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Abstract

Military commanders currently resupply forward operating bases (FOBs) from a

central location within an area of operations mainly via convoy operations in a way

that closely resembles vendor managed inventory practices. Commanders must decide

when and how much inventory to distribute throughout their area of operations while

minimizing soldier risk. Technology currently exists that makes utilizing unmanned

cargo aerial vehicles (CUAVs) for resupply an attractive alternative due to the dan–

gers of utilizing convoy operations. Enemy actions in wartime environments pose a

significant risk to a CUAV’s ability to safely deliver supplies to a FOB. This dis–

sertation develops a Markov decision process (MDP) model to examine this military

inventory routing problem (MILIRP).

The first paper examines the structure of the MILIRP by considering a small

problem instance and prove value function monotonicity when a sufficient penalty

is applied. Moreover, this paper develops a monotone least squares temporal differ–

ences (MLSTD) algorithm that exploits this structure and demonstrate its efficacy

for approximately solving this problem class. This work compares MLSTD to least

squares temporal differences (LSTD), a similar ADP algorithm that does not ex–

ploit monotonicity. MLSTD attains a 3.05% optimality gap for a baseline scenario

and outperforms LSTD by 31.86% on average in our computational experiments. The

second paper expands the problem complexity with additional FOBs. This work gen–

erates two new algorithms, Index and Rollout, for the routing portion and implement

an LSTD algorithm that utilized these to produce solutions 22% better than myopic

generated solutions on average. The third paper greatly increases problem complex–

ity with the addition of supply classes. This research formulates an MDP model to

iv



handle the increased complexity and implement our LSTD-Index and LSTD-Rollout

algorithms to solve this larger problem instance and perform 21% better on average

than a myopic policy.

Keywords: stochastic inventory routing, approximate dynamic programming, Markov

decision process, vendor managed inventory, least squares temporal differences
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THE MILITARY INVENTORY ROUTING PROBLEM: UTILIZING

HEURISTICS WITHIN A LEAST SQUARES TEMPORAL DIFFERENCES

ALGORITHM TO SOLVE A MULTICLASS STOCHASTIC INVENTORY

ROUTING PROBLEM WITH VEHICLE LOSS

I. Introduction

The brigade combat team (BCT) is the primary combined arms force that ex–

ecutes decisive actions for the United States Army. The BCT performs offensive,

defensive, stability, and Defense Support of Civil Authorities tasks assigned to it by

higher authority [11]. Military logistical planners must consider the timing, rout–

ing, and supply configuration of distribution assets when preparing for and executing

routine resupply missions (i.e., distribution, replenishment, or sustainment opera–

tions) in support of BCT operations. The brigade support battalion (BSB) is the

primary organization within the BCT that plans, coordinates, synchronizes, and ex–

ecutes sustainment operations. The BSB operations are accomplished by planning

and executing missions within the context of the sustainment warfighting function

and by applying the principles of sustainment when executing the support of deci–

sive actions. Sustainment operations typically involve the establishment of a brigade

support area (BSA) as the distribution center from which supplies are delivered to

company- and platoon-sized units located at forward operating bases (FOBs) geo–

graphically dispersed throughout the BCT’s area of operations [9]. The objective of

sustainment in a wartime environment is to provide sufficient support to enable the

BCT to conduct its four primary tasks: movement to contact, attack, exploitation,

and pursuit [11]. Logistical planners at the BSB monitor the supply levels of the
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FOBs utilizing logistics situation reports and automated sustainment data-gathering

systems such as the Battle Command Sustainment Support System and the Force

XXI Battle Command Brigade and Below logistical support system [11]. As such,

the BSB knows the inventory level at all of the FOBs when making inventory routing

decisions. At the beginning of each day, the BSB must decide which FOBs to resup–

ply, how much of supplies to deliver to each FOB, how to combine FOBs into routes,

and which routes to assign to each of the available delivery assets.

Distribution of assets that move supplies from the BSA to the FOBs include both

ground assets (e.g., medium- and heavy-capacity cargo trucks and tanker trucks) and

aerial assets (e.g., the CH-47 Chinook helicopter). While distribution via ground as–

sets account for the majority of tonnage delivered, aerial delivery distribution provides

an effective means of conducting distribution operations because it bypasses casual–

ty-inducing enemy activities and reduces the need for route clearance of ground lines

of communications (e.g., roads). Moreover, the development of unmanned cargo aerial

vehicles (CUAVs) like Lockheed Martin’s K-max further reduces troop exposure to

potentially life threating enemy actions [19].

Aerial resupply poses its own risks that must be independently considered. North

Atlantic Treaty Organization military forces must account for adversaries with the

capability and intent to oppose and disrupt allied aerial assets [14]. Threat levels

for aerial assets are classified based on the availability, accessibility, and probabil–

ity of attack. Among the threats, man-portable air-defense systems (MANPADS)

are already highly proliferated with an estimated 500, 000 to 750, 000 licensed units

worldwide [14]. MANPADS are particularly effective against low or slow aircraft,

which makes rotary wing assets particularly vulnerable during take-off and landing.

Military logistical planners face many important challenges when making daily

inventory routing decisions in a combat environment. Poorly developed transporta–

2



tion infrastructure, adverse weather conditions and terrain, enemy threat and actions,

and the availability of distribution assets all inhibit successful distribution of supplies

from the BSA to the FOBs. Insurgent use of improvised explosive devices (IEDs) has

greatly affected truck mobility throughout the operational environment and has been

successful in disrupting replenishment procedures [25]. Since current resupply efforts

operate mainly via convoys that have become costly and dangerous, this is of great

concern. Successful distribution both to and from troop locations must be considered

before a resupply decision can be made. Logisticians must decide what supplies (e.g.,

water, food, fuel, ammunition) should be sent and how much is required. Limiting

factors may include distribution asset availability, convoy maintenance requirements,

and current threat locations. Constantly evolving socio-political factors may cause

a rapid change in current threat areas in the operational environment. Moreover,

wartime logistics often do not have a short-term horizon, so logisticians must plan for

sustainable resupply over an indefinite horizon.

The United States Department of Defense is interested in the design, development,

and utilization of cargo unmanned aerial systems (CUASs) for resupply operations

[23]. A CUAS is the collection of all components required to allow the operation of a

cargo unmanned aerial vehicle (CUAV). A CUAS includes the operating crew (e.g.,

maintenance crew and pilot), required software, and vehicles. The United States

Army intends to increase the utilization of CUASs as an integral component of inte–

grated logistics aerial resupply. As such, examination of inventory routing decisions

for CUASs across an austere combat environment is needed.

This dissertation considers a military variant of the stochastic inventory routing

problem (MILIRP) in which the BSB of a deployed BCT must decide how many

fully loaded CUAVs to dispatch to fulfill the demand requirements of a single com–

pany-sized FOB. This research develops a Markov decision process (MDP) model of

3



the MILIRP. Moreover, it shows the special structural properties of the MILIRP by

proving it has a monotone optimal value function when a sufficiently large penalty

parameter is specified. When larger, multiple-FOB instances are considered, the

high-dimensionality of the state and action space renders classical dynamic program–

ming methods computationally intractable. Thus, this work designs, develops, and

tests a monotone approximate dynamic programming (ADP) algorithm to solve the

MILIRP. To demonstrate the efficacy of the proposed solution methodology, a no–

tional, representative planning scenario based on an austere combat environment like

that of Afghanistan is constructed. Comparing polices determined by the ADP algo–

rithm to those generated by a well known ADP technique (i.e., least squares temporal

differencing) and the optimal policy on small problem instances, demonstrates how

exploiting structure improves results.

The unique military aspect of the MILIRP warrants further discussion. In contrast

to much of the previous work on the inventory routing problem (IRP), this research

effort explicitly accounts for the possible destruction of the delivery vehicles. The

evolution of threat and weather and their attendant impact on the likelihood of vehicle

delivery success is modeled. The lasting and permanent impact of vehicle destruction

on the resupply operations over an uncertain horizon must also be modeled. Moreover,

in a combat environment the military does not take into account various external costs

commonly associated with IRPs. Thus, the MILIRP objective function focuses on

total amount of supplies delivered over the life of the system and disregards holding,

ordering, and transportation costs.

The remainder of this dissertation is organized as follows. Chapter II presents a

review of relevant literature concerning vendor managed inventory practices and the

IRP. The literature review also examines several ADP papers to inform the develop–

ment of the solution methodology. Chapter III provides a description of the MILIRP

4



and introduces the monotone least squares temporal differences algorithm as an ef–

fective ADP solution technique. Chapter IV expands the work done in Chapter III by

expanding the number of FOBs considered and introduces the quiz problem heuristic

as a means to solve more complex problem instances. Chapter V further increases

problem complexity by increasing the number of supply classes considered, greatly

expanding the state space.
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II. Literature Review

The literature review focuses on two areas of research pertinent to the problem

formulation and solution methodology. The first is the inventory routing problem

(IRP), which has been widely researched. The second area of interest is approximate

dynamic programming (ADP).

2.1 Inventory Routing Problem:

The IRP is an optimization problem wherein inventory is sent from a supplier to

customers across a set of locations. The IRP arises from the idea of vendor managed

inventory (VMI) replenishment, a centralized approach to inventory management

used to reduce overall costs. Utilizing VMI, the IRP is a natural evolution from the

vehicle routing problem and is an area of research that has been throughly studied

in the operations research field because of the constant need to improve supply chain

logistics. The IRP differs from vehicle routing problems because its routing decisions

are based on customers’ usage rather than customers’ orders. The IRP integrates

inventory management, vehicle routing, and delivery scheduling decisions. Inventory

routing has been a topic of research in the operations research field for over 30 years

[7].

VMI replenishment is a business practice wherein the vendor monitors the inven–

tory levels of the customers. The objective of the vendor is the minimization of the

sum of inventory and transportation costs over the entire network [18]. VMI is an al–

ternative to traditional inventory management wherein customers keep track of their

own inventory and determine when and how much to order from the supplier. The

supplier receives orders and uses its vehicles to fill the orders. VMI is an attractive

alternative because it is a mutually beneficial relationship between the supplier and

6



the customer; the supplier reduces transportation costs by deciding when and how

much inventory to distribute to each customer, and the customer reduces costs by not

allocating resources to monitoring inventory scheduling. There are three main ad–

vantages to utilizing VMI practices [17]. First, VMI may lead to reduced production

and inventory costs by reducing variation and obtaining a more uniform utilization of

resources for both the supplier and the customer. Second, proactive planning used in

VMI may reduce transportation costs beyond that of more uniform utilization alone.

It may be possible to increase low-cost full truckload shipments and decrease the fre–

quency of high-cost less-than-full truckload shipments. Moreover, it may be possible

to use more efficient routes by coordinating the replenishment of customers that are

located close to each other. Third, VMI may increase service levels, measured in

terms of reliability of product availability.

There are two requirements necessary to obtain the benefits of VMI: the avail–

ability of relevant, accurate, and timely data for the decision maker and the ability of

the central decision maker to use an increased amount of information to make good

decisions [17]. In order to succeed in VMI, an organization must not only have access

to relevant information, such as current and past inventory levels at all customers,

customer demand behavior, and customer location relative to the vendor and each

other, but it must also have the ability to utilize that data in the construction of a

relevant and useful distribution policy. This is a very complex task and many failures

to implement VMI are a direct result of failing to meet one or both of the above

requirements [17]. While a responsible vendor implementing VMI can save both time

and money, misuse of VMI business practices can result in lost sales and revenue.

Understanding VMI practices builds the knowledge base necessary to understand the

IRP.

The IRP falls into a class of problems called NP-hard [7], meaning they are at

7



least as hard as the hardest non-deterministic polynomial-time problems. The IRP

is inherently difficult because a supplier must make three simultaneous decisions: 1)

when to serve a given customer, 2) how much to deliver to this customer when it is

served, and 3) how to combine customers into vehicle routes [7]. A basic IRP seeks to

minimize total inventory-distribution costs while meeting demand of each customer

subject to the following constraints: inventory at each customer can never exceed

its maximum capacity, inventory levels are not allowed to be negative, the supplier’s

vehicles can perform at most one route per time period with each starting and ending

at the supplier, and vehicle capacities cannot be exceeded.

Coelho et al. [7] identify problem features to describe IRPs. These features in–

clude: time horizon, structure, routing, inventory policy, inventory decisions, fleet

composition, and fleet size. Within the IRP framework time horizon is a problem

dependent feature that can either be finite or infinite. With respect to structure, the

number of suppliers and customers can vary and includes the following categories:

one-to-one when there is only one supplier and one customer, one-to-many when there

are many customers, or more rarely, many-to-many. Routing includes the following

categories: direct when there is only one customer per route, multiple when there are

several customers in the same route, or continuous when there is no central depot

(i.e., maritime applications). Direct delivery involves the vehicle moving directly from

the supplier to the customer and returning to the vendor immediately after delivery.

Direct delivery greatly simplifies the IRP by removing the optimization of the rout–

ing portion of the problem. Direct delivery is appropriate for this application of the

MILIRP due to the low carrying capacity of currently fielded CUAVs [19]. The two

most common inventory polices are the maximum level or order-up-to level policies.

The maximum level policy allows flexibility in deciding the amount to refill whereas

the order-up-to level policy replenishes customers to a particular inventory level each

8



time the customer is visited. Inventory decisions can be modeled as lost sales when

excess demand becomes lost revenue or as back-orders when demand can be filled

at a later date. Fleet composition can either be homogeneous or heterogeneous, and

fleet size can be single, limited, or unconstrained.

Coelho et al. [7] and Toth & Vigo [33] give a basic introduction to the stochastic

variant of the basic IRP. In the stochastic inventory routing problem (SIRP), the sup–

plier knows the customer demand only in a probabilistic sense. Demand stochasticity

means shortages may occur. In order to discourage shortages, a penalty function is

imposed whenever a customer runs out of stock and is usually modeled as unsatisfied

demand. With no backlogging, unsatisfied demand is considered lost. There are sev–

eral solution methods employed to solve the IRP, which include, but are not limited

to, heuristic algorithms, link optimization, simulation, and dynamic programming.

Campbell et al. [6] and Minkoff [24] formulate their SIRP in a similar fashion.

They both model the use of an unconstrained fleet (in terms of size) to meet demand

across a network and allow for multiple routing. Campbell et al. [6] do not present a

specific analysis of their SIRP formulation; instead, they develop challenging IRP test

instances. Minkoff [24] applies a heuristic approach to solving the SIRP based on a

decomposition of the problem by customer. The solutions to the customer subprob–

lems generate the penalty functions that are applied within their master dispatching

problem.

Adelman [1] and Kleywegt et al. [18] provide very similar SIRP formulations. They

both formulate and solve infinite horizon problems with a one-to-many structure.

While their solution methodologies differ, they both focus on multiple routing and

maximum level inventory policies. They both employ homogeneous fleet composition

without backlogging and with a fixed, limited fleet. Adelman [1] differs from Kleywegt

et al. [18] in that he uses linear programming techniques to obtain his solution whereas
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Kleywegt et al. [18] use ADP.

Two papers deserve more in-depth discussion because they both greatly informed

this research and closely resemble this work in terms of methodology. Kleywegt

et al. [17] model an IRP with the following characteristics: direct delivery, limited

fleet size, stochastic demand, and deterministic vehicle supply. Similarly, Kleywegt

et al. [18] model an IRP with multiple routing, limited fleet size, stochastic demand,

and deterministic vehicle supply. This research differs from both papers in that the

distinct military nature of this formulation yields a stochastic vehicle supply. The

stochastic nature of the vehicle supply is discussed in more detail in Chapter 3.1.

Kleywegt et al. [17] and Kleywegt et al. [18] both employ ADP as a solution

technique. Because of the complexity inherent in IRPs, ADP is an excellent solu–

tion technique to produce high-quality inventory routing policies. Kleywegt et al.

[17] employ an approximate policy iteration (API) algorithm with a parametric value

function approximation. They construct a set of basis functions to create a linear

approximation architecture around the pre-decision state. Kleywegt et al. [18] apply

the same ADP solution technique for the first part of their optimization problem be–

fore considering multiple delivery and then use a heuristic search method to determine

additional delivery opportunities afterwards, if possible. Several differences exist that

distinguish this dissertation’s solution approach from theirs. First, this research con–

structs a set of basis functions to create a linear approximation architecture around

the post-decision state not the pre-decision state. Second, an ADP algorithm that

enforces monotonicity within the value function approximation is employed. Third,

the stochastic nature of the delivery and the possible loss of the delivery vehicles in the

limited fleet are distinguishing features not present in other IRP research endeavors

in the current literature.

This dissertation is not the first research effort on the MILIRP. The MILIRP was
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initially formulated by McCormack [20]. McKenna [22] expanded this research by

extending the number of forward operating bases while maintaining direct delivery.

Salgado [31] adds stochastic demand to the direct delivery MILIRP. This research

builds off of these previous works through structural analysis of the unique problem

features of the MILIRP, creation of new algorithms better suited to solve the MILIRP,

and relaxation of the direct delivery constant.

2.2 Approximate Dynamic Programming

Inventory routing decisions in a combat environment involve sequential decision

making under uncertain conditions. Because of enemy threats, the routing of a cargo

unmanned aerial vehicle (CUAV) to replenish supplies has an uncertain outcome.

The loss of a CUAV impacts the ability of the Brigade Support Battalion (BSB) to

replenish supplies in the future. Thus, the safety of the CUAV in the formulation

must be accounted for. This dissertation formulates the MILIRP as a Markov deci–

sion process (MDP). However, due to the high dimensionality of this problem when

practical instances are considered, it is unable to be solved exactly using classical

dynamic programming solution techniques. To overcome the curse of dimensionality,

an approximate dynamic programming (ADP) methodology is implemented in or–

der to solve the MILIRP. ADP is being concurrently developed by multiple different

communities to include engineering controls, computer science (artificial intelligence),

and operations research. For a more detailed introduction to ADP from an opera–

tions research perspective, the reader is referred to Powell [26, 27, 28]. For a different

ADP outlook, the reader is referred to Bertsekas & Tsitsiklis [4] (engineering control

theory) or Sutton & Barto [32] (artificial intelligence).

The API algorithmic strategy involves utilizing the post-decision state to construct

a linear architecture based on an appropriate set of basis functions while maintaining
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monotonicity in the value function. Van Roy et al. [34] first introduced post-decision

state approximation as a way to modify Bellman’s equation to obtain an equivalent,

deterministic expression. Using the post-decision state is computationally helpful be–

cause it addresses the outcome state portion of the curse of dimensionality and allows

one to average the optimal value rather than estimate the expected value as a function

of the decision. API consists of two basic steps: policy improvement and policy eval–

uation. Within the policy improvement step of the API algorithm, the value function

approximation is updated for a fixed policy using least squares temporal differencing

(LSTD). Bradtke & Barto [5] introduced LSTD as a computationally efficient method

for estimating the adjustable parameters when using a linear architecture with fixed

basis functions to approximate the value function for a fixed policy. LSTD updates its

estimate of the expected contribution and projects this over the infinite horizon [27].

A variant of the LSTD algorithm similar to Rettke et al. [30], Davis et al. [8], and

McKenna et al. [21] is implemented. This dissertations’ variant distinguishes itself

by utilizing a post-decision state value function approximation and a monotonicity

projection operator to maintain value function monotonicity. The development of

the monotonicity projection operator was greatly informed by Jiang & Powell [16],

who examine a finite horizon problem and construct an ADP approach that attains

high-quality solutions within a relatively small number of iterations.

2.3 Rollout Algorithms:

Rollout algorithms produce heuristic solutions that, when implemented efficiently,

have been shown to yield considerable savings in computation over optimal algorithms

on stochastic control problems with combinatorial decision spaces like the quiz prob-

lem [3]. The military inventory routing problem (MILIRP) is a stochastic control

problem with a combinatorial decision space, and as such, studying the quiz problem
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variant referred to as the stochastic quiz problem does produce a useful heuristic for

solving the MILIRP as shown in Chapter 4.3. The unique nature of the MILIRP

allowing for vehicle destruction is analogous to a stopping rule set to a quiz taker

answering a question incorrectly on a sequential exam given individual probabilities

of success. Bertsekas & Castanon [3] discuss how to use rollout algorithms for the

stochastic quiz problem where, as in the MILIRP, there is no optimal open-loop policy

(i.e., an optimal order for the questions (FOBs) does depend on the random outcome

of the earlier questions). These problems can only be solved exactly with dynamic

programming, but their optimal solutions are prohibitively difficult to determine be–

cause the states over which dynamic programing must be executed are subsets of

questions, and the number of their subsets increases exponentially with the num–

ber of questions [3]. Since the quiz problem heuristic only applies to deterministic

quiz problems and its variants, it cannot be directly applied for the MILIRP without

reservation. However, as with all heuristic methods, it may result in computational

savings that provide value to solving the MILIRP.
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III. A Stochastic Inventory Routing Problem with Vehicle
Loss

The first paper examines the structure of the MILIRP by considering small prob–

lem instances and prove value function monotonicity when a sufficient penalty is

applied. Moreover, this research effort develops a monotone least squares temporal

differencing (MLSTD) algorithm that exploits this structure and show its advantages

on the MILIRP. This section first provides a brief problem description and discussion

concerning MDP methodology.

3.1 Problem Description

A basic understanding of the U.S. Army replenishment structure is central to

understanding the military inventory routing problem (MILIRP). The brigade combat

team (BCT) is the highest echelon organization able to act independently in regional

combat operations. The BCT is responsible for a number of forward operating bases

(FOBs) within its area of operations. The interaction between BCT and FOB parallels

the supplier-to-customer relationship seen in vendor managed inventory practices.

Within the BCT, a sub-organization called a brigade support battalion (BSB) is

responsible for replenishment of FOBs in the BCT’s area of operations.

The BSB plans, coordinates, synchronizes, and executes replenishment operations

in support of BCT operations [12]. The BSB is the organization within the BCT that

establishes and operates the brigade support area (BSA), a central location utilized

to resupply its customers (i.e., FOBs) at locations of varying distances. The BSB is

responsible for the periodic resupply of the BCT’s subordinate units, which closely

mirrors vendor managed inventory (VMI) practices used in the civilian sector. To

accomplish its responsibility, the BSB is kept informed of inventory levels at the

FOBs through regular reporting and automated data systems. VMI practices allow
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the BSB to decide when, where, and how much supplies to send to FOBs. The routing

and resupply operation of the FOB can be formulated as a variant of the inventory

routing problem (IRP) due to these similarities.

Replenishment during combat operations includes difficult, deliberate, and time-sen–

sitive operations conducted to replenish forward companies with essential supplies to

sustain the pace of operations [12]. The U.S. Army employs trucks, manned air assets,

and now cargo unmanned aerial vehicles (CUAVs) to perform replenishment opera–

tions. Many operational issues must be considered when utilizing these distribution

assets.

Operating the cargo unmanned aerial system (CUAS) presents challenges that

must be addressed. The CUAS is a complex system because of the many influenc–

ing factors required for successful operation: remote pilot (operator) (for emergency

and combat purposes), maintenance requirements, maintenance crew, aircraft fuel,

required software, and CUAV. The CUAV is inherently a more complicated vehicle

than typically observed in applications of the IRP. In this paper, we condense all

influencing factors for CUAV operation into two categories: CUAV and crew. We

refer to ‘crew’ as all other factors required for CUAS operation other than the CUAV

itself.

Due to the possibility of vehicle destruction, the MILIRP necessarily takes into

account the stochasticity of supply allocation decisions. CUAV routing decisions are

influenced by the current threat conditions because a destroyed CUAV cannot be

replaced; losing CUAVs has a permanent and lasting impact on the ability of the

BSB to deliver supplies.

Lack of road infrastructure within the area of operations and enemy attacks make

resupply via ground transport inherently dangerous. General Dynamics reports that

improvised explosive devices caused 18% of all deployed fatalities between November
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2002 and March 2009, all occurring during sustainment operations [13]. If CUAV re–

supply is unable to meet supply requirements, FOBs must be supplied mostly through

ground convoy operations. Due to the human capital expenditure risk necessary to

resupply FOBs via ground convoy, we impose a penalty on the system if the CUAS is

unable to fulfill FOB demand requirements (i.e., a FOB’s inventory level falls below

a specified safety-stock level).

3.2 Methodology

This section describes the Markov decision process (MDP) model formulation of

the military inventory routing problem (MILIRP). The objective of the MILIRP with

stochastic demand is to determine the optimal resupply of a single, large forward op–

erating base (FOB) via inventory routing decisions in order to maintain inventory.

The reward function maintains increasing monotonicity with respect to supplies de–

livered to the FOB until it reaches the FOB’s maximum holding capacity, after which

additional supplies delivered yield no reward. We assume the inventory level at the

FOB is known at the start of each period and that supply demand has a known

historical average with some variability, modeled as an independent and identically

distributed error term. Inherent in this formulation is the assumption that no other

external event (e.g., enemy action, fire, expiration of supplies) other than demand

causes a loss of inventory.

A brigade combat team (BCT) is responsible for the FOBs within its area of op–

erations. In this analysis, we only consider the resupply of a single, company-sized

FOB. The BCT contains a brigade support battalion (BSB) that manages resupply

efforts for the FOB. The BSB distributes supplies to the FOB utilizing V identical

cargo unmanned aerial vehicles (CUAVs). Each CUAV has an identical load capacity

of V cap tons. The FOB requires D̂t tons of supplies per time period t, a stochas–
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tic demand with a mean demand d̄ and an independent and identically distributed

exogenous error term ε̂. The FOB also has a finite maximum holding quantity Rmax.

Given an austere combat environment, there is potential for delivery failure due

to extrinsic uncontrollable factors (e.g., enemy action, mechanical failure, extreme

weather conditions). The probability of a CUAV being destroyed depends on the

current threat conditions. A set of M threat maps models the periodic changes in

risk throughout the BCT’s area of operations. Under threat map m = 1, 2, ...,M ,

the parameter ψm denotes the probability of a successful one-way trip from (to) the

brigade support area (BSA) to (from) the FOB. A CUAV may be destroyed either on

its way to a FOB or after delivering supplies on the return route back to the depot

at the BSA.

We proceed by describing the MDP model formulation of the MILIRP. With

respect to a conventional inventory routing formulation, CUAVs are vehicles, the

FOB is a customer, and the centralized BSB is the supplier. Table 1 located at the

end of this section provides a summary of the notation.

The MILIRP is formulated as an infinite horizon Markov decision problem wherein

at each decision epoch t ∈ T = {1, 2, ...} an inventory routing decision is made.

During each time period a CUAV refuels, resupplies, receives maintenance, travels to

the FOB, unloads, and returns to the BSB. It is assumed that the FOB is within the

CUAV’s range when fully loaded and that this route is serviceable in one time period.

Current CUAV limitations validate this assumption [19].

The state space includes three components: the inventory level at the FOB, the

number of operational CUAVs, and the threat map index number. The inventory

at the FOB is defined as rt, where rt ∈ (0, Rmax) is the number of tons of supplies

at the FOB at time t. Moreover, Rmax is the maximum inventory capacity for the

FOB, and Rmin ∈ (0, Rmax) is the minimum threshold inventory level that must be
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exceeded (i.e., the safety stock level). If rt ≤ Rmin then resupply via convoy ground

lines of communication (GLOC) is required. The number of operational CUAVs able

to perform resupply operations at time t is defined as vt. The threat map index

number at time t is defined as mt ∈ {1, 2, ...,M}. The threat map impacts the flight

risk associated with successfully completing sorties between the FOB and the BSA.

The threat map information mt is available at time t. The threat map information

mt+1 available at time t+ 1 is conditioned on mt and is unknown at time t. Utilizing

these components, we define st =
(
rt, vt,mt

)
∈ S as the state of the system at time

t, where S is the set of all possible states.

We let X (st) be the set of all feasible actions when the system is in state st.

Let xt = (xdt , x
GLOC
t ) ∈ X (st) denote an inventory routing decision wherein xdt ∈ N0

denotes the number of fully loaded CUAVs dispatched to resupply the FOB and

xGLOCt ∈ {0, 1} denotes whether a ground convoy is dispatched to resupply the FOB,

which results in its inventory level increasing to capacity. Only CUAV resupply is

available if the inventory level is greater than the safety stock threshold (i.e., rt >

Rmin). Only GLOC resupply is available if the inventory level is less than or equal

to the safety stock threshold (i.e., rt ≤ Rmin). Two constraints impact the CUAV

routing decision: first, the number of CUAVs deployed cannot exceed the number of

operational CUAVs (i.e., xdt ≤ vt); second, the number of CUAVs deployed cannot

exceed the number of crews available (i.e., xdt ≤ V crew). We assume that each CUAV

carries a maximum capacity load of V cap. The policy (i.e., decision function) Xπ(st)

returns a decision xt ∈ X (st) as a function of the system state st ∈ S. After a routing

decision is made, delivery is performed within one time period.

Transition probabilities are defined for each dimension of the state space to in–

clude the inventory level at the FOB, number of remaining CUAVs, and threat map.

Inventory transitions are based on the routing decision xt and the current state of the
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system st. When CUAVs are routed to the FOB there are three possible outcomes

(governed by a trinomial distribution): first, a CUAV may successfully travel to and

from the FOB; second, a CUAV may successfully deliver its supplies and be destroyed

upon returning to the BSA; third, a CUAV may be destroyed before successfully de–

livering its supplies. Let ψ2
m, ψm(1 − ψm), and (1 − ψm) respectively denote the

probabilities of a successful two-way delivery (SS), successful one-way delivery (SF),

and failure (F) for a single CUAV routed to resupply the FOB during the threat

conditions of map m = 1, 2, ...,M . Since we are interested in a particular outcome

of a routing decision, we proceed by defining the binomial marginal distributions for

each outcome type (i.e., SS, SF, F). With the assumption that each outcome of a

resupply mission to a FOB is independent of other missions and recalling that xt in–

cludes the decision to route xdt CUAVs to the FOB (each carrying a full supply load),

we let ẐSS
t+1(ψ2

m, x
d
t ) denote the binomial random variable with parameters ψ2

m and xdt

that indicates the number of successful two-way CUAV deliveries to the FOB during

time interval [t, t + 1) on map m. Let ẐSF
t+1(ψm(1 − ψm), xdt ) and ẐF

t+1((1 − ψm), xdt )

be similarly defined. For compactness, we refer to the set of random variables that

indicate resupply mission outcomes as follows:

Ẑt+1 =
(
ẐSS
t+1, Ẑ

SF
t+1, Ẑ

F
t+1

)
. (1)

The inventory level at the FOB is limited by the maximum holding quantity

Rmax. Moreover, if the FOB supply level is less than or equal to a safety stock

threshold, Rmin, the FOB must be fully resupplied via ground convoy. Equation 2 is

the inventory transition function for the FOB.

rt+1 =


Rmax if xGLOCt = 1

min
(
rt + V cap(ẐSSt+1 + ẐSFt+1)− D̂t+1, Rmax

)
if xdt > 0

rt − D̂t+1 otherwise.

(2)
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In the first case, convoy resupply is selected, and the FOB is resupplied to capacity.

In the second and third cases, the FOB inventory level changes according to supplies

received and realized demand. The minimization in the second case enforces the FOB

capacity constraint.

CUAV transition is contingent on the number of CUAVs that fail to return to

the BSA after attempting to travel to the FOB. The number of CUAVs transition

according to Equation 3.

vt+1 = vt − (ẐSF
t+1 + ẐF

t+1) (3)

The map transition function is a representation of the uncontrolled stochastic

aspect of the combat environment. The set of all maps captures the threat level of

the operational environment. The map transitions are representative of the changing

environment. For relatively static combat conditions, the map transition probability

would be relatively low. More dynamic combat environments yield a relatively higher

map transition probability. The BCT intelligence teams gather information on threat

conditions based on information such as enemy action, season, historical trends, and

weather.

The contribution function rewards the system based on the amount of supplies

delivered by CUAV to the FOB. The amount of supplies delivered is bounded above

by the maximum inventory quantity at the FOB, constraining any excess supplies

delivered from affecting the system behavior. An immediate penalty is applied if the

FOB’s inventory level is less than or equal to the safety stock threshold Rmin due to

the human risk associated with ground convoy resupply. The below-threshold penalty

function for the FOB

τ(r) =


0 if r > Rmin,

τ̄ if r ≤ Rmin

(4)

allows the application of a penalty that can capture the difficulty of resupplying the
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FOB via ground convoy. We present our contribution function in Equation 5.

C(st, xt) = E
{

min
(
Rmax − rt + D̂t+1, V

cap · (ẐSS
t+1 + ẐSF

t+1)
)
− τ(rt)

∣∣∣st, xt} (5)

The single-period contribution (i.e., reward) is determined by the amount of supplies

successfully delivered to the FOB. However, the system is not rewarded for excess

supplies (i.e., the FOB cannot take delivery of supplies in excess of its capacity).

The objective of this MDP is to maximize the expected total discounted reward

over an infinite horizon. By definition, the transitions are Markovian. All decisions

made at time t depend only on the current state of the system. To obtain the policy

that maximizes the expected total discounted reward, Bellman’s optimality equation

is solved:

J(st) = max
x∈X (st)

(
C(st, x) + λE{J(st+1)|st, x}

)
. (6)

The value of being in state st results from choosing the action that maximizes the

sum of the expected immediate contribution and the discounted expected value of the

state of the system at time t+1. The parameter λ ∈ [0, 1) denotes the discount factor.

Using this MDP formulation, an approximate dynamic programming algorithm can

be developed to obtain policies for resupplying the FOB via CUAVs.

3.3 Structural Properties

We examine the special structure of the MILIRP to inform our solution method–

ology. We define the partial order over the state space S 3 st = (rt, vt,mt) as

s � s̃ ⇐⇒ r ≥ r̃, v = ṽ, m = m̃.
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Table 1. Table of Notation

C = Contribution Function
d = daily FOB demand
F = failure to deliver supplies
I = indicator variable
J = total expected reward (cost-to-go) function
k = policy evaluation loop counter
K = number of policy evaluation loops
M = number of threat maps
n = policy improvement loop counter
N = number of policy improvement loops
r = supplies on hand

Rmin = supply threshold
Rmax = FOB holding capacity
s = state of system
SF = one-way successful trip
SS = two-way successful trip
t = time epoch
v = current number of CUAVs
V = number of inital CUAVs
V cap = CUAV holding capacity
V crew = number of crews
w = exogenous information process
x = actions
Z = set of random variables corresponding to the number of

possible SS, SF, and F events
F = set of basis function features
S = state space
T = set of time epochs
X = action space
α = stepsize
β = probability of remaining in the high threat map
θ = vector of weights
λ = discount factor
π = policy
τ = penalty cost
ψ = one-way probability a CUAV successfully reaches its destination
φ = basis function
Φ = matrix of fixed basis functions
Ω = probability of remaining in the low threat map

22



We prove herein that the optimal value function J∗ is order preserving over the

state space (i.e., s � s̃ =⇒ J∗(s) ≥ J∗(s̃)). Such a result provides justification

for the development of our monotone least squares temporal difference (MLSTD)

approximate dynamic programing (ADP) algorithm that exploits the monotonicity

of the value function to improve the quality of solutions attained.

Theorem 1. The optimal value function J∗(s) is nondecreasing in rt for fixed vt

and mt for t ∈ T when τ̄ ≥ Rmax.

Proof. The claim is shown by demonstrating that the following three conditions

[29] are satisfied.

1. Using st = (rt, vt,mt) and the partial ordering st � s̃t, consider rt ≥ r̃t. It

suffices to show that

C((rt, vt,mt), xt) ≥ C((r̃t, vt,mt), xt) ∀ st, s̃t ∈ S and xt ∈ X ′

First, consider the trivial case where r = r̃. It follows that C((rt, vt,m), xt) =

C((r̃t, vt,m), xt) holds true. Now consider rt > r̃t. Using the expected immediate

contribution function

C(st, xt) = E
{[

min
(
Rmax − rt + D̂t+1, V

cap(ẐSSt+1 + ẐSFt+1)
)]
− τ(rt)|st, xt

}
=

∞∑
d=0

xt∑
zSS=0

xt∑
zSF =0

[
P
(
D̂t+1 = d, ẐSSt+1 = zSS , ẐSFt+1 = zSF

)(
min

(
Rmax − rt + d, V cap(zSS + zSF )

)
− τ(rt)

)]
,

it suffices to show that

C((rt, vt,mt), xt) ≥ C((r̃t, vt,mt), xt) ⇐⇒

∞∑
d=0

xt∑
zSS=0

xt∑
zSF =0

[
P
(
D̂t+1 = d, Ẑ

SS
t+1 = z

SS
, Ẑ

SF
t+1 = z

SF
)(

min
(
R

max − rt + d, V
cap

(z
SS

+ z
SF

)
)
− τ(rt)

)]
≥
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∞∑
d=0

xt∑
zSS=0

xt∑
zSF =0

[
P
(
D̂t+1 = d, Ẑ

SS
t+1 = z

SS
, Ẑ

SF
t+1 = z

SF
)(

min
(
R

max − r̃t + d, V
cap

(z
SS

+ z
SF

)
)
− τ(r̃t)

)]
⇐⇒

∞∑
d=0

xt∑
zSS=0

xt∑
zSF =0

[
P
(
D̂t+1 = d, Ẑ

SS
t+1 = z

SS
, Ẑ

SF
t+1 = z

SF
)(
τ(r̃t)− τ(rt)

)]
≥

∞∑
d=0

xt∑
zSS=0

xt∑
zSF =0

[
P
(
D̂t+1 = d, ẐSS

t+1 = zSS , ẐSF
t+1 = zSF

)(
min

(
Rmax − r̃t + d, V cap(zSS + zSF )

)
−min

(
Rmax − rt + d, V cap(zSS + zSF )

))]
⇐⇒

τ(r̃t)− τ(rt) ≥

∞∑
d=0

xt∑
zSS=0

xt∑
zSF =0

[
P
(
D̂t+1 = d, ẐSS

t+1 = zSS , ẐSF
t+1 = zSF

)(
min

(
Rmax − r̃t + d, V cap(zSS + zSF )

)
−
(

min
(
Rmax − rt + d, V cap(zSS + zSF )

)

Consider the extreme values of this final expression. Letting rt = Rmax and r̃t = 0,

we have

τ(0)− τ(Rmax) ≥ Rmax + d− d = Rmax.

Since τ(0) = τ̄ and τ(Rmax) = 0, we have that, in the most extreme case, C(st, xt) ≥

C(s̃t, xt) ⇐⇒ τ̄ ≥ Rmax, which is a valid statement.

2. q(k|st, xt) is nondecreasing in rt for fixed vt and mt for all k ∈ R = [0, Rmax]

and xt ∈ X ′.

Using st = (rt, vt,mt) and the partial ordering st � s̃t , consider rt ≥ r̃t. For the

trivial case where r = r̃, q(k|(rt, vt,mt), xt) = q(k|(r̃t, vt,mt), xt). For r > r̃ it suffices

to show

q(k|(rt, vt,mt), xt) � q(k|(r̃t, vt,mt), xt) ⇐⇒∑
j∈{S|j≥k}

P(j|rt, xt) ≥
∑

j∈{S|j≥k}

P(j|r̃t, xt)

where
∑

j∈{S|j≥k}
P(j|rt, xt) represents the probability that the inventory level at time

t + 1 is greater than or equal to k. This expression must hold for five possible cases

of inventory transitions. Each case is analyzed for fixed action (xdt = 0, xGLOCt = 1)

and (xdt , x
GLOC
t = 0).
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Case 1. k > rt + V cap(ZSS
t+1 + ZSF

t+1)− D̂t+1

∑
j∈{S|j≥k,k>rt+V cap(ZSS+ZSF )−D̂t+1}

P(j|rt, (xdt , 0) ≥
∑

j∈{S|j≥k,k>rt+V cap(ZSS+ZSF )−D̂t+1}
P(j|r̃t, (xdt , 0)) ⇐⇒

0 ≥ 0

∑
j∈{S|j≥k,k>rt+V cap(ZSS+ZSF )−D̂t+1}

P(j|rt, (0, xGLOCt = 1)) ≥
∑

j∈{S|j≥k,k>rt+V cap(ZSS+ZSF )−D̂t+1}
P(j|r̃t, (0, xGLOCt = 1)) ⇐⇒

1 ≥ 1

Case 2. r̃t + V cap(ZSS + ZSF )− D̂t+1 < k < rt + V cap(ZSS + ZSF )− D̂t+1

∑
j∈{S|j≥k,r̃t+V cap(ZSS+ZSF )−D̂t+1<k<rt+V cap(ZSS+ZSF )−D̂t+1}

P(j|rt, (xdt , 0)) ≥

∑
j∈{S|j≥k,r̃t+V cap(ZSS+ZSF )−D̂t+1<k<rt+V cap(ZSS+ZSF )−D̂t+1}

P(j|r̃t, (xdt , 0)) ⇐⇒

∑
j∈{S|j≥k,r̃t+V cap(ZSS+ZSF )−D̂t+1<k<rt+V cap(ZSS+ZSF )−D̂t+1}

P(j|rt, (xdt , 0)) ≥ 0

∑
j∈{S|j≥k,r̃t+V cap(ZSS+ZSF )−D̂t+1<k<rt+V cap(ZSS+ZSF )−D̂t+1}

P(j|rt, (0, xGLOCt = 1)) ≥

∑
j∈{S|j≥k,r̃t+V cap(ZSS+ZSF )−D̂t+1<k<rt+V cap(ZSS+ZSF )−D̂t+1}

P(j|r̃t, (0, xGLOCt = 1)) ⇐⇒

1 ≥ 1

Case 3. k < r̃t + V cap(ZSS + ZSF )− D̂t+1

∑
j∈{S|j≥k,k<r̃t+V cap(ZSS+ZSF )−D̂t+1}

P(j|rt, (xdt , 0)) ≥
∑

j∈{S|j≥k,k<r̃t+V cap(ZSS+ZSF )−D̂t+1}

P(j|r̃t, (xdt , 0)) ⇐⇒

1 ≥ 1
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∑
j∈{S|j≥k,k<r̃t+V cap(ZSS+ZSF )−D̂t+1}

P(j|rt, (0, xGLOCt = 1)) ≥
∑

j∈{S|j≥k,k<r̃t+V cap(ZSS+ZSF )−D̂t+1}
P(j|r̃t, (0, xGLOCt = 1)) ⇐⇒

1 ≥ 1

Case 4. k = rt + V cap(ZSS + ZSF )− D̂t+1

∑
j∈{S|j≥k,k=rt+V cap(ZSS+ZSF )−D̂t+1}

P(j|rt, (xdt , 0)) ≥
∑

j∈{S|j≥k,k=rt+V cap(ZSS+ZSF )−D̂t+1}

P(j|r̃t, (xdt , 0)) ⇐⇒

P(j ≥ rt + V cap(ZSS + ZSF )− D̂t+1|rt, (xdt , 0)) ≥ P(j ≥ rt + V cap(ZSS + ZSF )− D̂t+1|r̃t, (xdt , 0)) ⇐⇒

1 ≥ 0

∑
j∈{S|j≥k,k=rt+V cap(ZSS+ZSF )−D̂t+1}

P(j|rt, (0, xGLOCt = 1)) ≥
∑

j∈{S|j≥k,k=rt+V cap(ZSS+ZSF )−D̂t+1}
P(j|r̃t, (0, xGLOCt = 1)) ⇐⇒

P(j ≥ rt+V cap(ZSS+ZSF )−D̂t+1|rt, (0, xGLOCt = 1)) ≥ P(j ≥ rt+V cap(ZSS+ZSF )−D̂t+1|r̃t, (0, xGLOCt = 1)) ⇐⇒

1 ≥ 1

Case 5. k = r̃t + V cap(ZSS + ZSF )− D̂t+1

∑
j∈{S|j≥k,k=r̃t+V cap(ZSS+ZSF )−D̂t+1}

P(j|rt, (xdt , 0)) ≥
∑

j∈{S|j≥k,k=r̃t+V cap(ZSS+ZSF )−D̂t+1}

P(j|r̃t, (xdt , 0)) ⇐⇒

P(j ≥ r̃t + V cap(ZSS + ZSF )− D̂t+1|rt, (xdt , 0)) ≥ P(j ≥ r̃t + V cap(ZSS + ZSF )− D̂t+1|r̃t, (xdt , 0)) ⇐⇒

1 ≥ 1

∑
j∈{S|j≥k,k=r̃t+V cap(ZSS+ZSF )−D̂t+1}

P(j|rt, (0, xGLOCt = 1)) ≥
∑

j∈{S|j≥k,k=r̃t+V cap(ZSS+ZSF )−D̂t+1}
P(j|r̃t, (0, xGLOCt = 1)) ⇐⇒

P(j ≥ r̃t+V cap(ZSS+ZSF )−D̂t+1|rt, (0, xGLOCt = 1)) ≥ P(j ≥ r̃t+V cap(ZSS+ZSF )−D̂t+1|r̃t, (0, xGLOCt = 1)) ⇐⇒
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1 ≥ 1

3. CT (sT ) is nondecreasing in rt for fixed vt and mt for an arbitrarily large T ∈ T .

Since the contribution function only rewards supplies delivered and not supplies

on hand, there is no terminal contribution and CT (sT ) = 0, ∀ s ∈ S. �

3.4 Solution Methodology

This section introduces a monotone least squares temporal differences (MLSTD)

algorithm that exploits the special structure of the military inventory routing problem

(MILIRP) to more effectively solve this variant of the stochastic inventory routing

problem (IRP).

ADP Formulation.

Our monotone approximate dynamic programming (ADP) algorithm utilizes an

approximate policy iteration (API) framework with a least squares temporal differ–

ences (LSTD) value function approximation scheme similar to work by Rettke et al.

[30] and Davis et al. [8]. API mirrors the exact policy iteration algorithm closely.

Instead of using the one-step transition matrix that is difficult to utilize when solv–

ing problems with high dimensionality, our API algorithm approximates and updates

the value function after simulating system trajectories. We utilize the post-decision

state, which is the state of the system immediately after a decision is made but before

the exogenous information processes are realized. This allows the expectation to be

moved outside of the maximization operator, altering our value function to the form

Jx(sxt ) = E
{

max
x∈X (st+1)

(
C(st+1, x) + γJx(sxt+1)

)
|sxt
}
.
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LSTD utilizes a set of basis functions that capture relevant information in the system

thus reducing the dimensionality of the state space and providing an approximate

solution [27]. Let φf (s), f ∈ F , denote a basis function where F is a set of features.

The value function approximation is given by

J̄x(sxt |θ) =
∑
f∈F

θfφf (s
x
t ),

wherein θ = (θf )f∈F is a column vector of weights with one coefficient for each basis

function. Because we choose the number of features to be fewer than the size of the

state space, it is computationally efficient to estimate the value function using basis

functions. Although classical linear regression methods can be used to estimate θ,

choosing an appropriate set of basis functions can be challenging. LSTD updates θ

iteratively during execution of the API algorithm.

LSTD iteratively updates the value function approximation for a fixed policy and

projects it over an infinite horizon. LSTD differences the current value of being

in a state with the updated value of being in a state at the following iteration.

Alternatively, this procedure can be viewed as a batch algorithm that operates by

collecting samples of temporal differences and then using least squares regression to

find the best linear fit [27]. LSTD obtains a least squares regression fit so that the

sum of the temporal differences over the simulation is equal to zero.

Within the construct of LSTD, a total of K temporal difference sample realizations

are collected in each policy evaluation loop where the kth temporal difference is

denoted C(st,k, X
π
θ (st,k)) + γθ>φ(sxt,k) − θ>φ(sxt−1,k) where φ(·) is a column vector of

basis function evaluations and the policy (i.e., decision function) Xπ
θ (st,k) is defined

below
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Xπ
θ (st,k) = arg max

x∈X (st)

C(st, x) + γJ̄(sxt |θ).

To solve the approximate dynamic program, we need to solve the inner maxi–

mization problem. Although the inner maximization problem can be solved exactly

using complete enumeration for smaller problem instances, our approach is intended

to solve larger problem instances wherein enumeration is not tractable. We formulate

the inner maximization problem as an integer program (IP) because only an integer

number of CUAVs can be sent for resupply. We define our IP as follows:

Decision Variables:

xd, integer number of fully loaded CUAVs sent to resupply the FOB.

Parameters:

θf , coefficient value corresponding to action taken.

θ0, coefficient value corresponding to the number of CUAVs available.

V cap, CUAV holding capacity.

V crew, number of crews available.

vt, number of CUAVs available at time t.

λ, time discount factor.

IP:

max
xd

: xd(ψmV
cap + λ

∑
f∈F

(θf − θ0)) (7)

subject to:

xd ≤ min (V crew, vt) (8)

ψmV
capxd −Rmax + rt + d̄ ≤ 0 (9)
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xd ∈ N0 (10)

The objective function 7 balances current rewards and future expected rewards

for the FOB. Constraint 8 limits our actions to utilizing at most the total number of

CUAVs available as dictated by the CUAS crew limitations. Constraint 9 limits the

expected amount of supplies delivered to be no greater than the FOB capacity. The

final constraint enforces integer restrictions on the xd decision variable.

Let Φt−1 and Φt consist of rows of basis function evaluations of the sampled

post-decision states and Ct as the contribution vector for the sampled events as shown

in Equation 11. The sample realization θ̂ is calculated using linear regression for each

policy evaluation loop n = 1, 2, ..., N . A harmonic step-size rule is applied to smooth

θ during implementation.

Φt−1 ,


φ(sxt−1,1)>

...

φ(sxt−1,K)>

 ,Φt ,


φ(sxt,1)>

...

φ(sxt,K)>

 , Ct ,

C(st,1, xt)

...

C(st,K , xt)

 (11)

Jiang & Powell [16] develop a Monotone-ADP algorithm that handles finite-hori–

zon MDPs utilizing an approximate value iteration algorithmic framework. Although

they discuss possible extensions of the Monotone-ADP algorithm that can be utilized

for infinite-horizon cases, they do not explicitly develop an extension of the Mono–

tone-ADP algorithm that can handle cases wherein the use of value functions based

on look-up tables is intractable. We first delineate their initial idea of how to ex–

tend Monotone-ADP to handle infinite-horizon problems using a linear architecture

of basis functions, then discuss our proposed solution methodology.
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Recall that the value function approximation is given by

J̄(s|θ) =
∑
f∈F

θnfφf (s),

where the reliance on the parameter vector θ and the associated policy improvement

iteration counter n is made more explicit here. The basis for expanding the Mono–

tone-ADP algorithm to the infinite horizon version is accomplished by examining the

linear architecture where updates are given by

θn ∈ arg min
θ
{‖θ − θn−1‖2 : J̄(snt |θ) = zn(snt ) and J̄(snt |θ) is monotone},

wherein zn(snt ) is the the approximated value smoothed with the value from the pre–

ceding iteration. The problem with this approach is that there is no easily computable

solution to this update function. Since this update happens within the loop structure

of the algorithm, this approach also poses computational concerns. Jiang & Powell

[16] point out that special cases may exist that make solving this problem quickly

feasible.

We propose constrained linear least-squares optimization as a monotone projection

operator to enforce value function monotonicity within the construct of LSTD. For

constrained linear least-squares problems, we solve a convex optimization problem of

the following form:

min
θ

1

2
||Eθ − e||22 s.t. Gθ ≤ g. (12)

The E matrix is the matrix of sampled observations generated from the LSTD sam–

pling (i.e., (Φt−1−γΦt)) with e being the observed value (i.e., Ct). Herein we explore

two possible ways to generate the constraint matrix G with the associated constant g.

The first involves generating K−1 constraints for the K observations by the following
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formula:

(ai − ai+1)θ ≤ 0, i = 1, 2, ..., K − 1

where ai is a monotone ordering of sampled observations. Although this constraint

matrix enforces monotonicity, it may result in memory issues due to the need to

generate K − 1 constraints for each dimension. Alternatively, Ahrens [2] shows the

necessary and sufficient conditions that ensure global monotonicity in one or more

dimensions based on the intuition derived from calculus (i.e., a function is monotone

if d
dx
f(x) ≥ 0). With each dimension arranged in non-decreasing order and scaled

to lie in the interval [0, 1], the necessary and sufficient conditions for non-decreasing

monotonicity of the quadratic response surface is given by Equation 13:

θlinearf + 2 min(θquadraticf , 0) +
∑

f ′∈F ,f 6=f ′
min(θcrossff ′ , 0) ≥ 0, ∀f ∈ F (13)

wherein θlinear, θquadratic, and θcross represent all linear, quadratic, and cross product

features, respectively.

Our algorithm takes the batch sampling from the LSTD methodology and gener–

ates the sample realization θ̂, enforcing monotonicity projection by solving Equation

12 and utilizing Equation 13 to generate monotonicity constraints. Moreover, once

our algorithm has generated a policy, we perform a post-processing policy improve–

ment search based on well-performing polices. The monotone least squares temporal

differences (MLSTD) pseudo code is summarized in Algorithm 1.

We then apply a harmonic stepsize rule to smooth in the new observation θ̂ with

the previous estimate θ during implementation. The stepsize rule αn is a function of

the outer loop iteration count and is defined below.

αn =
1

n
(14)

32



Algorithm 1 Approximate Policy Iteration Using Monotone Least Square Temporal
Differences (MLSTD)

Step 0. Initilize θ0

Step 1. For n=1 to N (Policy Improvement Loop)
Step 2. For k=1 to K (Policy Evaluation Loop)

a. Generate a random post-decision state, sxt−1,k

b. Record φ(sxt−1,k)
c. Simulate transition to next event; obtain pre-decision state st,k
d. Determine decision x = Xπ

θn−1(st,k)
e. Record contribution C(st,k, x)
f. Record basis function evaluation φ(sxt,k)
End

Step 3. Compute θn using monotone projection operator Equation 12
and smoothing rule Equation 15

End
Step 4. Perform post-processing policy improvement Equation 16

The stepsize rule αn greatly influences the rate at which the API algorithm con–

verges, thus impacting the attendant solutions. Utilizing the harmonic stepsize rule,

we update our θ in the following way:

θn ← θn−1(1− αn) + θ̂(αn). (15)

Equation 15 shows that the updated θn is weighted most heavily by our current

estimate, θn−1, and then moved toward our new estimate, θ̂, by an incremental amount

proportional to αn. Initially, greater emphasis is placed on θ̂, but as the number of

iterations increases the incremental effect of θ̂ is lessened. Moreover, as the number

of iterations increases, any single θ̂ has less influence than the estimate based on

information from the first n− 1 iterations.

Upon obtaining an updated parameter vector θ, we have completed one policy

improvement iteration of the algorithm. The parameters N and K are tunable, where

N is the number of policy improvement iterations completed and K is the number of

policy evaluation iterations completed.
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The post-processing policy improvement step in our algorithm allows for well-–

known policies to affect our ADP-generated policy. This adjustment allows for subject

matter expertise to be applied in decision making to improve solution quality. We

tailor our policy improvement to balance FOB supply needs and vehicle risk. For each

threat map m, we specify that a minimum number of CUAVs, xminm ≤ V crew, must

be tasked. When the threat map is relatively safer, we send relatively more CUAVs.

When the threat map is more dangerous, however, we only send CUAVs when in–

ventory is either extremely low or we have a large number of CUAVs remaining. The

post-processing policy improvement step is shown in Equation 16.

Xπ′

θ (st) = min{max{Xπ
θ (st), x

min
mt }, vt} (16)

After completion of the post-processing step, our algorithm has generated a policy

and terminates.

3.5 Analysis

Utilizing the Markov decision process (MDP) formulation discussed in Section

3.2, we can find a policy for a single, battalion-sized forward operating base (FOB)

problem instance. Moreover, we run a designed experiment to find the algorith–

mic and model parameters that yield the best results for our approximate dynamic

programming (ADP) algorithm.

MDP Parameterization.

The military inventory routing problem (MILIRP) is formulated as an infinite

horizon MDP wherein a single period represents a 6-hour interval. We assume that

during each period the cargo unmanned aerial vehicle (CUAV) can complete all mis–

sion preparation tasks and perform the assigned mission. We assume the FOB has

34



stochastic demand.

Each battalion is made of subordinate platoons that each have a consumption

rate and storage capacity based on the number of personnel on site. Based on a

General Dynamics report [13], the expected daily consumption requirements of a

platoon is 7, 482 pounds. We round up as a conservative estimate to an 8,000 pound

daily average consumption. With four periods in one day, about one ton of supplies

per period is required for sustainment. For our testing, we model the stochastic

demand using this known historical average d̄ and a randomly generated error term,

ε̂, uniformly distributed on the interval [−0.5, 0.5]. We also make the conservative

assumption that the FOB has a maximum holding capacity of three times the daily

average requirement, totaling 12 tons. We assume that there are no logistical failures

limiting the amount of supplies available at the centralized brigade support battalion

(BSB). This assumption is reasonable since the BSB is supplied via fixed wing aircraft

from outside the theater of operations.

Lockheed Martin’s K-MAX CUAV has delivered two tons at 15, 000 feet above

ground level (AGL) with more tonnage delivered at lower altitudes [19]. Thus, we

chose a conservative two ton carrying capacity for CUAV resupply. We also chose

the number of CUAVs and crews to be eight and four respectively, which mirrors

operations for tactical unmanned aircraft system (TUAS) platoons [10]. As the re–

quirements for CUAV resupply increase, we expect to see the number of CUAVs and

crews the BSB utilizes to increase. As such, we parameterize the CUAVs and crews as

multiples of TUAS platoon ratios. For example, if three TUAS platoons are deployed

at the BSB, the number of CUAVs would be 12 and the number of crews 6.

Recall from Section 3.2 that ψm denotes the probability of a successful one-way

trip from (to) the brigade support area (BSA) to (from) the FOB on map m. An

intelligence team would ideally assign risk values to each zone in the tessellated area of
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operations (i.e., region). This number would account for threats, to include, but not

limited to: weather, enemy action, and mechanical breakdown. Transition between

maps can be created by leveraging observed trends specific to the region of interest.

These problems influence threat levels, which might include time of the year. For our

example, we chose to use M = 2 threat maps and parameters ψ1 = 0.99, and ψ2 =

0.95. We vary the transition probability in our experimental design to investigate the

effects of region volatility on algorithmic outcome. We select an initial probability of

0.8 to remain in low threat map and 0.2 to remain in a high threat map (i.e., Ω = 0.8

and β = 0.2) to model the current instability of the region.

When the FOB’s supply level falls below a predetermined minimum threshold, the

FOB must be resupplied via ground convoy to regain full capacity. When a convoy is

sent, the penalty is immediately applied. The penalty represents the increased human

capital risk inherent in ground convoy operations along with the risk of a FOB stock

out. The penalty associated with resupplying the FOB would ideally be supplied by

a subject matter expert who knows the terrain and enemy activity levels associated

with the FOB. For example, a FOB further away from the BSA across rough terrain

would have a higher penalty than a closer and more readily accessible FOB. This

penalty creates a strong incentive to ensure the FOB is resupplied by CUAV when

possible. To ensure our problem maintains monotonicity in the value function we

apply the result from Section 3.3 by setting τ̄ = Rmax, which is applied when the

inventory level is less than or equal to the Rmin threshold.

We chose λ = 0.98 to be a discount factor that balances future needs with current

needs. We utilized the above described MDP parameterization to create policies using

exact, LSTD, and MLSTD solution techniques.
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Optimal Policy.

The advantage of examining the single FOB instance is that computing the op–

timal value function is tractable, and we can use the solution to compare our ADP

results. An optimal policy is determined using policy iteration.

ADP Policies.

The ADP policy is obtained from our monotone least squares temporal differences

(MLSTD) algorithm using least squares temporal differences and the monotonicity

enforcement operator as explained in Section 3.2. We compare MLSTD to an ap–

proximate policy iteration algorithm using least squares temporal differences (LSTD).

The challenge with both these algorithms is developing basis functions that accurately

approximate the optimal value function. These two algorithms are employed with the

system initialized at full capacity for the FOB.

We develop ADP policies using our integer program in both LSTD and MLSTD

algorithms. Our basis function includes first order effects for current inventory level,

CUAVs not deployed, and number of CUAVs deployed. Moreover, we also chose to

include the second order inventory effect. The simpler inner maximization problem

allows us to perform a designed experiment with more breadth in a reasonable amount

of time.

Baseline Instance.

We selected a representative baseline instance as a reference point for testing

the MLSTD algorithm’s performance. The baseline instance has 12 CUAVs, 2 crews,

probability of staying in a low threat map of 0.8, probability of staying in a high threat

map of 0.2, average period demand of 1 ton, with associated algorithmic features K =

5000 and N = 30. Due to the small problem instance, LSTD-, and MLSTD-generated
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policies were evaluated exactly. The baseline performance is shown in Table 2. For

the baseline instance, MLSTD outperformed LSTD by 4.84% with an optimality gap

of only 3.05%. We then expanded our experimental region of search with a designed

experiment.

Experimental design.

We created an experimental design to test the robustness of our ADP algorithm

and find the parameter settings that allow our proposed algorithmic approach to

achieve the best performance. We focused our response variable on the total value of

the system when initialized at full capacity. In each experimental run, we simultane–

ously assess four problem features and three algorithmic features. The four problem

features of interest were chosen based on what we thought might have the most effect

on the system performance. The problem features we chose to investigate are number

of crews available (V crew), probability of staying in a low threat map (Ω), probability

of staying in a high threat map (β), and the average demand (d̄). The three algo–

rithmic features we chose to experiment on are inner loop iteration count (K), outer

loop iteration count (N), and a categorical variable where −1 denotes MLSTD and

1 denotes LSTD. We compared the exact value of each ADP policy to the optimal

policy.

Each of the four problem features are considered to be continuous. We chose the

crew level to be levels associated with deploying two, three, and four TUAS platoons

at the BSB. This was done under the assumption that as commanders increasingly

Table 2. Baseline Instance

Algorithm Value % Optimal
LSTD 46.0015 92.11 %

MLSTD 48.4205 96.95 %
Optimal 49.9428
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value CUAV resupply, TUAS platoons will be sent in greater numbers to support

brigade operations. The transition probabilities, Ω and β, are parameterized to ex–

plore how regional volatility affects the value function. The lower value, 0.2, denotes

a low chance of transitioning to a different threat map condition. The higher value,

0.8, denotes a high probability of transitioning to a different threat map condition.

Demand was chosen to range from current consumption rates (i.e., 1 ton every 6

hours) to a considerably larger rate of consumption (i.e., 2 tons every 6 hours) to

explore how demand schedule increases would affect the system.

The three algorithmic features were chosen to best explore the experimental space.

The inner loop count was set to a low of 5, 000 and a high of 15, 000 based on initial

testing. The center run is the midpoint of the upper and lower bounds and allows

us to determine if our response variable demonstrates nonlinearity. The outer loop

iteration counter was similarly chosen, allowing for a large upper bound to achieve the

most accurate value function approximation for the basis functions we chose. Table

3 shows the problem and algorithmic settings for our experimental design.

We implemented a 27−2 resolution VII fractional factorial design with two center

runs, totaling 66 runs. In a resolution VII design, all first-, second-, and third-order

effects are free from being aliased with other first-, second-, or third-order interactions.

For each design run, an optimal, MLSTD, and LSTD policy is determined. Recall

that an ADP policy utilizes θ coefficients that correspond to selected basis functions.

Table 3. Factorial Design Settings

Description Factor Low Center High
Number of crews V crew 2 4 6

Probability of remaining low threat Ω 0.2 0.5 0.8
Probability of remaining high threat β 0.2 0.5 0.8

Average Demand d̄ 1 1.5 2
Number of inner loops K 5000 10000 15000
Number of outer loops N 10 20 30

Algorithm MLSTD LSTD - MLSTD
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After the θ coefficients are determined, we compute the exact values of the resulting

MLSTD and LSTD policies and compare them to the optimal policy.

Results.

Tables 4 and 5 show the results from the experiment. The MLSTD policy out–

performed the LSTD policy, performing at least as well as LSTD in all design runs.

The problem features for which the MLSTD algorithm performed best include when

probability of staying in a low threat map and demand were at their high levels, and

when number of crews and probability of staying in a high threat map were at their

low levels. This intuitive result is caused by MLSTD’s ability to send more CUAVs in

this relatively safer operating condition via the post-processing step in a way LSTD

does not. This treatment achieved an optimality gap of 3.0%. Interestingly the pol–

icy value was invariant to outer and inner loop count. We found that MLSTD would

quickly converge to the estimated optimal policy. Moreover, although subsequent

iterations would update θn, the generated policy would be invariant to the resulting

change.

MLSTD performs most poorly with a low probability of remaining in a low threat

condition and a high probability of remaining in a high threat condition, resulting in

a much lower optimality gap of 17.93%. The less conservative strategy is penalized

more heavily when conditions are more consistently dangerous for CUAV operation.

Both MLSTD and LSTD perform better when a lower number of crews are consid–

ered due to the limited CUAV deployment. Moreover, MLSTD greatly outperformed

LSTD in many cases. Particularly, in runs 40, 41, 46, 47, 58, 59, 61, and 64 LSTD

had an optimality gap in excess of 66%. LSTD poorly estimated the value function

for problem instances with many of the same problem features as MLSTD but with

a much greater optimality gap. On average, MLSTD performed 31.86% better than
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LSTD as shown in Table 6. These experimental results indicate which parameters

are influential in the structure of the MILIRP. However, a metamodel is necessary to

draw direct conclusions.

We next created a regression metamodel to analyze the effects with more statis–

tical rigor. A stepwise regression procedure yields factors that produce a significant

relationship and pass the lack of fit test. A Box-Cox transformation analysis confirms

that the error is minimized with a square root transformation. The resulting model

includes significant first- and second-order terms and performs very well in terms of

prediction ability with an adjusted R2 of 0.9913. The residuals do not show signs of

heteroscedasticity, and the residual by predicted plot does not raise concerns.

Table 7 summarizes the significant variables. We consider variables with an F-test

p-value less than 0.05 significant. With this criterion, number of crews, probability

of staying in a high threat condition, probability of staying in a low threat condition,

and using MLSTD are all significant in both first- and second-order terms. Average

demand is significant in second-order interaction. Using inner loop and outer loop

iteration counts are not significant significant even when higher order effects are

considered. This is due to the fast convergence of the ADP algorithm to the resulting

ADP-generated policy.

According to our metamodel, the optimality gap is minimized with the probability

of staying in a high threat map of 0.2, the probability of staying in a low threat map

of 0.8, 5, 000 inner loops, 10 outer loops, 2 crews, 1 ton of average demand, and using

MLSTD.

3.6 Conclusions

This paper examines the military inventory routing problem (MILIRP). The in–

tent of this research is to examine the MILIRP’s structural properties and develop
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Table 4. Experimental Results

Run V crew Ω β d̄ K N Algorithm J̄ J∗ Optimality Gap
1 2 0.2 0.2 1 5000 10 LSTD 37.53 49.84 24.70%
2 2 0.2 0.2 1 5000 30 MLSTD 45.90 49.84 7.90%
3 2 0.2 0.2 1 15000 10 MLSTD 45.90 49.84 7.90%
4 2 0.2 0.2 1 15000 30 LSTD 37.53 49.84 24.70%
5 2 0.2 0.2 2 5000 10 MLSTD 91.46 98.91 7.53%
6 2 0.2 0.2 2 5000 30 LSTD 74.30 98.91 24.88%
7 2 0.2 0.2 2 15000 10 LSTD 74.30 98.91 24.88%
8 2 0.2 0.2 2 15000 30 MLSTD 91.46 98.91 7.53%
9 2 0.2 0.8 1 5000 10 MLSTD 42.58 49.08 13.25%
10 2 0.2 0.8 1 5000 30 LSTD 28.59 49.08 41.76%
11 2 0.2 0.8 1 15000 10 LSTD 28.59 49.08 41.76%
12 2 0.2 0.8 1 15000 30 MLSTD 42.58 49.08 13.25%
13 2 0.2 0.8 2 5000 10 LSTD 55.86 87.74 36.34%
14 2 0.2 0.8 2 5000 30 MLSTD 84.14 87.74 4.11%
15 2 0.2 0.8 2 15000 10 MLSTD 84.14 87.74 4.11%
16 2 0.2 0.8 2 15000 30 LSTD 55.86 87.74 36.34%
17 2 0.8 0.2 1 5000 10 MLSTD 48.42 49.94 3.05%
18 2 0.8 0.2 1 5000 30 LSTD 46.00 49.94 7.89%
19 2 0.8 0.2 1 15000 10 LSTD 46.00 49.94 7.89%
20 2 0.8 0.2 1 15000 30 MLSTD 48.42 49.94 3.05%
21 2 0.8 0.2 2 5000 10 LSTD 91.76 99.72 7.98%
22 2 0.8 0.2 2 5000 30 MLSTD 96.72 99.72 3.00%
23 2 0.8 0.2 2 15000 10 MLSTD 96.72 99.72 3.00%
24 2 0.8 0.2 2 15000 30 LSTD 91.76 99.72 7.98%
25 2 0.8 0.8 1 5000 10 LSTD 37.06 49.64 25.35%
26 2 0.8 0.8 1 5000 30 MLSTD 45.80 49.64 7.74%
27 2 0.8 0.8 1 15000 10 MLSTD 45.80 49.64 7.74%
28 2 0.8 0.8 1 15000 30 LSTD 37.06 49.64 25.35%
29 2 0.8 0.8 2 5000 10 MLSTD 91.04 96.08 5.25%
30 2 0.8 0.8 2 5000 30 LSTD 73.32 96.08 23.69%
31 2 0.8 0.8 2 15000 10 LSTD 73.32 96.08 23.69%
32 2 0.8 0.8 2 15000 30 MLSTD 91.04 96.08 5.25%
33 6 0.2 0.2 1 5000 10 MLSTD 41.15 49.84 17.43%
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Table 5. Experimental Results Continued

Run V crew Ω β d̄ K N Algorithm J̄ J∗ Optimality Gap
34 6 0.2 0.2 1 5000 30 LSTD 17.38 49.84 65.13%
35 6 0.2 0.2 1 15000 10 LSTD 17.38 49.84 65.13%
36 6 0.2 0.2 1 15000 30 MLSTD 41.15 49.84 17.43%
37 6 0.2 0.2 2 5000 10 LSTD 32.77 99.23 66.97%
38 6 0.2 0.2 2 5000 30 MLSTD 81.60 99.23 17.76%
39 6 0.2 0.2 2 15000 10 MLSTD 81.60 99.23 17.76%
40 6 0.2 0.2 2 15000 30 LSTD 32.77 99.23 66.97%
41 6 0.2 0.8 1 5000 10 LSTD 6.49 49.20 86.80%
42 6 0.2 0.8 1 5000 30 MLSTD 40.38 49.20 17.93%
43 6 0.2 0.8 1 15000 10 MLSTD 40.38 49.20 17.93%
44 6 0.2 0.8 1 15000 30 LSTD 6.49 49.20 86.80%
45 6 0.2 0.8 2 5000 10 MLSTD 79.63 92.06 13.50%
46 6 0.2 0.8 2 5000 30 LSTD 10.34 92.06 88.77%
47 6 0.2 0.8 2 15000 10 LSTD 10.34 92.06 88.77%
48 6 0.2 0.8 2 15000 30 MLSTD 79.63 92.06 13.50%
49 6 0.8 0.2 1 5000 10 LSTD 32.39 49.94 35.14%
50 6 0.8 0.2 1 5000 30 MLSTD 42.82 49.94 14.27%
51 6 0.8 0.2 1 15000 10 MLSTD 42.82 49.94 14.27%
52 6 0.8 0.2 1 15000 30 LSTD 32.39 49.94 35.14%
53 6 0.8 0.2 2 5000 10 MLSTD 85.12 99.73 14.65%
54 6 0.8 0.2 2 5000 30 LSTD 63.71 99.73 36.12%
55 6 0.8 0.2 2 15000 10 LSTD 63.71 99.73 36.12%
56 6 0.8 0.2 2 15000 30 MLSTD 85.12 99.73 14.65%
57 6 0.8 0.8 1 5000 10 MLSTD 41.22 49.66 16.98%
58 6 0.8 0.8 1 5000 30 LSTD 16.60 49.66 66.57%
59 6 0.8 0.8 1 15000 10 LSTD 16.60 49.66 66.57%
60 6 0.8 0.8 1 15000 30 MLSTD 41.22 49.66 16.98%
61 6 0.8 0.8 2 5000 10 LSTD 31.17 96.82 67.81%
62 6 0.8 0.8 2 5000 30 MLSTD 81.54 96.82 15.78%
63 6 0.8 0.8 2 15000 10 MLSTD 81.54 96.82 15.78%
64 6 0.8 0.8 2 15000 30 LSTD 31.17 96.82 67.81%
65 4 0.4 0.4 1.5 10000 20 MLSTD 53.97 62.46 13.59%
66 4 0.4 0.4 1.5 10000 20 LSTD 53.97 62.46 13.59%

Table 6. Algorithm Performance Summary (Percent Optimal)

Algorithm Min Average Max
MLSTD 82.07% 88.67% 97.00%
LSTD 11.23% 56.81% 92.11%

Difference 70.84% 31.86% 4.89%

Table 7. Factors Influencing CUAV Resupply Amount

Variable Sum of Squares F Test % Contribution
V crew 0.8817961 < .0001 29.42%

Ω 0.1773044 < .0001 5.92%
β 0.1493092 < .0001 4.98%
d̄ 0.0056066 0.087 0.19%

Algorithm 1.4872921 < .0001 49.63%
V crew∗Algorithm 0.107545 < .0001 3.59%

Ω ∗ β 0.0236994 0.0007 0.79%
Ω∗Algorithm 0.0663471 < .0001 2.21%

β ∗ d̄ 0.0075274 0.0484 0.25%
β∗Algorithm 0.0903966 < .0001 3.02%
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an algorithm that can help improve cargo unmanned aerial vehicles (CUAV) resup–

ply performance. Development of a Markov decision process (MDP) model of the

MILIRP enables examination of the disparate conditions the military faces in hostile

environments.

Management of CUAV assets for resupply is an important issue to the United

States military. Poorly developed transportation infrastructure, adverse weather con–

ditions, terrain, enemy threat and actions, and the availability of distribution assets

all inhibit successful distribution of supplies from the brigade support area (BSA) to

the forward operating bases (FOBs). Moreover, insurgent use of improvised explosive

devices (IEDs) greatly affects truck mobility throughout the operational environment

and has been successful in disrupting replenishment procedures [25]. Since 2012 when

the K-MAX successfully deployed to Afghanistan [15], CUAVs have been of increasing

interest both to the United States and worldwide [14]. This paper provides unique in–

sight into using CUAVs in combat environments for resupply. High casualty rates for

convoy resupply missions have highlighted the importance of CUAV aerial resupply.

CUAV benefits include: better performance in adverse weather conditions, higher

flight ceilings, and no escort requirement restrictions. All these yield a lower prob–

ability of vehicle destruction via man-portable air-defense systems and small arms

fire. The most important benefit of CUAVs is their ability to save lives by alleviating

manned ground convoy resupply requirements. Although CUAVs do not yet have

the ability to completely handle FOB supply requirements, each successful CUAV

delivery means less men and women exposed to enemy threats to include IEDs.

We examined the MILIRP’s structural properties and developed an algorithm

that exploits this special structure. We have mathematically proven how the penalty

affects value function monotonicity specific to the MILIRP. We formulated an MDP

model of the MILIRP and determined the optimal policy on small instances in order to
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compare two approximate dynamic programming algorithms. We tested our approach

with an experimental design and empirically found that when a sufficient penalty is

applied, monotone least squares temporal differences (MLSTD) performs statistically

better and, ceteris paribus, performs no worse than least squares temporal differences

(LSTD).

Although MLSTD performed statistically better than LSTD in all tested in–

stances, the experimental region was explored in regions for which the post-processing

local search was designed. If we lower the number of CUAVs dispatched, the local

search heuristic would likely need to be tailored for the specific region of interest.

3.7 Follow-on Research

An important extension of our work involves expanding the number of forward

operating bases allowing routing CUAVs to deliver to more than one customer on

a delivery route. The integer program used within our algorithm will have to be

modified because we will have to simultaneously solve both a vehicle routing problem

and determine the optimal quantities to be delivered to each customer on a delivery

route.
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IV. Utilizing Heuristics Within a Least Squares Temporal
Differences Algorithm to Solve a Large Instance Stochastic

Inventory Routing Problem with Vehicle Loss

The remainder of this dissertation will refer to the brigade support battalion as

the central planner and the brigade support area as the support area (SA). This

chapter considers a military variant of the stochastic inventory routing problem with

vehicle loss in which the central planner must decide how many fully loaded CUAVs

to dispatch to fulfill the demand requirements of multiple FOBs. To fill this demand,

multiple delivery across a finite set of feasible CUAV routes is allowed. A Markov

decision process (MDP) model of the MILIRP that extends previous work on this

military inventory routing problem (MILIRP) in Chapter III is developed. The unique

aspect of the MILIRP includes the ability of enemy actions to permanently destroy the

transportation vehicles. Although convoy resupply currently makes up the majority

of tonnage of supplies delivered, insurgent use of improvised explosive devices make

convoy resupply costly and dangerous [25]. The effective use of cargo unmanned aerial

vehicles (CUAVs) can be instrumental in reducing loss of human capital in wartime

environments.

This chapter improves upon current research by increasing the size of the problem

instances previously considered and implementing and testing the monotone least

squares temporal differences (MLSTD) algorithm as developed in Chapter III. In–

creasing the state, action, and outcome spaces greatly increases the computational

complexity so that exact dynamic programming algorithms cannot be implemented.

Moreover, this chapter develops two new heuristic algorithms (i.e., Index and Roll–

out) and embed the Index and Rollout algorithms within the approximate dynamic

programming (ADP) techniques to solve these larger instances. To demonstrate the

efficacy of the proposed solution methodology, a notional, representative planning
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scenario based on an austere combat environment wherein convoy resupply may be

difficult like that of Afghanistan is constructed. The solution quality of the developed

Index and Rollout algorithms and two ADP techniques (i.e., least squares temporal

differencing (LSTD) and monotone LSTD as developed in Chapter III), which embed

these heuristics, are compared to a simple and easily implemented myopic strategy.

4.1 Markov Decision Process Model

This section describes the Markov decision process (MDP) model formulation

of the military inventory routing problem (MILIRP) that extends previous work in

Chapter III. The objective of the MILIRP is to determine the optimal resupply from

a central planner with multiple forward operating bases (FOBs) via inventory routing

decisions in order to maintain inventory. The reward function only rewards inventory

delivered that does not exceed FOB holding capacity. We assume the central planner

knows the inventory level at each FOB at the start of each period and that demand

has a known historical average with some variability. We model this variability as an

independent and identically distributed error term. We assume that no other external

event (e.g., fire, theft) other than demand causes a loss of inventory.

The central planner distributes supplies to the FOBs utilizing V identical cargo

unmanned aerial vehicles (CUAVs). Each CUAV has an identical load capacity of

V cap tons. We construct a finite set of routes a ∈ A that denotes the feasible routes

for CUAV routing. When multiple FOBs are visited along the CUAV route, it is

assumed that the load is evenly distributed among each FOB. V a is the amount of

supplies delivered to each FOB along route a. FOBs require D̂t tons of supplies per

time period t, a stochastic demand with a mean demand d̄ and an independent and

identically distributed exogenous error term ε̂. FOBs also have a finite maximum

holding quantity Rmax.
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Given dangers inherent in military resupply in a combat environment, there is

potential for delivery failure due to extrinsic uncontrollable factors (e.g., enemy action,

mechanical failure, extreme weather conditions). The probability of a CUAV being

destroyed depends on the threat conditions from these extrinsic factors. A set of

M threat maps models the periodic changes in risk throughout the central planner’s

area of operations. For threat map m = 1, 2, ...,M , the parameter ψma denotes the

probability of a successful trip from (to) the support area (SA) to (from) the FOB on

the specified route a. A CUAV may be destroyed on any segment of the given route

to include it’s flight to a FOB or after delivering supplies on the return route back to

the depot at the SA.

We next describe the MDP model formulation of the MILIRP. With respect to a

conventional inventory routing formulation, CUAVs are vehicles, FOBs are customers,

and the centralized planner is the supplier. Tables 8 and 9 located at the end of this

section provide a summary of the notation.

The MILIRP is formulated as an infinite horizon problem wherein at each decision

epoch t ∈ T = {1, 2, ...} an inventory routing decision is made. During each time

period a CUAV completes all tasks necessary to travel the specified route and return to

the SA. In this research routes are limited to only visiting a maximum of three FOBs.

Moreover, it is assumed that the route is within the fully loaded CUAV’s range and

that this route is serviceable in one time period. Current CUAV limitations validate

this assumption [19].

The state space includes three components: the inventory level at each of the

FOBs, the number of operational CUAVs, and the threat map index number. The

inventory for all FOBs is defined as rt, where rt = (rt1, rt2, ..., rtB) and rtb ∈ (0, Rmax)

is the number of tons of supplies at FOB b ∈ {1, 2, ..., B} at time t. Moreover,

Rmax is the maximum inventory capacity for the FOBs, and Rmin ∈ (0, Rmax) is the

48



minimum threshold inventory level that must be exceeded (i.e., the safety stock level).

If rtb ≤ Rmin then resupply via convoy ground lines of communication (GLOC) is

required for that FOB. The number of operational CUAVs able to perform resupply

operations at time t is defined as vt. The threat map index number at time t is

defined as mt ∈ {1, 2, ...,M}. The threat map impacts the flight risk associated

with successfully completing sorties between the FOBs and the SA. The threat map

information mt is available at time t. The threat map information mt+1 available at

time t+1 is conditioned on mt and is unknown at time t. Utilizing these components,

we define st =
(
rt, vt,mt

)
∈ S as the state of the system at time t, where S is the set

of all possible states. Furthermore, each CUAV begins and ends each day at the SA.

We let X (st) be the set of all feasible actions when the system is in state st.

Let xt = (xdt , x
GLOC
t ) ∈ X (st) denote an inventory routing decision wherein xdt =

(xdt1, x
d
t2, ..., x

d
tA), xGLOCt = (xGLOCt1 , xGLOCt2 , ..., xGLOCtB ), xdta ∈ N0 denotes the number

of fully loaded CUAVs dispatched to resupply the FOBs along route a ∈ A and

xGLOCtb ∈ {0, 1} denotes whether a ground convoy is dispatched to resupply FOB b,

which results in its inventory level increasing to capacity. Only CUAV resupply is

available for a FOB if the inventory level is greater than the safety stock threshold

(i.e., rtb > Rmin). Only GLOC resupply is available if the inventory level is less than

or equal to the safety stock threshold (i.e., rtb ≤ Rmin). Two constraints impact

the CUAV routing decision: first, the number of CUAVs deployed cannot exceed the

number of operational CUAVs (i.e., xdt ≤ vt); second, the number of CUAVs deployed

cannot exceed the number of crews available (i.e., xdt ≤ V crew). We assume that each

CUAV carries a maximum capacity load of V cap and divides its load equally among all

the FOBs visited along the route. The policy (i.e., decision function) Xπ(st) returns a

decision xt ∈ X (st) as a function of the system state st ∈ S. After a routing decision

is made, delivery is performed within one time period.
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Transition probabilities are defined for each dimension of the state space to include

the inventory level at each FOB, number of remaining CUAVs, and threat map.

Inventory transitions are based on the routing decision xt and the current state of the

system st. When CUAVs are routed to the FOBs there are two possible outcomes:

first, a CUAV may successfully travel along its route and return to the SA; second, a

CUAV may be destroyed along its route before returning to the SA. Let ψSSSSma denote

the probability of a successful round trip delivery along a three FOB route a, ψSSSFma

denote the probability of a successful three leg FOB delivery along a three FOB route

a, ψSSFFma denote the probability of a successful two leg FOB delivery along a three

FOB route a, ψSFFFma denote the probability of a successful one leg FOB delivery along

a three FOB route a, and ψFFFFma denote the probability of a failed delivery along a

three FOB route a for a single CUAV routed to resupply FOBs during the threat

conditions of map m = 1, 2, ...,M . Outcome probabilities for 1- and 2-FOB routes

are similarly defined.

Since we are interested in a particular outcome of a routing decision, we proceed by

defining the binomial marginal distributions for each outcome type (i.e., SSSS, SSSF,

SSFF, SFFF, FFFF, SSS, SSF, SFF, FFF, SS, SF, FF). With the assumption that

each outcome of a resupply mission to the FOBs are independent of other missions

and recalling that xt includes the decision to route xdt CUAVs to FOBs (each carrying

a full supply load), we let ẐSSSS
t+1,b (ψSSSSma , xdta) denote the binomial random variable

with parameters ψSSSSma and xdta that indicates the number of successful round trip

CUAV deliveries to FOB b in route a during time interval [t, t+ 1) on map m. Let all

other outcomes (i.e., SSSS, SSSF, SSFF, SFFF, FFFF, SSS, SSF, SFF, FFF, SS, SF,

FF) be similarly defined. For compactness, we refer to the set of random variables

that indicate resupply mission outcomes for each FOB as follows:

Ẑt+1,b =
{
ẐSSSS
t+1,b , Ẑ

SSSF
t+1,b , ..., Ẑ

SS
t+1,b, Ẑ

SF
t+1,b, Ẑ

FF
t+1,b

}
. (17)
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Moreover, the outcome denoting the number of CUAVs that are destroyed in time

interval [t, t + 1) is the summation of all failures as shown in Equation 20 where we

drop the FOB distinction b, thereby denoting the total number of failures across all

FOBs as demonstrated in Equation 18.

ẐSSSF
t+1 =

B∑
b=1

ẐSSSF
t+1,b (18)

The inventory levesl at the FOBs are limited by the maximum holding quantity

Rmax. Moreover, if the FOB supply level is less than or equal to a safety stock

threshold, Rmin, the FOB must be fully resupplied via ground convoy. Equation 19

is the inventory transition function for the FOB.

rt+1,b =



Rmax if xGLOCtb = 1

min
(
rtb + V a(Ẑt+1,b)− D̂t+1, Rmax

)
if
∑
a∈A

xdtab > 0

rtb − D̂t+1 otherwise.

(19)

In the first case, convoy resupply is selected, and the FOB is resupplied to capacity.

In the second and third cases, the FOB inventory level changes according to supplies

received and realized demand. The minimization in the second case enforces the FOB

capacity constraint.

CUAV transition is contingent on the number of CUAVs that fail to return to the

SA after attempting to travel their route. The number of CUAVs transition according

to Equation 20.

vt+1 = vt− (ẐSSSF
t+1 + ẐSSFF

t+1 + ẐSFFF
t+1 + ẐFFFF

t+1 + ẐSSF
t+1 + ẐSFF

t+1 + ẐFFF
t+1 + ẐSF

t+1 + ẐFF
t+1)

(20)

The map transition function is a representation of the uncontrolled stochastic as–

pect of the combat environment. The set of all maps captures the threat level of

the operational environment. The map transitions are representative of the changing
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environment. For relatively static combat conditions, the map transition probabil–

ity would be relatively low. More dynamic combat environments yield a relatively

higher map transition probability. The central supplier’s intelligence teams gather

information on threat conditions based on information such as enemy action, season,

historical trends, and weather.

The contribution function rewards the system based on the amount of supplies

delivered by CUAV to the FOBs. The amount of supplies delivered is bounded above

by the maximum inventory quantity at each FOB, constraining any excess supplies

delivered from affecting the system behavior. An immediate penalty, τ̄ > 0, is applied

if the FOB’s inventory level is less than or equal to the safety stock threshold Rmin

due to the human risk associated with ground convoy resupply. The below-threshold

penalty function for each FOB,

τ(rb) =


0 if rb > Rmin

τ̄ if rb ≤ Rmin

, (21)

allows the application of a penalty that can capture the difficulty of resupplying FOBs

via ground convoy. We chose to set the penalty at the max inventory level at the FOB,

Rmax, so as to encourage CUAV resupply. Moreover, previous results in Chapter III

indicate that on smaller instances monotonicity can be maintained if the penalty is

set to this value. We present our contribution function in Equation 22.

C(st, xt) = E
{ B∑

b=1

min
(
Rmax − rtb + D̂t+1, V

a · (Ẑt+1,b)
)
− τ(rtb)

∣∣∣st, xt} (22)

The single-period contribution (i.e., reward) is determined by the amount of supplies

successfully delivered to the FOBs. However, the system is not rewarded for excess

supplies (i.e., FOBs cannot take delivery of supplies in excess of their capacity).
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The objective of this MDP is to maximize the expected total discounted reward

over an infinite horizon. By definition, the transitions are Markovian. All decisions

made at time t depend only on the current state of the system. To obtain the policy

that maximizes the expected total discounted reward, Bellman’s optimality equation,

shown in Equation 23, is solved.

J(st) = max
x∈X (st)

(
C(st, x) + λE{J(st+1)|st, x}

)
(23)

The value of being in state st results from choosing the action that maximizes the

expected immediate contribution and the discounted expected future value of the

system at time t+1. The parameter λ ∈ [0, 1) denotes the discount factor. Using this

MDP formulation, an approximate dynamic programming algorithm can be developed

to obtain policies for resupplying the FOB via CUAVs.

4.2 Solution Methodology

This section introduces the Index and Rollout algorithms based on the quiz prob–

lem heuristic that balance risk with potential rewards to more effectively solve the

military inventory routing problem (MILIRP), a variant of the stochastic inventory

routing problem (IRP). These algorithms can be applied individually or within the

construct of approximate dynamic programming. For comparison, we also intro–

duce an adapted monotone least squares temporal differences (MLSTD) algorithm as

developed in Chapter III and show how we can utilize either the Index or Rollout

algorithmic technique to solve the required inner maximization problem. We first

present the least squares temporal differences (LSTD) algorithm and note where and

how the monotone variant, MLSTD, differs.
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Table 8. Table of Notation

a = feasible route counter
b = forward operating base counter
ci = monotone ordering of sampled observations
C = contribution function
d = daily FOB demand
e = observed value for constrained least squares optimization
E = matrix of sampled observations generated from LSTD sampling
F = failure to deliver supplies
g = route segment or leg of route a
h = constraint for constrained least square optimization
H = constraint matrix for constrained least square optimization
I = indicator variable
J = total expected reward (cost-to-go) function
k = policy evaluation loop counter
K = number of policy evaluation loops
M = number of threat maps
n = policy improvement loop counter
N = number of policy improvement loops
r = supplies on hand

Rmin = supply threshold
Rmax = FOB holding capacity
s = state of system
t = time epoch
v = current number of CUAVs
V = number of inital CUAVs
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Table 9. Table of Notation Continued

V a = the amount of supplies delivered to each FOB along route a
V cap = CUAV holding capacity
V crew = number of crews
w = exogenous information process
x = actions
Z = set of random variables corresponding to the number of

possible SS, SF, and F events
A = set of all feasible routes
F = set of basis function features
G = set of all feasible legs
S = state space
T = set of time epochs
X = action space
α = stepsize
β = probability of remaining in the high threat map
θ = vector of weights
λ = discount factor
π = policy
τ = penalty cost
ψma = one-way probability a CUAV successfully reaches its destination on route a
φ = basis function
Φ = matrix of fixed basis functions
Ω = probability of remaining in the low threat map
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ADP Formulation.

Both of the considered approximate dynamic programming (ADP) algorithms

utilize an approximate policy iteration (API) framework with a least squares tempo–

ral differences (LSTD) value function approximation scheme. API mirrors the exact

policy iteration algorithm closely. These API algorithms approximate and update

the value function after simulating system trajectories instead of using the one-step

transition matrix that is difficult to utilize when solving problems with high dimen–

sionality. We choose to utilize the post-decision state, which is the state of the system

immediately after a decision is made but before the exogenous information processes

are realized. This allows the expectation to be moved outside of the maximization

operator, altering our value function to the form

Jx(sxt ) = E
{

max
x∈X (st+1)

(
C(st+1, x) + γJx(sxt+1)

)
|sxt
}
.

LSTD utilizes a set of basis functions that capture relevant system information to

reduce the dimensionality of the state space, providing an approximate solution [27].

Let φf (s), f ∈ F , denote a basis function where F is a set of features. The value

function approximation is given by

J̄x(sxt |θ) =
∑
f∈F

θfφf (s
x
t )

wherein θ = (θf )f∈F is a column vector of weights with one coefficient for each

basis function. We select the number of features to be fewer than the size of the

state space so that it is computationally efficient to estimate the value function using

basis functions. Choosing an appropriate set of basis functions can be challenging;

however, once selected, classical linear regression methods can be used to to generate

the θ estimate.
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LSTD iteratively updates the value function approximation for a fixed policy and

projects it over an infinite horizon. LSTD subtracts the current value of being in a

state from the updated value of being in a state at the following iteration to obtain

a temporal difference. Powell [27] refers to this process as a batch algorithm that

operates by collecting samples of temporal differences and then uses least squares

regression to find the best linear fit. LSTD obtains a least squares regression fit so

that the sum of the temporal differences over the simulation is as equal to zero as

possible.

The algorithm collects a total of K temporal difference sample realizations in each

policy evaluation loop where the kth temporal difference is denoted C(st,k, X
π
θ (st,k))+

γθ>φ(sxt,k) − θ>φ(sxt−1,k) where φ(·) is a column vector of basis function evaluations

and the policy (i.e., decision function) Xπ
θ (st,k) is defined as indicated below

Xπ
θ (st,k) = arg max

x∈X (st)

C(st, x) + γJ̄(sxt |θ).

To solve the approximate dynamic program, we need to solve the routing portion

of the problem. To generate routing solutions, we utilize two separate algorithms of

our own design for comparison. The first, which we call the Index algorithm, is a

holistic routing scheme utilizing the quiz problem heuristic to generate routes while

the second uses a segmented rollout algorithm approach as a value function estimator

to make decisions. The Index algorithm selects the first available CUAV and examines

all feasible routes utilizing the quiz problem heuristic to generate a value estimation

for each route. The route with the highest value estimation is selected, the decision

is recored, and inventory levels are updated according to the decision. The process

is then repeated until all available CUAVs have been assigned a route. The decision

can then be given to the dynamic programming algorithm. Our Index algorithm is

summarized in Algorithm 2.
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Algorithm 2 Index algorithm route construction utilizing the quiz problem heuristic

Step 1. For all available CUAVs, v = 1, 2, ...,min(vt, V
crew)

Step 2a. For all possible routes a = 1, 2, ..., A
Utilizing the quiz problem heuristic

ψma min(
B∑
b=1

Rmax−rtb+D̂t+1,V cap)

(1−ψma)
, generate the value function

estimation for each route
End

Step 2b. Assign CUAV route with max value
Step 2c. Record the decision for the vth CUAV and update

inventory levels
End

Step 3. Provide routing decision to the appropriate dynamic programming
algorithm

Modeling the success of the CUAV route holistically as in Algorithm 2 is ad–

vantageous because it emphasizes selecting routes wherein the CUAV has greater

probability of survival to deliver supplies in the future. This method will avoid routes

that have low probability of success in favor of more easily accessible bases.

For our Rollout algorithm, the value for the gth leg is calculated in Equation 24

where the risk of each segment of the route is individually captured, and the value

of the CUAV to deliver supplies in the future is explicitly captured as well. The

segmented Rollout algorithm approach is summarized in Algorithm 3.

Vg =
ψma1

min(Rmax − rtb1 + D̂t+1,
V cap

g
) + ... + ψmag min(Rmax − rtbg + D̂t+1,

V cap

g
) + ψmaV

cap

(1− ψma)
(24)

After a decision is made, the ADP algorithm proceeds by collecting samples. Let

Φt−1 and Φt be K × |F| matrices that consist of rows of basis function evaluations of

the sampled post-decision states and Ct as the contribution vector for the sampled

events as shown in Equation 25. The sample realization θ̂ is calculated using linear

regression for each policy evaluation loop n = 1, 2, ..., N .
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Algorithm 3 Rollout algorithm route construction utilizing the quiz problem heuris–
tic

Step 1. For all available CUAVs, v = 1, 2, ...,min(vt, V
crew)

Step 2a. For From current location select all g ∈ G such that the
current location is an end point of g and g is not already
part of the path.
Utilizing Equation 24, select the best gth leg and
update each expected inventory level of all FOBs visited.
End

Step 2b. Record the decision for the vth CUAV and update
inventory levels

End
Step 3. Provide routing decision to the appropriate dynamic programming

algorithm

Φt−1 ,


φ(sxt−1,1)>

...

φ(sxt−1,K)>

 ,Φt ,


φ(sxt,1)>

...

φ(sxt,K)>

 , Ct ,

C(st,1, xt)

...

C(st,K , xt)

 (25)

We now discuss the monotone adaption to LSTD (MLSTD) as done in Chapter

III. Recall that the value function approximation is given by

J̄(s|θ) =
∑
f∈F

θnfφf (s),

where the reliance on the parameter vector θ and the associated policy improvement

iteration counter n is made more explicit here. The basis for understanding the

MLSTD algorithm’s ability to be projected to the infinite horizon is accomplished by

examining the linear architecture where updates are given by

θn ∈ arg min
θ
{‖θ − θn−1‖2 : J̄(snt |θ) = zn(snt ) and J̄(snt |θ) is monotone},
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wherein zn(snt ) is the the approximated value smoothed with the value from the

preceding iteration. In Chapter III we utilize constrained least-squares optimization

as a monotone projection operator to enforce value function monotonicity within the

construct of LSTD. For constrained linear least-squares problems, we solve a convex

optimization problem of the following form:

min
θ

1

2
||Eθ − e||22 s.t. Gθ ≤ g. (26)

The E matrix is the matrix of sampled observations generated from the LSTD sam–

pling (i.e., (Φt−1−γΦt)) with e being the observed value (i.e., Ct). Herein we explore

two possible ways to generate the constraint matrix G with the associated constant g.

The first involves generating K−1 constraints for the K observations by the following

formula:

(ci − ci+1)θ ≤ 0, i = 1, 2, ..., K − 1

where ci is a monotone ordering of sampled observations. Although this constraint

matrix enforces monotonicity, it may result in memory issues due to the need to

generate K − 1 constraints for each dimension. Alternatively, Ahrens [2] shows the

necessary and sufficient conditions that ensure global monotonicity in one or more

dimensions based on the intuition derived from calculus (i.e., a function is monotone

if d
dx
f(x) ≥ 0). With each dimension arranged in non-decreasing order and scaled

to lie in the interval [0, 1], the necessary and sufficient conditions for non-decreasing

monotonicity of the quadratic response surface is given by Equation 27:

θlinearf + 2 min(θquadraticf , 0) +
∑

f ′∈F ,f 6=f ′
min(θcrossff ′ , 0) ≥ 0, ∀f ∈ F (27)

wherein θlinear, θquadratic, and θcross represent all linear, quadratic, and cross product
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features, respectively.

The monotone least squares temporal differences (MLSTD) algorithm takes the

batch sampling from the LSTD methodology and generates the sample realization θ̂,

enforcing monotonicity projection by solving Equation 26 and utilizing Equation 27

to generate monotonicity constraints. The MLSTD pseudo code is summarized in

Algorithm 4.

Algorithm 4 Approximate Policy Iteration Using Monotone Least Square Temporal
Differences (MLSTD)

Step 0. Initilize θ0

Step 1. For n=1 to N (Policy Improvement Loop)
Step 2. For k=1 to K (Policy Evaluation Loop)

a. Generate a random post-decision state, sxt−1,k

b. Record φ(sxt−1,k)
c. Simulate transition to next event; obtain
pre-decision state st,k
d. Determine decision x = Xπ

θn−1(st,k) using the route
selection algorithm
e. Record contribution C(st,k, x)
f. Record basis function evaluation φ(sxt,k)
End

Step 3. Compute θn using monotone projection operator
Equation 26 and smoothing rule Equation 29

End

We then smooth in the new observation θ̂ with the previous estimate θ by applying

a harmonic stepsize rule to during implementation. The stepsize rule αn is a function

of the outer loop iteration count and is defined below.

αn =
1

n
(28)

Utilizing the harmonic stepsize rule, we update our θ in the following way:

θn ← θn−1(1− αn) + θ̂(αn). (29)
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Equation 29 shows that the updated θn is weighted most heavily by our current

estimate, θn−1 and then moved toward our new estimate, θ̂, by an incremental amount

proportional to αn. Initially, greater emphasis is placed on θ̂, but as the number of

iterations increases the incremental effect of θ̂ is lessened. Moreover, as the number

of iterations increases, any single θ̂ has less influence than the estimate based on

information from the first n− 1 iterations.

Upon obtaining an updated parameter vector θ, we have completed one policy

improvement iteration of the algorithm. The parameters N and K are tunable, where

N is the number of policy improvement iterations completed and K is the number

of policy evaluation iterations completed. After both loops are completed the ADP

algorithm has generated a policy and terminates.

4.3 Analysis

Utilizing the Markov decision process (MDP) formulation discussed in Section 4.1,

we can find a policy for a five forward operating base (FOB) problem instance. We

compare our two proposed route construction methods within the construct of our

approximate dynamic programming (ADP) algorithm. Moreover, we run a designed

experiment to find the algorithmic and model parameters that yield the best results

for our ADP algorithm.

MDP Parameterization.

The military inventory routing problem (MILIRP) is formulated as an infinite

horizon MDP wherein a single period represents a 6-hour interval. We assume that

during each period the cargo unmanned aerial vehicle (CUAV) completes all mission

preparation tasks and performs the assigned mission.

We consider a battalion made of subordinate units that each have a consumption
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rate and storage capacity based on the number of personnel on site. Based on a

General Dynamics report [13], the expected daily consumption requirements of a

platoon is 7, 482 pounds. We round up as a conservative estimate to an 8,000 pound

daily average consumption. With four periods in one day, about one ton of supplies

per period is required for sustainment. For our testing, we model the stochastic

demand using this known historical average d̄ and a randomly generated error term,

ε̂, uniformly distributed on the interval [−0.5, 0.5]. We also make the conservative

assumption that the FOB has a maximum holding capacity of three times the daily

average requirement, totaling 12 tons. We assume that there are no logistical failures

limiting the amount of supplies available at the central planner. This assumption is

reasonable since the central planner is supplied via fixed wing aircraft from outside

the theater of operations.

In order to make the most conservative CUAV carrying capacity choice, we look

at carrying capacity at maximum altitude under the assumption that this altitude

will minimize the probability of CUAV destruction. We chose a conservative two

ton carrying capacity for CUAV resupply because Lockheed Martin’s K-MAX CUAV

has delivered two tons at 15, 000 feet above ground level (AGL) with more tonnage

delivered at lower altitudes [19]. We also chose the number of CUAVs and crews to be

eight and four respectively, which mirrors operations for tactical unmanned aircraft

system (TUAS) platoons [10]. As the requirements for CUAV resupply increase, we

expect to see the number of CUAVs and crews the central planner utilizes to increase.

As such, we parameterize the CUAVs and crews as multiples of TUAS platoon ratios.

For example, if three TUAS platoons are deployed at the central planner, the number

of CUAVs would be 12 and the number of crews 6.

Recall from Section 3.2 that ψma denotes the probability of a successful route

completion from (to) the support area (SA) to (from) the FOBs along route a on
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map m. An intelligence team would assign risk values to each route in the area of

operations (i.e., region). This number would account for threats to include but not

limited to: weather, enemy action, and mechanical breakdown. Transition between

maps can be created by leveraging observed trends specific to the region of interest.

These problems influence threat levels, which might include time of the year. For

our example, we chose to use M = 2 threat maps and parametrized penalizing longer

flights with lower probability of success as shown below where the brigade support

area is the first row. Feasible routes on the network are restricted by distance and

routes are restricted to visit a maximum of 3 FOBs. The problem instance diagram is

shown in Figure 2. The probability of successful one-way delivery across the network

is shown for each threat map below where the first position in the matrix represents

the SA.

m1 =



1 .99 .99 .95 .99 .99

.99 1 .99 .90 0 0

.99 .99 1 .95 .95 0

.95 .90 .95 1 .95 .90

.99 0 .95 .95 1 .99

.99 0 0 .90 .99 1


m2 =



1 .95 .95 .90 .95 .95

.95 1 .95 .85 0 0

.95 .95 1 .90 .90 0

.90 .85 .90 1 .90 .85

.95 0 .90 .90 1 .95

.95 0 0 .85 .95 1


We vary the transition probability in our experimental design to investigate the

effects of region volatility on algorithmic outcome. We select an initial probability of

0.5 to remain in the current threat map to model the current instability of the region.

When a FOB’s supply level falls below its predetermined minimum threshold, the

FOB is immediately be resupplied via ground convoy to full capacity. When a convoy

is sent, the penalty is immediately applied. The penalty represents the increased risk

of supply stock out as well as risk to human life inherent in ground convoy operations.
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Figure 1. Problem Instance

This penalty would ideally be supplied by a subject matter expert who knows the

dangers associated with the specific FOB. This penalty incentivizes CUAV resupply

when possible. We set the penalty function τ̄ to be the maximum inventory level

Rmax, which is applied when the inventory level is less than or equal to the Rmin

threshold to be consistent with previous research in Chapter III.

We chose λ = 0.98 to be a discount factor that balances future needs with current

needs. We utilized the above described MDP parameterization to create policies using

the Index, and Rollout algorithms within the construct of the LSTD and MLSTD

ADP solution techniques.

ADP Policies.

We obtain ADP policies from the monotone least squares temporal differences

(MLSTD) algorithm and least squares temporal differences (LSTD) algorithm as

explained in Section 3.2. We compare these ADP generated polices to those generated

by the Index algorithm, Rollout algorithm, and a myopic strategy. The challenge with

both these ADP algorithms is developing basis functions that accurately approximate

the optimal value function. These algorithms are employed with the system initialized

at full capacity for each FOB, and the resultant policy is compared over a one-month
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planning horizon.

We develop ADP policies using our proposed route generation techniques in both

LSTD and MLSTD algorithms. Our basis function includes first order effects for cur–

rent inventory level, CUAVs not deployed, and number of CUAVs deployed. More–

over, we also chose to include the second-order inventory effect. Our proposed Index

and Rollout algorithms quickly generate solutions, allowing us to perform a designed

experiment with more breadth in a reasonable amount of time.

Baseline Instance.

We selected a representative baseline instance as a reference point for testing

the routing algorithm’s performance consistent with previous research. The baseline

instance has 12 CUAVs, 2 crews, probability of staying in a low threat map of 0.8,

probability of staying in a high threat map of 0.2, average period demand of 1 ton, with

associated algorithmic features K = 5000 and N = 30. The algorithm’s performance

is compared to a myopic policy of direct delivery replenishment to the lowest inventory

FOB. The baseline performance is shown in Table 10. The baseline scenario compares

MLSTD and LSTD using Index and Rollout algorithms. For the baseline instance, all

the proposed solution techniques performed better than the myopic policy. However,

both LSTD algorithms performed substantially better than MLSTD algorithms. This

illustrates the importance of the loss of the value functions monotonicity on using an

approach based on monotone properties when those properties are violated. For this

instance, the proposed Index and Rollout generated policies performed better alone

than when implemented as part of a larger approximate dynamic programing method.

It appears that our proposed Index and Rollout algorithms produce better results, so

we expanded our experimental region of search with a designed experiment.
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Table 10. Baseline Instance

Algorithm Value % Improvement
Myopic 92.87 -

MLSTD-Index 133.92 44.20%
MLSTD-Rollout 139.92 50.66%

LSTD-Index 320.90 245.54%
LSTD-Rollout 304.69 228.08%

Index 339.45 265.51%
Rollout 336.87 262.73%

Experimental design.

We created an experimental design to test the robustness of our ADP algorithm

parameters and find the parameter settings that allow our proposed algorithmic ap–

proach to achieve the best performance. We focused our response variable on the

total value of the system when initialized at full capacity. Baseline results indicate

that the value function does not maintain monotonicity, resulting in MLSTD’s poor

performance. We first run a screening design to confirm this hypothesis. In each ex–

perimental run, we simultaneously assess five problem features and four algorithmic

features. The five problem features of interest were chosen based on what we thought

might have the most effect on the system performance. The problem features we

chose to investigate are initial number of CUAVs (V ), number of crews available

(V crew), probability of staying in a low threat map (Ω), probability of staying in a

high threat map (β), and the average demand (d̄). The four algorithmic features we

chose to experiment on are inner loop iteration count (K), outer loop iteration count

(N), a categorical variable indicating whether MLSTD or LSTD is applied, and a

categorical variable indicating whether the Index or Rollout algorithm was used for

the inner maximization problem within our chosen ADP algorithm. We simulate each

resultant policy over one month and compare performance in both amount of supplies

delivered by CUAV and number of ground convoys sent.
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For analysis, each of the five problem features are considered to be continuous.

We chose the vehicle and crew level to be levels associated with deploying two, three,

and four TUAS platoons at the SA. This was done under the assumption that as

commanders increasingly value CUAV resupply, TUAS platoons will be sent in greater

numbers to support brigade operations. The probability of remaining in a low or high

threat map, Ω and β respectively, are parameterized to explore how regional volatility

affects the value function. The lower value, 0.2, denotes a low chance of transitioning

to a different threat map condition. The upper value, 0.8, denotes a high probability

of transitioning to a different threat map condition. Demand was chosen to range

from current consumption rates (i.e., one ton every six hours) to a considerably larger

rate of consumption (i.e., two tons every six hours) to explore how demand schedule

increases would affect the system.

The four algorithmic features were chosen to best explore the experimental space.

The inner loop count was set to a low of 5, 000 and a high of 15, 000 based on initial

testing. The center run is the midpoint of the upper and lower bounds and allows

us to determine if our response variable demonstrates nonlinearity. The outer loop

iteration counter was similarly chosen, allowing for a large upper bound to achieve

the most accurate value function approximation for the basis functions we selected.

Table 11 shows the problem and algorithmic settings for our experimental design.

We first implemented a 29−4 resolution IV fractional factorial screening design

with four center runs totaling 36 runs. After screening two variables, we imple–

mented a 27−1 resolution VI fractional factorial design with four center runs totaling

68 runs. In a resolution VI design, all first- and second-order effects are free from

being aliased with other first- and second-order interactions. For each design run, a

myopic, MLSTD, and LSTD policy is determined. Recall that an ADP policy utilizes

θ-coefficients that correspond to selected basis functions. After the θ-coefficients are

68



Table 11. Factorial Screening Design Settings

Description Factor Low Center High
Initial number of CUAVs V 4 8 12

Number of crews V crew 2 4 6
Probability of remaining low threat Ω 0.2 0.5 0.8
Probability of remaining high threat β 0.2 0.5 0.8

Average Demand d̄ 1 1.5 2
Number of inner loops K 5000 10000 15000
Number of outer loops N 10 20 30

Algorithm Strategy MLSTD - LSTD
Routing strategy Heuristic Rollout - Index

determined, we compute the resulting MLSTD and LSTD policies and compare them

to the myopic policy over a one-month planning horizon.

Results.

Screening led us to explore five problem features while reducing the algorithmic

features to two: a categorical variable where ‘Myopic’ denotes myopic strategy and

‘LSTD’ denotes an LSTD solution strategy, and a categorical variable where ‘Rollout’

denotes using our proposed Rollout algorithm and ‘Index’ indicates using our pro–

posed Index algorithm for the inner maximization problem within our chosen ADP

algorithm. The experimental design settings are shown in Table 12. Interestingly, the

policy value was invariant to outer and inner loop count. We found that LSTD would

quickly converge to the estimated policy. Moreover, although subsequent iterations

would update value function weights θn for iteration n, the generated policy would

be invariant to the resulting change.

Tables 13 and 14 show the results from the experiment, with two additional

columns, indicating the value of using our proposed Index and Rollout algorithms

with the corresponding design settings. Although the values shown in the rightmost

three columns are mostly negative, which reflect the large penalty function we se–

lected, the goal is maximization. These values reflect the overall performance of the
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Table 12. Factorial Parameter Design Settings

Description Factor Low Center High
Initial number of CUAVs V 4 8 12

Number of crews V crew 2 4 6
Probability of remaining low threat Ω 0.2 0.5 0.8
Probability of remaining high threat β 0.2 0.5 0.8

Average Demand d̄ 1 1.5 2
Algorithm Strategy Myopic - LSTD

Routing strategy Heuristic Rollout - Index

selected algorithm on the specific problem instance where more is better. The ‘Value

ADP’ column reflects the value of either the myopic policy or ADP policy as shown

in the ‘LSTD’ column. Although the ‘Index’ and ‘Rollout’ columns weren’t used

in the experimental design, they are included here for reference. Throughout the

experimental region both Index and Rollout algorithms performed better than the

ADP technique. Since both proposed heuristic search algorithms are far less com–

putationally intensive, this is a great result. Although these other two techniques

outperformed the ADP technique, the LSTD policy still outperformed the myopic

policy, performing 22% better on average. The problem features for which the LSTD

algorithm performed best include when probability of staying in a low threat map,

initial number of CUAVs, and number of crews were at their high levels, and when

demand and probability of staying in a high threat map were at their low levels.

The algorithmic features that produced the best values are when LSTD and the in–

dex heuristic is used. This intuitive result is caused by LSTD’s ability to send more

CUAVs in the relatively safer operating condition.

We next created a regression metamodel to analyze the parameter design effects

with more statistical rigor. A stepwise regression procedure yields factors that pro–

duce a significant relationship and pass the lack of fit test. Both the resulting models

include significant first- and second-order terms and performs very well in terms of

prediction ability with an adjusted R2 over 0.99. The residuals do not show signs of
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Table 13. Experimental Results

Run V K Ω β d̄ K N Heuristic LSTD Value ADP Value Index Value Rollout
1 4 2 0.2 0.2 1 5000 10 Rollout LSTD -360.88 -294.88 -300.89
2 4 2 0.2 0.2 1 5000 10 Index Myopic -361.47 -290.68 -279.92
3 4 2 0.2 0.2 2 5000 10 Rollout Myopic -909.25 -835.48 -836.84
4 4 2 0.2 0.2 2 5000 10 Index LSTD -900.69 -825.37 -840.32
5 4 2 0.2 0.8 1 5000 10 Rollout Myopic -398.07 -377.93 -369.56
6 4 2 0.2 0.8 1 5000 10 Index LSTD -402.15 -370.17 -359.81
7 4 2 0.2 0.8 2 5000 10 Rollout LSTD -945.63 -908.55 -916.15
8 4 2 0.2 0.8 2 5000 10 Index Myopic -945.57 -905.48 -921.54
9 4 2 0.8 0.2 1 5000 10 Rollout Myopic -309.95 -143.68 -111.14
10 4 2 0.8 0.2 1 5000 10 Index LSTD -259.88 -137.63 -117.37
11 4 2 0.8 0.2 2 5000 10 Rollout LSTD -864.94 -677.76 -672.92
12 4 2 0.8 0.2 2 5000 10 Index Myopic -766.78 -670.49 -684.23
13 4 2 0.8 0.8 1 5000 10 Rollout LSTD -355.57 -305.15 -297.67
14 4 2 0.8 0.8 1 5000 10 Index Myopic -372.84 -296.20 -295.16
15 4 2 0.8 0.8 2 5000 10 Rollout Myopic -907.89 -835.31 -842.03
16 4 2 0.8 0.8 2 5000 10 Index LSTD -871.50 -845.01 -847.43
17 4 6 0.2 0.2 1 5000 10 Rollout Myopic -373.17 -321.09 -322.61
18 4 6 0.2 0.2 1 5000 10 Index LSTD -384.29 -334.04 -324.45
19 4 6 0.2 0.2 2 5000 10 Rollout LSTD -901.99 -845.01 -845.45
20 4 6 0.2 0.2 2 5000 10 Index Myopic -919.79 -854.91 -836.60
21 4 6 0.2 0.8 1 5000 10 Rollout LSTD -413.65 -390.09 -382.77
22 4 6 0.2 0.8 1 5000 10 Index Myopic -402.62 -384.10 -379.05
23 4 6 0.2 0.8 2 5000 10 Rollout Myopic -967.82 -907.74 -907.39
24 4 6 0.2 0.8 2 5000 10 Index LSTD -939.87 -906.22 -920.12
25 4 6 0.8 0.2 1 5000 10 Rollout LSTD -304.37 -200.31 -197.95
26 4 6 0.8 0.2 1 5000 10 Index Myopic -290.23 -186.00 -201.95
27 4 6 0.8 0.2 2 5000 10 Rollout Myopic -838.33 -712.10 -701.36
28 4 6 0.8 0.2 2 5000 10 Index LSTD -780.57 -699.45 -697.93
29 4 6 0.8 0.8 1 5000 10 Rollout Myopic -378.40 -322.64 -345.77
30 4 6 0.8 0.8 1 5000 10 Index LSTD -368.85 -328.83 -342.83
31 4 6 0.8 0.8 2 5000 10 Rollout LSTD -901.54 -845.60 -850.93
32 4 6 0.8 0.8 2 5000 10 Index Myopic -914.59 -851.85 -846.60
33 12 2 0.2 0.2 1 5000 10 Rollout Myopic -30.35 209.84 177.90
34 12 2 0.2 0.2 1 5000 10 Index LSTD -61.07 199.05 187.68
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Table 14. Experimental Results Continued

Run V K Ω β d̄ K N Heuristic LSTD Value ADP Value Index Value Rollout
35 12 2 0.2 0.2 2 5000 10 Rollout LSTD -608.02 -383.42 -394.37
36 12 2 0.2 0.2 2 5000 10 Index Myopic -576.61 -370.62 -387.07
37 12 2 0.2 0.8 1 5000 10 Rollout LSTD -186.41 17.29 3.68
38 12 2 0.2 0.8 1 5000 10 Index Myopic -169.46 19.62 17.08
39 12 2 0.2 0.8 2 5000 10 Rollout Myopic -678.91 -549.37 -575.04
40 12 2 0.2 0.8 2 5000 10 Index LSTD -708.09 -559.50 -562.55
41 12 2 0.8 0.2 1 5000 10 Rollout LSTD 134.50 339.14 339.39
42 12 2 0.8 0.2 1 5000 10 Index Myopic 133.69 334.21 342.77
43 12 2 0.8 0.2 2 5000 10 Rollout Myopic -474.00 -251.05 -248.63
44 12 2 0.8 0.2 2 5000 10 Index LSTD -416.06 -230.72 -246.45
45 12 2 0.8 0.8 1 5000 10 Rollout Myopic -72.08 189.05 178.08
46 12 2 0.8 0.8 1 5000 10 Index LSTD -69.35 186.24 198.37
47 12 2 0.8 0.8 2 5000 10 Rollout LSTD -593.42 -395.39 -395.53
48 12 2 0.8 0.8 2 5000 10 Index Myopic -574.48 -409.82 -411.85
49 12 6 0.2 0.2 1 5000 10 Rollout LSTD -75.97 83.42 62.41
50 12 6 0.2 0.2 1 5000 10 Index Myopic -84.50 93.13 49.15
51 12 6 0.2 0.2 2 5000 10 Rollout Myopic -518.60 -375.64 -459.75
52 12 6 0.2 0.2 2 5000 10 Index LSTD -504.13 -385.69 -441.10
53 12 6 0.2 0.8 1 5000 10 Rollout Myopic -188.56 -72.29 -91.85
54 12 6 0.2 0.8 1 5000 10 Index LSTD -180.91 -86.61 -100.11
55 12 6 0.2 0.8 2 5000 10 Rollout LSTD -638.60 -552.09 -603.76
56 12 6 0.2 0.8 2 5000 10 Index Myopic -635.12 -557.61 -600.36
57 12 6 0.8 0.2 1 5000 10 Rollout Myopic 116.01 332.17 350.80
58 12 6 0.8 0.2 1 5000 10 Index LSTD 133.58 330.99 340.10
59 12 6 0.8 0.2 2 5000 10 Rollout LSTD -309.74 -48.14 -155.51
60 12 6 0.8 0.2 2 5000 10 Index Myopic -331.65 -15.64 -179.54
61 12 6 0.8 0.8 1 5000 10 Rollout LSTD -90.79 50.09 56.93
62 12 6 0.8 0.8 1 5000 10 Index Myopic -57.97 51.53 32.61
63 12 6 0.8 0.8 2 5000 10 Rollout Myopic -538.43 -392.74 -450.78
64 12 6 0.8 0.8 2 5000 10 Index LSTD -532.20 -371.49 -455.68
65 8 4 0.5 0.5 1.5 5000 10 Rollout Myopic -441.89 -370.25 -390.17
66 8 4 0.5 0.5 1.5 5000 10 Rollout LSTD -447.24 -368.20 -361.02
67 8 4 0.5 0.5 1.5 5000 10 Index Myopic -468.18 -357.78 -362.80
68 8 4 0.5 0.5 1.5 5000 10 Index LSTD -467.43 -361.20 -362.97
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heteroscedasticity, and the residual by predicted plot does not raise concerns.

We consider variables with an F-test p-value less than 0.05 significant. Significant

variables are summarized in Table 15. With this criterion, the experimental variables

initial number of CUAVs, probability of staying in a low threat condition, probability

of staying in a high threat condition and demand are significant in both first- and

second-order terms. Number of crews is significant in second-order interaction. Using

inner loop and outer loop iteration count are not significant even when higher order

effects are considered. This is due to the fast convergence of the ADP algorithm to

the resulting ADP-generated policy.

According to our metamodel, the value function is maximized when the probability

of staying in a high threat map of 0.2, the probability of staying in a low threat map

of 0.8, 5, 000 inner loops, 10 outer loops, 12 CUAVs, 6 crews, and 1 ton of average

demand. These results follow intuition and confirm that LSTD is significantly better

than the myopic strategy.

4.4 Conclusions

The intent of this research is to demonstrate the efficacy of the proposed Index and

Rollout algoritms on the military inventory routing problem (MILIRP) and compare

algorithmic performance that can improve upon simple strategies. Development of an

expanded Markov decision process (MDP) model of the MILIRP enables examination

of the disparate conditions the military faces in hostile environments.

The efficient utilization of CUAV assets for resupply is an important issue in

military applications. The varying threats that the military faces in combative envi–

ronments and the availability of distribution assets all inhibit successful distribution

of supplies from the support area (SA) to the forward operating bases (FOBs). More–

over, insurgent use of improvised explosive devices (IEDs) affects truck mobility and
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Table 15. Factors Influencing CUAV Resupply

Variable Sum of Squares F Test % Contribution
V 1764062.1 < .0001 27.41%

V crew 2087.6 0.053 0.03%
Ω 174682.2 < .0001 2.71%
β 180820.6 < .0001 2.81%
d̄ 4217262.7 < .0001 65.54%

V ∗ V crew 6797.2 0.0008 0.11%
V ∗ Ω 24894.5 < .0001 0.39%
V ∗ β 34312 < .0001 0.53%
V ∗ d̄ 6641 0.0009 0.10%

V crew ∗ d̄ 9317.6 0.0001 0.14%
Ω ∗ β 13821.5 < .0001 0.21%

has been successful in disrupting replenishment procedures [25]. Since 2012 when the

K-MAX successfully deployed to Afghanistan [15], CUAVs have been of increasing

interest worldwide [14]. This chapter provides unique insight into efficient utilization

of CUAV resupply in volatile environments. CUAV benefits include: better perfor–

mance in adverse weather conditions, higher flight ceilings, and no escort requirement

restrictions. These advantages mean a lower probability of vehicle destruction. The

most important benefit of CUAVs is their ability to save lives by alleviating manned

ground convoy resupply requirements. Although CUAVs do not yet have the abil–

ity to completely handle FOB supply requirements, each successful CUAV delivery

means less men and women exposed to enemy threats to include IEDs.

We examine two ADP algorithms and conclude that monotonicity of the value

function does not exist in the current region of operation and therefore ADP tech–

niques based on this assumption perform poorly, although better than a myopic policy.

We formulate an MDP model of the MILIRP and determine a policy on realistic in–

stances in order to compare two approximate dynamic programming algorithms. We

design a representative baseline instance and conclude that both the ADP algorithms

and heuristic search techniques perform better than simple strategies. We test our
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approach with an experimental design and empirically find the design settings that

maximize the ADP algorithmic performance. Moreover, we conclude that there is no

statistically significant difference between utilizing Index or Rollout techniques within

the ADP algorithm despite the Rollout algorithm’s more accurate representation of

periodic risk. Additionally, we conclude both Index and Rollout algorithms perform

better on this problem in terms of computational requirements and policy value than

the proposed ADP techniques. This is likely due to the heuristic’s strength in avoiding

routes with low probability of success in favor of more easily assessable ones coupled

with the inability of the linear model to capture the nuances of the complex problem.

Further exploration of ADP techniques that exploit the special structure may yield

improved results. However, direct applications of the Index and Rollout algorithms

performed better for the MILIRP instances considered. Due to their demonstrated

success, we conclude that any further ADP work should also endeavor to incorporate

the Index and Rollout algorithms presented here.
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V. Utilizing Heuristics Within a Least Squares Temporal
Differences Algorithm to Solve a Multiclass Stochastic

Inventory Routing Problem with Vehicle Loss

This chapter develops an extended Markov decision process (MDP) model to ex–

amine the performance of two approximate dynamic programming (ADP) algorithms

for determining solutions to the military inventory routing problem (MILIRP). This

formulation explicitly accounts for the possible loss of vehicles due to enemy activity

and generates resupply polices to maximize the supplies delivered by cargo unmanned

aerial vehicles (CUAVs) in order to reduce the need for casualty-prone convoy op–

erations. A large baseline instance is examined and it is found that the proposed

least squares temporal differences using our Index algorithm (LSTD-Index) and least

squares temporal differences using our Rollout algorithm (LSTD-Rollout) algorithms

presented herein perform 21% better than a myopic policy. Inventory routing is an

inherently difficult logistical problem that requires vehicle routing and inventory man–

agement decisions. This chapter focuses on improving upon existing work by adding

multiple supply classes to the MILIRP as researched in Chapter IV.

The MILIRP is a stochastic inventory routing problem that utilizes ground and

aerial assets to deliver supplies to forward operating bases (FOBs) in an austere

combat environment. Due to the difficult nature of FOB resupply in a combat en–

vironment, aerial assets can be destroyed thereby permanently impacting the ability

of the central planner to resupply the FOBs. Military planners must consider the

timing, routing, threat level, and supply configuration of distribution assets when

executing resupply missions.

In this chapter, a central planner must decide how many fully loaded CUAVs to

dispatch to fill demand across multiple FOBs with multiple supply classes. To fill

this demand, multiple delivery across a finite set of feasible CUAV routes is allowed.
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An MDP model to maximize the supplies delivered by aerial assets is developed and

ADP solution techniques as developed in Chapter IV to solve instances of this larger

problem class are implemented. These solution techniques include an LSTD algorithm

with an embedded heuristic to solve this MILIRP, which exhibits high-dimensionality

in the state, action, and outcome spaces. A notional, representative planning scenario

based on an austere combat environment where convoy resupply may be difficult (e.g.,

as in Afghanistan) is constructed. The testing and application of these algorithms

further strengthen the efficacy of the proposed solution methodology.

Replenishment during combat operations includes difficult, deliberate, and time-sen–

sitive operations conducted to resupply forward companies with essential supplies to

sustain the pace of operations [12]. This chapter’s formulation includes multiple sup–

ply classes to improve model realism. Thus, the Army’s definition of supply classes

deserves more attention. The U.S. Army defines ten different supply classes gener–

ally defined in Table 16 [11]. The implementation of supply classes within our model

greatly increases the complexity of the problem and will be addressed more throughly

in Section 5.1.

The remainder of this chapter is organized as follows. Section 5.1 introduces the

MDP formulation of the MILRIP. Section 5.2 presents the ADP solution approach.

Table 16. Definition of U.S. Army supply classes

U.S. Army Supply Classes

I. Subsistence
II. Clothing/individual equipment
III. Fuels/lubricants/fluids
IV. Construction materials
V. Ammunition
VI. Personal demand items
VII. Major end items(tanks, vehicles etc.)
VIII. Medical supplies
IX. Repair parts
X. Non-military programs material
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Section 5.3 presents the computational results and analysis. Section 5.4 provides

conclusions for this research.

5.1 Markov Decision Process Model

This section describes the Markov decision process (MDP) model formulation

of the military inventory routing problem (MILIRP). This MDP methodology is a

multiclass extension of previous research done in Chapter IV. The objective of the

multiclass MILIRP is to determine the optimal resupply policy for multiple forward

operating bases (FOBs) to maintain inventory levels across multiple supply classes.

The contribution function rewards supplies delivered to each FOB until it reaches the

FOB’s maximum holding capacity, after which additional supplies delivered yield no

value. We assume demand has a known historical average with some variability, mod–

eled as an independent and identically distributed error term. Moreover, we assume

the inventory level at each FOB is known at the start of each period. Additionally, we

assume that no other external event (e.g., enemy action, fire, expiration of supplies)

other than demand causes inventory loss.

The central planner utilizes V identical cargo unmanned aerial vehicles (CUAVs)

to resupply the FOBs. Each CUAV has an identical load capacity of V cap tons. We

denote the feasible paths for CUAV resupply by constructing a finite set of routes

A. When multiple FOBs are visited along the CUAV route, it is assumed that the

load is evenly distributed among each FOB. We denote the set of supply classes for

each FOB as C. V ac is the amount of supplies of class c ∈ C delivered to each FOB

along route a ∈ A. V ac is assumed to be a fixed vehicle loadout proportioned for

each class according to historic demand. FOBs require D̂tc tons of supplies of class c

per time period t, a stochastic demand with a mean demand d̄c, and an independent

and identically distributed exogenous error term ε̂. FOBs also have a finite maximum
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holding quantity for each class of supply Rmax
c . A FOB’s total maximum holding

quantity is defined as Rmax ,
∑
c∈C

Rmax
c . The minimum holding quantity for each

FOB is defined for each class c ∈ C as Rmin
c .

Given the dangers inherent in a combat environment, there is potential for delivery

failure due to extrinsic uncontrollable factors (e.g., enemy action, mechanical failure,

extreme weather conditions). These threat conditions determine the probability of

a CUAV being destroyed. A set of M threat maps models the periodic changes in

risk throughout the central planner’s area of operations. Under threat map m =

1, 2, ...,M , the parameter ψma denotes the probability of a successful trip from (to)

the support area (SA) to (from) the FOB on the specified route a ∈ A. A CUAV

may be destroyed on its way to a FOB or after delivering supplies on the return route

back to the depot at the SA.

We now continue by describing the MDP model formulation of the MILIRP. With

respect to a conventional inventory routing formulation, CUAVs are vehicles, FOBs

are customers, and the centralized planner is the supplier. Tables 17 and 18 located

at the end of this section provide a summary of the notation.

The MILIRP is formulated as an infinite horizon Markov decision problem wherein

an inventory routing decision is made at each decision epoch t ∈ T = {1, 2, ...}. It is

assumed a CUAV refuels, resupplies, receives maintenance, travels the specified route,

unloads, and returns to the SA during each time period. In this research, routes

are limited to only visiting a maximum of three FOBs. Moreover, the routes are

constructed within range limitations and are serviceable in one time period. Current

CUAV limitations validate this assumption [19].

The state space includes three components: the inventory level at the FOBs, the

number of operational CUAVs, and the threat map index number. The inventory

for all FOBs is defined as rt, where rt = (rt11, rt21, ..., rt21, rt22, ...rtBC) and rtbc ∈
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(0, Rmax
c ) is the number of tons of supplies at FOB b ∈ {1, 2, ..., B} for class c ∈ C

at time t. Moreover, Rmax is the maximum inventory capacity for the FOBs, and

Rmin
c ∈ (0, Rmax) is the minimum threshold inventory level that must be exceeded

(i.e., the safety stock level). If ∃ c ∈ C|rtbc ≤ Rmin
c then resupply via convoy ground

lines of communication (GLOC) is required. The number of operational CUAVs able

to perform resupply operations at time t is defined as vt. The threat map index

number at time t is defined as mt ∈ {1, 2, ...,M}. The threat map impacts the flight

risk associated with successfully completing sorties between the FOBs and the SA.

The threat map information mt is available at time t. The threat map information

mt+1 available at time t+ 1 is conditioned on mt and is unknown at time t. Utilizing

these components, we define st =
(
rt, vt,mt

)
∈ S as the state of the system at time

t, where S is the set of all possible states. Moreover, due to route construction, each

CUAV begins and ends each day at the SA.

The decision and transition spaces are similar to previous research in Chapter III

and Chapter IV. The main difference in the transition space from previous efforts is

denoted in the inventory transition functions. We let X (st) be the set of all feasible ac–

tions when the system is in state st. Let xt = (xdt , x
GLOC
t ) ∈ X (st) denote an inventory

routing decision wherein xdt = (xdt1, x
d
t2, ..., x

d
t|A|), x

GLOC
t = (xGLOCt1 , xGLOCt2 , ..., xGLOCtB ),

xdta ∈ N0 denotes the number of fully loaded CUAVs dispatched to resupply the FOBs

along route a ∈ A and xGLOCtb ∈ {0, 1} denotes whether a ground convoy is dispatched

to resupply FOB b, which results in its inventory level increasing to capacity for all

supply classes. Only CUAV resupply is available for a FOB if the inventory level is

greater than the safety stock threshold for every supply class (i.e., ∀c ∈ C|rtbc > Rmin
c ).

Only GLOC resupply is available if the inventory level is less than or equal to the

safety stock threshold for any supply class (i.e., ∃c ∈ C|rtbc ≤ Rmin
c ). Two constraints

impact the CUAV routing decision: first, the number of CUAVs deployed cannot ex–
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ceed the number of operational CUAVs (i.e., xdt ≤ vt); second, the number of CUAVs

deployed cannot exceed the number of crews available (i.e., xdt ≤ V crew). We as–

sume that each CUAV carries a maximum capacity load of V cap and divides its load

equally among all the FOBs visited along the route. The policy (i.e., decision func–

tion) Xπ(st) returns a decision xt ∈ X (st) as a function of the system state st ∈ S.

After a routing decision is made, delivery is performed within one time period.

Transition probabilities are defined for each dimension of the state space to include

the inventory level at each FOB, number of remaining CUAVs, and threat map.

Inventory transitions are based on the routing decision xt and the current state of the

system st. When CUAVs are routed to the FOBs there are two possible outcomes:

first, a CUAV may successfully travel along its route and return to the SA; second, a

CUAV may be destroyed along its route before returning to the SA. Let ψSSSSma denote

the probability of a successful round trip delivery along a three FOB route a, ψSSSFma

denote the probability of a successful three leg FOB delivery along a three FOB route

a, ψSSFFma denote the probabilities of a successful two leg FOB delivery along a three

FOB route a, ψSFFFma denote the probability of a successful one leg FOB delivery

along a three FOB route a, and ψFFFFma denote the probability of a failed delivery

along a three FOB route a for a single CUAV routed to resupply FOBs during the

threat conditions of map m = 1, 2, ...,M . Outcome probabilities for one and two

FOB routes are similarly defined. Since we are interested in a particular outcome

of a routing decision, we proceed by defining the binomial marginal distributions for

each outcome type (i.e., SSSS, SSSF, SSFF, SFFF, FFFF, SSS, SSF, SFF, FFF, SS,

SF, FF). With the assumption that each outcome of a resupply mission to a FOB

is independent of other missions and recalling that xt includes the decision to route

xdt CUAVs to the FOB (each carrying a full supply load), we let ẐSSSS
t+1,b (ψSSSSma , xdta)

denote the binomial random variable with parameters ψSSSSma and xdta that indicates
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the number of successful round trip CUAV deliveries to FOB b in route a during time

interval [t, t + 1) on map m. Let all other outcomes (i.e., SSSS, SSSF, SSFF, SFFF,

FFFF, SSS, SSF, SFF, FFF, SS, SF, FF) be similarly defined. For compactness, we

refer to the set of random variables that indicate resupply mission outcomes for each

FOB as follows:

Ẑt+1,b =
{
ẐSSSS
t+1,b , Ẑ

SSSF
t+1,b , ..., Ẑ

SS
t+1,b, Ẑ

SF
t+1,b, Ẑ

FF
t+1,b

}
. (30)

Moreover, the outcome denoting the number of CUAVs that are destroyed in time

interval [t, t + 1) is the summation of all failures as shown in Equation 33 where we

drop the FOB distinction b, thereby denoting the total number of failures across all

FOBs as demonstrated in Equation 31.

ẐSSSF
t+1 =

B∑
b=1

ẐSSSF
t+1,b . (31)

The addition of multiple supply classes requires an update on inventory transitions

from previous efforts in Chapter IV. The inventory level at the FOBs are limited by

the maximum holding quantity Rmax. Moreover, if the FOB supply level is less than

or equal to a safety stock threshold, Rmin
c , the FOB must be fully resupplied via

ground convoy. Equation 32 is the inventory transition function explicitly updated

for each supply class in the FOB.

rt+1,b,c =



Rmaxc if xGLOCtb = 1

min
(
rtbc + V ac(Ẑt+1,b)− D̂t+1,c, Rmaxc

)
if
∑
a∈A

xdtab > 0

rtbc − D̂t+1,c otherwise.

(32)

In the first case, convoy resupply is selected, and the FOB is resupplied to capacity.

In the second and third cases, the FOB inventory level changes according to supplies

received and realized demand. The minimization in the second case enforces the FOB
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capacity constraint.

CUAV transition is contingent on the number of CUAVs that fail to return to the

SA after attempting to travel their route. The number of CUAVs transition according

to Equation 33.

vt+1 = vt− (ẐSSSF
t+1 + ẐSSFF

t+1 + ẐSFFF
t+1 + ẐFFFF

t+1 + ẐSSF
t+1 + ẐSFF

t+1 + ẐFFF
t+1 + ẐSF

t+1 + ẐFF
t+1)

(33)

The map transition function is a representation of the dynamic aspect of the

combat environment in which the military resuppliers operate. The set of all maps

captures the varying threat level of the operational environment. The map transi–

tions are representative of the changing environment. For relatively stable combat

conditions, the map transition probability would be relatively low. More volatile

combat environments yield a relatively higher map transition probability. The cen–

tral supplier’s intelligence teams gather information on threat conditions based on

information on enemy activities.

The contribution function rewards the system based on the amount of supplies

CUAVs deliver to the FOBs. The amount of supplies delivered is bounded above

by the maximum inventory quantity at each FOB, constraining any excess supplies

delivered from affecting the system behavior. An immediate penalty, τ̄ , is applied

if the FOB’s inventory level is less than or equal to a safety stock threshold Rmin
c

due to the human risk associated with ground convoy resupply. The below-threshold

penalty function for each FOB

τ(rbc) =


0 if rbc > Rmin

c ∀ c ∈ C,

τ̄ otherwise

(34)

allows the application of a penalty that can capture the difficulty of resupplying FOBs
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via ground convoy. We chose to set the penalty at the max inventory level at the FOB,

Rmax, so as to encourage CUAV resupply based on findings from previous research in

Chapter III. We present our contribution function in Equation 35.

C(st, xt) = E
{ B∑

b=1

∑
c∈C

min
(
Rmax
c − rtbc + D̂t+1,c, V

ac · (Ẑt+1,b)
)
− τ(rtbc)

∣∣∣st, xt} (35)

The amount of supplies successfully delivered to the FOBs determines the single-pe–

riod contribution (i.e., reward). However, the system is not rewarded for excess

supplies (i.e., FOBs cannot take delivery of supplies in excess of their capacity).

The objective of this MDP is to maximize the expected total discounted reward

over an infinite horizon. By definition, the transitions are Markovian. All decisions

made at time t depend only on the current state of the system. To obtain the policy

that maximizes the expected total discounted reward, Bellman’s optimality equation

shown in Equation 36 is solved.

J(st) = max
x∈X (st)

(
C(st, x) + λE{J(st+1)|st, x}

)
(36)

The value of being in state st results from choosing the action that maximizes the

expected immediate reward and the discounted expected future value of the system

at time t + 1. The parameter λ ∈ [0, 1) denotes the discount factor. Using this

MDP formulation, we can apply our extended approximate dynamic programming

algorithm to obtain policies for resupplying the FOB via CUAVs.

5.2 Solution Methodology

This section introduces the extention of the Index and Rollout algorithms based on

the quiz problem heuristic that balance risk with potential rewards to more effectively

solve the military inventory routing problem (MILIRP), a variant of the stochastic
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Table 17. Table of Notation

a = feasible route counter
b = forward operating base counter
c = supply class counter
C = contribution function
Ct = contribution vector for the sampled events
d = daily FOB demand
E = matrix of sampled observations generated from LSTD sampling
F = failure to deliver supplies
g = route segment or leg of route a
G = the total number of route segments or legs of route a
I = indicator variable
J = total expected reward (cost-to-go) function
k = policy evaluation loop counter
K = number of policy evaluation loops
M = number of threat maps
n = policy improvement loop counter
N = number of policy improvement loops
r = supplies on hand

Rmin = supply threshold
Rmax = FOB holding capacity
s = state of system
t = time epoch
v = current number of CUAVs
V = number of inital CUAVs
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Table 18. Table of Notation Continued

V ac = the amount of supplies for each supply class c delivered to
each FOB along route a

V cap = CUAV holding capacity
V crew = number of crews
w = exogenous information process
x = actions
Z = set of random variables corresponding to the number of

possible SS, SF, and F events
A = set of all feasible routes
C = set of all supply classes
F = set of basis function features
G = set of all feasible legs
S = state space
T = set of time epochs
X = action space
α = stepsize
β = probability of remaining in the high threat map
θ = vector of weights
λ = discount factor
π = policy
τ = penalty cost
ψma = one-way probability a CUAV successfully reaches its

destination on route a
φ = basis function
Φ = matrix of fixed basis functions
Ω = probability of remaining in the low threat map
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inventory routing problem (IRP). These algorithms can be applied individually or

within the construct of approximate dynamic programming. We extend this approach,

as utilized in Chapter IV, to the multiclass formulation. Moreover, we also present

the least squares temporal differences (LSTD) algorithm that will utilize the Index

and Rollout algorithm.

ADP Formulation.

Our LSTD-Index and LSTD-Rollout approximate dynamic programming (ADP)

algorithms utilize an approximate policy iteration (API) framework with an LSTD

value function approximation scheme. API follows the exact policy iteration algo–

rithm framework. Our API algorithm approximates and updates the value function

after simulating system trajectories because using the one-step transition matrix is

difficult to utilize when solving problems with high dimensionality. We utilize the

post-decision state, which is the state of the system immediately after a decision is

made but before the exogenous information processes are realized. This allows the

expectation to be moved outside of the maximization operator, altering our value

function to the form

Jx(sxt ) = E
{

max
x∈X (st+1)

(
C(st+1, x) + γJx(sxt+1)

)
|sxt
}
.

LSTD reduces the dimensionality of the state space by utilizing a set of basis func–

tions that capture relevant information in the system thus providing an approximate

solution [27]. Let φf (s), f ∈ F , denote a basis function where F is a set of features.

The value function approximation is given by

J̄x(sxt |θ) =
∑
f∈F

θfφf (s
x
t )
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wherein θ = (θf )f∈F is a column vector of weights with one coefficient for each basis

function. It is computationally efficient to estimate the value function using basis

functions because we choose the number of features to be fewer than the size of

the state space. Classical linear regression methods can then be used to estimate

θ. However, choosing an appropriate set of basis functions to properly capture the

complexity of the modeled system can be challenging. LSTD updates θ iteratively

during execution of the API algorithm.

LSTD updates the value function approximation for a fixed policy during each

iteration and projects it over an infinite horizon. LSTD subtracts the current value of

being in a state from the updated value of being in a state at the following iteration.

LSTD can be viewed as a batch algorithm that operates by collecting samples of

temporal differences and then using least squares regression to find the best linear

fit [27]. LSTD obtains a least squares regression fit so that the sum of the temporal

differences over the simulation is as close to zero as possible.

Within the construct of our LSTD algorithm, a total of K temporal difference

sample realizations are collected in each policy evaluation loop where the kth temporal

difference is denoted C(st,k, X
π
θ (st,k))+γθ>φ(sxt,k)−θ>φ(sxt−1,k) where φ(·) is a column

vector of basis function evaluations and the policy (i.e., decision function) Xπ
θ (st,k) is

defined below

Xπ
θ (st,k) = arg max

x∈X (st)

C(st, x) + γJ̄(sxt |θ).

To solve the approximate dynamic program, we need to solve the routing portion

of the problem. The size and complexity of this inner maximization problem makes

exact solution methods intractable. To generate routing solutions, we adapt two

separate algorithms as previously developed in Chapter IV. The first is a holistic

routing scheme utilizing the quiz problem heuristic to generate routes while the second
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uses a segmented rollout algorithm approach as a value function estimator to make

decisions. The Index algorithm selects the first available CUAV and examines all

feasible routes utilizing the quiz problem heuristic to generate a value estimation for

each route. The route with the highest value estimation is selected, the decision is

recorded, and inventory levels are updated according to the decision. The process is

then repeated until all available CUAVs have been assigned a route. The decision can

then be given to the dynamic programming algorithm. Our Index heuristic, which

explicitly account for our multiclass formulation, is summarized in Algorithm 5.

Algorithm 5 Index algorithm route construction utilizing the quiz problem heuristic

Step 1. For all available CUAVs, v = 1, 2, ...,min(vt, V
crew)

Step 2a. For all possible routes a = 1, 2, ..., A
Utilizing the quiz problem heuristic

ψma min(
B∑
b=1

C∑
c=1

Rmax−rtbc+D̂t+1,c,V cap)

(1−ψma)
, generate the value function

estimation for each route
End

Step 2b. Assign CUAV route with max value
Step 2c. Record the decision for the vth CUAV and update

inventory levels
End

Step 3. Provide routing decision to the dynamic programming
algorithm

Modeling the success of the CUAV route holistically as in Algorithm 5 is ad–

vantageous because it emphasizes selecting routes wherein the CUAV has greater

probability of survival to deliver supplies in the future. This method will avoid routes

that have low probability of survival in favor of more easily accessible bases. For the

Rollout algorithm, the value for the gth leg is calculated using Equation 37 wherein

the risk of each segment of the route is individually captured and the value of the

CUAV to deliver supplies in the future is explicitly captured as well. The segmented

Rollout algorithm approach, which explicitly accounts for our multiclass formulation,

is summarized in Algorithm 6.
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Vg =

ψma1 min(Rmax −
C∑

c=1
rtbc1 + D̂t+1,c,

V cap

g
) + ... + ψmag min(Rmax −

C∑
c=1

rtbg + D̂t+1,c,
V cap

g
) + ψmaV

cap

(1− ψma)
(37)

Algorithm 6 Rollout algorithm route construction utilizing the quiz problem heuris–
tic

Step 1. For all available CUAVs, v = 1, 2, ...,min(vt, V
crew)

Step 2a. For From current location select all g ∈ G such that the
current location is an end point of g and g is not already
part of the path.
Utilizing Equation 37, select the best gth leg and
update each expected inventory level of all FOBs visited.
End

Step 2b. Record the decision for the vth CUAV and update
inventory levels

End
Step 3. Provide routing decision to the dynamic programming

algorithm

After a decision is made, temporal difference samples must be taken to continue

the ADP algorithm. Let Φt−1 and Φt consist of rows of basis function evaluations of

the sampled post-decision states and Ct as the contribution vector for the sampled

events as shown in Equation 38. The sample realization θ̂ is calculated using linear

regression for each policy evaluation loop n = 1, 2, ..., N . A harmonic step-size rule

is applied to smooth θ during implementation.

Φt−1 ,


φ(sxt−1,1)>

...

φ(sxt−1,K)>

 ,Φt ,


φ(sxt,1)>

...

φ(sxt,K)>

 , Ct ,

C(st,1, xt)

...

C(st,K , xt)

 (38)

We then apply a harmonic stepsize rule to smooth in the new observation θ̂ with

the previous estimate θ during implementation. The stepsize rule αn is a function of
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the outer loop iteration count and is defined below.

αn =
1

n
(39)

The stepsize rule αn greatly influences the rate at which the API algorithm con–

verges, thus impacting the attendant solutions. Utilizing the harmonic stepsize rule,

we update our θ in the following way:

θn ← θn−1(1− αn) + θ̂(αn). (40)

Equation 40 shows that the updated θn is weighted most heavily by our current

estimate, θn−1, and then moved toward our new estimate, θ̂, by an incremental amount

proportional to αn. Initially, greater emphasis is placed on θ̂, but as the number of

iterations increases the incremental effect of θ̂ is lessened. Moreover, as the number

of iterations increases, any single θ̂ has less influence than the estimate based on

information from the first n− 1 iterations.

Upon obtaining an updated parameter vector θ, we have completed one policy

improvement iteration of the algorithm. The parameters N and K are tunable, where

N is the number of policy improvement iterations completed and K is the number of

policy evaluation iterations completed. After both loops are completed our algorithm

has generated a policy and terminates.

5.3 Analysis

We can find a policy for a large, multiclass forward operating base (FOB) problem

instance of the military inventory routing problem (MILIRP) utilizing the Markov

decision process (MDP) formulation discussed in Section 5.1. We compare our two

proposed route construction methods within the construct of our approximate dy–
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namic programming (ADP) algorithm (i.e., LSTD-Index, and LSTD-Rollout). More–

over, we run a designed experiment to find the algorithmic and model parameters that

yield the best results for our ADP algorithm.

MDP Parameterization.

The research effort maintains constancy in terms of MDP model parameteriza–

tion. The MILIRP is formulated as an infinite-horizon MDP wherein a single period

represents a 6-hour interval. We assume that during each period the cargo unmanned

aerial vehicle (CUAV) can complete all mission preparation tasks and perform the as–

signed mission. We also assume the FOB has stochastic demand as defined in Section

5.1.

As an extension of previous research, we model a battalion comprised of subor–

dinate platoons that each have a consumption rate and storage capacity based on

the number of personnel on site. Each platoon is located in different forward op–

erating bases (FOBs) at dispersed locations. Based on a General Dynamics report

[13], the expected daily consumption requirements of a platoon is 7, 482 pounds. We

round up as a conservative estimate to an 8,000 pound daily average consumption.

With four periods in one day, about one ton of supplies per period is required for

sustainment. For our testing, we model the stochastic demand using this known his–

torical average, d̄c, and a randomly generated error term, ε̂, uniformly distributed

on the interval [−0.5, 0.5]. We choose to investigate two supply classes, fixing the

demand to be equally proportioned between the two classes. We also make the con–

servative assumption that a FOB has a maximum holding capacity of three times the

daily average requirement, totaling 12 tons equally divided between the two classes as

well. We assume that there are no logistical failures limiting the amount of supplies

available at the centralized planner. This assumption is reasonable since the central
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planner is supplied via fixed wing aircraft from outside the theater of operations.

We chose a conservative two-ton carrying capacity for CUAV resupply based on

Lockheed Martin’s K-MAX CUAV [19]. As the requirements for CUAV resupply

increase, we expect to see the number of CUAVs and crews the central planner utilizes

to increase. As such, we parameterize the CUAVs and crews as multiples of Tactical

Unmanned Aerial System (TUAS) platoon ratios [10]. For example, if three TUAS

platoons are deployed at the central planner, the number of CUAVs would be 12 and

the number of crews 6.

Recall from Section 5.1 that ψma denotes the probability of a successful route

completion from (to) the support area (SA) to (from) the FOBs along route a on

map m. For our example, we assigned lower probability of success to longer flight

paths and chose to use M = 2 threat maps. We restrict feasible routes on the network

by distance and only allow routes to visit a maximum of 3 FOBs. The probability of

successful one-way delivery across the network is shown for each threat map below

where the first position in the matrix represents the central planner. The problem

instance diagram is shown in Figure 2.

m1 =



1 .99 .99 .95 .99 .99

.99 1 .99 .90 0 0

.99 .99 1 .95 .95 0

.95 .90 .95 1 .95 .90

.99 0 .95 .95 1 .99

.99 0 0 .90 .99 1


m2 =



1 .95 .95 .90 .95 .95

.95 1 .95 .85 0 0

.95 .95 1 .90 .90 0

.90 .85 .90 1 .90 .85

.95 0 .90 .90 1 .95

.95 0 0 .85 .95 1


To investigate the effects of region volatility on algorithmic outcome, we vary the

map transition probability in our experimental design . We select an initial probability

of 0.5 to remain in the current threat map to model the current instability of the
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Figure 2. Problem Instance

modeled region.

The FOB must be resupplied via ground convoy to regain full capacity when the

FOB’s supply level for any class falls below a predetermined minimum threshold.

Each time a convoy is deployed for resupply an immediate penalty is applied. This

penalty represents both the risk of a FOB stock out and the increased human capital

risk inherent in ground convoy operations. A subject matter expert who knows the

terrain and enemy activity levels associated with the FOB would ideally supply their

penalty for each FOB. This penalty creates a strong incentive to ensure that CUAVs

resupply all classes within the FOB when possible. We set the penalty function τ̄ to

be the maximum inventory level Rmax, which is applied when the inventory level is

at or below the Rmin threshold.

We chose λ = 0.98 to be a discount factor that balances future needs with current

needs. We utilized the above described MDP parameterization to create policies using

our LSTD-Index and LSTD-Rollout ADP algorithms.

ADP Policies.

We obtain the ADP policy from the least squares temporal differences (LSTD)

algorithm as explained in Section 5.1. We compare LSTD-Index, LSTD-Rollout, In–
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dex, and Rollout policies to a myopic policy of direct delivery to the FOB with the

lowest inventory level over a simulated one month planning horizon. The challenge

with both these ADP algorithms is developing basis functions that accurately ap–

proximate the optimal value function. All algorithms are employed with the system

initialized at full capacity for each FOB.

We develop ADP policies using our proposed route generation techniques in both

LSTD-Index and LSTD-Rollout algorithms. Our basis function includes first order

effects for current inventory level for every class and number of CUAVs deployed.

Moreover, we also chose to include the second order inventory effect for each class.

Our proposed routing algorithms quickly generate solutions, allowing us to perform

a designed experiment with more breadth in a reasonable amount of time.

Baseline Instance.

To stay consistent with previous research in Chapter IV, we selected the same

representative baseline instance for testing the routing algorithm’s performance. The

baseline instance has 12 CUAVs, 2 crews, probability of staying in a low threat map

of 0.8, probability of staying in a high threat map of 0.2, average period demand

of 1 ton, with associated algorithmic features K = 5000 and N = 30. The algo–

rithm’s performance is compared to a myopic policy of direct delivery replenishment

to the lowest inventory FOB. The baseline performance is shown in Table 19. The

baseline scenario compares policies determined via LSTD using Index and Rollout

algorithms, Index and Rollout algorithms by themselves, and the myopic policy. For

the baseline instance, all the proposed solution techniques performed better than the

myopic policy. However, both LSTD algorithms performed substantially better than

the Index and Rollout algorithms by themselves. For this instance, the proposed

Index and Rollout generated policies performed better when implemented as part of
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a larger approximate dynamic programing method than when implemented alone.

This result is interesting because on less complicated instances, Index and Rollout

Algorithm generated polices outperformed their ADP counterparts. It appears that

our proposed LSTD-Index and LSTD-Rollout algorithms are better suited to solving

this more complicated instance, so we expanded our experimental region of search

with a designed experiment.

Experimental design.

The goal of our experimental design is to test the robustness of our ADP algorith–

mic parameters and find the parameter settings that allow our proposed algorithmic

approach to achieve the best performance. Our response variable for these exper–

iments is the total value of the system when initialized at full capacity. In each

experimental run, we simultaneously assess five problem features and three algorith–

mic features. The five problem features of interest were chosen based on what we

thought might have the most effect on the system performance and what was signif–

icant in past research efforts in Chapter IV. The selected problem features are initial

number of CUAVs (V ), number of crews available (V crew), probability of staying in a

low threat map (Ω), probability of staying in a high threat map (β) and the average

demand (d̄). The three algorithmic features we chose to experiment on are inner loop

iteration count (K), outer loop iteration count (N), and a categorical variable indi–

cating whether we used the LSTD-Index or LSTD-Rollout algorithm. We simulate

Table 19. Baseline Instance

Algorithm Value % Improvement
Myopic -1574.30 -

LSTD-Index -1240.07 21.23%
LSTD-Rollout -1241.88 21.12%

Index -1555.15 1.22%
Rollout -1556.74 1.12%
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each resultant policy over a one month planning horizon and compare performance

in terms of value function evaluation.

We consider five problem features, each of which are considered to be continuous

for our analysis. We chose the vehicle and crew level to be levels associated with

deploying two, three, and four TUAS platoons at the support area (SA). We do

this under the assumption that TUAS platoons will be sent in greater numbers to

support resupply operations as the central planners increasingly value CUAV resupply.

We parameterize the probability of remaining in low or high threat map, Ω and β

respectively, to explore how regional volatility affects the value function. The lower

and uppper values, 0.2 and 0.8, denote a low and high chance of transitioning to a

different threat map condition, respectively. We chose demand for each class so that

their sum would be equal to the total FOB consumption rate (e.g., if d̄ = 1 then

d̄1 = 0.5, and d̄2 = 0.5). Each class maintains their own exogenous error term ε.

Average demand was chosen to range from current consumption rates (i.e., one ton

every six hours) to a considerably larger rate of consumption (i.e., two tons every six

hours) to explore how demand schedule increases would affect the system.

We chose the four algorithmic features to better explore the experimental space.

Based on our initial testing, we set the inner loop count to a low of 5, 000 and a high

of 15, 000. We chose a wider upper bound for the outer loop iteration counter to allow

for the most accurate value function approximation for the selected basis functions.

Table 20 shows the problem and algorithmic settings for our experimental design.

We implemented a 28−2 resolution V fractional factorial design with two center

runs totaling 66 runs. In a resolution V design, all first- and second-order effects are

free from being aliased with other first- and second-order interactions. For each design

run, a myopic, LSTD-Index, LSTD-Rollout, Index, and Rollout policy is determined.

After the ADP algorithms generate the θ-coefficients, we compute the resulting and
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Table 20. Factorial Design Settings

Description Factor Low Center High
Initial number of CUAVs V 4 8 12

Number of crews V crew 2 4 6
Probability of remaining low threat Ω 0.2 0.5 0.8
Probability of remaining high threat β 0.2 0.5 0.8

Average Demand d̄ 1 1.5 2
Number of inner loops K 5000 10000 15000
Number of outer loops N 10 20 30

Routing strategy Strategy Rollout - Index

LSTD-Index and LSTD-Rollout policies and compare them to the myopic, Index, and

Rollout policies over a one-month planning horizon.

Results.

Tables 21 and 22 show the results from the experiment with columns indicat–

ing the value of the using an LSTD-Index or LSTD-Rollout policy, myopic policy,

and our proposed Index and Rollout algorithms with the corresponding design set–

tings. The large negative numbers of the value function reflect both the difficulty of

CUAV resupply with current technology and the large penalty for convoy resupply.

These values indicate the overall performance of the selected algorithm on the specific

problem instance where more is better. The ‘Value ADP’ column reflects the value

of either the LSTD-Index or LSTD-Rollout policy as shown in the ‘Strategy’ column.

Although we did not use the ‘Myopic,’ ‘Index,’ and ‘Rollout’ columns in the exper–

imental design, they are included here for reference. Throughout the experimental

region, the ADP techniques performed better than all others in all instances. The

ADP generated policies outperformed the myopic policy by 20% on average. The

problem features for which the LSTD algorithm performed best include when proba–

bility of staying in a low threat map, initial number of CUAVs, and number of crews

were at their high levels, and when demand and probability of staying in a high threat
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map were at their low levels. The algorithmic features that produced the best values

are when number of inner and outer loops were at their high values and LSTD-Index

is used.

To best analyze our gathered data, we created a regression metamodel to eval–

uate the parameter design effects with more statistical rigor. A stepwise regression

procedure yields factors that produce a significant relationship and pass the lack of

fit test. Both the resulting models include significant first- and second-order terms

and perform very well in terms of prediction ability with an adjusted R2 over 0.99.

The residuals do not show signs of heteroscedasticity, and the residual by predicted

plot does not raise concerns.

We consider variables significant if they pass the F-test with a p-value less than

0.05. Significant variables are summarized in Table 23. With this criterion, initial

number of CUAVs, number of crews, probability of staying in a low threat condition,

probability of staying in a high threat condition, and demand are significant in both

first- and second-order terms. The ADP algorithm quickly converged to its gener–

ated policy, which lead to the inner loop and outer loop iteration count being not

significant, even when higher order effects are considered.

According to our metamodel, the value function is maximized for the following

factor levels: the probability of staying in a high threat map is 0.2, the probability

of staying in a low threat map is 0.8, 5, 000 inner loops, 10 outer loops, 12 CUAVs,

6 crews, and 1 ton of average demand. These results follow intuition and suggest

that both LSTD algorithms are significantly better than the myopic strategy. We

also performed a paired t-test with a hypothesized mean difference of zero yielding a

p-value of < 0.0001 that confirms the LSTD generated policies are statistically better

than the myopic policy.
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Table 21. Experimental Results

Run V V crew Ω β d̄ K N Strategy Value ADP Myopic Index Rollout
1 4 2 0.2 0.2 1 5000 10 Index -1548.90 -1715.969794 -1681.61 -1679.95
2 4 2 0.2 0.2 1 15000 30 Rollout -1555.22 -1719.260785 -1684.97 -1686.36
3 4 2 0.2 0.2 2 5000 30 Rollout -3586.03 -3943.281288 -3910.99 -3915.72
4 4 2 0.2 0.2 2 15000 10 Index -3542.43 -3938.943588 -3902.88 -3911.42
5 4 2 0.2 0.8 1 5000 30 Rollout -1571.82 -1719.13815 -1692.31 -1682.48
6 4 2 0.2 0.8 1 15000 10 Index -1566.44 -1720.799681 -1692.69 -1674.93
7 4 2 0.2 0.8 2 5000 10 Index -3664.27 -3946.322863 -3914.71 -3916.49
8 4 2 0.2 0.8 2 15000 30 Rollout -3652.90 -3945.536463 -3916.34 -3910.94
9 4 2 0.8 0.2 1 5000 30 Index -1504.40 -1711.784882 -1676.65 -1676.40
10 4 2 0.8 0.2 1 15000 10 Rollout -1511.53 -1711.661491 -1676.89 -1677.99
11 4 2 0.8 0.2 2 5000 10 Rollout -3271.06 -3940.215795 -3904.77 -3918.76
12 4 2 0.8 0.2 2 15000 30 Index -3310.59 -3943.403798 -3911.43 -3907.44
13 4 2 0.8 0.8 1 5000 10 Rollout -1550.31 -1713.567305 -1677.01 -1682.63
14 4 2 0.8 0.8 1 15000 30 Index -1548.78 -1714.407914 -1677.44 -1678.80
15 4 2 0.8 0.8 2 5000 30 Index -3503.55 -3929.211004 -3913.81 -3913.95
16 4 2 0.8 0.8 2 15000 10 Rollout -3521.04 -3928.994617 -3914.82 -3914.84
17 4 6 0.2 0.2 1 5000 30 Index -1562.50 -1705.587971 -1682.97 -1636.41
18 4 6 0.2 0.2 1 15000 10 Rollout -1566.92 -1708.111843 -1687.04 -1647.94
19 4 6 0.2 0.2 2 5000 10 Rollout -3673.18 -3942.857511 -3922.75 -3873.08
20 4 6 0.2 0.2 2 15000 30 Index -3663.97 -3948.048595 -3928.37 -3874.82
21 4 6 0.2 0.8 1 5000 10 Rollout -1586.53 -1717.413149 -1692.92 -1649.50
22 4 6 0.2 0.8 1 15000 30 Index -1575.65 -1708.445735 -1692.11 -1652.46
23 4 6 0.2 0.8 2 5000 30 Index -3721.41 -3946.543992 -3925.47 -3883.33
24 4 6 0.2 0.8 2 15000 10 Rollout -3722.17 -3948.66439 -3922.71 -3884.01
25 4 6 0.8 0.2 1 5000 10 Index -1516.04 -1696.770594 -1695.33 -1639.89
26 4 6 0.8 0.2 1 15000 30 Rollout -1502.33 -1698.815012 -1689.86 -1640.60
27 4 6 0.8 0.2 2 5000 30 Rollout -3556.65 -3962.82243 -3918.77 -3877.74
28 4 6 0.8 0.2 2 15000 10 Index -3557.27 -3956.320609 -3923.45 -3873.12
29 4 6 0.8 0.8 1 5000 30 Rollout -1550.45 -1710.556398 -1697.03 -1643.96
30 4 6 0.8 0.8 1 15000 10 Index -1546.78 -1700.724099 -1697.25 -1647.11
31 4 6 0.8 0.8 2 5000 10 Index -3653.72 -3944.965783 -3922.88 -3867.24
32 4 6 0.8 0.8 2 15000 30 Rollout -3655.06 -3945.801073 -3927.19 -3875.37
33 12 2 0.2 0.2 1 5000 10 Rollout -1276.81 -1583.836409 -1565.32 -1560.62
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Table 22. Experimental Results Continued

Run V V crew Ω β d̄ K N Strategy Value ADP Myopic Index Rollout
34 12 2 0.2 0.2 1 15000 30 Index -1279.54 -1583.500102 -1564.21 -1560.55
35 12 2 0.2 0.2 2 5000 30 Index -2499.37 -3669.332462 -3713.90 -3706.52
36 12 2 0.2 0.2 2 15000 10 Rollout -2440.28 -3665.02532 -3711.78 -3709.51
37 12 2 0.2 0.8 1 5000 30 Index -1321.59 -1588.618442 -1559.62 -1555.34
38 12 2 0.2 0.8 1 15000 10 Rollout -1309.08 -1589.062276 -1559.90 -1549.03
39 12 2 0.2 0.8 2 5000 10 Rollout -2868.65 -3685.589355 -3710.99 -3710.23
40 12 2 0.2 0.8 2 15000 30 Index -2908.70 -3687.660727 -3713.12 -3708.05
41 12 2 0.8 0.2 1 5000 30 Rollout -1236.09 -1580.803106 -1557.04 -1548.60
42 12 2 0.8 0.2 1 15000 10 Index -1232.74 -1577.395522 -1551.69 -1547.09
43 12 2 0.8 0.2 2 5000 10 Index -2011.37 -3668.522817 -3702.51 -3692.25
44 12 2 0.8 0.2 2 15000 30 Rollout -2029.47 -3674.833836 -3706.11 -3696.85
45 12 2 0.8 0.8 1 5000 10 Index -1294.69 -1574.973118 -1560.62 -1562.80
46 12 2 0.8 0.8 1 15000 30 Rollout -1289.24 -1582.542705 -1561.19 -1561.61
47 12 2 0.8 0.8 2 5000 30 Rollout -2491.67 -3677.072133 -3707.40 -3704.87
48 12 2 0.8 0.8 2 15000 10 Index -2493.45 -3674.682342 -3709.28 -3702.81
49 12 6 0.2 0.2 1 5000 30 Rollout -797.61 -1611.275541 -1566.69 -1318.89
50 12 6 0.2 0.2 1 15000 10 Index -775.18 -1619.719101 -1575.16 -1309.59
51 12 6 0.2 0.2 2 5000 10 Index -3032.26 -3793.053258 -3646.01 -3309.71
52 12 6 0.2 0.2 2 15000 30 Rollout -3038.86 -3777.582757 -3637.85 -3333.65
53 12 6 0.2 0.8 1 5000 10 Index -835.64 -1625.494082 -1566.95 -1332.59
54 12 6 0.2 0.8 1 15000 30 Rollout -917.61 -1624.65203 -1567.15 -1339.58
55 12 6 0.2 0.8 2 5000 30 Rollout -3152.58 -3781.178338 -3636.95 -3347.00
56 12 6 0.2 0.8 2 15000 10 Index -3113.25 -3799.63979 -3627.46 -3325.41
57 12 6 0.8 0.2 1 5000 10 Rollout -757.38 -1619.718581 -1565.64 -1323.13
58 12 6 0.8 0.2 1 15000 30 Index -676.57 -1625.772357 -1569.38 -1326.78
59 12 6 0.8 0.2 2 5000 30 Index -2860.35 -3774.010358 -3640.37 -3334.68
60 12 6 0.8 0.2 2 15000 10 Rollout -2830.60 -3784.484823 -3632.67 -3303.06
61 12 6 0.8 0.8 1 5000 30 Index -731.34 -1604.656758 -1565.58 -1327.78
62 12 6 0.8 0.8 1 15000 10 Rollout -824.70 -1619.332354 -1561.62 -1319.42
63 12 6 0.8 0.8 2 5000 10 Rollout -3038.20 -3772.708612 -3639.67 -3322.43
64 12 6 0.8 0.8 2 15000 30 Index -3027.44 -3772.385515 -3643.42 -3316.16
65 8 4 0.5 0.5 1.5 10000 20 Rollout -2352.30 -2778.31403 -2730.57 -2542.59
66 8 4 0.5 0.5 1.5 10000 20 Index -2354.24 -2782.664696 -2734.94 -2560.27

Table 23. Factors Influencing CUAV Resupply

Variable Sum of Squares F Test % Contribution
V 7308646 < .0001 11.16%

V crew 41422 0.1678 0.06%
Ω 281232 0.0006 0.43%
β 250655 0.0011 0.38%
d̄ 55822140 < .0001 85.21%

V ∗ d̄ 424127 < .0001 0.65%
V crew ∗ d̄ 1373597 < .0001 2.10%

Ω ∗ β 7804 0.5466 0.01%
Ω ∗ d̄ 113499 0.0245 0.17%
β ∗ d̄ 102674 0.032 0.16%
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5.4 Conclusions

The intent of this research is to implement established algorithms on more complex

problem instances of a military inventory routing problem (MILIRP) to compare

algorithmic performance and improve upon simple strategies. Developing a Markov

decision process (MDP) model of the multiclass MILIRP enables examination of the

disparate conditions the military faces in hostile environments.

Utilizing CUAV assets for resupply efforts is an important issue in military ap–

plications. A plethora of obstacles, to include poorly developed transportation in–

frastructure, adverse weather conditions, terrain, enemy threat and actions, and the

availability of distribution assets, all inhibit successful distribution of supplies from

the support area (SA) to the forward operating bases (FOBs). Moreover, insurgent

use of improvised explosive devices (IEDs) present a clear and present danger to

convoy resupply operations throughout the operational environment and has been

successful in disrupting replenishment procedures [25]. Because of this danger, the

effective implementation of CUAVs has been of increasing interest worldwide [15, 14].

This paper provides unique insight into using CUAVs in combat environments for

resupply. The effective removal of the human element via CUAV resupply could help

reduce the need for convoy resupply missions with high casualty rates. CUAV bene–

fits include: better performance in adverse weather conditions, higher flight ceilings,

and no escort requirement restrictions. All these benefits yield a lower probability

of vehicle destruction via enemy actions (e.g., via man-portable air-defense systems

and small arms fire). The most important benefit of CUAVs is their ability to save

lives by alleviating manned ground convoy resupply requirements. Although CUAVs

do not yet have the ability to completely handle FOB supply requirements as seen

through our large negative value function, each successful CUAV delivery means less

men and women exposed to enemy threats to include IEDs.
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We formulate an MDP model of the extended MILIRP and determine a policy

for realistic instances in order to compare two approximate dynamic programming

algorithms. We develop a representative baseline instance and conclude that both the

ADP algorithms and heuristic search techniques perform better than simple strate–

gies. We test our approach with an experimental design and empirically find the

design settings that maximize the ADP algorithmic performance. Moreover, we con–

clude that there is no statistically significant difference between utilizing LSTD-Index

or LSTD-Rollout techniques despite the Rollout algorithm’s more accurate represen–

tation of periodic risk. Additionally, although they all perform better than the myopic

policy, we conclude both LSTD-Index and LSTD-Rollout algorithms perform better

on this problem in terms of policy value than the standalone Index and Rollout al–

gorithms. This is due to the ADP’s ability to evaluate and update the value function

estimation via the selection of proper basis functions. It is possible that there exists

a better set of basis functions that will allow the linear model to more effectively

capture the nuances of this complex problem. Further exploration of basis functions

may yield improved results. Due to their demonstrated success, we conclude that

the LSTD-Index and LSTD-Rollout algorithms presented here are an effective way

to develop resupply policies for the MILIRP.
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VI. Contributions

The military inventory routing problem (MILIRP) is a stochastic inventory prob–

lem (IRP) with distinct complicating features that distinguishes itself from other

stochastic IRPs currently in the literature. Decision makers must develop resupply

polices to ensure the safety and security of their troops throughout their area of op–

erations. The goal of this research is to develop models and solution procedures for

the MILIRP and to inform the development of tactics, techniques, and procedures

for utilizing cargo unmanned aerial vehicles (CUAVs) for resupply.

This dissertation provides high quality and innovative research that constitute a

significant contribution to the Operations Research field. This research analyzes the

structural properties of a small instance MILIRP and generates a mathematical proof

that shows the conditions that must be met to ensure global monotonicity of the value

function. Moreover, this work develops a Markov decision process (MDP) model for

this instance, creates a novel algorithm that exploits this monotonic structure, and

demonstrates this algorithm’s efficacy. This work expands the model to a larger scale,

allowing for multiple routing, and develops two additional routing algorithms to solve

these more complex instances. This dissertation tests these algorithms and shows

that each perform better than a myopic strategy and have merit when used individu–

ally or in conjunction with approximate dynamic programming methods. Moreover,

this dissertation formulates a multi-class MDP model and demonstrates the created

algorithms’ efficacy on these more vastly complex instances. Results indicate that

the LSTD-Index, and LSTD-Rollout algorithms developed herein scale well as com–

plexity increases, and which indicate future work on the MILIRP should endeavor to

incorporate these algorithms.
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Appendix A. Acronyms

ADP - approximate dynamic programming

BCT - brigade combat team

BSA - brigade supply area

BSB - brigade supply battalion

CUAV - cargo unmanned aerial vehicle

F - CUAV does not successfully deliver supplies

FOB - forward operating base

IED - improvised explosive device

IRP - inventory routing problem

LSTD - least squares temporal differencing

MANPADS - man-portable air-defense system

MDP - Markov decision process

MILIRP - military inventory routing problem

MLSTD - monotone least squares temporal differencing

SA - support area

SF - CUAV delivers supplies to FOB, but does not successfully return

SIRP - stochastic inventory routing problem

SS - CUAV completes both legs of the journey

UAV - unmanned aerial vehicles

VMI - vendor managed inventory

VRP - vehicle routing problem
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14. Haider, André. 2014. Remotely Piloted Aircraft Systems in Contested Environ–
ments. Joint Air Power Competence Centre JAPCC.

106



15. Hoffman, Michael. 2012. K-Max cargo UAS exceeds expectations
in Afghanistan test. http://www.defensetech.org/2012/07/26/

k-max-cargo-uas-exceeds-expectations-in-afghanistan-test/. Accessed:
2016-04-3.

16. Jiang, Daniel R, & Powell, Warren B. 2015. An approximate dynamic pro–
gramming algorithm for monotone value functions. Operations Research, 63(6),
1489–1511.

17. Kleywegt, Anton J., Nori, Vijay S., & Savelsbergh, Martin W. P. 2002. The
Stochastic Inventory Routing Problem with Direct Deliveries. Transportation Sci-
ence, 36(1), 94.

18. Kleywegt, Anton J., Nori, Vijay S., & Savelsbergh, Martin W. P. 2004. Dy–
namic Programming Approximations for a Stochastic Inventory Routing Problem.
Transportation Science, 38(1), 42 – 70.

19. Lockheed Martin. 2010. K-MAX Unmanned Aircraft System. http:

//www.lockheedmartin.com/content/dam/lockheed/data/ms2/documents/

K-MAX-brochure.pdf. Accessed: 2016-3-1.

20. McCormack, Ian. 2014. The Military Inventory Routing Problem with Direct
Delivery. M.Sci., Air Force Institute of Technology.

21. McKenna, R. S., Robbins, M. J., Lunday, B. J., & McCormack, I. M. 2016. Ap-
proximate Dynamic Programming for the The Military Inventory Routing Problem
with Direct Delivery. Tech. rept. Air Force Institute of Technology.

22. McKenna, Rebekah. 2015. Using Approximate Dynamic Programming to Solve
the The Military Inventory Routing Problem with Direct Delivery. M.Sci., Air Force
Institute of Technology.

23. Michaels, Jim. 2017. The next big thing: Drones supplying U.S.
troops. http://www.usatoday.com/story/news/world/2017/02/22/

drones-supplying-united-states-troops/98155244/. Accessed: 2017-03-09.

24. Minkoff, Alan S. 1993. A Markov decision model and decomposition heuristic for
dynamic vehicle dispatching. Operations Research, 41(1), 77–90.

25. Peterson, Troy M., & Staley, Jason R. 2011. Business Case Analysis of Cargo
Unmanned Aircraft Systems (UAS) Capability in Support of Forward Deployed
Logistics in Operation Enduring Freedom (OEF). 1–15.

26. Powell, Warren B. 2009. What you should know about approximate dynamic
programming. Naval Research Logistics (NRL), 56(3), 239–249.

27. Powell, Warren B. 2011. Approximate Dynamic Programming: Solving the Curses
of Dimensionality. 2 edn. Hoboken, NJ: John Wiley & Sons, Inc.

107

http://www.defensetech.org/2012/07/26/k-max-cargo-uas-exceeds-expectations-in-afghanistan-test/
http://www.defensetech.org/2012/07/26/k-max-cargo-uas-exceeds-expectations-in-afghanistan-test/
http://www.lockheedmartin.com/content/dam/lockheed/data/ms2/documents/K-MAX-brochure.pdf
http://www.lockheedmartin.com/content/dam/lockheed/data/ms2/documents/K-MAX-brochure.pdf
http://www.lockheedmartin.com/content/dam/lockheed/data/ms2/documents/K-MAX-brochure.pdf
http://www.usatoday.com/story/news/world/2017/02/22/drones-supplying-united-states-troops/98155244/
http://www.usatoday.com/story/news/world/2017/02/22/drones-supplying-united-states-troops/98155244/


28. Powell, Warren B. 2016. Perspectives of approximate dynamic programming.
Annals of Operations Research, 241(1-2), 319–356.

29. Puterman, Martin L. 1994. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Hoboken, NJ: John Wiley & Sons, Inc.

30. Rettke, Aaron J, Robbins, Matthew J, & Lunday, Brian J. 2016. Approximate
dynamic programming for the dispatch of military medical evacuation assets. Eu-
ropean Journal of Operational Research, 254(3), 824–839.

31. Salgado, Ethan. 2016. Using Approximate Dynamic Programming to Solve
the Stochastic Demand Military Inventory Routing Problem with Direct Delivery.
M.Sci., Air Force Institute of Technology.

32. Sutton, Richard S, & Barto, Andrew G. 1998. Reinforcement learning: An intro-
duction. Cambridge, MA: MIT press.

33. Toth, Paolo, & Vigo, Daniele. 2001. The Vehicle Routing Problem. Vol. 18. SIAM.

34. Van Roy, Benjamin, Bertsekas, Dimitri P, Lee, Yuchun, & Tsitsiklis, John N.
1997. A neuro-dynamic programming approach to retailer inventory management.
Pages 4052–4057 of: Decision and Control, 1997., Proceedings of the 36th IEEE
Conference on, vol. 4. IEEE.

108



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

16–09–2018 Doctoral Dissertation SEP 2016 — SEP 2018

The Military Inventory Routing Problem: Utilizing Heuristics Within a
Least Squares Temporal Differences Algorithm to Solve a Multiclass

Stochastic Inventory Routing Problem with Vehicle Loss

Salgado, Ethan L., Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/ENS)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-PhD-18-DS-042

TRADOC Capability Manager for Unmanned Aircraft Systems
Deputy, TCM-UAS Mr. Glenn A. Rizzi
453 Novosel Street
Fort Rucker, AL 36362
glenn.a.rizzi.civ@mail.mil

TCM-UAS

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Military commanders currently resupply forward operating bases (FOBs) from a central location within an area of operations mainly via convoy operations in
a way that closely resembles vendor managed inventory practices. Commanders must decide when and how much inventory to distribute throughout their area
of operations while minimizing soldier risk. Technology currently exists that makes utilizing unmanned cargo aerial vehicles (CUAVs) for resupply an attractive
alternative due to the dangers of utilizing convoy operations. Enemy actions in wartime environments pose a significant risk to a CUAV’s ability to safely
deliver supplies to a FOB. We develop a Markov decision process (MDP) model to examine this military inventory routing problem (MILIRP).
In our first paper we examine the structure of the MILIRP by considering a small problem instance and prove value function monotonicity when a sufficient
penalty is applied. Moreover, we develop a monotone least squares temporal differences (MLSTD) algorithm that exploits this structure and demonstrate its
efficacy for approximately solving this problem class. We compare MLSTD to least squares temporal differences (LSTD), a similar ADP algorithm that does
not exploit monotonicity. MLSTD attains a 3.05% optimality gap for a baseline scenario and outperforms LSTD by 31.86% on average in our computational
experiments. Our second paper expands the problem complexity with additional FOBs. We generate two new algorithms, Index and Rollout, for the routing
portion and implement an LSTD algorithm that utilized these to produce solutions 22% better than myopic generated solutions on average. Our third paper
greatly increases problem complexity with the addition of supply classes. We formulate an MDP model to handle the increased complexity and implement our
LSTD-Index and LSTD-Rollout algorithms to solve this larger problem instance and perform 21% better on average than a myopic policy.

stochastic inventory routing approximate dynamic programming Markov decision process vendor managed inventory
military least squares temporal differences

U U U U 122

Dr. Matthew J. Robbins, AFIT/ENS

(937) 255-3636, x4539 matthew.robbins@afit.edu


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Inventory Routing Problem:
	Approximate Dynamic Programming
	Rollout Algorithms:

	A Stochastic Inventory Routing Problem with Vehicle Loss
	Problem Description
	Methodology
	Structural Properties
	Solution Methodology
	ADP Formulation

	Analysis
	MDP Parameterization
	Optimal Policy
	ADP Policies
	Baseline Instance
	Experimental design
	Results

	Conclusions
	Follow-on Research
	Acknowledgments

	Utilizing Heuristics Within a Least Squares Temporal Differences Algorithm to Solve a Large Instance Stochastic Inventory Routing Problem with Vehicle Loss
	Markov Decision Process Model
	Solution Methodology
	ADP Formulation

	Analysis
	MDP Parameterization
	ADP Policies
	Baseline Instance
	Experimental design
	Results

	Conclusions
	Acknowledgments

	Utilizing Heuristics Within a Least Squares Temporal Differences Algorithm to Solve a Multiclass Stochastic Inventory Routing Problem with Vehicle Loss
	Markov Decision Process Model
	Solution Methodology
	ADP Formulation

	Analysis
	MDP Parameterization
	ADP Policies
	Baseline Instance
	Experimental design
	Results

	Conclusions
	Acknowledgments

	Contributions
	Acronyms
	Bibliography

