

 ARL-TR-8584 ● NOV 2018

 US Army Research Laboratory

Demonstration System for Radio-Frequency
Microelectromechanical Systems Components

by Lee A Griffin, Robert R Benoit, and Ronald G Polcawich

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8584 ● NOV 2018

 US Army Research Laboratory

Demonstration System for Radio-Frequency
Microelectromechanical Systems Components

by Lee A Griffin
Georgia Institute of Technology, Atlanta, GA

Robert R Benoit and Ronald G Polcawich
Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

November 2018
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

1 June–31 August 2017
4. TITLE AND SUBTITLE

Demonstration System for Radio-Frequency Microelectromechanical Systems
Components

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Lee A Griffin, Robert R Benoit, and Ronald G Polcawich
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-SER-L
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8584

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The combination of piezoelectrics and microelectromechanical systems (MEMS) can result in devices with a wide range of
applications, including resonators, energy harvesters, and various sensors. Currently, improvement of MEMS devices
designed to operate in the radio-frequency (RF) regime has been of particular interest due to the devices’ use in both
commercial and military satellites and aerospace systems. The work presented characterizes and analyzes new designs for
various RF MEMS devices produced at the US Army Research Laboratory. Their integration to a proposed mobile RF
wireless communication system was investigated by developing a proof-of-concept demonstration of the proposed system.
The RF circuitry of the proposed system consists of various RF MEMS switches and filters. A customized smartphone
modification was used to demonstrate the functionality of the RF circuitry and directly compare the size/weight/performance
of the MEMS devices to commercial off-the-shelf components.

15. SUBJECT TERMS

radio-frequency microelectromechanical systems, RF MEMS, modular smartphone components, enhanced phone capabilities,
X-Microwave demonstration, customized Android app

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

34

19a. NAME OF RESPONSIBLE PERSON

Robert R Benoit
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

301-394-0607
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures v

List of Tables v

1. Introduction 1

1.1 Motorola Moto Z Smartphone 1

1.2 X-Microwave Demo 1

1.3 X-Microwave Hardware 2

2. XMD App Development 4

2.1 Brief Introduction to Android Development and Android Studio 4

2.2 Installing the Moto Mods Software Development Kit (SDK) 5

2.3 UI or XML Code 5

2.4 Back-end or Java Code 8

2.4.1 Interpreting Inputs 9

2.4.2 Reset Buttons 10

2.5 Communicating Information 11

3. Firmware 13

3.1 Setting up the Environment 13

3.2 Configuring the Project 14

3.2.1 Set “Build Target” 14

3.2.2 Configuring Desired Features 15

3.2.3 Editing the Makefile 16

3.2.4 Setting the Hardware Manifest 16

3.3 Writing the Driver 17

3.4 Note on the Vendor ID and Product ID 18

3.5 Building the Firmware 19

3.6 Flashing the Firmware 19

4. Moto Mod Circuits 19

Approved for public release; distribution is unlimited.
iv

4.1 Voltage Doubler 20

4.2 Comparators 20

5. Conclusion 21

6. References 22

Appendix. Additional Resources 23

List of Symbols, Abbreviations, and Acronyms 26

Distribution List 27

Approved for public release; distribution is unlimited.
v

List of Figures

Fig. 1 a) Back of the Moto Z smartphone and b) components of the MDK
(reprinted with permission from Motorola) .. 1

Fig. 2 Organization of the XMD and the PiHAT personality card (image on
left reprinted with permission from Motorola) 2

Fig. 3 X-Microwave prototype plate with RF circuitry 3

Fig. 4 X-Microwave jumpers, anchors, and probes (reprinted with permission
from X-Microwave) ... 4

Fig. 5 The UI of the app .. 6

Fig. 6 Activity_main.xml in design mode ... 6

Fig. 7 content_main.xml in design mode .. 7

Fig. 8 card_mod_controller_sp4t.xml in design mode 8

Fig. 9 Implementation of the onClick function ... 11

Fig. 10 Listener and callback function for the SPDT radio group 12

Fig. 11 Menuconfig UI .. 15

Fig. 12 Code defining GPIO pins added to mods.h .. 17

Fig. 13 Circuit for one control line; in practice, one voltage doubler’s output is
fed to six comparator circuits, one for each control line..................... 20

List of Tables

Table 1 Description of each bit in REF_MOD_MESSAGE = [00000000,
00000000] ... 11

Table 2 Additions to the manifest .. 17

Approved for public release; distribution is unlimited.
1

1. Introduction

1.1 Motorola Moto Z Smartphone

The Motorola Moto Z is an Android-based smartphone that is uniquely modular.
Various devices, called Moto Mods, can be attached to the back of the Moto Z with
the imbedded magnets and expand the Moto Z’s functionality. The devices include
camera attachments and additional batteries and communicate to the phone through
metal contacts placed on the back of the phone (Fig. 1a). One of these devices, the
Moto Mods Development Kit (MDK)1 is a programmable microprocessor
embedded into a plastic case that attaches to and communicates with the phone2
(Fig 1b).

© 2017 Motorola

Fig. 1 a) Back of the Moto Z smartphone and b) components of the MDK (reprinted with
permission from Motorola1)

The MDK consists of the Reference Moto Mod, which contains the microprocessor
and all of the computing power, an interchangeable personality card, and a plastic
rear-housing piece. The MDK allows for the development of devices that expand
the functionality of the Moto Z in unique ways. A proposed system would use RF
microelectromechanical systems (MEMS) to create a mobile RF communication
system. Such a system could theoretically be implemented and controlled by an
MDK device, allowing the system to be fully integrated into the Moto Z by simply
attaching the MDK device onto the Moto Z.

1.2 X-Microwave Demo

The X-Microwave Demo (XMD) app serves as a proof of concept of such a device.
The XMD consists of an Android application, firmware for the microprocessor in
the MDK, and a control circuit (Fig. 2). The demo allows the control of US Army
Research Laboratory (ARL) RF MEMS switches and, for comparison,

Approved for public release; distribution is unlimited.
2

commercially available RF switches. The switches are controlled through the
Android application portion of the XMD app while the firmware and the circuit
handle the necessary complexities needed to translate user input into various switch
logic. Furthermore, in lieu of the standard personality card (pictured in Fig. 1b) the
XMD uses a PiHAT personality card.

Fig. 2 Organization of the XMD and the PiHAT personality card (image on left reprinted
with permission from Motorola1)

PiHATs are commonly used with Raspberry Pi devices. Somewhat comparable to
Moto Mods, PiHATs attach to the top of Pi devices via the general-purpose
input/output (GPIO) pins and expand the functionality. However, the Raspberry Pi
community is much larger than the Moto Mods community. As such, the resources
available and scope of functionality developed for PiHATs and Pi devices are vast,
especially compared with that of the somewhat-lacking Moto Mods. However, Pi
devices lack the portability, familiarity, and existing touch screen that is inherent
to a smartphone-based device such as a Moto Mod. While the personality card
included with the MDK is simply a perforated board that can be used to integrate
circuitry, the PiHAT card (Fig. 2) models the structure and layout of these PiHAT
devices. Using the PiHAT personality card instead of the standard perforated board
allows for access to the superior PiHAT community while only sacrificing some
protoboard space.

1.3 X-Microwave Hardware

The RF hardware’s demonstration platform is built off an X-Microwave
prototyping kit with X-Microwave Blocks (Fig. 3).3 The blocks are bolted to the
prototyping plate but designed to be modular and can quickly be added and
removed from for rapid testing of RF–millimeter-wave circuits up through 67 GHz.
Blocks are specialized coplanar waveguide (CPW) boards containing individual

Approved for public release; distribution is unlimited.
3

hardware components. They are connected together by jumpers that are held down
with anchors (Fig. 4). Signals are coupled to the blocks through probes.
X-Microwave has a standard library of commercial off-the-shelf (COTS)
components, can add COTS components to the library on request, and can make
customized blocks to mount specialized components such as ARL’s packaged RF
MEMS devices. If desired, blocks can be fitted with SubMiniature version A (better
known as “SMA”) connectors so if a component is accepted after testing, it can be
integrated into an existing RF chain.

Fig. 3 X-Microwave prototype plate with RF circuitry

The demonstration platform uses an ADF4355 voltage-controlled oscillator (VCO)
that can generate RF signals up to 4.4 GHz. The VCO is referenced by a SM77D
80-MHz oscillator (PLE Electronics) and operated using a RaspberryPi 3 controller
outfitted by X-Microwave. The VCO is set to output a 70-MHz tone (meant to
simulate an intermediate-frequency signal) and also generates a second harmonic
at 140 MHz. The two tones are then passed to a –3-dB splitter so the signals can be

DC Bias/Control
lines

Raspberry Pi
Interface

Approved for public release; distribution is unlimited.
4

passed to ARL’s piezoelectric RF–MEMS–single-pole-double-throw (SPDT)
switch and a PE42521 SPDT. The switches can then select between a signal path
to either a 70-MHz surface-acoustic-wave (SAW) or 140-MHz SAW filter (both
manufactured by Sawtek) so that one tone or the other can be filtered from the
signal. A CMD203 SP4T (by Custom MMIC) switch can then be used to select the
desired output signal to be viewed on a spectrum analyzer to compare the
performance of the ARL switch versus the COTS part. The ability to easily swap
out components makes this an ideal platform for comparing the performance of
ARL’s technology to what is commercially available.

Fig. 4 X-Microwave jumpers, anchors, and probes (reprinted with permission from
X-Microwave4)

Future upgrades to this hardware demonstration could include replacing the COTS
filters with ARL’s piezoelectric filters or the CMD203 with a piezoelectric SP4T
switch, both of which were unavailable in package form at the time of this writing.
Further, as more advanced COTS components are released to the market, they can
also be swapped in place of the existing COTS parts so that ARL’s MEMS
components are always showcased against state-of-the-art components.

2. XMD App Development

2.1 Brief Introduction to Android Development and Android
Studio

The application or app is the portion of the software that is loaded onto the phone
itself. The app is a traditional smartphone app and was developed in Android
Studio, although it is not necessary to develop the app in Android Studio. The app
has two primary goals: 1) act as the user interface (UI) receiving inputs from the
user and 2) communicate the user’s input to the reference Moto Mod. As one would
expect from a Google product, there is a large and active community surrounding
both Android software and Android Studio—meaning, most problems encountered
when working with the app have already been solved and posted, in detail, online.

© 2018 X-Microwave

Approved for public release; distribution is unlimited.
5

The app for the XMD was adapted from the open-source MDK Utility app provided
by Motorola. (The MDK Utility app can be downloaded for free from the Google
Play store and the source code can be accessed online.1) Android development can
roughly be divided into two categories: front end and back end (i.e., the portion the
user sees and the behind-the-scenes functionality). Although not a rule, for the most
part the UI is developed in Extensible Markup Language (XML) and the actual
functionality is implemented with Java. The XML code can be found in the folder
“res\layout” and, as stated, contains the code implementing the UI. The Java back-
end or functionality code can be found in the Java folder. While it is useful to know
XML, it is not entirely necessary when using an integrated development
environment (IDE) such as Android Studio. However, some familiarity with Java
is essential. There are numerous excellent resources online for learning Android,
Android Studio, Java, and XML, so the rest of this document focuses on the
specifics of this app.

2.2 Installing the Moto Mods Software Development Kit (SDK)

The app uses functions that are provided online by Motorola in the Moto Mods
SDK library.2

If the SDK is not properly installed the app will not build. To install the app, simply
copy the downloaded .jar file to /app/libs and the .xml file to the
/app/src/main/res/values folders in the Android Studio project folder.

2.3 UI or XML Code

The XML code describe the visual aesthetics of the UI (Fig. 5). It determines which
components appear and how they are laid out. As stated, this code is found in the
“res\layout” folder and should contain the following:

• activity_main.xml

• card_general_info.xml

• card_mod_controller_spdt.xml

• card_mod_controller_com.xml

• card_mod_controller_sp4t.xml

• content_main.xml

Approved for public release; distribution is unlimited.
6

Fig. 5 The UI of the app

As with all Android Studio projects, activity_main.xml will be the where the code
“begins”. When opening the XML in Android Studio, you can select the Text or
Design view in the bottom left of the window. The autogenerated XML created by
Android Studio can easily be trusted for something as simple as this. So, when
making changes in Android Studio it is recommend that the Design tab is used
instead of the Text tab.

Figure 6 shows there is only the toolbar and an <include> in activity_main (in the
“Component Tree”, lower left). Naturally, if changes need to be made to the toolbar,
make them here; otherwise, move on to the included file content_main.xml.

Fig. 6 Activity_main.xml in design mode

In Fig. 7, the content_main consists of (lower left of screenshot) four <include>
laid out vertically and inside a scroll view. Having the four <include> underneath

Approved for public release; distribution is unlimited.
7

the ScrollView component ensures the four can be “scrolled down”. These four
<include> represent the four individual cards that are seen in the app: one card
represents the SPDT controls, one represents the single pole four throw (SP4T)
controls, one represents the commercial-device controls, and the last card
communicates the state of the binary messages sent from the phone to the reference
mod. Here one can change the cards’ order by adjusting the four <include> in the
component tree. For example, if one wants the general-information card at the top,
simply move the <include> - @Layout/card_general_info to the top in the
component tree and the general-information card will appear at the top.

Fig. 7 content_main.xml in design mode

In Fig. 8, the card_mod_controller_sp4t file is shown. The “card_...” files contain
all of the important functional components (i.e., the switches and the buttons).
Radio buttons are used to represent the various channels of the switches (i.e., the
SPDT has two radio buttons dedicated to it labeled Channel 1 and Channel 2). Each
switch’s radio buttons are grouped with the radio-group component. Grouping the
radio buttons in this way automatically forces the condition that only one button
can be on at a time and allows the radio buttons to be referenced together as a radio
group. The SPDT and SP4T have button components that reset the state of the
switches. Finally, the general-information card has a button that resets all of the
switches and also displays the current state of all the switches in binary form.

Approved for public release; distribution is unlimited.
8

Fig. 8 card_mod_controller_sp4t.xml in design mode

The individual layouts for each card can be adjusted as needed and should not affect
functionality as long as the individual component IDs (in the Properties tab) are not
changed. If additional buttons, switches, or other components need to be added the
new components must have unique IDs so that they can be referenced by the back-
end Java code. The other properties for the components and new components could
provide some useful functionality, such as automatically enabling/disabling
components or implementing a timer that automatically shuts off the voltages after
some time.

Finally, in the file “res/values/strings.xml” there is a list of strings that the XML
code references. Essentially, this file contains all of the text that is displayed in the
app and the XML code refers to this file when determine what text to display. There
is no need to collect all of the strings into this one file and the various text can
simply be edited at each individual component. However, with all of the
components referencing this file, all of the text in the app can be conveniently edited
with this single file.

2.4 Back-end or Java Code

The Java code is in the \Java folder. The function of the app is to take the user’s
input and communicate it to the reference mod. The XML implemented the
aesthetics and format of the UI; the Java code implements the functionality. The
Java code must be able to recognize the user’s intent and communicate this intent
to the reference mod.

Approved for public release; distribution is unlimited.
9

2.4.1 Interpreting Inputs

In the case of this app, the user communicates their intent by clicking the radio
buttons. As discussed, each switch (SPDT, SP4T, and commercial) has its own
radio group. Each radio group contains a radio button to represent each channel of
the switch. Furthermore, a number of buttons exist that should reset the switches.
First, the Java code must be able to recognize what buttons are pressed when. This
is achieved with callback functions and listeners.

Much of UI development relies on these types of functions. Essentially all of the
components displayed in the UI are treated as an objects in Java. These objects
come with functions that get run when various events happen, called “callback
functions”, or listen for events, called “listeners”. For example, a button object has
a callback function called onClick, which would be executed when a button is
clicked. The function onCheckedChangeListener, which listens for any type of
change to the radio button, is an example of a listener. However, these functions
must first be initialized.

In MainActivity, there is a function called onCreate. Here components needing
initialization are initialized, including callbacks and listeners. The radio group
listeners are initialized as follows:

RadioGroup name = (RadioGroup) findViewById(R.id.XML_ID)

Name.setOnCheckedChangeListener(listenerName)

The first line identifies which radio group you are referring to and requires the ID
set for the radio group in the XML. The next line initializes the On Checked Change
Listener. The two lines above effectively state that when the radio group identified
by XML_ID is changed, call the function listenerName. The function listenerName
must be implemented later, outside the onCreate function. The initialization of the
Button objects is similar:

Button name = (Button) findViewById(R.id.XML_ID)

Name.setOnClickListener(this)

The primary difference being the second line. While the radio group initialization
specified listenerName as the function to be executed, the button initialization does
not specify a particular function. Instead, when the button identified by XML_ID
is clicked the default callback function onClick will be executed. The result is that
each radio group has its own unique listener that is called when the radio group is
changed and each button calls the same function when clicked.

Approved for public release; distribution is unlimited.
10

The listeners are implemented just outside the onCreate function. They look as
such:

private RadioGroup.OnCheckedChangeListener listenerName = new
RadioGroup.OnCheckedChangeListener () {

public void onCheckedChanged(RadioGroup group, int checkedId) {
 …
 int port1 = R.id.XML_ID_1;
 int port2 = R.id.XML_ID_2;

 if (checkedId == port1)
 {…}
 else if (checkedIf == port2)
 {..}
 …

This states that when the listener “listenerName” detects a change it runs the
onCheckedChanged callback defined inside it. Note that the callback function has
an input that defines the radio group (RadioGroup group) and an input that defines
which radio button in the group is checked (int checkedId). Thus, inside the
callback the IDs for the radio buttons can be compared to the ID of the currently
checkedId to determine which button was selected, seen above in the if-else
statement. Recall that the radio groups represent each of the switches. The end
effect is that when the user checks a radio button, say Channel 1 of the SPDT, the
listener for the SPDT group runs its respective onCheckedChanged callback. Then
the callback compares the IDs of the Channel 1 and Channel 2 radio buttons to the
checkedId variable to determine that Channel 1 was checked.

2.4.2 Reset Buttons

The reset buttons behave slightly differently. As discussed, the buttons forgo the
individual listeners and simply use the default listener, which calls the callback
function onClick. The implementation of this function is shown in Fig. 9. The
onClick functions has the input of View v. The ID of the button that was clicked
can then be found with v.getId(). Then, the ID can be compared to the IDs for each
of the buttons to determine which button was clicked. Now that the app can identify
what the user did, it can react accordingly.

Approved for public release; distribution is unlimited.
11

Fig. 9 Implementation of the onClick function

2.5 Communicating Information

For ease of implementation, a single global variable is maintained and edited as
necessary, then sent to the reference mod. In the file Constants.java, there is a public
array of two 8-bit binary strings called REF_MOD_MESSAGE. This is what is sent
to the reference mod. The layout of REF_MOD_MESSAGE is shown in Table 1.
This approach is used so that when the user communicates a change, the back-end
code only has to update REF_MOD_MESSAGE as necessary and then tell the
service manager to send out the message.

Table 1 Description of each bit in REF_MOD_MESSAGE = [00000000, 00000000]

Byte 8 (MSBa) 7 6 5 4 3 2 1 (LSBb)

 Group Reserved Comm.
SPDT

ARL
SP4T

ARL
SPDT

Byte 0 Bit NA CTRL 1c Ch. 4 Ch. 3 Ch. 2 Ch. 1 Ch. 2 Ch. 1

 Group Unused Comm.
SP4T

Byte 1 Bit … … … … … … CTRL 2 CTRL 1
a MSB: most significant bit
b LSB: least significant bit
c CTRL: control

Approved for public release; distribution is unlimited.
12

Table 1 describes what each bit controls. In the first byte, Byte 0, the ARL switch
controls and some of the controls for the commercial SPDT and SP4T are stored
and sent. For the ARL switches, each channel has a dedicated bit with 1
representing closed and 0 representing open. However, the commercial switches
contain built-in control schemes. For the commercial SPDT, a single bit is used
because 0 represents Channel 1 being closed and Channel 2 being open while 1
represents the reverse. Similarly, the commercial SP4T is controlled with two bits.
Note that the only information stored and transmitted in Byte 1 is the second control
bit for the commercial SP4T. RAW_MOD_MESSAGE is edited and sent to the
reference mod by the callback functions. Note that the MSB cannot be changed.

Figure 10 shows the listener and callback function for the SPDT radio group. The
first line (246) in the callback function initializes a new service intent based off the
RawPersonalityService class. The RawPersonalityService class is a class
developed by Motorola designed to handle the communication to the reference
mod. The next two lines get the IDs for the two SPDT radio buttons and the if-else
statement determines which radio button was checked, as previously discussed.
Next, the bits representing the SPDT are reset to zero by edited
REF_MOD_MESSAGE Byte 0 with a mask. Inside of the if-else, the
REF_MOD_MESSAGE is edited depending on which button was checked.

Fig. 10 Listener and callback function for the SPDT radio group

Approved for public release; distribution is unlimited.
13

For example, say the user checks the Channel 1 radio button for the SPDT. The
callback function in Fig. 10 will be run and will identify that the Channel 1 radio
button was checked. Recall that first the two SPDT bits are reset to zero. Then the
code for Channel 1 will be run (if (checkedId == port1) and the hex value 0x01 will
be added to RAW_MOD_MESSAGE. The result of 0bXXXXXX00 + 0b00000001
is 0bXXXXXX01. As seen in Table 1, if Channel 1 in the SPDT group is checked
the message should include a 1 in the LSB in Byte 0 and a 0 in the second bit and
the other bits should be unaffected. Thus, the user’s input is successfully translated
into the RAW_MOD_MESSAGE variable. The remaining code in the function
simply updates the values being displayed in the general info card and the last three
lines send the message to the reference mod.

The onClick function (Fig. 9) for the buttons is much simpler because it leverages
the individual radio-button listeners. As seen, the identity of the button pressed is
found with a switch statement. Then, the built-in clearCheck function is called for
the desired radio group, which clears all checks for the radio group; that is, if the
user clicks the SPDT reset button, the switch statement will run the SPDT code and
call clearCheck on the SPDT radio group, clearing any checked radio button. Since
listeners listen for any changes to their respective object, the listener and then the
callback (Fig. 8) for the respective radio group will then be called. Then, as
designed, the radio-group callback will clear the bits for the radio group. However,
since no radio buttons will be checked, the if-else will be skipped and nothing will
be added to RAW_MOD_MESSAGE. The result is the message is cleared and sent
to the reference mod.

3. Firmware

3.1 Setting up the Environment

The XMD firmware is loaded onto the reference mod. The purpose of the firmware
in this application is to read the information sent to the reference mod by the
Android app and turn on/off the correct GPIO pins. The XMD firmware is based
off the firmware provided by Motorola located on its github.5 Specifically, the
XMD firmware is based off the firmware developed by Motorola for the “Hello
World!” or “blinky” mod.6 The current code for the firmware, drivers, and includes
can be found in the following:

~/Documents/MotoMods/XCOMdemoFirmware

BUILD_TOP/nuttx/nuttx/configs/hdk/muc/src

BUILD_TOP/nuttx/nuttx/configs/hdk/muc/include

Approved for public release; distribution is unlimited.
14

Motorola’s guide for setting up the environment7 walks through the setup of the
Android environment and the firmware-development environment. Not all of the
tools are required but they are useful. For example, OpenOCD allows for flashing
the firmware to the reference mod and GNU Debugger (commonly, “GDB”) allows
for debugging. (A Linux environment is necessary for firmware development.)
After the tools are installed, follow this guide to download the necessary code from
github, install the configuration editor, and compile the firmware.8 If the nuttx does
not compile and mentions an error regarding “chmod 755 .version”, then it is
missing the .version file. (At the time this report was being written, there was no
mention of that file on Motorola’s website; however, after some research the
specifics of the file were discovered.) To resolve this error, create a file in the
BUILD_TOP/nuttx/nuttx directory called .version; then edit the text to match the
text in Section 2 of the Appendix. Once one has verified that the boot loader and
the nuttx firmware compile, the environment is ready to go.

3.2 Configuring the Project

A significant portion of developing the firmware relies on configuring the project
appropriately. This includes setting the build target, enabling and disabling desired
features, adding new files to the makefile, and setting the hardware manifest.

3.2.1 Set “Build Target”

Configuring desired features can be time consuming. So, to speed the process
various configurations are stored in BUILD_TOP/nuttx/nuttx/configs/hdk/muc.
Using the script configure.sh allows for quick switching between these
configurations or build targets. For example, to switch to the build target defined
in the folder BUILD_TOP/nuttx/nuttx/configs/hdk/muc/example/, simply execute
the following command in the BUILD_TOP/nuttx/nuttx/tools folder:

./configure.sh hdk/muc/example

This command copies the configuration definitions (defconfig), makefile
definitions (Make.defs), and a build script (setenv.sh) in the folder
BUILD_TOP/nuttx/nuttx/configs/hdk/muc/example/ up to the BUILD_TOP/nuttx
/nuttx/folder.

Naturally, if the project does not have a build-target folder, one needs to make one.
Motorola has provided two base build targets: base_unpowered and base_powered.
Simply copy one of those folders and rename to the desired project name. The XMD
build target was based off the blinky target, which is based off the powered base.

Approved for public release; distribution is unlimited.
15

3.2.2 Configuring Desired Features

After setting the build target with configure.sh, one can edit the configuration files
as necessary. Executing

make menuconfig

in the BUILD_TOP/nuttx/nuttx folder opens a UI (Fig. 11) that allows control of
which features and functionality are enabled and disabled. After making changes
with menuconfig, the UI will prompt to save the configuration as defconfig. This
will obviously overwrite the current defconfig, specifically the version in
BUILD_TOP/nuttx/nuttx/. If one makes changes to the configuration one wants to
save, be sure to copy the file from BUILD_TOP/nuttx/nuttx/ back to the folder it
came from.

Fig. 11 Menuconfig UI

Any features enabled in the base build target should be left enabled. For the XMD
firmware, Greybus RAW protocol must be enabled. This is found in “Device
Drivers -> Greybus Support -> Vendor Raw Support”. If further functionality is
desired, be sure that the functionality is enabled here.

The menuconfig can be expanded to include custom options. This can be done by
editing the file Kconfig, which is found in BUILD_TOP/nuttx/nuttx/configs/hdk
/muc/Kconfig. The XMD firmware adds the following to the Kconfig file:

Approved for public release; distribution is unlimited.
16

config MODS_RAW_BLINKY
bool "Blinky LED Mods Raw support"
default n
depends on GREYBUS_RAW
select DEVICE_CORE
select STM32_TIM6
---help---

 Enable Blinky LED Raw support

Including this in the Kconfig file specifies dependencies and other functionality
that should be enabled and includes “Blinky LED Mods Raw support” as a
configurable option in menuconfig under “Board Selection”. For the XMD, the
“Blinky LED Mods Raw support” must be enabled. Lastly, the user can directly
edit the defconfig file instead of using the menuconfig.

3.2.3 Editing the Makefile

Makefiles execute the various compile and link commands; the firmware for the
XMD project has a number of makefiles. In particular, the makefile in
BUILD_TOP/nuttx/nuttx/configs/hdk/muc/src must be edited to ensure any new
driver files are properly built. Adding

ifeq ($(CONFIG_MODS_RAW_BLINKY),y)
CSRCS += stm32_modsraw_blinky.c
 endif

ensures the new XMD file stm32_modsraw_blinky.c gets compiled and linked. The
“if” statement informs the makefile that this file only needs to be configured if
MODS_RAW_BLINKY, defined previously in Kconfig (Section 3.2.2), is
configured. The “if” statement is not necessary but is recommended.

3.2.4 Setting the Hardware Manifest

Finally, a hardware manifest for the project is necessary. As with the build target
files, there are base versions provided in BUILD_TOP/nuttx/apps/greybus-
utils/manifests, hdk.mnfs and hdk-powered.mnfs. For the XMD, the powered base
is used and is renamed hdf-blinky.mnfs. Code must be added to the manifest. First,
String-descriptor 1 is changed; this is simply a title and has no effect on
functionality. Then the new raw interface and bundle must be set up, as shown in
Table 2.

Approved for public release; distribution is unlimited.
17

Table 2 Additions to the manifest

String-descriptor 1 Bundle and raw support
; Interface vendor string (id can’t be 0)
[string-descriptor 1]
string = Motorola Mobility, LLC

; Battery related Bundle 2
[bundle-descriptor 2]
Class = 0 × 08

; RAW interface on CPort 4
[cport-descriptor 4]
bundle = 3

class = 0xfe

; RAW Bundle 3
[bundle-descriptor 3]
class = 0xfe

Now this manifest must be set as the active manifest. Once again this can be done
in the menuconfig UI. In particular, this setting is found at Application
Configuration -> Greybus Utility. Here a manifest name can be specified and then
selected; a predefined manifest must be set to: Custom Manifest.

3.3 Writing the Driver

Now that the necessary features are enabled and the makefile includes the new file,
the code implementing the desired functionality, stm32_modsraw_blinky.c, must
be written. However, first add a few useful definitions.

In BUILD_TOP/nuttx/nuttx/configs/hdk/muc/include a few header files are stored.
As shown in Fig. 12, the GPIO pins used in the XMD are defined for future use.
Pins on the reference mod are specified with a letter and a number, such as Pin
PG10 or Pin G 10. How the reference mod pins tie to the PiHAT pins are detailed
in a description of the PiHAT Adapter Board from Motorola.9 Nine control lines in
total are needed to operate the switches on the XMD prototype plate. Figure 12
shows that Pins C3, A1, H0, G12, G10, G9, A15, A4, and A5 are used as the
controls. These correspond to PiHAT Pins 38, 35, 34, 31, 32, 30, 25, 23, and 24,
respectively, and are given labels GPIO_XCOM_DEMO_1 to
GPIO_XCOM_DEMO_9 for use in the firmware code. If the new pins need to be
added or the current pins need to be adjusted, make those changes here.

Fig. 12 Code defining GPIO pins added to mods.h

Approved for public release; distribution is unlimited.
18

The file stm32_modsraw_blinky.c acts as the driver for the GPIO pins and
implements the bulk of the functionality, although functionality begins in the
header file device_raw.h, which is found in BUILD_TOP/nuttx/nuttx
/include/nuttx. An exhaustive description of this code is not necessary as editing it
is ill advised. Suffice it to say the code allows for the user to define their own
raw message-receive function, such that the defined function will be called when a
raw message is received and will be passed the message in question.

In stm32_modsraw_blinky.c, the bottom few lines of code, Lines 127 and on,
implement a few structs. These structs are of type defined in the header files
device_raw.h and device.h. The purpose of these structs is to define the receive,
callback, and so on functions as such. For example, in the device_raw_type_os
struct the .register_callback is defined to be blinky_register_callback. In effect, this
states that the function blinky_register_callback will function as the callback to the
event of the reference mod registering with the phone and as such will be called
when this event occurs. Note that to define the function as such the function must
take the same inputs and return the same type as defined in the various header files.
The most important line here is .recv = blinky_recv, which defines the function
blinky_recv as the raw message-receive function (i.e., blinky_recv will be called
when the reference mod receives a raw message and will be passed the message).

The definition of blinky_recv is at the top of the file. Notice that the output type
and inputs are exactly as device_raw.h defines they should be for a receive function.
The inputs are the device identifier, the length of the message, and the data of the
message. The function first checks that the data actually have some length and were
not received in error. Then if-else statements and bit masks are used to check the
state of each individual bit. Naturally, if a bit is set to 0 the code turns off the
corresponding GPIO pin, and if it is set to 1 the GPIO pin is turned on.

3.4 Note on the Vendor ID and Product ID

The Vendor ID (VID) and Product ID (PID) are, as the names suggest, hex values
identifying the firmware (PID) and the creator (VID). They can be configured in
the menuconfig UI under System Type. It should be noted the Android app is set
up so that it may not function unless the correct VID and PID are set, namely,

VID = 0x00000042
PID = 0x00000001

In the app, these values are set in the file Constants.java. The same file that contains
the REF_MOD_MESSAGE variable.

Approved for public release; distribution is unlimited.
19

3.5 Building the Firmware

The firmware can be easily built by following the previous guide:
https://developer.motorola.com/build/tools/build-from-source.8

Care should be taken to ensure the proper build target is set via the configure.sh
script. (At the time of this writing, the proper build target should be the blinky
folder.) Also, the “make distclean” command will remove the discussed .version
file from the BUILD_TOP/nuttx/nuttx folder and the file will need to be re-added.
No changes should have been made to the bootloader, however, and building it
should have no adverse effects.

3.6 Flashing the Firmware

The firmware can be loaded onto the reference mod, or flashed, by using the
OpenOCD tool previously downloaded. A guide for it can be found at the bottom
of the page at https://developer.motorola.com/build/tools/flashing-firmware.

The process is straightforward. First, be sure that the USB Type C is plugged into
the USB port on the reference mod, not the port on the phone. Then, if using a
Virtual Box for the Linux system, be sure the port is forwarded to the Virtual Box.
In the Virtual Box window on the bottom right, there is a symbol of a USB plug;
clicking this allows one to forward various devices to the Virtual Box operating
system. The reference mod should appear as FTDI Quad RS232-HS. To load the
firmware and bootloader, simply execute the commands as shown:

From the muc-loader directory:

openocd -f board/moto_mdk_muc_reset.cfg -c "program
./out/boot_<target_name>.bin 0x08000000 reset exit"

From the nuttx/nuttx directory:

openocd -f board/moto_mdk_muc_reset.cfg -c "program nuttx.tftf
0x08008000 reset exit"

4. Moto Mod Circuits

The Moto Mod circuit (Fig. 13) is necessary because the reference mod can only
output up to 3.3 V on the controllable GPIO pins and the ARL switches require
approximately 10 V. The circuit has two goals: 1) generate 10 V from the available
voltages and 2) use the logic generated by the reference mod to switch the 10 V for
each ARL switch’s control line. The net effect of the circuit is to convert
0- to 3.3-V logic to 0- to 10-V logic.

https://developer.motorola.com/build/tools/build-from-source
https://developer.motorola.com/build/tools/flashing-firmware

Approved for public release; distribution is unlimited.
20

Fig. 13 Circuit for one control line; in practice, one voltage doubler’s output is fed to six
comparator circuits, one for each control line

4.1 Voltage Doubler

Unsurprisingly, this circuit roughly doubles the input voltage. The circuit uses the
ICL 7662 complementary metal–oxide–semiconductor voltage converter. (The
circuit is described in the documentation for the ICL 7662.) Fortunately, the
reference mod has a couple 5-V supply pins, theoretically allowing the circuit to
generate 10 V. However, the two diodes in the circuit each have a 0.7-V operating
voltage. Thus, at most the circuit can produce 8.6 V with actual measurements
ranging from 8.2 to 8.5 V, which is not ideal but sufficient. Future work could look
at using lower voltage diodes.

4.2 Comparators

In Fig. 13 only one comparator is shown, but in application a comparator is
necessary for each 0- to 10-V control line. The comparator compares the positive
input to the negative input. When the positive input is greater than the negative
input, the comparator outputs the positive supply voltage; when the reverse is true,
it outputs the negative supply voltage. Thus, if one compares the reference mod
logic (0–3.3 V) to a constant, say 1.6 V, then the comparator will output V+ when
the control line is high and V– when the control line is low. The 1.6 V can easily
be provided with a voltage divider. The desired behavior is then easily achieved by
setting V– to 0 V and V+ to 10 V, or 8.5 V as in this case. The capacitor, C1, simply
stabilizes the DC supply and the resistor R3 acts as a pull-up resistor.

Approved for public release; distribution is unlimited.
21

5. Conclusion

The development of a demonstration system for RF MEMS switches and filters has
been presented. A customized smartphone modification was used to demonstrate
the functionality of the RF circuitry and directly compare the size, weight, and
performance of the MEMS devices to COTS components. The components are
mounted on an X-Microwave prototype kit and controlled by a Motorola Moto Z
smartphone through use of a Moto Mod. The user interface, hardware circuitry, and
control software have all been described. (The Appendix lists several resource
websites.) Future work could be done to integrate the RF circuits from the prototype
kit into the Moto Mod along with antennas to transmit the signal of interest to a
network analyzer for a truly handheld platform.

Approved for public release; distribution is unlimited.
22

6. References

1. MotoMods. Libertyville (IL): Motorola Mobility LLC; c2017 [accessed 2017
Aug 10]. https://developer.motorola.com/.

2. Moto Z. Libertyville (IL): Motorola Mobility LLC; c2018 [accessed 2017 Aug
10]. https://www.motorola.com/we/products/moto-z.

3. Company Overview. Austin (TX): X-Microwave; c2018 [accessed 2017 Aug
10]. https://www.xmicrowave.com/about/company-overview/.

4. Products: X-cessories. Austin (TX): X-Microwave; c2018 [accessed 2017 Aug
10]. https://www.xmicrowave.com/products/x-cessories/.

5. Motorola Mobility. San Francisco (CA): GitHub, Inc.; c2018 [accessed 2017
Aug 10]. https://github.com/MotorolaMobilityLLC/.

6. Hello World! Libertyville (IL): Motorola Mobility LLC; c2017 [accessed 2017
Aug 10]. https://developer.motorola.com/build/examples/hello-world.

7. Setup Environment. Libertyville (IL): Motorola Mobility LLC; c2017
[accessed 2017 Aug 10]. https://developer.motorola.com/build/tools/setup-
environment.

8. Build from Source. Libertyville (IL): Motorola Mobility LLC; c2017
[accessed 2017 Aug 10]. https://developer.motorola.com/build/tools/build-
from-source.

9. HAT Adapter Board. Libertyville (IL): Motorola Mobility LLC; c2017
[accessed 2017 Aug 10]. https://developer.motorola.com/build/mdk-user-
guide/hat-adapter-board.

Approved for public release; distribution is unlimited.
23

Appendix. Additional Resources

This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.
24

1) Firmware Resources:

Main Page:

https://developer.motorola.com/

General Guides (Setup, Building, Flashing):

https://developer.motorola.com/build/tools

Example code is based on:

https://developer.motorola.com/build/examples/hello-world

Expanded Example:

https://www.element14.com/community/groups/moto-
mods/blog/2017/04/22/moto-mods-developer-part-1-getting-started-virtual-
machine-setup-and-linux-install

PiHAT Guide:

https://developer.motorola.com/build/mdk-user-guide/hat-adapter-board

Forum:

https://www.element14.com/community/groups/moto-mods

2) Necessary and missing .version file:

#!/bin/bash

CONFIG_VERSION_STRING=”7.10”
CONFIG_VERSION_MAJOR=7
CONFIG_VERSION_MINOR=10
CONFIG_VERSION_BUILD=”85981b37acc215ab795ef4ea4045f3e85a49a7af”

3) App Resources:

Good Intro:

https://developer.android.com/training/basics/firstapp/index.html

Android:

https://developer.android.com/guide/

Android Studio:

https://developer.android.com/studio/intro/

https://www.raywenderlich.com/154676/android-studio-tutorial-introduction

https://developer.motorola.com/
https://developer.motorola.com/build/tools
https://developer.motorola.com/build/examples/hello-world
https://www.element14.com/community/groups/moto-mods/blog/2017/04/22/moto-mods-developer-part-1-getting-started-virtual-machine-setup-and-linux-install
https://www.element14.com/community/groups/moto-mods/blog/2017/04/22/moto-mods-developer-part-1-getting-started-virtual-machine-setup-and-linux-install
https://www.element14.com/community/groups/moto-mods/blog/2017/04/22/moto-mods-developer-part-1-getting-started-virtual-machine-setup-and-linux-install
https://developer.motorola.com/build/mdk-user-guide/hat-adapter-board
https://www.element14.com/community/groups/moto-mods
https://developer.android.com/training/basics/firstapp/index.html
https://developer.android.com/guide/
https://developer.android.com/studio/intro/
https://www.raywenderlich.com/154676/android-studio-tutorial-introduction

Approved for public release; distribution is unlimited.
25

XML and Java:

https://www.w3schools.com/xml/xml_whatis.asp

https://www.ibm.com/developerworks/learn/java/intro-to-java-course/index.html

General/Debugging:

https://stackoverflow.com/ - Stack Overflow is excellent.

https://www.w3schools.com/xml/xml_whatis.asp
https://www.ibm.com/developerworks/learn/java/intro-to-java-course/index.html
https://stackoverflow.com/

Approved for public release; distribution is unlimited.
26

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

COTS commercial off-the-shelf

CPW coplanar waveguide

CTRL control

DC direct current

GPIO general-purpose input/output

ID identification

IDE integrated development environment

LSB least significant bit

MDK Moto Mods Development Kit

MEMS microelectromechanical systems

MSB most significant bit

PID product ID

RF radio frequency

SAW surface acoustic wave

SDK software development kit

SP4T single pole four throw

SPDT single pole double throw

UI user interface

USB Universal Serial Bus

VCO voltage-controlled oscillator

VID vendor ID

XMD X-Microwave Demo

XML Extensible Markup Language

Approved for public release; distribution is unlimited.
27

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 GEORGIA TECH
 (PDF) L GRIFFIN

 5 ARL
 (PDF) RDRL SER L
 R BENOIT
 R POLCAWICH
 RDRL SER W
 C DIETLEIN
 M HIGGINS
 RDRL VT
 B PIEKARSKI

	List of Figures
	List of Tables
	1. Introduction
	1.1 Motorola Moto Z Smartphone
	1.2 X-Microwave Demo
	1.3 X-Microwave Hardware

	2. XMD App Development
	2.1 Brief Introduction to Android Development and Android Studio
	2.2 Installing the Moto Mods Software Development Kit (SDK)
	2.3 UI or XML Code
	2.4 Back-end or Java Code
	2.4.1 Interpreting Inputs
	2.4.2 Reset Buttons

	2.5 Communicating Information

	3. Firmware
	3.1 Setting up the Environment
	3.2 Configuring the Project
	3.2.1 Set “Build Target”
	3.2.2 Configuring Desired Features
	3.2.3 Editing the Makefile
	3.2.4 Setting the Hardware Manifest

	3.3 Writing the Driver
	3.4 Note on the Vendor ID and Product ID
	3.5 Building the Firmware
	3.6 Flashing the Firmware

	4. Moto Mod Circuits
	4.1 Voltage Doubler
	4.2 Comparators

	5. Conclusion
	6. References
	Appendix. Additional Resources
	List of Symbols, Abbreviations, and Acronyms

