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1. Introduction
The rotational motion of bodies is a well-understood branch of dynamics. In this
report, we apply those methods to study the problem of a freely spinning axisym-
metric body that, in an instant, impulsively ejects a portion of its mass radially from
the residual body. Not only is the residual body no longer axisymmetric, but the
process of ejecting mass induces changes to the linear and rotational momentum
of the residual body, brought about by the equal and opposite forces between the
ejected mass and the residual body.

As a result of all these influences, the ejection produces precessive motion in the
residual body. We wish to derive the motion of the residual body (or at least its limits
of motion), to gauge resultant changes to its principal axes, precessive angle, and
center of gravity (CG). There exist textbook treatments that account for impulsive
loads to spinning bodies.∗ However, in Beer and Johnston,1 for example, there is no
accounting for any mass ejection from the spinning body.

2. The Problem
Consider an axisymmetric body of mass M to be rotating with angular velocity ω0

about its axis of symmetry, the z-axis, such that ω0 = (0, 0, ω0). The situation,
before and after the mass ejection, is represented in the schematic Fig. 1. Because
the system is initially axisymmetric, the figure takes the liberty, with no loss of
generality, to define the laboratory coordinate system so that the mass m, at the
moment of ejection, resides in the y-z plane.

The principal moment of inertia about the z-axis (the spin axis) is given as Js = Jzz,
whereas the moment of inertia about the transverse principal axes is Jt = Jxx = Jyy,
such that

JG =


0

0

Jt

0

Jt

0

Js

0

0
 (1)

defines the principal moment of inertia tensor of the body (which is, by definition,
taken about the CG, denoted here as G). For slender (prolate) bodies of rotation, of
interest to our analysis, it will be the case that Jt > Js.

∗The sample problem 18.6, on p. 864 of Beer and Johnston1 provides some measure of back-
ground for what is being done here.
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(a)

(b)

Fig. 1 Schematic of the (a) original and (b) residual bodies following the ejection of mass

Figure 1b shows, at a moment in time, a small∗ portion of the body mass, m,
vectorially located (relative to G) at rm = (xm, ym, zm), impulsively ejected† from
the surface of the original body. The relative separation velocity is normal to the
body surface and of magnitude Vsep, where the surface normal may be specified as
nm = (nx, ny, nz). Note that the ejected mass m also has a velocity component
tangential to the axisymmetric surface, matching that on the residual body, owing to
the original body’s spin and given vectorially as ω0 × rm. This mass ejection has a
number of noteworthy effects on the system:

1. The CG of the residual body is altered (from G) to G′.

2. The moment of inertia of the residual body is altered, including the orientation
of its principal axes, from the x-y-z coordinates to a rotated 1-2-3 system.

3. There is an impulsive force, equal and opposite, between the residual body
and ejected mass, acting normal to the body surface.

4. The residual body is no longer axisymmetric, under the influence of point

∗By “small”, several things are implied: the ejected mass is much less than the original body
mass, and the ejected mass can be considered to originate from a point in space.

†Note that, in the mathematical treatment that follows throughout this report, the ejected mass
m and its normal separation velocity Vsep, may be taken as negative, with no loss of generality, to
represent the situation where mass is impulsively added to the original body.

2
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mass loss. However, if the ejected mass m is suitably small, axisymmetric
approximation of the residual body may still be possible.

Because of the impulsive nature of the event, we are ignoring the effects of gravity
and, more generally, all aero effects that can couple the gas upon the body (as these
effects occur over longer periods of time) and focus solely upon the effects of mass
loss and impulsive load upon the gyroscopic response of the body.

We use the term “small” to denote the ejected mass m so that we may consider it
to be concentrated at the point rm relative to the body’s pre-ejection CG, which is
given by G. We define the coordinate system relative to G so that the coordinates of
G are by definition (0, 0, 0), with the z-axis aligned with the original body’s axis of
symmetry.

3. The Governing Equations
Any dynamics analysis of rigid bodies must be concerned with the following ele-
ments: moments of inertia, linear and angular momenta, along with the coordinate
transformations to and from the body’s principal reference frame. Next, these aspects
are considered for the problem at hand: that of a spinning body, which impulsively
ejects a portion of its mass. The analysis first considers the general case, and then,
where appropriate, simplifies the result for the axisymmetric initial conditions that
prevail for the problem under consideration.

3.1 Linear Momentum
Considering the residual body plus the ejected mass as a closed system, momentum
is conserved before and after the ejection. Since the original body is in a state of
pure rotation (in our inertial coordinate system attached to G), there is zero net linear
momentum in the system. This must be preserved following the ejection.

However, in the process of ejecting mass m, the CG of the residual body relocates
from G to G′ by an amount rG′ = (xG′ , yG′ , zG′). Furthermore, the amount of CG
translation, rG′ , may be expressed directly in terms of the ejected mass m and its

3
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location, by the following proportional relationship∗:

(M −m) rG′ = −m rm . (2)

If we let g denote the ratio
g =

m

M
, (3)

then, from Eq. 2,
(1− g) rG′ = −g rm , (4)

so that g is seen to not only represent a mass ratio, but also a length ratio (applying
uniformly to the x, y, and z-coordinates of rm and rG′).

In the defined coordinate system, where the ejected mass m falls in the y-z plane
at the moment of ejection, it immediately follows that xm = nx = xG′ = 0.
Furthermore, all velocities in the x-direction are due to the initial spin of the body
and any net velocity in the y-z plane results from the impulsive ejection of mass m.

First, let us conserve momentum in the x direction. Denoting the x-components of
velocity of m and G′ as Vmx and VG′x, respectively,

VG′x =

Vmx =

ω0 × rG′ = −ω0 yG′

ω0 × rm = −ω0 ym
.

Momentum conservation in the x-direction, namely,

mVmx + (M −m)VG′x = 0 ,

leads, by way of Eq. 4, to the tautology

(m/M)

1− (m/M)
= −VG

′x

Vmx
= −yG

′

ym
=

g

1− g
.

Thus, satisfying x-momentum conservation is redundant to properly calculating the
revised-body CG in terms of the ejected mass location (Eq. 2).

To satisfy momentum conservation in the y-z plane, we note that the equal and

∗In each coordinate direction, the areal moments (about G) of the to-be-removed mass (e.g.,
m rm) and the to-be-residual mass (e.g., (M −m) rG′ ) must sum to zero. Once m has been ejected,
the residual body’s CG (i.e., G′) is, by definition, located at rG′ .

4
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opposite impulse applied to the ejected mass and the residual body are directed along
the n vector (the surface normal at the ejection point), so that the scalar balance

mVm(yz) + (M −m)VG′(yz) = 0

must be satisfied, from which emerges the deduction that

VG′(yz)

Vm(yz)

= − g

1− g
.

We use the subscript (yz) to denote a vectorial component projected as a scalar
magnitude in the y-z plane (the scalar projection is parallel to and, thus, independent
of n). Yet, we know from the initial condition (relative separation velocity) that

Vm(yz) − VG′(yz) = Vsep ,

so that, along the direction of n,

VG′(yz) =

Vm(yz) =

−gVsep

(1− g)Vsep
.

The velocity ratio in the y-z plane matches those in the x-direction, so that we may
generalize vectorially as

(1− g)VG′ = −gVm .

Expressing explicitly in the x-y-z coordinate frame, the linear velocities of the
ejected mass and the residual body are, respectively,

VG′ =

Vm =

−g
((1− g)
(
−ω0(ym − yG′),

−ω0(ym − yG′),

nyVsep,

nyVsep,

nzVsep

nzVsep)) . (5)

3.2 Moment of Inertia
The contribution that the ejected mass m made to the original body’s moment of

5



Approved for public release; distribution is unlimited.

inertia∗ (relative to the original CG, given by G) is

Jm = m ·


−xmzm

−xmym

(y2m + z2m)

−ymzm

(x2m + z2m)

−xmym

(x2m + y2m)

−ymzm

−xmzm
 . (6)

Therefore, the moment of inertia of the residual body, at the moment immediately
following the ejection of mass m, taken relative to G is

J′G = JG − Jm .

However, as noted already, the ejection of mass m relocates the CG of the residual
body from G to G′ by an amount rG′ = (xG′ , yG′ , zG′). The moment of inertia of
the residual body, accounting for the coordinate translation from G to G′, may be
obtained with a textbook application of the parallel axis theorem, such that

=

J′G′ =

JG − (Jm + ∆JG)

J′G −∆JG
. (7)

where

∆JG = (M −m) ·


0

0

(y2G′ + z2G′)

0

(x2G′ + z2G′)

0

(x2G′ + y2G′)

0

0
 .

From Eq. 2, the amount of CG translation, rG′ , may be expressed directly in terms
of the ejected mass m and its location rm, so that ∆JG may be re-expressed in terms
of the rm components as

∆JG =
m

M −m
m ·


0

0

(y2m + z2m)

0

(x2m + z2m)

0

(x2m + y2m)

0

0
 .

∗Note that the simple form of Eq. 6 derives from our approximating the mass ejection as
originating from a point. That approximation can be removed simply by replacing Eq. 6 with a form
that accounts for the distributed nature of the actual mass ejection.

6
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We note that the diagonal terms of ∆JG are related to those of Jm via

∆JG(ii) =
m

M −m
Jm(ii) (no sum) . (8)

If we let f denote the complement of g (Eq. 3), such that

f = 1− g =
M −m
M

, (9)

then the sum Jm + ∆JG may be expressed as

Jm + ∆JG = m ·


−xmzm

−xmym

(y2m + z2m)/f

−ymzm

(x2m + z2m)/f

−xmym

(x2m + y2m)/f

−ymzm

−xmzm
 . (10)

Note that, while rm is the distance to the ejected mass m relative to the original

body CG, rm − rG′ is the distance to the ejected mass, relative to the residual

(post-ejection) CG.

Equation 10 allows the description of J′G′ , given by Eq. 7, to be given as

J′G′ = m ·


xmzm

xmym

Jt
m
− y2m + z2m

f

ymzm

Jt
m
− x2m + z2m

f

xmym

Js
m
− x2m + y2m

f

ymzm

xmzm


. (11)

It is worthy to note that the G′ coordinate system represents a translation from
system G. Because of the loss of mass m, the revised moment of inertia matrix,
J′G′ , is no longer diagonal (in the general case) and must be rotated to determine
the new principal axes of the body. While the analysis to this point makes use of an
assumption that the mass ejection can be treated as an event originating from a point,
there is nothing that prevents J′G′ from being more assiduously calculated through
less assumptive means, in lieu of Eq. 11.

3.2.1 Axisymmetric Simplification to the Moment of Inertia
The axisymmetric simplification to the moment of inertia, for the original body, is
already contained in Eq. 1, wherein the axis of symmetry is aligned with the z-axis

7
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and Jxx = Jyy = Jt. The ejection of mass m, however, is not axisymmetric and so
Eq. 11 cannot be made axisymmetric. Nonetheless, simplification will arise in that,
because the original body was axisymmetric, a laboratory x-y-z coordinate system
may always be chosen to insure that the mass ejection occurs in, for example, the
y-z plane without requiring alteration of Eq. 1. When this is done, xm = xG′ = 0

can be assured. Further, because the original body was axisymmetric, it is also the
case that the surface-normal component nx = 0.

3.3 Transforming to and from the Principal Frame
As of Section 3.2, coordinate transformations were limited to translations from
the original body’s CG, given by G, to the CG of the residual body, given by G′,
following the ejection of mass m. Some calculations are, however, simpler when
performed in the reference frame that is aligned with the principal axes of the body.

Let us examine the textbook method for rotationally transforming tensors and vectors
to and from the principal coordinate system and apply the method to the problem of
moment of inertia. For convenience, denote the elements of J′G′ (Eq. 11) as

J′G′ =


J ′zx

J ′yx

J ′xx

J ′zy

J ′yy

J ′xy

J ′zz

J ′yz

J ′xz
 .

To obtain the principal moments for this nondiagonal J′G′ , we must obtain the
eigenvalues (principal inertias) and eigenvectors (principal directions) of J′G′ . The
three eigenvalues are solved from det(J′G′ − λI) = 0, which in this case produces a
cubic equation in λ: ∣∣∣∣∣∣∣∣ J ′zx

J ′yx

J ′xx − λ

J ′zy

J ′yy − λ
J ′xy

J ′zz − λ
J ′yz

J ′xz
∣∣∣∣∣∣∣∣ = 0 , (12)

which yields the three eigenvalue roots.

Once the three eigenvalues λi are obtained, the principal axes of inertia for the
residual body correspond to the eigenvectors of J′G′ . These eigenvectors Ti are

8
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obtained by solving, in turn, for each λi, the system

(J′G′ − λiI)Ti = 0 . (13)

The eigenvectors Ti are expressed in the original x-y-z coordinate system and denote
the orthonormal axial directions associated with the principal moments, λi.

Before the ejection of mass m, the principal axes of the body were aligned with
the chosen x-y-z coordinate system in which the calculations have been performed.
However, after the ejection, the principal axes of the body have changed. We know
these revised principal axes to be the eigenvectors given by T1, T2, and T3. We,
therefore, require the means to transform vectorial (and tensorial) quantities back
and forth between the laboratory x-y-z coordinate system and the 1-2-3 coordinate
system associated with the principal directions of the residual body.

A 3×3 transformation matrix, T, may be constructed, such that each eigenvector Ti

is successively placed as a column of T. Namely,

T =
[
(T1) (T2) (T3)

]
=


T1z

T1y

T1x

T2z

T2y

T2x

T3z

T3y

T3x
 . (14)

The eigenvalues λi represent the principal moments of inertia of the residual body,
such that

Ĵ =


0

0

λ1

0

λ2

0

λ3

0

0
 .

It can be deduced that Eq. 13, (J′G′−λiI)Ti = 0, is mathematically equivalent to the
tensor rotational transformation relation, where the hat denotes the principal system:

TTJ′G′T = Ĵ .

The matrix T may also be used to transform vectorial quantities between the x-y-z
coordinate system and the principal 1-2-3 coordinate system. Graphically, one may
use direction cosines to successively project a vector V onto the principal axes Ti,

9
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by way of

V̂3 =

V̂2 =

V̂1 =

T3 ·V
T2 ·V
T1 ·V

.

This, however, is equivalent to
V̂ = TTV . (15)

Equation 15 transforms the vector V, given in the x-y-z coordinate system, into
a vector V̂ expressed in the principal coordinate system of the body. Because Ti

compose an orthonormal set,∗ T is orthogonal and the inverse transformation may
be accomplished with the transpose of T, leading to

V = TV̂ . (16)

Note that, in this report, all hatted quantities (ˆ) are those expressed in the principal
1-2-3 coordinate reference frame.

3.3.1 Axisymmetric Simplification to the Coordinate Transformation
For our initially axisymmetric body, the problem of solving the cubic equation
associated with Eq. 12 can be made a bit simpler. To do so, we choose our initial
x and y (transverse) axes, such that the mass ejection always occurs in the y-z
plane (therefore, ym denotes the radial coordinate of the mass ejection relative
to the original body’s axis of symmetry, which traverses G). In this case, with
xm = xG′ = 0, it follows from Eq. 11 that J ′xy = J ′yx = J ′xz = J ′zx = 0, so that
det(J′G′ − λI) = 0 simplifies to

(J ′xx − λ)
(
λ2 − (J ′yy + J ′zz)λ+ (J ′yyJ

′
zz − J ′yzJ ′zy)

)
= 0 .

∗The eigenvectors Ti that describe the principal reference frame, given in Eq. 13 and later in
Eq. 19, are expressed in the laboratory x-y-z frame of reference. Expressed in the principal 1-2-3
frame, they are simply (i.e., by definition) T̂1 = (1, 0, 0), T̂2 = (0, 1, 0), and T̂3 = (0, 0, 1).

10
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The solution for the eigenvalues now requires only the quadratic formula:

λ3 =

λ2 =

λ1 =

(J ′yy + J ′zz)∓
√

(J ′yy + J ′zz)
2 − 4(J ′yyJ

′
zz − J ′yzJ ′zy)

2

(J ′yy + J ′zz)±
√

(J ′yy + J ′zz)
2 − 4(J ′yyJ

′
zz − J ′yzJ ′zy)

2

J ′xx

. (17)

These eigenvalues can be simplified∗ and expressed as

λ3 =

λ2 =

λ1 =

J ′zz − (Q− P )

J ′yy + (Q− P )

J ′xx

, (18)

where

Q =

P =

sgn(P )
√
P 2 + J ′2yz

J ′yy − J ′zz
2

and the sgn(P ) term dictates whether plus or minus was applied to the radical in
Eq. 17. With only squared terms under the radical of Q, we may deduce several
important points:

• All three eigenvalues of Eq. 17 are real.

• Q = P if and only if J ′yz = 0.

• |Q| > |P | for all nonzero values of J ′yz.

• From the definition of Q, we can express J ′yz as ±
√
Q2 − P 2.

∗Exploiting the symmetry of J′G′ , the λi described by Eq. 17 handily simplify to (as an interme-
diate step)

λ3 =

λ2 =

λ1 =

(J ′yy + J ′zz)∓
√

(J ′yy − J ′zz)2 + 4J ′2yz

2

(J ′yy + J ′zz)±
√

(J ′yy − J ′zz)2 + 4J ′2yz

2

J ′xx

.

11
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• For prolate (slender) bodies of interest to us, under the constraint thatm�M ,
it will be the case that P > 0 (based on the inference that J ′yy > J ′zz).

• From Eq. 11, with xm = 0, we deduce that J ′yy ≥ J ′xx (as long as m > 0). For
the prolate-body case under consideration, Q− P ≥ 0. Thus, we may further
deduce from Eq. 18 that λ2 ≥ λ1. Therefore, the 1-axis is the intermediate
inertial axis, so that λ2 ≥ λ1 > λ3. This ordering will have implications for
non-axisymmetric rotational stability.

The eigenvectors Ti associated with λi, obtained from solving Eq. 13, are, respec-
tively,

T3 =

T2 =

T1 =

(
(
(

0,

0,

1,

− sgn(J ′yz)

√
Q− P

2Q
,

√
Q+ P

2Q
,

0,

√
Q+ P

2Q

sgn(J ′yz)

√
Q− P

2Q

0

)
)
)

, (19)

as derived in the footnote.∗ The eigenvectors given by Eq. 19 may be composed

∗Consider the second eigenvector T2 = (v1, v2, v3), associated with λ2. The second equation of
the system given by Eq. 13 tells us that v2/v3 = [J ′yz/(Q− P )], leading to

v2
v3

= sgn(J ′yz)

√
Q2 − P 2

(Q− P )2
= sgn(J ′yz)

√
Q+ P

Q− P
.

A comparable analysis can be performed for the third equation defining the third eigenvector
T3 = (w1, w2, w3), associated with λ3. In this case, one obtains w2/w3 = −(Q− P )/J ′yz , leading
to, eventually,

w2

w3
= − sgn(J ′yz)

√
Q− P
Q+ P

.

The expression of Eq. 19 is merely the normalized version of these concepts, where the ± signs
have been chosen to keep T2 · (0, 1, 0) > 0 and T3 · (0, 0, 1) > 0.

Though not given here, it can be shown that the third equation for the λ2 system (given by
J ′yzv2 + (J ′zz − J ′yy +P −Q)v3 = 0) is redundant to the second equation ((P −Q)v2 + J ′yzv3 = 0)
of the system. Likewise, the second equation of the λ3 system ((J ′yy−J ′zz +Q−P )w2 +J ′yzw3 = 0)
is redundant to the third equation of the system (J ′yzw2 + (Q− P )w3 = 0). These redundancies are
a necessary requirement for eigenvectors.

12
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into T (Eq. 14) as

T =


0

0

1

sgn(J ′yz)

√
Q− P

2Q

√
Q+ P

2Q

0

√
Q+ P

2Q

− sgn(J ′yz)

√
Q− P

2Q

0


. (20)

Based on the components of T3 = (T3x, T3y, T3z) in Eq. 19, one may deduce that
the principal axis, previously aligned with the original body’s axis of symmetry, has
rotated by an angle δ in the y-z plane:

tan δ =
T3y
T3z

= − sgn(J ′yz)

√
Q− P
Q+ P

. (21)

3.4 Angular Momentum
We consider the residual body plus the ejected mass as two elements of a closed
system. Thus, no external force acts upon the system—the total angular momentum
of the system, before and after mass ejection, are, therefore, identical. Beforehand,
the CG is G, and the angular momentum about G is

HG = (0, 0, Jsω0) .

The amount of angular momentum afterward (with respect to G) remains unchanged.
However, some angular momentum is locked up in the ejected mass m, which was
located as rm. With respect to G, the amount of angular momentum locked up in the
ejected mass m is

Hm = m rm × (ω0 × rm︸ ︷︷ ︸
tangential

+Vsep nm︸ ︷︷ ︸
normal

) , (22)

accounting for both the tangential and the normal velocity components of the ejected
mass. The tangential velocity component, ω0 × rm, is preexisting, arising as a
consequence of the original body spin, whereas the normal component, Vsep nm
(relative to G), is brought about by the normal interaction between the ejected mass
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and the residual body, during impulsive separation. Therefore, the post-ejection
angular momentum of the residual body, relative to G, is

H′G = HG −Hm .

In the process of ejecting the mass m, the CG of the residual body moved from G

to G′, a translation of (xG′ , yG′ , zG′). The angular momentum of the residual body,
about G′, is therefore given as

H′G′ =

HG − (Hm + ∆HG)

H′G −∆HG
, (23)

where ∆HG is made to account for both the difference in angular momentum of
the residual body of mass M −m taken relative to G′ rather than G, as well as the
difference in angular momentum of the ejected mass m taken relative to G′ vs. G:

∆HG = (M −m) rG′ ×VG′/G︸ ︷︷ ︸
residual body

+m rG′ × (Vsep nm)︸ ︷︷ ︸
ejected mass

(24)

and VG′/G is the velocity at G′ relative to G.

3.4.1 Axisymmetric Simplification to the Angular Momentum
For our axisymmetric body, under the simplifying constraint of mass ejection in the
y-z plane (see Fig. 1), we have xm = 0 and nx = 0, leading to

VG′/G =

ω0 × rm =

(−ω0yG′ , 0, 0)

(−ω0ym, 0, 0)
,

so that, from Eq. 22,

Hm = mω0ym

(
Vsep
ω0ym

(ymnz − zmny), −zm, ym
)

. (25)

Likewise, with mass ejection constrained to the y-z plane, Eq. 24 becomes

∆HG = (M −m)ω0yG′ (0, −zG′ , yG′) +m (Vsep(yG′nz − zG′ny), 0, 0) .
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Expressing components of rG′ in terms of rm allows ∆HG to be reexpressed, by
way of Eq. 2, as

∆HG =
m2

M −m
ω0ym

(
Vsep
ω0ym

(ymnz − zmny), −zm, ym
)

. (26)

We note that, in a fashion analogous to Eq. 8, one may compare Eqs. 25 and 26 to
deduce

∆HG =
m

M −m
Hm ,

such that

Hm + ∆HG =
mω0ym
f

(
Vsep
ω0ym

(ymnz − zmny), −zm, ym
)

,

where we recall from Eq. 9 that f = (M −m)/M . With the use of Eq. 23, we arrive,
finally, at the angular momentum of the residual body, relative to its CG, which is
located at G′:

H′G′ =
mω0ym
f

(
Vsep
ω0ym

(
zmny − ymnz

)
, zm, (X − 1)ym

)
, (27)

with
X = f · Js

my2m
.

Here are several nondimensional term groupings to note:

Vsep
ω0ym

is the ratio of the normal velocity with which the ejected mass m is being
thrown, to its circumferential velocity, at the same moment.

f is the ratio of the residual body mass following the ejection of mass m, to
the original body mass.

Js
my2m

is the ratio of the original body’s moment of inertia about the axis of
symmetry, to the moment of inertia of the ejected mass m, relative to the
original axis of symmetry.

To summarize, Eq. 27 expresses the angular momentum vector of the residual body,
following the ejection of mass m, relative to the residual body’s CG, given as G′,
but in the original (unrotated) x-y-z coordinate system. Consider the origin of the
various components of H′G′ . Whereas the original spinning body possessed only a
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z-component of angular momentum, the ejection of mass m, because of momentum
conservation, changes the angular momentum of the residual body in two ways:

• The ejected mass is propelled with an impulse in the y-z plane, which intro-
duces an x component of angular momentum to the residual body.

• The ejected mass (which a priori possesses an x-component of linear mo-
mentum because of the body’s original spin) affects both the y and z angular
momentum components of the residual body, proportionally to the zm and ym
coordinates of the ejected mass, respectively.

3.5 Angular Velocity
To most simply obtain the angular velocity of the residual body, one must first
express the angular momentum in the principal orientation of the residual body,
rather than the x-y-z orientation. We, thus, wish to express H′G′ , given by Eq. 27,
along the eigenvectors T1, T2, and T3 (see Eq. 19), which define the residual body’s
principal axes. This can be accomplished via the method of Eq. 15, to yield

Ĥ = TTH′G′ (28)

such that the principal angular momentum components of the residual body, taken
about G′ in the 1-2-3 coordinate system, may be identified as

Ĥ3 =

Ĥ2 =

Ĥ1 =

T3 ·H′G′

T2 ·H′G′

T1 ·H′G′

. (29)

The magnitude of angular momentum, which is a time-invariant quantity under
torque-free rotation, is given by

H =

√
Ĥ2

1 + Ĥ2
2 + Ĥ2

3 (30)

and its unit orientation, in the principal 1-2-3 frame of reference,∗ is given by the

∗The corresponding unit orientation of the angular momentum, expressed in the x-y-z laboratory
frame, is

K =

(
H ′G′x

H
,
H ′G′y

H
,
H ′G′z

H

)
.

16



Approved for public release; distribution is unlimited.

unit vector K̂ as

K̂ =

(
Ĥ1

H
,
Ĥ2

H
,
Ĥ3

H

)
. (31)

Once the principal components of angular momentum Ĥi are obtained, the angular
velocity in this coordinate system, ω̂, follows directly as

ω̂3 =

ω̂2 =

ω̂1 =

Ĥ3/λ3

Ĥ2/λ2

Ĥ1/λ1

. (32)

The magnitude of the angular velocity is given by

ω =
√
ω̂2
1 + ω̂2

2 + ω̂2
3 . (33)

Once the rotational velocity of the residual body is obtained in the principal coordi-
nates of the residual body, the result may be reexpressed in the laboratory coordinate
system via T (Eq. 20):

ω = Tω̂ . (34)

3.5.1 Axisymmetric Simplification to the Angular Velocity
Employing Eqs. 19 and 27, the inner products of Eq. 29 evaluate as

Ĥ3 =

Ĥ2 =

Ĥ1 =

mω0ym

f
√

2Q

(
− sgn(J ′yz)zm

√
Q− P + (X − 1)ym

√
Q+ P

)
mω0ym

f
√

2Q

(
+zm

√
Q+ P + sgn(J ′yz)(X − 1)ym

√
Q− P

)
mVsep
f

(
zmny − ymnz

)
. (35)

The angular velocity in this coordinate system follows directly from Eq. 32, where
λi, the eigenvalues, represent the principal moments of inertia of the residual body

While all the equations discussed here apply to the instant following mass ejection, it is the case that
K will also be time-invariant, because of angular-momentum conservation. The same cannot be said
of K̂ because, over time, the 1-2-3 body reference frame will vary under precession.
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(Eq. 18). Thus, the three rotation rates about the principal axes, Ti, are

ω̂3 =

ω̂2 =

ω̂1 =

mω0ym

f
√

2Q
·
− sgn(J ′yz)zm

√
Q− P + (X − 1)ym

√
Q+ P

J ′zz − (Q− P )

mω0ym

f
√

2Q
·
zm
√
Q+ P + sgn(J ′yz)(X − 1)ym

√
Q− P

J ′yy + (Q− P )

mVsep
f
· zmny − ymnz

J ′xx

. (36)

With the three components of ω̂ available through Eq. 36, the transformation given
by Eq. 34 may be used to relocate the angular-velocity vector in the laboratory frame
of reference.

4. The Resulting Torque-Free Body Motion
The equations provided in Section 3 allow for the discernment of how the ejection of
a small mass m from a spinning axisymmetric body of mass M affects the angular
momentum, angular velocity, and principal axes of the body, at a given moment in
time. Because the forces of aerodynamic drag and gravity are being neglected in this
analysis, one may conclude that, following the mass ejection, the revised angular
momentum vector for the residual torque-free body, will remain fixed over time.

One of the ramifications of Eq. 32 is that, for the situation where the angular
momentum is perfectly aligned with the body’s principal axis, the resulting angular
velocity will be, likewise, aligned along the same axis. Conversely, when the angular
momentum is not aligned with a principal body axis, the angular velocity vector
will, in general, align with neither the angular momentum nor the body’s axis. This
latter situation brings about the phenomenon of gyroscopic precession, in which the
orientation of the body axis, with respect to the laboratory, evolves over time, in a
manner that conserves angular momentum.

For prolate axisymmetric bodies (where Jt > Js), the angle (denoted θ) between
the original body’s z-axis of symmetry and the angular-momentum vector H′G′

will be larger than the angle (denoted γ) between the z-axis of symmetry and the
angular velocity ω. When the body is axisymmetric, these three vectors (z-axis, H′G′

and ω) will remain coplanar and a regular precession emerges that is conveniently
characterized by what are called the “space cone” and the “body cone”, defined in
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terms of θ and γ.

However, for our problem, we have a complication: following the ejection of mass m,

the residual body is no longer axisymmetric. The principal axis of the body relocates
from the z-axis to the T3 direction and the principal transverse moments of inertia, λ1
and λ2, are no longer co-equal (thus, violating a requirement for axisymmetry). The
body’s post-ejection motion can no longer be characterized by a simple precession,
except in an approximate way. Precession of a non-axisymmetric body is a complex
thing. Furthermore, if the angular momentum is primarily aligned with the mid-
inertial axis (the axis with neither the largest nor the smallest inertial moment; in our
chosen reference frame, the x-axis), then a complex rotational instability arises over
time.2–4

However, since the ejected mass m has already been assumed to be “small”, the
transverse moments of inertia of the residual body will be approximately co-equal.
Thus, the general case may be addressed by way of axisymmetric approximation
(with several special cases of initial conditions also examined).

In addition, the conservation of angular momentum and rotational energy is examined
for the fully non-axisymmetric case (see the Appendix). Algebraically, it provides
the locus and extrema associated with permissible (ω1, ω2, ω3) solutions and the
rates of spin ψ̇, precession φ̇, and nutation θ̇ (as a function of ψ). It also allows
the development of a simple result to determine the precessing axis. Given that the
3-axis, according to the conventions adopted in this report, is loosely associated with
the initial z-axis of symmetry of the prolate body, a change of the precessing axis
would be a strong indication of rotational instability following the mass ejection.
With two simple 1-D integrations to determine the time t and precession angle φ in
terms of the body’s spin, the full precessive behavior of the non-axisymmetric body
may be determined.

4.1 Axisymmetric Residual-Body Approximation: λ̄t = (λ1 + λ2)/2, with
ω̂i = Ĥi/λ̄t for i = 1, 2

Short of solving the full equations of motion for a non-axisymmetric body in multi-
axis torque-free rotation, the easiest way to proceed with the equations of Section 3
is to assume that the residual body is so close to axisymmetry that it can be treated
as such. To do so, we must ignore the disparity in moment of inertia between
the residual body’s 1 and 2 coordinate directions, otherwise given by λ1 and λ2,
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respectively. The way forward here is to assume an aggregated inertia,

λ̄t =
λ1 + λ2

2
, (37)

such that Eq. 32 may be approximated as

ω̂3 =

ω̂2 ≈
ω̂1 ≈

Ĥ3/λ3

Ĥ2/λ̄t

Ĥ1/λ̄t

. (38)

The level of approximation in Eq. 37 can be characterized by the magnitude

ε =
|λ1 − λ2|

λ̄t
.

Once this approximation is made, the problem reduces to axisymmetry where the
simple precession solution applies.

There will, however, be an azimuthal discrepancy between the ejection plane and
the angular momentum/velocity plane. In the principal 1-2-3 frame of reference, the
ejection occurs in the 2-3 plane, whereas the plane in which the resultant momentum
and angular velocity lies also contains the 3-axis, but is rotated from the 2-axis
toward the 1-axis by an azimuthal angle β0, such that

tan β0 =
Ĥ1

Ĥ2

.

The transverse momentum and angular velocity are aggregated as

ω̂t =

Ĥt = √
ω̂2
1 + ω̂2

2 ≈
Ĥt

λ̄t

√
Ĥ2

1 + Ĥ2
2

Here, Ĥt is introduced to describe the momentum component perpendicular to the
prolate axis of the body (i.e., perpendicular to the 3-axis), for our quasi-axisymmetric
condition.

Under a condition of axisymmetry, simple precession occurs and the analysis follows
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the following lines. Referring to Fig. 2, let θ define the angle between the angular
momentum and the principal 3-axis, which can be obtained directly in the 1-2-3
frame:

tan θ =
Ĥt

Ĥ3

or cos θ = K̂3 . (39)

For an axisymmetric body, the angle θ represents the invariant angle that exists
between the angular momentum vector Ĥ (in the laboratory frame, H′G′) and the
principal 3-axis, as it precesses around the fixed H′G′ .

Fig. 2 Precession associated with the residual body under axisymmetric approximation

Let the body-cone angle be denoted as γ, formed between the principal 3-axis and
the angular velocity ω. It can be characterized in the principal frame by

tan γ =
ω̂t
ω̂3

≈ Ĥt/λ̄t

Ĥ3/λ3
=
λ3

λ̄t
tan θ . (40)

The space-cone angle is given by θ − γ and through it, the relations for expressing
the rate of precession (φ̇) and the rate of spin (ψ̇) emerge in terms of the angular
velocity magnitude (ω =

√
ω̂2
t + ω̂2

3 , for our case) and the space- and body-cone
angles (θ, γ).
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Specifically, the triangle formed by the (coplanar) vector sum, ω̂ = φ̇K̂ + ψ̇T̂3,
through the law of sines, leads directly to

ω

sin θ
=

φ̇

sin γ
=

ψ̇

sin(θ − γ)
, (41)

from which φ̇ and ψ̇ may be calculated. While the precession of the body proceeds
at a rate of φ̇, the body spins about its own axis at a rate of ψ̇.

One difficulty, however, is that these quantities (ω̂, Ĥ) are in the principal 1-2-3
reference frame, with nonzero direction cosines connecting them to the laboratory
x-y-z frame. Over time, the principal 3-axis precesses with a constant angle θ relative
to Ĥ. But in the laboratory x-y-z reference frame, we wish to know the range of pitch
angles experienced by the body relative to the z-axis. The direction cosine between
the angular momentum H′G′ and the z-axis, denoted θz, remains constant over time.
It can be obtained by transforming the angular momentum’s direction K̂ from the
1-2-3 frame to the x-y-z frame (see Eq. 16) and extracting the z-component:

cos θz = TK̂ · (0, 0, 1) . (42)

From the precession, the principal 3-axis of the body maintains an angle of θ with
respect to H′G′ , so that the angle formed between the laboratory z-axis and the
precessing 3-axis will span the range θz ± θ. Based on geometrical considerations
associated with the azimuth (β0) of angular momentum, one can deduce that θz falls
in the range θ − |δ| ≤ θz ≤ θ + |δ|.

Additionally, in consideration of Eq. 21, the nose of the body will wobble as it
spins about its 3-axis by an amount ±δ (because of the imbalance brought about by
the loss of ejected mass m). Therefore, because of the precession plus wobble, the
nose of the body, over time, will gyroscopically pitch to angles covering the range
θz ± (θ + |δ|).

4.1.1 Special Cases Arising from Simplified Initial Conditions
There arise certain cases of initial conditions for which the equations of Section 3
can be simplified. In these special cases, certain components of the general problem
will be absent, resulting in a simpler result.
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4.1.1.1 Rotation-Free Original Body, ω0 ≡ 0

If the initial body is nonrotational, prior to the mass ejection, such that ω0 ≡ 0,
then the equations of Section 3 are greatly simplified. In particular, the angular
momentum in the principal frame of reference, see Eq. 35, consists solely of a single
component, brought about by the mass ejection, reexpressed as

Ĥ1 =
(
mVsep

)(zm
f
ny −

ym
f
nz

)
.

We see that mVsep is the magnitude of the impulse of the ejected mass m which,
from Newton’s third law, is the same impulse applied in the opposite direction to the
residual body. We note from Eqs. 4 and 9 that rm − rG′ = rm/f . Thus, zm/f and
ym/f are the distance components of the ejection point with respect to the revised

(post-ejection) CG of the residual body, G′. The right-hand term in parentheses,
therefore, represents a moment arm: the negative of (rm + rG′) × nm, since the
impulse applied to the residual body is equal and opposite that imparted to the
ejected mass m that is moving in direction nm. If rm and nm are parallel, no rotation
results (Ĥ1 = 0), as the impulsive force from the ejection of mass m goes directly
through the CG at G′.

Because there is only one principal component of angular momentum for this
special case, the angular velocity will be co-aligned with the angular momentum,
rotating about the x-axis (since the x- and 1-axes are coincident). Accounting for our
axisymmetric approximation, the magnitude of angular velocity will be ω̂1 = Ĥ1/λ̄t

and, because ω̂ is aligned with Ĥ, the solution represents pure rotation about the
x-axis, with no precession whatsoever.

This special case demonstrates how, in a negative way, the absence of initial ωz body
spin fails to provide any stabilization of the body’s pitch angle. Here, with no initial
spin, the ejection of mass results in a pure tumbling motion of the residual body,
reaching eventually 180◦ of pitch. Additionally, this special case solution represents
pure rotation about the mid-inertial axis (the x-axis). If, in the actual situation, small
nonzero components of ωy or ωz are present, the pure rotation is unstable and will
cause these secondary components of ω to grow into a full-fledged precession.
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4.1.1.2 Mass Ejected with Zero Normal Velocity, Vsep ≡ 0

In the problem as originally described, a mass m, originally in the y-z plane, is
ejected from the body. This ejection is accompanied by the exchange of linear
momentum in the y-z plane, between the ejected mass and the residual body. This
linear momentum absorbed by the residual body will lead to an angular momentum
component of the residual body about the x-axis.

One simplified scenario, which results in no-net angular momentum being introduced
about the x-axis, occurs when the mass m is ejected with no normal separation
velocity, such that Vsep ≡ 0. In this scenario, the ejected mass flies off (in a straight
line) circumferentially from the spinning body. However, at the moment of separation,
there is no net contact force exchange between the ejected mass and the residual
body.

Nonetheless, the residual body is no longer strictly axisymmetric, the principal
axis formerly aligned with the z-axis is rotated to the T3 direction, and angular
momentum is introduced about the y- and z-axes of the residual body, because of the
x-linear momentum removed with the ejected mass m. Looking, however, at Eq. 35,
for the case when Vsep ≡ 0, it follows that Ĥ1 = 0 and thus, ω̂1 = 0.

For this special case, the transverse direction is the 2-axis, such that Ĥt = Ĥ2. With
the help of Eqs. 35 and 39, θ may be obtained as

tan θ =
Ĥ2

Ĥ3

=
+zm

√
Q+ P + sgn(J ′yz)(X − 1)ym

√
Q− P

− sgn(J ′yz)zm
√
Q− P + (X − 1)ym

√
Q+ P

.

Note, however, that the principal axis T3, which precesses about the angular mo-
mentum vector H′G′ , is no longer aligned with the z-axis. Rather, from Eq. 19, it is
offset in the y-z plane by an angle δ, given by Eq. 21. Thus, in the x-y-z coordinates,
the angular momentum H′G′ is actually rotated from the z-axis toward the y-axis by
an angle θz = θ + δ. From the precession, the principal 3-axis maintains an angle of
θ with respect to H′G′ , so that the angle formed between the laboratory z-axis and
the precessing 3-axis will span the range θz ± θ.

As mentioned in the general case, the nose of the body will wobble as it spins about
its 3-axis by an amount ±δ (because of the imbalance brought about by the loss of
ejected mass m). In this special case, however, because the angular momentum is
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in the 2-3 plane, θz can be summed algebraically to θz = θ + δ (in lieu of Eq. 42).
Thus, during precession, the original nose of the prolate body, forming an angle with
respect to the laboratory z-axis of θz ± (θ + |δ|), will span the range from δ − |δ| to
2θ + δ + |δ|.

The components and magnitude of ω̂, under our quasi-axisymmetric assumption, are
obtained by way of Eq. 38. The body-cone angle γ can be characterized directly in
the 1-2-3 frame using Eq. 40. All the pieces are now in place to calculate the rates of
precession and spin:

ψ̇ =

φ̇ =

ω
sin(θ − γ)

sin θ

ω
sin γ

sin θ
.

While the precession of the body proceeds at a rate of φ̇, the body spins (and thus
wobbles) at a rate of ψ̇.

4.1.1.3 Negligible Mass Ejected, but with Finite Impulse, lim
m→0

mVsep ≡ P0

This special case is formulated a bit differently than the former case. Here, the ejected
mass m approaches 0 in the limit; however, it is ejected with such velocity that there
is a nonzero impulse interaction between the residual body and the infinitesimal
ejection. In essence, this special case is equivalent to the situation of an impulsive
load being applied to the original body.

To handle the mathematics of this case, relative to the equations of Section 3, we
have the condition that m = 0 under the limiting constraint

lim
m→0

mVsep = P0 ,

where P0 is the nonzero impulse opposing the outward body normal nm at the
“ejection site” rm.

Because the mass ejection is negligible, g = 0, the principal moments of the body
do not change, and the 1-2-3 body coordinate system precisely overlays the x-y-z
laboratory system (i.e., δ = 0). Furthermore, the body remains axisymmetric and so
the principal axial and transverse moments of inertia remain Js and Jt, respectively.
One immediately concludes that the simple-precession solution applies in this special
case.
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Let the angular momentum produced by impulse P0 be defined as

Ht = P0

(
zmny − ymnz

)
.

Under the conditions of this special case, the angular momentum, originally ex-
pressed in Eq. 27, can be greatly simplified as

H′G′ = Ĥ =
(
Ht, 0, Jsω0

)
.

With ωt = Ht/Jt, it follows from Eq. 32 that

ω =
(
ωt, 0, ω0

)
.

For the quantities of precession,

tan γ =

tan θ =

ω̂t
ω̂3

=
Js
Jt

tan θ =
ωt
ω0

Ĥt

Ĥ3

=
Jt ωt
Js ω0 ,

and, with some simplification,∗ the resulting rates of precession and spin may be
obtained as

ψ̇ =

φ̇ =

ω
sin(θ − γ)

sin θ

ω
sin γ

sin θ

=

=

ω0

(
1− Js

Jt

)
√(

Js
Jt
ω0

)2

+ ω2
t

.

∗Recalling the magnitudes of Ĥ and ω̂ as H (Eq. 30) and ω (Eq. 33), respectively, then

sin γ =

sin θ =

ωt

ω

Jtωt

H

cos γ =

cos θ =

ω0

ω

Jsω0

H .

Trigonometric substitution yields

sin(θ − γ) = (Jt − Js)
ω0ωt

(Hω)
.

It follows from substitution into Eq. 41 that

φ̇ =
H

Jt
ψ̇ = ω0

Jt − Js
Jt

.

A final reduction gives the results that follow in the report.
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Since the applied impulse P0 was in the y-z plane, no additional rotational inertia
was added about the z axis, and so the rate of spin, ψ̇ is unaffected by P0 (i.e.,
unaffected by ωt). During precession, the total body pitch will vary over the range of
[0, 2θ].

4.2 Energy/Momentum Analysis of Torque-Free Rotation
Once the ejection of mass occurs, the residual body is no longer subject to any forces
and, therefore, is in a condition to conserve energy and momentum. Since the body
travels inertially following the ejection with a velocity of VG′ , there is a priori no
change in linear momentum nor kinetic energy. Therefore, in the absence of kinetic
exchange, the angular momentum and rotational energy are likewise conserved.

In the case of momentum, since the vector H′G′ is fixed over time, it is also the case
that the scalar H2 = H′G′ ·H′G′ = Ĥ · Ĥ, representing the square of the angular
momentum magnitude, is also a fixed quantity, regardless of the reference frame in
which it is expressed. From Eqs. 30 and 32,

λ21ω̂
2
1 + λ22ω̂

2
2 + λ23ω̂

2
3 = H2 = constant . (43)

A tabulation of rotational kinetic energy Trot, which also remains fixed, gives

λ1ω̂
2
1 + λ2ω̂

2
2 + λ3ω̂

2
3 = 2Trot = constant . (44)

In graphical terms, using a 3-D space comprising ω̂i-ω̂j-ω̂k axes, Eqs. 43 and 44
represent two ellipses, centered at the origin and aligned with the coordinate axes.3

The surface of each ellipse represents the permissible values of the (ω̂1, ω̂2, ω̂3)

triplet that satisfy the conservation of angular momentum and rotational energy,
respectively. Therefore, all possible rotational states that conserve both angular
momentum and rotational energy over time are represented by the intersection of the
two ellipses.

We know the values of λi for our residual body by way of Eq. 18. Likewise, Eq. 36
provides the initial values of ω̂i immediately following the mass ejection. Therefore,
the conservation quantities, H2 and 2Trot, follow immediately from an application
of Eqs. 43 and 44 to this initial state. A closed-form solution to the intersection of
these two ellipses has presented itself—the method used to ascertain that intersection
is described in the Appendix.
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In the simple precession solution associated with axisymmetric bodies, the elliptical
intersection is given by a circle perpendicular to the ω̂3 axis, so that ω̂3 remains fixed.
The radius of the circle is ω̂t =

√
ω̂2
1 + ω̂2

2 . The body-cone angle γ (which in this
case is represented by the conical angle that connects the circle of intersection to the
origin) is fixed at γ = tan−1(ω̂t/ω̂3).

For the non-axisymmetric case of elliptical intersection, quantities like ω̂3 and γ are
no longer fixed, but will vary through the precession cycle. For small deviations of
the residual body from axisymmetry, the variations of ω̂3 and γ about nominal values
remain small. These variations increase as the deviation from axisymmetry grows. If
the axisymmetric deviation grows large enough, an interesting result happens: the

precessing axis shifts from the 3-axis to either the 1- or 2-axes.

One may define the precessing axis i as that axis for which no ω̂i = 0 solution
exists. By exercising the model presented in the Appendix, the analytical condition
to determine the precessing axis was inferred. It proves so simple, that one need not
actually exercise the model to ascertain the precessing axis. For ease of explanation,
let us denote and order the three principal moments as

λmin < λmid < λmax .

The criterion to determine the precessing axis is simply

if
H2

2Trot

 = λmid,

< λmid,

> λmid,

the rotation is unstable

the precessing axis is that associated with λmin

the precessing axis is that associated with λmax

. (45)

Consider the hypothetical situation provided in Table 1, in which the range of
(ω̂1, ω̂2, ω̂3) solutions are presented for a residual body, for a given initial rotation
rate, subject to successive excursions of lesser λ1. In essence, each row of the table
represents a case further removed from the condition of axisymmetry. The critical
value of λ1 (where ω̂3 first reaches 0) proves to be 2.753

(
when λ1 = H2

2Trot

)
, below

which the 2-axis becomes the precessive axis. While the axisymmetric body cone
(the angle between the prolate axis and the angular velocity) angle γ remains fixed
at 19.8◦, as asymmetry is introduced (through λ1 6= λ2), the maximum value of γ
grows rapidly until reaching 90◦ at the critical value of λ1.
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Table 1 Precession range for the hypothetical initial condition of (ω̂1, ω̂2, ω̂3) = (0.2, 0.3, 1.0),
under the effect of reducing the principal moment λ1

λ1 λ2 λ3
H2

2Trot
ω̂3 range γ range (◦) θ range (◦)

6 6 1 3.19 1.00 19.8 65.2
5.7 6 1 3.13 0.98–1.01 19.4–20.9 64.7–65.3
5.4 6 1 3.08 0.96–1.01 19.0–22.2 64.2–65.6
5 6 1 3.01 0.93–1.02 18.5–24.2 63.5–66.0
4 6 1 2.87 0.80–1.03 17.5–32.8 62.2–68.8
3 6 1 2.77 0.44–1.04 16.8–58.1 61.1–78.3

2.753 6 1 2.75 0.00–1.04 16.7–90.0 61.0–90.0
2 6 1 2.72 0.00–1.03 16.4–90.0 60.5–90.0

The cases represented in Table 1 are presented graphically in Fig. 3. The moment
of inertia that permits γ = 90◦, conversely ω̂3 = 0, represents a body geometry
for which the precessing axis has shifted away from the 3-axis. One may observe
that for the condition λ1 < 2.753, there exist ψ configurations for which no ω3

solutions exist, implying that precession is no longer about the 3-axis. The greater
the divergence from axisymmetry, the larger the fluctuation in both γ and the body
spin rate, ω̂3. The abscissa ψ represents the body’s angular coordinate of spin.
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Fig. 3 Locus of solutions for bodies with an initial angular velocity ω̂ = (0.2, 0.3, 1), with
moment-of-inertia component λ1 as a parameter, depicting (a) γ and (b) ω̂3

On the other hand, when λ1 undergoes a 10% decrease to a value of 5.4, the effect is
quite small, with ω̂3 only fluctuating 5% and γ spanning a range of 3.2◦ about its
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nominal (axisymmetric) value. The solution for λ1 = 5.4 is shown in Fig. 4. So, the
initial sensitivity to small variations in λi, owing to the ejection of mass m, may still
remain quite small, even as 5% or 10% of the body mass is ejected. This result gives
confidence to the earlier solution involving axisymmetric approximation. Of course,
the particulars will depend on the inertia of the original body and the level of change
in angular momentum brought about by the ejection of mass.
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Initial  Condition (0.2,0.3,1)

atan(t /3)^ ^

Fig. 4 Locus of ω̂ solutions for body with principal moments (5.4, 6, 1), subject to the initial
condition. The term ψ = tan−1 ξ is the implicit variable in the solution (see the Appendix).

The transformation matrix T, given in Eq. 20, from which the orientation of the
body’s principal axes can be derived, is valid only for the instant following the
ejection of mass m. Once the torque-free rotation is allowed to proceed, the residual
body’s orientation, and thus T and Ĥ, also evolve in time. In the axisymmetric
case, the body and space cones are of fixed angle. Thus the locus of body orien-
tations is known through the precession cycle. However, this is not the case for
non-axisymmetry.

The energy approach presented in the Appendix provides the locus of ω̂ (and Ĥ,
by way of Eq. 32) that evolve during the precession. Despite a promising avenue,
however, there would appear to be no way to use that information to back out the
body’s instantaneous orientation embodied in the T matrix. We know that each of
these Ĥ triplets, over the range of solutions, is equivalent to the known H′G′ vector
(Eq. 27) that is fixed in the x-y-z coordinate system. There exists a technique,5 for
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a given Ĥ triplet, to obtain a transform R that connects it to H′G′ in the laboratory
coordinates.∗ Unfortunately, in 3-D, that transform is not unique and therefore it
cannot serve as a general approach for back-calculating T given Ĥ and H′G′ .

Nonetheless, the knowledge of the locus of Ĥ does provide for the possible range
of residual-body orientations. That is to say, while not knowing the actual 1-2-3
coordinate axes at any given moment in the torque-free precession, knowledge of Ĥ
allows for the direction cosine between the angular momentum and the body axis to
be obtained by way of θ, Eq. 39. Therefore, the minimum and maximum values of θ
over the full locus of Ĥ solutions will define two cones centered around the angular
momentum vector, H′G′ . The actual orientation of the residual body’s prolate axis
must fall between the rims of these two cones at all times during the precession.

∗Applying the cited approach to our current situation, we draw upon the (fixed) K and the
(time varying) K̂, which both represent the unit orientation of the fixed angular momentum vector,
respectively expressed in the laboratory and the principal (body) coordinate systems (see Eq. 31). Let
Q = K̂×K and c = K̂ ·K. Defining Q× as the skew-symmetric cross product of vector Q,

Q× =


−Qy

Qz

0

Qx

0

−Qz

0

−Qx

Qy
 ,

there exists a rotational transformation matrix R, which may be expressed (except for the degenerate
case when K̂ = −K) as

R = I + Q× +
1

1 + c
Q2
×

But is R unique? The columns of R (recall Eq. 14) are the vectors composing the transformed 1-2-3
coordinate system, expressed in the laboratory x-y-z frame of reference. Thus, the equation provides
the means, given a (ω̂1, ω̂2, ω̂3) triplet, to obtain an associated coordinate system. Unfortunately, in
3-D, that transform R is not unique and therefore there is no guarantee, as might have been hoped,
that R ≡ T.

x

y

K,

1

2

K̂

Kx

Ky

K
1̂

K
2̂

The schematic shows K and K̂ as the unit orientation of the fixed momentum vector, but respectively
expressed in the fixed x-y-z laboratory frame (black) and the precessing 1-2-3 body frame (red). Note
that the z- and 3-coordinate axes (not shown) are perpendicular to page. Because, in 3-D, the red
1-2-3 coordinate frame is not unique (others can be acquired by rotating it about the K̂ axis), the goal
of acquiring T, solely given K and K̂, is not possible.
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For example, using the rotation described in Fig. 4, after reconstituting Ĥi = λiω̂i,
the initial condition sets θ0 = 64.5◦ and the solution, over the full cycle of precession,
provides the range of θ as 64.2◦–65.6◦.

4.3 A Full Example
We here endeavor to combine all the aspects derived in this report into one represen-
tative example. The example starts with a spinning axisymmetric body of a given
description and then specifies the mass-ejection event. The equations of this report
are employed to track the resulting effect on the body’s motion.

Consider an initially axisymmetric body of M = 10 kg, spinning about the z-axis
of symmetry at ω0 = 30 rad s−1 (4.77 rps), whose moment of inertia is described by
Eq. 1, with Jt = 6 kg m2 and Js = 1 kg m2, so that

JG =


0

0

6

0

6

0

1

0

0
 kg m2 .

The initial angular velocity and angular momentum vectors are

ω = (0, 0, 30) rad s−1 H = JGω = (0, 0, 30) kg m2/s .

We use the mks unit system throughout this example.

At an instant in time, the body undergoes an impulsive mass ejection of m = 1 kg,
originating from the location rm = (0, 0.5, −1)m (i.e., 1 m aft of the CG, at a radius
of 0.5 m). The ejected mass is expelled at a velocity of Vsep = 10 m/s in a radial
direction (normal to the surface), nm = (0, 1, 0).

The fraction of mass ejected, from Eq. 3, is g = 0.1. The CG shifts in the residual
body, in accordance with Eq. 4, by an amount rG′ = (0., −0.0556, 0.1111) m.
From conservation of linear momentum, Eq. 5, the velocity of the ejected mass is
Vm = (−15, 9, 0) m/s and that of the residual body is VG′ = (1.6667, −1, 0) m/s.

The complement of g is given by Eq. 9 as f = 0.9. The moment of inertia of the
residual body in the x-y-z frame, accounting for both the mass ejection as well as
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the shift in the CG, is given by Eq. 11, as

J′G′ =


0

0

4.6111

−0.5

4.8889

0

0.7222

−0.5

0
 kg m2 .

In transforming to the principal coordinate 1-2-3 frame, we obtain the intermediate
result that P = 2.0833 kg m2 and Q = 2.1425 kg m2, so that, from Eq. 18,

Ĵ =


0

0

λ1

0

λ2

0

λ3

0

0
 =


0

0

4.6111

0

4.9480

0

0.6631

0

0
 kg m2 .

From this result, the rotational transformation matrix may be obtained as the eigen-
vectors of λi, according to Eq. 20:

T =


0

0

1

−0.1175

0.9931

0

0.9931

0.1175

0
 .

The three columns of T represent the 1, 2, and 3 principal-axis vectors, respectively,
of the residual body, in the moment following the mass ejection. From Eq. 21, we
note that the prolate 3-axis has shifted from the z-axis toward the y-axis by an
amount δ = 6.75◦.

Calculating the X = 3.6, we employ Eq. 27 to obtain the angular momentum of the
residual body in the laboratory coordinates as

H′G′ = (−11.1111, −16.6667, 21.6667) kg m2/s .

This angular momentum, in the absence of outside torques, will be invariant over
time. It may be transformed to the principal 1-2-3 coordinates by way of Eq. 28:

Ĥ = (−11.1111, −19.0971, 19.5582) kg m2/s .

Unlike H′G′ , the quantity Ĥ will change as the principal coordinate system pre-
cesses over time. However, its magnitude H (Eq. 30) will remain fixed at H =

29.5073 kg m2/s.
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In the immediate aftermath of the mass ejection, The unit orientation of Ĥ, the
angular momentum in the body frame, is given by

K̂ = (−0.3766, −0.6472, 0.6628) .

The initial angle between the angular momentum vector and the principal 3-axis, may
be obtained from Eq. 39 as θ0 = 48.48◦. Likewise, the angle between the angular
momentum vector and the laboratory z-axis, from Eq. 42, is θz = 42.75◦. This latter
quantity will be time invariant.

At this point, one may proceed in two directions: approximate the residual body as
axisymmetric, or retain the non-axisymmetric character of the solution.

4.3.1 Axisymmetric Approximation
If the residual body of our example is to be approximated in an axisymmetric fashion,
things simplify greatly. The value of θ, initially equal to θ0, will not vary under the
regular precession of axisymmetry. Thus, θ = 48.48◦, the angle between the momen-
tum vector and the 3-axis, remains a fixed quantity under precession. The principal
moments in the 1-2 plane are averaged by way of Eq. 37 to re-acquire an axisymmet-
ric configuration, so that λ̄t = 4.7796 kg m2. This value of λ̄t is used to approximate
both λ1 and λ2, so that the axisymmetric approximation of the angular velocity vector
may be obtained from Eq. 38 as ω̂ ≈ (−2.3247, −3.9956, 29.4968) rad s−1. Under
the axisymmetric assumption, its magnitude will remain fixed at 29.8569 rad s−1.
Further, the ω̂3 component will also remain fixed, while the ω̂1 and ω̂2 components
vary sinusoidally with the body spin.

The angle between the principal axis of the body and the (approximated) angular
velocity vector, given in Eq. 40, remains fixed at γ = 8.91◦. The fixed rates of preces-
sion and spin are given, respectively, as φ̇ = 6.1736 rad s−1and ψ̇ = 25.4048 rad s−1,
as dictated by Eq. 41. The time to precess one complete cycle about the momentum
vector is simply 2π/φ̇ = 1.02 s.

The angle formed between the laboratory z-axis and the precessing 3-axis will span
the range θz ± θ = 42.75◦ ± 48.48◦. Additionally, in consideration of Eq. 21, the
nose of the body will wobble as it spins about its 3-axis by an amount ±δ (because
of the imbalance brought about by the loss of ejected mass m). Therefore, because
of the precession plus wobble, the nose of the body, over time, will gyroscopically
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pitch to angles covering the range θz ± (θ + |δ|) = 42.75◦ ± 55.23◦, resulting in a
maximum pitch of 97.98◦.

4.3.2 Non-Axisymmetry Retained
In the absence of an axisymmetric approximation, one may call upon the energy
conservation approach described in the Appendix. When not approximating Ĵ into
an axisymmetric configuration, the precise measure of angular velocity, imme-
diately following the ejection of mass m, is obtained directly from Eq. 32 as
ω̂ = (−2.4096, −3.8595, 29.4968) rad s−1. The magnitude of ω̂ (Eq. 33) is cal-
culated as ω = 29.8457 rad s−1. The initial value of γ, denoting the momentary
angle between the 3-axis and the angular velocity vector immediately after mass
ejection, is γ0 = 8.77◦ (Eq. 40). At this initial moment following the mass ejection,
the angular velocity ω̂ is oriented at an azimuth of ψ0 = 58.02◦ from the 1-axis (in
the 1-2 plane), in accordance with Eq. A-1 (using the ijk = 123 triplet).

The energy and angular momentum quantities to conserve, given in Eq. 43 and 44,
are H2 = 870.7 kg2 m4 s−2 and 2Trot = 677.4 J, such that 1

2
H2/Trot = 1.29 kg m2.

Based on the stability criterion, Eq. 45, we conclude that that the 3-axis remains the
precessing axis. The methods described in the Appendix are applied and presented
in Table 2.

Table 2 Locus of ω̂ as a function of ψ, with ω̂ = (−2.4096,−3.8595, 29.4968) rad s−1as part
of the solution, with (λ1, λ2, λ3) = (4.6111, 4.9480, 0.6631) kg m2

ψ (◦) ξ ±ω̂1 (s−1) ±ω̂2 (s−1) ±ω̂3 (s−1) γ (◦) θ (◦) ψ̇ (s−1) φ̇ (s−1) θ̇ (s−1)
90.0 ∞ 0.0000E+00 4.4588E+00 2.9551E+01 8.58 48.39 25.59 5.96 0.00
80.0 5.6713E+00 7.7592E−01 4.4005E+00 2.9545E+01 8.60 48.40 25.57 5.98 −0.07
70.0 2.7475E+00 1.5378E+00 4.2250E+00 2.9529E+01 8.66 48.43 25.54 6.01 −0.13
60.0 1.7321E+00 2.2699E+00 3.9316E+00 2.9503E+01 8.75 48.47 25.48 6.06 −0.18
50.0 1.1918E+00 2.9536E+00 3.5200E+00 2.9470E+01 8.86 48.53 25.41 6.13 −0.21
40.0 8.3910E−01 3.5668E+00 2.9929E+00 2.9433E+01 8.99 48.59 25.33 6.20 −0.22
30.0 5.7735E−01 4.0840E+00 2.3579E+00 2.9396E+01 9.11 48.66 25.24 6.28 −0.20
20.0 3.6397E−01 4.4788E+00 1.6301E+00 2.9364E+01 9.22 48.71 25.18 6.34 −0.15
10.0 1.7633E−01 4.7271E+00 8.3351E−01 2.9343E+01 9.29 48.75 25.13 6.38 −0.08
0.0 0.0000E+00 4.8119E+00 0.0000E+00 2.9336E+01 9.32 48.76 25.12 6.40 0.00

From the results, it is seen that, unlike the solution with approximated axisymmetry,
where γ and θ remain fixed at γ = 8.91◦ and θ = 48.48◦, the energy conservation
solution reveals a range on these quantities. In particular, γ spans the range 8.58◦–
9.32◦ while θ spans 48.39◦–48.76◦. To pursue this general approach to its conclusion,
the nose of the body will pitch, through the course of its precession, to cover the
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range θz ± (θmax + |δ|) = 42.75◦ ± 55.51◦, resulting in a maximum pitch of 98.26◦.

Unlike Fig. 3, which showed the large extent to which the precession parameters
could change with a significant mass ejection, this example problem highlights the
other end of the spectrum, in which the axisymmetric approximation seems well
justified. A graphical comparison between the full solution and the axisymmetric
approximation is given in Fig. 5.
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Fig. 5 Considered example with the full solution in black and the axisymmetric approximation
in dashed red, for (a) θ, γ, (b) ψ̇, φ̇, θ̇, and (c) ω̂
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5. Conclusion
In this report, a rigid-body-dynamics analysis was performed on a body, free of
gravity and aerodynamic forces, initially spinning about its axis of symmetry, subject
to a small but impulsive ejection of mass normal to its surface. The effect of mass
loss and CG shift are considered when deriving the residual body’s moment of
inertia and angular momentum. Relations to achieve coordinate rotation between the
laboratory frame of reference and the residual body’s principal frame are derived,
so that the angular velocity and the parameters associated with precessive motion
may be simply obtained. These relations are further used to relate the precession
(derived in the principal coordinate frame) back to the laboratory coordinates, so
that the range of resultant pitch/yaw angles may be formulated.

The problem’s complexity increases, since the residual body, following the ejection
of surface mass, is no longer axisymmetric. In approximating the residual body as
axisymmetric, several constrained special cases are considered. In addition, for the
general case of the residual body subject to triaxial rotation, a quasi-axisymmetric
assumption may be introduced to facilitate a solution that is still governed by the
classical solution of simple precession.

Importantly, however, a non-axisymmetric algebraic solution is also provided for
the evolution of the precessing body. Because the approach employs conservation of
energy, the time dependence is not part of the algebraic solution. However, the full
locus of (ω̂1, ω̂2, ω̂3) solutions (in the body coordinates) are obtained. In addition,
the rates of residual-body spin ψ̇, precession φ̇, and nutation θ̇ (in the principal
coordinates) can be algebraically calculated as a function of body orientation ψ.

With this information, it becomes trivial to employ ψ̇ as a function of ψ to numerically
integrate for the time dependence. Likewise, the precession φ (as a function of ψ
or t) can be simply recovered in a similar manner. With this added bit of time-
dependent information (φ(t), ψ(t), θ(t)) acquired through integration, it is sufficient
to provide the laboratory-frame body orientation history. Even without the added time
dependence, the algebraic solution provides the range of motion of the precessing
axis, which can be used to place limits on the body’s laboratory-frame orientation
during the precessive motion.
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Appendix. Momentum/Energy Approach in Solving the Precession
of a Non-Axisymmetric Body
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In Eqs. 43 and 44, repeated here for convenience, conservation of angular momentum
and rotational energy are expressed for the problem of torque-free rotation:

λ1ω̂
2
1 + λ2ω̂

2
2 + λ3ω̂

2
3 =

λ21ω̂
2
1 + λ22ω̂

2
2 + λ23ω̂

2
3 =

2Trot

H2

= constant

= constant

(44)

(43)

The conservation quantities H and Trot are available through the substitution of
the principal moments λi (Eq. 18), and ω̂i (Eq. 36), which are the angular velocity
components in the residual-body 1-2-3 coordinate system, in the instant following
mass ejection.

A.1 Elliptical Intersection
If one employs a 3-D angular-velocity space comprising the ω̂1-ω̂2-ω̂3 axes, Eqs. 43
and 44 represent two ellipses, centered at the origin and aligned with the coordinate
axes. The surface of each ellipse represents the permissible values of the (ω̂1, ω̂2, ω̂3)

triplet that satisfies conservation of angular momentum and rotational energy, respec-
tively. Therefore, all possible rotational states that conserve both angular momentum
and rotational energy over time are represented by the intersection of the two el-
lipses.1 We need only solve the elliptical intersection in the 1st octant, because of
symmetry.

The following derivation applies to any principal-coordinate triplet ijk (i.e., 123,
231, or 312), but is derived with the a priori presumption (but not guarantee) that
it is the k-axis, which precesses about the angular momentum vector. In the pure
axisymmetric case, with the axis of symmetry aligned with the body’s k-axis, the
elliptical intersection is two circles perpendicular to the ω̂k-axis, symmetric across
the ω̂i-ω̂j plane, whose centers falls upon the ω̂k-axis. The k-axis is the precessing
axis precisely because the elliptical intersection circumnavigates the ω̂k-axis but not
the other axes. Since our problem represents a deviation from this very situation, we
choose as the independent variable the azimuthal angle ψ that lies in the ω̂i-ω̂j plane,
such that

tanψ = ξ =
ω̂j
ω̂i

. (A-1)

As the azimuth ψ varies from 0 to π/2, ξ will vary from 0 to∞. Equation A-1 may

1Fowles GR, Cassiday GL. Analytical mechanics. New York (NY): Saunders College Publish-
ing; 1999.
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be substituted into Eqs. 43 and 44, to eliminate ω̂j:

Bω̂2
i + λkω̂

2
k =

Aω̂2
i + λ2kω̂

2
k =

2Trot

H2

, (A-2)

where

B(ξ) =

A(ξ) =

λi + ξ2λj

λ2i + ξ2λ2j .

The system Eq. A-2 can be solved, to yield

ω̂2
i =

H2 − λ2kω̂2
k

A
ω̂2
j = ξ2ω̂2

i ω̂2
k =

H2 − 2(A/B)Trot
λk(λk − A/B)

. (A-3)

For a given value of ξ, ω̂k may be obtained directly, then ω̂i in terms of ω̂k, and,
finally, ω̂j in terms of ω̂i. For the situation at ψ = π/2 where ω̂i → 0 with ξ

becoming unbounded, L’Hôpital’s Rule can be applied to find value of ω̂2
j :

ω̂2
j

∣∣
ψ=π/2

=
H2 − λ2kω̂2

k

λ2j
.

As to the term A/B, it monotonically varies from λi as ξ = 0 to λj as ξ →∞.

So we have solved for the locus of (ω̂1, ω̂2, ω̂3) triplets forming the intersection of
the two “conservation” ellipses, in terms of implicit variable ξ. This variable, ξ, is
related to the azimuthal angle ψ, located in the i-j plane, by way of Eq. A-1.∗

∗For the degenerate case of axisymmetry, where λ̄t = λ1 = λ2, we note several things about the
general solution provided in Eq. A-3:

• The term A/B → λ̄t, so that ω̂k → constant,

ω̂2
k →

H2 − 2λ̄tTrot

λk(λk − λ̄t)
= const.

• The term A→ λ̄t(1 + ξ2) = λ̄t/ cos2 ψ, so that ω̂i becomes a simple cosine function,

ω̂2
i = (H2 − λ2kω̂2

k) cos2 ψ .

• Because ξ = tanψ, the term ω̂j becomes a simple sine term,

ω̂2
j = (H2 − λ2kω̂2

k) sin2 ψ .

Since the axisymmetric problem produces a constant value of ψ̇, the sinusoidal response of ω̂i and ω̂j

are likewise sinusoidal in time.
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A.2 Precessing Axis
As long as the k-axis remains the precessing axis, Eq. A-3 will provide a solution
over the complete domain of ψ. However, considering the problem addressed in
the main body of this report, if the disruption from axisymmetry is large enough,
the k-axis may no longer remain the precessing axis after a mass-ejection event.
We can know if this situation has occurred if there exist values of ξ for which no
real solution to ω̂k exists (this would indicate that that the elliptical intersection is
circumnavigating the ω̂i or ω̂j axis).

Examine more closely the solution for ω̂2
k in Eq. A-3. If either the numerator or

denominator changes sign with ξ, then one may infer, for some value(s) of ξ, that
ω̂2
k < 0, implying that no real solution for ω̂k exists for that part of the domain. Even

when ω̂k = 0, the condition implies a (momentary) end-over-end tumbling about an
axis perpendicular to the k-axis. Either case (ω̂2

k ≤ 0) means that the k axis is no
longer the axis of precession.

Consider first the numerator of ω̂2
k. Based on the known monotonic variance of

A/B between λi and λj , we may deduce that if (H2 − 2λiTrot)(H
2 − 2λjTrot) is

nonpositive, the k-axis is no longer the precessing axis, because it implies that ω̂k
becomes identically 0 at some point in the i-j azimuth. This exclusionary criterion
may be formalized as follows:

if
(
λi−

H2

2Trot

)(
λj−

H2

2Trot

)
≤ 0 , the k-axis is not the precessing axis. (A-4)

Given that H2

2Trot
is bounded by the maximum and minimum principal moments (call

them λmax and λmin), we may deduce that the mid-inertial (non-extreme) axis is
already precluded from being the precessing axis on the basis that λmax − H2

2Trot
≥ 0

and λmin − H2

2Trot
≤ 0. Thus, their product is always non-positive.

Turn attention to the denominator of ω̂2
k. If the k-axis is an inertially extreme axis

(associated with either λmin or λmax), then λk − A/B does not change sign as A/B
varies from λi to λj . Therefore, if k is an inertially extreme axis, the term λk −A/B
can in no way play a role in provoking a ω̂k = 0 solution.

We have already excluded the mid-inertial axis as a possible precessing axis, so we
need not consider the effect of the denominator, when k represents the mid-inertial
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axis. The denominator of ω̂2
3 thus appears to have no influence on the criterion for

determining the precessive axis. And with the mid-inertial axis precluded, there are
only two possible axes that can qualify as the precessing axis. If one of them is
precluded by way of Eq. A-4, then the other extreme axis must be the precessing
axis.

Thus, in light of Eq. A-4 and the fact that the denominator of Eq. A-3 plays no role,
the precessive axis can be positively determined, regardless of which ijk axis triplet
is examined, with the criterion

iff
(
λi −

H2

2Trot

)(
λj −

H2

2Trot

)
> 0 , k is the precessing axis. (A-5)

A.2.1 Stability of Rotation
The literature tells us2 that rotation about the mid-inertial axis is unstable, whereas
rotation about either of the extreme inertial axes is stable. Does such a result naturally
follow from Eq. A-5? The answer is, yes, it does.

For ease of explanation, let us denote and order the three principal moments λk as

λmin < λmid < λmax .

From Eqs. 43 and 44, one may verify that, in the case of pure rotation about a given
principal axis, the value of H2

2Trot
exactly equals the principal moment of that axis. So,

we have the situation that, depending on the components of a given rotation,

λmin ≤
H2

2Trot
≤ λmax

and that, when H2

2Trot
= λk, we have pure rotation about the k-axis.

Consider the two intermediate cases that do not involve pure rotation. First,

λmin <
H2

2Trot
< λmid < λmax .

Equation A-5 for this case would indicate that the axis associated with λmin is the

2Goldstein H, Poole C, Safko J. Classical mechanics. San Francisco (CA): Addison Wesley;
2002.
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precessing axis. This also shows that there is no instability relative to the case where
H2

2Trot
= λmin in which the axis associated with λmin is the spinning axis.

Next,

λmin < λmid <
H2

2Trot
< λmax .

Equation A-5 for this case would indicate that the axis associated with λmax is the
precessing axis. This also shows that there is no instability relative to the case where
H2

2Trot
= λmax in which the axis associated with λmax is the spinning axis.

On the other hand, the case where H2

2Trot
= λmid is immediately seen to be unstable.

Why? While the rotation is momentarily about the axis associated with λmid, an
infinitesimal perturbation of H2

2Trot
will reduce to either one of the two cases discussed

previously, with the result that the precessing axis will change over to that associated
with either λmin (if the perturbation is negative) or λmax (if the perturbation is positive).
There can be no solution for which the mid-inertial axis is the precessing axis.

The discussion, therefore, reduces to an even simpler conclusion:

if
H2

2Trot

 = λmid,

< λmid,

> λmid,

the rotation is unstable

the precessing axis is that associated with λmin

the precessing axis is that associated with λmax

. (A-6)

This result is presented as Eq. 45 in the main report.

Equation A-6 also explains how the precessing axis of an axisymmetric body will
always be the axis of symmetry. If λi = λj , then Eq. A-6 will always indicate that
the k-axis is precessing except when H2

2Trot
= λi = λj . And for this lone exception

(pure rotation perpendicular to the axis of symmetry), the rotation is unstable, since
any small perturbation of H2

2Trot
will restore k as the precessing axis.

A.3 Application of Analytical Solution (Eq. A-3)
Consider a body with the z-axis (3-axis) as the axis of symmetry. Let the initial value
of angular velocity ω̂ = (0.4, 0.4, 1) be part of the solution space. Such a body
will precess with fixed body and space cones. Per Eq. A-5, the 3-axis is necessarily
the precessing axis. The body cone, denoting the angle between the precessing
axis of symmetry and the angular velocity, given by Eq. 40, will assume a value of
γ = 29.5◦ (independent of the moment of inertia).
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If, as is the subject of this report, a mass ejection occurs, such that the moment
of inertia is no longer axisymmetric, the precession is no longer steady. Let the
principal axisymmetric moments of inertia, say (λ1, λ2, λ3) = (5, 5, 1), take on a
reduced value of λ1. In Table A-1, the effect of the asymmetry upon the locus of ω̂i
solutions is presented, for successively lowered values of λ1, including 4.9, 3, and 2.

Table A-1 Locus of ω̂ as a function of ψ, with ω̂ = (0.4, 0.4, 1) as part of the solution, for
(a) (λ1, λ2, λ3) = (4.9, 5, 1), (b) (λ1, λ2, λ3) = (3, 5, 1), and (c) (λ1, λ2, λ3) = (2, 5, 1)

ψ (◦) ξ ±ω̂1 ±ω̂2 ±ω̂3 γ (◦)

90.0 ∞ 0.0000E+00 5.5936E−01 1.0098E+00 28.98
75.0 3.7321E+00 1.4499E−01 5.4110E−01 1.0085E+00 29.05
60.0 1.7321E+00 2.8125E−01 4.8713E−01 1.0049E+00 29.24
45.0 1.0000E+00 4.0000E−01 4.0000E−01 1.0000E+00 29.50
30.0 5.7735E−01 4.9271E−01 2.8447E−01 9.9492E−01 29.76
15.0 2.6795E−01 5.5188E−01 1.4787E−01 9.9111E−01 29.96
0.0 0.0000E+00 5.7223E−01 0.0000E+00 9.8969E−01 30.04

(a)

ψ (◦) ξ ±ω̂1 ±ω̂2 ±ω̂3 γ (◦)

90.0 ∞ 0.0000E+00 4.5607E−01 1.1136E+00 22.27
75.0 3.7321E+00 1.2091E−01 4.5124E−01 1.1037E+00 22.94
60.0 1.7321E+00 2.5106E−01 4.3485E−01 1.0703E+00 25.13
45.0 1.0000E+00 4.0000E−01 4.0000E−01 1.0000E+00 29.50
30.0 5.7735E−01 5.7308E−01 3.3087E−01 8.6450E−01 37.43
15.0 2.6795E−01 7.4796E−01 2.0042E−01 6.3311E−01 50.73
0.0 0.0000E+00 8.3267E−01 0.0000E+00 4.4721E−01 61.76

(b)

ψ (◦) ξ ±ω̂1 ±ω̂2 ±ω̂3 γ (◦)

90.0 ∞ 0.0000E+00 4.1952E−01 1.1136E+00 20.64
75.0 3.7321E+00 1.1201E−01 4.1803E−01 1.1051E+00 21.39
60.0 1.7321E+00 2.3827E−01 4.1270E−01 1.0746E+00 23.91
45.0 1.0000E+00 4.0000E−01 4.0000E−01 1.0000E+00 29.50
30.0 5.7735E−01 6.3730E−01 3.6795E−01 7.9421E−01 42.82
18.6 3.3601E−01 9.8654E−01 3.3149E−01 0.0000E+00 90.00

(c)

For the middle case, λ1 = 3, the results are graphically portrayed in Fig. A-1. The
abscissa ψ, as shown in Fig. A-1, spans 1/4 of the body’s azimuthal rotation (quadrant
I). The remaining three quadrants of azimuth (II–IV) can be obtained by taking the
(+ω̂1,+ω̂2) solutions, shown above, as (−ω̂1,+ω̂2), (−ω̂1,−ω̂2), and (+ω̂1,−ω̂2),
respectively, as provided by the quadratic nature of Eq. A-3.

46



Approved for public release; distribution is unlimited.

 (°)

0 15 30 45 60 75 90
0.0

0.2

0.4

0.6

0.8

1.0

1.2

2^
1^

3^

t^

Initial Condition (0.4, 0.4, 1)

atan(t /3)^ ^

 (°)

0 15 30 45 60 75 90

,
 

 (
°)

0

15

30

45

60

75

90





(a) (b)

Fig. A-1 Locus of solutions for body with principal moments (3, 5, 1), subject to initial condi-
tion ω̂ = (0.4, 0.4, 1): (a) ω̂, (b) φ and θ

One notes several important features from Table A-1:

• The greater the deviation from axisymmetry, the greater the fluctuation of both
the body-cone angle γ as well as the components of ω̂.

• The trend of γ toward 90◦, as ψ → 0, in Table A-1b and Fig. A-1b represents
a tendency toward a change in the precessive axis.

• If λ1 gets reduced to a value of 2 (Table A-1c), there are no real solutions for
ω̂3 below ψ = 18.6◦. Precession has shifted to the 2-axis.

• By applying Eq. A-3 to the 312 triplet∗ (see Table A-2), rather than the
ijk = 123 triplet, one may establish that the precession of the case represented
in Table A-1c is very stable about the 2-axis, with the body cone angle γ
varying only over the range 69.4◦–71.4◦. The ω̂ = (0.4, 0.4, 1) solution
occurs when ψ = 21.8◦.

The data in Tables A-1 and A-2 demonstrate an application of Eq. A-3, representing
the solution to the intersection of the conservation ellipses (angular momentum

∗For the 312 triplet, ψ represents the azimuth in the 3-1 plane and the body-cone angle γ is taken
with respect to the 2-axis.
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Table A-2 Locus of ω̂ as a function of ψ, with ω̂ = (0.4, 0.4, 1) as part of the solution, with
(λ1, λ2, λ3) = (2, 5, 1), but with Eq. A-3 applied to the 312 triplet

ψ (◦) ξ ±ω̂3 ±ω̂1 ±ω̂2 γ (◦)

90.0 ∞ 0.0000E+00 9.0921E−01 3.0551E−01 71.43
75.0 3.7321E+00 2.3799E−01 8.8820E−01 3.1162E−01 71.28
60.0 1.7321E+00 4.7482E−01 8.2241E−01 3.2919E−01 70.88
45.0 1.0000E+00 7.0427E−01 7.0427E−01 3.5553E−01 70.36
30.0 5.7735E−01 9.0921E−01 5.2493E−01 3.8528E−01 69.85
15.0 2.6795E−01 1.0580E+00 2.8350E−01 4.0983E−01 69.49
0.0 0.0000E+00 1.1136E+00 0.0000E+00 4.1952E−01 69.36

and energy). While the solution gives the locus of (ω̂1, ω̂2, ω̂3) triplets that satisfy
the conservation laws, these values do not tell the whole story. In addition to not

providing time as a variable in the solution, the conservation solution only provides
the locus of angular velocities in the principal reference frame. That is to say, the
elliptical intersection provides how the angular velocity may proceed with respect to
the body coordinates, but not how the body coordinates proceed with respect to the
laboratory coordinates. For that, we need to obtain the rates of spin, precession, and
nutation.

A.4 Rates of Spin ψ̇, Precession φ̇, and Nutation θ̇
When the problem is axisymmetric, the rates of spin and precession may be related
back to the angular velocity by way of the body- and space-cone geometries, through
Eq. 41 (for axisymmetric torque-free motion, there is no nutation). Even though
all the terms are available∗ for its application, Eq. 41 is no longer valid for non-
axisymmetric configurations. However, it is not by chance that the independent
variable of the current non-axisymmetric analysis (Eq. A-1) is designated ψ.

When the body is spinning about axis k with an associated precession, the moments
in time when ω̂j = 0 and ω̂i = 0, respectively, represent body-frame rotational

∗Required terms include

θ =

γ =

ω̂ =

tan−1

(√
λ2i ω̂

2
i + λ2j ω̂

2
j

λkω̂k

)
tan−1

(√
ω̂2
i + ω̂2

j

ω̂k

)
√
ω̂2
i + ω̂2

j + ω̂2
k
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configurations (ψ) that are π/2 (90◦) apart. According to Eq. A-1, these two configu-
rations are represented as ψ = 0◦ and ψ = 90◦, respectively.

The vector ω̂, deriving from the ω̂ components solved in Eq. A-3, may be decom-
posed into the sum of three vectors: the rates of precession φ̇, spin ψ̇, and nutation θ̇.
The decomposition, in the principal 1-2-3 reference frame, proceeds as follows:

ω̂ = φ̇K̂ + ψ̇T̂k + θ̇(T̂k × K̂) . (A-7)

In this case, K̂ is the unit vector aligned with the angular momentum (Eq. 31),
and T̂k is the orientation of the (assumed-precessing) k-axis, as expressed in the

principal coordinate system. Thus, when considering the ijk = 123 triplet, it follows,
by definition, that T̂k = T̂3 = (0, 0, 1) and, thus, K̂× T̂3 = (−K̂2, K̂1, 0).

For the case where the 3-axis precesses, the system Fig. A-7 reduces to the following
set of equations:

ω̂3 =

ω̂2 =

ω̂1 =

K̂3φ̇+ ψ̇

K̂2φ̇+ K̂1θ̇

K̂1φ̇− K̂2θ̇

.

This system may be solved as

ψ̇ =

θ̇ =

φ̇ =

ω̂3 − K̂3φ̇

K̂1ω̂2 − K̂2ω̂1

K̂2
1 + K̂2

2

K̂1ω̂1 + K̂2ω̂2

K̂2
1 + K̂2

2

=

=

=

ω̂3 − φ̇ cos θ

K̂1ω̂2 − K̂2ω̂1

sin2 θ

K̂1ω̂1 + K̂2ω̂2

sin2 θ

. (A-8)

Equation A-8 provides the key variables of the precessing body in terms of the ω̂

components, which themselves are expressed in terms of ψ by way of Eqs. A-1 and
A-3.

For cases where the body geometry is axisymmetric, ω̂ is coplanar with Ĥ and T̂k,
with the result being that θ̇ ≡ 0. In such cases, the result of Eq. A-8 matches that
of Eq. 41 (a constant ψ̇ and φ̇, independent of ψ). But where geometry diverges
from axisymmetry, the results differ because the (coplanar) premise used to derive
Eq. 41 is no longer valid. One may take Eq. A-8 and apply it to, for example, the
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case described in Fig. A-1 to obtain the result presented in Fig. A-2. Note that in
azimuthal quadrants II and IV, the nutation rate θ̇ will be positive.
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Fig. A-2 Locus of solutions for body spin rate ψ̇, precession rate φ̇, and nutation rate θ̇ with
principal moments (3, 5, 1), subject to initial condition ω̂ = (0.4, 0.4, 1)

A.5 Completing the Solution
Because this approach arises out of the algebraic solution to the intersection of two
ellipses, the one thing missing from the solution embodied in Eqs. A-1, A-3, and A-8
is the element of time. There is not a closed-form solution in this case, but the element
of time is quite easily recovered. For a given set of initial conditions, we can literally
tabulate (in the manner of Table A-1) ψ̇ in terms of ψ using any suitably small
increment ∆ψ. The time required to transition from a specific ψx to the adjacent
ψx+1 is approximated by the difference equation ∆tx+ 1

2
≈ 2∆ψ/(ψ̇x + ψ̇x+1).

Over the same spin increment ∆ψ, the increment of precession may likewise be
recovered as ∆φx+ 1

2
≈ ∆ψ(φ̇x + φ̇x+1)/(ψ̇x + ψ̇x+1) (note that θ̇ need not be

integrated, as θ is already available directly, given ω̂i and λi, by way of Eq. 39).
These increments of ∆t and ∆φ may be summed to achieve t and φ as a function of
our independent variable ψ:

tn − tk =
n−1∑
i=k

∆ti+ 1
2

φn − φk =
n−1∑
i=k

∆φi+ 1
2
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If t, φ, and θ are all known as a function of ψ, they may be used in conjunction
with the angular momentum vector in the laboratory frame, H′G′ , to characterize the
motion of the body in the laboratory frame of reference.

Using a tabulation with a ∆ψ = 1◦, the integration was performed on the problem
of Table A-1b (see also Fig. A-1). The results, providing the integrated t and φ
functions, are presented in 15◦ increments in Table A-3. The associated data are
graphically shown in Fig. A-3. Were the precession regular, ψ(t) and φ(t) would be
linear and θ and γ would be constant. As it is, the nutation θ is nearly sinusoidal in
time. The spin ψ requires significantly more time over the range 0 ≤ ψ < 45◦ than
it does over the range 45◦ ≤ ψ ≤ 90◦.

Table A-3 Precession variables for body with principal moments (3, 5, 1), subject to initial
condition ω̂ = (0.4, 0.4, 1)

ψ t (s) γ (◦) θ (◦) φ (◦) ψ̇ (rad/s) φ̇ (rad/s) θ̇ (rad/s)
90 0.9234 22.27 63.97 28.40 0.8908 0.5075 0.0000
75 0.6283 22.94 64.22 19.76 0.8792 0.5161 −0.0530
60 0.3248 23.13 65.06 10.58 0.8409 0.5438 −0.1047
45 0.0000 29.50 66.79 0.00 0.7647 0.5971 −0.1493
30 −0.3731 37.43 70.08 −13.66 0.6318 0.6832 −0.1691
15 −0.8656 50.73 75.55 −34.53 0.4361 0.7896 −0.1260

0 −1.6249 61.76 79.85 −70.56 0.2981 0.8459 0.0000

t (s)

-1.5 -1.0 -0.5 0.0 0.5
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)

-90

-75

-60
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
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Fig. A-3 Precession variables presented as a function of time, for body with principal moments
(3, 5, 1), subject to initial condition ω̂ = (0.4, 0.4, 1)
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