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Abstract 

Many different distributions are used to model statistics of waves that 
have been randomly scattered in atmospheric and terrain environments. 
These distributions have varying analytical advantages and ranges of phys-
ical applicability. This report reviews several basic distributions and dis-
cusses how they can be extended to include spatial and temporal variabil-
ity in the scattering process. For this purpose, a compound probability 
density function (pdf) can be introduced in which a basic pdf describing 
the underlying scattering process is modulated by a second pdf describing 
parametric uncertainties in the scattering. We describe some useful new 
formulations based on the compound pdf, including strong and Rytov 
(lognormal) scattering processes modulated by the environment. These 
new formulations lead to relatively simple marginalized signal power dis-
tributions (Lomax and lognormal, respectively). Furthermore, we show 
how the conditional scattered signal pdf may be viewed as a likelihood 
function in which the modulating pdf is the Bayesian conjugate prior. The 
parameters of the modulating process can thus be refined by simple se-
quential Bayesian updating. Finally, the impact of the parametric uncer-
tainties on signal detection and receiver operating characteristic curves is 
discussed and shown to be a very important consideration in practical ap-
plications. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

Acoustic, seismic, and electromagnetic waves are scattered by many types 
of phenomena and objects occurring in the atmosphere, ocean, and earth, 
including turbulence, internal (buoyancy) waves, particles, rocks, buried 
man-made objects, vegetation, hills, and buildings. The wave scattering 
impacts the performance of many systems used to detect signals, com-
municate, and remotely sense the environment. Since the scattering typi-
cally depends on fine and often dynamic details of the environment that 
cannot be resolved with most types of models and measurements, we typi-
cally view the scattering as a random process; that is, we endeavor to de-
velop statistical models for the scattered signals. 

In this report, we address the problem of modelling the statistical distribu-
tion (more formally, the probability density function, or pdf) of the scat-
tered signal power at one or more receivers after the signal has been ran-
domly scattered by the environment. Many statistical models, physics 
based and empirical, have been previously formulated for such random 
signal variations caused by wave scattering.* The various models are in-
tended for situations such as random scattering by turbulence or particles, 
multipath propagation, interference, scattering by rough surfaces, and su-
perposition of multiple sources. However, models are available for only 
simple, idealized situations. 

Figure 1 shows a conceptual diagram of the general problem. For present 
purposes, we simplify the discussion by assuming that the signals are har-
monic or filtered into a narrow passband. The signal at a receiver consists 
of the signal of interest, which propagates along an unscattered (direct) 
path such that the signal amplitude and power undergo only small varia-
tions. The randomly scattered paths contribute incoherently, meaning that 
they arrive at the receiver with randomized amplitudes or phases. Weak 
scattering refers to situations where the energy propagated along the sta-
ble direct path dominates the received signal whereas strong scattering 

                                                   
* The following are among the main books written on the subject, to which the interested reader may re-

fer for more background: Flatté et al. (1979), Rytov et al. (1989), Andrews and Phillips (2005), 
Ostashev and Wilson (2015). 



ERDC TR-18-7 2 

 

refers to situations where the energy propagated along randomly scattered 
paths dominates.*  

Figure 1.  Conceptual diagram of the problem considered in this paper. The received 
signal consists of the signal of interest, which propagates along an unscattered (direct) 

path and multiple randomly scattered (incoherent) paths, plus noise originating from 
multiple, random sources. 

 

We also depict in the figure noise originating from multiple, random 
sources, which, like the scattered paths, arrive at the receiver incoherently. 
The noise is an important consideration for problems involving signal de-
tection. The random scattering and noise mechanisms lead to a probabilis-
tic distribution for the signal and noise. Based on the signal and noise dis-
tributions, we may wish to furthermore calculate the probabilities of detec-
tion (for the signal of interest) and false alarm or other metrics describing 
the performance of a system.  

Although we have framed the problem very generally in this report, wave 
scattering phenomena in terrestrial environments is of timely importance 

                                                   
* A more rigorous discussion of the difference between weak and strong scattering can be found in 

Ostashev and Wilson (2017). The definition between the two regimes is best based on the logarithm of 
the normalized signal amplitude (log-amplitude), designated by the symbol 𝜒𝜒. Specifically, the variance 
of 𝜒𝜒, 〈𝜒𝜒2〉, is less than one for weak scattering and close to one for strong scattering. Ostashev and Wil-
son (2017) suggest that 〈𝜒𝜒2〉 = 0.7 is a useful boundary for distinguishing between weak and strong 
scattering. It is also important to keep in mind that while the signal may undergo fluctuations in the 
phase (designated by the symbol 𝜙𝜙), the phase variance 〈𝜙𝜙2〉 impacts the coherence of the signal but 
not the strength of the scattering. Qualitatively, one may think of three distinct regimes for the scat-
tered signals: weak scattering/strong coherence (〈𝜒𝜒2〉 ≪ 1 and 〈𝜙𝜙2〉 ≪ 1), weak scattering/weak co-
herence (〈𝜒𝜒2〉 ≪ 1 and 〈𝜙𝜙2〉 ≫ 1), and strong scattering/weak coherence (〈𝜒𝜒2〉~1 and 〈𝜙𝜙2〉 ≫ 1). 
These regimes can be conveniently depicted using strength-wave parameter diagrams, as shown by 
Ostashev and Wilson (2017). 
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in many Army applications. For example, operations in urban environ-
ments depend on effective communication between friendly forces and on 
detection of hostile forces. But the interaction of radio frequency (RF), 
acoustic, and other types of signals with the urban terrain results in com-
plicated scattering effects, including multipath propagation and diffraction 
around buildings. These effects lead to “drop outs” (random fading) in the 
received signal energy as the emitter and receiver move through the urban 
environment. 

Other important examples of wave scattering in Army applications include 
(1) the interaction of optical and acoustic waves with atmospheric turbu-
lence, which degrades the performance of imaging and targeting systems; 
(2) obscuration of targets in forests and jungles; and (3) the scattering of 
seismic and radar waves by inhomogeneities in the soil (e.g., rocks), which 
complicates the ability to discern buried objects such as mines and unex-
ploded ordinance.  

1.2 Objectives 

As mentioned in the preceding section, statistical modeling of random sig-
nal variations caused by wave scattering is already a mature area of re-
search. The primary purpose is to show how such models can be extended 
to incorporate uncertainties in the scattering process and how algorithms 
can be developed that adapt to such uncertainties. The uncertainties are 
important because our knowledge of the terrestrial environment is limited 
such that we cannot make perfect predictions of wave scattering and its 
impacts on signal performance. The following are some important practi-
cal examples: 

1. The scattering of acoustic, optic, and RF signals by the atmosphere de-
pends on the local turbulence intensity, which varies randomly due to 
wind gusts, thermal plumes, dust clouds, and other phenomena. The vari-
ability of the turbulence in space and time (called intermittency) cannot be 
described deterministically and is therefore a source of uncertainty when 
predicting system performance. 

2. Similarly, spatial variability of natural and man-made terrain features may 
lead to variations in surface and volumetric scattering. For example, the 
density and size of rocks, buildings, roadways, and trees, etc., will vary 
from one location to another. Many of the terrain features are too small to 
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be measured and incorporated directly into predictions; therefore, we 
must treat them as a source of uncertainty. 

3. Predictions of signal propagation and sensor performance are often based 
on forecasts of the atmospheric state (i.e., numerical weather forecasts) at 
a future time. Since the forecast accuracy is limited by observations input 
to the model, imperfect model physics, and chaos, the atmospheric repre-
sentation is a source of uncertainty in the signal predictions. 

From the perspective of modeling wave scattering, these situations may all 
be regarded as examples of parametric uncertainties; that is, although we 
may have a specific model in mind for how the terrestrial environment 
scatters the signal, our knowledge of the parameters of that model is im-
perfect. We must assess these uncertainties and their impacts in order to 
put reasonable bounds on the range of sensor-system or communication-
system performance.  

1.3 Approach 

This report is intended for a technical audience with some basic 
knowledge of statistics such as random variables (rvs) and modeling with 
probability density functions (pdfs). Some prior knowledge of wave scat-
tering, signal processing, and/or Bayesian statistics is helpful but is not as-
sumed. The report deals largely with statistical theory, with some discus-
sion of the practical implications. Applications and comparisons to experi-
mental data in various environments are planned for future studies. 

The primary purpose of this report is to address the problem of parametric 
uncertainties in wave scattering. To this end, however, the report also pro-
vides an overview of single-variate (chapter 2) and multivariate (chapter 3) 
distributions for modeling randomly scattered signals. These chapters ap-
ply to signals along a single transmission path (one source, one receiver) 
and along multiple transmission paths (one or more sources and one or 
more receivers), respectively. While we do not provide here a comprehen-
sive review of random signal distributions that have been used in the liter-
ature, the report provides a concise reference, which usefully consolidates 
the most important results. The discussion on multivariate distributions 
also incorporates some new results. 

In chapter 4, we introduce the problem of modeling parametric uncertain-
ties as based on compound pdfs. The essential idea is that the compound 
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pdf involves two distributions, one representing the wave scattering pro-
cess and the other representing the uncertainties in the parameters of that 
process. This approach is shown to lead to a variety of possible distribu-
tions for modeling random signals. The common theme that emerges is 
how uncertainties dramatically impact the “tails” of the signal distribu-
tions, that is, the frequency of extreme variations. 

Also in chapter 4, we show how the problem of modeling parametric un-
certainties naturally relates to Bayesian inference of the wave scattering 
parameters. This relationship can be exploited by modeling the parametric 
uncertainties with Bayesian conjugate priors, which enables identification 
of statistical models for the parametric uncertainties with convenient ana-
lytical solutions. It also leads to sequential updating algorithms, which re-
fine an initial prediction of the wave scattering parameters as new signal 
observations (i.e., observations of the random scattering process) become 
available. Referring to Figure 1, suppose we make an initial prediction for 
the signal statistics at the receiver (e.g., a prediction for the mean and vari-
ance). We transmit a signal from the source to the receiver. This transmis-
sion provides one random sample from the presumed distribution. On the 
basis of this sample, we can refine our prediction of the signal statistics. 
After repeating this process many times, we can provide a much more ac-
curate characterization of the signal statistics than was possible initially.  

In chapter 5, we explore how the parametric uncertainties impact the im-
portant practical problem of detecting a signal in noise. The problem is 
formulated in the classic manner as based on receiver operating character-
istic (ROC) curves. We show how the parametric uncertainties have very 
dramatic effects on the ROC curves, thus indicating that conventional 
methods, which do not account for the uncertainties, potentially provide a 
very misleading assessment of system performance. 

In chapter 6, we consider practical application of approaches described in 
chapters 2–4 to the modeling of signal transmissions in the presence of 
multiple sources of uncertainty regarding the source, receiver, and envi-
ronmental parameters. The chapter also discusses formulation of multi-
level models, which involve multiple levels of parametric uncertainties. 
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2 Single-Variate Distributions (Single 
Transmission Path) 

In this section, we review distributions for single transmission paths (i.e., 
situations in which there is a single source and receiver). Such distribu-
tions are single variate. In general, we write the pdf for the scattered signal 
as 𝑝𝑝(𝑠𝑠|𝜽𝜽), where 𝑠𝑠 is the signal power at the receiver and 𝜽𝜽 is a vector (set) 
of statistical parameters used to represent the pdf. (In this report, bolding 
is used to indicate vectors.) For a normal distribution, for example, 𝜽𝜽 
would typically consist of the mean m and variance 𝜎𝜎2. The vertical bar is 
used to separate the random variable (rv) (s in this case) from the distribu-
tion parameters. 

In this chapter, we first consider the exponential pdf, which is applicable 
to strong scattering. Next, we consider the lognormal pdf, which is applica-
ble to weak scattering. Then, we consider two distributions that can be 
used for both weak and strong scattering, namely the Rice and gamma 
pdfs. Lastly, we consider an extension of the gamma pdf called the gener-
alized gamma pdf. 

2.1 Exponential (strong scattering) 

In conditions of strong scattering, the received signal consists of many in-
dependent, randomized contributions. The real and imaginary parts of the 
complex signal are then zero mean and normally distributed with equal 
variance. This leads to an exponential pdf for the signal power or, equiva-
lently, a Rayleigh distribution for the amplitude (e.g., Burdic 1991 and 
Flatté et al. 1979).  

To show how the exponential pdf arises, let 𝑅𝑅 = 𝑋𝑋 + 𝑖𝑖𝑖𝑖, where R is the ran-
dom complex amplitude of the narrowband signal, X is the random real 
part, and Y is the random imaginary part. By assumption, X and Y are 
drawn from independent normal distributions with zero mean and vari-
ance 𝜏𝜏2. That is, the pdf for the rv X is 

𝑝𝑝(𝑥𝑥) = 𝒩𝒩(𝑥𝑥|0, 𝜏𝜏2) =
1

√2𝜋𝜋𝜏𝜏
𝑒𝑒−𝑥𝑥2 2𝜏𝜏2⁄  
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and likewise for Y. Here we have used 𝒩𝒩(𝑥𝑥|𝑚𝑚,𝜎𝜎2) to indicate a normal pdf 
with mean 𝑚𝑚 and variance 𝜎𝜎2. The probability that 𝑅𝑅 has a magnitude less 
than some value 𝑟𝑟 is thus 

𝑃𝑃(|𝑅𝑅| ≤ 𝑟𝑟) =
1

2𝜋𝜋𝜏𝜏2
� � 𝑈𝑈�

𝑥𝑥2 + 𝑦𝑦2

𝑟𝑟2
� 𝑒𝑒−𝑥𝑥2 2𝜏𝜏2⁄ 𝑒𝑒−𝑦𝑦2 2𝜏𝜏2⁄

∞

−∞
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

∞

−∞
, 

where 𝑈𝑈(𝜉𝜉) is a function that equals 1 when 0 ≤ 𝜉𝜉 ≤ 1 and zero otherwise. 
Converting the integral to cylindrical coordinates (𝜌𝜌,𝜃𝜃), where 𝑥𝑥 = 𝜌𝜌 cos 𝜃𝜃 
and 𝑦𝑦 = 𝜌𝜌 sin 𝜃𝜃, we have 

𝑃𝑃(|𝑅𝑅| ≤ 𝑟𝑟) =
1

2𝜋𝜋𝜏𝜏2
� � 𝑒𝑒−𝜌𝜌2cos2𝜃𝜃 2𝜏𝜏2⁄ 𝑒𝑒−𝜌𝜌2sin2𝜃𝜃 2𝜏𝜏2⁄

𝑟𝑟

0
𝜌𝜌 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

2𝜋𝜋

0
=

1
𝜏𝜏2
� 𝑒𝑒−𝜌𝜌2 2𝜏𝜏2⁄ 𝜌𝜌
𝑟𝑟

0
𝑑𝑑𝑑𝑑. 

Changing the variable of integration to 𝑠̅𝑠 = 𝜌𝜌2 2𝜏𝜏2⁄ , we readily find 

𝑃𝑃(𝑆𝑆 ≤ 𝑠𝑠) = � 𝑒𝑒−𝑠̅𝑠
𝑠𝑠 2𝜏𝜏2⁄

0
𝑑𝑑𝑠̅𝑠 = 1 − 𝑒𝑒−𝑠𝑠 2𝜏𝜏2⁄ , 

where 𝑠𝑠 = 𝑟𝑟2 and 𝑆𝑆 = |𝑅𝑅|2 is a random sample of the signal power. The 
preceding equation gives the cumulative distribution function (cdf) for s. 
To find the pdf, we differentiate with respect to s, the result being 

 𝑝𝑝(𝑠𝑠) =
1

2𝜏𝜏2
𝑒𝑒−𝑠𝑠 2𝜏𝜏2⁄ . (1) 

In the statistical literature, the exponential pdf is often specified with the 
notation  

 Exp(𝑠𝑠|𝜆𝜆) = 𝜆𝜆 exp(−𝜆𝜆𝜆𝜆), (2) 

where 𝜆𝜆 is usually called the rate parameter. Comparing equations (1) and 
(2), we see that the former is an exponential pdf with rate parameter 𝜆𝜆 =
1 2𝜏𝜏2⁄ .  

Since the parameter set 𝜽𝜽 for the exponential pdf consists of just one pa-
rameter, 𝜆𝜆, we thus indicate the signal pdf in the following equivalent 
forms: 

 𝑝𝑝(𝑠𝑠|𝜽𝜽) = 𝑝𝑝(𝑠𝑠|𝜆𝜆) = Exp(𝑠𝑠|𝜆𝜆) = 𝜆𝜆 exp(−𝜆𝜆𝜆𝜆). (3) 
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We define the mean and the variance of s as 𝑚𝑚 = 〈𝑠𝑠〉 and 𝜎𝜎2 = 〈(𝑠𝑠 − 〈𝑠𝑠〉)2〉, 
respectively. The angle brackets indicate the expected value of an rv. For 
the exponential pdf, it can be shown that 𝑚𝑚 = 𝜆𝜆−1 and 𝜎𝜎2 = 𝜆𝜆−2. Hence the 
normalized variance, 𝜎𝜎2/𝑚𝑚2, is 1 for the exponential pdf. Signals with a 
normalized variance of 1 are called saturated; such saturation is a defining 
characteristic of strong scattering. Furthermore, since 𝑚𝑚 = 2𝜏𝜏2, for the ex-
ponential pdf, the mean scattered power equals the sum of the variances of 
the real and imaginary components of the signal. 

Alternatively, we could parameterize the exponential pdf using the recip-
rocal of 𝜆𝜆, which is designated here by the symbol 𝜃𝜃 (without bolding) and 
referred to as the scale parameter. That is,  

 𝑝𝑝(𝑠𝑠|𝜽𝜽) = 𝑝𝑝(𝑠𝑠|𝜃𝜃) = Exp(𝑠𝑠|𝜃𝜃−1) =
1
𝜃𝜃

 exp �−
𝑠𝑠
𝜃𝜃
�. (4) 

In this report, we will generally parameterize the exponential pdf using 𝜆𝜆 
although in some cases, such as for describing turbulent intermittency in 
section 4.3, it will be more convenient to use 𝜃𝜃. 

Section 2.4 will provide example plots of the exponential pdf as it happens 
to be a special case of the gamma distribution, which is considered in that 
section. 

2.2 Lognormal (weak scattering in the Rytov approximation) 

For a lognormal pdf, the logarithm of the rv is normally distributed. This 
pdf is appropriate for situations involving weak scattering and follows 
from the Rytov approximation, which is discussed in many texts on wave 
propagation in random media (Flatté et al. 1979; Rytov et al. 1989; An-
drews and Phillips 2005). In both RF and acoustical engineering, signals 
are often measured in decibels (dB), which are ten times the base-ten loga-
rithm of the signal power, or twenty times the base-ten logarithm of the 
amplitude. Adoption of a lognormal pdf amounts to assuming that the sig-
nal in dB is normally distributed.  

For the lognormal model, the logarithm of the signal, 𝜂𝜂 = ln 𝑠𝑠, is normally 
distributed: 

 
p(η|µ,ϕ) = 𝒩𝒩(η|µ,ϕ) =

1
ϕ√2π

exp �−
(η − µ)2

2ϕ2 �. (5) 
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Here, 𝜇𝜇 and 𝜙𝜙2 are the mean and variance of 𝜂𝜂. We call these parameters 
the log-mean and log-variance, respectively. By a transformation of varia-
bles to 𝑠𝑠 = exp 𝜂𝜂, we arrive at the lognormal pdf: 

 𝑝𝑝(𝑠𝑠|𝜇𝜇,𝜙𝜙) = Lognorm(𝑠𝑠|𝜇𝜇,𝜙𝜙) =
1

𝑠𝑠𝑠𝑠√2𝜋𝜋
exp �−

(ln 𝑠𝑠 − 𝜇𝜇)2

2𝜙𝜙2 �. (6) 

 
The mean of the signal 𝑠𝑠 can be shown to be 

𝑚𝑚 = 𝑒𝑒𝜇𝜇+𝜙𝜙2/2 

whereas the variance is 

𝜎𝜎2 = �𝑒𝑒𝜙𝜙2 − 1�𝑒𝑒2𝜇𝜇+𝜙𝜙2 = �𝑒𝑒𝜙𝜙2 − 1�𝑚𝑚2. 

Solving the two preceding equations for the log-mean, we find 

 𝜇𝜇 = ln𝑚𝑚 −
1
2

ln�1 +
𝜎𝜎2

𝑚𝑚2� , (7) 

and for the log-variance, 

 𝜙𝜙2 = ln�1 +
𝜎𝜎2

𝑚𝑚2�. (8) 

Section 2.4 will provide example plots of the lognormal pdf, comparing it 
to the gamma pdf. 

In some cases, the lognormal pdf can be approximated by a normal pdf. To 
see this, let us write 𝑠𝑠 = 𝑚𝑚 + 𝜎𝜎𝜎𝜎′ = 𝑚𝑚(1 + 𝜎𝜎𝜎𝜎′ 𝑚𝑚⁄ ), where 𝑠𝑠′ is a fluctuation 
(order unity) in s as scaled by 𝜎𝜎. If we assume that 𝜎𝜎 𝑚𝑚⁄ ≪ 1, then 𝜂𝜂 =
ln 𝑠𝑠 ≅ ln𝑚𝑚 + 𝜎𝜎𝜎𝜎′ 𝑚𝑚⁄ . Since 𝜂𝜂 is normally distributed, so too is 𝑠𝑠′. Based on 
this equation, the mean and variance 𝜂𝜂 are 𝜇𝜇 = ln𝑚𝑚 and 𝜙𝜙2 = 𝜎𝜎2 𝑚𝑚2⁄ . 
(Note that these resuls are consistent with equations (7) and (8), respec-
tively, when 𝜎𝜎 𝑚𝑚⁄ ≪ 1.) Finally, it follows that s is normally distributed 
with mean 𝑚𝑚 = 𝑒𝑒𝜇𝜇 and variance 𝜎𝜎2 = 𝜙𝜙2𝑒𝑒2𝜇𝜇. Since the lognormal pdf is in-
tended only for conditions of weak scattering, these relationships should 
be reasonable approximations. 
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As discussed earlier, decibel units are often used to represent the levels of 
RF and acoustic signals. Such units would correspond to the transfor-
mation 𝜉𝜉 = 10 log10𝑠𝑠 rather than 𝜂𝜂 = ln 𝑠𝑠 as above. It can be readily shown 
that 𝜉𝜉 = (10 ln(10)⁄ )𝜂𝜂. Thus, the lognormal signal model described here is 
equivalent to treating the signal in decibels after a rescaling. 

2.3 Rice (weak scattering in the Born approximation and strong 
scattering) 

Like the exponential pdf, the Rice pdf applies to a signal with normally dis-
tributed real and imaginary parts of equal variance. However, the mean 
may be nonzero. This pdf is derived in Burdic (1991) and Flatté et al. 
(1979). Andrews and Phillips (2005) associate the Rice pdf with the Born 
approximation for weak scattering. The Rice pdf is exact in the limit of 
strong scattering (normalized variance close to 1).  

Typically, the Rice pdf is written for the amplitude. For the signal power, 
the Rice pdf transforms to 

 
𝑝𝑝(𝑠𝑠|𝜽𝜽) = 𝑝𝑝(𝑠𝑠|𝜈𝜈, 𝜏𝜏) =

1
2𝜏𝜏2

exp�−
𝑠𝑠 + 𝜈𝜈2

2𝜏𝜏2
� 𝐼𝐼0 �

√𝑠𝑠𝜈𝜈
𝜏𝜏2

�. (9) 

Here, 𝐼𝐼0 is the modified Bessel function of the first kind of zero order, 𝜈𝜈 is 
the mean of the signal amplitude (the amplitude along the direct path 
shown in in Figure 1), and 𝜏𝜏2 is the variance of the real and imaginary 
parts. The mean of s can be shown to equal 𝑚𝑚 = 2𝜏𝜏2 + 𝜈𝜈 whereas the vari-
ance of s is 𝜎𝜎2 = 4𝜏𝜏4 + 4𝜏𝜏2𝜈𝜈2. Thus, given m and 𝜎𝜎2, we can determine the 
Rice pdf parameters as 𝜈𝜈2 = √𝑚𝑚2 − 𝜎𝜎2 and 𝜏𝜏2 = (𝑚𝑚− 𝜈𝜈2)/2. 

Section 2.4 provides example plots of the Rice pdf and compares it to the 
gamma pdf. 

2.4 Gamma (weak scattering approximation and strong scattering) 

The gamma pdf can be derived from the Nakagami distribution, which has 
been found empirically to be a suitable distribution for signal amplitude in 
the presence of multipath propagation (Suzuki 1977). The Nakagami pdf is 
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 𝑝𝑝(𝑟𝑟|𝜇𝜇,Ω) =
2𝜇𝜇𝜇𝜇𝑟𝑟2𝜇𝜇−1

Γ(𝜇𝜇)Ω𝜇𝜇
exp �−

𝜇𝜇𝑟𝑟2

Ω
�, (10) 

where Γ(∙) is the gamma function, r is the signal amplitude, 𝜇𝜇 is a shape 
parameter, and Ω is a parameter controlling the spread of the distribution. 

The gamma pdf follows directly from the Nakagami pdf when the latter is 
transformed from signal amplitude to power, 𝑠𝑠 = 𝑟𝑟2. For present pur-
poses, we write the gamma pdf with the two parameters being defined as 
k, which is the same as 𝜇𝜇 in the Nakagami pdf and is called the shape pa-
rameter, and 𝜆𝜆, which equals 𝜇𝜇 Ω⁄  in the Nakagami pdf and is called the 
rate parameter (as in the exponential pdf). We thus have 

 𝑝𝑝(𝑠𝑠|𝜽𝜽) = 𝑝𝑝(𝑠𝑠|𝑘𝑘, 𝜆𝜆) = Gamma(𝑠𝑠|𝑘𝑘, 𝜆𝜆) =
𝜆𝜆𝑘𝑘𝑠𝑠𝑘𝑘−1

Γ(𝑘𝑘) 𝑒𝑒−𝜆𝜆𝜆𝜆. (11) 

The mean of the gamma pdf is 𝑚𝑚 = 𝑘𝑘/𝜆𝜆 whereas the variance is 𝜎𝜎2 = 𝑘𝑘/𝜆𝜆2. 
Hence 𝑘𝑘 and 𝜆𝜆 can be determined by setting 𝑘𝑘 = 𝑚𝑚2/𝜎𝜎2 and 𝜆𝜆 = 𝑚𝑚/𝜎𝜎2.  

The gamma pdf, like the exponential, is sometimes parameterized using 
the inverse of 𝜆𝜆, namely 𝜃𝜃 = 𝜆𝜆−1, where 𝜃𝜃 is referred to as the scale param-
eter. 

The gamma pdf, like the Rice pdf, reduces exactly to the exponential pdf in 
the limit of strong scattering, which corresponds to 𝑘𝑘 = 1. Like the lognor-
mal pdf, it converges to a normal pdf when the normalized variance is 
small and thus can also be regarded as suitable for weak scattering. Specif-
ically, for large k, the gamma pdf approximates the normal pdf with mean 
𝑚𝑚 = 𝑘𝑘𝑘𝑘 and variance 𝜎𝜎2 = 𝑘𝑘𝜃𝜃2. Using the relationships 𝑚𝑚 = 𝑒𝑒𝜇𝜇 and 𝜎𝜎2 =
𝜙𝜙2𝑒𝑒2𝜇𝜇 as derived in section 2.2 for the lognormal pdf in conditions of weak 
scattering, we find 𝑘𝑘 = 𝜙𝜙−2 and 𝜃𝜃 = 𝜙𝜙2𝑒𝑒𝜇𝜇.  

Figure 2 compares the gamma distribution to the lognormal and Rice dis-
tributions (left and right parts of the figure, respectively). For these com-
parisons, the mean of all the pdfs has been set to one, and predictions for 
various values of the variance 𝜎𝜎2 are shown. Small values of the variance 
correspond to weak scattering whereas 𝜎𝜎2 = 1 corresponds to strong scat-
tering. For weak scattering, which is the intended application of the 
lognormal distribution, the lognormal, gamma, and Rice pdfs are nearly 
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identical. All have a normal-like appearance in this regime. For strong 
scattering, the Rice and gamma pdfs are identical, and they are also very 
similar for intermediate values of 𝜎𝜎2. The main conclusions to be drawn 
are that the lognormal is useful only for weak scattering whereas the Rice 
and gamma are reasonable for situations ranging from weak to strong 
scattering. 

Figure 2.  Plots of various pdf models (vertical axes) vs. signal power. Left: Gamma (solid 
lines) and lognormal (dashed lines) pdfs for various values of the variance normalized by the 
squared mean. Right: Gamma (solid lines) and Rice (dashed lines) pdfs for various values of 

the variance normalized by the squared mean.  

 

The pdfs shown in Figure 2 are for the untransformed signal power 𝑠𝑠. 
Since we often work with signal levels in decibels, it is interesting to com-
pare the pdfs on a logarithmic scale as well. Figure 3 compares pdfs for the 
gamma and lognormal distributions using two different logarithmic ab-
scissas (horizontal axes), namely the natural logarithm of the power (𝜂𝜂 =
ln 𝑠𝑠), and the level in decibels (i.e., 𝜉𝜉 = 10 log10 𝑠𝑠 = 10 𝜂𝜂/ ln 10 ≈ 4.343𝜂𝜂). 
With these logarithmic axes, of course, the lognormal pdf becomes a nor-
mal pdf. These plots also make apparent how the gamma pdf predicts 
more frequent “deep fading” (i.e., situations where the power is close to 
zero) than the lognormal pdf. Hence, a lognormal pdf will underestimate 
the occurrence of fading. 

The distributions for the logarithms show that, with the gamma pdf, the 
logarithm has a significant negative skewness (non-normal behavior) as 
the variance approaches 1; that is, large, negative fluctuations in the level 
tend to be more frequent than large, positive fluctuations. This behavior is 
often observed in sound-level recordings. Dyer (1970) shows that, when 𝑥𝑥 
is given by an exponential pdf (i.e., 𝑝𝑝(𝑠𝑠) = 𝜆𝜆 exp(−𝜆𝜆𝜆𝜆)), 𝜂𝜂 = ln 𝑠𝑠 has a 
mean of – ln 𝜆𝜆 − 𝛾𝛾 (where 𝛾𝛾 = 0.577 … is Euler’s constant) and a standard 
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deviation of 𝜋𝜋/√6. Hence (referring back to the discussion in the last para-
graph of section 2.2), the standard deviation of the level in decibels is 
(𝜋𝜋/√6)(10/ ln 10) = 5.57 … dB. Thus, when strongly scattered signals are 
analyzed in decibels, we expect to see a negatively skewed distribution 
with a standard deviation around 5.57 dB. 

Figure 3.  Comparison of gamma (solid lines) and lognormal (dashed lines) distributions for a 
mean of m = 1 and the variance set to five different values as shown in the legend. The 

horizontal axis for the plot on the left is the natural logarithm (ln x) of the random variable 
(signal power); the horizontal axis on the right is in decibels (10 log x). 

 

2.5 Generalized gamma (weak and strong scattering with extreme 
events) 

Ewart and Percival (1986) advocate for the generalized gamma pdf on the 
basis of its versatility and ability to approximate a wide variety of other 
commonly used pdfs for wave scattering. Unlike the pdfs considered thus 
far, which had either one parameter (the exponential) or two parameters 
(the lognormal, Rice, and gamma), the generalized gamma has three pa-
rameters. It retains k and 𝜆𝜆 from the gamma pdf but incorporates a new 
parameter, b. It is given by 

 𝑝𝑝(𝑠𝑠|𝜽𝜽) = 𝑝𝑝(𝑠𝑠|𝑘𝑘, 𝜆𝜆, 𝑏𝑏) =
𝑏𝑏𝜆𝜆𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏−1

𝛤𝛤(𝑘𝑘) 𝑒𝑒−(𝜆𝜆𝜆𝜆)𝑏𝑏 . (12) 

The generalized gamma pdf reduces to the ordinary gamma pdf when 𝑏𝑏 =
1. Ewart and Percival demonstrated that the generalized gamma pdf 
agrees well with ocean acoustic scattering data from a variety of experi-
ments. The additional parameter b provides flexibility in dealing with dis-
persion of the data (i.e., deviations from the number of extreme events as 
would be predicted from a normal or other baseline distribution). 
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Figures 4 and 5 show the generalized gamma distributions for various val-
ues of b for the cases 𝑘𝑘 = 1 (strong scattering) and 𝑘𝑘 = 8 (weak scattering), 
respectively. For both figures, the parameter 𝜆𝜆 was selected such that the 
mean of the signal power is 1 (using equations from Ewing and Percival 
1986). The parameter b is seen to control the “tails” (extreme values) of 
the distribution. As b decreases, the pdfs change from a normal-like ap-
pearance to having tails exceeding the gamma distribution for the corre-
sponding value of k. Based on their empirical fits to ocean acoustic data, 
Ewart and Percival found that b is usually less than 1; that is, in real data, 
elevated tails (overdispersion) are typically present. 

Figure 4.  Generalized gamma distribution for strong scattering (k = 1). Predictions are shown 
for various values of the parameter b. The dashed line is the ordinary gamma distribution with 

k = 1 (i.e., the exponential distribution). Left is a plot with linear axes whereas right is a plot 
with a logarithmic axis for the pdf. 

 

Figure 5.  Same as Fig. 4 except that the distributions are for k = 8.  
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3 Multivariate Distributions (Multiple 
Transmission Paths) 

Up until this point, we have considered signal transmissions along a single 
path. Let us now suppose there are multiple paths and that the transmis-
sions along these paths may be correlated to some degree. In particular, 
we have in mind a situation where there are multiple source and receiver 
locations. Each source/receiver pair provides a different transmission path 
so that there is a total of 𝑁𝑁 = 𝑁𝑁𝑠𝑠 × 𝑁𝑁𝑟𝑟 paths, where 𝑁𝑁𝑠𝑠 is the number of 
sources and 𝑁𝑁𝑟𝑟 the number of receivers. The multivariate distribution rep-
resents the received signal power along each of these 𝑁𝑁 paths. The correla-
tion of the received signal levels depends on the proximity and overlap of 
the paths. For now, we will not address how to model and calculate the 
path correlations. 

Because of reflections or refraction, multiple transmission paths may also 
occur when there is a single source/receiver pair. Whether these paths are 
considered to be distinct, identifiable paths or part of the random scatter-
ing process depends on the modeling perspective. One practically im-
portant example is urban environments, for which acoustic and RF energy 
may reflect from buildings and other surfaces before reaching the receiver. 
Even in a flat, open environment, there may be direct- and ground-re-
flected ray paths, for which it is important to consider uncertainties in 
modeling the interference between the ray paths (e.g., Ostashev et al. 
2011). 

3.1 Lognormal (weak scattering in the Rytov approximation) 

The lognormal model as described in section 2.2 applied to weak scatter-
ing along a single path. Since multivariate normal distributions have been 
well studied and lead to analytic solutions, it is straightforward to extend 
this treatment to multiple paths. The multivariate normal distribution for 
a column vector 𝜼𝜼 of length 𝑁𝑁 is given by 

 𝒩𝒩(𝜼𝜼|𝝁𝝁,𝜱𝜱) =
1

�(2𝜋𝜋)𝐾𝐾|𝜱𝜱|
exp �−

1
2

(𝜼𝜼 − 𝝁𝝁)𝑇𝑇𝜱𝜱−1(𝜼𝜼 − 𝝁𝝁)�. (13) 

Here, 𝛍𝛍 is the mean vector (length 𝐾𝐾), 𝜱𝜱 is the covariance matrix (size 𝑁𝑁 ×
𝑁𝑁), the vertical lines indicate the determinant, the superscript T indicates 
transpose, and the superscript −1 indicates the matrix inverse.  
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As in the single variate case, we transform variables from 𝜼𝜼 to 𝒔𝒔 = exp𝜼𝜼. 
The exponentiation is applied to the vector on an element-by-element ba-
sis. The result is (see StackExchange 2017) 

 𝑝𝑝(𝒔𝒔|𝝁𝝁,𝜱𝜱) =
1

(𝑠𝑠1𝑠𝑠2 ⋯𝑠𝑠𝐾𝐾)�(2𝜋𝜋)𝐾𝐾|𝜱𝜱|
exp �−

1
2

(ln 𝒔𝒔 − 𝝁𝝁)𝑇𝑇𝜱𝜱−1(ln 𝒔𝒔 − 𝝁𝝁)�. (14) 

To generate a multivariate lognormal vector, we simply generate normally 
distributed vectors for 𝜼𝜼 and set 𝒔𝒔 = exp𝜼𝜼.  

3.2 Wishart (strong scattering) 

Let us consider now strong scattering with multiple paths. This is not as 
straightforward as with the weak scattering case because there is no simple 
multivariate extension for the exponential pdf. However, we can consider 
the Wishart distribution, which is a generalization of the chi-squared dis-
tribution from single rvs to 𝑁𝑁 × 𝑁𝑁 random matrices.* Like the chi-squared 
pdf, the Wishart pdf has a specified number of degrees of freedom, which 
we indicate here by d. The degrees of freedom correspond to the number 
of normal variates that are squared and summed together. For two degrees 
of freedom (𝑑𝑑 = 2), the marginal distributions† of the diagonal elements of 
the matrix have exponential distributions. Thus, the Wishart distribution, 
with 𝑑𝑑 = 2, appears to be appropriate for strong scattering along multiple 
paths. 

The derivation of the Wishart pdf for 𝑑𝑑 = 2 proceeds similarly to the deri-
vation of the exponential pdf. Let 𝑅𝑅𝑛𝑛 = 𝑋𝑋𝑛𝑛 + 𝑖𝑖𝑌𝑌𝑛𝑛, where 𝑅𝑅𝑛𝑛 is the complex 
amplitude of the signal along path n, 𝑋𝑋𝑛𝑛 is the random real part, and 𝑌𝑌𝑛𝑛 is 
the random imaginary part. By assumption, 𝑋𝑋𝑛𝑛 and 𝑌𝑌𝑛𝑛 are drawn from in-
dependent normal distributions with zero mean and variance 𝜏𝜏𝑛𝑛2. Follow-
ing the procedure in section 2.1, we can readily show that 𝑆𝑆𝑛𝑛 = 𝑅𝑅𝑛𝑛2 has an 
exponential pdf with rate parameter 𝜆𝜆𝑛𝑛 = 1 2𝜏𝜏𝑛𝑛2⁄ . But what is the distribu-
tion of the cross terms (i.e., 𝑅𝑅𝑚𝑚𝑅𝑅𝑛𝑛∗ , when 𝑚𝑚 ≠ 𝑛𝑛)? 

Writing out the real and imaginary parts of the cross term, we have 
𝑅𝑅𝑚𝑚𝑅𝑅𝑛𝑛∗ = (𝑋𝑋𝑚𝑚 + 𝑖𝑖𝑌𝑌𝑚𝑚)(𝑋𝑋𝑛𝑛 − 𝑖𝑖𝑌𝑌𝑛𝑛) = 𝑋𝑋𝑚𝑚𝑋𝑋𝑛𝑛 + 𝑖𝑖𝑋𝑋𝑛𝑛𝑌𝑌𝑚𝑚 − 𝑖𝑖𝑖𝑖𝑚𝑚𝑌𝑌𝑛𝑛 + 𝑌𝑌𝑚𝑚𝑌𝑌𝑛𝑛. Let us as-
sume that we have removed the deterministic phases of the signals relative 
                                                   
* Note that the multivariate lognormal distribution in section 3.1 was formulated in terms of a random 

vector. The Wishart distribution is formulated in terms of a random matrix. 
† A marginal distribution results from removing other variables from the joint distribution by integrating 

over them. One is thus left with a single-variate pdf for the variable of interest. 
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to one another; for example, we could multiply each signal by 𝑒𝑒−𝑖𝑖𝑖𝑖𝑑𝑑𝑛𝑛, 
where 𝑑𝑑𝑛𝑛 is the length of the propagation path. Then the cross-correlations 
must have zero phase; that is, the expected value of the cross terms 𝑋𝑋𝑚𝑚𝑌𝑌𝑛𝑛 
and 𝑋𝑋𝑛𝑛𝑌𝑌𝑚𝑚 is zero. Furthermore, 𝑋𝑋𝑚𝑚𝑋𝑋𝑛𝑛 and 𝑌𝑌𝑚𝑚𝑌𝑌𝑛𝑛 must have the same distri-
bution because the 𝑋𝑋𝑛𝑛 and 𝑌𝑌𝑛𝑛 have the same distributions. Since the 𝑋𝑋𝑛𝑛 and 
𝑌𝑌𝑛𝑛 are normally distributed, we can conveniently define cross-correlation 
coefficients such that 

𝜌𝜌𝑚𝑚𝑚𝑚 =
〈𝑋𝑋𝑚𝑚𝑋𝑋𝑛𝑛〉
𝜏𝜏𝑚𝑚𝜏𝜏𝑛𝑛

=
〈𝑌𝑌𝑚𝑚𝑌𝑌𝑛𝑛〉
𝜏𝜏𝑚𝑚𝜏𝜏𝑛𝑛

. 

Or, defining the 𝑁𝑁 × 1 vectors 𝑿𝑿 = [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁] and 𝒀𝒀 = [𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑁𝑁], we 
have the 𝑁𝑁 × 𝑁𝑁 covariance matrix 

𝑽𝑽 = 〈𝑿𝑿𝑿𝑿𝑇𝑇〉 = 〈𝒀𝒀𝒀𝒀𝑇𝑇〉 =

⎣
⎢
⎢
⎡ 𝜏𝜏12 𝜌𝜌12𝜏𝜏1𝜏𝜏2 ⋯ 𝜌𝜌1𝑁𝑁𝜏𝜏1𝜏𝜏𝑁𝑁
𝜌𝜌12𝜏𝜏1𝜏𝜏2 𝜏𝜏22 ⋯ 𝜌𝜌2𝑁𝑁𝜏𝜏2𝜏𝜏𝑁𝑁

⋮ ⋮ ⋱ ⋮
𝜌𝜌1𝑁𝑁𝜏𝜏1𝜏𝜏𝑁𝑁 𝜌𝜌2𝑁𝑁𝜏𝜏2𝜏𝜏𝑁𝑁 ⋯ 𝜏𝜏𝑁𝑁2 ⎦

⎥
⎥
⎤
. (15) 

(The superscript T indicates the matrix transpose.) Hence, we are inter-
ested in the pdf for a matrix  

𝑆𝑆 = 𝑿𝑿𝑿𝑿𝑇𝑇 +  𝒀𝒀𝒀𝒀𝑇𝑇 , 

where X and Y are N-variate normal distributions with zero mean and co-
variance 𝑽𝑽. But this is simply the definition for the Wishart distribution 
with 𝑑𝑑 = 2. (The number of degrees of freedom corresponds to the terms 
in the preceding summation for S.) The Wishart distribution, for 𝑑𝑑 > 𝑁𝑁 −
1, is written 

 
𝑝𝑝(𝑺𝑺|𝑑𝑑,𝑽𝑽) =

|𝑺𝑺|(𝑑𝑑−𝑁𝑁−1)/2

2𝑑𝑑𝑑𝑑/2Γ𝑁𝑁 �
𝑑𝑑
2� |𝑽𝑽|𝑑𝑑/2

exp[−tr(𝑽𝑽−1𝑺𝑺)/2], (16) 

where 𝑺𝑺 is the 𝑁𝑁 × 𝑁𝑁 random matrix, 𝑽𝑽 is an 𝑁𝑁 × 𝑁𝑁 positive definite matrix 
called the scale matrix (in our case, the covariance matrix as defined by 
equation (15)), and  

Γ𝑝𝑝(𝑎𝑎) = 𝜋𝜋𝑝𝑝(𝑝𝑝−1)/4�Γ[𝑎𝑎 + (1 − 𝑗𝑗)/2]
𝑝𝑝

𝑗𝑗=1

. 
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As indicated earlier, the marginals of the diagonal elements of the Wishart 
distribution are exponentially distributed. The off-diagonal marginals can 
be shown to have a variance-gamma distribution (Pearson et al. 1929). 

Figure 6 shows several examples of the Wishart distribution for various 
cases of the scale matrix 𝑽𝑽. We consider a situation with two transmission 
paths (𝑁𝑁 = 2), for which we may write the scale matrix as 

𝑽𝑽 = � 𝜎𝜎12 𝜌𝜌𝜎𝜎1𝜎𝜎2
𝜌𝜌𝜎𝜎1𝜎𝜎2 𝜎𝜎22

�, 

where 𝜎𝜎12 and 𝜎𝜎22 are the variances along each path, and 𝜌𝜌 is the correlation 
coefficient. The mean along one path is taken to be twice that of the other 
(𝜎𝜎12 = 2𝜎𝜎22); the cases differ regarding the off-diagonal elements (i.e., the 
value of 𝜌𝜌 is varied).  

Figure 6.  Matrix Wishart distribution for d = 2 and several illustrative cases of the scale 
matrix V. The mean along the second path is twice that of the first. Solid lines are theoretical 

results, and circles are numerical simulations.  
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3.3 Matrix gamma (weak and strong scattering) 

Similar to the manner by which the two degree-of-freedom Wishart distri-
bution generalizes the single-variate exponential pdf to matrices, the ma-
trix gamma distribution generalizes the single-variate gamma distribution 
to matrices. The matrix gamma distribution is given by (Gupta and Nagar 
1999; Wikipedia 2017b) 

 
𝑝𝑝(𝑺𝑺|𝛼𝛼,𝛽𝛽,𝑽𝑽) =

|𝑺𝑺|𝛼𝛼−(𝑁𝑁+1)/2

𝛽𝛽𝛼𝛼𝛼𝛼Γ𝑁𝑁(𝛼𝛼)|𝑽𝑽|𝛼𝛼 exp[−tr(𝑽𝑽−1𝑺𝑺)/𝛽𝛽]. (17) 

This distribution reduces to the Wishart when 𝛽𝛽 = 2 and 𝛼𝛼 = 𝑑𝑑 2⁄ . 

It seems reasonable that the matrix gamma distribution would be appro-
priate for both weak and strong scattering along multiple paths. However, 
given that the gamma pdf is largely empirically motivated to begin with, 
we should not expect that the matrix gamma distribution can be motivated 
by a theoretical argument as was possible with the multivariate lognormal 
and matrix Wishart distributions. We leave the hypothesis that the matrix 
gamma pdf is appropriate for weak or strong scattering to future investiga-
tion. 



ERDC TR-18-7 20 

 

4 Incorporating Parametric Uncertainties 

Parametric uncertainties can be conceptualized as falling into two catego-
ries: aleatory (or irreducible) and epistemic (or reducible). Turbulent in-
termittency, as will be discussed further in section 4.3, is an appropriate 
example of the former as turbulence intensity varies spatially and tempo-
rally in a manner that is understood in a statistical sense but is impractical 
to predict deterministically. Conceptually, this is similar to rolling a die; 
we understand the probability that each roll will yield a particular number 
but cannot predict the outcome deterministically. Uncertainty due to im-
perfect weather forecasts, on the other hand, is primarily an epistemic un-
certainty. With better knowledge of the initial conditions, we could in prin-
ciple generate a better forecast and reduce our uncertainty.  

From a modeling perspective, aleatory and epistemic uncertainties are 
handled the same way, namely by specifying a distribution for the uncer-
tain parameters (rather than assuming they are exactly known). Hence, 
the following discussion conceptually pertains to both types of uncertainty. 

Interested readers may refer to chapter 13 in Ostashev and Wilson (2015) 
for an overview of uncertainty modeling in the context of sound-wave 
propagation. 

4.1 Compound distributions 

We wish to incorporate parametric uncertainties into the scattering distri-
butions discussed in chapters 2 and 3. This can be done by introducing a 
compound probability density function,* which consists of a distribution 
representing the solution for fixed values of the signal parameters, modu-
lated by a higher-level distribution representing the variability of those pa-
rameters. Mathematically, the compound pdf is given by 

 𝑝𝑝(𝑠𝑠|𝝌𝝌) = �𝑝𝑝(𝑠𝑠|𝜽𝜽)𝑝𝑝(𝜽𝜽|𝝌𝝌)𝑑𝑑𝜽𝜽. (18) 

                                                   
* The terminology compound pdf has, confusingly, been used in the literature to refer to several different 

operations on pdfs. Besides the usage here, compound pdf can also describe the pdf of a product or of 
a summation of rvs. Such products and summations are important for modeling communication chan-
nels, propagation, and noise background. A compound pdf as defined here is also called a hyper or 
nested distribution elsewhere in the literature. 
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The dimensionality of the integral equals the number of parameters in 𝜽𝜽. 
The first pdf under the integral, 𝑝𝑝(𝑠𝑠|𝜽𝜽), describes the dependence of the 
wave scattering process on the parameters 𝜽𝜽 as before. The second pdf, 
𝑝𝑝(𝜽𝜽|𝛘𝛘), describes the uncertainties in the scattering parameters and de-
pends on a new set of parameters 𝝌𝝌. These are called the hyperparameters 
as they parameterize the variation of parameters. After accounting for the 
uncertainty by marginalizing (integrating) over the uncertain parameters 
𝜽𝜽, we have a new pdf, 𝑝𝑝(𝑠𝑠|𝝌𝝌), which depends only on the hyperparameters. 

4.2 Connection to Bayes’ theorem 

The previous discussion of compound distributions has a useful connec-
tion to Bayesian inference and adaptation, which is explored in this sec-
tion. Readers may refer to Gelman et al. (2014) or other suitable textbooks 
for an introduction to Bayesian statistics. 

Suppose we regard 𝑝𝑝(𝜽𝜽|𝝌𝝌) in equation (18) as the prior distribution for the 
parameters 𝜽𝜽; that is, 𝑝𝑝(𝜽𝜽|𝝌𝝌) is the assumed distribution for 𝜽𝜽 before any 
observations of the signal power 𝑠𝑠 are made. The prior may, for example, 
be predicted from a propagation model. Next, we perform an experiment 
to collect a sample of 𝑠𝑠. We would then like to know the posterior distribu-
tion, 𝑝𝑝(𝜽𝜽|𝑠𝑠,𝝌𝝌), which indicates the improvement in our knowledge of 𝜽𝜽 re-
sulting from the sample. By Bayes’ theorem, 

 𝑝𝑝(𝜽𝜽|𝑠𝑠,𝝌𝝌) =
𝑝𝑝(𝑠𝑠|𝜽𝜽,𝝌𝝌) 𝑝𝑝(𝜽𝜽|𝝌𝝌)

𝑝𝑝(𝑠𝑠|𝝌𝝌) =
𝑝𝑝(𝑠𝑠|𝜽𝜽,𝝌𝝌) 𝑝𝑝(𝜽𝜽|𝝌𝝌)

∫ 𝑝𝑝(𝑠𝑠|𝜽𝜽′)𝑝𝑝(𝜽𝜽′|𝝌𝝌)𝑑𝑑𝜽𝜽′
 , (19) 

where the second equality follows by using equation (18) to rewrite the de-
nominator. Here, 𝑝𝑝(𝑠𝑠|𝜽𝜽,𝝌𝝌) is called the likelihood function for the signal 
observation; that is, the signal distribution conditioned upon a particular 
set of parameters. The denominator in equation (19), 𝑝𝑝(𝑠𝑠|𝝌𝝌), is usually 
called the model evidence. Although the denominator is often regarded as 
not being intrinsically interesting (sometimes simply being a normalizing 
factor), in the present context it does have an important interpretation. 
Namely, it is the probability of observing a particular value of the signal af-
ter marginalizing over the uncertain parameters. 

For some special combinations of priors and likelihoods, the posterior has 
the same functional form as the prior. In this case, the prior distribution is 
said to be the conjugate prior of the likelihood function. Suppose we then 
collect a new sample of the signal and use the posterior from the previous 
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step as the new prior. Since the new prior is still the conjugate prior of the 
likelihood function, the posterior will again have the same functional form. 
This process can be repeated indefinitely, which is a great analytical con-
venience. However, it must be kept in mind that use of a conjugate prior is 
suitable only if the function is a good representation of the prior distribu-
tion.  

Figure 7 illustrates the relationships between the distributions occurring 
in the compound pdf and those in Bayes’ theorem. In the next section, we 
consider a way to exploit these relationships to create new models for the 
signal pdf. 

Figure 7.  Relationships between the compound pdf formulation and the various distributions 
involved in Bayesian inference. 

 

4.3 Scattering by intermittent turbulence (exponential distribution 
compounded with a lognormal distribution) 

A practically important example of parametric uncertainties involves the 
intermittency of turbulence. By Kolmogorov’s (1962) so-called refined hy-
pothesis, the structure-function parameters of turbulence vary in time and 
space according to a lognormal distribution. Since the scattering cross sec-
tion in the inertial subrange (and hence the scattered signal power) is pro-
portional to the structure-function parameter (e.g., Ostashev and Wilson 
2015), Gurvich and Kukharets (1986) proposed modeling strong scattering 
with an exponential distribution in which the local variations in the scat-
tered signal power are modeled with a lognormal distribution. Wilson et 
al. (1996) applied this formulation to sound scattering into a shadow zone 
and found good agreement with experimental data.  

The formulation of Gurvich and Kukharets (1986) translates directly to the 
compound pdf formulation presented in section 4.1. Since the scattered 
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power is the uncertain parameter, we parameterize the exponential pdf us-
ing the scale parameter 𝜃𝜃 as in equation (4) (as opposed to using the rate 
parameter). For the lognormal pdf of 𝜃𝜃, we have 

𝑝𝑝(𝜽𝜽|𝝌𝝌) = 𝑝𝑝(𝜃𝜃|𝜇𝜇,𝜙𝜙) = Lognorm(𝜃𝜃|𝜇𝜇,𝜙𝜙) =
1

𝜃𝜃𝜙𝜙√2𝜋𝜋
exp �−

(ln𝜃𝜃 − 𝜇𝜇)2

2𝜙𝜙2 � . (20) 

Thus, we have equations for 𝑝𝑝(𝑠𝑠|𝜽𝜽) and 𝑝𝑝(𝜽𝜽|𝝌𝝌) as needed for the com-
pound pdf integral, equation (18). Unfortunately, the compound pdf ap-
parently has no analytical solution in this case. Nonetheless, it can readily 
be performed numerically, and we can also find an approximate analytical 
solution that is valid when 𝜙𝜙2 ≪ 1. This case was analyzed in section 2.2 
and 2.4 and shown to correspond to situations in which the lognormal pdf 
can be approximated by a normal or gamma pdf. Here, small 𝜙𝜙2 would 
correspond to weak intermittency in the turbulence. Section 2.4 showed 
that the gamma pdf approximation to the lognormal pdf corresponds to 
𝛼𝛼 = 𝜙𝜙−2 and 𝛽𝛽 = 𝜙𝜙2𝑒𝑒𝜇𝜇, where 𝛼𝛼 and 𝛽𝛽 are the shape and rate parameters, 
respectively. This problem will be analyzed in section 4.4 where we show 
that an exponential pdf compounded with a gamma pdf produces a K-dis-
tribution, equation (21). 

4.4 K-distributions (gamma compounded with gamma) 

The next compound pdf we consider is described in a book on optical wave 
scattering in random media (Andrews and Phillips 2005). To motivate the 
formulation, those authors write 

. . . it has been observed that the lognormal PDF [for 
weakly scattered signals] . . . can underestimate the 
peak of the probability density function and also un-
derestimate the behavior of the tails as compared with 
measured data. Underestimating the tails of a PDF 
has important consequences on radar and communi-
cation systems where detection and fade probabilities 
are calculated over the tails of the PDF.  

The compound pdf, or modulation process in the terminology of Andrews 
and Phillips, is introduced to provide distributions with more realistic 
tails. The result (among others in the Andrews and Phillips book) is the K-
distribution, so-called because it involves a modified Bessel function. 
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The ordinary K-distribution involves compounding an exponential pdf for 
s, as appropriate for strong scattering, with a gamma pdf based on the 
scale parameter, 𝜃𝜃. Physically, 𝜃𝜃 represents the local mean of the scattered 
power, as would be observed if the scattering process were not undergoing 
modulations. Denoting the parameters of the gamma pdf for 𝜃𝜃 as α and β 
(i.e., the hyperparameters 𝝌𝝌),* we have, by substituting into equation (18), 

𝑝𝑝(𝑠𝑠|𝝌𝝌) = 𝑝𝑝(𝑠𝑠|𝛼𝛼,𝛽𝛽) =
1
𝜃𝜃

 �𝑒𝑒−𝑠𝑠 𝜃𝜃⁄ 𝛽𝛽𝛼𝛼𝜃𝜃𝛼𝛼−1

Γ(𝛼𝛼) 𝑒𝑒−𝛽𝛽𝛽𝛽 𝑑𝑑𝑑𝑑 . 

The integral can be found in standard integral tables, with result 

 𝑝𝑝(𝑠𝑠|𝝌𝝌) = 𝑝𝑝(𝑠𝑠|𝛼𝛼,𝛽𝛽) =
2𝛽𝛽
Γ(𝛼𝛼)

(𝛽𝛽𝑠𝑠)(𝛼𝛼−1)/2𝐾𝐾𝛼𝛼−1�2�𝛽𝛽𝛽𝛽�. (21) 

The generalized K-distribution results from compounding a gamma pdf 
for s (with parameters k and 𝜆𝜆 = 𝜃𝜃−1) with a gamma pdf (hyperparameters 
α and β) for the local mean scattered power 𝜃𝜃. The result is 

 𝑝𝑝(𝑠𝑠|𝛼𝛼,𝛽𝛽,𝑘𝑘) = Kgen(𝑠𝑠|𝛼𝛼,𝛽𝛽,𝑘𝑘) =
2𝛽𝛽

Γ(𝑘𝑘)Γ(𝛼𝛼)
(𝛽𝛽𝛽𝛽)(𝑘𝑘+𝛼𝛼−2)/2𝐾𝐾𝛼𝛼−𝑘𝑘�2�𝛽𝛽𝛽𝛽�. (22) 

The generalized K-distribution should be reasonable for either weak or 
strong scattering. For 𝑘𝑘 = 1, the generalized K-distribution reduces to the 
ordinary K-distribution. Note that the generalized K-distribution, like the 
generalized gamma distribution, has three parameters. 

Figure 8 compares the K-distribution to the exponential distribution for 
various values of the parameter 𝛼𝛼. Clearly, the effect of decreasing 𝛼𝛼 is to 
elevate the tail of the pdf. The K-distribution is thus helpful for explaining 
overdispersion in the data. Figure 9 provides a similar comparison be-
tween the generalized K-distribution and the gamma pdf for weak scatter-
ing, specifically 𝑘𝑘 = 8. 

                                                   
* We use α and β for the shape and rate parameters of a gamma pdf for the modulating process so as to 

avoid confusion with the shape and rate parameters 𝑘𝑘 and 𝜆𝜆 = 𝜃𝜃−1 when a gamma pdf is used for the 
scattering process. 
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Figure 8.  K-distribution for various values of the parameter α (solid lines). The dashed 
line is the prediction for the exponential distribution. 

 

Figure 9.  Same as Fig. 8 except that the generalized K-distribution is compared to the 
gamma distribution for weak scattering (k = 8).  

 

4.5 Lomax distribution (exponential distribution compounded with a 
gamma distribution) 

As discussed in section 2.1, the signal power has an exponential pdf for 
strong scattering. The parameterization of this pdf based on the rate pa-
rameter 𝜆𝜆 was given by equation (3). In the Bayesian context, the exponen-
tial pdf corresponds to the likelihood function. The conjugate prior to an 
exponential likelihood function is known to be the gamma distribution 
(e.g., Gelman et al. 2014). Hence, we set 

 𝑝𝑝(𝜆𝜆|𝛼𝛼,𝛽𝛽) = Gamma(𝜆𝜆|𝛼𝛼,𝛽𝛽) =
𝛽𝛽𝛼𝛼𝜆𝜆𝛼𝛼−1

𝛤𝛤(𝛼𝛼) 𝑒𝑒−𝛽𝛽𝛽𝛽, (23) 
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where 𝛼𝛼 and 𝛽𝛽 are the shape and rate parameters of the gamma distribu-
tion describing the mean scattered power, which is assumed to be uncer-
tain. Substituting into equation (18) and integrating, we find for the model 
evidence (i.e., the compound pdf) 

 𝑝𝑝(𝑠𝑠|𝛼𝛼,𝛽𝛽) = Lomax(𝑠𝑠|𝛼𝛼,𝛽𝛽) =
𝛼𝛼𝛽𝛽𝛼𝛼

(𝑠𝑠 + 𝛽𝛽)𝛼𝛼+1 =
𝛼𝛼

𝛽𝛽(1 + 𝑠𝑠 𝛽𝛽⁄ )𝛼𝛼+1 . (24) 

This pdf is called a Lomax (Lomax 1954) or Pareto Type II distribution. 
The mean of the Lomax distribution is ⟨𝑠𝑠⟩ = 𝑚𝑚 = 𝛽𝛽 (𝛼𝛼 − 1)⁄ . The deriva-
tion of the Lomax distribution is essentially the same as the K-distribution 
(section 4.4) except that it is based upon a gamma pdf for 𝜆𝜆 rather than for 
𝜃𝜃. Figure 10 shows the Lomax pdf for various values of 𝛼𝛼. As with the K-
distribution, decreasing 𝛼𝛼 elevates the tail of the pdf. Note, however, that 
the Lomax pdf achieves this behavior with a much simpler equation. 

Figure 10.  Lomax distribution for various values of the parameter α (solid lines). The 
dashed line is for the exponential distribution. 

 

It happens that the Lomax pdf can also be derived by compounding the 𝜃𝜃 
parameterization of the exponential pdf, as given by equation (4), with an 
inverse gamma pdf. The inverse gamma pdf is given by 

InvGamma(𝑥𝑥|𝛼𝛼,𝛽𝛽) =
𝛽𝛽𝛼𝛼𝑥𝑥−𝛼𝛼−1

Γ(𝛼𝛼) 𝑒𝑒−
𝛽𝛽
𝑥𝑥  . 

Proceeding as before, it can be shown that the compound pdf again evalu-
ates to equation (24). This exercise demonstrates that we obtain equiva-
lent results by formulating the problem using 𝜆𝜆 and the gamma pdf or by 
using 𝜃𝜃 = 1/𝜆𝜆 and the inverse gamma pdf. 
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Interestingly, the Lomax pdf can also be derived by an entirely different 
approach based on the Student’s t-distribution. The t-distribution behaves 
similarly to the normal distribution except that the tails are elevated. The 
standardized (zero-mean, unit-variance) form of this pdf is given by 

𝑝𝑝(𝑡𝑡|𝜈𝜈) =
Γ �𝜈𝜈 + 1

2 �

√𝜋𝜋𝜋𝜋Γ �𝜈𝜈2�
�1 +

𝑡𝑡2

𝜈𝜈
�
−𝜈𝜈+12

. 

This pdf can be extended to two uncorrelated variables as follows (Wikipe-
dia 2017c): 

𝑝𝑝(𝑡𝑡1, 𝑡𝑡2|𝜈𝜈) =
1
2π

�1 +
𝑡𝑡12 + 𝑡𝑡22

𝜈𝜈
�
−𝜈𝜈+22

. 

Setting 𝑥𝑥 = �𝛽𝛽 𝜈𝜈⁄ 𝑡𝑡1 and 𝑦𝑦 = �𝛽𝛽 𝜈𝜈⁄ 𝑡𝑡2, where 𝛽𝛽 is a scaling factor, we have 
 

𝑝𝑝(𝑥𝑥,𝑦𝑦|𝜈𝜈,𝛽𝛽) =
𝜈𝜈
2π𝛽𝛽

�1 +
𝑥𝑥2 + 𝑦𝑦2

𝛽𝛽
�
−𝜈𝜈+22

. 

Following the same procedure we used in section 2.1 to derive the expo-
nential pdf for the power s, we arrive at 

𝑝𝑝(𝑠𝑠|𝜈𝜈,𝛽𝛽) =
𝜈𝜈

2𝛽𝛽
�1 +

𝑠𝑠
𝛽𝛽
�
−𝜈𝜈+22

. 

By setting 𝛼𝛼 = 𝜈𝜈 2⁄ , we can show that this result is equivalent to equation 
(24). Hence, the Lomax pdf corresponds to uncorrelated real and imagi-
nary parts of a signal given by a joint t-distribution, much as the exponen-
tial pdf corresponds to uncorrelated real and imaginary parts given by a 
joint normal distribution. (We are unaware of any previous publications 
where this connection has been described.) 

Let us return to exploring the relationship between the compound pdf and 
Bayes’ theorem. Using equation (19), we find for the posterior pdf  

 𝑝𝑝(𝜆𝜆|𝑠𝑠,𝛼𝛼,𝛽𝛽) =
(𝛽𝛽 + 𝑠𝑠)𝛼𝛼+1𝜆𝜆𝛼𝛼

Γ(𝛼𝛼 + 1) 𝑒𝑒−𝜆𝜆(𝛽𝛽+𝑠𝑠). (25) 
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Note that the posterior is a gamma pdf for 𝜆𝜆 (thus proving that the gamma 
pdf is indeed the conjugate prior of an exponential likelihood function); 
however, 𝛼𝛼 updates to 𝛼𝛼 + 1, and 𝛽𝛽 updates to 𝛽𝛽 + 𝑠𝑠, in comparison to the 
original prior. Hence, given a new signal observation s, we would update 
the distribution for 𝜆𝜆 from Gamma(𝜆𝜆|𝛼𝛼,𝛽𝛽) to Gamma(𝜆𝜆|𝛼𝛼 + 1,𝛽𝛽 + 𝑠𝑠). This 
process can be applied iteratively to a set of multiple observations of the 
process s. Namely, suppose we have the observations 𝑠𝑠1, … , 𝑠𝑠𝑁𝑁, then 𝛼𝛼 up-
dates to 𝛼𝛼 + 𝑁𝑁, and 𝛽𝛽 updates to 𝛽𝛽 + 𝑠𝑠1 + ⋯+ 𝑠𝑠𝑁𝑁. 

Let us consider a numerical example illustrating Bayesian sequential up-
dating of the pdf for 𝜆𝜆 as signal samples are collected. Without loss of gen-
erality, we will assume that the actual value of 𝜆𝜆 is 1. Initially, we start with 
a gamma pdf with 𝛼𝛼 = 2.5 and 𝛽𝛽 = 1.6 to represent the uncertainty in our 
knowledge of 𝜆𝜆 (the prior). These values imply an initial distribution for 𝜆𝜆 
with a mean of 1.5625 and produce a very broad distribution, as indicative 
of a situation where our knowledge of the actual value of 𝜆𝜆 is limited. (In 
Bayesian terminology, the prior is rather uninformative.) We then begin 
to collect signal samples, 𝑠𝑠𝑖𝑖, each of which is a sample from the exponen-
tial pdf. Because of the random scattering, each signal sample provides ad-
ditional information on the true value of 𝜆𝜆, but we do not know this value 
exactly. Figure 11 shows an example simulation that involved sequentially 
updating the gamma pdf for 𝜆𝜆 after 1, 4, 16, 64, and 256 random trials 
(samples of 𝑠𝑠𝑖𝑖). After a single update, the distribution remains close to the 
prior. After 256 updates, the pdf has a sharp peak near the true value of 𝜆𝜆. 

Figure 11.  Simulation of the refinement of the pdf for the rate 
parameter λ (inverse of the mean scattered power) as signal 

samples are collected. The curve labelled 0 is the initial assumed 
distribution (prior). Subsequent curves show updated (posterior) 
distributions after collecting the indicated number of samples.  
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4.6 Compound gamma distribution (gamma distribution 
compounded with a gamma distribution) 

In this section, we generalize the problem in section 4.5 to the situation 
where the scattering (likelihood function) is described by a gamma pdf ra-
ther than an exponential pdf. Recall that the gamma pdf applies to weak or 
strong scattering whereas the exponential pdf applies only to strong scat-
tering. The treatment here still focuses on the situation where 𝜆𝜆 is the un-
certain parameter; the parameter 𝑘𝑘 in the gamma pdf for the scattered sig-
nal is regarded as known (fixed). This assumption simplifies the model by 
allowing us to use a single-variate pdf for 𝑝𝑝(𝜽𝜽|𝝌𝝌) rather than a multivariate 
(joint) pdf. Physically, the implication is that the relative contributions of 
the deterministic and random scattered paths to the signal (and hence the 
shape of the distribution) remain fixed. A simple case where this sort of 
model is applicable is when the power of the source (or, similarly, the gain 
of the receiver) is imperfectly known. It would also be reasonable for a scat-
tering process when the amount of energy reaching the receiver varies (or is 
uncertain) although the relative amount of energy propagating along direct 
(deterministic) and scattered (random) paths is comparatively stable. 

It can be shown that the gamma distribution is the conjugate prior for the 
gamma likelihood function, just as it was for the exponential likelihood 
function. Hence, we still use equation (23). Performing the integration for 
the compound pdf, equation (18), we find  

 𝑝𝑝(𝑠𝑠|𝛼𝛼,𝛽𝛽,𝑘𝑘) =
1

𝐵𝐵(𝑘𝑘,𝛼𝛼)
(𝛽𝛽 𝑠𝑠⁄ )𝛼𝛼

𝑠𝑠(1 + 𝛽𝛽 𝑠𝑠⁄ )𝑘𝑘+𝛼𝛼
=

1
𝐵𝐵(𝑘𝑘,𝛼𝛼)

(𝑠𝑠/𝛽𝛽)𝑘𝑘−1

𝛽𝛽(1 + 𝑠𝑠/𝛽𝛽)𝑘𝑘+𝛼𝛼
,  (26) 

where 𝐵𝐵(𝑥𝑥,𝑦𝑦) = Γ(𝑥𝑥)Γ(𝑦𝑦)/Γ(𝑥𝑥 + 𝑦𝑦) is the beta function. This result is 
called a compound gamma distribution (Dubey 1970), which is a special 
case of the generalized beta-prime distribution with the shape parameter 
set to 1 (Wikipedia 2017a). The compound gamma pdf reduces to the Lo-
max when 𝑘𝑘 = 1 and has mean ⟨𝑠𝑠⟩ = 𝑚𝑚 = 𝛽𝛽𝛽𝛽 (𝛼𝛼 − 1)⁄ .  

Figure 12 shows the compound gamma distribution for various values of 𝛼𝛼. 
The curves are qualitatively similar to the K-distribution. 

Although the compound gamma distribution and the generalized K-distri-
bution (section 4.4) are derived in a very similar manner, the resulting 
equation for a compound gamma pdf is much simpler and enables simple 
Bayesian sequential updating. Applying Bayes’ theorem as before, we find 
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that the prior Gamma(𝜆𝜆|𝛼𝛼,𝛽𝛽) updates to the posterior 
Gamma(𝜆𝜆|𝛼𝛼 + 𝑘𝑘,𝛽𝛽 + 𝑠𝑠) after a new signal observation s. The sequential up-
dating equations are thus essentially the same as the strong scattering case 
considered in the previous section. 

Figure 12.  Compound gamma distribution for k = 8 for various values of the parameter α 
(solid lines). The dashed line is for the gamma distribution for k = 8. 

 

4.7 Lognormal compounded with normal (single variate) 

Compound models for the lognormal distribution are most naturally for-
mulated using the rv 𝜂𝜂 = ln 𝑠𝑠, in which case the baseline distribution is 
normal. For the compound pdf, we have the integral 

𝑝𝑝(𝜂𝜂|𝝌𝝌𝜂𝜂) = ∫ 𝑝𝑝(𝜂𝜂|𝜽𝜽𝜂𝜂)𝑝𝑝(𝜽𝜽𝜂𝜂|𝝌𝝌𝜂𝜂)𝑑𝑑𝜽𝜽𝜂𝜂 , 

where 𝜽𝜽𝜂𝜂 are the parameters of the distribution for 𝜂𝜂 and 𝝌𝝌𝜂𝜂 are the hy-
perparameters for the distribution of 𝜽𝜽𝜂𝜂. For the lognormal distribution, 
𝜽𝜽𝜂𝜂 may consist of 𝜇𝜇 or 𝜙𝜙, or both. 

As discussed in section 4.6, the modeling is much simplified if we consider 
just one uncertain parameter. Let us for now take this parameter to be 𝜇𝜇  
and assume that 𝜇𝜇 is normally distributed with mean 𝑚𝑚𝜇𝜇 and variance 𝜎𝜎𝜇𝜇2.  
Hence the preceding equation becomes 

𝑝𝑝�𝜂𝜂�𝜙𝜙,𝑚𝑚𝜇𝜇,𝜎𝜎𝜇𝜇2� = ∫ 𝑝𝑝(𝜂𝜂|𝜇𝜇,𝜙𝜙)𝑝𝑝�𝜇𝜇�𝑚𝑚𝜇𝜇,𝜎𝜎𝜇𝜇2�𝑑𝑑𝑑𝑑, 

where 

𝑝𝑝(𝜇𝜇|𝑚𝑚𝜇𝜇,𝜎𝜎𝜇𝜇2) = 𝒩𝒩(𝜇𝜇|𝑚𝑚𝜇𝜇,𝜎𝜎𝜇𝜇2) =
1

𝜎𝜎𝜇𝜇√2𝜋𝜋
exp �−

(𝜇𝜇 − 𝑚𝑚𝜇𝜇)2

2𝜎𝜎𝜇𝜇2
�. 
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We then have for the integral 

 𝑝𝑝�𝜂𝜂�𝜙𝜙,𝑚𝑚𝜇𝜇,𝜎𝜎𝜇𝜇2� =
1

2𝜋𝜋𝜋𝜋𝜎𝜎𝜇𝜇
� exp
∞

−∞
�−

(𝜂𝜂 − 𝜇𝜇)2

2𝜙𝜙2 −
(𝜇𝜇 − 𝑚𝑚𝜇𝜇)2

2𝜎𝜎𝜇𝜇2
� 𝑑𝑑𝑑𝑑 , (27) 

which can be written in the general form 

𝑝𝑝�𝜂𝜂�𝜙𝜙,𝑚𝑚𝜇𝜇,𝜎𝜎𝜇𝜇2� =
1

2𝜋𝜋𝜋𝜋𝜎𝜎𝜇𝜇
� exp
∞

−∞
[−(𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐)]𝑑𝑑𝑑𝑑, 

where 

𝑎𝑎 =
𝜎𝜎𝜇𝜇2 + 𝜙𝜙2

2𝜎𝜎𝜇𝜇2𝜙𝜙2 , 

𝑏𝑏 = −
𝜎𝜎𝜇𝜇2𝜂𝜂 + 𝜙𝜙2𝑚𝑚𝜇𝜇

𝜎𝜎𝜇𝜇2𝜙𝜙2 , 

and 

𝑐𝑐 =
𝜎𝜎𝜇𝜇2𝜂𝜂2 + 𝜙𝜙2𝑚𝑚𝜇𝜇

2

2𝜎𝜎𝜇𝜇2𝜙𝜙2 . 

This integral can be found in standard tables, with result 

 𝑝𝑝�𝜂𝜂�𝜙𝜙,𝑚𝑚𝜇𝜇 ,𝜎𝜎𝜇𝜇2� =
1

2𝜋𝜋𝜋𝜋𝜎𝜎𝜇𝜇
�
𝜋𝜋
𝑎𝑎
𝑒𝑒(𝑏𝑏2−4𝑎𝑎𝑎𝑎)/4𝑎𝑎 =

1

�2𝜋𝜋(𝜎𝜎𝜇𝜇2 + 𝜙𝜙2)
exp �−

(𝜂𝜂 −𝑚𝑚𝜇𝜇)2

2(𝜎𝜎𝜇𝜇2 + 𝜙𝜙2)
� . 

(28) 

Thus, 𝜂𝜂 is normally distributed with mean 𝑚𝑚𝜇𝜇 and variance 𝜎𝜎𝜇𝜇2 + 𝜙𝜙2. 

We could have inferred the previous result more simply by noticing that 
equation (27) is the convolution between two normal distributions, namely  
a distribution with mean 𝑚𝑚𝜇𝜇 and variance 𝜎𝜎𝜇𝜇2, and a distribution with zero  
mean and variance 𝜙𝜙2. A convolution between two independent rvs equals 
the distribution of the sum of those variables. Using the well-known result 
that the sum of two normally distributed variables is itself normally dis-
tributed, with a mean equal to the sum of the means and variance equal to 
the sum of the variances, it follows that 𝜂𝜂 is normally distributed with 
mean 𝑚𝑚𝜇𝜇 and variance 𝜎𝜎𝜇𝜇2 + 𝜙𝜙2. 
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Using Bayes’ theorem, we have the following equation for updating the es-
timate of 𝜇𝜇 after a new observation of the log-signal, 𝜂𝜂: 

𝑝𝑝�𝜇𝜇�𝜂𝜂,𝜙𝜙,𝑚𝑚𝜇𝜇,𝜎𝜎𝜇𝜇2� =
𝑝𝑝(𝜂𝜂|𝜇𝜇,𝜙𝜙)𝑝𝑝�𝜇𝜇�𝑚𝑚𝜇𝜇,𝜎𝜎𝜇𝜇2�

𝑝𝑝�𝜂𝜂�𝜙𝜙,𝑚𝑚𝜇𝜇,𝜎𝜎𝜇𝜇2�
. 

At this point, we have worked out equations for all of the distributions on 
the right. Substituting, we find after some algebra 

 𝑝𝑝�𝜇𝜇�𝜂𝜂,𝜙𝜙,𝑚𝑚𝜇𝜇,𝜎𝜎𝜇𝜇2� = 𝒩𝒩�𝜇𝜇�𝑚𝑚𝜇𝜇
′ ,𝜎𝜎𝜇𝜇′2� =

1
𝜎𝜎𝜇𝜇′√2𝜋𝜋

exp �
(𝜇𝜇 − 𝑚𝑚𝜇𝜇

′ )2

2𝜎𝜎𝜇𝜇′2
�, (29) 

where 

𝑚𝑚𝜇𝜇
′ =

𝜙𝜙2𝑚𝑚𝜇𝜇 + 𝜎𝜎𝜇𝜇2𝜂𝜂
𝜙𝜙2 + 𝜎𝜎𝜇𝜇2

= �𝜎𝜎𝜇𝜇−2 + 𝜙𝜙−2�
−1
�𝜎𝜎𝜇𝜇−2𝑚𝑚𝜇𝜇 + 𝜙𝜙−2𝜂𝜂� 

and 

𝜎𝜎𝜇𝜇′2 =
𝜙𝜙2𝜎𝜎𝜇𝜇2

𝜙𝜙2 + 𝜎𝜎𝜇𝜇2
= �𝜎𝜎𝜇𝜇−2 + 𝜙𝜙−2�

−1
. 

Equation (29) is the desired equation for sequentially updating estimates 
of 𝜇𝜇 as observations of the log-signal 𝜂𝜂 become available. 

Figure 13 is similar to Figure 11 except that a simulation of Bayesian up-
dating for the log-mean (as based on the just-described lognormal signal 
model) is shown. The parameter updates are performed with equation 
(29). In this simulation, the mean 𝑚𝑚 and variance 𝜎𝜎2 were both set to 1, as 
expected in strong scattering. The resulting values of the log-signal param-
eters are 𝜇𝜇 = −0.3466 and 𝜙𝜙2 = 0.6931. For the prior distribution of 𝜇𝜇, we  
somewhat arbitrarily set 𝑚𝑚𝜇𝜇 = −0.1466 and 𝜎𝜎𝜇𝜇2 = 2.773 to represent an un- 
informative prior. The figure clearly demonstrates the convergence to a 
peaked distribution around the correct value of 𝜇𝜇 as more data samples be-
come available. 
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Figure 13.  Refinement of the pdf for the log-mean signal distribution 
parameter, μ, as more log-signal samples are collected. The curve 

labelled 0 is the initial assumed distribution (prior). The subsequent 
curves show updated (posterior) distributions after 1, 4, 16, 16 and 

256 random trials. The vertical dashed line indicates the initial mean 
of the prior; the solid line indicates the correct value of μ. 

 

Besides the case considered here where there is parametric uncertainty in 
the mean 𝜇𝜇 of the distribution for the log-signal, solutions are available for 
the cases when the variance 𝜙𝜙2 is uncertain and when both the mean and 
variance are uncertain. In these cases, the conjugate priors consist of an 
inverse gamma pdf and a normal-inverse gamma pdf, respectively. 

4.8 Lognormal compounded with normal (multivariate) 

In the multivariate case, the compound pdf for the log-signal vector 𝛈𝛈 (in 
the case of unknown 𝝁𝝁 and known 𝜱𝜱) is 

 𝑝𝑝�𝜼𝜼�𝜱𝜱,𝒎𝒎𝜇𝜇,𝜮𝜮𝜇𝜇� = ∫ 𝑝𝑝(𝜼𝜼|𝝁𝝁,𝜱𝜱)𝑝𝑝�𝝁𝝁�𝒎𝒎𝜇𝜇,𝜮𝜮𝜇𝜇� 𝑑𝑑𝝁𝝁. (30) 

The multivariate pdf describing the uncertainty in 𝝁𝝁 is 

 𝑝𝑝�𝝁𝝁�𝒎𝒎𝜇𝜇,𝜮𝜮𝜇𝜇� =
1

�(2𝜋𝜋)𝐾𝐾|𝜮𝜮𝜇𝜇|
exp �−

1
2

(𝝁𝝁 −𝒎𝒎𝜇𝜇)𝑇𝑇𝜮𝜮𝜇𝜇−1(𝝁𝝁−𝒎𝒎𝜇𝜇)�, (31) 
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where 𝒎𝒎𝜇𝜇 is the mean vector and 𝜮𝜮𝜇𝜇 the mean covariance matrix for 𝝁𝝁. 
Substituting equation (31) for 𝑝𝑝(𝝁𝝁|𝒎𝒎𝜇𝜇,𝜮𝜮𝜇𝜇) and equation (13) for 𝑝𝑝(𝜼𝜼|𝝁𝝁,𝜱𝜱) 
into equation (30), we find 

 𝑝𝑝(𝜼𝜼|𝜱𝜱,𝒎𝒎𝜇𝜇 ,𝜮𝜮𝜇𝜇) = 1
(2𝜋𝜋)𝐾𝐾�|𝜱𝜱||𝜮𝜮𝜇𝜇|

∫ exp �− 1
2
�(𝜼𝜼 − 𝝁𝝁)𝑇𝑇𝜱𝜱−1(𝜼𝜼 − 𝝁𝝁) +  (𝝁𝝁 −𝒎𝒎𝜇𝜇)𝑇𝑇𝚺𝚺𝜇𝜇−1(𝝁𝝁 −𝒎𝒎𝜇𝜇)�� 𝑑𝑑𝝁𝝁. 

Direct solution of this integral is rather involved. However, we can save 
some work by observing that the sum of two normally distributed multi-
variates works essentially the same way as the sum of two normally dis-
tributed single rvs except that we sum the mean vectors and covariance 
matrices instead of the scalar means and variances. Hence the result of in-
tegrating the preceding equation is 

 𝑝𝑝(𝜼𝜼|𝜱𝜱,𝒎𝒎𝜇𝜇 ,𝜮𝜮𝜇𝜇) =
1

�(2𝜋𝜋)𝐾𝐾|𝜱𝜱+ 𝜮𝜮𝜇𝜇|
exp �−

1
2

(𝜼𝜼 −𝒎𝒎𝜇𝜇)𝑇𝑇(𝜱𝜱 + 𝜮𝜮𝝁𝝁)−1(𝜼𝜼 −𝒎𝒎𝜇𝜇)�. 
(32) 

Let us next consider application of the multivariate distribution to Bayes-
ian inference. The multivariate form of Bayes’ theorem for this problem is 

𝑝𝑝(𝝁𝝁|𝜼𝜼,𝜱𝜱,𝒎𝒎𝜇𝜇,𝜎𝜎𝜇𝜇2) =
𝑝𝑝(𝜼𝜼|𝝁𝝁,𝜱𝜱)𝑝𝑝(𝝁𝝁|𝒎𝒎𝜇𝜇,𝜮𝜮𝜇𝜇)

𝑝𝑝(𝜼𝜼|𝜱𝜱,𝒎𝒎𝜇𝜇,𝜮𝜮𝜇𝜇)
. 

Although we will not provide derivations here, it can be shown that the 
equations for the priors and parameter updates have the same forms for 
the multivariate distribution and for the single variate distribution. Specif-
ically, with equation (13) as the likelihood function, the prior distribution 
is given by equation (31), and the posterior is found to be 

 𝑝𝑝�𝝁𝝁�𝜼𝜼,𝜱𝜱,𝒎𝒎𝜇𝜇,𝜮𝜮𝜇𝜇� =
1

�(2𝜋𝜋)𝐾𝐾|𝜮𝜮𝜇𝜇′ |
exp �−

1
2

(𝝁𝝁 −𝒎𝒎𝜇𝜇
′ )𝑇𝑇(𝜮𝜮𝜇𝜇′ )−1(𝝁𝝁 −𝒎𝒎𝜇𝜇

′ )�, (33) 

where 

 𝒎𝒎𝜇𝜇
′ = �𝜮𝜮𝜇𝜇−1 + 𝜱𝜱−1�

−1
�𝜮𝜮𝜇𝜇−1𝒎𝒎𝜇𝜇 + 𝜱𝜱−1𝜼𝜼� 

and 

 𝜮𝜮𝜇𝜇′ = �𝜮𝜮𝜇𝜇−1 + 𝜱𝜱−1�
−1

. 
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Figure 14 is like Figure 13 except that a bivariate case (𝑁𝑁 = 2) is shown, 
and equation (33) is used for the parameter updates. In this simulation, 
the mean 𝒎𝒎 was set to [1; 2] and the variances 𝝈𝝈2 to [1; 4] in accordance 
with strong scattering (for which the ratio of the variance to the squared 
mean is one). The resulting mean for the log-signal parameters is 𝝁𝝁 =
0.3466[−1; 1]. (Note that the means of the two signals differ to add realism 
to the problem.) The matrix 𝜱𝜱 is 𝜙𝜙2[1 𝜌𝜌; 𝜌𝜌 1], where 𝜙𝜙2 = 0.6931 and 𝜌𝜌 = 
0.5. For the prior distribution of 𝝁𝝁, we set 𝝁𝝁𝜇𝜇 = −0.1466[1; 1] and 𝛴𝛴𝜇𝜇 = 
2.773[1 𝜌𝜌;𝜌𝜌 1] to represent an uninformative prior. As with the previous 
single variate example, the bivariate update converges well to distributions 
that are sharply peaked around the correct values of the means. 

Figure 14.  Same as Fig. 13 except for a bivariate normal distribution. Left is the prior 
distribution and its updates for the first transmission path; right is for the second 

transmission path. 

 

In a typical experiment, it may happen that just a subset of the paths is 
sampled at each iteration. For example, if we have multiple source and re-
ceiver locations, typically each “event” may involve just one source loca-
tion so that the sample consists of only those paths corresponding to that 
one source location and each receiver location able to detect the source. 
Only those transmission paths should be used to update the prior. 

A simple approach to handling such situations where data are missing is to 
assign the variances associated with the missing data (in the covariance 
matrix 𝜱𝜱) to infinity. In effect, this means that whatever values are used 
for the missing data in 𝜼𝜼, they will be viewed as entirely uninformative and 
thus have no impact on the adaptation. Numerically, of course, we actually 
set the variances to a very large value, which is large enough to effectively 
remove the missing data entries while still enabling the 𝜱𝜱−1 to be calcu-
lated without errors. 
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Figure 15 shows a simulation based on this approach. It is essentially the 
same as the simulation shown in Figure 14 except that we randomly select 
one of the transmission paths as missing at each iteration. If the first path 
is missing, we set 𝜱𝜱 = [𝜍𝜍2 𝜙𝜙𝜙𝜙𝜙𝜙;𝜙𝜙𝜙𝜙𝜙𝜙 𝜙𝜙2], where 𝜍𝜍 is a very large value. If the 
second path is missing, we set 𝜱𝜱 = [𝜙𝜙2 𝜙𝜙𝜙𝜙𝜙𝜙;𝜙𝜙𝜙𝜙𝜙𝜙 𝜍𝜍2]. For present purposes, 
a value of 106 is used for 𝜍𝜍. Since only half as much data is available at 
each iteration for the simulation shown in Figure 15 in comparison to the 
simulation shown in Figure 14, we would expect the results of the former 
to be qualitatively similar to the latter when the number of iterations is 
doubled. Hence, in Figure 15, results have been plotted after twice the 
number of iterations in comparison to Figure 14. Indeed, there is a strong 
qualitative similarity between the two figures. 

Figure 15. Same as Fig. 14 except that one of the two transmission paths is randomly 
unavailable at each trial. Note that the number of trials in the legend is doubled in 

comparison to Fig. 14. 

 

Although we make no attempt here to derive equations for parametric un-
certainties and Bayesian sequential updating with the matrix Wishart and 
gamma distributions, this can probably be done by similar procedures to 
the single variate cases. We leave that effort to future research. 
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5 Influence on Receiver Operating 
Characteristics 

Classically, the trade-off between the detections and false alarms for a sen-
sor system is characterized by the receiver operating characteristic (ROC) 
curve. A high probability of detection must usually be maintained at a low 
false-alarm rate for a system to be practical. The ROC curves depend on 
the pdfs of the signal and noise, which are often calculated from model 
distributions (e.g., exponential, gamma, lognormal, and Rice) which ap-
propriately describe the random processes underlying the signal varia-
tions. In practice, however, these model distributions are often based on 
greatly simplified characterizations of the underlying processes, including 
the signal production mechanism (the signature of the target), propaga-
tion of the signal through the environment, and the processing performed 
by the sensor. When we fail to reckon with the parametric uncertainties, 
the ROC curves may not be meaningfully characterized, and we may be 
overconfident in our predictions of the system performance. We would 
thus like to ascertain how parametric uncertainties impact the ROC 
curves. 

Many textbooks discuss the basic problem of detecting a signal in noise 
(e.g., Burdic 1991). The general starting point is the joint distribution (pdf) 
for the signal 𝑠𝑠 and noise 𝑛𝑛, 𝑝𝑝(𝑠𝑠,𝑛𝑛|𝜽𝜽), which depends on the combined sig-
nal/noise parameter set 𝜽𝜽. If the signal and noise are independent, 
𝑝𝑝(𝑠𝑠,𝑛𝑛|𝜽𝜽) = 𝑝𝑝(𝑠𝑠|𝜽𝜽𝑠𝑠)𝑝𝑝(𝑛𝑛|𝜽𝜽𝑛𝑛), where 𝜽𝜽𝑠𝑠 represents the subset of parameters 
from 𝜃𝜃 impacting the signal pdf and 𝜽𝜽𝑛𝑛 is likewise the subset of parame-
ters impacting the noise pdf. (Note that the symbol 𝜽𝜽 in previous sections 
corresponds to 𝜽𝜽𝑠𝑠 in this section.) 

Formulation of the detection problem requires the pdf for two cases: (1) 
when the observed signal 𝑥𝑥 consists only of noise (𝑥𝑥 = 𝑛𝑛) and (2) when 𝑥𝑥 
consists of signal plus noise (𝑥𝑥 = 𝑠𝑠 + 𝑛𝑛). The pdf for the first case, which 
we designate as 𝑝𝑝0(𝑥𝑥), can be found by integrating (marginalizing) the 
joint pdf over the signal: 

 𝑝𝑝0(𝑥𝑥|𝜽𝜽𝑛𝑛) = 𝑝𝑝(𝑛𝑛|𝜽𝜽𝑛𝑛) = ∫ 𝑝𝑝(𝑠𝑠,𝑛𝑛|𝜽𝜽) 𝑑𝑑𝑑𝑑. (34) 

The pdf for the second case, 𝑝𝑝1(𝑥𝑥), is 
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 𝑝𝑝1(𝑥𝑥|𝜽𝜽) = ∫ 𝑝𝑝(𝑠𝑠, 𝑥𝑥 − 𝑠𝑠|𝜽𝜽) 𝑑𝑑𝑑𝑑. (35) 

Given the pdfs 𝑝𝑝0(𝑥𝑥) and 𝑝𝑝1(𝑥𝑥), we can determine the probabilities of false 
alarm and detection from the integrals 

 𝑃𝑃fa(𝜽𝜽𝑛𝑛) = � 𝑝𝑝0
∞

𝛾𝛾
(𝑥𝑥|𝜽𝜽𝑛𝑛) 𝑑𝑑𝑑𝑑 (36) 

and 

 𝑃𝑃d(𝜽𝜽) = � 𝑝𝑝1
∞

𝛾𝛾
(𝑥𝑥|𝜽𝜽) 𝑑𝑑𝑑𝑑 (37) 

in which 𝛾𝛾 is the detector threshold, a quantity set by the detection algo-
rithm. Of course, we would normally desire a high probability of detection 
and low probability of false alarm. The constant false-alarm rate detector 
provides a simple and useful approach to setting the threshold. Specifi-
cally, the threshold is set to achieve a specified probability of false  
alarm; in effect, equation (36) is inverted to calculate 𝛾𝛾 from 𝑃𝑃𝑓𝑓𝑓𝑓. Although  
this inversion is nontrivial for most noise pdfs, in practice it can be done 
readily by numerical methods. 

Let us consider application of the compound gamma formulation from 
section 4.6 (which incorporates parametric uncertainties) in the context of 
detecting a signal in noise. We assume that the signal and noise both obey 
gamma distributions, 𝑝𝑝(𝑠𝑠|𝜽𝜽𝑠𝑠) = Gamma(𝑠𝑠|𝑘𝑘𝑠𝑠, 𝜆𝜆𝑠𝑠) and 𝑝𝑝(𝑛𝑛|𝜽𝜽𝑛𝑛) =
Gamma(𝑛𝑛|𝑘𝑘𝑛𝑛, 𝜆𝜆𝑛𝑛), respectively. The parameters 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑛𝑛 are uncertain 
and modeled by gamma distributions, with parameters (𝛼𝛼𝑠𝑠,𝛽𝛽𝑠𝑠) and 
(𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛), respectively, whereas the shape parameters 𝑘𝑘𝑠𝑠 and 𝑘𝑘𝑛𝑛 are consid-
ered fixed, as discussed previously. 

Since s and n are given by compound gamma pdfs, the mean values are 
⟨𝑠𝑠⟩ = 𝛽𝛽𝑠𝑠𝑘𝑘𝑠𝑠/(𝛼𝛼𝑠𝑠 − 1) and ⟨𝑛𝑛⟩ = 𝛽𝛽𝑛𝑛𝑘𝑘𝑛𝑛/(𝛼𝛼𝑛𝑛 − 1). In the following calculations, 
we will set ⟨𝑠𝑠⟩ = 1 without loss of generality. Defining the mean signal-to-
noise ratio as SNR = ⟨𝑠𝑠⟩/⟨𝑛𝑛⟩, we have ⟨𝑛𝑛⟩ = 1/SNR. The values 𝛼𝛼𝑠𝑠 = 𝛽𝛽𝑠𝑠𝑘𝑘𝑠𝑠 +
1 and 𝛼𝛼𝑛𝑛 = 𝛽𝛽𝑛𝑛𝑘𝑘𝑛𝑛(SNR) + 1 then follow. Hence there are four free parame-
ters in the problem as defined, namely 𝛽𝛽𝑠𝑠, 𝑘𝑘𝑠𝑠, 𝛽𝛽𝑛𝑛, and 𝑘𝑘𝑛𝑛. 
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Analytical solutions are not available for all the distributions necessary to 
calculate the ROC curves, particularly 𝑝𝑝1(𝑥𝑥) in equation (35). However, 
Monte Carlo methods provide a viable and relatively simple way to study 
the behavior of these curves. The basic idea is to draw a large number 𝑀𝑀 of 
random samples for 𝜆𝜆𝑠𝑠 from a gamma distribution with the specified val-
ues of 𝛼𝛼𝑠𝑠 and 𝛽𝛽𝑠𝑠. Using these values for 𝜆𝜆𝑠𝑠 and the specified value for 𝑘𝑘𝑠𝑠 as 
parameters in a gamma distribution, we then draw 𝑀𝑀 random values for 𝑠𝑠. 
A set of 𝑀𝑀 random values for 𝑛𝑛 are generated similarly. 

Figure 16 and Figure 17 show ROC curves based on such Monte Carlo sim-
ulations. A constant false-alarm rate detector is employed. For both fig-
ures, the SNR is set to 2. The signal and noise have gamma distributions 
with shape factors 𝑘𝑘𝑠𝑠 = 1 and 𝑘𝑘𝑛𝑛 = 4 for Figure 16 and 𝑘𝑘𝑠𝑠 = 𝑘𝑘𝑛𝑛 = 4 for Fig-
ure 17. The scaling parameters 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑛𝑛 also follow gamma distributions 
with 𝛽𝛽𝑠𝑠 and 𝛽𝛽𝑛𝑛 being varied together from 𝛽𝛽 = 0.5, 1, 2, 4, and 8, as shown 
in the legends of the figures. The parameters 𝛼𝛼𝑠𝑠 and 𝛼𝛼𝑛𝑛 are determined as 
described above. 

Figure 16.  Receiver operating characteristic (ROC) 
curves corresponding to a gamma-distributed signal 

with shape factor ks = 1 and gamma-distributed noise 
with kn = 4. The signal-to-noise ratio is 2, and the 

hyperparameter β is varied as shown in the legend. 
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Figure 17.  Same as Fig. 16 except that ks = 4 and kn = 4. 

 

The value of 𝛽𝛽 is seen to have a very substantial impact on the ROC curves. 
For large 𝛽𝛽 (cases where the mean is much larger than the variance), the 
calculations converge on the conventional prediction, which does not in-
clude variations in the value of 𝜆𝜆 (i.e., there is no intermittency in the scat-
tering). Smaller values of 𝛽𝛽 lead to the occurrence of more extreme values 
for 𝜆𝜆, which unfavorably impacts detection, particularly by increasing the 
occurrence of false alarms. 

 



ERDC TR-18-7 41 

 

6 Practical Modeling with Multiple Sources 
of Uncertainty 

Many different pdfs for signals and parametric uncertainties were dis-
cussed in chapters 2–4. In this section, we consider practical application of 
those pdfs to real situations involving multiple sources of uncertainty. 
Such uncertainties may pertain, for example, to the source strength, the 
sensitivity of the receiver, the terrain properties, and the weather. 

First, in section 6.1, we describe a practical analytic approach based on the 
assumption that the parametric uncertainties are weak and describable by 
lognormal pdfs. Next, in section 6.2, we discuss how multiple sources of 
uncertainty can be addressed through a multilevel probabilistic frame-
work. Lastly, in section 6.3, we consider a general approach based on 
Monte Carlo sampling of the parametric uncertainties. 

6.1 Weak parametric uncertainties: Lognormal approach 

The lognormal pdf is useful for dealing with products of uncertain quanti-
ties. For example, the received signal generally has the form 𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎, 
where 𝑎𝑎 is the source power, 𝜓𝜓 is the transmission gain (the gain over the 
propagation path from the source to the receiver), and 𝑔𝑔 is the gain (sensi-
tivity) of the receiver. Taking logarithms, we have 𝜂𝜂 = ln 𝑠𝑠 = ln 𝑎𝑎 + ln𝜓𝜓 +
ln𝑔𝑔. Let us suppose that 𝑎𝑎, 𝜓𝜓, and 𝑔𝑔 are all lognormally distributed with 
parameters (𝜇𝜇𝑎𝑎,𝜙𝜙𝑎𝑎2), etc. Then, since the sum of independent normally dis-
tributed rvs is itself normally distributed, 𝜂𝜂 must be normally distributed 
with log-mean 𝜇𝜇 = 𝜇𝜇𝑎𝑎 + 𝜇𝜇𝜓𝜓 + 𝜇𝜇𝑔𝑔 and log-variance 𝜙𝜙2 = 𝜙𝜙𝑎𝑎2 + 𝜙𝜙𝜓𝜓2 + 𝜙𝜙𝑔𝑔2.  

Next, let us suppose that there is a signal scattering process, which can be 
described by a gamma pdf for the scattered power. Furthermore, there are 
weak uncertainties in the source power, mean scattered signal power, and 
receiver gain. The latter can be described in accordance with a lognormal 
model as described in the preceding paragraph. In essence, we have a 
gamma wave scattering process, the mean of which is conditioned upon 
the lognormal variate 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎. Mathematically, this is just like the situa-
tion analyzed in section 4.3 (strong scattering by intermittent turbulence) 
except that we have decomposed 𝜃𝜃 into several independent contributions 
and do not assume that the scattering is strong. The compound pdf, equa-
tion (18), becomes 
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 𝑝𝑝(𝑠𝑠|𝜇𝜇,𝜙𝜙,𝑘𝑘) = �𝑝𝑝(𝑠𝑠|𝑘𝑘,𝜃𝜃)𝑝𝑝(𝜃𝜃|𝜇𝜇,𝜙𝜙)𝑑𝑑𝑑𝑑, (38) 

 
where 𝑝𝑝(𝑠𝑠|𝑘𝑘,𝜃𝜃) = Gamma(𝑠𝑠|𝑘𝑘,𝜃𝜃−1) (𝑘𝑘 being the shape factor for the 
gamma pdf), 𝑝𝑝(𝜃𝜃|𝜇𝜇,𝜙𝜙) = Lognorm(𝜃𝜃|𝜇𝜇,𝜙𝜙), 𝜇𝜇 = 𝜇𝜇𝑎𝑎 + 𝜇𝜇𝜓𝜓 + 𝜇𝜇𝑔𝑔, and 
𝜙𝜙2 = 𝜙𝜙𝑎𝑎2 + 𝜙𝜙𝜓𝜓2 + 𝜙𝜙𝑔𝑔2.  

Let us furthermore assume that the log-variances for 𝑎𝑎, 𝑔𝑔, and 𝑟𝑟 are all 
small; that is, 𝜙𝜙𝑎𝑎2 ≪ 1, 𝜙𝜙𝜓𝜓2 ≪ 1, and 𝜙𝜙𝑔𝑔2 ≪ 1. The log-variance for 𝜃𝜃 must 
then also be small. For this reason, we call the analysis here the case of 
weak parametric uncertainty. As discussed in sections 2.2 and 2.4, we can 
approximate the lognormal pdf for 𝜃𝜃 with a gamma pdf in which 𝛼𝛼 = 𝜙𝜙−2  
and 𝛽𝛽 = 𝜙𝜙2𝑒𝑒𝜇𝜇. That is, 𝑝𝑝(𝜃𝜃|𝜇𝜇,𝜙𝜙) = Lognorm(𝜃𝜃|𝜇𝜇,𝜙𝜙) ≅ Gamma(𝜃𝜃|𝜙𝜙−2,𝜙𝜙2𝑒𝑒𝜇𝜇).  
Substituting into equation (38), the integral becomes a gamma pdf for 𝜃𝜃 
compounded by another gamma pdf. This was the case analyzed in section 
4.4, which led to a generalized K-distribution, equation (22). Thus, we 
have the following solution for scattering with a gamma pdf with weak 
parametric uncertainties: 

 𝑝𝑝(𝑠𝑠|𝜇𝜇,𝜙𝜙,𝑘𝑘) = Kgen(𝑠𝑠|𝜙𝜙−2,𝜙𝜙2𝑒𝑒𝜇𝜇,𝑘𝑘). (39) 

6.2 Multilevel modeling 

Following the basic pattern of the compound pdf, equation (18), we can ex-
tend the compound modeling approach to the case where the hyperparam-
eters are uncertain and depend on an additional, higher-level parameter 
set, 𝝍𝝍. Integrating both sides of equation (18) over 𝝌𝝌, we have 

 𝑝𝑝(𝑠𝑠|𝝍𝝍) = ∫ 𝑝𝑝(𝑠𝑠|𝝌𝝌)𝑝𝑝(𝝌𝝌|𝝍𝝍)𝑑𝑑𝝌𝝌 = ∫ �∫ 𝑝𝑝(𝑠𝑠|𝜽𝜽)𝑝𝑝(𝜽𝜽|𝝌𝝌)𝑑𝑑𝜽𝜽� 𝑝𝑝(𝝌𝝌|𝝍𝝍) 𝑑𝑑𝝌𝝌. (40) 

Note that the first of these equalities (the one with the single integral over 
𝝌𝝌) is functionally the same as equation (18); 𝝌𝝌 appears in the place of 𝜽𝜽 
and 𝝍𝝍 in the place of 𝝌𝝌. Equations (18) and (40) are examples of hierar-
chical stochastic models: randomness at a lower level in the model is 
linked to a higher-level random process. These equations have two and 
three levels in the hierarchy, respectively. 
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Wilson et al. (2008) formulated a hierarchical model for predicting the 
signal and noise distributions in the presence of uncertainties in the envi-
ronment and source/receiver characteristics. In their formulation, the 
joint pdf 𝑝𝑝(𝑠𝑠,𝑛𝑛) (where n is the noise power) was written 

𝑝𝑝(𝑠𝑠,𝑛𝑛) = ∫ ∫ ∫ 𝑝𝑝(𝑠𝑠,𝑛𝑛|𝜽𝜽)𝑝𝑝(𝜽𝜽|𝝌𝝌)𝑝𝑝(𝝌𝝌|𝝍𝝍)𝑝𝑝(𝝍𝝍) 𝑑𝑑𝜽𝜽 𝑑𝑑𝝌𝝌 𝑑𝑑𝝍𝝍, 

where 𝜽𝜽 is a set of parameters for the joint pdf of the signal and noise, 𝝌𝝌 is 
a set of parameters needed by the propagation model, and 𝝍𝝍 is a set of en-
vironmental parameters needed by the propagation model. This equation 
is equivalent to equation (40) after marginalization over 𝝍𝝍. Wilson et al. 
(2008) associated 𝝍𝝍 with uncertain atmospheric and terrain parameters 
and 𝝌𝝌 with uncertainties in the parameters of a signal propagation (trans-
mission) model. 

Although models with three or more levels may be useful in certain appli-
cations, analytical solutions are usually unavailable except for very simple 
cases, such as normal distributions with uncertain means. One other case 
where we have found an analytical solution involves extending the com-
pound gamma pdf from section 4.6 with an additional level of parametric 
uncertainty in which the scaling parameter 𝛽𝛽 is given by a gamma pdf. 
That is, we solve equation (40) with 𝑝𝑝(𝑠𝑠|𝜽𝜽) = 𝑝𝑝(𝑠𝑠|𝜆𝜆) = Gamma(𝑠𝑠|𝑘𝑘, 𝜆𝜆), 
𝑝𝑝(𝜽𝜽|𝝌𝝌) = 𝑝𝑝(𝜆𝜆|𝛽𝛽) = Gamma(𝜆𝜆|𝛼𝛼,𝛽𝛽), and 𝑝𝑝(𝝌𝝌|𝝍𝝍) = 𝑝𝑝(𝛽𝛽|𝑎𝑎, 𝑧𝑧) =
Gamma(𝛽𝛽|𝜅𝜅, 𝜂𝜂), where 𝜅𝜅 and 𝜂𝜂 are the hyperparameters of the pdf for 𝛽𝛽. As 
we have already shown in section 4.6, the result of the inner integral (the 
integral in square brackets) in equation (40) is a compound gamma pdf, 
equation (26). We thus have the following integral to solve: 

𝑝𝑝(𝑠𝑠|𝝍𝝍) = 𝑝𝑝(𝑠𝑠|𝜅𝜅, 𝜂𝜂,𝛼𝛼,𝑘𝑘) =
Γ(𝑘𝑘 + 𝛼𝛼)

Γ(𝑘𝑘)Γ(𝛼𝛼)Γ(𝜅𝜅)�
(𝛽𝛽 𝑠𝑠⁄ )𝛼𝛼

𝑠𝑠(1 + 𝛽𝛽 𝑠𝑠⁄ )𝑘𝑘+𝛼𝛼
∞

0
 𝜂𝜂𝜅𝜅𝛽𝛽𝜅𝜅−1𝑒𝑒−𝜂𝜂𝜂𝜂𝑑𝑑𝑑𝑑. 

Changing the variable of integration to 𝑡𝑡 = 𝛽𝛽 𝑠𝑠⁄ , we find 

𝑝𝑝(𝑠𝑠|𝝍𝝍) = 𝑝𝑝(𝑠𝑠|𝜅𝜅, 𝜂𝜂,𝛼𝛼,𝑘𝑘) =
Γ(𝑘𝑘 + 𝛼𝛼)(𝜂𝜂𝜂𝜂)𝜅𝜅

Γ(𝑘𝑘)Γ(𝛼𝛼)Γ(𝜅𝜅)𝑠𝑠
� 𝑡𝑡𝜅𝜅+𝛼𝛼−1(1 + 𝑡𝑡)−𝑘𝑘−𝛼𝛼𝑒𝑒−𝜂𝜂𝜂𝜂𝜂𝜂
∞

0
𝑑𝑑𝑑𝑑. 

The remaining integral is proportional to the Tricomi confluent hypergeo-
metric function 𝑈𝑈(𝑎𝑎, 𝑏𝑏, 𝑧𝑧) (e.g., Abramowitz and Stegun 1984, equation 
[13.2.5]), which is given by 
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𝑈𝑈(𝑎𝑎, 𝑏𝑏, 𝑧𝑧) =
1

Γ(𝑎𝑎)� 𝑡𝑡𝑎𝑎−1(1 + 𝑡𝑡)𝑏𝑏−𝑎𝑎−1𝑒𝑒−𝑧𝑧𝑧𝑧
∞

0
𝑑𝑑𝑑𝑑. 

Identifying 𝑎𝑎 = 𝜅𝜅 + 𝛼𝛼, 𝑏𝑏 = 𝜅𝜅 − 𝑘𝑘 + 1, and 𝑧𝑧 = 𝜂𝜂𝜂𝜂 leads to 

 𝑝𝑝(𝑠𝑠|𝜅𝜅, 𝜂𝜂,𝛼𝛼,𝑘𝑘) =
Γ(𝑘𝑘 + 𝛼𝛼)Γ(𝜅𝜅 + 𝛼𝛼)(𝜂𝜂𝜂𝜂)𝜅𝜅

Γ(𝑘𝑘)Γ(𝛼𝛼)Γ(𝜅𝜅)𝑠𝑠
𝑈𝑈(𝜅𝜅 + 𝛼𝛼, 𝜅𝜅 − 𝑘𝑘 + 1, 𝜂𝜂𝜂𝜂). (41) 

 
Although it is interesting to see that this three-level hierarchical model can 
be written using a known function, this result does not appear to be partic-
ularly useful since very few numerical libraries include the confluent hy-
pergeometric function. 

Because of the challenges of finding analytical solutions for multilevel 
models, it is natural to consider numerical methods. However, numerical 
evaluation of the multidimensional integrals by conventional methods 
such as trapezoidal integration can also be prohibitive. Hence, stochastic 
methods, such as Monte Carlo integration, are an attractive approach. 
That is the topic of the next section. 

6.3 Monte Carlo approach to parametric uncertainties 

For problems involving multiple uncertain parameters, it often becomes 
prohibitive to perform the integrations over each parameter explicitly by 
either analytical or conventional numerical methods. In such situations, 
Monte Carlo methods, which randomly sample the integrand, are particu-
larly useful. In this section, we describe the basic idea behind Monte Carlo 
integration and show how it applies to the sampling of parametric uncer-
tainties. 

Let us approximate the integral in the compound pdf, equation (18), as a 
discrete sum over the integration variable, 𝜽𝜽. For simplicity, we consider 
for now the case where 𝜽𝜽 consists of a single random variable so that the 
integral is one dimensional. We have (formally, using the right Riemann 
sum to approximate the integral) 

𝑝𝑝(𝑠𝑠|𝝌𝝌) ≈�𝑝𝑝(𝑠𝑠|𝜃𝜃𝑖𝑖)𝑝𝑝(𝜃𝜃𝑖𝑖|𝝌𝝌)
𝐼𝐼

𝑖𝑖=1

Δ𝜃𝜃𝑖𝑖 , 
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where 𝜃𝜃𝑖𝑖, 𝑖𝑖 = 1, … , 𝐼𝐼 are points along the 𝜃𝜃-axis at which the integrand is 
sampled and Δ𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑖𝑖−1. Many strategies for selecting the sample 
points and intervals have been developed. One strategy, which may not 
seem immediately obvious or useful, is to randomly select the 𝜃𝜃𝑖𝑖 on the in-
terval over which 𝜃𝜃 is defined. Taking the nominal spacing between the 
samples to be Δ𝜃𝜃𝑖𝑖 = 1/𝐼𝐼, we have 

𝑝𝑝(𝑠𝑠|𝝌𝝌) ≈
1
𝐼𝐼
�𝑝𝑝(𝑠𝑠|𝜃𝜃𝑖𝑖)𝑝𝑝(𝜃𝜃𝑖𝑖|𝝌𝝌)
𝐼𝐼

𝑖𝑖=1

. 

Note that this approximation is simply an average of the integrand as eval-
uated at the sample points 𝜃𝜃𝑖𝑖. This is the simplest (often called the naïve) 
form of Monte Carlo sampling. One advantage of this approach is that we 
can readily adjust I to obtain an appropriate trade-off between computa-
tion time and accuracy. A small value can be used to obtain a fast but 
rough approximation to the integral whereas a large value can be used for 
a more accurate approximation. A less obvious advantage is that this 
method can be readily extended to multidimensional integrals; essentially, 
one just generates random samples of the vector 𝜽𝜽 instead of scalar values. 
Therein lies the primary attraction of Monte Carlo sampling: it turns out to 
be a very simple and numerically efficient approach for multidimensional 
integrals. Practically, the implementation is the same for integrals with 
one dimension or with many dimensions. Although we do not discuss 
Monte Carlo methods in detail here, the interested reader may refer to Ev-
ans and Swartz (2000), O’Leary (2004), and many other sources for more-
detailed discussion. 

Note that the preceding approximation can be viewed as a weighted sum of 
samples of 𝑝𝑝(𝑠𝑠|𝜽𝜽𝑖𝑖); that is, we could write it in the form  

𝑝𝑝(𝑠𝑠|𝝌𝝌) ≈�𝑤𝑤𝑖𝑖(𝝌𝝌)
𝐼𝐼

𝑖𝑖=1

𝑝𝑝(𝑠𝑠|𝜽𝜽𝑖𝑖), (42) 

where 𝑤𝑤𝑖𝑖(𝝌𝝌) =  𝑝𝑝(𝜽𝜽𝑖𝑖|𝝌𝝌)/𝐼𝐼. The interpretation of this equation is that for 
each of the random samples of 𝜽𝜽𝑖𝑖, we evaluate the function 𝑝𝑝(𝑠𝑠|𝜽𝜽𝑖𝑖) based 
on our model for the wave scattering process. We then estimate the overall 
distribution of the scattered signal by averaging the samples of 𝑝𝑝(𝑠𝑠|𝜽𝜽𝑖𝑖) in 
accordance with their probability of occurrence (i.e., the weights 𝑤𝑤𝑖𝑖(𝝌𝝌)). 
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The more samples we take, the better our estimate. Equation (42) exem-
plifies a mixture distribution, meaning that it is a weighted sum of distri-
butions. 

The observation that the integral can be interpreted as a set of samples of 
𝑝𝑝(𝑠𝑠|𝜽𝜽𝑖𝑖), weighted by factors proportional to 𝑝𝑝(𝜽𝜽𝑖𝑖|𝝌𝝌), suggests an alterna-
tive sampling strategy: instead of drawing the 𝜽𝜽𝑖𝑖 uniformly from the entire 
interval and then weighting by 𝑝𝑝(𝜽𝜽𝑖𝑖|𝝌𝝌)/𝐼𝐼, we could alternatively draw ran-
dom samples of 𝜽𝜽𝑖𝑖 from 𝑝𝑝(𝜽𝜽𝑖𝑖|𝝌𝝌) so that they are intrinsically weighted in 
proportion to their probability of occurrence. Our approximation would 
then become simply 

𝑝𝑝(𝑠𝑠|𝝌𝝌) ≈
1
𝐼𝐼
�𝑝𝑝(𝑠𝑠|𝜽𝜽𝑖𝑖)
𝐼𝐼

𝑖𝑖=1

. (43) 

Thus, given a method for sampling from the distribution for 𝑝𝑝(𝜽𝜽𝑖𝑖|𝝌𝝌), we 
can quickly form numerical estimates of 𝑝𝑝(𝑠𝑠|𝝌𝝌). 

The Monte Carlo approach can be readily extended to formulations with 
additional model levels as in equation (40). For example, we could ran- 
domly generate a sequence of values 𝝌𝝌𝑗𝑗, where 𝑗𝑗 = 1, … , 𝐽𝐽, by sampling  
from the distribution 𝑝𝑝(𝝌𝝌|𝝍𝝍). In the multilevel formulation, however, for 
each 𝝌𝝌𝑗𝑗, there will be a distinct distribution for 𝜽𝜽, namely 𝑝𝑝�𝜽𝜽�𝝌𝝌𝑗𝑗�. We in-
dicate the samples drawn from 𝑝𝑝�𝜽𝜽�𝝌𝝌𝑗𝑗� as 𝜽𝜽𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1, … , 𝐼𝐼. Hence, the inner 
integral (in square brackets in equation (40)) is approximated as 

𝐼𝐼𝑗𝑗 = ∫ 𝑝𝑝(𝑠𝑠|𝜽𝜽)𝑝𝑝�𝜽𝜽�𝝌𝝌𝒋𝒋�𝑑𝑑𝜽𝜽 ≈
1
𝐼𝐼
�𝑝𝑝�𝑠𝑠�𝜽𝜽𝑖𝑖𝑖𝑖�
𝐼𝐼

𝑖𝑖=1

 . 

The multilevel integral then evaluates as 

𝑝𝑝(𝑠𝑠|𝝍𝝍) ≈
1
𝐽𝐽
�𝐼𝐼𝑗𝑗

𝐽𝐽

𝑗𝑗=1

≈
1
𝐼𝐼𝐼𝐼
��𝑝𝑝(𝑠𝑠|𝜽𝜽𝑖𝑖𝑖𝑖)

𝐼𝐼

𝑖𝑖=1

𝐽𝐽

𝑗𝑗=1

. (44) 

Although equation (44) retains the double summation resulting from the 
double integral in equation (40), this structure is unnecessary when we are 
approximating the integrals by Monte Carlo methods. It is just as effective 
to sample over all of the rvs at once. Conceptually, we can think of sam- 



ERDC TR-18-7 47 

 

pling just one value of 𝜽𝜽𝑖𝑖𝑖𝑖 for each j; that is, we set 𝐼𝐼 = 1. Hence, equation  
(44) reduces to the single summation 

𝑝𝑝(𝑠𝑠|𝝍𝝍) ≈�𝑝𝑝�𝑠𝑠�𝜽𝜽𝑗𝑗�
𝐽𝐽

𝑗𝑗=1

, (45) 

where 𝜽𝜽𝑗𝑗  is a single sample drawn from the distribution 𝑝𝑝�𝜽𝜽�𝝌𝝌𝑗𝑗� with 𝝌𝝌𝑗𝑗 
being drawn from the distribution 𝑝𝑝(𝝌𝝌|𝝍𝝍).  

Alternatively, we could envision performing the integral over 𝜽𝜽 appearing 
in equation (40) analytically by employing one of the distributions derived 
in chapter 4 to model 𝑝𝑝(𝑠𝑠|𝝌𝝌). We then have only a single-level problem re-
maining for the Monte Carlo sampling. The solution to this problem is the 
same as equation (42) except with 𝝌𝝌 replacing 𝜽𝜽 and 𝝍𝝍 replacing 𝝌𝝌.  

A situation of practical interest where we might use one of the formula-
tions in this section involves ensemble weather forecasting in which multi-
ple forecasts are generated by systematically perturbing the initial condi-
tions in accordance with the ranges of uncertainty in the weather observa-
tions. This results in a randomized set of forecasts, each of which is a plau-
sible outcome given the uncertainty and chaos in the modeling process 
(e.g., Gneiting and Raftery 2005). The forecast ensemble includes several 
different atmospheric fields that are responsible for wave scattering phe-
nomena. For example, acoustic scattering is caused by wind velocity and 
temperature fluctuations whereas RF scattering is caused by pressure and 
water vapor fluctuations. Depending on the implementation details, the 
ensemble could correspond to either the index i or j above. 
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7 Conclusion 

In this report, we reviewed a number of basic probability distributions 
(more precisely, probability density functions, or pdfs) for scattered sig-
nals and considered the extension of these basic pdfs to incorporate uncer-
tainties in the statistical attributes of the signals.  

Among the basic pdfs considered were the exponential pdf, which is a one-
parameter pdf intended for strongly scattered signals; the lognormal pdf, 
which is a two-parameter pdf intended for weakly scattered signals; the 
Rice and gamma pdfs, which are two-parameter pdfs applicable to either 
weakly or strongly scattered signals; and the generalized gamma pdf, 
which extends the gamma pdf so as to address the frequency of extreme 
fluctuations (the tails of the pdf). 

Uncertainties can be conveniently and systematically addressed with a 
compound pdf, which incorporates separate pdfs for the wave scattering 
process and for the uncertain parameters in the wave scattering. A number 
of formulations based on this approach (K-distribution, Lomax distribu-
tion, and compound gamma distribution) were described and compared. 
The consistent theme is that uncertainty raises the tails of the pdfs, which 
can have important implications for detection and communication-system 
performance. 

We also considered extension of the basic pdfs to transmissions along mul-
tiple paths. Mathematically, this corresponds to extending single-variate 
pdfs to multivariate or matrix pdfs. Such an extension is straightforward 
for the lognormal pdf. The matrix Wishart distribution, with two degrees 
of freedom, appears to provide a useful matrix pdf for strong scattering. 
We also speculated that the matrix gamma pdf might be useful for weak or 
strong scattering although we did not investigate this possibility in detail. 

Table 1 summarizes the various pdfs that were discussed and their attrib-
utes. Of the many single-variate pdfs discussed here, the compound 
gamma pdf would appear to be the most generally useful; it applies to 
weak or strong scattering, incorporates an elevated tail as is characteristic 
of intermittent phenomena, and has convenient analytical properties. 
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Table 1.  Summary of signal distribution models and their physical associations. Cases with known Bayesian 
conjugate priors are indicated in red. In the table, “prior” and “posterior” refer to the distributions for the 
parameters describing the signal power (the hyperparameters). Cases where results are not known are 

indicated by question marks. 

 

The report also explored how the modeling of parametric uncertainties 
naturally relates to Bayesian inference of the wave scattering parameters 
and how this relationship can be exploited. In particular, by interpreting 
the basic scattering model as a likelihood function and modeling the para-
metric uncertainties using the Bayesian conjugate prior, convenient ana-
lytical solutions, already well known in the literature, can be found. The 
Bayesian connection also leads to convenient sequential updating algo-
rithms, which refine an initial prediction of the wave scattering parameters 
as new signal observations (i.e., observations of the random scattering 
process) become available. In practice, the sequential updating algorithm 
provides a recipe for scenarios in which the signal parameters are uncer-
tain and repeated signal transmissions are made along the same path to 
gradually refine the parameter values. 

Finally, the report addressed the problem of calculating probabilities of 
false alarm and detection (i.e., receiver operating characteristics, or ROC 
curves) when parametric uncertainties are present. The parametric uncer-
tainties were shown to substantially degrade the ROC curves. The primary 
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issue is that the tails of the pdfs for the signal and noise are significantly 
elevated when uncertainties are included. Since detector thresholds are 
normally set to make false alarms very rare and we normally wish to oper-
ate with a probability of detection close to 1, the tails of the signal and 
noise distributions are very important. It is plausible that, in practice, ex-
treme values of the signal and noise are more frequent than expected, due 
to our limited knowledge of all the processes impacting the signal and 
noise distributions. 

In this technical report, we consolidated and extended many practical sta-
tistical treatments for uncertainties in signal properties and linked those 
treatments to methods for efficiently reducing the uncertainties as addi-
tional signal observations become available. Although the only application 
considered in detail here was calculation of ROC curves, the framework 
provided can actually be applied to many other problems involving battle-
field sensing and communication for which random signal behavior is im-
portant. Another application would be to optimally predict signal charac-
teristics along a relatively poorly sampled transmission path based on 
characteristics along a better-sampled path. This would be useful, for ex-
ample, for assessing the properties of an unknown signal emitter on the 
basis of transmission samples between nearby friendly units. Another po-
tentially important application is the development of improved automated 
target recognition (ATR) algorithms, which account for random wave scat-
tering and while providing realistic self-assessments of the uncertainties in 
the target classification. Taken together, these advances will help the Army 
operate more effectively in complex environments where communication 
and sensing systems are strongly influenced by random signal behavior. 
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Appendix A: Determination of Hyperparameters 
for the Exponential Family of Distributions 

In the body of this report, we did not discuss in detail how to choose the 
parameters of the distributions. By exploring the general notions of expo-
nential distributions and their implications for conjugate priors, we show 
in this appendix how it is possible to rigorously choose the parameters.  

To start, we note that pdfs for the exponential family have the following 
general form: 

𝑝𝑝(𝒙𝒙|𝜼𝜼) = ℎ(𝒙𝒙)𝑔𝑔(𝜼𝜼)exp[𝜼𝜼𝑇𝑇𝒖𝒖(𝒙𝒙)], 

where 𝜼𝜼 are the natural parameters, 𝒖𝒖(𝒙𝒙) are the sufficient statistics, and 
𝑔𝑔(𝜼𝜼) can be interpreted as a normalization constant. In the case of a uni-
variate normal distribution, it can be cast in this exponential form: 

𝒩𝒩(𝑥𝑥|𝜇𝜇, 𝜏𝜏) = ℎ(𝑥𝑥)𝑔𝑔(𝛈𝛈)exp[𝛈𝛈𝑇𝑇𝐮𝐮(𝑥𝑥)], 

where the natural parameters, sufficient statistics, and normalization coef-
ficient are 

ℎ(𝑥𝑥) = (2𝜋𝜋)−1/2, 

𝜼𝜼 = [𝜇𝜇𝜇𝜇,−𝜏𝜏/2, ln𝜏𝜏]𝑇𝑇 , 

𝒖𝒖(𝑥𝑥) = [𝑥𝑥, 𝑥𝑥2, 0]𝑇𝑇 , 

𝑔𝑔(𝜼𝜼) = exp[𝜂𝜂12/4𝜂𝜂2 + 𝜂𝜂3/2]. 

In a similar manner, conjugate priors can be formulated as a distribution 
in the exponential family 

𝑝𝑝(𝜼𝜼|𝝌𝝌, 𝜈𝜈) = 𝑓𝑓(𝝌𝝌, 𝜈𝜈)𝑔𝑔(𝜼𝜼)𝜈𝜈exp[𝜈𝜈𝜼𝜼𝑇𝑇𝝌𝝌]. 

The normal-Gamma cast in this form is 

𝒩𝒩(𝜇𝜇|𝜇𝜇0, (𝛽𝛽𝛽𝛽)−1)Gam(𝜏𝜏|𝑎𝑎0,𝑏𝑏0) = 𝑓𝑓(𝝌𝝌, 𝜈𝜈)𝑔𝑔(𝜼𝜼)𝜈𝜈exp[𝜈𝜈𝜼𝜼𝑇𝑇𝝌𝝌], 

𝜈𝜈 = 𝛽𝛽, 

𝝌𝝌 = [𝜇𝜇0, 𝜇𝜇02 + 2𝑏𝑏0/𝛽𝛽, (2𝑎𝑎0 − 𝛽𝛽 − 1)/2𝛽𝛽]𝑇𝑇 , 
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𝑓𝑓(𝝌𝝌, 𝜈𝜈) = (𝛽𝛽/2𝜋𝜋)1/2[𝑏𝑏0
𝑎𝑎0/𝛤𝛤(𝑎𝑎0)]. 

In this way, the posterior for the natural parameters, following multiplica-
tion of the conjugate prior with the likelihood function, follows in a 
straightforward manner: 

𝑝𝑝(𝛈𝛈|𝐱𝐱,𝛘𝛘, 𝜈𝜈) ∝ 𝑔𝑔(𝛈𝛈)𝜈𝜈+𝑁𝑁exp �𝛈𝛈T ��𝐮𝐮
𝑛𝑛

(𝑥𝑥) + 𝜈𝜈𝛘𝛘��, 

where we can interpret 𝜈𝜈 as an effective number of pseudo-observations of 
the sufficient statistics quantified by 𝝌𝝌. Practically, we can generate an en-
semble of predictions and relate the statistics of those predictions 
(pseudo-observations) to the hyperparmeters by the relationship of 𝝌𝝌 to 
the sufficient statistics. Hence, for the normal-Gamma prior, we can inter-
pret 𝛽𝛽 as the number of ensemble predictions generated, 𝜇𝜇0 as the mean of 
the predictions, 𝑏𝑏0 is related to the mean square of the predictions, and 𝑎𝑎0 
is determined from some defining characteristics of sound scattering. 
More specifically, we can choose 𝑎𝑎0 such that the mode of the gamma dis-
tribution corresponds to experimentally observed variations in the loga-
rithm of the signal intensity. 

Figure A-1 illustrates an example of Bayesian inference for the mean and 
precision. The log-mean is chosen to be −0.5, and the log-precision is cho-
sen to be 1.0. The hyperparameters for the conjugate prior are 𝜇𝜇0 = −1.0, 
𝛽𝛽 = 5, 𝑎𝑎0 = 2, and 𝑏𝑏0 = 1. As the number of observations increases, uncer-
tainty in the log-mean and log-precision decreases. 
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Figure A-1.  Bayesian inference for the log-mean, 𝝁𝝁, and log-precision, 𝝉𝝉. Part 
(a) shows the normal-Gamma prior for the log-mean and log-precision. As 

new observational data is collected, the uncertainty in the log-mean and log-
precision is reduced. A total of (b) 4, (c) 16, and (d) 256 random 

observations are used to update the posterior for the lognormal parameters. 
The red circle indicates the true log-mean and log-precision. 
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