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Abstract 

The U.S. Army Corps of Engineers (USACE) operates and maintains 236 
lock chambers at 191 lock sites on 41 waterways throughout the contiguous 
United States. Waterway navigational locks are important parts of the na-
tion’s infrastructure. Locks enable the flow of billions of dollars of com-
merce and support efforts for flood control. Proper maintenance of the 
locks and early detection of damage is crucial; however, due to shrinking 
budgets, adequate funding to apply traditional scheduled maintenance and 
visual inspection is not available. Structural health monitoring (SHM) sys-
tems have been considered to assist in establishing more efficient mainte-
nance, repair, and replacement priorities for navigational locks. This work 
was undertaken to develop and implement a real-time methodology that 
provides lock operators with a robust, accurate warning system of gap(s) 
at the gate-to-wall interface. This initial effort, which focused on horizon-
tally framed miter gates and on damage that is assumed to take the form of 
a gap at the gate/wall interface (quoin), developed a methodology to iden-
tify the occurrence of damage in miter gate structures using data from 
strain and water level gages that is collected continuously from the SHM 
system deployed by USACE. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

Waterway navigational locks are important parts of the nation’s infrastruc-
ture. Locks enable the flow of billions of dollars of commerce and support 
efforts for flood control. For example, one modern 15 barge tow (a common 
mode of commercial transport on the Mississippi River) is capable of trans-
porting upwards of 26,000 tons of goods, equivalent to 1050 semi-trucks or 
240 rail cars. At Lock 26 on the Mississippi River alone, more than 60 mil-
lion tons of goods passed through the locks in 2014 (USACE 2015). Due to 
the interconnected nature of inland waterways, downtime for routine 
maintenance or unexpected failure of one set of locks can cause extensive, 
costly delays to shipping through large parts of the waterway. 

Proper maintenance of the locks and early detection of damage is crucial; 
however, due to shrinking budgets, adequate funding to apply traditional 
scheduled maintenance and visual inspection is not available. The U.S. 
Army Corps of Engineers (USACE 2015) estimated that an investment of 
$13 billion dollars in inland waterways would be required between 2013 and 
2020 to keep delays on these waterways from growing beyond their current 
level; however, only $7 billion dollars has been projected to be budgeted 
during this time period (ASCE 2013). As a result of this shortfall in funding, 
inspection and maintenance of the nation’s locks has fallen behind sched-
ule. A consequent increased rate of unexpected failure and more extensive 
repairs can be expected in the future. Early evidence of failures due to de-
layed maintenance and inspection include the high profile unexpected fail-
ures at the Markland Lock and Dam in September of 2009 (Chapman 2010) 
and the Chickamauga Lock and Dam in October of 2014 (Murray 2014). 

1.1.1 Overview of lock and dam sites 

USACE operates and maintains 236 lock chambers at 191 lock sites on 41 
waterways throughout the contiguous United States (USACE 2014). Before 
the construction of the lock and dam system present today, inland naviga-
tion was difficult and precarious due to rapids, waterfalls, and varying river 
channel location and depth resulting from sediment deposit and flow rate 
changes. A barge traveling from St. Paul, MN to St. Louis, MO along the 
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Mississippi River would have had to navigate a 400-ft elevation change dur-
ing its journey. In 1933, work commenced to create a reliable method for 
inland waterway transportation via a lock and dam system (MDNR 2004). 

A lock and dam site is an elevator for waterway traffic (Figure 1). A vessel 
enters the lock, the stern gate is closed, and depending on the direction of 
travel, the water in the lock is either raised or drained to match the water 
level opposite of the bow gate. Once the water levels align, the bow gate 
opens and the vessel proceeds on its route. In Figure 1, the bow gate is the 
upstream gate, and the stern gate is downstream. 

Figure 1.  Typical lockage procedure: (a) ship enters lock, (b) gates close and chamber water 
levels rise, and (c) ship leaves the lock. 
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1.1.2 Miter gates 

Miter lock gates are the most common gate type found at USACE lock and 
dam sites (USACE 2015). Characterized by their primary load carrying 
members, miter gates are either vertically framed (using vertical steel gird-
ers) or horizontally framed (using horizontal steel girders). A miter gate 
consists of two leaves, which, when closed, are referred to as “mitered” and 
dam the water on the upstream side. Figure 2 shows a typical elevation view 
of one leaf of a horizontally framed miter gate.* 

During a lockage, when the gates are closed and the chamber filled, the lock 
gates form an angle of 60 to 70 degrees with the wall of the lock chamber 
resulting in an angle of approximately 126 degrees between the two inter-
secting gates (Figure 3). 

Figure 2.  Typical horizontally framed miter gate elevation (one leaf shown). 

 

                                                   
* The lock gates used as the case study for this report are horizontally framed, so the reader may as-

sume throughout the report that the terms “lock gates” or “miter lock gates” refer to horizontally 
framed steel miter gates unless explicitly stated otherwise. 
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Figure 3.  Typical miter gate plan view. 

 

The boundary conditions at the gate-to-wall intersection (quoin) and be-
tween the two gates in the center of the chamber behave as pins, resulting 
in three-hinged arch behavior of the gates in their closed position. When the 
water level in the lock chamber differs from the water level outside the 
chamber, a load is placed on the gate that needs to be transferred to the lock 
wall. Under normal operating conditions, negligible moment is present at 
the ends of the gates, and the entire load transfers as axial compression 
through the girders and into the wall of the lock chamber. Figure 4 shows a 
schematic of the load transfer mechanism. 

Figure 4.  (a) Load scenario for miter gate; (b) Load path through girder to wall. 
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1.1.3 Problems associated with miter gates 

Problems typically observed with miter gates during inspection include: fa-
tigue cracking in the gate members, skin plate, and ball and socket joint 
(known as the pintle); damage from barge impact; corrosion; gate-misalign-
ment caused by loss of tension in the diagonals; loss of contact or the for-
mation of a gap at the gate/wall interface and the gate/gate interface; and 
general wear and deterioration of gate components (James and Zhang 1996). 

The formation of a gap between the quoin of a miter gate and the wall of a 
lock chamber can occur as a discrete event, slowly over a period of weeks to 
months, or by some combination thereof. Gaps are different from other 
damage scenarios in that they themselves do not result in immediate dam-
age to the gate in the same way, for instance, that a barge impact might. A 
gap changes the load path of the gate, forcing loads to redistribute, resulting 
in higher forces and stresses in other parts of the gate. The higher stresses 
become problematic, especially in the pintle region, which is prone to fa-
tigue damage. The fatigue life of a structural component is dependent on 
both the number of loading cycles and the magnitude of the range of loads 
throughout each cycle, with the fatigue life declining as the stress range in 
the component increases. If a gap forms, it will result in higher stresses in 
fatigue prone structural components during loading, thereby shortening 
their fatigue life and in turn shortening the useful life of the gate unless re-
pairs are made. 

1.1.4 Current state of lock monitoring 

Lock monitoring is generally done via visual inspection, either by dewater-
ing or by sending divers to inspect. Dewatering consists of taking the lock 
out of service and draining the water. Figure 5 shows an example of de-
watering. Due to high costs and funding availability, dewatering occurs less 
and less frequently (USACE 2016). Moreover, taking a lock out of service is 
estimated to cost the economy upwards of $3 million per day from goods 
not making it to market (Gillerman 2013). Sending divers has limited ben-
efits, as underwater visibility conditions are generally poor, at best. As a re-
sult, divers are left with no choice but to feel for the presence of damage and 
then wait until they get back on land to sketch their findings. Moreover, the 
non-redundancy in the structure means that sending someone to inspect 
the gate without prior knowledge of the extent of damage can be a danger-
ous prospect (USACE 2016). 
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Figure 5.  Maintenance worker inspecting a miter gate with the chamber dewatered. 

 
Source: Rankin (2014). 

The unreliable and often impractical nature of performing regular visual in-
spections of each gate provides the USACE with motivation to investigate 
alternative methodologies for assessing lock gates. 

1.1.5 Structural health monitoring 

Due to the need to efficiently allocate limited resources available for the 
maintenance and inspection of locks, structural health monitoring (SHM) 
systems have been considered to assist in establishing maintenance, repair, 
and replacement priorities for navigational locks. SHM is designed with the 
goal of moving away from a prescribed maintenance schedule to a system 
where maintenance decisions are made based on information gathered 
about the condition of the component from the SHM system, as well as lim-
ited use of formal visual inspections and assessment of other available in-
formation (e.g., perceptible vibrations or noises). These systems are also ex-
pected to detect any impending failures before their occurrence, as well as 
operational problems that acutely present themselves. 

SHM is a process of detecting damage and characterizing the state of a 
structure by observing the structure over some period of time in the form 
of taking measurements at periodic intervals. A damage sensitive feature is 
extracted from the measurements, the statistics of which are analyzed to 
determine the health of the structure. The presence of damage in the 
structure will manifest itself as a change in the statistics of the damage 
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sensitive feature. A successful structural health monitoring program can 
be seen as having the goal of answering the following four questions 
(Farrar 2012): 

1. Is there damage? 
2. Where is the damage? 
3. How much damage is there? 
4. How much longer can the structure be used safely? 

The implementation of an SHM plan requires data acquisition and pro-
cessing, the selection of a damage sensitive feature, and appropriate statis-
tical modeling to properly discriminate between true damage indicators and 
inherent random variations in the system. The discernment between true 
damage and system variability is critical to the success of an SHM program, 
because Type 1 and Type 2 errors (defined, respectively, as false positives 
and false negatives) need to be kept to an absolute minimum. Figure 6 
shows a flowchart outlining the SHM process. The flowchart highlights the 
goals of continuous monitoring for SHM, as the program would continue 
without end for the life of the structure. 

To date, SHM has found limited application to lock gates. Greimann, 
Stecker, and Rens (1991) implemented a simple monitoring procedure on 
lock gates in 1990. In the study, data from the gate were manually recorded 
during inspections and compared to the expected performance of the gate. 
An empirical condition index was developed to use as a decision making 
tool. As data were not collected continuously, this study can be seen as a 
precursor to SHM of lock gates. 

Commander, Schulz, and Goble (1994) investigated detection of damage in 
miter gates by comparing strain measurements. The study was limited to 
types of damage that would lead to cross-section loss of structural members 
(e.g., cracks or corrosion), as the damage considered was simulated in a Fi-
nite Element Model (FEM) by reducing the Young’s modulus of a member. 
The detection method relied heavily on manual inspection of data plots and 
on updating their FEM to match the damaged case. One of the metrics used 
in this study to detect damage is the correlation coefficient between moni-
tored strain and the known undamaged strain. The correlation coefficient is 
measured on a strain-gage-by-strain-gage basis, and multivariate statistics 
were not considered. Finally, temperature effects on monitored strain val-
ues were not considered. 
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Figure 6.  Flowchart of a structural health monitoring program. 
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McAllister, et al. (2001) developed a reliability-based assessment method 
for existing miter gates calculating the probability of failure conditioned on 
detected flaw sizes. The study included uncertainty in strength, applied 
loads, flaw size, flaw detection, and flaw propagation. The goal of their study 
was to provide an estimate of the remaining life of a miter gate, given some 
detected flaws. 

Estes, Frangopol, and Foltz (2004) implemented a Bayesian updating 
methodology to include data obtained in the field to reassess the reliability 
of a miter gate. Though these studies do not explicitly focus on damage de-
tection, the concepts presented therein can be applied in a SHM program. 

More research is required to take advantage of the potential offered by SHM 
for the USACE. The U.S. Army Engineering Research and Development 
Center (ERDC) intends to use SHM as one tool in a larger system-wide value 
and consequence modeling scheme. SHM is to be employed to provide data 
that will allow ERDC to characterize the current state of a structure. This 
current state of the structure is then used in conjunction with probabilistic 
models for future structural events to determine an expected remaining life 
of the structure. A consequence model is then developed to determine the 
effect of any action or inaction to remedy the damage detected from the 
SHM system, and a value is assigned to each action alternative to determine 
how each alternative meets USACE’s mission. The value and consequence 
model framework will facilitate prioritization of maintenance and repairs 
and optimize the use of available funding. The research presented herein is 
intended to help USACE/ERDC toward achieving this vision of the future. 

1.2 Objective 

The objective of this study is to develop a methodology to identify the oc-
currence of damage in miter gate structures using data from strain and wa-
ter level gages. For this initial effort, attention is focused on horizontally 
framed miter gates, where damage is assumed to be of the form of a gap at 
the gate/wall interface (quoin). The data investigated are collected contin-
uously from the structural health monitoring system deployed by the 
USACE. The ultimate goal is to implement a robust and accurate warning 
system that, based on the methodology developed herein, provides a real-
time alert of the presence of an unacceptable gap at the quoin. 



ERDC TR-18-2 10 

1.3 Approach 

The damage detection methodology is developed using statistical methods 
that incorporate data from multiple locations on the gate, and combines 
them into a single, statistically significant metric used to evaluate structural 
health and condition. The explicit intention of the approach described in 
this report was to develop a fully automated process. 

Chapter 2 provides the necessary mathematical background required for 
this research. Appropriate data classification schemes are introduced, and 
the concept of data stationarity is explained. The statistical methods used to 
analyze the data in the study are then presented, with a specific focus on 
principal component analysis (PCA). The chapter concludes with a method 
for reducing the occurrence of false positive damage identification by use of 
the probability of consecutive observations above a specific damage thresh-
old, given no damage is present. 

Chapter 3 provides an overview of the structural health monitoring program 
developed by the USACE for lock gates, known as SMART (Structural Mon-
itoring and Analysis in Real Time) Gate. The type of data collected by the 
system is explored and a selection is made for the ideal candidate for gap 
detection; namely, strain. The problems with strain, by itself, as a damage 
indicator are subsequently discussed (e.g., temperature sensitivity and long 
periods of gate inactivity, etc.). 

Chapter 4 describes the proposed damage detection methodology, including 
applying the methods discussed in Chapter 2 to the data collected from the 
lock gates. A new damage sensitive feature, defined as the derivative of the 
strain with respect to the water height, herein referred to as slope, is intro-
duced and is shown to be stationary, nominally free from environmental ef-
fects. The use of slope is additionally seen to effectively remove the long pe-
riods of gate inactivity from the data, increasing the computational effi-
ciency of data processing. 

Chapter 5 validates the proposed method through an example employing 
data collected at the Greenup lock and dam site. An overview of the instru-
mentation at the Greenup site is first presented, along with the data acqui-
sition parameters. The assumptions of stationarity and temperature inde-
pendence of slopes are further confirmed with the measured data at 
Greenup. A method for damage simulation using results from a finite ele-
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ment model is explained, as is the method of imposing the damaged re-
sponse onto the measured data. The chapter concludes with the presenta-
tion of a successful application of PCA to detect the presence of the simu-
lated gap. 

Chapter 6 summarizes the research detailed in this report, and Chapter 7 
presents recommendations for future research on SHM of locks that builds 
on the research reported herein. Future research efforts on SHM of locks 
are expected to take the form of the remaining three steps of the SHM pro-
cess namely, localize the damage, quantify the damage, and determine the 
remaining life of the structure. These are logical next steps in the process to 
develop practical, deployable, structural health monitoring systems for mi-
ter gates operated by USACE. 

1.4 Scope 

For this study, the change in strain resulting from a redistribution of load 
caused by the gap to be detected is used as the quantity to investigate. 
Changes in strain caused by temperature are specifically identified and ad-
dressed. Though this study focuses on the detection of gate/wall interface 
gaps, the methodology developed herein is expected to be readily extenda-
ble to detect other types of damage as well. 
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2 Mathematical Preliminaries 

Implementation of an SHM program by the USACE will result in large 
amounts of data to be processed and analyzed. This chapter provides the 
background needed to analyze the available data. First, it introduces the 
ways that data are classified with a focus on the notions of time series and 
stationarity. Then, with the data appropriately classified, it discusses meth-
ods to analyze the data, with a particular focus on a technique known as 
PCA.  Finally, it examines methods for discriminating outliers in the data. 

2.1 Data classification 

For this study, the collected data take the form of time series, which is a dis-
crete sequence of data points sampled on a continuous time interval that 
may have equal spacing between samples. Prado and West (2010) provide a 
good introduction on time series notation and definitions; their conventions 
will be used in this report. For the case of a time series with equally spaced 
samples, a common notation for the observations of the time series is ĀĀ 

with (Ā=. . . , −1,0,1,2, … ). For the case where samples are not taken with 
equal spacing, the notation is ĀĀĀ with ĀĀ− ĀĀ−1not necessarily equal to one. 
A time series process is a collection of random variables ĀĀ indexed in time 
and is represented as {ĀĀ, Ā∈ Ā}, or simply {ĀĀ} where T is an index set of 
real integers. A time series process is described by the joint cumulative dis-
tribution of the sequence of random variables {ĀĀ}, given by: 

 ĀĀĀ�Ā1, Ā2, … , ĀĀĀ� = Ā�Ā1 ≤ Ā1, Ā2 ≤ Ā2, … , ĀĀĀ ≤ ĀĀĀ� (2-1) 

Where Ā1is the first sample of the realization of {ĀĀ}, Ā2 is the second sam-
ple, and so on, and ĀĀ are the number of samples taken. The marginal cu-
mulative distribution function of each individual random variable is also 
frequently specified, i.e.: 

 ĀĀĀ(Ā) = Ā{ĀĀ ≤ Ā} (2-2) 

or equivalently, the marginal density function: 

 ĀĀĀ(Ā) =
ĀĀĀ Ā(Ā)

Ā𝑑𝑑
 (2-3) 

The set of all possible realizations of the random process is called the ensem-
ble. The ensemble average of the random process, or the mean, is written as: 

 ĀĀĀ = Ā[ĀĀ] = ∫ ĀĀĀĀ(Ā)Ā𝑑𝑑∞
−∞  (2-4) 
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where Ā[∙] is the expectation operator. Similarly, the variance of the ran-
dom process at time t is: 

 ĀĀĀ
2 = Ā�{ĀĀ − ĀĀĀ}2� = ∫ {Ā − ĀĀĀ}2ĀĀĀ(Ā)Ā𝑑𝑑∞

−∞  (2-5) 

The ensemble average of ĀĀ can be better understood by examining the 
sample mean value of ĀĀ. Consider the time series process {ĀĀ} sampled Np 

times under identical conditions such that there were Np realizations of 
each random variable ĀĀ. The sample mean is given by: 

 ĀĀ��� = 1
ĀĀ

∑ ĀĀ
(Ā)

 
ĀĀ
Ā=1  (2-6) 

where ĀĀ
(Ā) is the ith realization of x at time t. The auto-covariance of {ĀĀ} is 

formally defined as: 

 ĀĀ (Ā, Ā) = ĀĀĀ�ĀĀ, ĀĀ� = Ā[�ĀĀ− ĀĀĀ� �ĀĀ − ĀĀĀ�] (2-7) 

Much of the theory of time series is built under two important assumptions, 
stationarity and ergodicity. Determining these features will allow selection 
of an appropriate method for analyzing the data. 

2.1.1 Stationary processes 

Often times, the probability distribution of the stochastic process {ĀĀ} 
changes with time, and so the mean, variance, and autocorrelation are a 
function of time. However, many situations occur where the probability 
density function (pdf) of a stochastic process does not change with time. 
When the pdf of a stochastic process does not change with time, the pro-
cess is said to be stationary. Formally, let ĀĀĀ(Ā) be the joint cumulative 
distribution of the time series. Then, {ĀĀ} is said to be a strictly stationary 
process if this joint probability distribution does not change with an arbi-
trary shift in the time axis, τ, i.e.: 

 ĀĀĀ�Ā1, Ā2, … ĀĀĀ� = ĀĀĀ�Ā1+Ā, Ā2+Ā, … ĀĀĀ+Ā� (2-8) 

Strict stationarity is often difficult to demonstrate for engineering applica-
tions, and so the concept of weak stationarity is frequently used synony-
mously with stationarity in the time-series analysis literature. A process is 
said to be weakly stationary if the mean value is independent of time, and 
the auto-covariance is dependent only on the time interval between the 
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two points considered. Formally, a process is weakly stationary if the fol-
lowing hold true: 

 Ā(ĀĀ) = ĀĀ   (2-9) 

 ĀĀĀ�ĀĀ,ĀĀ+Ā� = Ā[(ĀĀ − ĀĀ )(ĀĀ+Ā − ĀĀ )] = ĀĀ  (2-10) 

where: 

 ĀĀ  = the mean value of ĀĀ 
 ĀĀ = the autocovariance of ĀĀ 

 τ = time interval between two points. 

2.1.2 Ergodicity 

In time series analysis, only one realization of a time series process is usu-
ally available, for example, the Gross Domestic Product (GDP) of the 
United States in the 20th century, or the annual rainfall in a region. These 
processes can only be measured once, and thus, taking an ensemble aver-
age is not possible; however, a temporal average of the single realization 
can still be found. Consider the temporal average, ĀĀ�  , of all points in the 
realization such that: 

 ĀĀ� = 1
ĀĀ

∑ ĀĀ 
ĀĀ
Ā=1  (2-11) 

Processes in which the temporal average is equal to the ensemble average 
are called ergodic. An intuitive definition of an ergodic process is one where 
the statistical properties can be determined from a sufficiently long sample 
(Farrar 2012). This study had only one record of data for each strain gage, 
so ergodicity is an important assumption and the measured data will be 
shown to be well approximated as ergodic for the mean. 

2.1.3 Order of integration 

Time series can be further classified by what is known as the order of inte-
gration (Hamilton 1994). The order of integration of a time series is de-
fined by how many times the series must be differenced before it becomes 
stationary. Differencing a time series is the process of subtracting two con-
secutive observations in the time series to form a new series. That is, the 
differenced time series ∆ĀĀ is defined as follows: 

 ∆ĀĀ = ĀĀ − ĀĀ−1  (2-12) 
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If a time series is stationary, the series is said to be integrated to order zero 
and denoted I(0). Similarly, a time series that becomes stationary after dif-
ferencing once is said to be integrated of order one, or I(1). The determina-
tion of the classification of a time series is critical to selecting an appropri-
ate method for analyzing the data. Thus, before exploring the methods for 
analyzing time series, tests for whether or not a time series is stationary 
are introduced in the next section. For this study, a time series that can be 
shown to be approximately stationary will also be assumed to be ergodic. 

2.2 Tests for stationarity 

To proceed with analyzing the data, the time series of interest must be clas-
sified as stationary or nonstationary. The most basic way to assess station-
arity is by visual inspection. If the data display obvious trends, such as 
growth or decay in time, the data are nonstationary. To further quantify a 
visual inspection, the statistical quantities from Equations 2-9 and 2-10 are 
investigated. If the mean value is seen to not change over time, and the auto-
covariance at two equal length intervals are not different, this will provide 
evidence that process is stationary. However, for many practical applica-
tions, the stationarity of data does not manifest itself readily through visual 
inspection. Accordingly, a more rigorous, statistics-based hypothesis test-
ing is used to determine whether or not a time series is stationary. 

2.2.1 Unit roots and the Augmented Dickey-Fuller Test 

Tests for stationarity generally take the form of a unit-root test. For this 
study, the Augmented Dickey-Fuller (ADF) test is used. The ADF test is 
briefly introduced here for completeness. For a more in-depth treatment, 
see Hamilton (1994). The first step of the ADF test is to fit the time series to 
an autoregressive (AR) model of the following form: 

 ĀĀ = ĀĀĀ−1 + ∑ ĀĀ∆ĀĀ−Ā
Ā
Ā=1 + ĀĀ (2-13) 

where: 

 β,φ = coefficients of the autoregressive model 
 p = number of lags in the autoregressive model 
 ĀĀ = is a Gaussian white noise process. 

The AR model is said to have a unit root if one of the roots of the charac-
teristic equation of the process is 1. For illustrative purposes, consider a 
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first order AR model (that is, a model with one lag). The process can be 
written as: 

 ĀĀ = ĀĀĀ−1 + ĀĀ (2-14) 

The first order AR process can be shown to have a characteristic equation 
of the following form: 

 Ā − Ā = 0 (2-15) 

If φ is equal to 1, then the root of the characteristic equation, m, also equals 
1, and the AR process is effectively a random walk, which is nonstationary 
(Hamilton 1994). The ADF test is a hypothesis test to determine the likeli-
hood that the AR model has a unit root. It tests whether φ=1 against the 
alternative of φ<1. A value of φ>1 is not considered because a coefficient of 
this type would manifest itself as an obviously explosive process. 

Figure 7 illustrates the role of φ in an AR model by plotting three separate 
realizations of Equation 2-14 with 10,000 steps each. Plot A shows the first 
order AR model from Equation 2-14 with φ=0.5; Plot B shows φ=1.0; Plot 
C shows φ=1.001. When φ<1 (plot a) the process appears to fluctuate con-
sistently around zero, without any prolonged periods above or below zero. 
In other words, when φ<1, the process appears to be, and in fact is, station-
ary. When φ=1.0, the process continuously grows, displays a consistent 
trend upwards, does not have a constant mean value, and is nonstationary. 
When φ=1.001, taking note of the orders of magnitude difference in the y-
axis range, the process explosively grows and is obviously nonstationary. 
Plotting values of φ as small as 1.1 quickly become asymptotic lines shooting 
off towards infinity, and are not informative; thus, none are shown here. 

The ADF test statistic is defined as: 

 ĀĀ𝐴𝐴 = Ā�
ĀĀ(Ā )

 (2-16) 

where: 

 Ā�  = the estimate of φ 
 SE = standard error. 
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For the case of an AR model, k in Equation 2-17 can be seen as the number of 
lags in the model. The preferred AR model is the model with the number of 
lags that gives the minimum AIC value and thus provides a balance between 
model fit (e.g., small L) and model complexity (e.g., large k) (Akaike 1974). 
With the appropriate number of lags chosen, the values of parameters φ and β 
are estimated, the process of which can be found in textbooks on time-series 
analysis, such as Hamilton (1994). Finally, the ADF test is performed and used 
to classify the AR process as stationary or nonstationary. If the time series is 
well represented by the AR model, the time series itself is classified as station-
ary or nonstationary, which will further govern the selection of the appropriate 
analysis methods. 

This section has shown one method for testing a time series for stationarity, 
the ADF test. The ADF test is performed by fitting the data to be tested to 
an auto-regressive model with an appropriate number of lags as determined 
by the Akaike Information Criterion. A hypothesis test is then performed on 
the coefficients of the AR model to test for a unit root of the process. A test 
statistic is found and compared against critical values tabulated by Dickey 
and Fuller, with a test statistic more negative than the critical value indicat-
ing rejection of the null hypothesis of a unit root in favor of the stationary 
alternative. Intuitively, a rejection of the null hypothesis states that, some 
percentage of time (the significance level chosen during the test, commonly 
5%), one assumes there is not a unit root when the process actually has one. 
Conversely, it can be thought of as having 95% confidence that there is not 
a unit root in the process. 

2.3 Statistical methods for analyzing multivariate time series 

In this study, multiple time series are analyzed simultaneously as a single, 
multivariate time series. The time series are combined into a vector, X, as: 

 Ā =

⎣
⎢
⎢
⎢
⎡ĀĀ

(1)

ĀĀ
(2)

⋮
ĀĀ

(Ā)⎦
⎥
⎥
⎥
⎤

Ā𝑛𝑛Ā

 (2-18) 

where: 

 X = n x m data matrix 
 ĀĀ

(Ā) = ith m x 1 time series 
 m  = number of observations for each time series 
 n = number of time series. 
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The analysis method chosen for the data matrix depends on the classifica-
tion of the individual time series. Most time series analysis methods require 
a stationary series; however, methods do exist for analyzing nonstationary 
time series. PCA is the method chosen for this study and will be discussed 
in detail here. Subsequently, a brief introduction to the method of cointe-
gration is presented as one option for analyzing nonstationary time series. 

2.3.1 PCA for stationary time series 

PCA is a statistical procedure for analysis of stationary time series. PCA is 
an orthogonal transformation of a set of n possibly correlated random var-
iables or time series, to a set of n linearly uncorrelated variables known as 
the principal components of the data. The transformation is derived from 
the eigenvectors of the covariance matrix, where each eigenvector repre-
sents a “direction” of the data describing a certain percentage of the vari-
ance in the data. The associated eigenvalues correspond to the variance of 
the transformed time series. The percentage of the variance explained in a 
given principal direction can be determined as the ratio of the correspond-
ing eigenvalue divided by the sum of the eigenvalues. That is: 

 %Ā𝑒𝑒ĀĀĀ𝑒𝑒ĀĀ𝑒𝑒Ā = ĀĀ
∑ ĀĀ

Ā
Ā=1

Ā 100 (2-19) 

where: 

 λi = ith eigenvalue. 

Thus, the largest eigenvalue corresponds to the direction (eigenvector) that 
“explains” the largest variance of the data. 

PCA can be used to reduce the dimensionality of the data with a minimal loss 
of information. To this end, a certain percentage (say 90%) of the variance in 
the data to retain is first selected, PCA is applied, and the appropriate set of 
eigenvectors that represent this percentage is chosen. The data are then pro-
jected onto the corresponding eigenvectors, yielding a dimensionally reduced 
set of variables still containing the chosen percentage of the information. A 
brief treatment on the method of PCA is given here, and Chapter 3 introduces 
the application of PCA to structural health monitoring. 

Much of the literature on PCA gives the first step of the process as normal-
izing the data by mean-centering each variable and forcing unit variance 
by dividing each variable by its sample variance. For example, normalizing 
is necessary for combining data that may have different units; however, for 
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the study at hand, the differing values in the mean of each random varia-
ble to be investigated is of critical importance to detect damage in the 
structure. Not performing this step does not invalidate the results of PCA, 
however, and so this step is not performed in this study. The first step then 
is to form a covariance matrix of the data. The covariance matrix, Σ, of the 
data is defined as: 

 Ā = �
Ā[�ĀĀ

(1) − Ā1��ĀĀ
(1) − Ā1�] ⋯ Ā[�ĀĀ

(1) − Ā1��ĀĀ
(Ā) − ĀĀ�]

⋮ ⋱ ⋮
Ā[�ĀĀ

(Ā) − ĀĀ��ĀĀ
(1) − Ā1�] ⋯ Ā[�ĀĀ

(Ā) − ĀĀ��ĀĀ
(Ā) − ĀĀ�]

�(2-20) 

where: 

 ĀĀ  = expected value of the ith time series. 

The eigenvalues and eigenvectors of Σ are found from the familiar eigen-
value decomposition. Because Σ is positive definite, there will be n eigen-
values and eigenvectors, and the eigenvectors will form an orthogonal ba-
sis. To proceed, the original data matrix X, as explained in Equation 2-18, 
is projected onto the appropriate number of eigenvectors, so chosen to 
yield the desired amount of variance retained. If the first k eigenvectors ac-
count for the desired percentage of variance in the system, these eigenvec-
tors are concatenated into a new matrix, such that: 

 Ā� = [Ā1 Ā2 ⋯ ĀĀ] (2-21) 

Then, the data matrix X is projected onto Ā�  to form the dimensionally re-
duced data matrix Ā� as follows: 

 Ā� = Ā� ĀĀ (2-22) 

where: 

 Ā�  = n x k matrix of k retained eigenvectors, known as the 
“loadings” 

 Ā�  = k x m reduced dimension data matrix, k<n. 

For structural health monitoring, Ā�  contains the critical information that is 
used to monitor for damage. How this method is applied to structural health 
monitoring will be introduced in Section 2.4. As noted, one of the implicit 
assumptions in PCA is that the time series to be analyzed is stationary. For 
nonstationary time series, other methods must be used, as explained in the 
next section. 
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2.3.2 Methods for nonstationary time Series 

When a time series is nonstationary, many of the typical data analysis meth-
ods are no longer valid and are prone to yield seemingly statistically signif-
icant results that are actually meaningless. This phenomenon is known as 
spurious regressions and is due to the fact that the central limit theorem no 
longer applies to nonstationary time series (Panik 2009). Thus, other meth-
ods must be applied to handle nonstationary time series. 

One simple method for analyzing a nonstationary time series is to differ-
ence the series enough times so that it becomes stationary. Recall the ran-
dom walk model of Equation 2-14 has a unit root and φ=1. This equation 
then becomes: 

 ĀĀ = ĀĀ−1 + ĀĀ (2-23) 

As explained in Section 2.1, the above process is a random walk process, 
and is nonstationary. However, the first difference of this process will be a 
stationary Gaussian white noise process. To illustrate this point, the time 
series is differenced once by subtracting ĀĀ−1 from both sides, then, the se-
ries can be rewritten as: 

 ∆ĀĀ = ĀĀ (2-24) 

showing that the first difference of ĀĀ is a Gaussian white noise process. To 
reiterate the points in Section 2.1.3, the random walk process is thus con-
sidered an I(1) process, as differencing the series once produces a station-
ary, or I(0) process. 

Differencing may result in loss of important information. However, meth-
ods that address nonstationary time series directly are often more complex 
than their stationary counterparts. One such method that has been devel-
oped to address nonstationary time series is known as cointegration. 

Two or more nonstationary time-series are said to be cointegrated if there 
exists a linear combination of them that is stationary. Consider the follow-
ing equation: 

 ĀĀ = ĀĀ
ĀĀ (2-25) 

The term X is an n x m matrix consisting of n nonstationary time series with 
m samples, βi is an n x 1 vector, and z is a 1 x m vector. The subscript i is 



ERDC TR-18-2 22 

used to indicate that β and z are not unique. If z is stationary, then β is said 
to be a cointegrating vector of X. Intuitively, in the direction of β, the differ-
ence between the series in X is nominally constant, and z is a vector that 
describes long run relationships between the variables in X. 

The methods of determining whether or not the series in X is in fact cointe-
grated, and then finding β, are somewhat complex. For an in depth treat-
ment on cointegration, the reader is directed to an advanced econometrics 
text book, such as Johansen (1996). For cointegration applied to structural 
health monitoring, Cross (2012) provides a good overview. Nonstationary 
methods will not be treated further in this report as the data under investi-
gation appear to be stationary. 

2.4 Change point detection and damage indicators 

As it applies to structural health and condition monitoring, PCA is used to 
obtain a single, stationary time series that contains information from mul-
tiple time series. The single time series is created with data that are assumed 
to be from an undamaged structure. The time series from the undamaged 
condition is then used to indicate damage, which is assumed to occur if the 
statistics of the indicator change significantly. In what follows, the formula-
tion of the damage indicator is first introduced, followed by the method for 
determining whether a change in the statistics is significant enough to be 
classified as damage. 

2.4.1 Damage indicator using PCA 

As mentioned in Section 2.2, PCA can be used as a method to reduce the 
dimensionality of the data. However, it remains to be seen how PCA can be 
used as a method of detecting anomalous behavior of the system (i.e., dam-
age). Figueiredo et al. (2009) at Los Alamos National Laboratory used a 
method of finding the residual between the measured data and the dimen-
sionally reduced data by using PCA eigenvectors formulated from an as-
sumed undamaged dataset. The number of eigenvectors used depends on 
the amount of variance the user wishes to maintain in the system. Cross 
(2012) provides an example of PCA as a damage detector by projecting the 
data matrix X onto the eigenvector associated with the least amount of var-
iance. Both approaches form a single time series that can be used as a dam-
age indicator. The Cross method can be considered a special case of the Los 
Alamos approach in which enough variance in the system is maintained 
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such that all eigenvectors but the last one are used. As such, the Los Alamos 
method will be presented here. 

Consider a data matrix, X, consisting of information from a system under 
normal operating condition (i.e., no damage present). These data are re-
ferred to as the training data, as they “train” the PCA loading vectors based 
on the normal operating conditions of the system. Following the procedure 
set forth in Section 2.2.1, obtain the loadings in the system, Ā� . 

A damage index is then created by forming a residual of the dimensionally 
reduced, undamaged data Ā� (as defined in Section 2.2.1) and the original 
data X. This is accomplished by projecting Ā� back to “original” coordi-
nates. The residual, E, is the error from projecting the reduced data back 
to original coordinates, and is found by subtracting this projection from 
the original data, i.e.: 

 Ā = Ā − Ā� (Ā�ĀĀ) (2-26) 

Each point in time can be viewed an n x 1 vector (see Section 1.1). To form 
a single time series, the Euclidean norm of this vector is taken at each 
point in time, i.e.: 

 ĀĀ = �∑ ĀĀ
ĀĀ

Ā=Ā , Ā= Ā, Ā, … Ā  (2-27) 

As seen, ĀĀ is a vector consisting of the square-root of the sum of squares of 
the “error” in the PCA projection. Figueiredo then uses some percentage of 
the max value of ĀĀ as a threshold that, if a damage index created from tested 
data exceeds, damage will be indicated. He suggests that 90% of the max 
value is typically appropriate. 

To test for damage, the same procedure is applied as in Equations 2-20 
and 2-21, only with data from an unknown state (e.g., potentially dam-
aged). The critical point is that the same loadings, Ā� , from the trained data 
are used. If Xd represents the data to be tested, the procedure to test for 
damage is to find the residual of the tested data as follows: 

  ĀĀ = ĀĀ − Ā�(Ā�ĀĀĀ) (2-28) 
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The Euclidean norm of the residual is taken at each point in time forming 
a new time series used as a damage index, or DI, i.e.: 

 𝐷𝐷𝐷𝐷Ā = �∑ ĀĀĀ
ĀĀ

Ā=Ā   , Ā= Ā, Ā, … Ā  (2-29) 

DI from Equation 2-29 is compared with the threshold found from Equa-
tion 2-27 and damage is said to be present if any value of DI is above the 
trained threshold found from Equation 2-27, that is: 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 Ā𝐷𝐷 Ā𝑖𝑖 𝐷𝐷𝐷𝐷Ā > ĀℎĀ𝑟𝑟Āℎ𝑜𝑜𝑜𝑜𝑜𝑜 (2-30) 

2.4.2 Avoiding Type I and Type II errors 

The choice of threshold in Section 2.4.1 is a critical step for damage detec-
tion, as it may lead to false positives or false negatives. A threshold that is 
too low may be too sensitive and lead to indication of damage when damage 
is not actually present (false positive, or Type 1 error). A threshold that is 
too high may be too insensitive and not indicate damage when damage is 
actually present (false negative, or Type 2 error). The selection of values at 
or near the maximum of the square-root-sum-of-squares of the trained re-
sidual is somewhat qualitative, and so this work suggests an alternative ap-
proach to classifying the significance of values in the damage index that ex-
ceed the threshold. 

The data considered in this report, in general, follow a normal distribution, 
which will be explored in depth later. Because PCA performs a linear trans-
formation on the data, the residuals from PCA will also follow normal dis-
tributions. However, the time series for damage detection, DI, found with 
Equation 2-29 is effectively a square root sum of squares of n normally dis-
tributed random variables. The sum of squares of standardized (mean cen-
tered and unit variance) normally distributed variables will follow a chi-
squared distribution (NIST 2013). As mentioned previously, the variables 
of interest are not standardized; however, it will be shown that the distribu-
tion of the damage index can be well approximated by a lognormal distribu-
tion. Therefore, for the threshold of damage detection, the authors of this 
study use ±3 standard deviations from the mean of the natural log of the 
damage index. The motivation for this threshold is that, for normally dis-
tributed data, 99.7% of the data fall within 3 standard deviations, and thus, 
three out of every thousand observations will be significant outliers and po-
tential false indicators. 
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To further reduce the potential for false indicators, an indication of dam-
age is only considered when a certain number of consecutive observations 
are above or below the threshold of 3 standard deviations. To determine 
the number of consecutive observations required, the probability of an ob-
servation exceeding the threshold is modeled with a binomial distribution. 
The binomial distribution assumes that each observation is independent; 
it will be shown later that the data used in this study can be well approxi-
mated to be composed of independent observations. For a binomial pro-
cess, the probability of s occurrences exceeding the threshold out of the 
next q observations is formally written as: 

 Ā(Ā = 𝑠𝑠) = �Ā
𝑠𝑠�𝑝𝑝Ā(1 − 𝑝𝑝)Ā−Ā (2-31) 

where: 

 p = the probability of exceeding the threshold 
 �Ā

𝑠𝑠� = the binomial coefficient equal to Ā!
Ā!(Ā−Ā)!

 

This study is interested in the case where q = s, i.e., to answer the ques-
tion: At any point in time, what is the probability that all of the next q ob-
servances will exceed the threshold? For the case of q = s, Equation 2-31 
simplifies to 𝑝𝑝Ā, and q is chosen such that the probability of consecutive 
observations is less than a chosen acceptable rate of false 
alarms, ĀĀĀĀĀ𝑎𝑎𝑎𝑎ĀĀĀĀ. That is: 

 𝑝𝑝Ā < ĀĀĀĀĀĀĀ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (2-32) 

Solving (2-32) directly for q will give the minimum consecutive observa-
tions required to indicate damage, and is found as follows: 

 Ā ≥ ln  (ĀĀĀĀĀ𝑎𝑎𝑎𝑎ĀĀĀĀ)
ln  (Ā)

  (2-33) 

where ln is the natural logarithm. For example, if the acceptable false 
alarm rate is 1 in 10,000, ĀĀĀĀĀ𝑎𝑎𝑎𝑎ĀĀĀĀ = 0.0001 in Equation 2-33. Then, if 
the probability of an observation exceeding the threshold is 0.1, q will be at 
least four. That is, at least four consecutive observations above the thresh-
old will be required to indicate damage is present. The probability of an 
observation exceeding the threshold is calculated from the training data by 
dividing the number of measured observations above the threshold by the 
number of total samples. That is: 

 𝑝𝑝 = # ĀĀĀĀĀ ĀℎĀ𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
# Ā𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Ā

  (2-34) 
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2.5 Summary 

This chapter provides the mathematical tools necessary to analyze the data 
obtained from the SHM program implemented by the USACE. Appropriate 
data classification terminology was introduced, and methods to test for the 
classification were presented. Methods for analyzing the data based on the 
classification were then introduced along with methodology for avoiding 
false positives and false negatives. The next chapter will overview the type 
of data available in this study. 
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3 SMART Gate System 

This chapter introduces and reviews the USACE’s SMART Gate system, in-
cluding the types of sensors deployed and the types of data available for 
damage detection. From the available data, strain is chosen as the best can-
didate for the task of monitoring for a gate/wall gap. The chapter concludes 
with a discussion of possible drawbacks to using strain as a solitary damage 
sensitive feature. 

3.1 SMART Gate overview 

In 2007, inspection of The Dalles Navigation Lock on the Columbia River in 
Oregon revealed extensive cracking at the bottom of the gate and loss of con-
tact at the quoin wall. The USACE launched the Structural Monitoring and 
Analysis in Real Time for Lock Gates (SMART Gate) program at The Dalles 
to monitor the situation until repairs could be made. The goal of the program 
is to “provide engineering and operations professionals a real-time look at the 
condition of their structures” (Murray 2014). The system implemented at The 
Dalles consists of 176 gages measuring strain in structural members, temper-
ature, water levels, and pressure on the gate. The data from these gages are 
uploaded to a web portal in real time to allow engineers and technicians to 
assess the performance of the structure. In late 2009, engineers noticed a 
marked change in the readings of some of the sensors, which led to the lock 
being shut down for an emergency inspection. The inspectors noticed sub-
stantial damage to the lower girders and the chamber wall, and emergency 
repairs were performed, preventing a catastrophic gate failure. 

The success of the SMART Gate program in Oregon led the USACE to ex-
pand the monitoring campaign to include new lock and dam sites. The sys-
tem is now employed on six gates in various locations, including on the Mis-
sissippi River at Lock and Dam 27, and on the Ohio River at the Greenup 
Lock and Dam. Each of the sites have instrumented gates with upwards of 
300 total sensors measuring strain, temperature, tilt, and water levels. The 
data are sampled anywhere from 1/15th to 50 hertz and are then uploaded 
to a database for processing. Table 1 lists the gate systems currently in-
cluded in the SMART Gate program. 
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Table 1.  SMART Gate system overview. 

Lock and Dam Name Location Number of Sensors 

Bonneville  Columbia River 84 
Greenup Ohio River 174 
Lock and Dam 27 Mississippi River 289 
Racine Ohio River 125 
Meldahl Ohio River 157 
The Dalles Columbia River 177 

3.2 Strain 

For the problem of gap detection, the most useful information from the avail-
able sensors is strain. As noted in Section 1.1.2, the gates are designed to behave 
as three-hinged arches under load, with the girders transferring the load into 
the quoin block through compressive action. For lock gates, the load comes in 
the form of the differential head, that is, the difference in the upstream and 
downstream water levels. The strain in the girders should increase or decrease 
approximately linearly with an increase or decrease in load. As the load on the 
gate is directly related to the differential head (water levels), the strain should 
then linearly change with a change in water levels. The SMART Gate system 
has both strain and water level gages, so this relationship is tested and used to 
monitor for normal operating conditions of the gate. 

3.3 Need for gage synchronicity 

As discussed above, the strain for miter gates is expected to behave in an 
approximately linear fashion with respect to load. However, investigations 
into the strain behavior of different gates yielded unexpected behavior at 
some locations. The strain response with respect to water levels was either 
nonlinear, displayed hysteresis, or both. The hysteresis-like behavior was 
hypothesized to be caused by a time delay between water level sensors and 
the strain gages. Shifting the strain series in time to synchronize it with the 
measured water level aligned the data (Figure 8). 
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The strain-water sampling discrepancy is more pronounced at Lock 27. In-
vestigations into the strain behavior at this gate revealed highly non-linear 
and hysteresis-like response across multiple gages and varying locations on 
the gate. Figure 9 shows a typical example of this phenomenon. Inspection 
of the plot reveals that something more than a shift in time is occurring here, 
and so a further investigation was conducted. The investigation revealed 
that, on Lock 27, there were no water level sensors integrated with the strain 
sensors. That is, the water level readings come from a different data logger. 

Figure 9.  Non-linear response for a strain gage on Lock 27. 

 

The above cases highlight the need for synchronized and integrated instru-
mentation with dynamic measurement capabilities. At Lock 27 the collected 
data were deemed unreliable and not suitable for inclusion in the study of 
gap detection. Chapter 4 of this report explains that the data of interest per-
tain to the rate of change of strain with respect to water level, eliminating 
concerns about offsets in the strain and water level. Therefore, for the 
Greenup site, the effect of the 2-second delay between strain measurements 
and water level measurements is eliminated. 
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3.4 Issues with strain 

The strain response in the gate provides useful information for detecting a 
gap at the gate/wall interface; however, the strain response is only informa-
tive when the water levels in the lock chamber change. On a typical day at 
Greenup, about six lockage events occur, where the chamber water levels 
rise and fall. A typical lockage has a nominal duration of about 15 minutes; 
therefore, long periods of time exist in the data record where the strain gage 
data provide no useful information. Figure 10 shows these periods of inac-
tivity in a plot of 1 day of strain response for a gage at Greenup. The sharp 
jumps in the data are times when the chamber is filling or emptying, and 
the long plateaus are periods of inactivity in the chamber. 

Furthermore, strain is sensitive to temperature, which leads to a seasonal 
trend in the strain response. Figure 11 shows 6 months of strain response 
for the Greenup gate; the evidence shows that the mean value of the strain 
steadily increases as the weather gets warmer. 

Figure 10.  One day of strain response at Greenup with long periods of non-informative data. 
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Figure 11.  Strain response of one gage for 6 months, showing seasonal trend. 

 

Temperature variations throughout the year can then be seen as causing the 
strain data to behave in a nonstationary manner. As explained in Chapter 2, 
nonstationarity is undesirable, as analysis of the data becomes more cum-
bersome. Moreover, the plan for detecting damage relies on assessing 
whether or not there is a significant change in strain behavior on the gate. 
The question arises then if any significant change in the strain data is caused 
by damage to the gate, or simply from temperature variations (or other en-
vironmental variables). Addressing these two problems with strain data, 
namely nonstationarity and overwhelming amounts of non-informative 
data from gate inactivity, will be explored in the next chapter. 

3.5 Summary 

The USACE SMART Gate system provides engineers with a wealth of infor-
mation on lock gates such as strain, water levels, and temperature. Among the 
available data, strain is the most relevant to the problem of detecting a gap in 
the gate/wall interface. Strain itself is not infallible. It is sensitive to tempera-
ture variations and displays seasonal trends; and collected strain data tends to 
contain long durations of non-informative data. The next chapter explores the 
issues of nonstationarity and uninformative data from gate inactivity. 
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4 Proposed Gap Detection Methodology 

As discussed in Chapter 3, the strain data supplied from the SMART Gate 
system represent the chosen candidate among the various data types avail-
able from the SMART Gate system for the detection of a gap. However, the 
nonstationarity of the data and the long periods of inactivity are a hindrance 
to its direct use as a damage feature. The most useful information in the 
strain data comes from times when the water level in the lock chamber is 
changing. Therefore, a method was developed to quantify the behavior of 
the strain gages during chamber events with a single value. The strain data 
are differentiated, which is seen to remove the seasonal variations in the 
data by effectively removing any constant thermally induced strain present 
during chamber events. The number of points to be analyzed is also signifi-
cantly reduced. This chapter presents the approach to modifying the strain 
data by differencing. 

4.1 Selection of damage sensitive feature 

The strain response of a girder on the gate is expected to change approxi-
mately linearly with respect to load, or equivalently, with respect to water 
levels. Accordingly, the change in strain with respect to water level is ex-
pected to be useful as a damage sensitive feature that can be used to describe 
the strain behavior in the girder during chamber events. Thus, before pro-
ceeding, the expected linearity of strain is examined. Also examined is how 
strain can be used to detect the presence of a gap. 

4.1.1 Linearity of strain 

The linearity of the strain with respect to water is examined through visual 
inspection of the data before continuing on with the development of a meth-
odology for detecting gaps in the gate/wall interface. The strain gage data 
for multiple gages was plotted against the water levels in the lock and the 
relationship was inspected on multiple days. Figure 12 shows a typical strain 
response for 1 day of activity at Greenup. 



ERDC TR-18-2 34 

Figure 12.  Strain response for 1 day at Greenup, showing linearity with respect to water level. 

 

As seen, for this day at Greenup, approximately 10 fill and empty events 
occurred in the lock chamber, each represented by a long diagonal line on 
the plot. When there is no activity in the chamber, the strain generally hov-
ers around the same value. For this day at Greenup, the downstream water 
level was around 38 ft., and the upstream water level around 49 ft. When 
the water level increases, the strain becomes less positive, indicating com-
pression at this location. Most critically, as demonstrated in Figure 12, the 
change in strain occurs in a linear fashion, as hypothesized. This behavior 
was seen across multiple gages and multiple days. 

4.1.2 Strain in the presence of a gap 

When there is a gap between the gate and wall, the boundary conditions for 
the system change and the girders near the gap can no longer transfer load 
into the wall. The load that would have been transferred through the girders 
adjacent to the gap is now redistributed to other girders. This behavior man-
ifests itself in the data as an increase or decrease in strain in the girders for 
the same differential head observed under normal operating conditions. 
This is a critical point in this report; when a gap is present at the gate/wall 
interface, the strain response in the girders near the gap will change, provid-
ing an indication of damage. 
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4.2 Slope as a damage sensitive feature 

To address the issues with strain, namely nonstationarity and long periods 
of inactivity, the change in strain with respect to a change in water level is 
investigated as a potential damage sensitive feature. Algorithms were devel-
oped in MATLAB to detect a change in the water levels in the chamber sig-
nificant enough to signify a chamber event (i.e., a lockage). Any data point 
that occurred outside of the lockage events was discarded. A line is fit to the 
strain data using ordinary least squares (OLS) for each gage during the en-
tire chamber event. The change of the fitted line with respect to change in 
water level for a chamber event is referred to here as slope and is the metric 
that is used to describe the strain behavior at the gage location during cham-
ber events. Figure 13 shows an example of the extracted strain and the least 
squares fit for strain data on one gage at Greenup for 1 day. 

The gage represented in Figure 13 is located near the quoin at the bottom of 
the gate, and the behavior illustrated is for the lock chamber emptying. On 
this day at Greenup, five empty events occurred. The top plot in Figure 13 
shows the noisy raw data from the strain gages for the empty events on that 
day. The bottom plot shows the least squares fit of the data. For all five 
events, the slopes of the line are nearly identical. This procedure was re-
peated for different gages with similar results.  

Figure 13.  Extracted strain during chamber empty events for 1 day at Greenup. 
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Thus, as hypothesized, the girders on the gate behave in a consistent and 
predictable manner. The small differences in intercept of the least squares 
lines can be caused by temperature variations throughout the day, or other 
noise in the system, and will not impact the slope estimates. 

By using the slope as the metric by which to describe the gate’s behavior, 
the number of data points to be analyzed is significantly reduced. For data 
sampled every 15 seconds, 5760 strain samples are taken every day for every 
gage on the gate. If only six empty and six fill events occur in the chamber 
in a day, the 5760 points are reduced to 12, making data analysis more com-
putationally efficient. Moreover, in the presence of a gate/wall gap, the 
slope is expected to change in a similar manner as the strain, as explained 
in Section 4.1.2. The slope will henceforth be investigated as a damage sen-
sitive feature. 

4.3 Measured data processing: Slope extraction 

The SMART Gate database has several years’ worth of data across multiple 
lock sites, each with up to hundreds of sensors. Manually searching the data 
from each strain gage for lock-chamber fill or empty events and extracting 
the slope from each one would be impractical. To facilitate the processing 
of strain data, an algorithm was created in MATLAB that automates the ex-
traction of slopes for each gage. The algorithm numerically differentiates 
the data from the lock chamber water level. Any significant change in the 
derivative signifies a chamber fill or empty event. When the derivative re-
turns back to zero, the end of the event is signified. The time stamps from 
the beginning and end of a chamber event are then used to set a range of 
points over which to investigate the strain data in a similar way. In this way, 
water levels for each chamber event and the corresponding strain values for 
each gage were extracted from the data. Using these values, strain was line-
arly regressed onto the water level data using OLS regression. The slope of 
the line of best fit was then stored into a new time series to be used as the 
slope data of interest. 

To ensure that the process was working appropriately, a small parcel of 
slope data were plotted for representative gages on the Greenup gate and 
inspected. In Figure 14, which shows the results for about 3 months of data, 
each colored line represents an individual strain series. 
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Figure 14.  Processed slopes for 3 months at Greenup showing significant outlier. 

 

Several things of interest are to be gained from this plot. The slopes for each 
gage are relatively constant, validating their use as an appropriate damage 
identifier. The consistency is seen across 3 months, supporting the conjecture 
that, by differencing the strain data, the constant temperature offsets seen in 
Figure 11 are removed. Some significant outliers are also seen in the slope 
data. An outlier is considered significant if it lies far away from the mean. Plus 
or minus 5 standard deviations was determined to be significant for this 
study. The observed outliers provided the motivation for investigating the 
cause for the outliers, and eventual filtering these values out when justified. 

4.4 Data cleansing 

To begin cleaning the data of anomalous values, an investigation was per-
formed into the cause of the occasional significant outlier in the slope data 
to see if there was some justification in excluding these points in the study 
(e.g., if there was a fault in the instrumentation). To start, 1 year of slopes 
were plotted for a gage and significant outliers were manually removed and 
inspected for patterns. Figure 15 provides a visualization of this process, 
with the blue crosses being slope values and the orange values being signif-
icant anomalies removed from the data. 
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Figure 15.  One year of slopes for one gage, with removed outliers highlighted in orange. 

 

Figure 15 illustrates that significant outliers in the data tend to occur in clus-
ters, suggesting that something occurred during the time period of these 
clusters to cause the data to be unusual. The strain measured by the gages 
should be directly related to the load applied to the gate, and hence, the wa-
ter levels in the lock chamber. Accordingly, the chamber water levels were 
investigated for the periods where slope data had clumps of significant out-
liers. This investigation found that the clusters of significant outliers corre-
sponded to periods when the water levels in the chamber changed very little. 
This is seen in Figure 16, where Figure 16A is identical to Figure 15, and 
Figure 16B is the corresponding chamber water levels for the same time pe-
riod that the slopes were investigated. 
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Figure 16.  (a) Slopes from the gage investigated;(b) the corresponding chamber water levels. 

 

Figure 16B shows the chamber water levels, with the blue indicating how 
much the water levels in the chamber fluctuate throughout the year. For ex-
ample, in September of the year investigated, the chamber water level typi-
cally fluctuated between around 20 and 50 ft. during a lockage, suggesting 
a differential head (difference between upstream and downstream water 
levels) of 30 ft. A period with a cluster of outliers, and the same period of 
water levels are circled in red in Figure 16 to highlight that the circled clus-
ter, and indeed all other clusters, occurred when differential head was very 
low on the gate. Why low differential head might cause anomalous strain 
values was investigated. The findings were that, when differential head is 
very small, the load on the gate is proportionally small. Thus, the strain re-
sponse in the gages is of a magnitude similar to the noise in the system. 

Figure 17, which shows the response of a gage on Greenup for 1 day in Octo-
ber, illustrates this phenomenon. The plot on the left of Figure 17 shows the 
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chamber water levels for early October, with the red bars indicating the day 
the strain was investigated. For this period in October, the upstream water 
level was approximately 45 ft., and the downstream water level was around 
15 ft., a differential head of 30 ft. The plot on the right shows the strain re-
sponse with respect to water level for the same day. As seen in the plot on the 
right, the strain has a clear and approximately linear response to changes in 
water level (as hypothesized and desired). Figure 18 however, shows the 
strain response for a day in February where the differential head was less than 
5 ft. The red bars on the left plot again signify the day in which the strain was 
investigated. The plot on the right shows the strain response for that day, and 
is circled in red for clarity. The two strain plots are on the same scale for easy 
comparison. For the day when the differential head is less than 5 ft., the strain 
response is indistinguishable from the noise in the system. 

Figure 17.  Strain response for S10-05 with differential head of 30 ft. 

 

Figure 18.  Strain response for S10-05 for differential head of less than 5 ft. 
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The results from this investigation led to updating the slope extraction al-
gorithm to ignore any chamber events where the difference between the up-
stream and downstream water levels was less than 5 ft., as data from these 
events are uninformative. 

Further outliers were seen to be caused by other anomalous events, such as 
the data logger shutting off in the middle of a fill event. Very significant out-
liers (greater than 5 standard deviations from the mean) were investigated 
and removed manually. These anomalies are almost always caused by a fault 
in the data logger (e.g., all gages shut off in the middle of a fill event). The 
manual removal of outliers is considered reasonable because, for normally 
distributed data, a point lying 5 standard deviations from the mean will oc-
cur once in 3.5 million observations. Furthermore, as mentioned in Section 
2.4.2, only multiple consecutive outliers will be considered as an indication 
of damage. 

The data were reprocessed using the event-based algorithm, and cleansed 
of significant outliers. Figure 19 shows the results for the same time period 
as shown in Figure 14 (p 37). These results show that the data are reliable 
and ready to be further analyzed. 

Figure 19.  Clean slopes for Greenup for 3 months, outliers removed. 
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4.5 Stationarity of the damage sensitive feature 

Using the slope has an added benefit in that it is expected to result in a sta-
tionary time series. As mentioned in Chapter 2, if a time series is nonsta-
tionary, differencing will often result in a stationary time series. The slope 
is effectively taking the first difference of strain with respect to the water 
level in the chamber, and the time series of the slope should be nominally 
stationary. An important distinction to be made is that, in the time series 
literature, differencing is typically done with respect to time. For the case of 
strain, engineering first-principles suggest that the strain data are depend-
ent on the applied load, and are thus dependent on the water levels in the 
gate; therefore, differencing with respect to water levels is reasonable. 

To visualize the stationarity, slope time series for various gages at three lock 
sites are investigated. The gates considered are The Dalles, Greenup, and 
Bonneville (Figures 20 through 22, respectively). 

Figure 20.  Time series for 6 months of slope values at The Dalles. 
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Figure 21.  Time series for 1 year of slope data at Greenup. 

 

Figure 22.  Time series for 6 months of slope data at Bonneville. 
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The long periods without data are due to the data logger being shut off due 
to operational issues such as a dead battery. Otherwise, the data display the 
qualities of stationarity. At each lock site and for each of the gages consid-
ered, no clear trend is seen and the data tend to fluctuate around a constant 
mean value with a consistent variance. 

Inspection of the plots is a subjective method to assess the stationarity of 
the data. To rigorously quantify if the data is stationary or not, the methods 
described in Section 2.2 are used. First, the mean and variance of the data 
are checked for consistency across time. The consistency is checked in 
MATLAB by means of a moving average and moving variance approach. A 
moving average of each time series was taken with a 100-point window, 
meaning the average was first taken at the 100th point of the time series, 
averaging across the previous 99 points. Similarly, the moving average was 
found at the remaining points in the time series, such that a vector of aver-
ages was obtained with a number of points equal to the length of the original 
time series minus 100. A similar process was repeated for the variance. For 
the time series investigated, the moving 100-point mean and variance were 
found to be relatively constant across the time interval investigated, with 
only minor fluctuations. Figures 23 through 25 show the consistency in the 
mean and variance. For simplicity, the coefficients of variation, defined as 
the square-root of the variance (the standard deviation) divided by the 
mean, are shown. The coefficient of variation (COV) contains information 
about both the mean and the variance; therefore, a change in either the 
mean or variance will cause a change in the COV, provided both are not 
changing at the same magnitude. For the slopes investigated, the variance 
and mean were not seen to change by the same magnitude. 
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Figure 23.  Coefficients of variation for The Dalles, 100-point window. 

 

Figure 24.  Coefficients of variation for Greenup, 100-point window. 
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Figure 25.  Coefficients of variation for Bonneville, 100-point window. 

 

Figures 23 through 25 illustrate that the COVs, and by extension the mean 
and the variance, fluctuate slightly but are generally a consistent value. To 
further qualify the stationarity of the data, the ADF test is employed to test 
for a unit root, as described in Chapter 2. For the use of the ADF test, an 
assumption is made that the time series investigated can be well repre-
sented by an auto-regressive model. For the slope data, an autoregressive 
model is expected to be a reasonable fit as the behavior of the gate at any 
time is expected to be related to the behavior at previous times plus some 
random noise in the system. To visualize if the slope is well represented by 
an AR model, a predictive model is developed for a time series in MATLAB 
using AR model parameters, as outlined in MATLAB’s documentation 
(MathWorks 2004). A plot is then created superimposing the AR predicted 
signal onto the measured signal (Figure 26). 
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in each case, the slopes are quantifiably stationary using the ADF test at 5% 
significance. Intuitively, what this means is that, if the test statistic was ex-
actly the critical value, there would be a 5% probability of rejecting the null 
hypothesis of a unit root when a unit root was actually present. A more neg-
ative test statistic indicates a lower than 5% probability. 

Table 2.  ADF test results. 

Gate Critical Value Maximum Test statistic 

The Dalles –1.94 –1.96 
Greenup –1.94 –3.08 
Bonneville –1.94 –2.15 

The slope is well approximated as being stationary, and thus, it is assumed 
to be ergodic as well, and so statistical methods of analysis for stationary 
time series will be used and will be discussed in more detail later. 

4.6 Implementation of SHM system 

As discussed in Section 4.1.2, in the presence of damage, the load in the gate 
will redistribute leading to a change in strain in some of the girders under the 
same load. This in turn will lead to a change in the slope. Statistical analysis 
of the slope data is used to monitor for changes in the statistical parameters 
of the slope time series, with a significant and persistent change being an in-
dication of damage (see Figure 27).  

PCA is the method selected to combine the data from multiple gages into a 
single time series for statistical analysis. The combination of data from mul-
tiple gages is of interest, as opposed to simply using one slope series, be-
cause the location of gap formation is unknown. Moreover, the redistribu-
tion of load is expected to be a localized phenomenon in the gate, and so 
multiple gages need to be monitored simultaneously. 

To begin the PCA process, an eigenvalue decomposition of the covariance 
matrix for the slopes of the undamaged structure is performed, and the as-
sociated eigenvectors are obtained. This study assumes that the data ob-
tained from the SMART gate database is representative of a healthy struc-
ture. The authors are confident in this assumption as the instrumentation 
was deployed on new gates in the year 2011.  
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Figure 27.  Flowchart of damage detection procedure. 

 

Subsequent data from the structure are projected onto the eigenvectors ob-
tained from the training data and the damage index is found as explained in 
Chapter 2. If consecutive instances of the damage index being beyond the 
threshold are observed, damage is said to be present. Otherwise, the process 
is repeated. 

To validate this study, damage is simulated in an FEM model and superim-
posed on the measured data to verify that the method works, since no ob-
served data exist for a gate in the presence of a known gap. The details of 
the damage simulation are explained in the next chapter. 
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4.7 Summary 

This chapter has shown that the “slope,” defined as the change in strain with 
respect to water level, has been identified as a good candidate for a damage 
sensitive feature. Modifying the strain data by differencing them effectively 
removes any seasonal trends in the data and forces the data to be stationary. 
Using the slope significantly reduces the computational requirements for 
analysis by reducing the number of data points to be analyzed by three or-
ders of magnitude, while still maintaining the information of interest. To 
facilitate the extraction of slopes from the strain data, an automated algo-
rithm was created in MATLAB. After investigation, the algorithm was up-
dated to exclude chamber events where head differential on the gate was 
less than 5 ft. The updated algorithm was shown to provide clean and relia-
ble data for use in a damage detection algorithm. PCA was chosen as the 
method to combine information from multiple sensors into a single metric 
that can identify damage. Combining data from multiple sensors is critical 
because the location of a gap is unknown, and the redistribution of load is a 
localized phenomenon. To begin PCA, a reference dataset is used to train 
the PCA eigenvectors. Then the data of unknown condition are projected 
onto the eigenvectors and the PCA damage index is found. If the damage 
index consecutively exceeds a predefined threshold, damage will be said to 
be present. The next chapter presents an example of PCA of slope data from 
the Greenup lock and dam site to validate the methodology. 
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5 Validation of Methodology 

To determine the effectiveness of the slope as a damage sensitive feature, a 
case study was performed using miter gates at Greenup lock and dam. Data 
were extracted from the SMART Gate database, processed, and cleansed. 
Many of the conjectures presented in the preceding chapters, such as slope 
stationarity and independence from temperature, are verified using 1 year 
of measured data from Greenup. To assess damage detection potential, a 
previously constructed, high-fidelity finite element model from a different, 
but geometrically similar, gate is used. The gap to be detected is modeled, 
and the change in strain under the same load is recorded. This change in 
strain is systematically superimposed onto the measured data. PCA is then 
applied, and the damage index is used as a method to indicate the presence 
of damage. The process is described in detail in the following sections. 

5.1 Greenup Lock and Dam site 

PCA was applied to the data collected from the SMART Gate system for the 
Greenup Lock and Dam, which is on the Ohio River near Greenup, KY. The 
lock gate is a horizontally framed miter gate, consisting of 12 horizontal 
girders of dimensions similar to those shown in Figure 2 (p 3). 

5.1.1 Instrumentation 

The sensors at Greenup are located on the upstream gate. The instrumen-
tation on the gate consists of 115 strain gages, eight temperature sensors, 
four pressure transducers (to measure water levels), and a number of tilt 
meters and load sensors not used in this study. The strain gages used are 
350 ohm, full-bridge, HiTec gages, model HBWF-35-125-6-150GP-NT. The 
gages are placed primarily on every other girder with a gage near the quoin, 
a gage near the miter, and three gages at mid-span to allow assessment of 
bending moments. A number of gages are also located on the vertical strut 
members of the gate. The temperature sensors are HiTec model TSW-00-
D-150GP-RTD and are placed in a variety of locations on the gate and near 
the data logger. The pressure transducers are Campbell Scientific model 
CS450-L150-SA-2-9-NC and are intended to measure the upstream, down-
stream, and lock chamber water-levels. The sensors are all connected to a 
Campbell Scientific data logger model CR1000-ST-SW-NC. The data from 
each sensor are sampled every 15 seconds and are uploaded to a database 
by combination of wireless and wired communication. 
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Figure 28 shows a plan view of one leaf of the Greenup gate; Girders G1-G12 
are labelled on the left; the red squares represent the locations of strain 
gages. Only one leaf on the gate is shown, and the squares that are located 
mid-span of the girders represent four separate gages. 

5.1.2 Gage selection for investigation 

The selection of gages was narrowed down to choices that would both ex-
hibit a generally strong response under load and likely be affected by the 
presence of a gap. Gages near the bottom of the gate will carry more load 
than those near the top. Therefore, gages near the bottom of the gate are 
considered.  

Figure 28.  Strain gage locations on Greenup gate. 
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Furthermore, the gap will be in the gate/quoin interface, and thus gages 
near the quoin are affected the most. Accordingly, the final gages included 
in the study are those located near the bottom of the gate, and either at 
mid-span on the girder, or near the quoin. Figure 29 shows the areas 
where the gages are selected, boxed in bold red. 

To facilitate extraction of the data from the database and for ease of future 
processing, a numbering convention has been implemented for the gages on 
the gate. Table 3 lists the location of gages selected for this study, and their 
assigned numbers. 

Figure 29.  Area with gages of interest for study. 
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Table 3.  Gage names and locations used in study. 

Gage Number Location Description 

S08-04 Girder 8, near the quoin 
S10-05 Girder 10, near the quoin 
S10-23 Girder 10, mid-span 
S10-24 Girder 10, mid-span 
S11-06 Girder 11, near the quoin 
S12-07 Girder 12, near the quoin 

5.2 Data preprocessing 

The data from the gages in Table 3 were preprocessed in the slope extraction 
algorithm as explained in Chapter 4. Chapter 4 presented the time series of 
clean slopes for verification of the algorithm; Figure 30 shows them again 
for the reader’s convenience. These cleansed slopes are then used to further 
verify some of the underlying assumptions made in previous chapter, such 
as stationarity and temperature independence. 

Figure 30.  Clean slope data from Greenup. 
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5.3 Verification of temperature independence 

The slope data investigated appeared to be nominally free of the seasonal 
trends seen in the strain data; thus, the slopes are assumed to be free of any 
correlation with temperature. The motivation for this conjecture is that 
chamber events occur over a relatively short period of time (e.g., 15 minutes) 
and air or water temperatures will not vary significantly over this period. 
Accordingly, any thermal induced strain will be constant during chamber 
events and should be removed by the process of differencing. To support 
this conjecture, a correlation study was performed, testing the correlation 
of the slopes with both air temperature and water temperature. The first 
step in the process was extracting the temperature data for each fill and 
emptying event. Both the air and water temperatures were sampled at the 
start of each event. Using only one measurement for each event is reasona-
ble because the chamber events are relatively short, as previously stated, 
and air or water temperatures would only change minimally within the 
event. The temperature data were plotted to ensure the readings were rea-
sonable, with the data for air and water temperature from December 2013 
through November 2014 shown in Figures 31 and 32, respectively. 

Figure 31.  Air temperature for Greenup. 
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Figure 32.  Water temperatures at Greenup. 

 

As seen in Figures 31 and 32, the air and water temperature follow a trend 
that is expected through the year; the temperatures are lower in the winter 
and higher in the summer. Critically, the water temperature rarely drops 
below freezing, which is expected, and thus, the temperature data are 
viewed as reasonable. 

To investigate the correlation between slopes and temperature, the slopes 
were scatter plotted versus temperature to inspect for any obvious trends. 
Examples of the scatter plots are shown in Figures 33 and 34, which show 
little correlation. 
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Figure 33.  Scatter plot of slope vs. air temperature for Gage S10-05. 

 

Figure 34.  Scatter plot of slope vs. water temperature for Gage S10-05. 
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To quantify the relationship between slope and temperature, the correlation 
coefficients were calculated for each gage against each temperature. Table 
4 lists the results. 

Table 4.  Correlation coefficients of slopes vs. temperature. 

Gage Number Correlation With Air Temperature Correlation with Water Temperature 

S08-04 –0.18 –0.05 
S10-05 0.39 0.45 
S10-23 –0.08 –0.08 
S10-24 0.27 0.33 
S11-06 0.26 0.24 
S12-07 0.10 0.03 

The correlation coefficients in Table 4 suggest that, in general, there is lit-
tle to no correlation between slope data and temperature data. The highest 
correlation is found on Girder 10, but still the coefficient is less than 0.50. 
The moderate correlation seen is expected to be a product of an underlying 
driving factor, namely, the water levels in the river. The differential head 
on the gate is generally what drives the load in the girders. Through sea-
sonal variations (summer rains, melting snow, etc.), the river levels fluctu-
ate at a rate consistent with temperatures, and so, the moderate correla-
tion between slopes and temperature may simply be a correlation between 
slope and water levels. Figure 35 shows this seasonal relationship of the 
water levels. Here, the chamber water levels at Greenup are plotted vs. 
time, where the water levels are seen to follow a similar trend as the tem-
peratures. That is, the water levels for the time period investigated in-
crease in the warmer months, and decrease in the colder months. 

Figure 35.  Chamber water levels for entire year at Greenup. 

 



ERDC TR-18-2 59 

To further justify the conjecture that water levels are correlated with differ-
ential head, the correlation coefficients between differential head and tem-
perature are calculated, as are the coefficients between slope and differen-
tial head. Table 5 lists these results, and shows the moderate correlation 
between temperature and differential head, and moderate to high correla-
tion between slopes and differential head. The correlation coefficients sup-
port the conjecture that slopes are uncorrelated with temperature, and that 
any correlation seen is actually being driven by a similar trend between tem-
perature and water levels. Furthermore, the coefficients support the conjec-
ture that differential head is the driving force in the gate. 

Finally, an unexpected but beneficial outcome of this correlation study is 
that it showed that the slope time series in each gage are very highly corre-
lated with one another, particularly those at the bottom of the gate. Corre-
lation coefficients between gages on Girders 10, 11, and 12 ranged from 0.7 
to 0.86. This result further justifies the selection of slope as a damage de-
tector, and the use of a multivariate approach to testing for damage. 

Table 5.  Correlation coefficients with differential head. 

Scenario Corr. With Diff. Head 

Air Temperature 0.30 
Water Temperature 0.47 

S08-04 0.42 
S10-05 0.44 
S10-23 0.52 
S10-24 0.54 

S11-06 0.59 
S12-07 0.63 

5.4 Stationarity of slope 

As seen in Section 4.5, the time series of the slopes are seen to be generally 
stationary across different gages and different gates. For completeness, the 
slopes are also shown to be stationary for the gages used in this study. The 
plots shown in Figure 30 (p 54) appear to be generally stationary, with per-
haps the potential of a trend downward, but the data shown are only a por-
tion of the data included in the study. To quantify whether or not the series 
are stationary, the ADF test is implemented on the full datasets as described 
in Section 2.2. As discussed, the adftest function was used in MATLAB, with 
the number of appropriate lags dependent on the series being investigated 
and determined according to the AIC criteria. Table 6 lists the results for 
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each gage. Note that the critical value for each test is determined by the 
number of samples and the model chosen, both of which are identical for 
each case; thus, the critical value never changes. 

Table 6.  ADF Test results for slope time series. 

Gage Number Critical Value ADF Test Statistic 

S08-04 –2.87 –3.00 
S10-05 –2.87 –3.23 
S10-23 –2.87 –5.29 
S10-24 –2.87 –5.14 
S11-06 –2.87 –2.91 
S12-07 –2.87 –5.32 

Recall that the ADF test is a left-tailed probability test, so a test statistic 
more negative than the critical value will reject the null hypothesis of a 
unit root process in favor of the stationary alternative. As seen, the slope 
time series for each gage can be shown as quantifiably stationary, and 
thus, PCA is an ideal candidate for damage detection. 

5.5 Normal distribution of slope data 

For the sake of setting thresholds for damage detection, recall the argument 
for using a threshold of 3 standard deviations from the mean. The motiva-
tion for this threshold is that, 99.7% of the time, normally distributed data 
should fall within 3 standard deviations of the mean. It remains to be shown 
that the slope data do approximately follow a normal distribution. To sup-
port the conjecture of normal distribution in the data, graphical methods 
are used. The first method is done by plotting a histogram of the slope data, 
and fitting a normal distribution to points. 

The procedure for performing this type of graphical inspection can be 
gleaned from any statistics textbook, such as Ang and Tang (2007). For this 
study, the histfit command in MATLAB is employed with the “normal” 
model chosen. The slope data are normalized for easy comparison. Figure 
36 shows exemplary results. 

The goodness of this fit can be further supported by performing a Chi-
squared goodness of fit test, such as by using the MATLAB function chi2gof. 
For the data presented here, the data are seen to acceptably fit the normal 
probability distribution because the null hypothesis of the chi-squared 
goodness of fit test cannot be rejected.  
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Figure 36.  Data from Gage S10-05 fit to a normal distribution. 

 

Another method to determine if the slopes are normally distributed is to 
plot the time series on probability paper. This process effectively plots the 
empirical cumulative distribution function (CDF) of the data and com-
pares it to an actual normal CDF. If the data are normally distributed, the 
empirical plot should exactly overlap the actual normal CDF. Figure 37 
shows the same data from histogram fit. The dashed line in the figure rep-
resents the actual normal CDF, and the blue data points represent the em-
pirical CDF evaluated at each data point. There is very good agreement be-
tween the data and a normal CDF. 

The above examples indicate that the data can be well approximated as 
normally distributed, lending credence to the threshold parameters of 
±3 standard deviations. 
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Figure 37.  Probability plot for data on Gage S10-05. 

 

5.6 Training PCA with the measured slope data 

The preceding sections illustrate that the previous assumptions about the 
slopes are consistent with the data, i.e., the slopes are nominally station-
ary, normally distributed, and independent of temperature. Thus, the 
study proceeded by applying PCA to the data as explained in Chapter 2. 
First, 5 months of data, from May 2014 through September 2014, were 
used as training data. To compare the sensitivity to the amount of variance 
to keep in the data when performing the PCA method, two scenarios are 
considered: 

1. Keep 92% of the variance – use the first three eigenvectors 
2. Keep 98% of the variance – use all but the last eigenvector. 

The eigenvectors obtained from the training data for both cases were stored 
and the residuals were found using data from October 2014 through March 
2015, as shown in Equation 2-29. The data from October through March are 
expected to indicate no damage, and thus, the damage index of this data is 
inspected for Type 1 errors, that is, false positive. The nature of the damage 
index being a squared value, as seen in Equation 2-29 (p 24), the plot of DI 
takes the form of a bar graph (Figures 38 and 39). In these plots, the red 
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line in the middle represents when the algorithm training was stopped. Eve-
rything to the left of the red line represents the damage index of the training 
data, and everything to the right represents the damage index from project-
ing the untrained data onto the trained eigenvectors. The blue horizontal 
line represents the threshold of 3 standard deviations away from the mean 
value of the trained damage index. 

As mentioned in Chapter 2, damage will be indicated when consecutive ob-
servations above the threshold are observed. If the number of consecutive 
observations required to indicate damage is equal to 2, consecutive obser-
vations above the threshold for Case 1 are never observed. For Case 2, there 
is one occurrence of consecutive observations on December 18th. If the num-
ber of consecutive observations above the threshold required is 3, a false 
positive never occurs.  

To formalize the probability of false positives, first Equation 2-34 is used to 
find the probability of an observation exceeding the threshold of ±3 stand-
ard deviations of the mean. For this dataset, there were 27 observations 
above the threshold and a total of 2028 samples, yielding a probability of 
exceedance of 0.0133. For a binomial distribution to be valid, the observa-
tions in the data must be independent.  

To test this, the correlation coefficient was found between a time series con-
sisting of the damage index, and another time series consisting of the same 
damage index shifted one point in time. The data consisted of 2,028 points, 
so the correlation was found between a time series consisting of 
[𝐷𝐷𝐷𝐷1,𝐷𝐷𝐷𝐷2,…𝐷𝐷𝐷𝐷2027] and a time series consisting of [𝐷𝐷𝐷𝐷2,𝐷𝐷𝐷𝐷3,…𝐷𝐷𝐷𝐷2028]; the re-
sults indicated that the correlation coefficient was 0.07. This supports the 
conjecture that the observations in the damage index are independent. 
Now, Equation 2-31 is used to calculate the probability for the case of q = s 
= 2 and q = s = 3, with the results listed in Table 7. 
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Figure 38.  Plot of PCA damage index for undamaged case w/ 92% variance retained. 

 

Figure 39.  Plot of PCA damage index for undamaged case w/ 98% variance retained. 
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This model was designed using geometry specific to a different gate, namely 
Lock and Dam 27 on the Mississippi River. However, the difference in ge-
ometry between Greenup and Lock and Dam 27 is minimal. The gates are 
designed to transfer load in the same manner, and changes in behavior in 
one gate will be similar in the other gate under the same damage scenario. 

5.8 Damage simulation using the FEM model 

Locations in the FEM model that corresponded to the physical strain gage 
locations were selected for investigation of gate behavior. The strain at these 
locations was investigated for the undamaged case and the simulated dam-
aged cases. Damage, in the form of a gate/wall gap, was simulated by re-
moving a portion in the contact wall that forms a boundary condition in the 
model at the quoin near the pintle region. Figure 41 shows a schematic rep-
resenting the location and reference dimensions for the gap; Table 8 lists 
the dimensions for the two cases considered. 

Figure 41.  Layout of where a gap was simulated, with reference dimensions “A” and “B.” 

 

Table 8.  Simulated gap dimensions. 

Damage Case “A” dimension “B” dimension 

1 – Small Gap 1/8 in. 7 ft. 
2 – Large Gap 1/4 in. 12 ft. 
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Two differential head scenarios were used in the ABAQUS model for this 
study, one with an upstream water level of 70 ft. and downstream level of 
14 ft., and one with an upstream water level of 50 ft. and downstream of 
14 ft. Figure 42 shows a schematic showing the meaning of the differential 
head for the case of 14 to 50 ft. 

Figure 42.  Representation of differential head. 

 

For the two cases, the ABAQUS model was manually inspected and the 
strain at each location of interest was recorded. As mentioned previously, 
the strain in the system is well approximated to behave linearly with respect 
to the water levels, so a line can be fit between the strain at one differential 
head case to arrive at the strain in the other. Accordingly, the reader can 
assume that the strain at an upstream water level of 14 ft. is zero at all gages. 
Table 9 lists the corresponding strain for the undamaged and two damage 
scenarios for the upstream level of 70 ft. 

Table 9.  Strain values taken from ABAQUS for upstream water level = 70 ft. 

Gage Number Undamaged Strain x 10-6 Small Damage Strain x 10-6 Large Damage Strain x 10-6 

S08-04 -667 -677 -711 
S10-05   -775 -832 -1,092 
S10-23 -72.6 –72.0 –74.4 
S10-24 -72.6 –72.0 –74.4 
S11-06 –869 –902 –186 
S12-07 –1,590 –1,512 –1,806 
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Strain values from ABAQUS were recorded for only two differential head 
scenarios; however, infinitely many differential head scenarios are possi-
ble in practice. Thus, a systematic method was developed to superimpose 
the damaged strain onto the measured data in MATLAB. Because the dif-
ference in strain occurs approximately linearly with respect to water level, 
a linear relationship for the change in strain based on water levels was de-
veloped. The calculated slope for the change in strain was found by taking 
the difference in strain at 14 ft. to be zero, and using the absolute differ-
ence between the damaged scenario and undamaged scenario at 70 ft. to 
be the second point of the line. For example, consider Gage S08-04. For 
the large damage case, the absolute difference in strain between undam-
aged and damaged cases is -711µε – (-667µε) = -54µε. The calculated value 
is used to create the slope of the linear relationship, knowing the range in 
water-levels to be 70 - 14=56 ft., and the intercept of the line was taken as 
the negative of this slope times 14 ft. Thus for Gage S08-04, the linear re-
lationship between difference in damaged strain and water levels was 
found to be: 

 ∆Ā = −54ĀĀ
56Ā𝑓𝑓

ℎĀ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 11ĀĀ (5-1) 

Thus, damage was able to be systematically added to the measured data. As 
an illustrative example, consider a hypothetical chamber event, with chamber 
water levels raising from 30 to 50 ft., and the strain ranging from -300με to  
-400με. The sampled water levels are input into Equation 5-1 to obtain the 
appropriate change in strain for the simulated damaged case. This change in 
strain is then added to the measured strain to get the simulated damaged re-
sponse of the gage. Table 10 lists the hypothetical values. 

Table 10.  Example of simulated strain implementation. 

Sampled water levels 
for fill event (ft.) Measured strain (µε) Δε (Eq. 5-1) (µε) 

Simulated damaged 
strain (µε) 

30 –300 –17.93 –317.93 
34 –320 –21.79 –341.79 
38 –340 –25.64 –365.64 
42 –360 –29.50 –389.50 
46 –380 –33.36 –413.36 
50 –400 –37.21 –437.21 
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Equation 5-1 is specific to Gage S08-04, and a similar linear relationship 
was developed for all other gages and implemented on the measured data 
as described above. The process was repeated considering four cases: 

1. Difference in strain from small, sudden gap 
2. Difference in strain from small, gradual gap 
3. Difference in strain for large, sudden gap 
4. Difference in strain for large, gradual gap. 

For the gradual gap, the absolute difference in strain was linearly increased 
from zero to full measured intensity for the time during which damage was 
to be simulated. Thus, if damage is to be simulated on data from October 
through March, the change in strain was zero on October 1st, full intensity 
on March 31st, and linearly increasing between. Now that damage has been 
simulated, it remains to assess the ability of the PCA method to detect it. 

5.9 Damage detection 

To test the damage detection sensitivity, the two damage scenarios each for 
the large and small gap were superimposed on the real data using the dimen-
sions listed in Table 8. The damage was added to the system by adjusting the 
strains using the location specific equations, such as Equation 5-1. The 
trained PCA eigenvectors, as found in Section 5.6, were used and the four 
cases listed in Section 5.8 for damage simulation were tested. For the sudden 
formation of a gap, the data were left undamaged until December 1st, when 
the full extent of change in strain was implemented on the measured data. 
The gradual gap was imposed over the full period from October to March as 
noted in Section 5.8. Note that in the following plots, the gaps seen in the data 
are a byproduct of the “event-based algorithm” noted in Section 4.4. Flood 
events occurred at these times leading to insufficient differential head on the 
gate, so no valuable data were collected during these periods. 

5.9.1 Case 1: Small, sudden gap 

For case 1, the change in strain caused by the small gap was imposed on 
the measured data suddenly and at full intensity on December 1st. Figures 
43 and 44, respectively, show the results for retaining both 92 and 98% of 
the variance in the PCA algorithm. In the plots, the red vertical line repre-
sents when training the algorithm stopped, and the blue vertical line rep-
resents when damage was introduced. The horizontal line represents the 
threshold, above which damage will be indicated. 
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As seen, for the case using 92% variance, one false positive in the untrained, 
undamaged data is observed in the middle of November if two consecutive 
observations are considered as damage indication. If three consecutive ob-
servations are required, no false positives are observed. After damage is in-
troduced, multiple indications of its presence are observed, however, a 
wealth of false negatives are also present. 

Figure 43.  Small, sudden gap detection, 92% variance. 
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Figure 44.  Small, sudden gap detection, 98% variance. 

 

For 98% variance maintained, no false positives in the untrained, undam-
aged data are observed. However, once damage is introduced, only four oc-
currences of two consecutive observances above the threshold are present 
and only two occurrences of three consecutive observations. Thus, the 98% 
variance case is almost exclusively false negatives. 

5.9.2 Case 2: Small, gradual gap 

For this scenario, the change in strain caused by the small gap case was su-
perimposed gradually on the data, starting at the point where the training 
data stopped, and increasing the change in strain to full magnitude at the 
end of the sampled data. Figures 45 and 46, respectively, show the plots for 
92 and 98% variance retained. 
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Figure 45.  Small, gradual gap detection at 92% variance. 

 

Figure 46.  Small, gradual gap detection at 98% variance. 
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For this case, after the training data, some damage is always imposed on the 
gate; therefore, false positives are not possible. For the 92% variance case, 
damage is not indicated until the damage is almost at full intensity, at which 
case, damage is readily indicated. For the 98% variance case, damage is 
never indicated; therefore, the threshold for this case is too insensitive for 
this damage scenario 

5.9.3 Case 3: Large, sudden gap 

Case 3 is identical to Case 1 with the exception that the damage that is sud-
denly imposed is the simulated large gap. Figures 47 and 48, respectively, 
show the results using 92 and 98% variance. 

As seen, the large gap is readily detected by both PCA cases. Before damage 
occurs, a false positive for the 92% variance identical to that seen in Case 1 
is observed. After damage is introduced, no false negatives for either case 
are observed. 

Figure 47.  Large, sudden gap detection at 92% variance. 
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Figure 48.  Large, sudden gap detection at 98% variance. 

 

5.9.4 Case 4: Large, gradual gap 

Case 4 is identical to Case 3 with the exception that the change in strain 
from the large gap is gradually imposed on the measured data. Figures 49 
and 50, respectively, show the results for retaining 92 and 98% variance. 

As seen, both PCA approaches perform similarly for the large, gradual gap 
case. Damage is readily and consistently indicated after about a quarter of 
its intensity is introduced. 
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Figure 49.  Large, gradual gap detection at 92% variance. 

 

Figure 50.  Large, gradual gap detection at 98% variance. 
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5.10 Summary 

This chapter provided an example of gap detection between the gate and 
wall for the lock and dam located at Greenup. The instrumentation at 
Greenup was labeled, and the data acquisition parameters were presented. 
The method of processing and cleaning the data was explained. The meas-
ured Greenup data were shown to support the assumptions taken here of 
slope stationarity, and of the lack of correlation with temperature and nor-
mal distribution. An existing FEM model for a similar gate was used to sim-
ulated gate behavior and strain response under load for both damaged and 
undamaged cases. The method of imposing damage on the measured data 
was explained as were the two different damage scenarios considered. Fi-
nally, the damage indices from the PCA method were used as a method to 
detect damage. Two PCA approaches were used to compare the sensitivity 
of the method: a damage index formed by retaining 92% variance in the sys-
tem, and one by retaining 98% variance. The PCA damage indices were seen 
to readily indicate the presence of a large gap in the gate/wall interface. 
They were less sensitive to the presence of a small gap, but the 92% variance 
approach was able to provide indications of damage present. 
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6 Conclusions 

This study presented initial efforts to develop the necessary knowledge and un-
derstanding required for the monitoring of miter gates of navigational locks. 
Waterway navigational locks are an important part of the national infrastruc-
ture that enable the flow of billions of dollars of commerce and support efforts 
for flood control. The gates of the navigational locks are one of the most vul-
nerable and maintenance intensive parts of the lock and have been the leading 
cause of scheduled and unscheduled lock maintenance events. 

Miter gates are the most widely found lock gate type in the inventory of 
USACE locks. Gaps at the gate/wall interface are of critical importance in 
that they cause a redistribution of loads, which is known to lead to prema-
ture fatigue failure in critical gate components. To circumvent the need for 
costly dewatering or underwater inspections to determine the condition of 
gates, a structural health monitoring program, known as SMART Gate, has 
been implemented on six sets of lock gates maintained by the USACE. This 
research first identified a new damage sensitive feature for detecting gaps 
at the gate/wall interface; subsequently, appropriate sensors were selected 
for gap detection, and finally PCA was applied as the method to detect dam-
age. The results demonstrate the efficacy of the PCA method for detecting 
even small gaps at the gate/quoin interface. The main findings of this re-
search are summarized in the remainder of this chapter. 

6.1.1 Selection of a damage sensitive feature 

Among the wealth of data available in the SMART Gate database, strain data 
are the most applicable to the task of detecting a gap in the gate/wall inter-
face. However, multiple issues related to the direct use of strain were identi-
fied, such as nonstationarity, long periods of non-informative information, 
environmental effects, etc. The derivative of the strain data with respect to 
the water level in the gate chamber, slope, was identified as an effective dam-
age sensitive feature. The time series comprised of slope data was shown to 
be nominally stationary and independent of temperature effects. Moreover, 
the slope time series has significantly fewer samples than the strain time se-
ries, reducing computation time. Therefore, for the task of gap detection, 
slope is selected as the damage sensitive feature to be analyzed. 
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6.1.2 Selection of gate instrumentation 

The sites being monitored by the SMART Gate system have up to hundreds 
of gages scattered about the different gates providing an overwhelming 
amount of data. To facilitate and simplify a damage detection strategy, the 
gages exhibiting strains that are sensitive to the presence of gaps at the 
gate/wall interface were selected. A correlation study showed that gages 
near the top of the gate are generally uncorrelated to any of the other data 
available in the database, suggesting that their behavior is somewhat unpre-
dictable. In contrast, gages near the bottom of the gate are highly correlated 
to water levels and to other gages near the bottom. This correlation suggests 
that gages near the bottom will behave in a predictable manner and are the 
ideal candidates to include in a damage detection algorithm. Finally, the 
damage simulation in the FEM model showed that the effect of a gap atten-
uates quickly the further away a gage is from the gap. 

Gaps can occur anywhere along the quoin area. However, the gaps of most 
concern are those located near the bottom of the gate because the gate is 
subjected to larger loads at this location. Thus, the selection of gages was 
further narrowed down. For the detection of a gate/wall gap, gages need to 
be both near the bottom of the gate and near the quoin. An additional find-
ing in this study was that, for these findings to be implemented, all of the 
gages in the gate must be synchronized in time. The investigation into the 
strain behavior of Lock 27 revealed that a time delay in between strain read-
ings and water level readings may produce results with an apparent non-
linear behavior and/or hysteresis in the system. Thus, for the success of this 
methodology, the instrumentation on the gate must be time synchronized. 

6.1.3 Development of a gap detection algorithm 

Chapter 5 showed that the damage indices of the PCA method are sensitive 
to the presence of a gap. The sensitivity of the algorithm is dependent on the 
amount of variance retained in the system when training the eigenvectors 
as well as the selection of an appropriate threshold. Among the two training 
schemes tested, the 92% variance (that is, using the eigenvectors corre-
sponding to the three directions with the three highest variances) was more 
sensitive to the presence of damage than was the 98% variance (using all 
but the eigenvector that describes the least variance). This makes sense, as 
the model with less information of the system would be more sensitive to 
small changes in the system. The optimal choice of variance to retain in the 
system should be seen as a parameter to be chosen based on the specific 
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requirements of the system to be monitored.  Also important is that, as seen 
in Section 5.6, the PCA method works well in monitoring the gate in the 
absence of damage in that no false positives are shown when damage was 
not imposed on the gate. 

False positives occasionally occur and need to be addressed. For example, 
the threshold can be raised for indicating damage. Raising the threshold will 
make the algorithm less sensitive, but the threshold can be determined 
based on a qualitative assessment of what “critical” damage is. A different 
method would be to increase the number of consecutive observations re-
quired above the threshold to be considered an indication of damage. For 
this study, there was never a false positive consisting of more than three 
consecutive observations. False negatives were a bigger problem, particu-
larly for the 98% variance approach with a small gap. For this approach to 
work, the threshold would have to be lowered, but then, the false positives 
would likely increase in the absence of damage. 

Once the gap reaches a certain level, just above the size of the small gap 
considered, the damage index is able to readily and reliably detect the dam-
age, as seen in the results for the large, gradual gap. Thus, this study con-
cludes that PCA is an effective algorithm for detecting gaps in miter gates. 

The success of this study provides a firm foundation on which to build prac-
tically deployable structural health monitoring systems for miter-gates op-
erated by USACE. 
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7 Future Work 

SHM is to be the backbone of a larger consequence model being developed 
by USACE-ERDC. SHM will provide the data necessary to assess the cur-
rent state of a structure and determine possible repair or maintenance al-
ternatives. Combining the data with probabilistic degradation and future 
loading models, a probabilistic assessment of the future condition of the 
structure is made. A value metric is then imposed on each action alterna-
tive, and in this way, maintenance and repair of structures is prioritized 
and use of available funding is optimized. Next steps for realizing an SHM 
program to fully characterize the state of a lock gate include developing 
methods for damage localization, determining the extent of damage, and 
determining the remaining life in the structure. 

7.1 Damage localization 

It is expected that the PCA method will be able to determine the location of 
a gap. As discussed, the effects on strain caused by a gap attenuate quickly 
the further the gage is from the gap. Thus, the expectation is that the loca-
tion of a gap can be determined by inspecting the gage that is causing the 
highest change in variance in the system. This will likely manifest itself as 
a higher value in the residual for that degree of freedom before taking the 
square root sum of squares. To investigate damage localization, more FEM 
simulations of gaps at various locations are needed. 

7.2 Damage intensity 

As seen, the change in the PCA residual is very sensitive to the size of the 
damage on the gate. For a larger gap, a larger deviation from normal behavior 
is observed manifesting itself as a larger PCA residual. Thus a correlation be-
tween PCA residual magnitude and size of damage will be made. More FEM 
simulations of gaps of different sizes are needed to identify damage intensity. 

7.3 Remaining service life 

Assessing the remaining life in the structure may be perhaps the most 
challenging question to solve using this approach. To accomplish remain-
ing life estimations, a detailed investigation of design practices will be 
done. Of particular interest will the investigation into the design approach 
for fatigue, and the particular S-N curves used in miter gate design. Then, 
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the extent and location of damage will be used to determine the new ex-
pected cycles before failure in fatigue critical components. The number of 
cycles will be correlated to remaining life based on average number of 
lockages in a day. 
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Acronyms and Abbreviations 

Term Definition 
ADF Augmented Dickey-Fuller (test) 
AIC Akaike Information Criterion 
ANSI American National Standards Institute 
AR Autoregressive 
ASCE American Society of Civil Engineers 
CDF Cumulative Distribution Function 
CEERD U.S. Army Corps of Engineers, Engineer Research and Development Center 
CERL Construction Engineering Research Laboratory 
COV Coefficient of Variation 
DI Damage Index 
ERDC U.S. Army Engineer Research and Development Center 
ERDC-CERL Engineer Research and Development Center, Construction Engineering 

Research Laboratory 
FEM Finite Element Model 
GDP Gross Domestic Product 
HQUSACE Headquarters, U.S. Army Corps of Engineers 
IEE Institution of Electrical Engineers 
MDNR Missouri Department of Natural Resources 
NIST National Institute of Standards and Technology 
NSN National Supply Number 
OLS Ordinary Least Squares 
OMB Office of Management and Budget 
PCA Principal Component Analysis 
SAR Same As Report 
SAS Statistical Analysis Software 
SF Standard Form 
SHM Structural Health Monitoring 
SMART Structural Monitoring and Analysis in Real Time 
TR Technical Report 
USACE U.S. Army Corps of Engineers 
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