

 ARL-TR-8593 ● NOV 2018

 US Army Research Laboratory

A Vision toward an Internet of Battlefield
Things (IoBT): Autonomous Classifying Sensor
Network

by John Zhu, Egan McClave, Quan Pham, Sujay Polineni,
Sam Reinhart, Ryan Sheatsley, and Andrew Toth

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator

 ARL-TR-8593 ● NOV 2018

 US Army Research Laboratory

A Vision toward an Internet of Battlefield
Things (IoBT): Autonomous Classifying Sensor
Network

by John Zhu, Egan McClave, Quan Pham, and Sam Reinhart
US Army Educational Outreach Program–College Qualified Leaders,
Adelphi, MD

Sujay Polineni
US Army Educational Outreach Program–Science and Engineering
Apprenticeship Program, Adelphi, MD

Ryan Sheatsley and Andrew Toth
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

November 2018
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

20 June to 18 Aug 2017
4. TITLE AND SUBTITLE

A Vision toward an Internet of Battlefield Things (IoBT): Autonomous
Classifying Sensor Network

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

John Zhu, Egan McClave, Quan Pham, Sujay Polineni, Sam Reinhart, Ryan
Sheatsley, and Andrew Toth

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-T
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8593

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The focus of Internet of Battlefield Things (IoBT) is to provide situational awareness of the battlefield utilizing a network of
interconnected sensors, actuators, and analytical devices. The US Army Research Laboratory’s Tactical Network Assurance
Branch developed a narrative of using IoBT to deploy multiple sensor nodes in an unknown or potentially hostile environment
in which the system performs basic classification, identification of allies and adversaries, and inter-node communication via
ad-hoc wireless network. Various types of sensors resulted in more robust classification due to multiple sensor data sources of
complementary modalities. Sleeping algorithms extended sensor-node viability while maintaining network activity.
Development of countermeasures to denial-of-service and distributed denial-of-service attacks were also explored in this
work.

15. SUBJECT TERMS

Internet of Battlefield Things, IoBT, sensor networks, tactical networks, sensor security, sensor energy efficiency

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

37

19a. NAME OF RESPONSIBLE PERSON

Andrew Toth
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-2746
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures v

List of Tables v

1. Introduction 1

2. Implementation 1

2.1 Cross-Referencing Sensors 1

2.2 Sleeping Algorithms 2

2.2.1 Geographic Adaptive Fidelity (GAF) Algorithm 3

2.2.2 Connected k-Neighborhood (CKN) and Energy Consumed
Connected k-Neighborhood (EC-CKN) 5

2.2.3 Classifying Network Sleeping Algorithm 7

2.3 Data Analysis 7

2.3.1 Node-RED Testing 7

2.3.2 Clustering Algorithm 8

2.4 Security 9

3. Experimental Setup 10

3.1 Arduino UNO 10

3.2 Raspberry Pi 11

3.3 XBee Series 2 11

3.4 Sensors 12

3.5 Network Simulation 17

4. Results 19

4.1 Physical Prototype 19

4.2 Python Simulations 19

4.2.1 GAF Results 19

4.2.2 CKN Results 22

4.2.3 EC-CKN Results 25

Approved for public release; distribution is unlimited.
iv

5. Conclusion 26

6. References 28

List of Symbols, Abbreviations, and Acronyms 29

Distribution List 30

Approved for public release; distribution is unlimited.
v

List of Figures

Fig. 1 Example of a virtual grid in GAF ... 3

Fig. 2 State transitions in GAF .. 4

Fig. 3 Network lifetime broken up into epochs ... 5

Fig. 4 Pseudo code for the CKN algorithm ... 6

Fig. 5 Pseudo code for the EC-CKN algorithm .. 6

Fig. 6 Node-RED flow for testing different clustering methods 8

Fig. 7 Example of protection against packet overflow (DoS attack) 10

Fig. 8 Arduino UNO board ... 11

Fig. 9 Zigbee mesh network layout ... 12

Fig. 10 Placement of nodes in the network ... 18

Fig. 11 Example of the GAF network. Type of node is shown by shape. Active
nodes are green and sleeping nodes are blue. 20

Fig. 12 Lifetime of the GAF network ... 21

Fig. 13 Percentage of events detected in the GAF network over time 22

Fig. 14 Example of the CKN network. Green means active, blue means sleep,
a purple ring means a node has sensed an event, and a purple circle
means an event. ... 23

Fig. 15 Lifetime of the CKN network ... 24

Fig. 16 Percentage of events detected in the CKN network over time 24

Fig. 17 Example of the EC-CKN network. Green means active, blue means
sleep, a purple ring means the node has sensed an event, and a purple
circle means an event. ... 25

Fig. 18 Lifetime of the EC-CKN network ... 26

Fig. 19 Percentage of events detected in the EC-CKN network over time 26

List of Tables

Table 1 Sensors considered in the network .. 13

Table 2 Sensors used in the network: detectors ... 15

Table 3 Sensors used in the network: classifiers .. 16

Table 4 Sensors used in the network: communication 17

Approved for public release; distribution is unlimited.
1

1. Introduction

The focus of Internet of Battlefield Things (IoBT) is to provide situational
awareness of the battlefield utilizing a network of interconnected sensors, actuators,
and analytical devices. Sensors could detect enemy movement and then relay that
information in real time to analysts, enabling them to make tactical decisions on
positioning, areas to avoid, or who is crossing a certain area. This capability would
potentially save resources and Soldiers’ lives, making IoBT an important topic for
the US Army Research Laboratory’s (ARL) Network Science Research Laboratory
to investigate. The concept of Internet of Things (IoT) is to create a network of
communication with any kind of device, from a car to a fridge. Translate this
concept to a battlefield environment, and one can imagine the possibilities that
IoBT can bring. There has been significant interest in IoBT devices from the Army
to learn, develop, and take these ideas from the laboratory to the field.

For this effort, a group of summer students in ARL’s Tactical Network Assurance
Branch developed a narrative of using IoBT to deploy multiple sensors in an
unknown or potentially hostile environment. We call this system the Autonomous
Classifying Sensor Network. Sensors within the system perform basic
classification, identifying whether an ally or adversary is present based on
generated events, and communicate with each other using an ad-hoc wireless
network. By using multiple sensors of different types, the classification results are
more robust because they are from multiple sources of sensor data of varying
modalities. In addition, to ensure a long network lifetime, the sensors employ a
sleeping algorithm where nodes enter a low-power mode while maintaining
network activity. Lastly, the effort focused on developing a countermeasure to
denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks, which
are universal threats that can shut down networks.

2. Implementation

2.1 Cross-Referencing Sensors

Each sensor node was connected to an XBee Series 2 module,1 which acted as the
base layer for communication. We selected the XBee because of its low cost and
similarity to tactical wireless radios versus other commonly available WiFi or
Bluetooth devices. Our implementation had two types of nodes, a detector node and
a classifier node. Detectors were used to detect whether an event has occurred in
the general area of the network. The classifiers collected data that were later used
to classify an event as an ally or adversary event. Our vision was to have the

Approved for public release; distribution is unlimited.
2

detector nodes sense whether anyone has entered the field and relay that
information to nearby classifier nodes to wake them up and start surveying the
environment. The classifier nodes would continue to sense until either an event is
triggered by an individual or the allotted time for sensing has ended. The
information from the classifiers would then be sent to the base station either directly
or through multihopping.

Detector nodes were equipped with a passive IR (PIR), ultrasonic, or vibration
sensor, and classifier nodes were equipped with a radio-frequency identification
(RFID), magnetometer, microphone, or camera sensor. To conserve energy, a sleep
algorithm was implemented in our network so that the detector nodes would not be
awake sitting idle at every timestep. Sensors were attached to either an Arduino
UNO2 or a Raspberry Pi3 single-board computer. Arduino UNO devices were used
with most of the sensors except for the camera and microphone, which required the
additional computational resources offered by the Raspberry Pi. Both devices are
described in detail in Sections 3.1 and 3.2.

Data collected by the classification sensors are sent to the base station, where they
are aggregated into a single data entry. This aggregate data set represents the area
sensed over the past few seconds. The data are then analyzed by a clustering
algorithm to classify the profile of the individual who triggered the sensors to
predict whether an ally or adversary triggered the event. This process is described
in greater detail in Section 2.2.3.

2.2 Sleeping Algorithms

An important aspect of a wireless sensor network is network lifetime, which can be
defined as either the time it takes for the last node to stop functioning (from failure
or exhausting the power resources) or when the coverage or connectivity of the
network reaches a certain connectivity threshold. If the network can sustain viable
traffic longer, it decreases the need to replace or maintain the network on the
battlefield, saving time and reducing the risk to Soldiers. Because increasing the
battery capacity of each node is a costly solution, we propose implementing a
sleeping algorithm to prolong the lifetime of the network. Nodes that are not
actively scanning and are not vital to network connectivity can be put to sleep to
save energy. These nodes can then be activated at a later time to take over the roles
of nodes with less available energy. For our implementation, three different
strategies were explored while measuring their lifetime and coverage.

Approved for public release; distribution is unlimited.
3

2.2.1 Geographic Adaptive Fidelity (GAF) Algorithm

One of the sleeping algorithms we explored is the GAF algorithm developed in a
joint effort by the Information Science Institute and University of California.4 The
algorithm determines which nodes should sleep by using a virtual grid based on
geographic location. This virtual grid splits up nodes into separate groups, where
all nodes in each group are considered equivalent with respect to its route. In other
words, each node can assume the responsibility of another node as long as they are
in the same group. In addition, any node in one group will be able to communicate
with any node in an adjacent group. To ensure that any node from one grid can
communicate with any node from an adjacent grid, the length of each block has to
follow the relationship 𝑟𝑟2 + (2𝑟𝑟)2 ≤ 𝑅𝑅2, where r is the length of each grid and R
is the communication range. This equation simplifies to 𝑟𝑟 ≤ 𝑅𝑅 √5⁄ . Nodes in the
same grid will then communicate with each other to decide which node in the group
should stay awake by broadcasting their energy. If a node receives a broadcast
message from another node that has more energy, it will go to sleep. Otherwise, if
it receives a broadcast message from a node with equal or less energy, it will ignore
that message. If it does not receive a message from a node with higher energy within
a certain period of time, it will go into active mode.

Figure 1 demonstrates how the virtual grid works. In this example, nodes 2, 3, and
4 in grid B are considered equivalent. Thus, any of those nodes can relay packets
between node 1 and node 5. Because there are two extra nodes that are redundant
in grid B, the one with highest energy can remain activated, while the other two
nodes sleep. When the node that has been awake begins to have less power than the
other nodes in grid B, it can then sleep and allow one of the other two to take its
place.

Fig. 1 Example of a virtual grid in GAF4

In addition, each node can be in one of three states: sleep, active, and discovery.
The states are shown in Fig. 2. In discovery mode, each node turns on its radio and
listens to energy broadcasts from its neighbor nodes, but does not turn on its
sensors. It will stay in this state for a random period of time between zero and a

Approved for public release; distribution is unlimited.
4

constant period Td. In our experiment, this constant was set to 0.5 s. If the node has
received a broadcast from a node with higher energy, then the node will go into
sleep mode. Otherwise, if it does not receive a broadcast from a higher energy node,
then it will go into active mode.

In sleep mode, the node will sleep for Ts seconds, which is a random amount
between enat/2 to enat, where enat stands for estimated node active time. In this
experiment, enat is set to half of the estimated remaining node lifetime. Once the
random time period has passed, it will go into discovery mode for a random period
of time between zero and Td.

In active mode, the node will poll its sensors for information on the surroundings,
as well as broadcast its energy every 0‒Td seconds. It will stay in this state for Ta
seconds, which in this simulation is set to enat seconds. To prevent constant
switching when enat becomes small, each node is set to stay awake for at least
10 s. However, if the node receives a discovery message from another node in its
group that has a higher amount of energy, then it will promptly go into sleep mode.

Fig. 2 State transitions in GAF4

Because our network contains a heterogeneous mixture of classifier and detector
nodes, the GAF algorithm is implemented such that the detector nodes are
considered the same type, while classifier nodes only react to broadcast messages
of the same type. For example, detector nodes with PIR or ultrasonic sensors will
be considered the same, while classifier nodes such as RFID or magnetometer are
considered different types.

Approved for public release; distribution is unlimited.
5

2.2.2 Connected k-Neighborhood (CKN) and Energy Consumed
Connected k-Neighborhood (EC-CKN)

Compared to the GAF algorithm, which determines redundant nodes based on
geographical locations, CKN5 and EC-CKN6 use the number of neighbors to
determine the state of the node. These algorithms focus on maximizing the number
of sleeping nodes while keeping a k-connected network. Each node determines its
number of neighbors, and then decides whether these neighbors can assume its
responsibilities. Not only does this algorithm focus on connectivity, but it also
allows the user to change the robustness of the network by altering k. For example,
if the network requires extra robustness to ensure a packet is not dropped when a
node dies, then we can set the network to be a two-connected network. Thus, there
are at least two routes available for each node.

Both algorithms operate in the same manner, as shown in Fig. 3. The network
lifetime is broken up into epochs of period T, where each epoch is composed of the
time for transmission and the time for running the sleep-scheduler algorithm. In
each epoch, each node will poll its sensors to detect events and then transmit them.
After transmission time has ended, each node will then execute a sleep scheduler
algorithm to decide whether the node should be active or asleep in the next epoch.

Fig. 3 Network lifetime broken up into epochs6

The CKN sleep scheduler algorithm, for which the pseudo code is shown in Fig. 4,
works by first assigning a random rank to each node (Step 1). Each node would
then broadcast its own rank, then listen and memorize the rank of its
one-hop neighbors. After broadcasting, each node would then receive the ranks of
its neighbors and store it in a buffer Ru (Step 2). Each node would then broadcast
Ru, and receive the ranks of its neighbor’s neighbors, giving the node information
about its two-hop neighbors (Step 3). After transmitting all the messages, the node
checks whether the number of single-hop neighbors it has or the number of its
neighbor’s neighbors is less than k. If the number is less than k, then to keep a k-
connected network the node should remain awake (Step 4). Otherwise, if it
potentially has neighbors that can assume its responsibilities, then it will go to sleep

Approved for public release; distribution is unlimited.
6

if two conditions pass. First, each node calculates which of its neighbors have a
higher rank than itself and stores them into a buffer called Cu (Step 5). It will then
check whether it passes the two conditions stated in Step 6, which ensures that all
nodes in Cu are connected by nodes with higher ranks than itself (Step 6).

Fig. 4 Pseudo code for the CKN algorithm6

As opposed to CKN, EC-CKN does not assign a random rank to the node each time
the sleep scheduler algorithm is run, but instead measures its remaining energy and
broadcast that instead as its rank. This ensures that nodes that have more energy
will be more likely to be active, while those with less energy are more likely to
sleep. Theoretically, this implementation will distribute energy consumption more
evenly throughout the network, increasing the network lifetime. The pseudo code
referenced for the EC-CKN algorithm is shown in Fig. 5.

Fig. 5 Pseudo code for the EC-CKN algorithm6

Approved for public release; distribution is unlimited.
7

2.2.3 Classifying Network Sleeping Algorithm

While both of these algorithms would work well for a homogeneous ad-hoc
network with a high sampling rate, our network requires a sleeping algorithm for a
heterogeneous network with classifier and detector nodes that have a low sampling
rate of 0.5 Hz. Thus, for this implementation, we implemented a simple sleep
algorithm on the prototype. There are several assumptions we made about the
network for this algorithm to be effective. One is that our base station will always
be on. Another is that the detector nodes will be used to detect events and send an
event message to classifier nodes. The information from detector nodes does not
need to make it to the base station. Lastly, the classifier nodes will be mostly
sleeping, but will be able to detect event messages from other classifier nodes. If
they do receive one, then they will start polling the environment for events and send
information to the base station.

Because we have a low sampling rate of 0.5 Hz, we have all detector nodes wake
up every 2 s to poll the environment for events using different sensors. If a sensor
senses an event, it will then broadcast that it has detected an event, which will be
received by the classifier nodes. Otherwise, if it doesn’t sense anything, it does
nothing. Once a sensor is done executing and transmitting, it will then sleep for
2 s. Thus, the active duty cycle of each detector node is very low and does not waste
energy reporting when nothing is sensed.

Each classifier node will check whether it has received a message from a detector
node every 2 s. If a message is not received, the classifier node will sleep for 2 s. If
the classifier node does receive a message, it will then stay on for 4 s and
continuously poll its environment. If the classifier node detects a sense event, it will
send a message to the base station and then go into sleep mode for 2 s. Otherwise,
if it senses nothing for 4 s, it will not transmit any message and go back into sleep
mode for 2 s.

2.3 Data Analysis

With the increase of available data, it is necessary to have a methodology to
interpret data and reason about the information. We initially prototyped our data
collection and classification through Node-RED7 via synthetic inputs. We chose the
programing language R for our final implementation to classify sensor data as an
adversary or ally event.

2.3.1 Node-RED Testing

Node-RED7 is an open-source, flow-based programming language that is used for
rapid prototyping. We primarily used it for programming the IoBT devices, but

Approved for public release; distribution is unlimited.
8

there are many more use-cases than those demonstrated in this project. Prior to
completion of sensor development, we used Node-RED to supply data for the
clustering algorithm, which helped us to understand the problem and select the
appropriate clustering algorithm as well as an accurate template for the kind of data
the sensors might produce. The flow-based programming was very useful in
checking the accuracy of the clustering, and made it simple to add and delete
sensors during testing. The graphical nature of flow-based programming made it
easier for team members to follow the code under development. This was also a
great tool for testing edge cases, which in turn made a more robust product. The
Node-Red code is displayed in Fig. 6.

Fig. 6 Node-RED flow for testing different clustering methods

2.3.2 Clustering Algorithm

To achieve our vision of being able to classify an observation to a particular profile
using these basic sensors, we implemented a data fusion schema that would
integrate all of our data sources into a single classification. We discovered several
algorithms (k-medoids, k-means, and Agglomerative Hierarchical Clustering)8 that
would take the data collected from the sensor field and produce a clustering based
on the similarity of the points.

Approved for public release; distribution is unlimited.
9

We first crafted labeled training data and supplied them to the algorithms so they
could understand the structure of the data. Developing robust training data is
important because the data are sampled from an uncontrolled environment,
meaning not all sensors might operate or send data correctly to the controller. Thus,
such situations must exist in the training data so the algorithms can cluster the
observations if sensor readings are missing. Supplying the training data also tests
the effectiveness of each method as we selected our final algorithm based on the
largest percentage of correct cluster assignments. The most reliable of the three
methods tested was k-means.

Once all the information from the sensors is received at the base station, it is
organized into a dataframe object. The dataframe object consists of the sensor node
ID, its node type (detector or classifier), and the sensor reading. All of these values
are encoded as hex values to minimize the number of bytes sent over the network
to reduce congestion and packet loss. This object is passed as an argument into the
clustering algorithm model along with the clustering assignments of the training
data. The model then returns the clustering assignment for this new observation.
This assignment is registered as “ally” or “adversary”.

2.4 Security

Any wireless network is going to have a few security risks, so it is important to
address them. The first issue is the fact that the sensors are broadcasting all the
information they have continuously. An adversary listening into the network could
easily see all the information being broadcast, or even worse, fabricate their own
data to confuse the clustering algorithm. The other issue is that an adversary
listening to the network could attempt to flood the network with packets to prevent
the sensors from transmitting their data (DoS or DDoS).

To prevent adversaries from flooding the network with useless data in a DoS/DDoS
attack, we checked for malformed data and switched the XBee radio’s personal area
network (PAN) ID. If the check detects that the network is getting flooded with
data, then the system switches to another network. This unfortunately does not
solve the problem entirely because of duplication attacks, which take a valid piece
of data and flood the network with copies of it. However, that type of attack could
be handled by including single-use numbers in the data so that the base station could
detect whether the same data have been sent multiple times.

In the simulation results shown in Fig. 7, a node is captured by the adversary (shown
as the brown line) and reprogrammed to continuously send packets to the base
station in an attempt to congest the network and, effectively, jam it. However,
during the fourth iteration, a packet threshold is triggered and all nodes (including

Approved for public release; distribution is unlimited.
10

the base station) switch PAN IDs, so that packets coming from the rogue node are
promptly dropped, thus restoring network functionality. Finally, a recovery
technique could be implemented to restore the original program (or sketch, in the
context of Arduino devices) and reintegrate the patched rogue node back into the
network.

Fig. 7 Example of protection against packet overflow (DoS attack)

3. Experimental Setup

3.1 Arduino UNO

Arduino UNO is a microcontroller board using ATmega328P, which is light,
inexpensive, and compatible for programming many different sensors. It is
equipped with 14 digital pins (input/output), 6 analog input pins, a 16-Mhz quartz
crystal, and a USB connection for programming. The Arduino UNO devices used
for this project were connected to several sensors as well as an XBee Series 2 radio
module. To attach that many sensors, an Arduino Shield was used to accommodate
the lack of space. We programmed these microcontrollers in the C/C++ language
using the Arduino Integrated Development Environment.

The UNO can be uploaded with programs that can perform numerous functions,
such as reading voltage levels from analog pins or performing serial communication
with the XBee modules. In addition, its small form factor makes it practical to be
used as a representative unattended ground sensor. What made the UNO the clear

Approved for public release; distribution is unlimited.
11

choice for our implementation was the vast amount of public documentation and
various example codes that allowed for rapid prototyping. Figure 8 shows the
location of the major components of the microcontroller.

Fig. 8 Arduino UNO board

3.2 Raspberry Pi

A Raspberry Pi is an inexpensive and low-power single-board computer capable of
running the Linux operating system and is available as various models. The model
3+ used for our work is equipped with four USB ports, 1-GB RAM, a port for an
Ethernet connection, a high-definition multimedia interface port, many general-
purpose input/output pins, and WiFi and Bluetooth wireless networking. With this
level of computing, size, and cost efficiency, it is practical to use these
minicomputers to do high-level computations in a small, energy-efficient package.
In this experiment, the Raspberry Pi was used as the base station to which all of the
sensor data would be sent. The primary reason for this was it had more computing
power than the Arduino devices and was capable of running the clustering
algorithm. Some of the Raspberry Pi devices were equipped with a camera and
performed basic image template matching of a military camouflage pattern. A
Raspberry Pi with a connected camera was used as a classifier node, and since the
clustering was done on the Raspberry Pi, the image was efficiently pushed to the
algorithm.

3.3 XBee Series 2

To enable communication between nodes, we chose to use the XBee Series 2 as our
radio module. These modules were chosen because they incorporate the Zigbee
mesh network protocol, which allows for reliable point-to-point or multipoint
communication similar to that of a tactical network. In addition, the range of the

Approved for public release; distribution is unlimited.
12

XBee is around 90 m, which helps reduce the number of nodes needed to cover a
given area of interest. This surpassed the Bluetooth Low Energy module that we
had originally planned to use, which had an effective range of 10 to 15 m.

The mesh network topography was designed with three different components: the
coordinator, the router, and the end devices, as shown in Fig. 9. The end devices
are the most basic, as their only task is to request pending messages from the parent
node, which is either a router or coordinator device. End devices have the ability to
change parents in response to lost connections, in which case they will notify the
whole network. The router module controls and routes the traffic between the
nodes, as well as stores and sends information to the child nodes (routers or end
devices). It is comparable to a gatekeeper because its primary responsibility is
adding new nodes to the network.

Fig. 9 Zigbee mesh network layout

The coordinator is the centerpiece of the topography because it is in charge of
forming the network. The coordinator acts as a special router, which has all the
capabilities of the router but also takes care of selecting the appropriate wireless
communication channel. It also manages extension of the network and security for
the network, acting as the trust center that authenticates new nodes and hands out
network keys for the new nodes.

3.4 Sensors

In this section, we describe the sensors that were considered in our network and
would work with our desired classifications. We describe how we envision their
use and their limitations (Table 1). We were fortunate enough to have a large list of
sensors to choose from, but not all of the sensors listed were used. These sensors
are still included on the list for future work to show our thought process. Images of
the sensors are shown in Tables 2‒4.

Approved for public release; distribution is unlimited.
13

Table 1 Sensors considered in the network

Name of sensor Use-cases

Sound
(microphone)

- Pick up potential languages that are considered hostile or friendly.
- Identify different type of weapon sounds; could check the weapons
database to match potential guns that match a certain group of
people.
- Calculate noises in the distance or how far certain threats could be.

RFID - Rudimentary way to confirm that allies are passing by because
RFID tags would be assigned to all Soldiers.
- (Limitation) Range is within a couple of inches with the RFID
model associated with the Arduino, but larger RFIDs, which require
more power, can range from 1 to 15 m.

Camera (imaging) - Low quality, used for discerning color patterns of uniforms.
- High quality, would be able to take snapshots of objects moving in
the field of view. (Limitation) Would consume significant battery
capacity to start up, store, and send images.
- Considering a central camera at the base, given data from sensors
in the field would be able to angle itself to face snap high-quality
images of incoming threats. Power would not be as much of an
issue.

GPS - Used to track location of sensors registering events.
- Could also be able to activate sleeping nodes if a specified path has
been identified.
- (Limitation) GPS susceptible to jamming.

RF - Track radio frequencies over the area of interest.

Infrared/thermal - Sensor to detect heat signatures and notify the other sensors to start
collecting information.
- (Limitation) Range is limited.

Vibration

- Used to detect vibration and stress experienced by the sensor, and
generates an electric charge based on the stress. The spikes in the
electrical readings can indicate footsteps or vehicles roaming through
the area.

IFF (friend or foe) - Identification of friend or foe, used by the military currently in
conjunction with radar to discern friendly and civilian vehicles and
military units.

Approved for public release; distribution is unlimited.
14

Table 1 Sensors considered in the network (continued)

Name of sensor Use-cases

Ultrasonic - Sends and receives ultrasonic waves to detect changes in distance,
which signifies movement. This will be used to trigger the other
sensors, and start collecting data around the area.
- Triggers classification sensors to start collecting data to help
determine ally or adversary.

PIR - Detects motion by measuring IR signals emitted by objects in its
field of view. If sufficient signals are detected, it will trigger an alert
and start the classification process.

Magnetometer - A classifier sensor that detects the presence of ferromagnetic
materials.
- Ideally, a Soldier would have a piece of metal with a unique
magnetic frequency in their boot. When they walk by, the sensor
would then detect that specific frequency and classify them as an ally.
- (Limitation) The range of the magnetometer is limited, not more
than 1 ft.

Approved for public release; distribution is unlimited.
15

Table 2 Sensors used in the network: detectors

Detectors

Ultrasonic sensor

PIR sensor

Vibration sensor

Approved for public release; distribution is unlimited.
16

Table 3 Sensors used in the network: classifiers

Classifiers

Magnetometer

RFID

Camera

Microphone

Approved for public release; distribution is unlimited.
17

Table 4 Sensors used in the network: communication

Communication

XBee Series 2

3.5 Network Simulation

Python scripts were used to simulate the network using different sleeping
algorithms in order to observe the lifetime and connectivity of the network. Python
was the language of choice because Python contains Socket and Multiprocess
libraries. The Multiprocess library can be used to generate multiple processes, each
of which can be used to simulate a single node. The Socket library can then be used
to open multiple sockets between each process to simulate radio communication.

In each experimental setup, a sleeping algorithm was implemented with the same
network layout and energy model so that we could compare the difference in
performance. Each simulation was tested on a network comprising 100 nodes and
a base station, where half of the nodes are classifier nodes and the other half are
detector nodes. All of the nodes are placed within a 50 × 50 m area, where the base
station has a fixed coordinate at position (25, 25) while the other nodes have a
semirandom placement. Each node is randomly placed within a specified area
within the 50 × 50 m area as shown in Fig. 10. The detector nodes are randomly
placed within 0–12.5 and 37.5–50 m on the y-axis, while the classifier nodes are
randomly placed within 12.5–37.5 m on the y-axis, as shown in Fig. 10.

Approved for public release; distribution is unlimited.
18

Fig. 10 Placement of nodes in the network

In addition to node placement, each node has different sensing ranges depending
on the type of sensors attached to the Arduino board. For example, one node may
have a sensing range of 14 m because it uses an ultrasound sensor, while another
node has a magnetometer and has a range of about 1 m. By including this
characteristic into the model, we can see how many events are actually captured by
the network and get a rough idea about its connectivity. To maximize the
connectivity range of the sensors, we decided on an effective range of 10 m for
optimization of sensors and effective range of communication.

The simulation includes a node-based energy model used to calculate available
battery power of each node, beginning with 0.05 J with a slight deviation of a
random amount from 0 to 0.001 J. The power consumption of being in awake mode
is 1 mW, while the energy it takes to transmit and receive a message is based on
the first-order radio model.9 In this model, we developed equations to calculate how
much energy is consumed by a node based on the communication range and number
of bits the load contains. Based on the communication range, the model either
follows multipath fading or shadow fading. Because our simulated network will
take place in a desert with few obstructions and the communication range is less
than the defined threshold of 87 m, we used the shadow path fading model. In this
model, the energy it takes to transmit a message of l bits is

 𝐸𝐸𝑇𝑇(𝑙𝑙,𝑑𝑑) = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑙𝑙 + 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑙𝑙 ∗ 𝑑𝑑2, (1)

where d is the communication range. To receive a message, the energy consumed
is 𝐸𝐸𝑅𝑅(𝑙𝑙,𝑑𝑑) = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑙𝑙. As reference, the constant values are Eelec = 50 nJ/bit and
Eamp = 100 pJ.

Approved for public release; distribution is unlimited.
19

Lastly, a simple flooding algorithm was implemented as a routing protocol. When
a node receives an event message from another node, it first checks whether it has
already received a copy of that message. If it has, then it will drop the packet. If it
has not, then it checks how many hops the message has gone through. If the
message exceeds a certain number of hops, then the node drops it. Otherwise, the
node will broadcast the message with an updated amount of hops. In these
simulations, a message can have a maximum of four hops.

4. Results

4.1 Physical Prototype

To prove that our project is viable, our group implemented a physical prototype to
demonstrate its ability to classify whether an ally or adversary is crossing the field.
Each node comprised an Arduino Uno or Raspberry Pi as the microprocessor, XBee
Series 2 radio module, and a sensor. The network was implemented using seven
sensors. For classification nodes, RFID, magnetometer, language, and camera
sensors were used. As for detector nodes, PIR, ultrasound, and vibration sensors
were used. Out of the seven nodes, the base station node was implemented with a
Raspberry Pi equipped with a camera and sound sensor. This setup was chosen
because the Raspberry Pi microprocessor had sufficient computational power to
perform speech recognition and image convolution, as opposed to the weaker
Arduino Uno. The rest of the sensors were then equipped with either a detector
sensor or a classifier sensor.

As for the results of this physical prototype network, we can conclude that our
sensors are able to sense results and distribute them to the base station. Each of the
detector nodes was able to sense an event occurring within a certain range that we
expected, while the classifier nodes were able to give correct information on the
event, such as if the target was equipped with a RFID card. Finally, our chosen
clustering algorithm for our demo K-centroids demonstrated a high accuracy when
attempting to cluster our sensor data. Through multiple combinations of sensor
readings, K-centroids was able to reliably classify whether or not an ally or
adversary traversed through the sensor field.

4.2 Python Simulations

4.2.1 GAF Results

As shown in Fig. 11, the GAF simulation extends the network lifetime by finding
nodes that are of the same type within the same group based on a virtual grid that

Approved for public release; distribution is unlimited.
20

has a length of 𝑟𝑟 ≤ 𝑅𝑅/√5. For example, at the top-right corner, we can see that
there are two detector nodes, node 42 and 50, in the same grid. Because they are
both detector nodes, one of them is put to sleep while the other is kept awake.

Fig. 11 Example of the GAF network. Type of node is shown by shape. Active nodes are
green and sleeping nodes are blue.

Because the algorithm keeps at least one node active within a grid, we can expect
full connectivity while minimizing the energy consumption of the network. As
shown in Fig. 12, we can see that many nodes start running out of power after 24 s.
The steep drop in number of nodes participating is because many classifier nodes
are not paired with the same types of nodes, which forces them to stay awake the
entire time. Another reason why this could be possible is the algorithm does not
consider whether another grid could assume the responsibilities of a grid with less
overall energy. The very short lifetime is a result of the low initial energy value of
0.05 J assigned to each simulated node, which was intentionally selected to limit
the time required to execute the simulation. When testing with only active nodes,
the lifetime of the network was about 10 s.

Approved for public release; distribution is unlimited.
21

Fig. 12 Lifetime of the GAF network

As opposed to the lifetime of the network, the number of events the network is able
to capture averages to around 30%, as shown in Fig. 13. While this is a low number,
this could be considered a good result for two reasons. One is that the network uses
a simple flooding algorithm that only allows messages to hop four times. As a
result, the event was sensed many times, but was a few hops away from making it
to the base station. Another reason why this is a good result is due to the sensing
range of some of the nodes. Some nodes have a sensing range of 1 m, which is very
small. Thus, there are many cases where an event happens close to a node, but is
not within range of it. For the capabilities of this network, 30% is an average result.

Approved for public release; distribution is unlimited.
22

Fig. 13 Percentage of events detected in the GAF network over time

4.2.2 CKN Results

In this simulation, pictured in Fig. 14, we test the CKN algorithm with an input of
k = 1. Thus, this should create at least a k-connected network. The reason it will
create at least a k-connected is because the two conditions have a relatively low
chance of being fulfilled. Thus, in some cases, many nodes may stay awake to
ensure that connectivity of the network is high.

Approved for public release; distribution is unlimited.
23

Fig. 14 Example of the CKN network. Green means active, blue means sleep, a purple ring
means a node has sensed an event, and a purple circle means an event.

As a result, because of how CKN works and more nodes staying awake, the lifetime
of the network is less than GAF. Figure 15 shows the lifetime of the network in
epochs, which in these simulations are 2 s long. Compared to GAF, which had about
40% of the nodes alive at 40 s, the CKN network only had about 25% of the nodes
alive. However, we can also see that the slope of CKN network lifetime is much
less steep than GAF. In other words, it causes nodes to power off at a slower rate.

Approved for public release; distribution is unlimited.
24

Fig. 15 Lifetime of the CKN network

In addition, we can see in Fig. 16 that the overall percentage of events detected is
much higher. About 50% of all events were detected by the base station, which is
much higher than the GAF algorithm performance. However, because all of the
nodes near the base station powered off at the seventh epoch or so, in reality after
14 s the network fails to capture any events. One way to fix this is to implement a
clustering algorithm, which may solve the issue of not having enough nodes go to
sleep.

Fig. 16 Percentage of events detected in the CKN network over time

Approved for public release; distribution is unlimited.
25

4.2.3 EC-CKN Results

Compared to using CKN, using EC-CKN does not seem to cause a significant
difference in results. The network layout, lifetime, and percentage of events
detected seem to generate similar results. The network layout is displayed in
Fig. 17 and the lifetime of the EC-CKN network is shown in Fig. 18. Figure 19
displays the percentage of events detected in the network.

Fig. 17 Example of the EC-CKN network. Green means active, blue means sleep, a purple
ring means the node has sensed an event, and a purple circle means an event.

Approved for public release; distribution is unlimited.
26

Fig. 18 Lifetime of the EC-CKN network

Fig. 19 Percentage of events detected in the EC-CKN network over time

5. Conclusion

Too many times we associate IoT with connecting a specific device, such as a
refrigerator, to the Internet and receiving a Twitter feed, but that is just a primitive
application of such an integrative technology. This concept of IoBT is still

Approved for public release; distribution is unlimited.
27

relatively new and therefore this project is only scratching the surface of the many
potential applications. Although the results were positive and the clustering
algorithm was accurate enough to suggest an ally or adversary had crossed the
plain, there are many more aspects to consider. Future work will include additional
security and advancement in the clustering algorithm to classify more than just ally
and adversary. From a security standpoint, DoS/DDoS protection is a start but
ideally implementation of encryption and simplified intrusion detection methods,
such as cyclic redundancy checks, would make these devices much more resilient
in the field. Encryption would prevent adversaries from being able to sniff messages
across the network and also protect against falsified messages that the adversaries
would send to fool the clustering algorithm. Adding software or malware protection
to these devices would be ideal, but due to limited storage it is difficult to install.
This topic is discussed in more detail in the paper, “Lightweight Hardware
Monitoring of IoT Devices”.10 Eventually, these sensors will be able to organize
movement across the field into other categories like civilians, vehicles, or even
indigenous animals. This is an open problem that will improve over time as we
continue to develop better technology. Also, more sensors will be included in the
network, giving us a better perspective of the field that they are in.

Approved for public release; distribution is unlimited.
28

6. References

1. Digi XBee/XBee-PRO ZigBee modules (S2) - formerly ZB. Minnetonka
(MN): Digi; n.d. [accessed 19 September 2018].
https://www.digi.com/support/productdetail?pid=3430.

2. Arduino Uno rev3. Arduino; 2018 [accessed 19 September 2018].
https://store.arduino.cc/usa/arduino-uno-rev3.

3. Raspberry Pi. Cambridge (UK): Raspberry Pi Foundation; n.d. [accessed 19
September 2018]. https://www.raspberrypi.org.

4. Xu Y, Heidemann J. Geography-informed energy conservation for ad hoc
routing. Information System Institute, Proceeding MobiCom ’01 Proceedings
of the 7th Annual International Conference on Mobile Computing and
Networking; 2001; Rome, Italy. pp. 70–84.

5. Wang Lei, Yuan Zhuxiu, Shu L, Shi L, Qin Z. An energy-efficient CKN
algorithm for duty-cycled wireless sensor networks. International Journal of
Distributed Sensor Networks 2012;06439. Hindawi Publishing Corporation.

6. Yuan Z, Wang L, Shu Lei, Hara T, Qin Zhenquan. A balanced energy
consumption sleep scheduling algorithm in wireless sensor networks. 2011 7th
International Wireless Communications and Mobile Computing Conference;
2011 July 4–8; Istanbul, Turkey.

7. Node-Red: flow-based programming for the Internet of Things. JS Foundation;
n.d. [accessed 19 September 2018]. https://nodered.org.

8. Types of clustering methods: overview and quick start R code. STHDA; n.d.
[accessed 19 September 2018]. http://www.sthda.com/english/articles/25-
cluster-analysis-in-r-practical-guide/111-types-of-clustering-methods-
overview-and-quick-start-r-code/.

9. Heinzelman WR, Chandrakasan A, Balakrishman H. Energy-efficient
communication protocol for wireless microsensor networks. Massachusetts
Institute of Technology, Proceedings of the Hawaii International Conference
on System Sciences; 2000 January 4–7; Maui, HI.

10. Toth A, Rapczynski D, Wampler JA. Lightweight hardware monitoring of IoT
devices. Proc Cyber Sensing 2018. 2018; 10630. SPIE Defense + Security;
2018; Orlando, FL.

https://nodered.org/

Approved for public release; distribution is unlimited.
29

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

CKN connected k-neighborhood

CRC Cyclical Redundancy Check

DoS denial of service

DDoS distributed DoS

EC-CKN energy consumed connected k-neighborhood

GAF Geographic Adaptive Fidelity

GPS global positioning system

ID identification

IFF identification friend or foe

IR infrared

IoT Internet of Things

IoBT Internet of Battlefield Things

PAN personal area network

PIR passive IR

RAM Random Access Memory

RF radio frequency

RFID RF identification

USB universal serial bus

Approved for public release; distribution is unlimited.
30

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 ARL
 (PDF) RDRL CIN T
 A TOTH

	List of Figures
	List of Tables
	1. Introduction
	2. Implementation
	2.1 Cross-Referencing Sensors
	2.2 Sleeping Algorithms
	2.2.1 Geographic Adaptive Fidelity (GAF) Algorithm
	2.2.2 Connected k-Neighborhood (CKN) and Energy Consumed Connected k-Neighborhood (EC-CKN)
	2.2.3 Classifying Network Sleeping Algorithm

	2.3 Data Analysis
	2.3.1 Node-RED Testing
	2.3.2 Clustering Algorithm

	2.4 Security

	3. Experimental Setup
	3.1 Arduino UNO
	3.2 Raspberry Pi
	3.3 XBee Series 2
	3.4 Sensors
	3.5 Network Simulation

	4. Results
	4.1 Physical Prototype
	4.2 Python Simulations
	4.2.1 GAF Results
	4.2.2 CKN Results
	4.2.3 EC-CKN Results

	5. Conclusion
	6. References
	List of Symbols, Abbreviations, and Acronyms

