts of herbaceous vegetation surrounded at 
the base by earth or sand. The DilatedNet assigns those pixels associated 
with tufts to the surrounding earth category as illustrated in Figure 13(d). 

After observing these initial results, we postulate that enhancement or 
sharpening techniques may more clearly allow the network to “see” the 
distinction between herb and earth. 
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Figure 13.  Ground truth herb-dominant sample images (a) and (c) and their 
corresponding segmentation via the DilatedNet (b) and (d). 

 

5.2.2 Sample segmentation results after CLAHE and unsharp masking 

Prior to running the entire batch of herb-dominant CLAHE and unsharp 
masked images through the network, we first examined a few sample seg-
mentations to determine if the techniques were a worthwhile pursuit.  

Figure 14 illustrates the segmentation results of two CLAHE-modified, 
herb-dominant images. Figure 14(a) and (c) illustrate the effects of CLAHE 
on Figure 13(a) and (c). After running these enhanced sample images 
through the network, we found that CLAHE increased the percentage of 
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pixels allocated to field from 22.0% presented in Figure 13(b) to 57.5% in 
Figure 14(b). Additionally, applying CLAHE increased the percentage of 
pixels allocated to field from 18.1% in Figure 13(d) to 20.3% in Figure 
14(d). However, the dominant class for Figure 14(d) is nevertheless earth. 
The results presented here along with several other sample images demon-
strate that applying CLAHE to our images could aid in increasing the pro-
portion of pixels assigned to field or grass and decreasing the proportion 
assigned to earth. 

Figure 14.  CLAHE-enhanced ground truth herb-dominant sample images (a) 
and (c) and their corresponding segmentations via the DilatedNet (b) and (d). 
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Figure 15 illustrates the segmentation results (b) and (d) of two herb-dom-
inant images (a) and (c) after unsharp masking. Compared to the segmen-
tation of the original image in Figure 13(a), the segmentation of Figure 
15(a) increases the percentage of field pixels from 22.0% in Figure 13(b) to 
43.2% in Figure 15(b). By applying the unsharp masking technique as seen 
in Figure 15(c), the percentage of pixels allocated to the field category in-
creased from 18.1% in Figure 13(d) to 35.9% in Figure 15(d). Additionally, 
the unsharp masking technique appears to have attempted to parse out the 
boundary between earth and herb where individual tufts of vegetation are 
present (Figure 15[d], left portion of the image). In both cases, unsharp 
masking allows the field category to supersede the earth category as the 
dominant SceneParse150 classification. 

Figure 15.  Sharpened ground truth herb-dominant sample images (a) and 
(c) and their corresponding segmentation via the DilatedNet (b) and (d). 
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These two herb-dominant images demonstrate that it is feasible to in-
crease the proportion of pixels from earth to field or grass by applying ei-
ther image enhancement or sharpening prior to passing the image through 
the network. 

5.2.3 Unsharp masking parameter selection 

We tested a combination of parameters (amount and blur-size) for un-
sharp masking. For each combination, we passed the resulting herb-domi-
nant sharpened images through the DilatedNet.  

Figure 16 shows the resulting distribution of SceneParse150 dominant 
classes for each combination. As illustrated by Figure 16, unmask sharpen-
ing, irrespective of the parameter selection, increases the proportion of 
ground truth herb-dominant images labeled as earth dominant as com-
pared to no parameter selection (i.e., no unsharp masking applied) despite 
the promising results seen in our sample images (Figure 15). 

Figure 16.  Distribution of DilatedNet output classifications for various parameter selections 
associated with the unsharp masking technique. 

5.2.4 CLAHE results 

We applied CLAHE to the full batch of herb-dominant images. As illus-
trated in Figure 17, applying CLAHE to herbaceous imagery increased the 
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number of images with a dominant SceneParse150 category of field from 
155 images (no enhancement) to 245 images (CLAHE enhanced). We did 
observe a decrease in the number of images with a dominant 
SceneParse150 category of grass from 96 images (no enhancement) to 39 
images (CLAHE enhanced); however, the vast majority images with a 
modified label saw a change to field as the dominant class. CLAHE en-
hancement also decreased the number of images with a dominant 
SceneParse150 category of earth from 123 images (no enhancement) to 85 
images (CLAHE enhanced). Therefore, we can conclude that, at least for 
herb-dominant images, applying CLAHE to images prior to passing 
through Zhou et al.’s (2017) DilatedNet helps to clarify the mapping be-
tween GNBID ground truth labels and SceneParse150 categories; however, 
this mapping is not absolute since herb-dominant ground truth images 
with an earth-dominant classification are still present. 

Figure 17.  Distribution of DilatedNet output classifications for original and CLAHE-modified 
images. 
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6 Concluding Remarks and 
Recommendations for Future Work 

This report outlines the proof-of-concept study performed to explore the 
feasibility of using machine learning to expand global coverage in the 
GNBID. We presented an investigation of unsupervised versus supervised 
image segmentation techniques to achieve this goal. After an initial review 
of several unsupervised techniques, we chose a supervised technique: the 
DilatedNet, a deep convolutional neural network, trained on the 
SceneParse150 dataset. 

As evidenced in the results section, we encountered limitations using the 
pre-trained DialatedNet. The mapping from our GNBID ground truth la-
bels to one of the SceneParse150 classes was not always straightforward, 
especially for herb- and shrub-dominant imagery. To resolve these issues, 
we recommend applying transfer learning.  

High similarity between the SceneParse150 training images and the 
ground truth vegetation images available within the GNBID suggests that 
transfer learning is a potentially promising approach for automated label-
ing of vegetation within a terrestrial photo. To implement this approach, 
the DilatedNet is copied, either in its entirety or partially, to a new net-
work. The new network is then trained to semantically segment images ac-
cording to vegetation type. (This is in contrast to the pre-trained Dilated-
Net explored in this study, which was trained on 150 classes.) Two ap-
proaches exist for the training phase when transfer learning is pursued 
(Yosinski et al., 2014): either the weights of the copied network are frozen 
(i.e., not changed) or fine-tuned. Past work has shown that transfer learn-
ing is useful for both semantically segmenting off-road scenes (Holder et 
al. 2016) and computer-aided detection of medical imagery (Shin et al. 
2016).  

Our study found that the DilatedNet performed well for bare- and tree-
dominant images but struggled with herbaceous- and shrub-dominant im-
ages. The application of CLAHE on herb-dominant photos enhanced local 
contrast and edge delineation. After running the enhanced photos through 
the network, we observed a 58% increase in the number of images with a 
dominant SceneParse150 category of field and a 31% decrease in the num-
ber of images with a dominant SceneParse150 category of earth, which 
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suggests that performing CLAHE to on-the-ground photos prior to classifi-
cation may yield more accurate results. Additional investigation is neces-
sary to determine whether CLAHE-derived images could improve the clas-
sification of shrub-dominant photos according to the mapping scheme 
provided in this study. We also recommend broadening the scope of classi-
fication to include more detail. For example, the GNBID contains more 
specific attributes beyond vegetation type, including vegetation height, leaf 
shape, leaf color, phenology (i.e., green, transition, or dormant), etc. The 
database would benefit from automated classification of these characteris-
tics as well. 

In summary, we found that the supervised classification approach is prom-
ising for this application. This study establishes the limitations and 
strengths of applying existing machine learning algorithms for classifying 
natural backgrounds in terrestrial imagery. Our results suggest that there 
is potential to improve image classification capabilities, which translates 
into enhanced research and development tools (e.g., the GNBID) and mis-
sion-planning decision-aid tools for the Army. We recommend further 
work to establish these methods for the purpose of reducing time, labor, 
and costs for research and development tools.  
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Appendix A: Installation of PyCaffe 

Installation of PyCaffe, a python interface to Caffe (http://caffe.berkeleyvision.org/) 
models, is required to use the dilated neural network developed by Zhou et 
al. (2017). The python interface enables the use of Caffe models for testing 
and evaluation. 

A specific source code distribution of PyCaffe for Windows is provided at 
https://github.com/BVLC/caffe/tree/windows. Several notes on how to build the Py-
Caffe interface from source code are documented by the author of the Win-
dows distribution; however, we encountered several errors during the 
build process. The following procedure successfully builds Caffe and Py-
Caffe for a Windows 10 machine with Python 3.5: 

1. Install CMake (https://cmake.org/). 

2. Install git for Windows (http://gitforwindows.org/). 

3. Install Visual C++ 2015 build tools (http://landinghub.visualstudio.com/visual-cpp-build-
tools) by running a custom install to include the Windows 10 SDK. 

4. Install CUDA 8.0 (https://developer.nvidia.com/cuda-80-ga2-download-archive) and cuDNN 
5.0 (https://developer.nvidia.com/rdp/assets/cudnn-8.0-windows10-x64-v5.0-ga-zip). 

5. Install the latest Anaconda distribution (https://www.anaconda.com/download/).  

6. Add cmake.exe, python.exe, conda.exe, and git.exe to the system PATH 
variable. 

7. Clone the git repository to a project directory: 

git clone https://github.com/BVLC/caffe.git  

cd caffe 

git checkout windows 

8. Modify “build_win.cmd” in caffe/scripts. Under the first outer else state-
ment, ensure the following are set: 

MSVC_VERSION=14 

WITH_NINJA = 0 

http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe/tree/windows
https://cmake.org/
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
https://developer.nvidia.com/cuda-80-ga2-download-archive
https://developer.nvidia.com/rdp/assets/cudnn-8.0-windows10-x64-v5.0-ga-zip
https://www.anaconda.com/download/
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CPU_ONLY=1 

CUDA_ARCH_NAME=Kepler 

CMAKE_CONFIG=Release 

USE_NCCL=0 

PYTHON_VERSION=3 

BUILD_PYTHON=0 

BUILD_PYTHON_LAYER=1 

RUN_TESTS=1 

RUN_LINT=0 

RUN_INSTALL=1 

 

 Add to the cmake command the following: 

-DCMAKE_C_COMPILER="C:/Program Files (x86)/Microsoft Visual 

Studio 14.0/VC/bin/cl.exe" ^ 

-DCMAKE_CXX_COMPILER="C:/Program Files (x86)/Microsoft Visual 

Studio 14.0/VC/bin/cl.exe" ^ 

-DCUDNN_ROOT="C:/Program Files/NVIDIA GPU Computing 

Toolkit/CUDA/v8.0/cuda" ^ 

 

9. Modify “WindowsDownloadPrebuiltDependencies.cmake” in caffe/cmake. 
Under if(USE_PREBUILT_DEPENDENCIES), change _pyver 27 to _pyver 35. 

10. Modify “CMakeLists.txt” in caffe/ by changing set(python_version "2" 
... to set(python_version "3" ... 

11. Modify “Dependencies.cmake” in caffe/cmake. Add an else condition 
prior to the final endif() statement in the Python block. 

else() 

  if(NOT "${python_version}" VERSION_LESS "3.0.0") 

    # use python3 

    find_package(PythonInterp) 

    find_package(PythonLibs) 

    find_package(NumPy) 

    # Find the matching boost python implementation 

    set(version ${PYTHONLIBS_VERSION_STRING}) 

 

    STRING( REGEX REPLACE "[^0-9]" "" boost_py_version ${ver-

sion} ) 

    find_package(Boost 1.46 COMPONENTS "python-

py${boost_py_version}") 
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    set(Boost_PYTHON_FOUND ${Boost_PYTHON-PY${boost_py_ver-

sion}_FOUND}) 

    while(NOT "${version}" STREQUAL "" AND NOT Boost_PY-

THON_FOUND) 

      STRING( REGEX REPLACE "([0-9.]+).[0-9]+" "\\1" version 

${version} ) 

      STRING( REGEX REPLACE "[^0-9]" "" boost_py_version 

${version} ) 

      find_package(Boost 1.46 COMPONENTS "python-

py${boost_py_version}") 

      set(Boost_PYTHON_FOUND ${Boost_PYTHON-PY${boost_py_ver-

sion}_FOUND}) 

      STRING( REGEX MATCHALL "([0-9.]+).[0-9]+" has_more_ver-

sion ${version} ) 

      if("${has_more_version}" STREQUAL "") 

        break() 

      endif() 

    endwhile() 

    if(NOT Boost_PYTHON_FOUND) 

      find_package(Boost 1.46 COMPONENTS python) 

    endif() 

  endif() 

  if(NOT Boost_PYTHON_FOUND) 

    find_package(Boost 1.46 COMPONENTS python) 

  endif() 

  if(PYTHONLIBS_FOUND AND NUMPY_FOUND AND Boost_PYTHON_FOUND) 

    set(HAVE_PYTHON TRUE) 

    message(STATUS "Set HAVE_PYTHON is TRUE...") 

    if(Boost_USE_STATIC_LIBS AND MSVC) 

      list(APPEND Caffe_DEFINITIONS PUBLIC -DBOOST_PY-

THON_STATIC_LIB) 

    endif() 

    if(BUILD_python_layer) 

      list(APPEND Caffe_DEFINITIONS PRIVATE -DWITH_PY-

THON_LAYER) 

      list(APPEND Caffe_INCLUDE_DIRS PRIVATE ${PYTHON_IN-

CLUDE_DIRS} ${NUMPY_INCLUDE_DIR} PUBLIC ${Boost_INCLUDE_DIRS}) 
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      list(APPEND Caffe_LINKER_LIBS PRIVATE ${PYTHON_LIBRAR-

IES} PUBLIC ${Boost_LIBRARIES}) 

    endif() 

  else() 

    message(STATUS "Set HAVE_PYTHON is FALSE, since PY-

THONLIBS_FOUND is ${PYTHONLIBS_FOUND}, NUMPY_FOUND is 

${NUMPY_FOUND}, and Boost_PYTHON_FOUND is ${Boost_PY-

THON_FOUND}...") 

    find_package(PythonLibs) 

      message(STATUS "python_version:STR=${python_version}") 

      message(STATUS "PYTHONLIBS_FOUND:BOOL=${PY-

THONLIBS_FOUND}") 

      message(STATUS "PYTHON_LIBRARIES:PATH=${PYTHON_LIBRAR-

IES}") 

      message(STATUS "PYTHON_INCLUDE_DIRS:PATH=${PYTHON_IN-

CLUDE_DIRS}") 

      message(STATUS "PYTHONLIBS_VERSION_STRING:STR=${PY-

THONLIBS_VERSION_STRING}") 

    find_package(PythonInterp) 

      message(STATUS "PYTHONINTERP_FOUND:BOOL=${PYTHONIN-

TERP_FOUND}") 

      message(STATUS "PYTHON_EXECUTABLE:PATH=${PYTHON_EXECUTA-

BLE}") 

  endif() 

 

12. Create conda environment with Python 3.5, and activate the new environ-
ment: 

conda create -n run-pycaffe python=3.5 anaconda 

activate run-pycaffe 

 

13. Add the following conda channels and install the following packages (note 
the anaconda install already includes numpy, scipy, scikit-image, and py-
yaml): 

conda config --add channels conda-forge 

conda config --add channels willyd 

conda install --yes cmake ninja protobuf==3.1.0 pydotplus 

graphviz 
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14. Run “build_win.cmd” in the caffe/ directory as “scripts/build_win.cmd”.  
This will build Caffe and PyCaffe. 

15.  Add PyCaffe (i.e., \path\to\caffe\python\caffe) to the PYTHONPATH sys-
tem variable within a python script. 
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Appendix B: Code listings 

Code developed in Python 3.5 (for the dilated neural network) and 3.6 (for 
all other image segmentation algorithms) generated the image segmenta-
tion results in section 3. Additionally, code written for contrast enhance-
ment and image sharpening was developed in Python 3.6. The code refer-
enced here generated image results seen in sections 4 and 5. 

The following sections present the image segmentation, contrast enhance-
ment, and image sharpening code listings. 

B.1 Felzenszwalb and Huttenlocher’s (2004) algorithm 

""" 

Explore image segmentation by Felzenszwalb and Huttenlocher's 

(2004)  

algorithm. 

 

Reference: 

    Felzenszwalb, P. F. and D. P. Huttenlocher. 2004. Efficient 

Graph-Based  

        Image Segmentation. International Journal of Computer Vi-

sion 59 (2):  

        167 – 181. 

 

@author: Carl R. Hart 

""" 

 

import os 

 

import numpy 

from matplotlib import pyplot 

np = numpy 

plt = pyplot 

 

import skimage.io 

import skimage.color 

import skimage.filters 

import skimage.filters.rank 

import skimage.morphology 
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import skimage.segmentation 

import skimage.transform 

 

from skimage import img_as_float 

 

# Get directories and listing of photos 

workDir = os.getcwd() 

dataDir = '..\\data\\photos-exemplars' 

dirList = os.listdir(dataDir) 

 

dirSep = '\\' 

 

# Keep only jpgs in dataDir list 

nFile = len(dirList) 

 

for iFile in range(nFile): 

    if not( dirList[iFile].endswith('jpg') ): 

        dirList.pop(iFile) 

 

#%% Save plot module 

 

def savePlot(img, segMask, imgName, segTitle, nSeg, savePath): 

     

    (f, ax) = plt.subplots(1, 2) 

             

    ax[0].imshow(img) 

    ax[1].imshow(segMask, cmap = 'tab20') 

     

    ax[0].set_xticks([]) 

    ax[0].set_yticks([]) 

    ax[1].set_xticks([]) 

    ax[1].set_yticks([]) 

     

    ax[0].set_title(imgName) 

     

    ax[1].set_title(segTitle) 

    ax[1].set_xlabel('Segments = ' + str(nSeg)) 

             

    f.savefig(savePath, dpi = 300, format = 'png') 
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    plt.close() 

 

#%% Segment image by Felsenszwalb’s graph based image segmenta-

tion method 

 

nImg = len(dirList) 

 

felsScale = [100, 1000, 10000] 

felsSigma = [0.1, 1, 10] 

 

nScale = len(felsScale) 

nSigma = len(felsSigma) 

 

for iImg in range(nImg): 

    # Load image, and resize to 384 x 384 pixels 

    img = skimage.io.imread( dirSep.join([workDir, dataDir, 

dirList[iImg]]) ) 

    img = img_as_float(img) 

    img = skimage.transform.resize(img, (384, 384)) 

         

    for iScale in range(nScale): 

        for iSigma in range(nSigma): 

            # Segment image by Felsenszwalb’s graph-based image 

segmentation  

            segMaskFels = skimage.segmentation.felzenszwalb(img,  

                        scale = felsScale[iScale], sigma = 

felsSigma[iSigma]) 

 

            imgName = dirList[iImg][0:dirList[iImg].find('_')] 

            segTitle = ('Felsenszwalb,\n' + 'scale = ' + 

str(felsScale[iScale])  

                + ', $\sigma$ = ' + str(felsSigma[iSigma])) 

            nSeg = segMaskFels.max() + 1 

            segFileName = (imgName + '_seg-Fels_scale' + 

str(felsScale[iScale])  

                + '_sigma' + str(felsSigma[iSigma]) + '.png') 

            savePath = dirSep.join([workDir, 'plot', 'segmenta-

tion', 'fels',  

                                    segFileName]) 
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            savePlot(img, segMaskFels, imgName, segTitle, nSeg, 

savePath) 

 

B.2 The quick-shift algorithm (Vedaldi and Soatto 2008) 

""" 

Explore image segmentation by the quick shift algorithm (Vedaldi 

and Soatto,  

2008) algorithm. 

 

Reference: 

    Vedaldi, A. and S. Soatto. 2008. Quick Shift and Kernel Meth-

ods for Mode  

        Seeking in D. Forsyth, P. Torr, and A. Zisserman (Eds.): 

ECCV 2008,  

        Part IV, LNCS 5305: 705 – 718. 

 

@author: Carl R. Hart 

""" 

 

import os 

 

import numpy 

from matplotlib import pyplot 

np = numpy 

plt = pyplot 

 

import skimage.io 

import skimage.color 

import skimage.filters 

import skimage.filters.rank 

import skimage.morphology 

import skimage.segmentation 

import skimage.transform 

 

from skimage import img_as_float 

 

# Get directories and listing of photos 

workDir = os.getcwd() 

dataDir = '..\\data\\photos-exemplars' 
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dirList = os.listdir(dataDir) 

 

dirSep = '\\' 

 

# Keep only jpgs in dataDir list 

nFile = len(dirList) 

 

for iFile in range(nFile): 

    if not( dirList[iFile].endswith('jpg') ): 

        dirList.pop(iFile) 

 

#%% Save plot module 

 

def savePlot(img, segMask, imgName, segTitle, nSeg, savePath): 

     

    (f, ax) = plt.subplots(1, 2) 

             

    ax[0].imshow(img) 

    ax[1].imshow(segMask, cmap = 'tab20') 

     

    ax[0].set_xticks([]) 

    ax[0].set_yticks([]) 

    ax[1].set_xticks([]) 

    ax[1].set_yticks([]) 

     

    ax[0].set_title(imgName) 

     

    ax[1].set_title(segTitle) 

    ax[1].set_xlabel('Segments = ' + str(nSeg)) 

             

    f.savefig(savePath, dpi = 300, format = 'png') 

     

    plt.close() 

 

#%% Segment image by quickshift clustering in Color-(x,y) space 

 

nImg = len(dirList) 

 

qsRatio = [0, 0.1, 1.0] 

qsKernelSize = [10, 30] 
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qsMaxDist = [10, 30] 

qsSigma = [1] 

nRatio = len(qsRatio) 

nKernel = len(qsKernelSize) 

nDist = len(qsMaxDist) 

nSigma = len(qsSigma) 

for iImg in range(nImg):    

    # Load image, and resize to 384 x 384 pixels 

    img = skimage.io.imread( dirSep.join([workDir, dataDir, 

dirList[iImg]]) ) 

    img = img_as_float(img) 

    img = skimage.transform.resize(img, (384, 384)) 

    for iRatio in range(nRatio): 

 for iKernel in range(nKernel): 

for iDist in range(nDist): 

for iSigma in range(nSigma): 

# Segment image by quickshift method 

segMaskQS = skimage.segmentation.quick-

shift(img, 

ratio = qsRatio[iRatio],  

kernel_size = qsKernelSize[iKernel], 

max_dist = qsMaxDist[iDist], 

sigma = qsSigma[iSigma], convert2lab = 

True) 

imgName = 

dirList[iImg][0:dirList[iImg].find('_')] 

segTitle = ('Quickshift,\n' + 'ratio = ' + 

str(qsRatio[iRatio]) + ', kernel 

= ' + 

str(qsKernelSize[iKernel]) + ', 

dist = ' + 

str(qsMaxDist[iDist]) + ', 

$\sigma$ = ' + 

str(qsSigma[iSigma])) 

nSeg = segMaskQS.max() + 1 
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                    segFileName = (imgName + '_seg-quickshift_ra-

tio' +  

                                   str(qsRatio[iRatio]) + '_ker-

nel' +  

                                   str(qsKernelSize[iKernel]) + 

'_dist' + 

                                   str(qsMaxDist[iDist]) + '_sig-

ma' + 

                                   str(qsSigma[iSigma]) + '.png') 

                    savePath = dirSep.join([workDir, 'plot', 

'segmentation',  

                                'qs-lab', segFileName]) 

 

                    savePlot(img, segMaskQS, imgName, segTitle, 

nSeg,  

                             savePath) 

 

B.3 The SLIC algorithm (Achanta et al. 2012) 

""" 

Explore image segmentation by the SLIC algorithm (Achanta, et 

al., 2012) 

 

Reference: 

    Achanta, R., A. Shaji, K. Smith, A. Lucchi, P. Fua, S. 

Süsstrunk. 2012.  

        Efficient Graph-Based Image Segmentation. IEEE Transac-

tions on Pattern  

        Analysis and Machine Intelligence 34 (11): 2274 – 2281. 

 

@author: Carl R. Hart 

""" 

 

import os 

 

import numpy 

from matplotlib import pyplot 

np = numpy 

plt = pyplot 
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import skimage.io 

import skimage.color 

import skimage.filters 

import skimage.filters.rank 

import skimage.morphology 

import skimage.segmentation 

import skimage.transform 

from skimage import img_as_float 

# Get directories and listing of photos 

workDir = os.getcwd() 

dataDir = '..\\data\\photos-exemplars' 

dirList = os.listdir(dataDir) 

dirSep = '\\' 

# Keep only jpgs in dataDir list 

nFile = len(dirList) 

for iFile in range(nFile): 

    if not( dirList[iFile].endswith('jpg') ): 

        dirList.pop(iFile) 

#%% Save plot module 

def savePlot(img, segMask, imgName, segTitle, nSeg, savePath): 

    (f, ax) = plt.subplots(1, 2) 

    ax[0].imshow(img) 

    ax[1].imshow(segMask, cmap = 'tab20') 

    ax[0].set_xticks([]) 

    ax[0].set_yticks([]) 

    ax[1].set_xticks([]) 

    ax[1].set_yticks([]) 

    ax[0].set_title(imgName) 
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    ax[1].set_title(segTitle) 

    ax[1].set_xlabel('Segments = ' + str(nSeg)) 

             

    f.savefig(savePath, dpi = 300, format = 'png') 

     

    plt.close() 

 

#%% Segment image by slic algorithm 

 

nImg = len(dirList) 

 

slicCompact = [1, 10, 100] 

slicSeg = [10, 100, 1000] 

slicSigma = [0.1, 1, 10] 

 

nCompact = len(slicCompact) 

nSlicSeg = len(slicSeg) 

nSigma = len(slicSigma) 

 

for iImg in range(nImg):     

    # Load image, and resize to 384 x 384 pixels 

    img = skimage.io.imread( dirSep.join([workDir, dataDir, 

dirList[iImg]]) ) 

    img = img_as_float(img) 

    img = skimage.transform.resize(img, (384, 384)) 

         

    for iCompact in range(nCompact): 

        for iSeg in range(nSlicSeg): 

            for iSigma in range(nSigma): 

                # Segment image by slick method 

                segMaskSLIC = skimage.segmentation.slic(img,  

                    n_segments = slicSeg[iSeg],  

                    compactness = slicCompact[iCompact], 

                    sigma = slicSigma[iSigma], 

                    multichannel = True, convert2lab = True) 

 

                imgName = 

dirList[iImg][0:dirList[iImg].find('_')] 

                segTitle = ('SLIC,\n' + 'n-seg = ' +  

                            str(slicSeg[iSeg]) + ', compact = ' +  
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str(slicCompact[iCompact]) + ', 

$\sigma$ = ' + 

str(slicSigma[iSigma])) 

nSeg = segMaskSLIC.max() + 1 

segFileName = (imgName + '_seg-slic_n-seg' + 

str(slicSeg[iSeg]) + '_compact' + 

str(slicCompact[iCompact]) + 

'_sigma' + 

str(slicSigma[iSigma]) + '.png') 

savePath = dirSep.join([workDir, 'plot', 'segmen-

tation', 

'slic', segFileName]) 

savePlot(img, segMaskSLIC, imgName, segTitle, 

nSeg, 

savePath) 

B.4 The dilated neural network (Zhou et al. 2017) 

""" 

Explore image segmentation by a dilated neural network (Zhou, et 

al., 2017). 

Reference: 

    Zhou, B., H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. 

Torralba. 2017.  

        Scene Parsing through ADE20K Dataset. Proceedings of the 

IEEE 

        Conference on Computer Vision and Pattern Recognition, 

5122-5130. 

@author: Carl R. Hart 

""" 

#dataDir = [home, '\\documents\\research\\natick\\data\\photos-

exemplars']; 

import os 

import sys 



ERDC/CRREL TR-18-7  52 

 

import numpy 

import matplotlib.patches as mpatches 

from matplotlib import pyplot, colors 

np = numpy 

plt = pyplot 

 

import skimage.io 

import skimage.color 

import skimage.filters 

import skimage.filters.rank 

import skimage.morphology 

import skimage.segmentation 

import skimage.transform 

 

from skimage import img_as_float, img_as_ubyte 

 

# Get directories and listing of photos 

workDir = os.getcwd() 

dataDir = '..\\data\\photos-exemplars' 

dirList = os.listdir(dataDir) 

 

dirSep = '\\' 

 

# pyCaffe interface directory 

pyCaffeDir = dirSep.join([workDir, 'caffe', 'python']) 

 

# Add pyCaffe to system path 

sys.path.insert(0, pyCaffeDir) 

 

import caffe 

 

# MIT segmentation model directory 

mitSegDir = dirSep.join([workDir, 'segment-mit']) 

modelDef = dirSep.join([mitSegDir, 'deploy_DilatedNet.prototxt']) 

modelWeights = dirSep.join([mitSegDir, 'Dilated-

Net_iter_120000.caffemodel']) 

 

# Load segmentation model based on a dilated network architecture 

net = caffe.Net(modelDef, modelWeights, caffe.TEST) 

 



ERDC/CRREL TR-18-7  53 

 

# Keep only jpgs in dataDir list 

nFile = len(dirList) 

 

for iFile in range(nFile): 

    if not( dirList[iFile].endswith('jpg') ): 

        dirList.pop(iFile) 

 

#%% Get segmentation labels for dilated neural network 

 

def getLabels(pathToLabels): 

     

    dirSep = '\\' 

     

    labelsFile = dirSep.join([pathToLabels, 'objectInfo150.txt']) 

     

    labels = [] 

     

    with open(labelsFile, 'r') as f: 

     

        # Skip over header 

        s = f.readline() 

        s = f.readline() 

         

        while len(s) > 0: 

            iTab = s.rfind('\t') 

            iComma = s[iTab + 1:].find(',') 

            iNewLine = s[iTab + 1:].find('\n') 

             

            if not( iComma == -1): 

                labels.append(s[(iTab + 1):(iTab + iComma + 1)]) 

            else: 

                labels.append(s[(iTab + 1):(iTab + iNewLine + 

1)]) 

                 

            s = f.readline()  

             

    return labels 

 

#%% Save dilated net segmentation plot 
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def saveDNetPlot(img, segMask, imgName, segTitle, nSeg, segLa-

bels, savePath): 

     

    # Generate segmentation legend 

    segId = np.unique(segMask) 

    segId = np.asarray(segId, dtype = int) 

     

    nPixel = len(segMask.flatten()) 

     

    segLegend = [] 

     

    for iSegId in range(len(segId)): 

        nPixelInSeg = np.count_nonzero(segMask == segId[iSegId]) 

         

        segLegend.append((segLabels[segId[iSegId]] + ', ' +  

                          '{:.1%}'.format(nPixelInSeg/nPixel))) 

     

    # Generate plot 

    (f, ax) = plt.subplots(1, 2) 

             

    ax[0].imshow(img) 

    segImg = ax[1].imshow(segMask, cmap = 'tab20', norm = col-

ors.LogNorm()) 

     

    ax[0].set_xticks([]) 

    ax[0].set_yticks([]) 

    ax[1].set_xticks([]) 

    ax[1].set_yticks([]) 

     

    ax[0].set_title(imgName) 

     

    ax[1].set_title(segTitle) 

    ax[1].set_xlabel('Segments = ' + str(nSeg)) 

     

    # Add legend to an image: 

    # https://stackoverflow.com/questions/25482876/how-to-add-

legend-to-imshow- 

    #   in-matplotlib     

     

    # Get the colors of the segmentation ids, according to the 
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cmap used by  

    # imshow 

    segColors = [segImg.cmap(segImg.norm(value)) for value in 

segId] 

    # Create a patch (proxy artist) for every color  

    patches = [mpatches.Patch(color = segColors[i], label = seg-

Legend[i])  

                for i in range(len(segId))] 

    # Put those patched as legend-handles into the legend 

    ax[0].legend(handles = patches, bbox_to_anchor = (0, -0.6, 

2.2, 0.5),  

      ncol = 3, loc = 2, mode = 'expand', borderaxespad = 0) 

             

    f.savefig(savePath, dpi = 300, format = 'png') 

     

    plt.close()  

     

#%% Segment image by a dilated neural network (Zhou et al., 2016, 

2017) 

# Image size requirements and mean of RGB channels are taken from 

the m-file, 

# https://github.com/CSAILVision/sceneparsing/blob/master/de-

moSegmentation.m 

 

segLabels = getLabels(mitSegDir) 

 

nImg = len(dirList) 

 

sigma = [0.1, 1, 10] 

 

nSigma = len(sigma) 

 

for iImg in range(nImg):     

    # Load image 

    img = skimage.io.imread( dirSep.join([workDir, dataDir, 

dirList[iImg]]) ) 

    img = img_as_float(img) 

     

    # Resize image, caffe model requires an image in 384 x 384 

pixels 
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    img = skimage.transform.resize(img, (384, 384)) 

 

    # Mean of red, green, and blue channels of the trained seg-

mentation dataset 

    mu = np.array([109.5388, 118.6897, 124.6901]) 

 

    # Set up transformations to apply to image; subtract mean 

from each color  

    # channel, transpose dimensions of image from H x W x C 

(height, width,  

    # channel) to C x H x W, set scale of image from [0, 1] to 

[0, 255], and  

    # swap channel ordering from RGB to BGR 

    transformer = caffe.io.Transformer({'data': (1, img.shape[2], 

img.shape[0],  

                                                 img.shape[1])}) 

    transformer.set_mean('data', mu) 

    transformer.set_transpose('data', (2, 0, 1)) 

    transformer.set_raw_scale('data', 255) 

    transformer.set_channel_swap('data', (2, 1, 0)) 

 

    for iSigma in range(nSigma): 

        # Apply Gaussian filter to image 

        img = skimage.filters.gaussian(img, sigma = 

sigma[iSigma],  

                                       multichannel = True) 

         

        # Get image segmentation probabilities from dilated neu-

ral network  

        # (better than conv-net, see Zhou et al., 2016) 

        net.blobs['data'].data[...] = transformer.prepro-

cess('data', img) 

        segProb = net.forward() 

 

        # Network output is a dictionary, with a single key; get 

values 

        dictKey = list(segProb.keys()) 

        segProbVal = segProb[dictKey[0]] 

 

        # Get indices of most likely class values; each index 
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corresponds to a  

        # member of the "stuff" class 

        segProbVal = np.squeeze(segProbVal) 

        segMaskDN = np.argmax(segProbVal, axis = 0) 

        segMaskDN = img_as_ubyte(segMaskDN) - 1 

         

        imgName = dirList[iImg][0:dirList[iImg].find('_')] 

        segTitle = ('DilatedNet, $\sigma$ = ' + 

str(sigma[iSigma])) 

        nSeg = len(np.unique(segMaskDN)) 

        segFileName = (imgName + '_seg-dilatednet' + '_sigma' + 

                       str(sigma[iSigma]) + '.png') 

        savePath = dirSep.join([workDir, 'plot', 'segmentation', 

'dn',  

                                segFileName]) 

 

        saveDNetPlot(img, segMaskDN, imgName, segTitle, nSeg, 

segLabels,  

                     savePath) 

 

B.5 CLAHE 

import os 

 

import skimage.io as io 

import skimage.exposure as ex 

 

# Initialize data and results directories 

workDir = os.getcwd() 

dataDir = '.\\data\\photos-exemplars' 

dirList = os.listdir(dataDir) 

resultsDir = '.\\results\\Herb\\CLAHE' 

 

nFile = len(dirList) 

dirSep = '\\' 

 

for iFile in range(nFile): 

    fullPath = dirSep.join([dataDir, dirList[iFile]]) 

    img = io.imread(fullPath) 

    equalizeLocal = ex.equalize_adapthist(img) # CLAHE 
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    path = dirSep.join([resultsDir, dirList[iFile]]) 

   io.imsave(path, equalizeLocal) 

B.6 Unsharp Masking 

import os 

import skimage.io as io 

import skimage.filters as filter 

from skimage import img_as_float 

import numpy as np 

# Initialize data and results directories 

workDir = os.getcwd() 

dataDir = '.\\data\\photos-exemplars' 

dirList = os.listdir(dataDir) 

resultsDir = '.\\results\\Herb\\USM' 

nFile = len(dirList) 

dirSep = '\\' 

for iFile in range(nFile): 

    fullPath = dirSep.join([dataDir, dirList[iFile]]) 

    img = img_as_float(io.imread(fullPath)) 

    # Gaussian blur (blur-size = 1.5) 

    blurred = filter.gaussian(img, 1.5, multichannel=True) 

    sharper = np.clip(img + (img - blurred) * 1.5, 0, 1.0) 

    path = dirSep.join([resultsDir, dirList[iFile]]) 

    io.imsave(path, sharper) 
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