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Final Progress Report: Minimax Compressed Sensing
Reconstruction

Dror Baron – North Carolina State University

1 Introduction

This report summarizes progress made during the project “Minimax Compressed Sensing Recon-
struction.” Below we state the problem in Section 2, and then summarize the important results in
Section 3.

2 Statement of Problem

Compressed sensing (CS) [1, 2] has sparked a tremendous amount of research activity in recent
years, because it performs signal acquisition and processing using far fewer samples than required
by the Nyquist rate. Breakthroughs in CS have the potential to greatly reduce the sampling rates in
numerous signal processing applications such as cameras [3], medical scanners, fast analog to digital
converters [4, 5], and high speed radar [6].

The intellectual foundations underlying CS rely on the ubiquitous compressibility of signals: in
an appropriate basis, most of the information contained in a signal often resides in just a few large
coefficients. Traditional sensing and processing first acquires the entire data, only to later throw away
most coefficients and retain the few significant ones [7]. Interestingly, the information contained in
the few large coefficients can be captured by a small number of random linear projections [8]. The
ground-breaking work in CS [1, 2, 6] has proved for a variety of settings that the signal can then be
reconstructed in a computationally feasible manner from these random projections.

System model: To be precise and concrete, consider the linear system,

w = Φx, (1)

where the input x ∈ RN is independent and identically distributed (i.i.d.), and the random linear
mixing matrix Φ ∈ RM×N is known, and typically M < N . The measurements w ∈ RM are passed
through a bank of separable channels characterized by conditional distributions,

fY|W(y|w) =
M∏
i=1

fY |W (yi|wi). (2)

Note that the channels are general and are not restricted to additive noise such as Gaussian. We
observe the channel output y, and want to estimate the original input signal x from y and Φ.

The quality of the signal reconstruction is often characterized by some error metric that quantifies
the distance between the estimated and the original signals. For a signal x and its estimate x̂, the
error between them is the summation over the component-wise errors,

D(x̂, x) =
N∑

i=1

d(x̂i, xi). (3)

For example, if the metric is absolute error, then d(x̂i, xi) = |x̂i − xi|; if the metric is squared error,
then d(x̂i, xi) = (x̂i − xi)2.

Commonly used error metrics: Squared error is one of the most popular error metrics in var-
ious problems, owing to many of its mathematical advantages; for example, minimum mean squared
error (MMSE) estimation provides both variance and bias information about an estimator [9], and in
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the Gaussian case it is linear and thus often easy to implement [10]. However, there are applications
where MMSE estimation is inappropriate, for example because it is sensitive to outliers [11, 12].
Therefore, alternative error metrics, such as mean absolute error (median) or Hamming distance can
be used instead.

Mean-square optimal analysis and algorithms were introduced in [13, 14, 15, 16, 17] to estimate
the original signal from Gaussian-noise corrupted measurements; in [18, 19, 20], further discussions
were made given the circumstances where the output channel was arbitrary, while, again, the MMSE
estimator was put forth.

Support recovery error is another metric of great importance, for example it relates to properties
of the measurement matrices [21]. The authors of [22, 23, 21] discussed the support error rate when
recovering a sparse signal from its noisy measurements; support-related performance metrics were
applied in the derivations of theoretical limits on the sampling rate for signal recovery [24]. The
readers may notice that previous work only paid attention to limited types of error metrics. What
if absolute error, cubic error, or other non-standard metrics are required in a certain application?

The main problem addressed in this program was to see how to reduce the worst-case error in
compressed sensing reconstruction problems. This minimax-style approach can be useful when one
cares little about small errors but is very concerned by outlier errors.

3 Summary of Important Results

Tan and several coauthors [25, 26, 27, 28] provide several contributions related to minimizing for
unconventional error metrics in CS reconstruction. First, an algorithm that minimizes the expected
error in CS reconstruction was used for a general purpose additive error formulation. The main idea
is that the output of relaxed belief propagation (relaxed BP) [29, 20] can be shown to correspond
to the original input signal w corrupted by additive white Gaussian noise (AWGN), and we apply
an appropriate denoising algorithm that minimizes the expected additive error. Second, we showed
that applying a Wiener filter to the output of relaxed BP provides asymptotically optimal minimax
performance. However, for finite length problems this approach may be sub-optimal, and a heuristic
approach featuring an optimization of the mean `p error (with p gradually increasing as a function
of the problem size) yields encouraging numerical results.

Secondary results: The project also partly funded the PI’s work on several other indirectly
related research projects. The first involved an image reconstruction work [30, 31]. The second fea-
tures a two-part CS reconstruction algorithm that offers a trade-off between speed and precision and
reconstruction [32]. The third involved fast parallel algorithms for data compression [33, 34, 35]. The
fourth involves universal algorithms for signal recovery [36, 37], which estimates the input statistics
on the fly from the actual noisy measurements while simultaneously recovering the input. The fifth
involves an analysis of regions where the best-possible minimum mean square error (MMSE) of CS
systems behaves differently [38]. Finally, the sixth related work involves an empirical Bayes denoising
algorithm that automatically tunes for unknown parameters within the approximate message passing
framework for solving CS reconstruction problems [39].

Yet another benefit of the project was the training of doctoral students. Ms. Jin Tan was
completed supported by the project for three semesters, and graduated in September 2015. The
project also funded part of the PI’s summer salary, which indirectly contributed to the doctoral
training of Mr. Nikhil Krishnan, Ms. Yanting Ma, and Mr. Junan Zhu.
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