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1. Introduction 

The focus of Internet of Battlefield Things (IoBT) is to provide situational 
awareness of the battlefield utilizing a network of interconnected sensors, actuators, 
and analytical devices. Sensors could detect enemy movement and then relay that 
information in real time to analysts, enabling them to make tactical decisions on 
positioning, areas to avoid, or who is crossing a certain area. This capability would 
potentially save resources and Soldiers’ lives, making IoBT an important topic for 
the US Army Research Laboratory’s (ARL) Network Science Research Laboratory 
to investigate. The concept of Internet of Things (IoT) is to create a network of 
communication with any kind of device, from a car to a fridge. Translate this 
concept to a battlefield environment, and one can imagine the possibilities that 
IoBT can bring. There has been significant interest in IoBT devices from the Army 
to learn, develop, and take these ideas from the laboratory to the field. 

For this effort, a group of summer students in ARL’s Tactical Network Assurance 
Branch developed a narrative of using IoBT to deploy multiple sensors in an 
unknown or potentially hostile environment. We call this system the Autonomous 
Classifying Sensor Network. Sensors within the system perform basic 
classification, identifying whether an ally or adversary is present based on 
generated events, and communicate with each other using an ad-hoc wireless 
network. By using multiple sensors of different types, the classification results are 
more robust because they are from multiple sources of sensor data of varying 
modalities. In addition, to ensure a long network lifetime, the sensors employ a 
sleeping algorithm where nodes enter a low-power mode while maintaining 
network activity. Lastly, the effort focused on developing a countermeasure to 
denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks, which 
are universal threats that can shut down networks. 

2. Implementation 

2.1 Cross-Referencing Sensors 

Each sensor node was connected to an XBee Series 2 module,1 which acted as the 
base layer for communication. We selected the XBee because of its low cost and 
similarity to tactical wireless radios versus other commonly available WiFi or 
Bluetooth devices. Our implementation had two types of nodes, a detector node and 
a classifier node. Detectors were used to detect whether an event has occurred in 
the general area of the network. The classifiers collected data that were later used 
to classify an event as an ally or adversary event. Our vision was to have the 
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detector nodes sense whether anyone has entered the field and relay that 
information to nearby classifier nodes to wake them up and start surveying the 
environment. The classifier nodes would continue to sense until either an event is 
triggered by an individual or the allotted time for sensing has ended. The 
information from the classifiers would then be sent to the base station either directly 
or through multihopping. 

Detector nodes were equipped with a passive IR (PIR), ultrasonic, or vibration 
sensor, and classifier nodes were equipped with a radio-frequency identification 
(RFID), magnetometer, microphone, or camera sensor. To conserve energy, a sleep 
algorithm was implemented in our network so that the detector nodes would not be 
awake sitting idle at every timestep. Sensors were attached to either an Arduino 
UNO2 or a Raspberry Pi3 single-board computer. Arduino UNO devices were used 
with most of the sensors except for the camera and microphone, which required the 
additional computational resources offered by the Raspberry Pi. Both devices are 
described in detail in Sections 3.1 and 3.2. 

Data collected by the classification sensors are sent to the base station, where they 
are aggregated into a single data entry. This aggregate data set represents the area 
sensed over the past few seconds. The data are then analyzed by a clustering 
algorithm to classify the profile of the individual who triggered the sensors to 
predict whether an ally or adversary triggered the event. This process is described 
in greater detail in Section 2.2.3. 

2.2 Sleeping Algorithms 

An important aspect of a wireless sensor network is network lifetime, which can be 
defined as either the time it takes for the last node to stop functioning (from failure 
or exhausting the power resources) or when the coverage or connectivity of the 
network reaches a certain connectivity threshold. If the network can sustain viable 
traffic longer, it decreases the need to replace or maintain the network on the 
battlefield, saving time and reducing the risk to Soldiers. Because increasing the 
battery capacity of each node is a costly solution, we propose implementing a 
sleeping algorithm to prolong the lifetime of the network. Nodes that are not 
actively scanning and are not vital to network connectivity can be put to sleep to 
save energy. These nodes can then be activated at a later time to take over the roles 
of nodes with less available energy. For our implementation, three different 
strategies were explored while measuring their lifetime and coverage. 
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2.2.1 Geographic Adaptive Fidelity (GAF) Algorithm 

One of the sleeping algorithms we explored is the GAF algorithm developed in a 
joint effort by the Information Science Institute and University of California.4 The 
algorithm determines which nodes should sleep by using a virtual grid based on 
geographic location. This virtual grid splits up nodes into separate groups, where 
all nodes in each group are considered equivalent with respect to its route. In other 
words, each node can assume the responsibility of another node as long as they are 
in the same group. In addition, any node in one group will be able to communicate 
with any node in an adjacent group. To ensure that any node from one grid can 
communicate with any node from an adjacent grid, the length of each block has to 
follow the relationship 𝑟𝑟2 + (2𝑟𝑟)2 ≤ 𝑅𝑅2, where r is the length of each grid and R 
is the communication range. This equation simplifies to 𝑟𝑟 ≤ 𝑅𝑅 √5⁄ . Nodes in the 
same grid will then communicate with each other to decide which node in the group 
should stay awake by broadcasting their energy. If a node receives a broadcast 
message from another node that has more energy, it will go to sleep. Otherwise, if 
it receives a broadcast message from a node with equal or less energy, it will ignore 
that message. If it does not receive a message from a node with higher energy within 
a certain period of time, it will go into active mode. 

Figure 1 demonstrates how the virtual grid works. In this example, nodes 2, 3, and 
4 in grid B are considered equivalent. Thus, any of those nodes can relay packets 
between node 1 and node 5. Because there are two extra nodes that are redundant 
in grid B, the one with highest energy can remain activated, while the other two 
nodes sleep. When the node that has been awake begins to have less power than the 
other nodes in grid B, it can then sleep and allow one of the other two to take its 
place. 

 

Fig. 1 Example of a virtual grid in GAF4 

In addition, each node can be in one of three states: sleep, active, and discovery. 
The states are shown in Fig. 2. In discovery mode, each node turns on its radio and 
listens to energy broadcasts from its neighbor nodes, but does not turn on its 
sensors. It will stay in this state for a random period of time between zero and a 
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constant period Td. In our experiment, this constant was set to 0.5 s. If the node has 
received a broadcast from a node with higher energy, then the node will go into 
sleep mode. Otherwise, if it does not receive a broadcast from a higher energy node, 
then it will go into active mode. 

In sleep mode, the node will sleep for Ts seconds, which is a random amount 
between enat/2 to enat, where enat stands for estimated node active time. In this 
experiment, enat is set to half of the estimated remaining node lifetime. Once the 
random time period has passed, it will go into discovery mode for a random period 
of time between zero and Td. 

In active mode, the node will poll its sensors for information on the surroundings, 
as well as broadcast its energy every 0‒Td seconds. It will stay in this state for Ta 
seconds, which in this simulation is set to enat seconds. To prevent constant 
switching when enat becomes small, each node is set to stay awake for at least  
10 s. However, if the node receives a discovery message from another node in its 
group that has a higher amount of energy, then it will promptly go into sleep mode. 

 

Fig. 2 State transitions in GAF4 

Because our network contains a heterogeneous mixture of classifier and detector 
nodes, the GAF algorithm is implemented such that the detector nodes are 
considered the same type, while classifier nodes only react to broadcast messages 
of the same type. For example, detector nodes with PIR or ultrasonic sensors will 
be considered the same, while classifier nodes such as RFID or magnetometer are 
considered different types. 
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2.2.2 Connected k-Neighborhood (CKN) and Energy Consumed 
Connected k-Neighborhood (EC-CKN) 

Compared to the GAF algorithm, which determines redundant nodes based on 
geographical locations, CKN5 and EC-CKN6 use the number of neighbors to 
determine the state of the node. These algorithms focus on maximizing the number 
of sleeping nodes while keeping a k-connected network. Each node determines its 
number of neighbors, and then decides whether these neighbors can assume its 
responsibilities. Not only does this algorithm focus on connectivity, but it also 
allows the user to change the robustness of the network by altering k. For example, 
if the network requires extra robustness to ensure a packet is not dropped when a 
node dies, then we can set the network to be a two-connected network. Thus, there 
are at least two routes available for each node. 

Both algorithms operate in the same manner, as shown in Fig. 3. The network 
lifetime is broken up into epochs of period T, where each epoch is composed of the 
time for transmission and the time for running the sleep-scheduler algorithm. In 
each epoch, each node will poll its sensors to detect events and then transmit them. 
After transmission time has ended, each node will then execute a sleep scheduler 
algorithm to decide whether the node should be active or asleep in the next epoch. 

 

Fig. 3 Network lifetime broken up into epochs6 

The CKN sleep scheduler algorithm, for which the pseudo code is shown in Fig. 4, 
works by first assigning a random rank to each node (Step 1). Each node would 
then broadcast its own rank, then listen and memorize the rank of its  
one-hop neighbors. After broadcasting, each node would then receive the ranks of 
its neighbors and store it in a buffer Ru (Step 2). Each node would then broadcast 
Ru, and receive the ranks of its neighbor’s neighbors, giving the node information 
about its two-hop neighbors (Step 3). After transmitting all the messages, the node 
checks whether the number of single-hop neighbors it has or the number of its 
neighbor’s neighbors is less than k. If the number is less than k, then to keep a k-
connected network the node should remain awake (Step 4). Otherwise, if it 
potentially has neighbors that can assume its responsibilities, then it will go to sleep 
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if two conditions pass. First, each node calculates which of its neighbors have a 
higher rank than itself and stores them into a buffer called Cu (Step 5). It will then 
check whether it passes the two conditions stated in Step 6, which ensures that all 
nodes in Cu are connected by nodes with higher ranks than itself (Step 6).   

 

Fig. 4 Pseudo code for the CKN algorithm6 

As opposed to CKN, EC-CKN does not assign a random rank to the node each time 
the sleep scheduler algorithm is run, but instead measures its remaining energy and 
broadcast that instead as its rank. This ensures that nodes that have more energy 
will be more likely to be active, while those with less energy are more likely to 
sleep. Theoretically, this implementation will distribute energy consumption more 
evenly throughout the network, increasing the network lifetime. The pseudo code 
referenced for the EC-CKN algorithm is shown in Fig. 5. 

 

Fig. 5 Pseudo code for the EC-CKN algorithm6 
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2.2.3 Classifying Network Sleeping Algorithm 

While both of these algorithms would work well for a homogeneous ad-hoc 
network with a high sampling rate, our network requires a sleeping algorithm for a 
heterogeneous network with classifier and detector nodes that have a low sampling 
rate of 0.5 Hz. Thus, for this implementation, we implemented a simple sleep 
algorithm on the prototype. There are several assumptions we made about the 
network for this algorithm to be effective. One is that our base station will always 
be on. Another is that the detector nodes will be used to detect events and send an 
event message to classifier nodes. The information from detector nodes does not 
need to make it to the base station. Lastly, the classifier nodes will be mostly 
sleeping, but will be able to detect event messages from other classifier nodes. If 
they do receive one, then they will start polling the environment for events and send 
information to the base station. 

Because we have a low sampling rate of 0.5 Hz, we have all detector nodes wake 
up every 2 s to poll the environment for events using different sensors. If a sensor 
senses an event, it will then broadcast that it has detected an event, which will be 
received by the classifier nodes. Otherwise, if it doesn’t sense anything, it does 
nothing. Once a sensor is done executing and transmitting, it will then sleep for  
2 s. Thus, the active duty cycle of each detector node is very low and does not waste 
energy reporting when nothing is sensed. 

Each classifier node will check whether it has received a message from a detector 
node every 2 s. If a message is not received, the classifier node will sleep for 2 s. If 
the classifier node does receive a message, it will then stay on for 4 s and 
continuously poll its environment. If the classifier node detects a sense event, it will 
send a message to the base station and then go into sleep mode for 2 s. Otherwise, 
if it senses nothing for 4 s, it will not transmit any message and go back into sleep 
mode for 2 s. 

2.3 Data Analysis 

With the increase of available data, it is necessary to have a methodology to 
interpret data and reason about the information. We initially prototyped our data 
collection and classification through Node-RED7 via synthetic inputs. We chose the 
programing language R for our final implementation to classify sensor data as an 
adversary or ally event. 

2.3.1 Node-RED Testing 

Node-RED7 is an open-source, flow-based programming language that is used for 
rapid prototyping. We primarily used it for programming the IoBT devices, but 
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there are many more use-cases than those demonstrated in this project. Prior to 
completion of sensor development, we used Node-RED to supply data for the 
clustering algorithm, which helped us to understand the problem and select the 
appropriate clustering algorithm as well as an accurate template for the kind of data 
the sensors might produce. The flow-based programming was very useful in 
checking the accuracy of the clustering, and made it simple to add and delete 
sensors during testing. The graphical nature of flow-based programming made it 
easier for team members to follow the code under development. This was also a 
great tool for testing edge cases, which in turn made a more robust product. The 
Node-Red code is displayed in Fig. 6. 

 

Fig. 6 Node-RED flow for testing different clustering methods 

2.3.2 Clustering Algorithm 

To achieve our vision of being able to classify an observation to a particular profile 
using these basic sensors, we implemented a data fusion schema that would 
integrate all of our data sources into a single classification. We discovered several 
algorithms (k-medoids, k-means, and Agglomerative Hierarchical Clustering)8 that 
would take the data collected from the sensor field and produce a clustering based 
on the similarity of the points. 
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We first crafted labeled training data and supplied them to the algorithms so they 
could understand the structure of the data. Developing robust training data is 
important because the data are sampled from an uncontrolled environment, 
meaning not all sensors might operate or send data correctly to the controller. Thus, 
such situations must exist in the training data so the algorithms can cluster the 
observations if sensor readings are missing. Supplying the training data also tests 
the effectiveness of each method as we selected our final algorithm based on the 
largest percentage of correct cluster assignments. The most reliable of the three 
methods tested was k-means. 

Once all the information from the sensors is received at the base station, it is 
organized into a dataframe object. The dataframe object consists of the sensor node 
ID, its node type (detector or classifier), and the sensor reading. All of these values 
are encoded as hex values to minimize the number of bytes sent over the network 
to reduce congestion and packet loss. This object is passed as an argument into the 
clustering algorithm model along with the clustering assignments of the training 
data. The model then returns the clustering assignment for this new observation. 
This assignment is registered as “ally” or “adversary”. 

2.4 Security 

Any wireless network is going to have a few security risks, so it is important to 
address them. The first issue is the fact that the sensors are broadcasting all the 
information they have continuously. An adversary listening into the network could 
easily see all the information being broadcast, or even worse, fabricate their own 
data to confuse the clustering algorithm. The other issue is that an adversary 
listening to the network could attempt to flood the network with packets to prevent 
the sensors from transmitting their data (DoS or DDoS). 

To prevent adversaries from flooding the network with useless data in a DoS/DDoS 
attack, we checked for malformed data and switched the XBee radio’s personal area 
network (PAN) ID. If the check detects that the network is getting flooded with 
data, then the system switches to another network. This unfortunately does not 
solve the problem entirely because of duplication attacks, which take a valid piece 
of data and flood the network with copies of it. However, that type of attack could 
be handled by including single-use numbers in the data so that the base station could 
detect whether the same data have been sent multiple times. 

In the simulation results shown in Fig. 7, a node is captured by the adversary (shown 
as the brown line) and reprogrammed to continuously send packets to the base 
station in an attempt to congest the network and, effectively, jam it. However, 
during the fourth iteration, a packet threshold is triggered and all nodes (including 
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the base station) switch PAN IDs, so that packets coming from the rogue node are 
promptly dropped, thus restoring network functionality. Finally, a recovery 
technique could be implemented to restore the original program (or sketch, in the 
context of Arduino devices) and reintegrate the patched rogue node back into the 
network. 

 

Fig. 7 Example of protection against packet overflow (DoS attack) 

3. Experimental Setup 

3.1 Arduino UNO 

Arduino UNO is a microcontroller board using ATmega328P, which is light, 
inexpensive, and compatible for programming many different sensors. It is 
equipped with 14 digital pins (input/output), 6 analog input pins, a 16-Mhz quartz 
crystal, and a USB connection for programming. The Arduino UNO devices used 
for this project were connected to several sensors as well as an XBee Series 2 radio 
module. To attach that many sensors, an Arduino Shield was used to accommodate 
the lack of space. We programmed these microcontrollers in the C/C++ language 
using the Arduino Integrated Development Environment. 

The UNO can be uploaded with programs that can perform numerous functions, 
such as reading voltage levels from analog pins or performing serial communication 
with the XBee modules. In addition, its small form factor makes it practical to be 
used as a representative unattended ground sensor. What made the UNO the clear 
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choice for our implementation was the vast amount of public documentation and 
various example codes that allowed for rapid prototyping. Figure 8 shows the 
location of the major components of the microcontroller. 

 

Fig. 8 Arduino UNO board 

3.2 Raspberry Pi 

A Raspberry Pi is an inexpensive and low-power single-board computer capable of 
running the Linux operating system and is available as various models. The model 
3+ used for our work is equipped with four USB ports, 1-GB RAM, a port for an 
Ethernet connection, a high-definition multimedia interface port, many general-
purpose input/output pins, and WiFi and Bluetooth wireless networking. With this 
level of computing, size, and cost efficiency, it is practical to use these 
minicomputers to do high-level computations in a small, energy-efficient package. 
In this experiment, the Raspberry Pi was used as the base station to which all of the 
sensor data would be sent. The primary reason for this was it had more computing 
power than the Arduino devices and was capable of running the clustering 
algorithm. Some of the Raspberry Pi devices were equipped with a camera and 
performed basic image template matching of a military camouflage pattern. A 
Raspberry Pi with a connected camera was used as a classifier node, and since the 
clustering was done on the Raspberry Pi, the image was efficiently pushed to the 
algorithm.   

3.3 XBee Series 2 

To enable communication between nodes, we chose to use the XBee Series 2 as our 
radio module. These modules were chosen because they incorporate the Zigbee 
mesh network protocol, which allows for reliable point-to-point or multipoint 
communication similar to that of a tactical network. In addition, the range of the 
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XBee is around 90 m, which helps reduce the number of nodes needed to cover a 
given area of interest. This surpassed the Bluetooth Low Energy module that we 
had originally planned to use, which had an effective range of 10 to 15 m. 

The mesh network topography was designed with three different components: the 
coordinator, the router, and the end devices, as shown in Fig. 9. The end devices 
are the most basic, as their only task is to request pending messages from the parent 
node, which is either a router or coordinator device. End devices have the ability to 
change parents in response to lost connections, in which case they will notify the 
whole network. The router module controls and routes the traffic between the 
nodes, as well as stores and sends information to the child nodes (routers or end 
devices). It is comparable to a gatekeeper because its primary responsibility is 
adding new nodes to the network. 

 

Fig. 9 Zigbee mesh network layout 

The coordinator is the centerpiece of the topography because it is in charge of 
forming the network. The coordinator acts as a special router, which has all the 
capabilities of the router but also takes care of selecting the appropriate wireless 
communication channel. It also manages extension of the network and security for 
the network, acting as the trust center that authenticates new nodes and hands out 
network keys for the new nodes. 

3.4 Sensors 

In this section, we describe the sensors that were considered in our network and 
would work with our desired classifications. We describe how we envision their 
use and their limitations (Table 1). We were fortunate enough to have a large list of 
sensors to choose from, but not all of the sensors listed were used. These sensors 
are still included on the list for future work to show our thought process. Images of 
the sensors are shown in Tables 2‒4. 
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Table 1 Sensors considered in the network 

Name of sensor Use-cases 

Sound 
(microphone) 
 

- Pick up potential languages that are considered hostile or friendly. 
- Identify different type of weapon sounds; could check the weapons 
database to match potential guns that match a certain group of 
people. 
- Calculate noises in the distance or how far certain threats could be. 

RFID - Rudimentary way to confirm that allies are passing by because 
RFID tags would be assigned to all Soldiers.   
- (Limitation) Range is within a couple of inches with the RFID 
model associated with the Arduino, but larger RFIDs, which require 
more power, can range from 1 to 15 m. 

Camera (imaging) - Low quality, used for discerning color patterns of uniforms. 
- High quality, would be able to take snapshots of objects moving in 
the field of view. (Limitation) Would consume significant battery 
capacity to start up, store, and send images. 
- Considering a central camera at the base, given data from sensors 
in the field would be able to angle itself to face snap high-quality 
images of incoming threats. Power would not be as much of an 
issue. 

GPS - Used to track location of sensors registering events. 
- Could also be able to activate sleeping nodes if a specified path has 
been identified. 
- (Limitation) GPS susceptible to jamming.  

RF - Track radio frequencies over the area of interest. 

Infrared/thermal - Sensor to detect heat signatures and notify the other sensors to start 
collecting information. 
- (Limitation) Range is limited.  

Vibration  
 

- Used to detect vibration and stress experienced by the sensor, and 
generates an electric charge based on the stress. The spikes in the 
electrical readings can indicate footsteps or vehicles roaming through 
the area. 

IFF (friend or foe) - Identification of friend or foe, used by the military currently in 
conjunction with radar to discern friendly and civilian vehicles and 
military units. 
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Table 1 Sensors considered in the network (continued) 

Name of sensor Use-cases 

Ultrasonic  - Sends and receives ultrasonic waves to detect changes in distance, 
which signifies movement. This will be used to trigger the other 
sensors, and start collecting data around the area. 
- Triggers classification sensors to start collecting data to help 
determine ally or adversary. 

PIR - Detects motion by measuring IR signals emitted by objects in its 
field of view. If sufficient signals are detected, it will trigger an alert 
and start the classification process. 

Magnetometer  - A classifier sensor that detects the presence of ferromagnetic 
materials.  
- Ideally, a Soldier would have a piece of metal with a unique 
magnetic frequency in their boot. When they walk by, the sensor 
would then detect that specific frequency and classify them as an ally. 
- (Limitation) The range of the magnetometer is limited, not more 
than 1 ft.  
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Table 2 Sensors used in the network: detectors 

Detectors 

Ultrasonic sensor 

  

 

PIR sensor 

 

 

Vibration sensor 
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Table 3 Sensors used in the network: classifiers 

Classifiers 

Magnetometer 
 

 

RFID 

 

Camera 
 

 

Microphone 
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Table 4 Sensors used in the network: communication 

Communication 

XBee Series 2 

 

3.5 Network Simulation 

Python scripts were used to simulate the network using different sleeping 
algorithms in order to observe the lifetime and connectivity of the network. Python 
was the language of choice because Python contains Socket and Multiprocess 
libraries. The Multiprocess library can be used to generate multiple processes, each 
of which can be used to simulate a single node. The Socket library can then be used 
to open multiple sockets between each process to simulate radio communication. 

In each experimental setup, a sleeping algorithm was implemented with the same 
network layout and energy model so that we could compare the difference in 
performance. Each simulation was tested on a network comprising 100 nodes and 
a base station, where half of the nodes are classifier nodes and the other half are 
detector nodes. All of the nodes are placed within a 50 × 50 m area, where the base 
station has a fixed coordinate at position (25, 25) while the other nodes have a 
semirandom placement. Each node is randomly placed within a specified area 
within the 50 × 50 m area as shown in Fig. 10. The detector nodes are randomly 
placed within 0–12.5 and 37.5–50 m on the y-axis, while the classifier nodes are 
randomly placed within 12.5–37.5 m on the y-axis, as shown in Fig. 10. 
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Fig. 10 Placement of nodes in the network 

In addition to node placement, each node has different sensing ranges depending 
on the type of sensors attached to the Arduino board. For example, one node may 
have a sensing range of 14 m because it uses an ultrasound sensor, while another 
node has a magnetometer and has a range of about 1 m. By including this 
characteristic into the model, we can see how many events are actually captured by 
the network and get a rough idea about its connectivity. To maximize the 
connectivity range of the sensors, we decided on an effective range of 10 m for 
optimization of sensors and effective range of communication. 

The simulation includes a node-based energy model used to calculate available 
battery power of each node, beginning with 0.05 J with a slight deviation of a 
random amount from 0 to 0.001 J. The power consumption of being in awake mode 
is 1 mW, while the energy it takes to transmit and receive a message is based on 
the first-order radio model.9 In this model, we developed equations to calculate how 
much energy is consumed by a node based on the communication range and number 
of bits the load contains. Based on the communication range, the model either 
follows multipath fading or shadow fading. Because our simulated network will 
take place in a desert with few obstructions and the communication range is less 
than the defined threshold of 87 m, we used the shadow path fading model. In this 
model, the energy it takes to transmit a message of l bits is 

 𝐸𝐸𝑇𝑇(𝑙𝑙,𝑑𝑑)  =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑙𝑙 + 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑙𝑙 ∗ 𝑑𝑑2, (1) 

where d is the communication range. To receive a message, the energy consumed 
is 𝐸𝐸𝑅𝑅(𝑙𝑙,𝑑𝑑)  =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑙𝑙. As reference, the constant values are Eelec = 50 nJ/bit and 
Eamp = 100 pJ. 
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Lastly, a simple flooding algorithm was implemented as a routing protocol. When 
a node receives an event message from another node, it first checks whether it has 
already received a copy of that message. If it has, then it will drop the packet. If it 
has not, then it checks how many hops the message has gone through. If the 
message exceeds a certain number of hops, then the node drops it. Otherwise, the 
node will broadcast the message with an updated amount of hops. In these 
simulations, a message can have a maximum of four hops. 

4. Results 

4.1 Physical Prototype 

To prove that our project is viable, our group implemented a physical prototype to 
demonstrate its ability to classify whether an ally or adversary is crossing the field. 
Each node comprised an Arduino Uno or Raspberry Pi as the microprocessor, XBee 
Series 2 radio module, and a sensor. The network was implemented using seven 
sensors. For classification nodes, RFID, magnetometer, language, and camera 
sensors were used. As for detector nodes, PIR, ultrasound, and vibration sensors 
were used. Out of the seven nodes, the base station node was implemented with a 
Raspberry Pi equipped with a camera and sound sensor. This setup was chosen 
because the Raspberry Pi microprocessor had sufficient computational power to 
perform speech recognition and image convolution, as opposed to the weaker 
Arduino Uno. The rest of the sensors were then equipped with either a detector 
sensor or a classifier sensor. 

As for the results of this physical prototype network, we can conclude that our 
sensors are able to sense results and distribute them to the base station. Each of the 
detector nodes was able to sense an event occurring within a certain range that we 
expected, while the classifier nodes were able to give correct information on the 
event, such as if the target was equipped with a RFID card. Finally, our chosen 
clustering algorithm for our demo K-centroids demonstrated a high accuracy when 
attempting to cluster our sensor data. Through multiple combinations of sensor 
readings, K-centroids was able to reliably classify whether or not an ally or 
adversary traversed through the sensor field. 

4.2 Python Simulations 

4.2.1 GAF Results 

As shown in Fig. 11, the GAF simulation extends the network lifetime by finding 
nodes that are of the same type within the same group based on a virtual grid that 
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has a length of 𝑟𝑟 ≤ 𝑅𝑅/√5. For example, at the top-right corner, we can see that 
there are two detector nodes, node 42 and 50, in the same grid. Because they are 
both detector nodes, one of them is put to sleep while the other is kept awake. 

 

Fig. 11 Example of the GAF network. Type of node is shown by shape. Active nodes are 
green and sleeping nodes are blue. 

Because the algorithm keeps at least one node active within a grid, we can expect 
full connectivity while minimizing the energy consumption of the network. As 
shown in Fig. 12, we can see that many nodes start running out of power after 24 s. 
The steep drop in number of nodes participating is because many classifier nodes 
are not paired with the same types of nodes, which forces them to stay awake the 
entire time. Another reason why this could be possible is the algorithm does not 
consider whether another grid could assume the responsibilities of a grid with less 
overall energy. The very short lifetime is a result of the low initial energy value of 
0.05 J assigned to each simulated node, which was intentionally selected to limit 
the time required to execute the simulation. When testing with only active nodes, 
the lifetime of the network was about 10 s.   
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Fig. 12 Lifetime of the GAF network 

As opposed to the lifetime of the network, the number of events the network is able 
to capture averages to around 30%, as shown in Fig. 13. While this is a low number, 
this could be considered a good result for two reasons. One is that the network uses 
a simple flooding algorithm that only allows messages to hop four times. As a 
result, the event was sensed many times, but was a few hops away from making it 
to the base station. Another reason why this is a good result is due to the sensing 
range of some of the nodes. Some nodes have a sensing range of 1 m, which is very 
small. Thus, there are many cases where an event happens close to a node, but is 
not within range of it. For the capabilities of this network, 30% is an average result. 

 



 

Approved for public release; distribution is unlimited.  
22 

 

Fig. 13 Percentage of events detected in the GAF network over time 

4.2.2 CKN Results 

In this simulation, pictured in Fig. 14, we test the CKN algorithm with an input of 
k = 1. Thus, this should create at least a k-connected network. The reason it will 
create at least a k-connected is because the two conditions have a relatively low 
chance of being fulfilled. Thus, in some cases, many nodes may stay awake to 
ensure that connectivity of the network is high.    
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Fig. 14 Example of the CKN network. Green means active, blue means sleep, a purple ring 
means a node has sensed an event, and a purple circle means an event. 

As a result, because of how CKN works and more nodes staying awake, the lifetime 
of the network is less than GAF. Figure 15 shows the lifetime of the network in 
epochs, which in these simulations are 2 s long. Compared to GAF, which had about 
40% of the nodes alive at 40 s, the CKN network only had about 25% of the nodes 
alive. However, we can also see that the slope of CKN network lifetime is much 
less steep than GAF. In other words, it causes nodes to power off at a slower rate.  
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Fig. 15 Lifetime of the CKN network 

In addition, we can see in Fig. 16 that the overall percentage of events detected is 
much higher. About 50% of all events were detected by the base station, which is 
much higher than the GAF algorithm performance. However, because all of the 
nodes near the base station powered off at the seventh epoch or so, in reality after 
14 s the network fails to capture any events. One way to fix this is to implement a 
clustering algorithm, which may solve the issue of not having enough nodes go to 
sleep. 

 

Fig. 16 Percentage of events detected in the CKN network over time 



 

Approved for public release; distribution is unlimited.  
25 

4.2.3 EC-CKN Results 

Compared to using CKN, using EC-CKN does not seem to cause a significant 
difference in results. The network layout, lifetime, and percentage of events 
detected seem to generate similar results. The network layout is displayed in  
Fig. 17 and the lifetime of the EC-CKN network is shown in Fig. 18. Figure 19 
displays the percentage of events detected in the network. 

 

Fig. 17 Example of the EC-CKN network. Green means active, blue means sleep, a purple 
ring means the node has sensed an event, and a purple circle means an event. 
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Fig. 18 Lifetime of the EC-CKN network 

 

 

Fig. 19 Percentage of events detected in the EC-CKN network over time 

5. Conclusion 

Too many times we associate IoT with connecting a specific device, such as a 
refrigerator, to the Internet and receiving a Twitter feed, but that is just a primitive 
application of such an integrative technology. This concept of IoBT is still 
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relatively new and therefore this project is only scratching the surface of the many 
potential applications. Although the results were positive and the clustering 
algorithm was accurate enough to suggest an ally or adversary had crossed the 
plain, there are many more aspects to consider. Future work will include additional 
security and advancement in the clustering algorithm to classify more than just ally 
and adversary. From a security standpoint, DoS/DDoS protection is a start but 
ideally implementation of encryption and simplified intrusion detection methods, 
such as cyclic redundancy checks, would make these devices much more resilient 
in the field. Encryption would prevent adversaries from being able to sniff messages 
across the network and also protect against falsified messages that the adversaries 
would send to fool the clustering algorithm. Adding software or malware protection 
to these devices would be ideal, but due to limited storage it is difficult to install. 
This topic is discussed in more detail in the paper, “Lightweight Hardware 
Monitoring of IoT Devices”.10 Eventually, these sensors will be able to organize 
movement across the field into other categories like civilians, vehicles, or even 
indigenous animals. This is an open problem that will improve over time as we 
continue to develop better technology. Also, more sensors will be included in the 
network, giving us a better perspective of the field that they are in. 
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List of Symbols, Abbreviations, and Acronyms 

ARL US Army Research Laboratory 

CKN connected k-neighborhood 

CRC Cyclical Redundancy Check 

DoS denial of service 

DDoS distributed DoS 

EC-CKN energy consumed connected k-neighborhood 

GAF Geographic Adaptive Fidelity 

GPS global positioning system 

ID identification 

IFF identification friend or foe 

IR infrared 

IoT Internet of Things 

IoBT Internet of Battlefield Things 

PAN personal area network 

PIR passive IR 

RAM Random Access Memory 

RF radio frequency 

RFID RF identification 

USB universal serial bus 
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