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Title: Multiagent Swarm Based Application Software Development for Optimal Defense Strategy Synthesis of
Geospatial Physical Networks in Networked Environments

1 Abstract

The aim of this project is to transform some new theoretic results, developed in the Defense Threat Reduction Agency
(DTRA) Basic Research Award #HDTRA1-10-1-0090, into an application software tool that can be used to synthesize
optimal defense strategies for large geospatial physical networks under Weapons of Mass Destruction (WMD) attacks,
particularly for solving multi-task and multiobjéctive optimization, and cascading resilience related dynamic optimiza-
tion. This application software utilizes a new multiagent swarm based optimization algorithm as a core to provide swift,
computationally reliable decision-making strategies to counter WMD in networked environments. To achieve this, we
plan to develop a new multiagent swarm based algorithm for solving mixed-integer/binary nonlinear programming in
networked environments, design the application software architecture with the integration of the new optimization al-
gorithm, and construct a protocol-based algorithm for interaction between multiple real-time subsystems. The overall
project develops a cost-effective technology for enhanced physical network robustness and self-healing response time
to detect, predict, diagnose, prevent, and recover from WMD-induced disruptions and cascading failures.

2 Objectives

Our plan to pursue this counter-WMD research lies on two major phases. The following timetable describes our
envisioned schedule and key issues that will be addressed:

Year 1 (Development of the networked Binary Hybrid Multiagent Swarm Optimization (BHMSO) algorithm to
solve complex network optimization) We are interested in countering WMD applications where the sensor network
has large amount of data. It will not be possible to process this information in traditional ways (e.g., object detection
and tracking), and hence we must use alternative techniques such as swarm optimization algorithms and wide-field
integration. Given the complex tasks that we wish to accomplish, it is likely that we will use parallel pathways that
correspond to different objectives, with selection of desired objectives by a protocol-based algorithm.

Year 2 (Development of the Guarded Command Language (GCL) based algorithm and architecture of application
software) Throughout the architecture, we seek to allow for multiple computing elements to be operating in parallel.
This allows a highly distributed approach to algorithm design, but also drives the system to operate in an asynchronous
(or at best loosely synchronized) manner. We anticipate that such asynchronous operations will occur in the inner loop,
in the protocol-based algorithm and in the networked communications between real-time agents, all with potentially
similar time scales.

Hence, the project can be divided into the following two major goals in two years.

Year 1: Developing the BHMSO algorithm and conducting multicore parallel implementation. The main goal in
Year 1 is to develop new multiagent swarm based algorithms for solving mixed-integer nonlinear programming in
networked environments. These are the specific issues to be addressed:

1. Design a new multiagent swarm based optimization algorithm and discuss its convergence issue.

2. Develop the new BHMSO algorithm based on Subtask 1 for mixed-integer nonlinear programming.

3. Evaluate the proposed algorithm by conducting some computational experiments for comparison and parallelize
the proposed algorithm on multicore supercomputers in HPCC.

Year 2: Developing the GCL-based algorithm and architecture of application software. The main goal in Year
2 is to convert the proposed mathematical algorithm into the GCL-based architecture. The following issues will be
addressed:

4. Design the candidate architecture of the application software using the GCL-based framework.

5. Explore design space and improvement for the possible architectures of the proposed software.

6. Analyze and verify the overall behavior of the GCL-based algorithm and software architecture.

This is the final report to this Fundamental Research Award #HHDTRA1-13-1-0048. We have finished all the goals
in Years 1 and 2 and discovered some interesting new results to further improve the outcome of these goals. More
specifically, we have found out 1) a new bat behavior inspired cooperative optimization algorithm to further improve
the convergence rate of the BHMSO algorithm, 2) a new hybridized optimization framework for fast solving large-scale
constrained optimization problems, particularly in complex network systems, and 3) a new computationally efficient
motion planning algorithm for mobile robots with only sonar sensors for WMD threat detection.



3 Proposed Approach

In the first year, a contraction mapping based Multiagent Coordination Optimization (MCO) algorithm, called Paracon-
tracting Multiagent Coordination Optimization (PMCO), was proposed and implemented in a parallel computing way
by embedding MATLAB built-in function parfor into PMCO. Then we rigorously analyzed the global convergence of
PMCO by means of semistability theory, which is quite novel and different from the conventional sequence analysis
in fixed-point optimization. The basic idea is to convert the proposed derivative-free iterative algorithm for PMCO
into a discrete-time switched linear system and then discuss its semistability property. The detailed eigenvalue and
eigenspace structures of switched linear matrices for this discrete-time switched linear system were explicitly derived.
Based on these matrix analysis results and semistability theory, we presented two sufficient conditions for guaranteeing
the global convergence of PMCO under different circumstances. Finally, numerical evaluation of the paralle]l PMCO
algorithm was conducted by running the proposed algorithm on multicore supercomputers.

Next, we proposed a coupled spring forced MCO (CSFMCO) algorithm by considering that each particle is a
spring and is coupled with the optimal solution found so far as the second abstract spring. The synergistic integration
of the coupled springs, multiagent coordination, and swarm intelligence governs and navigates the new algorithm in the
searching process. Numerical evaluation was done for the proposed CSFMCO algorithm by conducting comparison
with other variations of PSO in the literature, which indicates that the performance of CSFMCO surpasses all the
listed variations of PSO significantly. In summary, the proposed CSFMCO algorithm offers a new efficient approach
to address complex, large-scale, non-convex nonlinear optimization problems which are normally hard to solve using
the conventional methods.

Mixed-binary nonlinear programming (MBNP), which can be used to optimize network structure and network
parameters simultaneously for network systems, has been seen widely in many applications of cyber-physical network
systems, especially for WMD related problems. However, it is quite challenging to develop efficient algorithms to
solve it practically. On the other hand, swarm intelligence based optimization algorithms can simulate the cooperation
and interaction behaviors from social or nature phenomena to solve complex, nonconvex nonlinear problems with high
efficiency. Hence, motivated by this observation, we proposed a class of new computationally efficient algorithms
called binary coupled spring forced multiagent coordination optimization (BCSFMCO) to solve MBNP problems, by
exploiting the chaos-like behavior of two-mass two-spring mechanical systems to improve the ability of algorithmic
exploration and thus to fast solve MBNP problems. Together with the continuous version of CSFMCO, a binary
version of CSFMCO and a switching version between continuous and binary versions were presented. Moreover,
to numerically illustrate our proposed algorithms, a formation control problem and resource allocation problem for
cyber-physical networks under WMD attacks were investigated by using the proposed algorithms.

Inspired by speed-up and speed-down (SUSD) mechanism observed by the fish swarm avoiding light, an SUSD
strategy was proposed to develop new swarm intelligence based optimization algorithms to enhance the accuracy and
efficiency of swarm optimization algorithms. By comparing with the global best solution, each particle adaptively
speeds up and speeds down towards the best solution. Specifically, a new directed speed term is added to the original
particle swarm optimization (PSO) algorithm or other PSO variations. Due to the SUSD mechanism, the algorithm
shows a great improvement of the accuracy and convergence rate compared with the original PSO and other PSO
variations. The numerical evaluation was conducted by solving recent benchmark functions in IEEE CEC 2013.

Model predictive control (MPC) is a heuristic control strategy to find a consequence of best controllers during each
finite-horizon regarding to certain performance functions of a dynamic system. MPC involves two main operations:
estimation and optimization. Due to high complexity of the performance functions in WMD problems, such as, non-
linear, non-convex, large-scale objective functions, the optimization algorithms for MPC must be capable of handling
those problems with both computational efficiency and accuracy. Multiagent coordination optimization (MCO) was
a recently developed heuristic algorithm by embedding multiagent coordination into swarm intelligence to accelerate
the searching for the optimal solution in the particle swarm optimization (PSO) algorithm. With only some elementary
operations, the MCO algorithm can obtain the best solution extremely fast, which is especially necessary to solve the
online optimization problems in MPC. Therefore, we proposed an MCO based MPC strategy to enhance the perfor-
mance of the MPC controllers when addressing non-convex large-scale nonlinear problems for large-scale physical
networks. Moreover, as an application, the network resource balanced allocation problem under WMD attacks was
numerically illustrated by the MCO based MPC strategy.

For the last several months we have been developing code to address the network vulnerability probiem related to
electrical power networks. Our starting point is a standard power distribution model. This model utilizes a directed
graph (captured in the matrix A below) to model the power distribution of power systems under stress. The HPCC at



TTU has installed several nodes with dual Xeon Phi. We have experimented with porting our code to this environment.
All the relevant algorithms developed above have been converted into pseudo code or C code in our developed software
package to DTRA. The prototype of this software package has been tested for a preliminary version.

In the second year, we have developed and refined the GCL-based algorithm as well as the architecture of ap-
plication software. In particular, we have designed the candidate architecture of the application software using the
GCL-based framework and explored design space and improvement for the possible architectures of the proposed soft-
ware. Although there are a lot of research on large-scale unconstrained optimization (e.g., with 100 to 1000 variables)
and small-scale constrained optimization (e.g., with 10 to 30 variables) using nature-inspired algorithms (e.g., evo-
lutionary algorithms and swarm intelligence algorithms), there is no known nature-inspired algorithm developed for
large-scale constrained optimization. Here we combined a cooperative co-evolutionary particle swarm optimization
(CCPSO) algorithm with the e-constrained method for solving large-scale real-valued constrained optimization prob-
lems. The e-CCPSO framework was proposed, and three different algorithms based on the framework, i.e., e-CCPSOd,
£-CCPSOw and &e-CCPSOw2, were developed. The proposed algorithms compare favorably against the state-of-the-
art constrained optimization algorithm which is the £-constrained method adopted by a differential evolutionary (DE)
algorithm, i.e., e-DEag, on large-scale problems. The experimental results further suggest that e-CCPSOw?2 with adap-
tive improvement detection technique is highly competitive compared to the other algorithms considered in this work
for solving large-scale, real-valued constrained optimization problems. Apart from this, we have analyzed and verified
the overall behavior of the GCL-based algorithm and software architecture.

Next, the motion planning problem for an AmigoBot with only sonar sensors was addressed in this year. A line
segment based map was firstly constructed incrementally from readings of sonar sensors. Map building algorithms
were proposed to reduce the size of the map while maintaining the complete and accurate information about the
environment. Then the Voronoi diagram of the line segment based map was generated with Fortune’s sweep line
algorithm. A shortest accessible path from the initial configuration to the goal was searched from the Voronoi diagram
with Dijkstra’s algorithm. The notion of Clearance was defined to guarantee the safety of the path encountered with
obstacles. Finally, a path tracking control law with the line-of-sight approach was designed to follow the reference
path. Simulation was conducted to verify the designed motion planning approach and the results showed that it is
effective for such an AmigoBot to accomplish the given task in unknown environments.

Finally, in order to strengthen the communication of interconnected, multi-area power systems for state estimation
and distributed computation, we proposed a new method to classify more buses in the overlap areas in the partitioning
process. A modified algorithm called maximum overlap fuzzy c-means (FCM) was proposed to address this issue by
incorporating bridgeness term and between-cluster measure term into the objective function. Then we considered using
B-spline curves to represent membership degrees instead of fuzzy membership degrees. This B-spline based maximum
overlap FCM will generate more overlap areas between subsystems. Furthermore, it can also reduce the number of
iteration steps comparing with the maximum overlap FCM.

4 Accomplishments for Year 1 (09/01/2013-06/30/2014)

The following research accomplishments were achieved over the first year duration of this project.

4.1 Paracontracting Multiagent Coordination Optimization

Swarm intelligence based optimization is a class of successful, heuristic computational intelligence methods that opti-
mize nonlinear objective functions iteratively by trying to improve a candidate solution with regards to a given measure
of quality. Among many of these optimization algorithms, Ant Colony Optimization (ACO) [1] and Particle Swarm
Optimization (PSO) [2] are the most popular ones. Compared with other swarm intelligence and derivative-based op-
timization schemes, PSO has advantages of only requiring elementary operations such as addition and multiplication,
and only consisting of two non-derivative based iterative update laws to search for optima. Moreover, PSO does not
require that the optimization problem be differentiable as is required by classic optimization solvers such as gradient de-
scent. Thus, PSO can also be used for optimization problems that are partially irregular, noisy, changing over time, etc.
Additionally, PSO can be easily implemented in a parallel way to fully utilize high performance, large-scale parallel
computing capability of multicore computers, which will significantly improve computational efficiency. Hence, PSO
and its variants have been widely used in many applications, see for example, power system vulnerability analysis [3],
optimizing arbitrary low-rate denial-of-quality attacks [4, 5], and model predictive control [6,7].




There are many variant PSO algorithms in the literature since the first PSO algorithm was proposed by [2], see,
for instance [8-13]. All these PSO variants focus either on some highly mathematical skills or on nature-inspired
structures to improve their performance, lacking the fundamental understanding of how these algorithms work for
general problems. Thus, to address this issue, we need to look at the swarm intelligence algorithm design from a new
perspective since the traditional way of looking to natural network systems appearing in nature for inspiration does not
provide a satisfactory answer. Multiagent Coordination Optimization (MCO) is a new algorithm inspired by swarm
intelligence and consensus protocols for multiagent coordination [14—16]. Unlike the standard PSO, this new algorithm
is an optimization technique based not only on swarm intelligence [17], but also on cooperative control of autonomous
agents. By adding a distributed control term and gradient-based adaptation, the convergence speed of MCO can be
accelerated and the convergence time of MCO can be shortened compared with the existing techniques due to the
finite-time convergence property of certain hybrid and switched cooperative control laws [18, 19]. Moreover, this
new algorithm will be more suitable to distributed and parallel computation for solving large-scale physical network
optimization problems by means of high performance computing facilities.

In this work, we consider a generalized form of MCO called Paracontracting Multiagent Coordination Optimization
(PMCO) by including a paracontracting matrix operation in MCO. It is well-known that contraction mapping has been
a fundamental tool to prove the convergence of iterative optimization algorithms. By incorporating some contracting
matrix terms in our original MCO algorithm, we aim to bound accumulated numerical errors in every iteration for MCO
and to enhance the convergence rate of MCO. To show the parallel computing nature of PMCO, we first implement the
proposed PMCO in a parallel computing way by introducing MATLAB built-in function parfor into PMCO. Next,
we present a global convergence result of PMCO by means of paracontraction and semistability theory.

The MCO algorithm with static graph topology, proposed in [14] to solve a given optimization problem mingeg-
f(x), where f : R* — R, R" denotes the set of n-dimensional real column vectors, and R denotes the set of real
numbers, can be described in a vector form as follows:

VE+ D) = Vi) +n (0 = Vi) + 1 ) (400 = %0 + k(B — X, (0), 6
JENK JENK
X (t+1) = x(O+vi(t+1), 2
_ J PO+ «Emin(®) —p@), if p() ¢ Z,
pi+l) = { Xin (1), if p() € Z, 3

where k = 1,...,q, 1t € Zy = {0,1,2,...}, i(t) € R" and x(r) € R" are the velocity and position of particle k at
iteration ¢, respectively, p(f) € R” is the position of the global best value that the swarm of the particles can achieve
so far, 7, 4, and « are three scalar random coefficients which are usually selected in uniform distribution in the range
[0,1, T ={y € R" : f(Xmin) < f(¥)}, and Xy, = arg mini <<, f(X). Note that here f(-) is not necessarily continuous
and we assume that the minimization problem mingeg» f(X) has solutions.

Next, we use time-dependent algebraic graph-related notation to describe our generalized algorithm to MCO. More
specifically, let G() = (V, &), A(Y)) denote a node-fixed dynamic directed graph (or node-fixed dynamic digraph)
with the set of vertices V = {v1,va,...,v,} and E@F) C V x V represent the set of edges, where ¢ € Z.. The time-
varying matrix A(r) € R™" with nonnegative adjacency elements a; ;(1) serves as the weighted adjacency matrix. The
node index of G(¢) is denoted as a finite index set N = {1,2,...,n}. An edge of G(7) is denoted by ¢; ;(t) = (v;,v;)
and the adjacency elements associated with the edges are positive. We assume ¢; (1) € &) if and only if a; ;(t) = 1
and a;;(t) = O for all i € N. The set of neighbors of the node v; is denoted by Ni@) = vieV:(v,v) eé®),j=
1,2,...,INI, j # i}, where |N| denotes the cardinality of N. The degree matrix of a node-fixed dynamic digraph G(z)

NI e
is defined as A(t) = [6i,j(t)],"j=172’___’|/\/|, where 6{31‘(1‘) = { §j=1 a; /(9), g“i ; j.’
dynamic digraph G(¢) is defined by L(£) = A(t) — A(r). If L(t) = LT(¢), where ()T denotes the transpose operation, then
G(t) is called a node-fixed dynamic undirected graph (or simply node-fixed dynamic graph). From now on we use short
notation L, G;, N to denote L(t), G(£), N'(?), respectively.

We generalize (1) in twofold. First, we extend (1) to the dynamic graph case where A% becomes N*(z) = N
Second, we further extend (1) to the paracontracting form with dynamic graph topology sequence {G,}2 given by

The Laplacian matrix of the node-fixed

W+ 1) = POVKD + 0P > (v,(0) = Vi) + uP(D) D (%) = %(D)
JeN} JeN}

+kP()(p(1) — x:(1)), @



where P(r) € R™" is a paracontracting matrix, and AN*(f) = N," represents the node-fixed dynamic or time-varying
graph topology. Thus, this new algorithm is called Paracontracting Multiagent Coordination Optimization (PMCO).
Clearly if P(t) = I, for every ¢t € Z,, then (4) boils down to the form of (1). Here we use a specific dynamic
neighborhood structure called Grouped Directed Structure (GDS) [20] to generate a neighboring set sequence {N,"};‘io.
In this structure, we divide all particles into different groups at every time instant. In each group, particles have the
strongly-connected graphical structure. The information exchange between the two groups is directed. For example,
in Figure 1, we divide the 6 particles into two groups, one contains particles 1 and 2 called “all-information” group
and the other includes particles 3—6 called “half information” group. In each group, the graphical structure is strongly-
connected. Particles 1 and 2 can know the information of all the other particles and particles 3—6 cannot know the
information of particles 1 and 2. With this technique, if the information from the particle 1 or 2 is not desirable then
we can limit the information inside of the group of particles 1 and 2. Meanwhile, if the information from the particle in
“all-information” group is desirable then it is highly possible to lead the particles in “all-information” group to a global
optimum. The effectiveness of this technique and its parallel computation has been numerically verified in [20,21].

The idea of how to pick the GDS at the beginning is proposed
as follows. First we find the minimum value and maximum value of
all the particles in the first dimension. Then we break up the interval
from the minimum to the maximum into equal sized parts. These
become the neighborhoods. Hence, if we want N neighborhoods,
then there will be N intervals. Then we go through each particle and
place it in the neighborhood, or interval, based on its first dimension
value. One can think of it as an N number of cages and each particle
is placed in the cage that corresponds to its first dimension value.
For example, if you want 5 neighborhoods, and the first dimension
minimum value is 1 and the maximum value is 6, then you would
have intervals: [1,2), [2,3), [3.4), [4,5), [5,6]. If a particle has a ] .
value of 3.5 in its first dimension, then it would be placed in the third Figure 1: Grouped directed structure.
cage. The neighborhoods will not necessarily have an equal number
of particles.

The introduction of P(1) in (4), motivated by the projection method [22,23] in approximation theory, is to guar-
antee that PMCO will stay inside the search region by means of nonexpansive operation and to guarantee the semi-
convergence of PMCO. In particular, if the position of a particle runs beyond the boundary of the search space at time ¢,
then we choose an appropriate P(f) # I, so that the velocity of the particle can be slowed down and the candidate solu-
tion can be pulled back into the search space. A natural question arising from (2)—(4) is the following: Can we always
guarantee the semi-convergence of (2)—(4) for a given optimization problem minge» f(x)? Here semi-convergence
means that all the limits lim,_,q, Xx(¢), lim,_,« v(2), and lim,_,., p(¢) exist for every k = 1,.. ., g. The second part of this
work tries to answer this question by giving a sufficient condition to guarantee the semi-convergence of (2)-(4). To
this end, the basic idea is to convert the iterative algorithm into a discrete-time switched linear system and then discuss
its semistability property [24]. More specifically, we consider the discrete-time switched linear system given by

X(t+1) = WozX(1), t€Zs, (5)

where X() e R™, o : Z, —> Xisa piecewise constant switching signal, and X is an index set. It is important to
note that the PMCO algorithm given by (2), (3), and (4) can be rewritten as the compact form (5) by defining X(¢) =
[X{ @), ..., X5 @), V](®),...,v3(),p"(®)]" for some state-dependent switching signal o. Thus, the semi-convergence
analysis of the PMCO algorithm can be converted into the semi-convergence analysis of (5) by means of semistability
theory.

Paracontraction is a nonexpansive property for a class of linear operators which can be used to guarantee semi-
convergence of linear iterations [25]. The following definition due to [25] gives the notion of paracontracting matrices.

Definition 4.1 ([25]). Let W € R™. W is called paracontracting if for any x € R", Wx # x is equivalent to
IW x| < |ixl.

Recall that A € R™" is called nonrrivially discrete-time semistable [26] if A is discrete-time semistable and A # I,,.
It follows from Proposition 3.2 of [23] that if A is paracontracting, then A is nontrivially discrete-time semistable. The

L L
converse part is not true in general even if ||[A]] < 1. Such a counterexample is given by A = [ F ] Now a more




fundamental question is: What are the real necessary and sufficient conditions to connect both matrix paracontraction
and semistability? This is an important question since it can give us an alternative way to characterize paracontraction
without referring to its definition, which is difficult to verify in practice. We answer this question by giving the
following new result.

Theorem 4.1. Let W € R?? and spec(W) = {41,...,4,}, where r denotes the number of distinct eigenvalues for
W. Then W is nontrivially discrete-time semistable, |Wx|| < ||x|| for any Wx # lix and every i = 1,...,r, and
ker(WTW — I) = ker(W — I)T(W = I,) + (W ~ ,)?) if and only if W is paracontracting.

Next, we replace ||[Wx]| < ||x|| for any Wx # Ax and every i = 1,...,r, and ket(WTW — I,) = ker(W — 1,)"(W -
I+ (W- Iq)z) in Theorem 4.1 by some new eigenvalue-related conditions which can be checked numerically. Recall
from [27, p. 608] that the Holder-induced norm |} - || for W is defined by ||W]| = max.cra\t0,,q) lAx]/]1x]l.

Corollary 4.1. Let W € R?Y9. Then W is nontrivially discrete-time semistable, |W|l < 1, and rank(WTW — I) =
rank((W — I))"(W — 1) + (W - I)»)

= rank[ WIW -1, (W—=I)"W-1I)+W' -1y } if and only if W is paracontracting, where rank(A) denotes the
rank of A.

Motivated by Corollary 4.1 above and the proof of Theorem 5 in [28], we have the following semi-convergence
result for sequence matrix functions.

Theorem 4.2. Let X be a finite index set. For every p € %, assume that W, : & — RT? is continuous, where
@ # int& € & C R” and int & denotes the interior of &. Furthermore, assume that for every p € X and every z € &,
W, (2) is nontrivially discrete-time semistable, ||W,(2)|| < 1, and rank(W,(2)~1) " (Wp(2)—I)+ W) (D)= I+ Wp(2)—1,) =
(Wy(2) = I)T(Wp(2) = 1) + Wi (@) = [ + Wy(D) — I,

(Wo(@) = 1)T(Wp(@) = Ip) + Wp(2) = 1)
compact subset M C & and any sequence {xi}re, defined by xpr1 = Wy (zi)xi, where pi € X and z; € M, limyg 0 X
exists.

rank((Wy,(2) — I)T(Wy(2) — ) + (W, (2) — 1,)*) = rank [ . Then for any

As an application, in this part we present some theoretic results on the global semi-convergence of PMCO by means
of semistability-based matrix paracontraction techniques. In particular, we view the randomized PMCO algorithm as a
discrete-time switched linear system and then use Theorem 4.7 to rigorously show its global semi-convergence. Here
- we will present the main result for the global semi-convergence of PMCO.
Before we state the main result, first we define a series of matrices A,[f], Ag,and By, j=1,...,4,k=0,1,2,...,
throughout the work as follows:

. 0nq><nq I nq anxn
AN = | L ® Po— kU, ® P —mLi® P Kelpa ® Pe |, 0

KkE,[,’X]nq 0,1ng —Kily

—,ukLk®Pk—Kqu®Pk —T]kLk®Pk Kquxl ®Pk

Ack = anan onqan O”qx"‘ ’ (7)

nxng 0n><nq 0,n

0 anan thnq anxn
Bkj = —hk/lkLk ® Pk. - thIq [ Pk —hkT]kLk ® Pk hkkquxl ® Pk ) (8)
Er[lgnq O"X"q _I”

where ® denotes the Kronecker product, L; € R%¢ denotes the Laplacian matrix of a node-fixed dynamic digraph
G, 1.x, denotes the m X n matrix whose entries are all ones, and EE,Q,KI € R™™ denotes a block-matrix whose jth
block-column is I, and the rest block-elements are all zero matrices, i.e., E,[,Q,,q = [Onsers « - s Onscns Iy Qs+« 5 Ol
j=1,...,q. Next,define Dyy = h{[1(Li®Pi)+ k(L@ P ps(Le® PO T + k(L@ Pi)T 1+ 12 Lg + Wi (Le® P ) (Li ® Pr)' —
B Le® Pi) " — 3 mie(Lie® Pio) + g (g1 @ P) Lt ® Pi)T =2 pi Li ® Pio) " — et (Li® Pi) = higri (I @ Pi) T =i (1, P,
Dy = lu(Li ® Py) + xilly ® POImLe ® POT + kily @ POT] — BnilLi ® Po)T + Bimi(Ly ® Po)(Li ® Po)" +
Ri(lpq © Pr)(1gpa ® POT = hipr(Lie ® POT — hukie(ly ® P)T + hidng — W2miLi ® Pr), Di3 = ~hjkilu(Li ® Py) +
Ke(ly ® PONEL, )T = k21 ® Py) + s ELL )T + Bke(1gx1 ® Po). Do = I [l ® Pi) + kiclly ® P))[pse(Li ®
POT + kil ® POT] + I (L ® PO(Li ® PO + i(1gx1 ® P)(gx ® PO)T = hyge(Lic ® Pi) — hun L ® Py)', and
Do =~k (L ® Pi) + kil ® PONELL, )T — B (141 ® Pe) + hiki(gx1 ® Py). Finally, for any matrix A € R4,

nxngq



define <§l:‘7f(A) = (g, ® e,)TA(g, ® e,) and Z"°(A) = HED Yo é”‘”(A) where [g),...,8,] = I; and [ey,...,€,] = I,.

The next result gives the exact value to the 2-norm or maximum singular value for ng., + hkAIEj] + h%Ack under some
conditions on positive n, (i, ki, P.

Lemma 4.1. Consider the matrices A,Eﬂ and A defined by (6) and (7) respectively, where ny, e, ki, e > 0, j =
1,....q, and k = 0,1,2,.... Assume that lyxy < 1 and for everyr = 1,...,q and every s = 1,...,n, the following
inequalities hold:

2hyii(1 = hgay) — B (D1 + Dyp) = —nq(min{O, . m}n s &/ °(D11),
gm=1,..., n,lm k
min  &7(Dyy)) + minf0, min é"”(D“)} + min{0,
=1,..gm=1,..n "7 I=1,...g.m=1,...,n,lm#rs
min & (Di2))), ®

I=1,..gm=1,..n
=21 = hx) 2™ (D11 + Diz) — B (D13DYy + Di3DYy) = —2nghii(1 — hiki)
{min{0, min grs(Dll) min éalr’s(Dlz)} + min{0,

I=1,.. g.m=1,...n o

=1,...gm=1,...nlm#rs

min & (D)} + min{0 min 5”5 D — ng(min{0
g A0 s m P11} {’1—1 mn, 1w (P12)})) — ng(min{0,

=L nd n=1,...y

min é"l”s(D13Df3), min é"”(D13D23)}+mm{0
I=1,...qm=1,....nim#rs n eengott=1,..n

min é"”(DlgDB)} + mm{O min éo”(D13D23)}) (10)
I=1,...g.m=1,...nlm#rs I=1,....g.m=1,...n
2thk(1 - thk) %rs(Dzz + D ) > —nq(mm{ min (a("lr";(Dzz),
l:l ..... gm=1,. .nlm#trs
: 7S . r,8 .
l=1,...f£r1n21 ,,,,, n g (D )} + mln{o l=1,...,q,m1’£1%{l.‘,n,lm¢rx é{;‘m (DZZ)} + mln{o’
min grs(D M, (11
I=1,...qm=1,..n
—2hii(1 — ki) B™ (Do + D1,) — B (D33 DL, + Dy3 DYy > —2nghisi(1 — ki)
(min{0, min & (Dy), ~ min 5 " S(D »)} + min{0,
i=1,....gm=1,..,nlm#rs M I=1,...g.m=1,...,
min En(Dn)) + min{O, min & s(D D)) — ng(min{0,
I=1,....g.m=1,...n,lm#rs I=1,...g.m=1,...n
. : s
l=1,...,q,n{r=li,ljl..,n,lm¢ (D23D23) ,,,,, L &t (D3Diy)) + min{0,

é“‘”(D23D23)}+mm{0 » I;lrinlll é"”(D23D13)}) (12)

~~~~~~

n
I=1,...gm=1,...n,lm#rs
Then forevery j=1,...,qand everyk =0,1,2,..., [langin + hkA[j] + thckll =1.

Analogously, one can give the exact value to the 2-norm or maximum singular value for Iz, + B[’ + thck under
some conditions on 7, ko Ki hy.. Define Fy = Blu(Li ® Py) + killy ® POllu(Li ® PY)T + i(Iy ® Pk)T] + g +
k77k(Lk ® Pr)(Ly ® Pk)T (L ® P)T - i} nk(Lk ® Py) + Bt (Lgxt ® Pi)(Lgsa ® Pi)T — Bopn(Li ® Py)T — hiﬂk(l‘k ®
Py - kKk(I ® Pt hiKk(I ® Pr), F1o = h (L ® Pr) + Kk(I ® Pollu(Li ® P)™ + Kk(I ® P - imi(Ly ®
P + i (L ® P)(Li ® P)' + B2 (11 ® Pk)(qul ® PT =ty (L ® P)T — eIy ® P + g — BEmie(Lic ® Py,
Fi3 = =R Li ® Py) + ki(ly ® POWER, )T + (LT, Fap = R2{u(Lic ® Pe) + Ly ® PONe(Lic ® P + kil ®
P 1+ K (Li® Pi)(Li ® P)T + B2 (Lgx1 ® Pr)(Lgxt ® P)T = hpi(Lic ® Pio) — i (L ® P)T, and F3 = —hzi[u(Li ®
Py + &Iy ® PONEL, )T

Lemma 4.2. Consider the matrices B,[cj] and Ay defined by (8) and (7) respectively, where ny, i, ki, e > 0, j =



l,....,qand k =0,1,2,.... Assume that for everyr = 1,...,q and every s = 1,...,n, the following inequalities hold:

Z7(Fui + Frz) < ng(min{0, qmn_lin s 1 (F11), qtinlll Eim(F12))

+min{0,l 1 m]in 1 (5””(F11)}+m1n{0 » min1 EM(F)), (13)
=1,.... q.m=1,...nlm#rs e s=1,..., 73 ”

R (Fi3F; + Fi3Fy,) < ng(min{0 - qumITZI},fAl_ﬂn,lmm ‘g;,r;;(F13F1T3),

1.8 . 17,8 T

1=1,.. rc?rlnnl ,,,,, (9@ (F13F23)} + mln{o l,...,q,mn:%,r.ln,n,lm$rs éalm (F13F13)}

+ min{0, :1,"}3’&1 ’’’’’ . L;n(F13F23)}), (14)

e%r,s F +FT < : : 7,5 : @pr,s FT

(F22 + Fyp) < nq(min{0, I=1,. nzlll,I}A,n,lm¢ gl”"(FZZ)’lzl,...g}rInIll ..... n 1 F 1))

+ min{0, min é"”(Fzz)} min{0, min é"”(F D, (15)
I=1,....gm=1,...nlm#rs I=1,...,q.m=1,...,

R (Fy3Fy + FyaFy) < nq(mm{O o nfilf’fnzmi é"”(FBFB)

o, 0, FoF)) 4 min0, omin 6 (FasF2s))

+min{0, =~ min l’;n(F23F13)}). (16)

Then forevery j=1,...,qand everyk = 0,1,2, ..., llhugsn + B,Ej] + thCkII =1

It follows from Lemma 4.5 of {29] that O is an eigenvalue of A,[Cj] forevery j=1,...,qand every k € Z.. Next,
we further investigate some relationships of the null spaces between a row-addition transformed matrix of A,[Cj Vand A,Ej !
itself in order to unveil an important property of semisimplicity of this eigenvalue 0.

Lemma 4.3. Consider AV + jAq, j = 1,...,q k = 0,1,2,..., where AY is defined by (6), A is defined by
(7), teskeomie = O, by > 0, and Py € R™" is paracontracting. If ky # 0 and y, # 0, then rank(A,[j] + Acr) =

2nq — (g — )(n — rank(Py)) for every j = 1,...,q, k € Z.. In this case, for every j = 1,...,q and every k € Z., 0
is a semisimple eigenvalue of A[J 1+ hiAck if and only if rank(Py) = n. Alternatively, 0 is a semisimple eigenvalue of

BY' + h2Aq if and only if rank(Py) = n.

Remark 4.1. It follows from Lemma 4.3 that for every j = 1,...,q, 1 is a semisimple eigenvalue of I, +hkA[j] thck,

where pr, ki, = 0 and hy > 0, if and only if ky # 0 and rank(Py) = n, k € Z.. A similar conclusion holds for
Ing + BY + B Aq. ¢

Now we have the main result for the semi-convergence of PMCO.

Theorem 4.3. Consider the following discrete-time switched linear model to describe the iterative process for PMCO:

xilk+11 = x[k]l+ vk +1], x[0] = xo, a7
vilk+ 11 = Ponlkl + hynePe > (v, [K1 = vilk]) + higePe ) Gkl = 5[k
rEN]; rEN,i
+hikiPe(plk] = xi[kD),  vi[0] = vio, (18)
plk+11 = plkl + hie(xjIk] = plkD),  plk1 ¢ Zp,  plO] = po, (19)
plk+1]1 = xjlkl, plkle Z,, k=0,1,2,..., (20

wherei = 1,...,q, x; € R, vy e R", p e R", P, € R™", h, € Q C [0, 0), His T Kie are randomly selected in Q,
Zy={p eR": f(x;) < f(p)), and x; = arg MiNigicq f(x;). Assume that for every k € Z, and every j=1,...,¢
HI) P, € R™™" is discrete-time semistable, ||P¢|| < 1, rank(P} P — I,) = rank((P — I,)"(Pc — I,) + (P — I,)?) =
rank [P{Pk I, (Pi=I)'(Py~1I,)+ (P — 1,,)2], and rank(Py) = n.

H2) supgez, (it 255) < O for every A € {1, =% + L (h2x,)2 =4h2k0) V2, ~k, — 221 1 1 (2 (14 hg) 4112, — e 1

|2 2 *2
1 2 _ 1/2 . /lo+xkhk/lo+l<k _ /l%+/<kh,%/ll+/<kh _ 3
FOGHE = 4012, A0, 41, 22 € € 1 VBRI ¢ spec(~L\(0), Vo W Er ok € spec(=LiMO), 43 + (1 +

hiKk)/lg + (2h%Kk - thk)/lz + hikk = 0},‘



H3) gy < 1 and foreveryr=1,...,qandevery s =1,...,n, (9)~(12) and (13)—(16) hold.

H4) rank((mAY + RADTWAY + 12Aq) + A + AT + AV + AL = rank((nAY + B2A)T (A +
WA + (AY + K2A4)?) = rank
U AP+ AT AP+ A+ I AP+ B2 AT+ AT +12 A 1. 224 ~Trplil o 22 U1, 324 AT 4 nlil
[ k <h:A£“+h£Ac:>T(h:A£”+h%Ac:>+<h:A£”+h§Ack§2 7 | and rank((Bi + BAa) (B + hiAa) + (B + BieAa)” + B+
(BD+12 AT (BI+R A )+ (B + R AT+ B +h A

2 - [V L 24 NTegll 4 32 Ul g2 2y —
hkAck) = rank((Bk + hkAck) (Bk + hkAck) + (Bk + hkAck) ) = rank (B,[(j]"'hiAck)T(B}(j]+thck)+(B,[(j]+h%Ack)2

H5) 0 ¢ Qis compact.

Then x,[k] — p¥, vilk] = 0,1, and plk] — p' as k — oo for every x;o € R", vig € R", pg € R", and every i =1,.
where p' € R is some constant vector.

Remark 4.2. While Theorem 4.3 states that limy_,, x;[k)] exists, it does not necessarily mean that mini <<, f(limg e
x;1k]) = mingegs f(x). Hence, the convergence issue of the iterative process given by (17)-(20) to a global optimum
of the minimization problem min,eg» f(x) remains an open problem. On the other hand, if we know some information
about the cost function f when using (17)—(20), then we may have some clue on this optimality issue. To see this, we
first assume that f is continuous and all the conditions in Theorem 4.8 hold. Then it follows from Theorem 4.3 that
limy e x;[k] = p' and limy_,., plk] = p'. Since limy_.o, plk] = p7, it follows from (19) and (20) that limy_,« x;[k] =

By definition of x;, we have pt = limy_,o, arg miny i<, f(x:[K]). Next, since by assumption f is continuous, it follows
that f(p") = fQliMyoo x;[k]) = limye f(x;[k]) = liminfi e f(x;(k]) < liminfy e fOGIAD < lime,e fOlKD) =
FUimy e x;[k]) = f(ph) foreveryi=1,...,q. Thus, lim_,. arg minigi<g f(x:[k]) = limy 00 x;[k] foreveryi=1,...,4q,
which implies that limy_, mini i<y f(xi[k]) = limyoe f(x;0KD = flimy e x;[k]) = f(limg. x:k]) = F(pH. ¢

In order to show the performance of the parallel PMCO, we conduct a compatison evaluation between the standard
PSO, serial PMCO, and parallel PMCO. In particular, we use the following 8 test functions chosen from [13, 30] to
evaluate the proposed algorithm.

o Sphere function: f(x) = 3, )cl2 The test area is usually restricted to the hypercube =30 < x; <30,i=1,...,n
The global minimum of f(x)is 0 at x; = 0.

¢ Rosenbrock’s valley: f(x) = Z;‘;ll [100(x;41 — xiz)z + (1 — x;)?]. The test area is usually restricted to the hypercube
-30<x;<30,i=1,...,n The global minimum of f(x)is 0 atx; = 1.

¢ Rastrigin function: f(x) = 10n+ X7, [x? — 10cos(27x;)]. The test area is usually restricted to the hypercube
-30<x;,<30,i=1,...,n The global minimum of f(x) is 0.

e Griewank function: f(x) = g Sy 2 — [14, cos(2%) + 1. The test area is usually restricted to the hypercube
-600 < x; £600,i=1,...,n The global minimum of f(x)is 0 at x; = 0.

 Ackley function: f(x) = ~20exp(—-0.2 x [+ L - xz) - exp( >, cos2mx;) + 20 + e. The test area is usually
restricted to the hypercube —32.768 < x; < 32.768,i = 1,...,n. The global minimum of f(x)is0atx; = 0.

e De Jong s f4 function: f(x) = XL 1(zx“) The test area is usually restricted to the hypercube —20 < x; < 20,
i=1,...,n The global minimum of f(x)is 0 at x; = 0. ~

e Zakharov function: f(x) = X1, xl2 + (0.5ix;)? + (0.5ix;)*. The test area is usually restricted to the hypercube
-10< x; £10,i=1,...,n. The global minimum of f(x)is O at x; = 0.

o Levy function: f(x) = sin’(mx;) + (x, — D2(1 + s1n2(27rx,,)) Z"‘l(x, — 12(1 + 10sin(7x; + 1)). The test area
is usually restricted to the hypercube —10 < x; < 10,i = 1,...,n. The global minimum of f(x)is Oat x; = 1.

We first evaluate the computational time of the parallel PMCO for different test functions. Specifically, eight 2.8
GHz cores equipped supercomputers in the High Performance Computing Center at Texas Tech University are used
to run the parallel PMCO algorithm for all the 8 benchmark functions in which the search areas and dimensions of
objective functions are listed before with n = 30. We choose each graph G in PMCO to be a complete graph and
P.=1I,ke Z., for simplicity. In this case, PMCO just collapses to MCO. The simulation results on the computational
time of the serial MCO and parallel MCO for solving the optimization problems are shown in Fig. 2-5. From the




Table 1: Numerical Comparison Between PSO, Serial MCO, and Parallel MCO for the Eight Test Functions

Function Min Max Median Average
PSO  Seriat MCO  Parallel MCO PSO  Seriat MCO  Parallel MCO PSO  Scrial MCO  Parallel MCO PSO  Seriat MCO  Parallel MCO
Sphere 9.525E1  33E-3  3.0E-3 2716E2  151E-2  LIIE2 4278E2  1.85E-2 1.73E-2 1.785E2  83E-3  72E-3
Rosenbrock 1.981ES 1.708E1  1.840E2 1.139E6  7.649E1  L.561E2 1.425E6 1.262E2  1429E2 541585 4.471E1  5.973ElL
Rastrigin 2.802E2 1.027E2  1.252E2 7.639E2  2.585E2  2.916E2 1.125E3  4.050E2  4.030E2 4.773E3  1.687E2  1.773E2
Griewank 1.268E1  6.735E-1  4.674E-1 3.953E1 5.165 4.084 5.961E1 1.710 1883 2.294E1 8.003E-1  7.894E-1
Ackley 8551 1.541 2355 1.292E1 3792 5744 2414E1 6987 7955 1.110E1  2.889 3477
De Jong’s f4 3.206E2  1.565E-6  7.156E-7 1.328E3  1.905B-5  1.793E-5 1428E3  2.097E-5  1.553E-5 6.048E2  7.7106E-6  6.346E-6
Zakharov 6.288E4 1394 1.101 2.938E5 5746 4.084 1.689E+5 5.165 7310 7.307E4 2484 2476
Levy 1.041E2 2.053E1 2.4R3E1 4.029E2  1.813E2  9.079E2 5.867E2 7.545E1  1.300E2 2.286E2  4.690E1  5.545E1
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Figure 2: Computational time comparison between serial MCO and parallel MCO

simulation results, the parallel MCO algorithm can shorten the computational time about 5% to 30% compared with
the serial MCO for solving those problems.

To evaluate numerical accuracy for the parallel PMCO, the statistical results of the optimal Valug:s obtained from
the standard PSO, serial PMCO and parallel PMCO algorithms are compared numerically. Similarly, the search areas
and dimensions of objective functions are listed before with n = 30. Again, we choose each graph G; in PMCO
to be a complete graph and Py = I, k € Z,. In this case, PMCO just boils down to MCO. The maximum of the
objective values, the minimum of the objective values, the average of objective value, and the median objective values
are compared in Table 1. Based on these results, it follows that the serial MCO and parallel MCO algorithms are more
accurate for solving those problems than the PSO algorithm.

4.2 Coupled Spring Forced Multiagent Coordination Optimization: Algorithm and Perfor-
mance Evaluation

The development of swarm intelligence in optimization has been witnessed during the last decade, some famous swarm
intelligence optimization algorithms became more and more popular, such as the particle swarm optimization (PSO)
algorithm [2]. In the PSO algorithm, each particle is assigned to a position in the solution space and a velocity randomly.
Each particle has a memory of its current best value and the corresponding current best position. In addition, every
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Figure 3: Computational time comparison between serial MCO and parallel MCO
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Figure 5: Computational time comparison between serial MCO and parallel MCO

particle in the swarm can know the global best value among all particles and the corresponding global best position.
During every iteration, the velocity of each particle is updated so that the particle is guided by the current best position
and the global best position of the particle stochastically. A large variety of applications have been tackled using PSO
or its variations as a heuristic optimization algorithm, see for example, power system vulnerability analysis [3] and
optimizing arbitrary low-rate denial-of-quality attacks [4].

Multiagent coordination optimization (MCO) [14-16,31] is a new algorithm inspired by swarm intelligence and
consensus protocols for multiagent coordination. Different from the standard PSO algorithm, the particles in the MCO
algorithm embed the multiagent coordination terms in the update formula, and share the velocity and position infor-
mation with neighbors through a communication topology, which is frequently seen in consensus or synchronization
research for multiagent coordination problems [18,19,32-36]. By adding a distributed control term and gradient-based
adaptation, the convergence speed of MCO can be accelerated and the convergence time of MCO can be shortened
compared with the existing techniques due to the finite-time convergence property of certain hybrid and switched
cooperative control laws [18, 19].

The standard coupled spring model is fully introduced in [37]. The movement between two springs has been
discussed under different circumstances and the graphical representation of two springs’ trajectories has also been
demonstrated. Inspired by the synchronization and diversity of the coupled springs motions, in this work, we propose
a new coupled spring forced MCO (CSFMCO) algorithm. Specifically, we treat each particle in the MCO algorithm
as a spring and the optimal solution found so far as the other spring. Governed by coupled springs motions, the next
positions and velocities for both two springs will be discretely updated, and then the swarm intelligence logic will be
switched on to update the local optimal solution found by the particle itself and also the best optimal solution found
among all the particles. The iterative searching processes come to end when the stop criteria are satisfied. Numerical
evaluation has been conducted compared with other variations of PSO, and the proposed CSFMCO algorithm surpasses
those algorithms when solving unconstrained nonlinear optimization problems given by standard benchmark functions.

Based not only on swarm intelligence [17] which simulates the bio-inspired behavior, but also on cooperative
control of multiple agents [18, 32-34], multiagent coordination optimization (MCO) proposed in [14-16, 31] starts
with a set of random solutions for agents that can communicate with each other. The agents then move through the
solution space based on the evaluation of their cost and neighbor-to-neighbor rules inspired by multiagent consensus
protocols [18,19,32-34]. As the algorithm progresses, the agents will accelerate towards individuals with better cost
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Figure 6. A Coupled Spring System

values. The new update formulas for particles under MCO are shown as follows:

REERAY DA
JEN;
+ Z(xi ~x0) + K(p — x1), 1)
JEN;
xfm = x;;+v§c+1, i=1,...,q, (22)

where k = 0,1,2,..., vi € R", xi € R, /1 ~ U(0,27), i ~ U(0,2u), k ~ U(0,2«), n,t,x > 0 are random numbers,
U(.,-) denotes the uniform distribution with certain lower and upper bounds, N; is the neighbor set of particle i, and
P = arg mingi<q <5<k f (Xls)

It follows from (21) and (1) that the difference between MCO and PSO lies in the velocity update. The new velocity
update (21) for MCO accelerates the search for the desired solution by use of the neighboring agents’ information and
two new search directions. The first new search direction 3 (vi —vj() accelerates the update for the agents’ velocities

to converge to the same value that is not pre-described, while the second new search direction 3’ i, (xi —x;;) accelerates
the convergence of all the neighboring agents’ positions to the same one that is also not pre-described.

The coupled spring system [37] consists of two springs which is shown in Fig. 6, where two springs move in a
smooth ground with masses m; and my, spring constants k; and k;, and positions x;(¢) € R and x,(?) € R, respectively.
The equations of motion of the two masses are given by

—k1x1 — ka(x1 — x2), (23)
—ka(x2 — x1). (24)

myXy

ma Xy

A comprehensive discussion on this coupled spring system is provided in [37]. Here we want to point out a striking
similarity between the coupled spring system (23) and (24), and the iterative process (21) and (22) when ¢ = 2 and
n = 1. However, besides continuity, the big difference between these two sets of equations is that for (23) and (24),
the velocity information X; or %, does not appear explicitly in these equations. This causes oscillatory behaviors in the
dynamical system (23) and (24) (e.g., Fig. 7). By adding some terms on v;; and xi, one can reduce oscillation and make
the trajectories of the system more monotonic. On the other hand, from a numerical point of view, having too many
terms on v;; and x;'( in (21) and (22) may cause the numerical error of (21) and (22) to accumulate to a point where
the absolute values of v, and x; become so large that they are far beyond the limit of the stored memory, which is
unacceptable for practical implementation. In this case, the iterative process may be trapped at a point where we may
never get to the optima.

Motivated by the coupled spring system (23) and (24), in this work we will propose a simpler, new iterative
algorithm for (21) to avoid the stagnation of (21) and (22) by dropping off part of the position information in (21).
To our surprise, such a modification can greatly improve the performance of the original MCO algorithm as well as a
large class of other PSO variations as shown by the simulation later. Next, we begin with the 1ntroduct10n to our new
proposed algorithm and discussion on its convergence issue.

The proposed coupled spring forced MCO algorithm is described in Algorithm 1. In particular, the update formulas
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for the CSFMCO algorithm are given by

Vi = Ve+it Y (V] —vi) - jix + k(py — X)), 25)
JEN:

X;;+1 = X;c+v;c+1’ (26)

Pt = P+k@-p). €2, i=1l....q 1))

Pisi = P P€Zp i=1l,....q (28)

where k = 0,1,2,..., v, € R", x} € R", p, = argminqq, f(x}), Z, = {p € R" : f(p}) < f(p)} is called a swarm
intelligence logic set, and 1j € Q; C (0,277, i1 € Q5  (0,2u], and k € Q3 C (0, 2«] are randomly selected, 7, 1, > 0.

Algorithm 1 Coupled Spring Forced MCO Algorithm
for each agent i=1,...,q do

Initialize the agent’s position with a uniformly distributed random vector: x; ~ U(x, %) € R™,
where x and X are the lower and upper boundaries of the search space;
Initialize the agent’s velocity: v; ~ U(wV), where v and v € R™! are the lower and upper

boundaries of the search speed;
Update the agent’s best known position to its initial position: p;« x;;
If f(p;)) < f(p) update the multiagent network’s best known position: p « p;.
end for
repeat
ke—k+1;
for each agent i=1,...,q4 do
each agent i=1,...,¢q
Choose random parameters: i~ U(0,2n), j~ U(0,2u), & ~U(0,2«), n,u.«x>0;
Update the agent’s velocity: v; « Vi + 7 Xjen, (v — vi) = fix; + K(p — x1);
Update the agent’s position: x; « x; +v;;
for f(x;) < f(p:) do
Update the agent’s best known position: p; « x;;
Update the multiagent network’s best known position: p <« p+k(p;i—p);
If f(p) < f(p) update the multiagent network’s best known position: p « p;;
end for
end for
until k is large enough or the value of f has small change
return p

If we consider p; as a coupled abstract spring, then the above update formulas for the CSFMCO algorithm are
similar to (23) in the case where m; and m; are unit. Since p, is viewed as an abstract spring, the initial velocity at
each iterative step will be reset to zero in the proposed algorithm. A numerical illustration of the trajectories shown for
a three coupled spring particle system is given by Fig. 7 and the phase portrait relationship between the position and
velocity is shown in Fig. 8. The trajectories are traveling through the searching space and the best optimal solution
will be obtained eventually by a swarm intelligence logic in Algorithm 1.

Next, we present a theoretic result on global convergence of the iterative process (25)—(28). In particular, we
view the proposed CSFMCO algorithm as a discrete-time switched linear system [24] or discrete linear inclusion [38]
and then give some sufficient conditions for its global convergence by discussing its semistability property. To begin
with, we define a series of matrices A,[(’] and B,[c’] (on the top of the next page), where j = 1,...,¢4, k = 0,1,2,..,
m €€ C(0,27], i € Qo € (0,2u], & € Q3 € (0,2«], 7,4, « > 0, ® denotes the Kronecker product, 0,,x, denotes
the m X n zero matrix, 1,4, denotes the m X n matrix whose entries are all ones, Ef,ﬂnq € R™" denotes a block-matrix
whose jth block-column is 7, and the rest block-elements are all zero matrices, L € R%“ is the Laplacian matrix of
certain graph topology underlying the CSFMCO algorithm, and WU! = (1,4 ® In)EE,an.

Lemma 4.4. Consider the matrices Aij] and B,Ej] given by (29) and (30), j = 1,...,9, k =0,1,2,.... Then for every
j=1....qand everyk = 0,1,2,..., {0} C spec(A”") C {0, —1, —ke, —(ux + k&) £ (e + k00> — (i + )2, ~ 3 (e +
k) % 3(Gte + 0 = 4ptc+ K)' 2, 1 € C 2 V(A + (e + k0 + (e + 1)/ (i) € spec(~L\O)) and! {0} € spec(BY) €
(0, ~1, =5 G + ki) + (e + 1) — 4 + )2, 4, € C 2 V(A + (e + k) + (e + 10))/ (i) € spec(=L\0), £ +
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Figure 8: Phase portrait for the three coupled springs
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(1 + g + KD + Que + k) + Hi + ki = 0}, where spec(A) denotes the spectrum of A. Furthermore, 0 is semisimple for
[l L]
both Ak and B

Recall from [27] that a matrix A € R™" is discrete-time semistable if and only if spec(A) = {1} U{1 € C: | < 1}
and if 1 € spec(A), then 1 is semisimple. Let ker(A) denote the null space of matrix A. Now we have the main result
for the global convergence of the iterative process (25)—(28).

Theorem 4.4, Consider the following discrete-time switched linear model to describe the iterative process for
CSFMCO:

x;ﬁ-l = x;; + v;'c+1’ x6 = Xi0, (31

v};ﬂ = V;; + 1 Z(vi - v};) —,ukx;; + ki(pr — x};), vé) = vjp, (32)
JEN;

Pt = prtkex—pO, e Zps (33)

P = X, meZ, k=0,1,2,..., i=1,....q (34)

where x;; € R”, v;c ER, pr e R:, e € Q1 C(0,27), e € Qp € (0,2u], ki € Q3 € (0,2}, m,p.6 > 0, Z, =
(P eR": f(x)) < f(p)), and x, = argminigicy f(x). Let h} = min{ - 4L : 4 € (-1, —(u + k) + ((ui +
K0 = (e + k)2 =3 G + k) = 3 + k)P = A + )A€ C 0 V@ + (e + kDA + (e + k0))/ (kd) €

spec(—L)\{O}},Vk =0,1,2,... } and hl = min{ - % DA€ (=13 Gu + k) £ 3 (e + k) — Ay + k)2, AL €C

V(2 + (i + KA+ (i + 60/ (7)€ spec(=L)\O}, & + (1 +pax + k)L + Qpue + kS +ptie +x = 0L Vk = 0,1,2,... } Iy
is a finite discrete set for every i = 1,2,3, min{hl, k) > 1, ker((APYTA) + (AUHT + AV = ker((ATH)TAY + (4V)2),
ker(BYYTBY + (BY)T + B = ker((BY)TBY' + (BE,:])Z), angen + AN < 1, and ||Lngen + BPY < 1 for every
k=01,2,.., then x, — p’, Vi = Oux1, and pr — p' as k — oo for every x € R”, viy € R, pg € R, and every
i=1,...,q where p’ € R",

While Theorem 4.4 states that lim;_, x;( exists, it does not necessarily mean that min; i<, f(limy e x;;) = MiNgepn
f(x). Hence, the convergence issue of the iterative process given by (31)—(34) to a global optimum of the minimization
problem mingep- f(X) remains an open problem. On the other hand, if we know some derivative information about the
cost function f when using (31)-(34), then we may have some clue on this optimality issue. To see this, recall from
Definition 8.6 of [39] that f : R” — R is said to be stricily convex if for all x,y € R” with x # y and any ¢ € (0, 1),
fx+ (1 =0y <tf(x)+ (1 —1)f(y). We assume that f is strictly convex and differentiable. Furthermore, we assume
that all the conditions in Theorem 4.4 hold. In this case, it follows from Corollary 25.15 of [40] that the soltution to the
minimization problem mingeg~ f(X) is unique. Let X, denote the solution to the minimization problem mingeg- f(x) and
pt = limpse x;'c for every i = 1,...,q. Moreover, it follows from Theorem 25.5 of [41] that Vf is continuous on R”,
where V denotes the nabla operator. Now it follows from Theorem 25.1 of [41] that f(x,) > f (x;;) + VT f (x;;)(x* - x;;)
for every i = 1,...,q. If Vf(p') = 0,1, then it follows that limy_,. VF(x}) = Vf(limgoe x;) = Vf(p') = 0ny for
everyi=1,...,q. Thus, f(x.) > im0 f(x}) +limg e VT f(x})(x. — %) = f(p") forevery i = 1,...,q. Alternatively,
f(p") > f(x.), and hence, f(p') = f(x.). By uniqueness of x,, we have p’ = x,, which implies that lim;_,c x;C is
indeed the solution to the minimization problem mingeg: f(x) foreveryi=1,...,q.

This analysis suggests that including the derivative information in our proposed CSFMCO algorithm may attain
the global minimum of the minimization problem minge- f(x), and thus, improve the convergence of the proposed
algorithm. This is not surprising since almost all the global convergence optimizers in the literature are the gradient-
based algorithms. These gradient-based algorithms utilize the derivative term with dynamic steps in the iterative
process to guarantee the global convergence of the techniques. Nevertheless, what intrigues us here for CSFMCO is
that we do not need to directly include the derivative term (if it exists) in the update formulas (25)—(28) to improve
the convergence. Instead we can embed this derivative information in the swarm intelligence logic set Z,. More
specifically, if f is merely convex, not necessarily differentiable, then we modify Z, as

Z, =P eR": f(x]) < f(P), Ous1 ¢ IF(P)),

where df(p) denotes the subdjfferential of f at p [41, p. 215]. In this case, the judging condition f(x;) < f(p:) in
Algorithm 1 should include 0,,«; ¢ df(p)).
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In order to show the performance of the CSFMCO algorithm, we conduct a comparison evaluation between
CSFMCO and other variations of swarm optimization. In particular, we use the following test functions chosen
from [42] to evaluate the proposed CSFMCO algorithm. Reference [42] is a global optimization competition con-
ducted at the 2013 IEEE Congress on Evolutionary Computation in Cancun, Mexico, and gives the latest benchmark
functions to test the effectiveness of evolutionary algorithms. These new functions have been widely accepted as a
standard in the area of computational intelligence.

e Sphere function: f(x) = X7, xiz. The test area is usually restricted to the hypercube —5.12 < x; < 5.12 or
-30<x;<30,i=1,...,n

e Rastrigin function:

fx)=10n+ 37, [xi2 ~ 10 cos(2nx;)]. The test area is usually restricted to -30 < x; < 30,i=1,...,n.
o Rosenbrock’s valley:

flx) = :’;11 [100(x; 1 — xl.z)2 + (1 = x;)?]. Test area is usually restricted to hypercube —30 < x; < 30,i=1,...,n.
o Griewank function: f(x) = Wloo N xiz -1, cos(f—'f'i) + 1. The test area is usually restricted to the hypercube

—600 < x; <600, =1,...,n The global minimum of f(x)is 0atx; = 0.

e Ackley function: f(x) = —20exp(—0.2 x /1 % x2) — exp(! T, cos 27x;) + 20 + e. The test area is usually
restricted to the hypercube —32.768 < x; < 32.768,i = 1,...,n. The global minimum of f(x)is O at x; = 0.

Before we introduce the new test functions, some subfunctions are needed.

_l_l . « .
¢ A% An n-dimensional diagonal matrix with the diagonal elements A;; = «%=0. This matrix is used to create
ill-conditioning [43]. The parameter « is the condition number.

e X°P' is the optimum decision vector for which the value of the objective function is minimum. This is also used
as a shift vector to change the location of the global optimum.

e T, is a transformation function to create smooth local irregularities [43].
. Tfsy is a transformation function to break the symmetry of the symmetric functions [43].

Based on these nonlinear transformations and operations, we introduce two more complicated functions induced
from the above basic functions. Y Shifted Rastrigin function: f(x) = X1, [z? — 10cos(2nz;) + 10].

o Z = ATYL(T,5 (X — XP1)).

asy
* X(i) € (=5,5), where X(i) denotes the ith component of X.

o Global optimum: f(X°") = 0.

% Shifted Ackley function: f(x) = —20exp(—0.2 X /% rLZhH - exp(% 2rqc082nZ) +20 +e.

o Z=ATOX(T,s(X — X°PY)).

asy
e X(i) € (-5,5).
o Global optimum: f(X°P") = 0.

In this work, X7 for both shifted Rastrigin function and Ackley function is rand” € R”, where the MATLAB
command rand generates a random real number between [01] and rand” denotes a vector whose every component is
generated by rand.

For n = 30, rand” generates X°P" as [0.5759 0.1490 0.5844 0.6050 0.0224 0.9444 0.6806 0.8094 0.4486 0.5921
0.05170.8177 0.8144 0.4230 0.9635 0.5372 0.7677 0.9022 0.8058 0.4668 0.2006 0.5209 0.4287 0.0398 0.5966 0.5687
0.5644 0.1430 0.0666 0.5222].

In this part, statistical results of the best values obtained from CSFMCO and other variant swarm algorithms are
compared numerically. PSO we used here is the standard swarm algorithm and the center PSO (CPSO) algorithm
used here is proposed in [44] by introducing a center among all the particles. Moreover, comprehensive learning PSO
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Table 2:

Numerical Comparison Between BPSO, BMCO, NBPSO, BDE and BCSFMCO

Function

Min Max
CPSO  CLPSO  FullPSO  MCO  CSFMCO PSO  CPSO  CLPSO  FullPSO  MCO  CSFMCO
Sphere 3.8987  9.4531E-54  1.900E-3  5.0061E-82 1.0949E2  2.01E-2  1.0933E1  7.0367E-8 74E-3 2.5213E-78
Rastrigin L1244E2  9.8179E1 2.855E1  8.166E1 0 5.1968E2 14607E2  2.2226E2 3.0523E2 O
Rosenbrock 21372E2  1.5431E2  2.544E1  2.7767El 1.9071E4  4.1783E2  9.1991E2  4.9414E2 1.1552E2  2.890El
Griewanks 3A47E-2 7510268 9.52E-1  9.905E-1 8652E-1 0O 8.557E-1  2.2386E-4 9.958E-1 9.988E-1 9.974E-1 ¢
Ackley 28872 33316 1.1102E-13 2.0196 8.88I8E-16 1.0592E1  6.3280 4.1993  2.5428 3.9990 &.8818E-16
Shifted Rastrigin 1.8965E2  2.0146E2  1.5281E2 2.6060E2 1.6713E2 4.7798E2  4.5287E2  2.8420E2  3.0784E2  5.2487E2 2.5691E2
Shifted Ackley 7.8215 6.8052 5.8670 4.1044 59411 5.2082 1.0106E1 72915 6.7953  9.7824  5.9521
Function Median “Average
CLPSO  FuliPSQ  MCO CSFMCO PSO CPSO CLPSO FullPSO MCO CSFMCO
Sphere 6.9221 8.5716E-27 4.300E-3  4.4568E-80 5.52369E2 3.8E-3  6.9337 4.2619E-09 4.4E-3 2.1386E-79
Rastrigin 171632  1.2930E2  7.736El  19313E2 0 3.1363E2 1.2742E2 8.656E1 1.9792E2 0
Rosenbrock 12779E2  4.5091E2  2.5143E2  6.446E1 2.8443E1 6.1813E3  1.6701E2  4.8552E2  2.7036E2 6.671El  2.846E1
Griewanks 2.0368E-6 9921E-1 9.976E-1 9.857E-1 0 2.400E-1 9.891E-1 9971E-1  9.706E-1 0O
Ackley 37753 14131 2.7454 B.8818E-16 73744 4.6635 3.7971 13252 2.8617 8.8818E-16
Shifted Rastrigin 2.3874E2  23742E2  3.7983E2  2.1977E2 3.7134E2  3.1169E2  2.3818E2  2.3486E2  3.8535E2  2.1363E2
Shifted Ackley 93525  7.8225  6.4417 82779 54123 56085 9.1389  7.9699 6.5187 54849 8.1692 5.6036

(CLPSO) [45], fully informed PSO (FullPSO) [46], and MCO are also compared with CSFMCO. The benchmark
functions are listed before with n = 30. After running 20 times, the maximum, minimum, average, and median of best
values obtained by all the algorithms are compared in Table 2. Moreover, the averaging trajectories of all the listed
algorithms approaching the optimal solution are shown in Fig. 9-Fig. 15. Based on those simulation results, one can
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Figure 9: Test function: Sphere

conclude that the performance of the CSFMCO algorithm is superb over all the other cited variations.
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4.3 New Multiagent Coordination Optimization Algorithms for Mixed-Binary Nonlinear
Programming

Mixed-integer nonlinear programming has attracted a lot of research efforts recently, which are heavily applied to solve
the problems in transportation and manufacturing [47], airline crew scheduling [48], vehicle routing [49], power system
planning [50], to cite but a few examples. Specifically, a mixed-integer programming problem is a minimization or
maximization of an objective function subject to nonlinear constraints including both continuous variables and discrete
variables. In this research, we focus on a particular subset of mixed-integer nonlinear programming problems by
restricting the discrete variables to be binary, and so called “mixed-binary nonlinear programming problem”. Binary
variables consist of only 0 and 1, which have significant meanings in engineering and science disciplines. One of the
main representations of binary variables is on or off for a communication link.

To solve the MBNP problem efficiently, the challenge lies in the convexity, although there are a subset of convex
MBNP problems, and some approaches have been proposed, see [51, 52] for instance, the research efforts are highly
needed to solve a larger (even nonconvex) class of MBNP problems. Due to the difficulty of solving MBNP problems
in different situations by use of the conventional methods, we resort to heuristic optimization algorithms which can
serve as an efficient approach to find the best solutions. Swarm intelligence has attracted a lot of attention recently and
swarm based optimization algorithms, for instance, particle swarm optimization (PSO) [53], are one of these efficient
solvers.

Multiagent coordination optimization (MCO) [14] is a new algorithm inspired by PSO and consensus protocols for
multiagent coordination. Different from the standard PSO, the particles in the MCO algorithm embed the multiagent
coordination terms in the update formula, and share the velocity and position information with neighbors through a
communication topology. Inspired by the synchronization and diversity of the coupled springs motions, a new coupled
spring forced MCO (CSFMCO) algorithm has been proposed [54]. Specifically, each particle in the MCO algorithm
is treated as a spring and the best solution found so far as the other spring. Governed by coupled springs motions, the
next positions and velocities for both two springs will be discretely updated, then the swarm intelligence logic will be
switched on to update the local optimal solution found by the particle itself and also the best optimal solution found
among all the particles. Numerical evaluation has been conducted compared with other variations of PSO, indicating
that the proposed CSFMCO surpasses other algorithms when solving some benchmark functions.

With the aim to solve MBNP problems, firstly, motivated by the idea of binary PSO [55], a new binary CSFMCO
algorithm is proposed. Numerical evaluation has been conducted and compared with other variations of binary PSO,
showing the superiority of binary CSEMCO. As an application of binary CSFMCO algorithm, the multiagent formation
control problem is investigated. Formation control for multiagent systems has gained considerable attention in control
theory and topological heterogeneity analysis has been conducted for both single and double integrators systems for
undirected topologies [56]. However, directed topology is a more general scenario than the undirected case, and
thus provides more alternatives when designing formation control protocols. For example, the number of undirected
topologies for the 5 robot system is 2!9 while the number of directed topologies is 22°. Therefore, in this work, as a
binary optimization application, we investigate the topological heterogeneity of digraphs for multiagent formation.

Next, together with the continuous CSFMCO, a mix-CSFMCO algorithm for MBNP problems is proposed by
introducing a switching logic between the binary optimizer and the continuous optimizer. As an application to this
algorithm, we consider balanced coordination for damage mitigation and resource allocation in network systems. The
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balanced coordination problem for network systems with a fixed-structure, which can be characterized as a high-order
nonlinear matrix equation involved, nonconvex optimization problem, has been investigated [57]. However, network
structure plays a significant role when communicating between different nodes to allocate the resource, and thus affects
the convergence rate for the allocation algorithms. The independent study of network structure and network parameters
cannot give a comprehensive understanding of the resource allocation algorithms. Therefore, to better investigate the
network structure and optimal balanced coordination algorithms in the network, in this work, we formulate the design
problem as an MBNP problem and numerically solve it by the proposed mix-CSFMCO algorithm.

The binary PSO (BPSO) proposed by Kennedy and Eberhart [55] can be described as the following mathematical
iterative algorithm to minimize the objective function f(x):

Vier = Vit biri(g — X))
+hora(g—xb), k=0,1,2,..., (35)
1 ifr; < sig(vf(’f;l)

{O otherwise ’

X (36)
where v, and xfc are the velocity and position of particle / at iteration k, respectively, gy, ; is the position of the previous
best value that particle i has obtained so far, g is the position of the global best value that the swarm of the particles can
achieve so far, b; and b, are weight coefficients, r; and r» are two random coefficients which are usually selected in
uniform distribution in the range [0, 11, r; ; are random numbers in [0,1], and sig function is defined by sig(x) = #

In this work, undirected and directed graphs are used to represent a topology of communication networks. Specif-
ically, let G = (‘V, &) be a directed graph (or digraph) denoting the communication network with the set of nodes (or
vertices) V = {1,..., g} involving a finite nonempty set denoting the agents, and the set of edges & C V x V involving
a set of ordered pairs (i, j) denoting the direction of communication. A graph or undirected graph G is a directed graph
for which the edge set is symmetric. For graphs, we use unordered pairs {i, j} for edges. The set of neighbors of node i
is thus defined by N; = {j € V : {i, j} € E}.

The connectivity matrix L = L9 associated with the graph G is defined by

¢ » JO ifGHES,
g e

1, otherwise,
i#£j, Lj=1,...,q, (37)
q
s - Z Ly i=1,....q (38)
k=1, ket

where g is the number of agents.

Binary multiagent coordination optimization (BMCO) is proposed by introducing a communication topology for
the particles in binary PSO algorithm and using recently developed multiagent consensus protocols from control theory.
The velocity update formula for the BMCO algorithm is shown in (39), and the position update formula is the same as
the binary PSO algorithm in (36).

Vier = Ve +7 Z(V,{ -vy)
JeN;
Hi (6, = Xp) +K(p ~ x) (39)
JeN;

where 17 ~ U(0, 2n), i ~ U(0, 2u), k ~ U(0, 2x), U(-, -) is the uniform distribution, and n, u, k > 0 are random numbers.

In this part, the coupled spring forced multiagent coordination optimization algorithm is proposed to address MBNP
problems. First, to handle the binary variables, the binary CSFMCO (BCSFMCO) algorithm is proposed and described
in Algorithm 2.

e Sphere function: f(x) = X7, xiz. The test area is usually restricted to the hypercube —5.12 < x; < 5.12 or
-30<x<30,i=1,...,n

e Rastrigin function:
f(x) = 10n + T2 [x? — 10cos(27x;)]. The test area is usually restricted to the hypercube =30 < x; < 30,
i=1,...,n
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Algorithm 2 Binary Coupled spring forced Multiagent Coordination Optimization Algorithm
for each agent i=1,...,q9 do
Initialize the agent’s position with a uniformly distributed random vector: x; ~
U(x,x), where x and ¥ are the lower and upper boundaries of the search space;
Initialize the agent’s velocity: v; ~ U(v,Vv), where v and v are the lower and upper
boundaries of the search speed;
Update the agent’s best known position to its initial position: p; « x;;
If J(p;) < J(p) update the multiagent network’s best known position: p <« p;.
end for
repeat
k—k+1;
for each agent j=1,...,q do
Choose random parameters: 7n,u,d,«~ U0,0), ®>0;
Update the agent’s velocity: v; e v;+9 3 en(v; — i) — ftxi + kK(p — x1);
Update the agent’s position:

s {1 if 7i; <sig0i) “0)
0 otherwise
where r;; ~ U(0, 1);
X X, xi]"
for J(x;) < J(p;) do
Update the agent’s best known position: p;« x;;
Update the multiagent network’s best known position: p « round(p+k(p;—p));
If f(pi)) < f(p) update the multiagent network’s best known position: p « p;;
end for
end for
until k£ is large enough or the change of f becomes small
return p

¢ Rosenbrock’s valley:

fG) = T 100(x, — 2 + (1 — x,)*]. Test area is usually restricted to the hypercube =30 < x; < 30,
i=1,...,n
e De Jong’s f4:
fx) = Zl'.‘zl(ixj.‘). Test area is usually restricted to the hypercube —20 < x; <20,i=1,...,n.
e Zakharov function:
fx) = Z?fl xl.2 + (0.5ix;)? + (0.5ix;)*. The test area is usually restricted to the hypercube ~10 < x; < 10,

i=1,...,20.

In this part, statistic results of the BPSO(A1), BMCO(A2), another variation NBPSO(A3) in [58], binary differ-
ential evolution (BDE)(A4) [59] and binary CSFMCO(AS5) algorithms are given for solving the benchmark functions.
Together with the above test functions, two shifted functions are also used in this work. Different with the standard
test function, the shifted Sphere and shifted Ackly functions translate the 0 optimal solution into a particular one p*.
The problem dimension is # = 100. By running 20 times for every binary optimization algorithm, the maximum,
minimum, average, and median objective values are compared between the standard BPSO, NBPSO, BDE and BMCO
algorithms, which are shown in Table 3. From Table 3, one can conclude that the proposed binary CSFMCO algorithm
is better than the BPSO, BMCO and NBPSO algorithms.

Moreover, the Wilcoxon sum rank test is provided for all the binary algorithms and the p values are shown in Table

4. Based on the results, it is concluded that the median values of the BCSFMCO algorithm are smaller than the rest
binary algorithms with the significance level 0.05.
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Table 3: Numerical Comparison Between BPSO, BMCO, NBPSO, BDE and BCSFMCO

Function Min Max
BPSO BMCO NBPSO BDE BCSEMCO BPSO BMCO NBPSO BCSFMCO

Spbere 0 0 0 0 LiSE2 1.27E2 0 122E2 1.30E2
Shifted Sphere 3.1El  3.1El 2.8El 2.8El 3.El 40EL  40El1 4.0E1 39E1 3.8El
Rastrigin 0 & 0 0 0 4.825E3 4.02E2 & O  1.0384FK4
Rosenbrock 0 6 0 0 3 9 0 LIE3 0 9

Ackly 8.8818E-16 8.8818E-16  8.881BE-16 8.8818E-16 2.3764 25111  8.8818E-16 24583 8.8818E-16 2.5024
Shifted Ackly 21076 19391 2.0421 19391 2.0752 24313 23198 23483 22318 23198
De Jone F4 0 6 0 0 121E2 1.129E3 0 1.36E2 1.33E2
Zakharoy 0 0 0 0 1U0008E10 1.2341E10 0 1.1131E10 0  1.2303E10
Fuaction Median Average

BPSO BMCO NBPSO BDE BCSFMCO BPSO BMCO NBPSO BDE BCSFMCO

Sphere 995E1 0 145E1 0 1.235E2 7.22E1 0 3275E1 0 1239E2
Shifted Sphere 37EL  3.6El 345E1 3.3E1 35El 3.66EL 3.605E1 3465E1 3.34E  3.455E1
Rastrigin 0 0 19105sE3 0 0 642662  1.9435E2 4.0208E3 0 1.6058E3
Rosenbrock 5 00 0 7 405 0 2 0 655

Ackly 23472  B8.8818E-16 1.1314 8.8818E-16 2.4358 13404  8.8818e-16 1.1101  8.8818E-16 24397
Shifted Ackly 22763 22318 22318 21861 2.2015 22703 22176 22222 21451  2.2067
De Jone F4 0 0 1550E1 0 125E2 3.525E1 © 1.30E2 0 1.255E2
Zakharov 0 0 59159E8 0 1.1054E10 4.6462E9 0 2.3410E9 1.1151E10

Table 4: Wilcoxon sum rank test for BPSO, BMCO, NBPSO, BDE and BCSFMCO

Function Sphere Shifted Sphere Rastrigin Rosenbrock Ackly Shifted Ackly | De Jone F4 Zakharov
A5>Al 1.2765E-5 2.0483E-4 4.4846E-4 8.2073E-5 8.3018E-5 6.3144E-5 2.3E-3 1.0E-3
A5>A2 1 9.9172E-4 7.9202E-6 1 1 3.7E-3 1 1
AS5>A3 5.5082E-7 5.68E-2 1.7473E-07 1.2289E-5 1.6492E-6 5.9E-3 5.2163E-8 1.7527E-7
A5>A4 3.8234E-9 4.04E-2 1.0E-3 3.4078E-9 3.8517E-9 3.16E-2 3.6847E-9 | 4.0033E-9

In this part, the averaged convergence rates of BPSO, BMCO, NBPSO, BDE and BCSFMCO are compared by
solving the relevant optimization problems for the eight test functions 20 times and taking the average of the objective
values in each iteration, which are shown in Fig. 16-23. Through all the figures, the CSFMCO algorithm achieves the
best solutions among all the other algorithms in a faster convergence rate.

Based on the proposed binary CSFMCO algorithm and continuous CSFMCO algorithm, the overall mix-CSFMCO
algorithm for MBNP problems is presented. The flow diagram of the algorithm addressing MBNP problems is shown
in Fig. 24. Therefore, a heuristic optimization algorithm will be equipped as a numerical approach to address MBNP
problems. The promising success of this approach lies in the fact that the mix-CSFMCO algorithm does not require
the convexity of the objective function and the algorithm can be easily implemented to rapidly find the best solution
for the problem.

In this part, the formation control problem for multiagent systems underlying heterogeneous directed topologies is
considered, which extends the results from the undirected case to a general digraph scenario in [60].

The system we consider here is a double-integrator multiagent system given by x; = v; v; = u; where x; and v;,
i=1,2,---, M are the position and velocity of agent i respectively. To achieve the desired formation, we propose the
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Figure 16: Test function: Sphere
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following directed topological heterogeneous formation control protocol

M
Ui = - Z LE (x,() — x;(t) = I; })
j=1,j#i
M
= D L) - vi) (41)
j=1j#i
Or the vector form is
X=0X+¥, X(0) =X, (42)
0 1 0 O T
WhereX=[x1,~~-xM,v1,~~,vM]T,sz[_Lgl _ng}and‘Pz[O _1] Ox] 0 - 00 Ly - Ly,

where ® denotes the Kronecker product, L9 and L9? are the connectivity matrices for the position and velocity commu-
nication topologies, respectively, L' and L9 are directed but not necessarily the same, or even do not have a spanning

tree topology, and /; ; is the desired distance between agent i and agent j. At this moment, one dimensional distance
control is considered.

Theorem 4.5. Suppose that the topology for position has a directed spanning tree, the multiagent system achieves the

desired formation under the formation control protocol (41) if and only if ® has no eigenvalues lying on the imaginary
axis, i.e., for each agent i

o
dij®) = lijy vilt) > 2L IN0), 1 o0 43)
where d; (1) = xi(t) — x;(t) is the distance between agent i and agent j at time t, 1 = [1,..., 117, and v(0) =
v1(0), va(0), -+, vir(OVIT is the initial velocity vector for the multiagent system.

Remark 4.3. The main difference between the undirected and directed cases lies in the necessary and sufficient con-

dition that matrix ® has eigenvalues lying on the imaginary axis. In the following part of the work, we will show how
to eliminate this constraint when we formate the optimal topology design problem.

Based on Theorem 4.5 , the formation control protocol can be extended from the undirected case to the directed
case. Since the convergence rate and communication cost are two main concerns when designing and evaluating
a formation control protocol. Hence in this work, we formulate the topology optimization problem for multiagent
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Figure 24: Flow diagram for the CSFMCO algorithm addressing MBNP problems

systems underlying directed heterogeneous topologies by considering the tradeoff between the convergence rate and
communication cost.

To measure the communication and interagent sensing cost of the multiagent system under a graph G, first the
distance-based communication/sensing cost C(G) is defined as C(G) = ZZ,‘:1 d; ijj where d, ; is the geospatial distance
between agents i and j. Next, the convergence time for the multiagent system is another factor that we need to consider.
To this end, let /(&) denote the iteration number of numerical algorithms for the multiagent system to reach the desired
formation under G within allowed numerical error bounds. Now together with the communication/sensing cost, we
introduce the following optimization problem given by

wiC(L,) + wal(Ly)

minimize
C(Ly) I(Ly)

subject to (D) ¢ {jw|? = —1,w € R} (44)

where L, = L92, L, denotes the connectivity matrix for the complete graph topology, I(G.) is the iteration number when
G is a complete graph topology, A(®) denotes the eigenvalues of ®, and wq, wy are two positive weight constants.

Theorem 4.6. The constrained optimization problem (44) can be converted into an unconstrained optimization prob-

lem:

w1C(Ly) N wal(Ly)
C(Ly) I(Ly)

minimize (45)

In the following presentation, we provide some simulation results of binary CSFMCO addressing the optimal
topology design problem induced from Theorem 4.6 for multiagent formation. To begin with, we first verify Theorem
4.5 by considering a group of 5 robots keeping distance “1” with each other. The position topology and velocity
topology are shown in Fig. 25, specifically, the position topology has a spanning tree while the velocity topology
does not. The simulation results are shown in Fig. 26, which is shown that the robots go into the desired formation
underlying the heterogeneous topologies.

In the second part of the simulation, we provide a numerical approach to solve the optimal topology design problem
in Theorem 4.6 by means of the binary CSFMCO algorithm. The distance matrix is given by

0 775 422 329 758
7715 0 444 1046 890
DG, j)=1422 444 0 218 313 (46)
329 1046 218 0 104
758 890 313 104 O
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(a) Position topology (b) Velocity topology

Figure 25: Position and velocity topologies for multiagent formation
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Figure 26: Position and velocity topologies for multiagent formation

By running the four different binary algorithms 30 times, the maximum, minimum, medina and average values are
compared and shown in Table 5. It can be concluded that the CSFMCO algorithm achieves the best solution among all
the other algorithms. The best topology found is shown in Fig. 27 and the trajectories of the distance between agents
and velocity are shown in Fig. 28.

— @

Figure 27: Best topology L9 found by binary CSFMCO

Balanced coordination for damage mitigation and resource allocation in network systems enhances rapid dissemi-
nation of network resources and self-healing of the network, which lead to significant reduction of the threats imposed
by weapons of mass destruction (WMD) attacks. A fix-structured resource allocation problem has been investigated
in [15]. However, network structure plays a significant role when communicating between different nodes to al-
locate the resource, and thus affects the convergence rate for the allocation algorithms. The independent study of
network structure and network parameters cannot give a comprehensive understanding of the resource allocation algo-
rithms. Therefore, to better investigate the relationship between network structure and optimal balanced coordination
algorithms over the network, in this part we formulate the corresponding design problem as an MBNP problem and
numerically solve it by using the mix-CSFMCO algorithm.
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Table 5: Comparison Between BPSO, BMCO, NBPSO and BCSFMCO

BPSO BMCO NBPSO BCSFMCO
Min 3.0850E4 3.1639E4 3.0922E4 2.7893E4
Max 1.0697E7 1.0697E7 1.0697E7 1.0697E7

Average | 4.5029E5 4.5091E5 4.5024E5 4.4860E5

Median | 3.0850E4 3.1639E4 3.0922E4 2.8601E4

......

Distances.
|

s 20 25 30 35 a0 a5 50
Time

(a) Distance d; versus time by the optimal topology (b) Velocities versus time

Figure 28: System trajectory underlying topology LY’

The iterative algorithm design for coordinated resource allocation in network systems is given by

)Ci(k + 1) = aiix,-(k) - Z L(j,i)aji[xi(k) + lel(k)]
j=1j#i
+ Z L paijlxijk) + d;w;(6)],
J=1j#i

i=1,....,n, t=0,1,2,..., x(0)=0, “@7n
or in the vector form,

x(k + 1)

Ex(k) + (E — A)Dw(k)
Ax(k) + (E — A)x(k) + (E — A)Dw(k),

where x(k) = [x,(k),...,x,(0)]",.D = diag[di,...,d,], fori,j = 1,...,n, wk) = [wi(k),...,w,(l)]T € R” denotes
the standard white noise vector, A = diag{aiy,...,a.] € R™",, L represents the (i, ))th element of the Laplacian
matrix L for a certain graph G (not necessarily the same G for MCO) defined by L;; ; = 1if i € Nj, L j, = 0if i ¢ N
and i # j,and L, = 1,

Eop={ %~ Zimmiloodn 1= (48)
; L jaij, L+ ],

a;; is the parameter that we need to design, a;; > 0 and Z;;U « @i < a;. This network system is a stochastic compart-
mental model representing a mass balance equation physically in which x; denotes the mass (and hence a nonnegative
quantity) of the ith subsystem of the compartmental system. Note that due to the time-average mass balance principle,
the maximum amount of expected mass that can be transported cannot exceed the expected mass in a compartment.
Then it follows that a; > Z;;U# a;;, which interprets this time-average constraint in physics. The term x;(k) + dyw;(k)
represents the imperfect information transmission between the ithe subsystem and jth subsystem, resulting from noisy
communication channels between subsystems.

To start with our discussion, we consider the discrete-time linear controlled system with stochastic noise given by

x(k + 1) = Ax(k) + Bu(k) + Dyw(k),
x0)=x, £=0,1,2,..., 49)
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where x(k) = [x1(k), ..., x,(k)] € R" is the system state vector, u(k) = [u1(k),.. ., un(k)] € R™ is the control input, and
w(k) = [wi(k), ..., w,(k)] € R? is the g-dimensional standard Gaussian white noise vector. Here in general x(0) is also
a random variable.

The following definition is needed for our problem formulation. To proceed, let spec(4) denote the set of distinct
eigenvalues for A and C denote the set of complex numbers.

Definition 4.2. Letr A € R™". A is called discrete-time semistable if spec(A) C {s € C : |s} < 1} U {1}, and if
1 € spec(A), then 1 is semisimple, i.e., 1 is semisimple for A if and only if the algebraic multiplicity of 1 equals the
geometric multiplicity of 1 for A [27, p. 322].

The control aim here is to design a state feedback controller given by u(k) = K[x(k) + Dow(k)], such that the
following design criteria are satisfied:

i) The closed-loop system (49) without noise is discrete-time semistable, ie., A = A + BK is discrete-time
semistable.

ii) The performance functional

N
J(K) = lim N—i—TE{ kzz(; [ Gxt) = x00) TRy (x() — o) + (k) — ttoo) Ra(uu(k) — o) |} (50)

is minimized, where Ry = E{E1, R, = EJE,, ETE, = 0, E; € R™", E; € R™™,
Xoo = liMg—o0 E[x(k)], and uo, = Kxo, where E denotes the expectation operator.
i) Xoo = —l—uvTE[x(O)] for some unit vectors u, v € R” satisfying ulv 0.

ulv

Assuming that x(0) is a random Variable_having a covariance matrix V, that is, B[x(0)xT(0)] - E[x(O)]E[xT(0)] = V,
x(0) and w(k) are independent for all k € Z, and 17E = 17, the original optimal algorithm design problem can be
converted into the following equivalent optimization problem.

Theorem 4.7. Consider the coordinated resource allocation algorithm given by (48). Assume that D is invertible and
A = I,. Then solving the minimization problem

min {tr§ (€ ~ )[Ry + (E = 1) Ro(E ~ L))E ~ 1)
S$=8">0,8 = ESE" +(E - 1,)DD'(E - I)"),
rank(E-1)=n—-1, vE=v",Eu= u}

gives an optimal solution satisfying i)-iii), where rank(A) denotes the rank of matrix A.

Next, we penalize the graph structure in the optimization problem (51) and formulate the following mixed-binary
nonlinear programming problem by introducing the communication cost into consideration.

Min;p: J : (51)
Sub: §=8T>0, rank(LoD-1)=n-1, (52)
S=LoDSLoD"
+(LoD-1)DDY (Lo D-I)), (53)
viLoD=v', LoDu=u (54)

where o denote the Hadamard product operation and J = 1t S(Lo D - L) [Ri+ (LoD —I) Ry(LoD-1)(Lo D -
L) + 4,17(L o D)1.

In the first part of J, the network parameters are optimized and in the second part of J, the network structure is
optimized as well. Therefore, the new mixed-binary nonlinear programming problem will provideovel approach < B~
to investigate the interaction between network parameters and network structure simultaneously, and thus, significantly
enhances the effectiveness of the network to handle damage mitigation and resource allocation under WMD attacks.

In the following, the mix-CSFMCO algorithm is used to solve the network design problem given by (51)—(54).

Letn = 10, A = Ijo, D = Ijo, Ry = 8 X Ijpx 104, Ry = 5x 1o x 104 V = 0, 4 = 1, A, = 1000, x(0) =
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Table 6: Comparison Between PSO, MCO, and CSFMCO

Mix-PSO Mix-MCO Mix-CSFMCO
Min 2.8159E4 2.8088E4 2.8004E4
Max 3.1747E4 3.0990E4 3.0988E4
Average 2.9670E4 2.9381E4 2.9388E4
Median 1.0610E4 2.9459E4 2.9404E4

[10, 20, 30,40, 50, 100,200, 300, 400,500]%, v = 0, = 1, and u = —=[1,...,1]" € R, Furthermore, we let E = ET,

V10
Eu = u, and rank(E — I1¢) = 9.
09822 0 00089 O 0 0 00089 O 0 0
0 9911 0 0 0008 O 0 0 0 0
00089 0 09733 0 0 0 0 0.0089 0.0089 0O
0 0 0 09822 0 00089 0 0008 0 0
E — 0 0008 O 0 09822 0O 0 0008 O 0
best = 0 0 0 0008 0 09911 0 0 0 0
0.0080 0 0 0 0 0 09911 0O 0 0
0 0 0.0089 0.0089 0.0089 0 0 09733 0 0
0 0 00089 0 0 0 0 0 0.9822 0.0089
0 0 0 0 0 0 0 0 0.0089 09911
1800 500
——wneso p—
1700 — MiXMCO E 450 X
T - Mixestmco oo =
£ 1500 3so x
fg 1400 5 :: —
2 150 p—
9000 10 20 30‘ . "60 o 50 60 70 80 DO 500 1000 }50[} 2000 2500 3000
(a) Comparison between mix-PSO, mix-MCO, and mix- (b) Velocities versus time

CSFMCO for the network design problem (51)—(54)

Figure 29: State trajectories versus time under the best solution obtained by mix-CSFMCO

4.4 A Speed-Up and Speed-Down Strategy for Swarm Optimization

Particle swarm optimization (PSO), firstly proposed in [53], has been widely used in various disciplines. As a swarm
intelligence based optimization algorithm, a particle in PSO updates its velocity by comparing the difference between
current position and local best position found by itself and the difference between current position and the global best
position among all the particles, and then moves into the next position, after which the local best position and the global
position will be updated simultaneously.

The update formulas for the PSO algorithm are shown in the following equation.

ij ij i b I b
Vin wv, +b1r1(glmi X, )+b2r2(gk xk)

ij ij ij . P
X7, x/+v, i=1,...,q9 j=1...,n (55)

where x;’ and v,” are the jth position and velocity element of particle i at iteration k, respectively, g/ is the jth element
of the global best solution among all the particles and g{oai is the jth element of local best solution found by particle i,
and w, by, by, r| and r; are positive constants.

Due to the great success of PSO, lots of research efforts have been conducted to improve the performance in both
accuracy and efficiency. In this research, observed from the fish swarm behavior [61], a speed-up and speed-down
(SUSD) mechanism is proposed for PSO as an extra force for the velocity towards both local and global best solutions.
Moreover, this SUSD mechanism can be easily integrated into other PSO variants for performance enhancement.
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As an example, multiagent coordination optimization (MCO) [14] is introduced and illustrated by using the SUSD
mechanism.

Based on the observation that a fish in a group speeds up when the light intensity at its current position is relatively
high and slows down as the light intensity decreases [61], a SUSD mechanism is proposed as follows.

SUSD = J(fi(g) - fixDsion(g; - x)

where fi(z) = S, xly= i = 1,...,q, j = 1,...,n, q is the number of particles, n is the dimension of the
objective function f : R” = R, 4; < 01is a constant, sign(x) = 1 if x > 0, sign(x) = —1if x < 0, and sign(0) = 0.

Now this SUSD mechanism is applied to the PSO algorithm, and the update formulas for position and velocity are
proposed in Equations (56-57).

Wy = b, + it -0
+A1(f(gy) ~ fi(x;")sign(g; —x;”) (56)
o= x v, (57

Multiagent coordination optimization (MCO) [14] is a novel swarm optimization algorithm by introducing the
velocity consensus protocol and communication topology between patticles into a PSO-like algorithm. The update
formulas for position and velocity in MCO are shown in Equations (58-60).

o= wv + i Z(x{cl -x)+7 Z +v = vih
JEN; JEN:
k(g - x) (58)
Xit = X+ Vi (59)
B = g +KE, —g) (60)

wherei=1,...,q,1=1,...,n,09 ~ U@,2n), it ~ (0,2u), k ~ (0,2«), n, i,k > 0 are constants, U(-,-) is the uniform
distribution, NV; = {j € V : {i, j} € &)} is the set of neighbors of node i and & C V xV denotes the set of edges, which is
the communication links between two particles, and the set of nodes V = {1,.. ., g} denotes the index of the particles.
Inspired by the SUSD mechanism, the SUSD-MCO algorithm is proposed in Equations (61-63).

i i . il il
Vielr T Wy tp Z(Vk Vi)
JEN;

“ il il veol il
+it Z(X,i —x;) + k(g —x)

JEN;
+1(fi(g) - fixt))sign(g, — x;) (61)
X1 = X F Vi (62)
g = & tKE.—g) (63)

where[=1,--- ;nandi=1,...,q.

For numerical evaluation, 1000 particles are used to solve the 30-dimension benchmark functions in [62]. Specif-
ically, we use the shifted sphere function, rotated Rosenbrock function, and rotated Griewank function to test the pro-
posed SUSD mechanism. The shifted optimal solution is shown as X*, where X*=[ 98.7900 17.0400 25.7800 39.6800
7.4000 68.4100 40.2400 98.2800 40.2200 62.0700 15.4400 38.1300 16.1100 75.8100 87.1100 35.0800 68.5500
29.4100 53.0600 83.2400 59.7500 33.5300 29.9200 45.2600 42.2600 35.9600 55.8300 74.2500 42.4300 42.9400]. 20
executions of both PSO and SUSD-PSO algorithms solving the three benchmark functions have been conducted, and
the results are shown in Table 7. It follows from the simulation results that the SUSD mechanism can largely improve
the accuracy of PSO. Moveover, based on the results in Table 8 , the SUSD-MCO algorithm also improves the accu-
racy of MCO. Due to the page limitation, only the searching trajectories of PSO and SUSD-PSO algorithms solving
the shifted sphere function is provided in Figure 30.
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Table 7: Comparison between PSO and SUSD-PSO

Function Min Max

PSO SUSD-PSO PSO SUSD-PSO
Sphere 1.64E-2  5.9263E-6 2266 7.49E-2
Rosenbrock 2.10E-2 4.5727E-7 8.429E-1 3.1E-3
Griewank 2.0379E2 2.306E-1 2.3292E3 54249
Function Median Average

PSO SUSD-PSO PSO SUSD-PSO
Sphere 2.135E-1 2.1E-3 4.543E-1 1.07E-2
Rosenbrock | 1.0811E-1 1.7272E-4 | 1.597E-1 4.1827E-4
Griewank 8.5715E2 1.2871 1.0002E3 2.1007

Table 8: Comparison between MCO and SUSD-MCO

Function Min Max
MCO SUSD-MCO MCO SUSD-MCO
Sphere 2.739E-1 8.6E-3 7.845E-1 2.56E-2
Rosenbrock 6.5E-3 4.0371E-4 7.32E-2  6.3E-3
Griewank 8.0663E3 9.2577E2 1.4405E4 1.0827E4
Function Median Average
MCO SUSD-MCO MCO SUSD-MCO
Sphere 6.334E-1 1.55E-2 5.857E-1 1A45E-2
Rosenbrock 1.62E-2 23E-3 2.09E-2 2.8E-3
Griewank 1.0690E4  6.8156E3 1.1243E4  8.5082E3

4.5 Multiagent Coordination Optimization Based Model Predictive Control Strategy with
Application to Balanced Resource Allocation

Model predictive control (MPC) [63—65], is a heuristic control strategy to find a consequence of best controllers during
a finite-horizon regarding to certain performance functions of a dynamic system. Due to high efficiency of the strategy,
MPC has been widely applied in various science and engineering disciplines, such as electrical engineering [66—
68], mechanical engineering [69], and chemical engineering [70]. In general, MPC involves two main operations:
estimation and optimization. Specifically, the current states and output of the system will be estimated and governed
by system constraints, and the output states for the following prediction horizon will also be estimated. To move to the
next controller, a constrained optimization problem regarding the system’s performance will be solved, and the next
control input will be calculated. As the iteration goes on, the system output tracks the reference output.

The most common cost function regarding the system performance is the tradeoff function between control input
and convergence rate. To guarantee the stability of the closed-loop system, the terminal state cost functions are also
introduced [71-75] into the cost function, and the asymptotic stability is assured by the standard Lyapunov theory. In
addition, lots of research efforts have been conducted to improve the efficacy, accuracy, and robustness of the MPC

w » = SUSD-PSO
1° — PO

Objective function value
3

iteration index

Figure 30: Test function: Shifted sphere function
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strategy in this case [65, 76-78]. However, due to the distributed nature of information transmission and computa-
tion in network systems, this type of performance functions is not enough to measure the overall performance of the
network system. For instance, the network structure is of vital importance when designing the system performance
cost functions. First of all, the network structure effects the convergence rate of the whole network system. Secondly,
due to the inherent limitation of the physical communication network, the constraints in the network structure hasS to
be considered when designing the MPC strategies. Therefore, a new type of cost functions is proposed in this ‘Work
where the sparsity of the feedback control matrix is taken into consideration. The new MPC strategy will provide a
new perspective for designing real-time optimal controllers. Moreover, the stability analysis is conducted by using
the multiple Lyapunov function method, and the sufficient condition for guaranteeing the asymptotic stability of the
closed-loop system is derived.

To solve the various forms of the cost functions, a general, computationally efficient and accurate optimization
algorithm to handle non-convex or even mixed-integer nonlinear programming problems is highly needed. The vast
majority of the optimizers developed in the literature uses the gradient based techniques and most of them can only
address convex cost functions. Thus, they cannot be used for solving non-convex, nonlinear, mixed-integer com-
plex optimization problems in real time. However, a recent advance in combining swarm intelligence and control of
multiagent networks together gives a hope for solving such problems in real time. In particular, multiagent coordina-
tion optimization (MCO) [14] is a new heuristic, fast optimization algorithm inspired by particle swarm optimization
(PSO) [79] and consensus protocols for multiagent coordination in [19,32,34]. Since the MCO algorithm requires only
elementary mathematical operation and is computationally efficient in terms of both memory requirements and speed,
it solves many nonlinear optimization problems quite efficiently [80]. Another promising advantage of the MCO algo-
rithm is that the parallel techniques can be easily implemented for MCO to shorten the operation time in the hardware
level [15]. Moreover, with the recently developed results on the MCQ algorithm, different types of optimization prob-
lems can be efficiently solved by using the different types of the MCO optimizers, such as constrained MCO optimizer,
binary MCO optimizer [81], and mixed-binary MCO optimizer [80]. Therefore, in this work, we will propose an MCO
based MPC strategy to handle non-convex, large-scale nonlinear cost functions regarding the system performance in a
time-efficient way.

As an application, balanced coordination for damage mitigation and resource allocation in network systems is con-
sidered in this work [15]. LQR based design approaches to address those problems have been extensively studied for
both fixed-structure and dynamic-structure cases by converting the original design problem into a non-convex con-
strained optimization problem via semistability tools [57]. Since the process of resource allocation is highly dependent
on the scenarios for different time intervals. For instance, the attacked network communication links may be different
at different time intervals, or the control input may be limited in certain periods due to the overall control budget.
Therefore, how to design a sequence of structure-based controllers to provide the best resource allocation algorithm for
different scenarios in different time intervals is very challenging. In this work, the MCO based MPC strategy provides
this heuristic design approach to address both time-dependent or scenario-dependent controller design problems.

MPC [63-65] is to hold the system output at a reference value by adjusting the control signal during a finite-horizon
meanwhile keeping the value of the performance function as low as possible. The block diagram of the MPC is shown
in Fig. 31, where x,.¢, u, w, y, and ¥ are the reference, control, measurement noise, measured output, and the true value
of the output, respectively. MPC involves two main operations: estimation and optimization. More specifically, the
current states and output of the system at time ¢ will be estimated and governed by system constraints, and the output

states for the following prediction horizon p are estimated: ¢t = {kp,kp+ 1,--- ,kp + p— 1}, where k = 0,1,--- , is
the kth optimization algorithm execution index for the MPC strategy. To move to the next controller, a constrained
optimization problem regarding the system’s performance will be solved, and the sequence of inputs iy, - - -, uy will
be calculated, where kp < M < kp + p — 1. The optimization problem for MPC is formulated as below.
kp+p-1
min : Z *T(H)Ox(t) + uT (HRu(t) (64)
t=kp
st.: Ci(u(t) < U (65)
Cox() < 8° (66)
x(t + 1) = Ax(¢) + Bu(r) + w(t) 67)

where Q and R are positive definite matrices, C; and C, are the constraint functions for control input and states with
the boundary U? and §?, A is the system dynamics matrix, B is the gain matrix for the control input, and w(-) denotes
the exogenous disturbance.
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Figure 31: MPC strategy

In this work, undirected and/or directed graphs are used to represent a topology of communication networks.
Specifically, let G = (V, &) be a directed graph (or digraph) denoting the communication network with the set of nodes
(or vertices) V = {1,...,q} involving a finite nonempty set denoting the agents, and the set of edges & € V x V
involving a set of ordered pairs (i, j) denoting the direction of communication. A graph or undirected graph G is a
directed graph for which the set of edges is symmetric. For graphs, we use unordered pairs {i, j} for edges. The set of
neighbors of node i is thus defined by N; = {j € V : {i, j} € E}.

Based on a synthetic composition of swarm intelligence [17] which simulates the bio-inspired behavior, and co-
operative control of multiple agents [18, 32-34], a powerful, fast-convergence optimization solver called multiagent
coordination optimization (MCO) [14-16] has been proposed. MCO starts with a set of random solutions for agents
that can communicate with each other. The agents then move through the solution space based on the evaluation of
their cost and neighbor-to-neighbor rules inspired by multiagent consensus protocols [18,19,32-34]. As the algorithm
progresses, the agents will accelerate towards individuals with better cost values. The detail description of the MCO
algorithm which minimizes a cost function f(x) is shown in Algorithm 3.

Algorithm 3 The MCO Algorithm
for each agenti=1,...,qdo
Initialize the agent’s position with a uniformly distributed random vector: x; ~ U(x,X), where x and X are the
lower and upper boundaries of the search space;
Initialize the agent’s velocity: v; ~ U(v,V), where v and V are the lower and upper boundaries of the search speed;
Update the agent’s best known position to its initial position: p; « x;;
If f(pi) < f(p) update the multiagent network’s best known position: p < p;.
end for
repeat
ke—k+1;
for eachagenti=1,...,q9do
Choose random parameters: 77 ~ U(0, 2n), it ~ U(0,2u), k ~ U(0,2«), 17,11,k > 0;
Update the agent’s velocity: v; « v; + 7 2en (Vi = v + 1 Y jen (X — x;) + K(p — x1);
Update the agent’s position: x; « x; + v;;
for f(x)) < f(p:) do
Update the agent’s best known position: p; « x;;
Update the multiagent network’s best known position: p < p + k(p; = p);
If f(p:) < f(p) update the multiagent network’s best known position: p « p;;
end for
end for
until & is large enough or the value of f has small change
return p

Besides the continuous MCO algorithm, the binary MCO algorithm can also be developed. Similar to the contin-
uous MCO algorithm, the binary MCO algorithm uses the same update formula for velocity, but takes the following
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formula for the position {81].

X e 1 if Fij <' 51g(v,»,j) (68)
0 otherwise
where
sig(x) = (69)

1+e>

is the Logistic function and 7, ; is random number in (0, 1).

Here we present a theoretic result on mean-value convergence of the iterative process described in Algorithm 3.
In particular, we view the MCO algorithm as a switched linear system and then give some sufficient conditions for its
mean-value convergence. To begin with, we define the following notation.

Definition 4.3. Define a series of matrices AU ], AV B,Ej ], and BY as (70),

o [FRIKL - KK, Ly = HIKIL KK g C[HL =Ky Ig =1L &lga
AP =\ gL - ik, AL KK pa|, AP =|-uL-«l;  -nL g, (70)
KKIEL,, Orng K[k, KES,, Onsng  —xI,
j j O2ngxn O2ngn, 02ngxn i i Ozngsen D2ngsn O2ngn .
Bl[c]] - AI[(J] + (1—,22[131)2513",, 0,;(": —a 3;[](])1" ] and BU1 = AUl +[ (1—555112"4 ;"i"qq —(12—q,<)1,, ] respectively, where

i=1...,¢k=0,12,.., 41~ U2, 7]~ UQ,2n), k[-] ~ U0, 2x), u, 7,k > 0, Opx, denotes the m X n zero
matrix, 1y, denotes the m X n matrix whose entries are all ones, L denotes the Laplacian matrix of certain graph
topology G, and E,[,Q,,q € R™™ denotes a block-matrix whose jth block-column is I, and the rest block-elements are all
zero matrices.

Next, consider the following discrete-time switched linear model to describe the iterative process in Algorithm 3:

xi[k +1] = xi[k] + V,‘[k +1], x,»[O] = X0, (71)
vilk + 1= vik] + k] D (v,K] = vlk])
JEN;
+ iK1 D eyl = %KD
JEN;:

+ KIEPIK = x0kD, {01 = vio, (72)
ple+11=plkl, plkI ¢ Z,, plO] = po, (73)
plk+11=xlkl, plkle Z,, k=0,1,2,..., (74)

wherei=1,...,q, x; € R", v; e R", p e R a[-]1 ~ U(0,2p), f[-1 ~ UO,2n), k[-] ~ U0, 2«), u,n,k > 0, Z, = {p €
R": f(x)) < f(p)), and x; = arg mini<i<, f(x;). Let Z[k] = [x][K],..., X} [KL, V] [K],..., vi k], p" k1" € R2"4+™.
Note that (71)—(74) can be rewritten as the compact form

Zlk + 11 = (Iongen + AYNZIKL,  Z[K1 ¢ S, (75)
Zlk + 1] = (bangen + BYHZIK),  Z[Kl € S, (76)

where ji € {1,...,q) is selected based on Z, and S is defined in terms of Z,. An important property of MCO in
Algorithm 3 is that it always generates a monotonically decreasing sequence {f(p[k])};2,, i.., f(plk + 1] < f(p[kD
forevery k=0,1,2,....

Definition 4.4. The iterative process (71)—(74) is called convergent in the mean if limyg_,., B[Z[k]] exists for every
Z[0] € R¥™*" where B[-] denotes the expectation operator.

Now we have the main result for the mean-value convergence of the iterative process described in Algorithm 3.
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Cost function

Figure 32: MCO based MPC strategy

Table 9: Comparison between MCO and PSO

MPC p=1 p=5
PSO-based MPC | 2.2202E4 | 2.0482E5
MCO-based MPC | 1.7857E4 | 1.4628E5

Theorem 4.8. Consider the iterative process (71)—~(74). Let h; = min{ - ﬁ]f P A€ [~k -k VK2 -k -5+

Nk -4 e C v;j—;ﬁj—:z € spec(—L)\{0}}} and h} = min{ - o de (-5 3V -4, h € C
A+kA e s : .
V—-——M‘:; ;l*fﬂ € spec(—=D\{0}, 3 + (1 + A2 + ks + &k = 0}}. I min{hl, B} > 1, [1ongan + AV < 1, 2ngen + BY < 1,

ker((AVYTADT 4 (AUNT 1 AU = ker((AVH)TAUL + (AUN?), and ker(BUNYTBU + (BT 4 BUTY = ker((BUNYT B! + (BU1)?)
forevery j = 1,...,q, where ket(A) denotes the kernel of A, then the iterative process (71)-(74) is convergent in the
mean. Furthermore, limy_o E[x;[k]] = p', limg_eo E[vi[k]] = 0ux1, and limy_,., E[plk]] = p' for every x5 € R",
vio €RY, pg €R", and everyi=1,...,q, where p' e R".

Although Theorem 4.8 focuses on unconstrained optimization problems, it also holds for constrained optimization
problems by assuming that Z[] is in the feasible region.

In this part, we propose the MCO based MPC strategy for dynamical systems. Here the MCO algorithm is used
as an optimization solver to handle large-scale complex performance functions regarding the dynamical system. The
flow diagram is shown in Fig. 32. In this strategy, the MCO algorithm is equipped as the optimization solver to solve
the non-convex nonlinear optimization problem regarding the system’s performance. First of all, we will numerically
illustrate the proposed MCO based MPC strategy for a particular system. The system we consider here is given by

y(k + 1) = —0.3y(k) + 0.5 sin(0.6u(k))u(k) a7

with the cost function

J =

b2

P
NG+ 1) = y(n + DY + ra(u(n))y® (78)

=1

where () is the reference output, and r; and r, are positive constants.

Both PSO and MCO based MPC strategies are compared to solve this unconstrained MPC problem and the results
are shown in Fig. 33 and Fig. 34 with different prediction horizons. In particular, the green line is the reference output
for the system, and the red line is the output for the system under the MCO based MPC strategy while the blue line is
the output for the system under the PSO based MPC strategy. Moreover, the overall values of the cost functions for all
iterations are added and compared in Table 9. It can be concluded that the MCO based MPC strategy shows a better
performance with lower transient oscillation than the PSO based MPC strategy.

To guarantee the stability of the proposed MCO based MPC algorithm, the terminal cost is also added into the
system performance function shown in (79) {72]. The system we consider here is x(¢ + 1) = Ax(f) + Bu(f) + w(f), where
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Figure 33: The case when prediction horizon is 2
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Figure 34: The case when prediction horizon is 5
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x € R" is the state variable, ¥ € R™ is the control input, @ € R" is the exogenous disturbance, and 7 = 0,1,2,.... It
is assumed that (A, B) is stabilizable and the origin is the equilibrium point, if the equilibrium point x, # 0, one can
always shift the origin of the system to x,.

t+p-1
min : Z xT()Qx() + uT ()HRu(i)

i=t

+ xT(t + p)Px(t + p) )

st.: Ciu()) < Ub (80)
Ca(x(i)) < §* (81)

Cs(x(t + p)) < X° (82)

x(i + 1) = Ax(i) + Bu(i) + w(i) (33)

where xT(t + P)Px(t + p) is the terminal cost function with terminal state constraint C3(x(f + p)) and the boundary X?.
Definition 4.5. Consider the MCO based MPC algorithm. This algorithm is called averagely semistable if
i) the closed-loop system (83) is Lyapunov stable;

ii) the iterative process (71)—(74) of MCO 1o solve the corresponding optimization problem in MPC is convergent
in the mean.

Theorem 4.9. Consider the MCO based MPC algorithm with the input form u(t) = ~K()x(¢), where K : {0,1,2,...} —
R™". Assume that the initial state of the system is a feasible solution to the problem (79) at t = 0. Furthermore, assume
that the conditions in Theorem 4.8 hold for (79). If there exist an optimal solution of the finite horizon optimal control
problem and a positive definite matrix P = PT satisfying (A — BK(1))"P(A — BK(Y)) < P for everyt = 0,1,2,.. ., then
the MCO based MPC algorithm is averagely semistable.

Due to the wide applications of the networked system, for instance, power system and sensor network system, the
communication topology is of vital importance, therefore, network structure is becoming a main concern regarding to
the networked system performance. In the following, we propose a network structure based performance function to
handle the interaction between network structure and network parameters.

kp+p—1
min:  J(Ky) = ,,Z,,] xT(OQx(t) + u" (Ru(r)
t=kp
+x"(kp + p)Pex(kp + p) + F(Ki) (84)
st.: Ciu(®) < Ub (85)
Co(x(0)) < §° ' (86)
Cs(x(kp + p)) < X° (87)
Cy(F(Ky) < F” (88)
x(t + 1) = Ax(t) + Bu(t) + w(?) (89)
u(t) = —Kix(1), (90)
Yteelkp,kp+1,--- kp+p—1} . 2y

where Kj is the state feedback gain matrix at the kth optimization algorithm execution index in MPC for Vr € {kp, kp +
L,--- ,kp + p — 1} and K; satisfies (A — BKy)T P(A — BKy) — Py < —(Q + K[ RK;) for some positive definite matrix
P, = PZ, and F : R” — [0, o) is a function of the sparsity pattern for feedback matrix K, such that F(K) = ¥, ; |[K(, j)|
and K; ; denotes the (i, j)the entry of matrix K, and Cy is the constraint function for F with the boundary F b,

Theorem 4.10. Assume that the initial state of the system (89) is a feasible solution of the problem (84) att = 0 and
w = 0. If there exists an optimal solution of the finite horizon optimal control problem (84) and Py > Py 2 Py > -+- 2
Py forevery k = 0,1,2,. .., where Py is the terminal penalty matrix at the kth optimization algorithm execution index
in MPC, then limy_,c X(2) = 0,x1 when w(t) = 0,y;.
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Figure 35: Topology in first scenario

Balanced coordination for damage mitigation and resource allocation in network systems enhances rapid dissemi-
nation of network resources and self-healing of the network, which leads to significant reduction of the threats imposed
by malicious attacks. LQR based design approaches to address those problems have been extensively studied for both
fixed-structure and dynamic-structure cases by converting the original design problem into a non-convex constrained

optimization problem via semistability tools [57]. Since the process of resource allocation is highly dependent on sce- —~

narios for different time intervals. For instance, the attacked network communication links may be different at different
time intervals, or the control input may be limited in certain periods due to the overall control budget. Therefore, how to
design a sequence of structure-based controllers to provide the best resource allocation algorithm for different scenarios
in different time intervals is highly challenging. However, the LQR based approaches cannot handle this design prob-
lem directly. Fortunately, the MPC strategy can provide a heuristic design approach to address both time-dependent
or scenario-dependent controller design problems. Thus, in this part, we will illustrate how to use our proposed MCO
based MPC strategy to address this complex design problem regarding different time intervals or scenarios.

The iterative algorithm design for coordinated resource allocation in network systems is given by the equation
(47) or in the vector form, (48), where x(k) = [xi(k),...,x,(k)]".D = diag[d,...,d,], fori,j = 1,...,n, w(k) =

[wik), ..., w,(K)]T € R" denotes the standard white noise vector, L j represents the (i, j)th element of the Laplacian
matrix L and A = diag [ay, ..., ] € R,
Ej = { i = iy i Lo i=J ©2)
i L jaij, LF ]

a;; is the parameter that we need to design, a;; > 0 and Z;’:uﬂ- a;i < aj.
Let A = A and B = I 'in (89), and w(?) = (E — A)Dw(r) where I denotes the identity matrix. The MCO based MPC

strategy for network balanced resource allocation for Vr € {kp,kp + 1,--- ,kp + p — 1} can be formulated as follows.
kp+p-1
min: 3 () = x)T Q) ~ x) +u" (ORu()
t=kp
+x"(kp + p)Px(kp + p)
st.: Ciu(t) < U (93)
Co(x(n)) < §* (94)
C3(x(kp + p)) < X° (95)
x(t +1) = Ax(t) + (E — A)x(t) + (E — A)Dw(t) (96)
Xeo = %uvTE[x(O)] ©nN
ulv

where u, v € R” are unite vectors and ulv # 0.

In the first scenario, we consider a five-node network system with u = v = 1 € R?, and the network topology is
shown in Fig. 35. The topological link for the system is destroyed at time 7 = 2, and the topological link is recovered
attime 7 = 15. R = Q = I x 10*. The MCO based MPC strategy in this scenario is shown in Fig. 36.

In the second scenario, we consider the case with a dynamic structure for the controllers. Specifically, we penalize
the network structure in the cost function, shown in (98). Let A = A and B = I in (89), w(t) = (E; — A)Dw(?), and
E; — A is the feedback matrix for V¢ € {kp,kp + 1,--- ,kp + p — 1} at the kth optimization algorithm execution index
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Figure 37: The first case in scenario 2

in MPC. Hence, the optimization problem becomes a new type optimization problem called “mixed binary nonlinear
optimization” (MBNO) problem. Since the most MPC strategies are developed to address quadratic optimization
problems, they fail to apply in this case. However, based on the recently developed results on the MCO-based MBNO
solver [80], the MCO based MPC can provide an efficient way to handle this scenario.

kp+p-1
min : ,,Z,,: (x(2) = Xeo) " Q(x(1) — Xoo) + uT (DRu(0)
t=kp

+ xV(kp + p)Pex(kp + p) + Fo(Ex — A) (98)
st.: Ciu@) <U” 99)
Cy(x(t)) < 8§ (100)
Ca(xtkp + p) < X | (101)
Cu(F((Ex - M) < F* (102)
x(t+ 1) = Ax(D) + (Ex — M)x(t) + (Ex — A)Dw(?) (103)
Xeo = u—i;uvTE[x(O)] (104)
Vtelkp,kp+1,.--- Jkp+p—1} \ (105)

where u™v # 0. The first case we consider here is F, = 0, which means there is no constraint for the network structure.
By using the MCO based MPC strategy, the system output is shown in Fig. 37. Throughout the control process, the
topology for the network is always a fully connected topology shown in Fig. 38.

The second case we consider here is to assess the impact of the topology by letting Fy(K) = 3; ; [sign(K; )|, which
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Figure 38: Topology for case 1 fort =1,2,---,25.
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Figure 39: The second case in scenario 2

stands for the constraint for the conjunction links, where sign is the sign function and K;; denotes the (i, j)th entry
for matrix K. By using the MCO based MPC strategy, the system output is shown in Fig. 39. Throughout the control
process, the topology for the network is always changing. We pick the topologies at # = 1, f = 50, and ¢ = 90 as an
example, which are shown in Fig. 40. When ¢ = 50, the topology is a fully connected topology which means that the
convergence rate of the dynamic system is of high priority compared with the network structure constraint, and when
the time goes to 90, the network structure constraint playsAmore significant role than the convergence rate.

o
4.6 Power System Vulnerability Analysis Using High Performance Swarm Computing

For the last several months we have been developing code to address the network vulnerability problem related to
electrical power networks. To identify small groups of lines, whose removal would cause a server blackout, is an
important issue for secure operation of the electric power grid. Therefore, an MBNLP problem is formulated in [82]
by optimizing the total volume of load shed varying from line-cut variables and the phase angle variables. A lossless
power system network with m bus and » lines is considered, and the voltages at the buses are assumed to be fixed and
the dependence of real power injection at buses on the phase angle variables can be fully described by active power
constraints. The power system model is developed as ATBsin(46) — P = 0, where P is a vector of power injections,
A is the node-arc incidence matrix of the topology of the power system, B is a diagonal matrix whose diagonal entries
correspond to line admittances, 6 is a vector of phase angle variables, and sin(A6) denotes a vector whose ith component
is sin((A8),). To further study the changes in the topology, a binary-valued line parameter v;, is introduced to indicate
whether the ith line is in service, specifically, y; = 1 if the line is out of service and y; = 0 if the line is in service.
Matrix I is defined as a diagonal matrix whose diagonal entries corresponding to (1 —y;), so the power flow model can
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Figure 40: Topologies at different time in the second case

be rewritten as ATBI sin(A6) ~ P = 0. Hence, the optimal load shedding strategy is formulated in [82] as

mingyz - eTZg
st.  ATBI'sin(A6) — (P+Z) =0,
Pl <P +7 <0,
0=<P+78 < P,
T T
-—— <A< =
2" 2

(106)
(107)
(108)
(109)
(110)

where e denotes a column vector whose elements are all ones, P# denotes power injections in generations, P' denotes
power injections in loads, Z# denotes changes in generations, Z' denotes changes in loads, P = [(P#)", (P)T]", and

Z= @), @

Next, the power network vulnerability analysis problem is formulated as a bilevel mixed-binary nonlinear opti-
mization problem [82], where in the outer level we look for the critical lines, which corresponds to the combinatorial
part of the problem, and in the inner level we measure the blackout severity by solving the load shedding problem,
which corresponds to the nonlinear part of the problem. To formally state this problem, let £LS(A, B, T, 6, P) denote an
instance of the load shedding problem in (106)—(110), and let arg min £S(A, B, T, 6, P)-denote an optimal solution to

this problem. Then the power system vulnerability problem can be defined as follows.

mingyz"y - eTy
st Z=argminLS(A,B,T,6,P),
/N

vi€{0,1} for i=1,2,---,m

where S > 0 is a specified severity.
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‘We have coded this problem as a penalized optimization problem with the first four bullets used as the penalty term.
We have been experimenting with a relaxation of the problem with the integer constraints being relaxed to 0 < y; < 1.
While we have limited experience with this problem we have found that optimal solutions that we have computed are
nearly integer. Many times they can be rounded to integer solutions. Our optimization code is based on the particle
swarm algorithm. We have been able to solve problems with roughly 30 nodes and 50 edges. We have developed an
openMP version of the code (in C), which yields nearly linear scaling (Table 10).

Table 10: Shown is a small parallel speed up test using 1000 particles. The number of iterations is the rows and the
thread counts are the columns. The results are in seconds.

iterations/threads 1 4 8 12 16
100 3.957 1.192 | 0.706 | 0.549 | 2.025
500 19.647 | 5757 | 3.358 | 2.586 | 1.733
1000 39277 | 11.532 | 6.61 | 5.049 | 3.703

In addition we are working with graphical software that will show the connection graph and we expect to be able
to annotate this graph based on optimization results (Figure 41). Furthermore, we have solved the power system
vulnerability problem with 39 nodes and are currently tuning our code for even larger problems. We have developed an
openMP version of the code (in C) and used some graphical software to illustrate our result in Figure 42. The HPCC at
TTU has installed several nodes with dual Xeon Phi. We have experimented with porting our code to this environment.

Finally, all the relevant algorithms developed above have been converted into pseudo code or C code in our devel-
oped software package to DTRA. The prototype of this software package has been tested for a preliminary version.

S Accomplishments for Year 2 (07/01/2014-08/29/2015)

The following research accomplishments were achieved over the second year duration of this project.

5.1 ¢ Constrained CCPSO with Different Improvement Detection Techniques for Large-
Scale Constrained Optimization

Nature-inspired meta-huristics such as evolutionary algorithms and swarm intelligence algorithms have been shown
to be effective optimization techniques [83, 84], especially for complicated problems such as nonconvex nonlinear
optimizations with an unknown objective function.

In recent years, there have been many studies on nature-inspired algorithms for large-scale (e.g., 100-1000D)
unconstrained optimization [85-90], e.g., the MLCC method [90], CCPSO2 algorithm [88], and methods based on
variable interactions [85, 89]. There has been also a lot of attention on algorithms for constrained optimization at
smaller scale (e.g., 10-30D) [91-93]. However, large-scale constrained optimization using nature-inspired algorithms
is still a new and under-explored area, and to the best of the authors’ knowledge, by far there is no nature-inspired
algorithm known to be capable of solving general large-scale real-valued constrained optimization problems. Clearly,
for solving general large-scale constrained optimization problems, we need to face both the difficulties in searching
the minimum of the large-dimensional objective function and in locating the feasible region defined by the large-
dimensional constraint functions. Many practical applications, however, require such optimization techniques. In
power grid systems, identifying highly important lines are crucial for system security, and such vulnerability analysis
usually involves solving optimization problems of a large number of variables [94]. For example, the IEEE Three-Area
RTS-96 system has a total of 73 buses and 185 transmission lines, and the IEEE 118-bus system has a total of 185 lines
and 19 generation buses [94,95].

Here we combine an algorithm in large-scale unconstrained optimization area, i.e., CCPSO2, with an effective
constrained optimization technique, i.e., the & constrained method, and propose a new framework, i.e., €CCPSO, for
solving large-scale constrained optimization problems. On one hand, CCPSO?2 is a cooperative coevolutionary particle
swarm optimization (CCPSO) algorithm using a random grouping technique, based on the cooperative coevolution
(CC) strategy [96,97], and has shown promising solution capability for large-scale unconstrained optimization. On
the other hand, in [91] for 10-30D constrained optimization, the £ constrained method is adopted by a differential
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Figure 41: A connection graph topology created from a 30 bus power system. The line from 5 to 2 has been cut and is
marked in red.
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Figure 42: A connection graph topology created from a 39 bus power system. The lines that have been cut are marked
in red.
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evolutionary (DE) algorithm, i.e., éeDEag, which shows competitive results in the CEC’10 constrained real-parameter
optimization competition [98,99]. Experimental results in later sections will show that our proposed algorithms com-
pare favorably against the eDEag algorithm on large-scale constrained optimization problems.

In summary, the contributions of this report are listed as follows.

1. This report is, to the best of the authors’ knowledge, the first published work on large-scale constrained optimiza-
tion using nature-inspired algorithms (e.g., evolutionary algorithms and PSO) examined with a comprehensive
benchmark problem set.

2. A hybridized optimization algorithm framework, i.e., e€CCPSO, is proposed for large-scale constrained optimiza-
tion, by combining the CCPSO2 algorithm and & constrained method.

3. Three different algorithms based on the £CCPSO framework are proposed for large-scale constrained optimiza-
tion, i.e., eCCPSOd with e-criteria based improvement detection, eCCPSOw with fixed-size improvement de-
tection window, and eCCPSOw?2 with adaptive improvement detection window.

4. Eleven benchmark problems proposed for the CEC’ 10 special session on constrained real-parameter optimiza-
tion (i.e., CEC’10CRPO) are extended from a maximum of 30D to a maximum of 1000D for our computer
experiments.

5. A comprehensive study is carried out comparing the proposed algorithms with the state-of-the-art constrained
optimization algorithm sDEag on the eleven large-scale benchmark problems, with an emphasis on eCCPSOw2
among the other three €CCPSO algorithms.

Many industrial applications are essentially constrained optimization problems, with the physical or environmental
constraints formulated as equality or inequality relationships. For example, the balanced coordinated resource alloca-
tion design of a network system [100], the vulnerability analysis of power grids [94], and the optimization of cascading
failure protection in complex networks [101] can all be formulated as constrained nonlinear optimization problems.
Moreover, the above mentioned applications are all potentially large-scale problems, since a network can have a large
number of nodes. ‘

Generally, a constrained optimization problem can be expressed in the following formulation, i.e.,

minimize:  f(x),
subjectto: g(x)<0,i=1,...M,
hix)=0, j=1,...M,

< <™ k=1,...,D,

(111)

where X = (x1, X3,...,xp) € RP is a D dimensional vector, and f(x) : R — Ris called an objective function. The
problem has M, inequality constraints g;(x) < 0 and M), equality constraints /;(x) = 0. Each element x; € R of the
vector X is also called a variable, and has a lower bound x™ and an upper bound x}"**. Usually the equality constraints
are relaxed into inequality constraints of the form

hi(-) = |hj(Ol = hs < 0,

where the tolerance level s specifies how much the equality constraints are relaxed.

To solve large-scale constrained optimization problems, our eCCPSO framework combines a cooperative coevolu-
tionary PSO algorithm [88] with the & constrained method [91]. The update law of a classical PSO algorithm is given
as follows,

via(t + 1) = wvig(®) + c1 'O (OPial) — x1a(O)+

c2rs ((ga(®) = xia(D), (112)
Xig(t + 1) = x;0(t) + vig(t + 1),

where x; 4, vig and p;4 denotes the dth dimension of the position x;, velocity v; and personal best p; of particle £,
respectively; and g, denotes the dth dimension of the global best g of the swarm. The parameters w, ¢y and ¢, are
called inertia weight, cognitive attraction and social attraction, respectively. Besides, ri’) and r;') are random variables
independently and uniformly sampled from [0, 1] for particle { in each iteration. In the terminology for many nature-

inspired algorithms, an iteration ¢ as in (112) is also called a generation.
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The idea of cooperative coevolution is to partition the dimensions/variables space into certain groups and evolve the
current group’s variables using the best solutions found in the other groups [96,97]. To maximize the performance of
CC algorithms, correlated variables should be partitioned into the same group, and uncorrelated variables into different
groups. To this end, different grouping strategies have been proposed and investigated [85, 86, 88-90]. For example,
in multilevel cooperative coevolution (MLCC) [90], in each generation a group size s is probabilistically chosen from
a set § according to the recorded performance of each group size in S, then the variables are divided into K = n/s
groups. In CCPSO2 [88], this procedure is simplified by choosing a new group size s uniformly at random from
S only if there is no improvement to the global best g in the last generation. Competitive results have shown the
effectiveness of CCPSO2 for large-scale unconstrained continuous optimization. Instead of using the classical update
law (112), Ref. [88] shows that a Cauchy and Gaussian-based update law with ring topology works better with the
random grouping cooperative coevolutionary PSO. The update law is shown as follows,

Pia(®) + CiIpia(t) — Lig(®)l, ifrand < o,

. (113)
Lia(®) + Ni@®\pia(D) — Lia(®)], otherwise,

x,;d(t + 1) = {

where C; and N; are random variables following the standard Cauchy distribution and the standard Gaussian distribution
for particle i, independently sampled at each generation ¢. Besides, [; 4 is the dth dimension of the neighborhood’s best
I; of particle i. The probability of choosing Cauchy update is specified by a user-defined parameter o~ € [0, 1], and the
probability of choosing the Gaussian update is 1 — o-. ‘

There are many constraints handling methods for nature-inspired-algorithms, as introduced in [93]. Some of the
common ones include penalty method, stochastic ranking, e-constrained method, multi-objective approaches, ensem-
ble of constraints-handling techniques, etc. In this report, the e-constrained method [92] is chosen to be the constraints
handling component of our algorithm, mainly because of its simplicity and competitive performance, as already demon-
strated in many works [91, 92, 102, 103]. Besides, in the CEC’10 competition & special session on constrained real-
parameter optimization, an e-constrained differential evolution algorithm with an archive and gradient-based mutation
(eDEa) demonstrated highly competitive results [91], and was the winner of the competition.

In the e-constrained method, for any £ > 0, the & level comparison <. between two pairs of particles’ objective
values and constraints violations (fi, ¢1) and (5, @) is defined as follows,

N<f,ifd,92<¢
(1,8 <c (o, ) = fi < fo, if 1 = ;5

¢1 < ¢, otherwise,

where the constraints violation can be calculated in various ways. Here we use the following constraint violation
function
3124 (max{0, g(OD? + T4, (maxt0, 7 )))2,
#(x) = if xp € [, 20, k=1,...,D,
oo, otherwise,

where the inequality constraint & () = |hj()] — ks < 0 is a relaxation for the equality constraint 4;(-) with tolerance h;.

The definition of the & level comparison <, allows transforming a constrained optimization problem into an un-
constrained problem. In case of ¢ = oo, <, is equivalent to the comparison < of objective function values. In case
of &€ = 0, <, is equivalent to the lexicographic order comparison where constraint violation precedes objective func-
tion values. Furthermore, it can be proved that for a certain £ value, the order of the particles is well-defined, i.e., if
(f1,91) <c (o, ¢2) and (f2, ¢2) <. (f3,¢3), then (f1, d1) <¢ (f3, ¢3). More properties of the ¢ level comparison can be
found in [91,92].

Next, we introduce the eCCPSO framework and the novel ¢ level control method in this framework. Furthermore,
for different new group size selection methods, three different algorithms based on the eCCPSO framework are pro-
posed. As in CCPSO2, the dimensions of the solutions are divided into K groups, with each having size s (d = Ks).
Here, the jth group part of the dimensions of a vector z is denoted as z.d;, j € [1...K], and b(j, z) returns the
vector (g.di,g.ds,...,8d;.1,2,8d,,,...,8dk). In eCCPSO, the comparisons between objective function values in
CCPSO2 are replaced by the e-comparisons between the pairs of objective function values and constraints violations.
Furthermore, using e-comparison, the notion of &-minimizations, i.e., min, and arg min,, can be introduced. For ex-
ample, min.[f(2;), #(z;)] denotes the minimal pair [f(z}), #(z;)] by the criteria of e-comparison. Let N{(i) denote the
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neighborhood particles of particle i. Since we use a ring topology, we have N(1) = {n, 1,2}, N(rn) = {n — 1,n,1} and
NG ={i—1,i,i+1})fori=2,...n—1. Furthermore, for the clarity of representation, let us define P(x) = [f(X), ¢(x)]
as the pair of objective value and constraints violation corresponding to solution x. Thus,

" = arg min, | f(z»), ¢(z;)] = arg min, P(z;)
FeN(@) eN()
denotes the neighborhood best of particle z; by means of e-comparison.

In an algorithm utilizing the & constrained method, the £ level needs to be controlled such that it gradually reduces
from a large value (corresponding to large tolerance of constraints violations) to zero (corresponding to zero tolerance
of constraints violations). Here, based on the £ level control method used in [91], we adopt a modified version for
large-scale constrained optimization, which is shown as follows,

N
0= [% 3% @)+ min ¢(x,~<0)>]

1,...N
&) = {8(0) (1-£)" 7
0,

s’ =

min log&,—log £(0) -
Cp(f)z m?lX{Cp ’ m}’ OSIST/I,
Cpmln — kcp(TC - f), i>Ty,
Cp TC — T/l

where 7 is the current fitness evaluations, i.e., FES, and the initial £ level £(0) is chosen to be the middle of the best value
and average value of initial constraints violations of the particles. Besides, 7. = 0.95Max_FES is the fitness evaluations
when ¢ is decreased to zero, i.e., &(T;) = 0, where Max_FES is the maximum number of fitness evaluations, and T,
is the fitness evaluations when the ¢ level is decreased to &, i.e., £; = &(T3). The control parameter ¢;, is set fixed for
0 <7< Ty, and is gradually reduced to its specified minimum value cg‘i“ when 7 > T, with ¢, (T;) = 0.

In unconstrained CCPSO2, a new group size s is selected from S if the global best has not been improved in the last
generation. Note that since in unconstrained optimization, the global best can only be changed to improve the objective
function, we can consider any update of the global best as an improvement. However, when combining CCPSO2 with
the £ constrained method, a problem of detecting the improvements arises. In sCCPSO for constrained optimization,
new global best solution can also be chosen for the improvement of constraints violations.

Now we consider several different ways of determining whether the global best has been improved or not in the
last generation. First, let eCCPSOd be the eCCPSO algorithm that detects the improvement of global best using &-
comparison, i.e., the global best is considered improved if P(gnew) < P(god), Where gney, denotes the new global best
and g, g denotes the old global best. This is reasonable based on the new e-criteria. Thus, we know that any update
of the global best is considered as an improvement in €CCPSOd. This is directly derived from and is similar to the
original CCPSO?2 algorithm.

Secondly, let <CCPSOw be the eCCPSO algorithm that detects the improvement of the global best using the ordinal
comparison of objective function values (i.e., fitness values) with an improvement detection window of a specified size.
In eCCPSOw, the new global best is considered to have been improved if the new global best objective value is smaller
than the minimum of the global best fitness values in the last w generations, i.e., f(gnew) < min{f(g) : g € S (W)}, where
S denotes the set of global best in the last w generations, and w is called the size of the improvement detection window.
The rationality behind the design of €CCPSOw is that in a constrained optimization, both the global best fitness value
and constraints violation should be reduced in order for an update of global best to be called an improvement. However,
an update based on &-comparison with a new ¢ level does not necessarily reduce the fitness value, thus it is reasonable
to compare the current global best fitness value with a certain number of previous global best fitness values to decide
whether the update is an improvement. Note that different improvement detection window size has different effect. For
some problems, sCCPSOw with w = 1 yields better performance than using w = 10, while sometimes using w = 10
yields better performance.

To automatically select an appropriate improvement detection window size, finally we propose an sCCPSO method
which uses an adaptive detection window, i.e., eCCPSOw2. We adopt the adaptive weighting scheme used in [90],

47




where a performance record list R = {r, r,} is used and is updated according to

l f(gow) '

The probability p; and p, of selecting window size 1 and 10 respectively in each generation is computed as

e7r,-

pi= e’n 4 ¢’
where constant 7 and the natural exponential constant e are empirical values.

In this part, we show the experimental results of the proposed three different algorithms, i.e., eCCPSOd, eCCPSOw
and eCCPSOw?2, compared with the state-of-the-art constrained optimization evolutionary algorithm eDEag. First,
the eleven benchmark problems and the parameter settings for our algorithms are described. Second, the results of
the eCCPSOw algorithm with w = 1 and w = 10 are compared to eCCPSOw2 with adaptive improvement detection
technique. Then, eCCPSOw2 and eCCPSOd are compared to eDEag on the benchmarks of 100D. Finally, we compare
the results of eCCPSOw2 and eCCPSOd on the benchmarks of higher order dimensions, i.e., 500/1000D, and show that
eCCPSOw2 is more favorable for a general application. All results here are the average of 25 runs of the corresponding
algorithms.

Table 11: Parameter settings

Name Value
N 30
D 100/500/1000
T 0.5
Max_FES 20000*D
s {2,5,10,50,100} for D<250;
{2,5,10,50,100,250} otherwise
hs 0.001
e 0.34
cg‘i“ 3
T 0.95 Max_FES
T, 0.8 Max_FES

The parameter settings for the different eCCPSO algorithms (i.e., eECCPSOd, eCCPSOw and sCCPSOw2) are
shown in Table 11.

We adopt and extend eleven benchmark problems proposed for the CEC’10 special session on constrained real-
parameter optimization (i.e., CEC’10CRPO) [99], i.e., CO1, C02, C03, C04, CO5, C09, C12, Cl14, C16, C17 and
C18. The properties of these problems are shown in Table 12, where S is for “separable” and N for “Non-separable”.
For example, C04 has a separable objective function, 2 non-separable and 2 separable equality constraints, and no
inequality constraint. Detailed problem definitions can be found in [99].

Roughly speaking, these problems are defined in the formulation of (111). Moreover, all the variables of a problem
have the same lower bounds and upper bounds, i.e., x}(“i" = x™" and xp% = x™*. Besides, a random translation vector
o € [o™™, 0™*1P js used, where 0™ and 0™ are dependent on the problem. We extend the original CEC’10CRPO
problems from a maximum of 30D to a maximum of 1000D. For example, in C02, we have x™" = —5.12 and x™* =
5.12. From the code of the original C02 problem, min(o) = —0.4966 and max(o) = 0.4934, thus we let o™n = —0.5
and 0™ = (.5, and generate o uniformly at random in the region [0™", 0™2*]10% " After the translation vectors o for
the problems are generated, they are fixed for all experiments.

There are cases in which different improvement detection window sizes make huge differences to the performance
of the eCCPSOw algorithm. As shown in Fig. 43, when solving problem C02 with eCCPSOw, using w = 1 results
in better performance than using w = 10. However, when solving problem C05, w = 10 yields better performance
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Table 12: Properties of the eleven CEC’ 10 problems

Problem | Searchrange | Objective Num.b.er of constral.nfs
Equalities | Inequalities

Co1 [0,101° N 0 2N
c02 [-5.12,5.121° S 1S 28
C03 [-1000, 1000]° N IN 0
C04 [-50, 501 S 2N2S 0
C05 [-600, 600]” S 28 0
C09 [-500, 5001° N 18 0
C12 [—1000, 100017 S IN 1S
Cl4 [-1000, 10001° N 0 3S
Cl16 [-10, 10]P N 28 I1SIN
C17 [-10,10]” N 1S 2N
Ci18 [-50, 501" N 18 1S

Table 13: eDEag experiments at different scales

70D | 0.789630467 | 0.402137082
Co4 90D | 2.970161086 | 2013.070712
97D | 5.536830321 11457.7614
100D Unsolvable
35D | -0.215615805 0
c12 40D | -82.53091592 | 5.9706E+143
50D Unsolvable
100D Unsolvable

(note that in & constrained optimization, the global best fitness values are not always decreasing, since the particles are
compared using new g-criteria continually). Because of the adaptive improvement detection window, for both C02 and
CO03, the performance of eCCPSOw2 is in between eCCPSOw with w = 1 and with w = 10. For other problems which
are not shown in the figure, it is either that using w = 1 and w = 10 in eCCPSOw do not make much difference, or that
the average fitness value of <CCPSOw?2 almost coincide to one of the two cases of sCCPSOw (e, w=1lorw=10).
Thus, the eCCPSOw?2 algorithm can roughly represent the class of £CCPSO algorithms with improvement detec-
tion window technique in terms of the average fitness value performance. For the rest of the experimental studies, we
thus use the eCCPSOW2 algorithm to compare with other types of algorithms on large-scale constrained optimization.
Although there is no nature-inspired algorithm known to be capable of solving general large-scale real-valued con-
strained optimization problems, constrained optimization algorithms of smaller scales are abundant, and many of them
are well studied [93]. The éDEag algorithm is an ¢ constrained differential evolutionary algorithm which makes use
of an archive and gradient-based mutation. It has been shown to be very efficient for 10/30D real-valued constrained
optimization [91]. The code of the algorithm is downloadable from [104], which is also used in this research.
However, as the number of dimensions increases, the efficiency decreases, as shown in Table 13 for problems C04
and C12. Furthermore, when the number of dimensions is greater than a certain limit (i.e., 97D for C04 and 40D for
C12), overflows occur during the execution of éDEag for these two problems. In Table 14, we compare the average
fitness values (Avg. Fitness) and the maximum constraints violations (Max. Const.) of the final global best solution
of the 25 runs of the eCCPSOwW2 and éCCPSOd algorithms with those of the solutions of the eDEag algorithm. As
shown in the table, both eCCPSOW2 and ¢CCPSOd surpass eDEag for all problems except CO1, where eCCPSOw2
and eCCPSOd have not found a final feasible solution. Note that the global best of éCCPSOw2 and eCCPSOd have
better fitness values than that of €DEag for all problems; and except for C01, the maximum constraints violations of

49



Average fitness values

Average fitness values

200

o

)
=1
S

IS
3

—ws=1

—— w=10
eCCPSOw2

Average fitness values

——w=1

= = w=10
eCCPSOw2 400

o

=]
— — w=10
eCCPSOW2] r -

S b Lo o N w s
b Lo 2N e sa o

&
3
3

10
x10°

2 o 2 4 [} 8 10 ] 2
Evaluations

“o 0.5 1 15

4 6
Evaluations Evaluations

1
Evaluations

2
%108

(a) CO2 of 100D (b) CO5 of 100D (c) €02 of 500D (d) CO5 of 500D

Figure 43: Fitness values of e€CCPSOw with w = 1 and w = 10 compared to eCCPSOw?2 solving two benchmark

problems of 100/500 dimensions

Table 14: 100D experiments

eCCPSOw2 eCCPSOd eDEag

Avg. Fitness | Max. Const. | Avg. Fitness | Max. Const. | Avg. Fitness | Max. Const.
CO01 | -3.7166E+01 | 5.6250E-01 | -3.7166E+01 | 5.6250E-01 | -4.6248E-01 | 0.0000E+00
C02 | -1.4476E+00 | 0.0000E+00 | -2.1663E+00 | 0.0000E+00 | 1.5347E-02 | 0.0000E+00
C03 | 1.8205E+02 | 4.4568E-02 | 4.0366E+04 | 9.7032E+00 | 1.2688E+08 | 1.0447E+05
C04 | 2.8649E+00 | 3.2839E+00 | 2.1011E+00 | 3.5152E+00 Unsolvable
CO05 | -3.9359E+02 | 0.0000E+00 | -2.9817E+02 | 1.1518E-02 | 1.0681E+01 | 2.6775E+02
C09 | 3.0431E+03 | 0.0000E+00 | 2.3324E+05 | 0.0000E+00 | 7.6256E+07 | 0.0000E+00
C12 | -7.6703E+02 | 4.7877E+04 | -7.9284E+02 | 1.0397E+03 Unsolvable
Cl14 | 1.0349E+04 | 0.0000E+00 | 1.9022E+11 | 0.0000E+00 | 7.0077E+12 { 0.0000E+00
C16 | 1.4223E-03 | 0.0000E+00 | 1.4212E-02 | 0.0000E+00 | 1.0791E+00 | 0.0000E+00
C17 | 8.6879E+01 | 0.0000E+00 | 5.4661E+01 | 0.0000E+00 | 4.6463E+02 | 0.0000E+00
C18 | 4.7323E+00 | 0.0000E+00 | 1.7498E+01 | 0.0000E+00 | 7.7350E+03 | 0.0000E+00

both eCCPSOw2 and eCCPSOd are all smaller than that of eDEag.

The final average global best fitness values (Avg. Fitness) and maximum constraints violation (Max. Const.) of
£CCPSOW2 and eCCPSOd applied on the eleven benchmark problems of 100/500/1000D are shown in Table 14, 15
and 16, respectively. Besides, the evolution process of the average fitness values of eCCPSOw2 and eCCPSOd solving
six of the benchmarks (i.e., C03, C04, C09, C14, C16 and C18) of 100/500D are shown in Fig. 44 and Fig. 45. From the
results we can see that for five of the benchmarks, i.e., CO1, C02, C04, C12, C16 and C17, in the cases of 100/500D,
the performance of the two algorithms are too close to tell which is better. However, for the set of problems that
£CCPSOW2 outperforms eCCPSOd, i.e., C03, C05, C09, C14 and C18, the performance gaps are clear. We would thus
conclude that although sCCPSOd is better in some situations, <CCPSOw?2 is more favorable for general optimization
problems.

5.2 B-spline Membership Function Based FCM to Maximize Overlap Areas for Intercon-

nected Power Systems

State estimation of multi-area power systems is a challenging problem due to its large size. Traditionally it was
petformed in regional control centers with limited interaction. Firstly we should divide the whole power system in
several subsystems whose contro} center can perform its own state estimation. Dividing systems is a crucial and
essential step to estimate state of power systems. The quality of the divided system can significantly affect the state
estimation we will finally obtain.

Some of the division methods have been proposed to address this problem. Fuzzy C-means (FCM) is one of them
and its success is primarily due to the introduction of fuzziness index [105-107,107]. By doing so we can easily figure
out the overlap areas between the subsystems. And, in order to enhance the communication between different areas,
we should classify more areas to be the overlap areas which can communicate with the subsystems they belong to.
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Figure 44: Fitness values of eCCPSOd and eCCPSOw?2 solving six benchmark problems of 100 dimensions

By introducing a bridgeness term into the objective function, a novel FCM algorithm can be proposed to maximize
the overlap areas in the power system. This algorithm will make the membership degree of one bus more fuzziness.
However, we should consider to incorporate a regularized term to avoid classifying the whole power system into only
one area.

Even though this modified FCM can acquire more overlap areas between neighborhood subsystems, one of its
disadvantages is that it needs to take more iteration steps. However, we notice that when the Euclidean distance
between a bus and a center of area is small, the membership degree that bus belongs to this cluster is high and vice
versa. Hence we try to use B-spline membership functions instead of the fuzzy membership functions to represent this
relationship. By doing so we can accelerate the convergence speed of our proposed algorithm.

The standard FCM algorithm is an unsupervised cluster algorithm whiclyhased on Picard iterations. And it assigns
buses to each areas by using their fuzzy membership. Let us denote the power system with N buses which should be
partitioned into ¢ areas by X = {x;,i = 1,2,..., N|x; € R%} and the membership degree of bus x; to areas j € {1,...,¢}
by uj; € [0, 1]. Also, we can denote the set of area prototypes by v; € {v1, vz,i’:%l. ., v¢}. FCM algorithm is formulated as

the minimization of the objective function J with respect to the membership natrix U = u;:
c N !‘\\ 4 ?
T=Y Y-l N 18 (114)
=1 =1
with the following constraints:
c
Duwi=1, Vi 0<up<1, Vi
a (115)

N

Zuﬁ >0, Vj

=1

where m is the fuzzy index which is chosen in advance and can influence the fuzziness of the final partition. Generally,
we choose m to be 2. In each iteration step, minimization with respect to u;; and v; is done separately. The fuzzy
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Figure 45: Fitness values of eCCPSOd and cCCPSOw?2 solving six benchmark problems of 500 dimensions

membership update equation is:

1
Wj = ———————r (116)
c | lm=wel Y\
J=L l=vil
and the area prototypes update equation is:

S,
o = 2=l i (117)

J N .m

i=14ji

Before implementation, the membership degree of each bus is initialized randomly. Then, using (116) and (117), the
iteration process is running until obtaining the final result.

In order to maximize the communication between each area, we should assign more buses to the overlap areas or
make one bus being shared among more areas. This can be measured by the concept of bridgeness of the bus. We
define the bridgeness of a bus as the distance of its membership vector u; = [uy;, ua;, . . ., U] from the reference vector

%, %, e, %] in the Euclidean vector norm. Therefore, if a bus belongs to only one area, then the bridgeness should be

large, and if otherwise, then the bridgeness will become small. The bridgeness term is defined as follows:
~ 1
b; = - —uyl? 118
;:1 llc ujill (118)

We notice that b; attains its minimum when v; belongs to all of the clusters exactly with the same membership degree.
Then, if a bus has the small b;, its membership to different areas will have less difference then it will have more chance
to be in the overlap area to strength the communication between each area.

From the definition of bridgeness, we can find out that the fuzziness index is 2. In order to contain fuzziness index
m in the iteration process, the fuzziness index should be generalized. Hence a new definition of bridgeness is given by:

c 1 .
bi= ) will~ =il (119)

J=1
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Table 15: 500D experiments

£CCPSOw2 gCCPSOd

Avg. Fitness | Max. Const. | Avg. Fitness | Max. Const.
C01 | -8.2194E-01 | 0.0000E+00 | -8.3171E-01 | 0.0000E+00
C02 | -2.0467E+00 | 0.0000E+00 | -1.9519E+00 { 0.0000E+00
C03 | 7.6050E+02 | 6.0284E-01 | 1.3366E+06 | 4.5627E+02
C04 | 2.4587E+00 | 7.6006E+01 | 2.8211E+00 | 1.1994E+02
C05 | -1.1141E+02 | 0.0000E+00 | -2.5524E+02 | 0.0000E+00
C09 | 2.6721E+03 | 0.0000E+00 | 2.0820E+07 | 0.0000E+00
C12 | -5.7557E+02 | 1.5743E+03 | -7.3178E+02 | 1.5694E+03
Cl4 | 55099E+02 | 0.0000E+00 | 1.0691E+05 | 0.0000E+00
C16 | 1.8885E+00 | 0.0000E+00 | 1.9077E+00 | 0.0000E+00
C17 | 1.3603E+04 | 0.0000E+00 | 1.4905E+04 | 0.0000E+00
C18 | 1.6546E+01 | 0.0000E+00 | 3.4631E+01 | 0.0000E+00

Table 16: 1000D experiments
eCCPSOwW2 £CCPSOd

Avg. Fitness | Max. Const. | Avg. Fitness | Max. Const.
C01 | -8.3683E-01 | 0.0000E+00 | -8.2553E-01 | 0.0000E+00
C02 | -1.9279E+00 | 0.0000E+00 | -1.3352E+00 | 0.0000E+00
C03 | 4.6553E+03 | 1.8839E+00 | 3.5834E+05 | 1.3029E+02
C04 | 3.4268E+00 | 9.0832E+01 | 4.6200E+00 | 2.0689E+02
CO05 | -1.8222E+02 | 0.0000E+00 | -2.5260E+02 | 0.0000E+00
C09 | 1.2166E+03 | 0.0000E+00 | 6.4330E+09 | 0.0000E+00
Cl12 | -3.2676E+02 | 2.2523E+03 | -5.6378E+02 | 2.5163E+03
Cl14 | 9.2093E+02 | 0.0000E+00 | 8.4167E+02 | 0.0000E+00
C16 | 2.8188E+00 | 0.0000E+00 | 2.8280E+00 | 0.0000E+00
C17 | 3.1576E+04 | 0.0000E+00 | 3.3193E+04 | 0.0000E+00
C18 | 2.7503E+01 | 0.0000E+00 | 2.4988E+01 | 0.0000E+00

Consider the extreme value of b; with constraint Z;ﬁzl uji = 1, where 0 < u;; < 1. According to the Lagrange multiplier
procedure, we can obtain:
F=) u,,n— -

) - A(Z wi = 1)
j=1

where A is the Lagrangian multiplier. By letting (8F/8uy;) = 0, (0F/0uy) = 0,--- ,(8F/du,) = 0, we can have
= Uy = %, and A = % — me!™". At this moment, the value of bridgeness is »; = 0. Because b; is
continuous in [0, 11°, b; must have its maximum and minimum in the point uy; = uy; = % or the boundary
points. For the boundary points of [0, 1]°, we can assume that there exist p zeros and g ones in the set {u1;, o, . . . , Uei)s
where 0 < p,g < 1. Thus if p + g = ¢, we can obtain 35, ujillt — u;.';‘lll = g(=1), which is greater than 0. And if
p + g < ¢, without loss of generality, we can substitute the first (p + g) elements from the b; by q(%), then b; can
become the Z”_mqﬂ u,,ll1 ”"1|| + q(c_l) We can easily see Zj —prgl uj,ll1 - u’"‘1|| + q(‘”l) > 0, which means
the bridgeness will achieve its minimum when the membership vector of each bus equals i,
explain that (118) and (119) have the same effect in the objective function [108].

However, if the bridgeness is too small, then it is possible that the whole buses will be classified as only one area.

9

(120)

Uy = Uz = -+

=l =

., %]. Hence this can

c? C"'
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In order to avoid this situation, we should define the between-cluster variation as follows:

c N
V= ZZuﬁuvj—xuz (121)
=1 i=

where ¥ is the mean of Euclidean norm of all the buses in the power system, and other symbols are similar to (114). In
the process of cluster, we hope to minimize the bridgeness of buses and simultaneously maximize this between-cluster
function. In order to incorporate this term into the objective function, we need to replace the u; with the u7; in the
between-cluster term, which is consistent with the standard FCM algorithm.

Now we introduce a new algorithm to cluster these buses based on FCM, the basic idea is that when clustering,
we want to minimize the bridgeness term and maximize the between-cluster function at the same time. Henceforth the
objective function is formulated as follows:

¢ N c c
1 m—1
Jm=Z;Z;u;z%||xi—vj||2+Z;a};uji||;—u,-i I
j=1 = =1 =
. (122)
= >on ) il — P
=1 =1
where,
C
Zuj,-zl, Vi,  O<uu<l, Vi
= (123)

N

D ui>0. V)

i=1

In order to acquire iteration equations, we use the Lagrange multiplier method, then the function J,, can be trans-
formed into an unconstrained minimization problem as follows:

c N c 1
-1
= D il =yl Y e > uil= — a7
=1

C
j=1 i=1 Jj=1

(124)
c N N 4
=y v = F P ) A wi= 1
=1 =l =1 =1
By letting 8.J,,/0uj; = 0 and J,,,/04; = 0, we can obtain the following equations:
0Jm -1 2 -1
— =mu; lx; = vill* + a(l/c —muT )
6uﬁ J / 7 (125)
- nmu;f:-"lllvj ~FP+4=0
0w _ 126
Fyike Z uji—1=0 (126)
1 ]=1
Combining above two equations, we can obtain the following iteration equation:
! 127)
Ui =
g se_ (L lPnly-TP-a Hem=1)
k=1 \ ;=i P-gllve—xP—a
Also, let 8J,,/8v; = 0, we have another iteration equation:
N m T
. u..(x,- - x)
Vi = M (128)

T =y
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Algorithm 4 Maximize overlap FCM
Set the number of cluster ¢, the fuzziness index m, the parameters ¢ and 7, accuracy parameter €, the maximum
number of iterations ¢, and the initialized fuzzy membership degree u;;;
repeat
Computing the cluster prototypes v; by (128);
Computing the membership degree u;; by (127);
until ||J’,§,+1 - Jf‘,lH < € or reach the maximum number of iterations ¢.

5.3 B-Spline Membership Functions

Membership functions obtained by optimizing the objective function are restricted to particular shapes determined by
(127). However, in some cases, people want to use their own membership function shapes that are better suitable to the
practical problem or they may know the real distribution of the membership degree. Hence they can choose an approx-
imate function to approach the real membership degree. In our cases, when the Euclidean distance between a bus and
the prototype of the cluster is small, then the membership degree is large, otherwise it will be small. Consequently we
try to represent this relationship by using the B-spline curve. Via B-spline curves we can translate the membership de-
gree obtained by (127) into the form of control points of B-spline curves and construct B-spline membership functions,
which can better represent the membership degree than the original one.

The B-spline curve can be constructed as follows: Given n+ 1 control points {pg, p1, . . - , Pn}, the i-th B-spline curve
of order k is denoted by N, 4(¢). Therefore, the B-spline curve B(z) can be defined as:

n
B(t) = Z piNu(®  1<k<n (129)
i=0
where
-t
Nis(t) =( = Viser (0
livk-1 — &
tivk — 1
+ (L)Niﬂ,k—l(f)
tivk — lit1
1 <t <tipg
1 ify<e<y
Nia@) = { 0 othlerwise " (130)
fori = 0,1,...,n. This is a recursive definition. And using this formula, it is easy to construct the k-th order B-

spline curve from two blending curves of order £ — 1. The set of knots {f,7;,...} is called the knot vector T. The
above polynomial will be equal to zero when the denominator is zero. We choose B-spline because it is easy to
evaluate when we know the knot vectors and control points. Also it can be implemented easily and is numerically well
behaved [109, 110].

In order to represent the membership degree, we should choose knot vectors and control points for the B-spline
curve first. The control points can be acquired from the approximate points which can be obtained from (127) and
another key point is to specify knot sequence for the B-spline. These knots should satisfy the requirement 4 < #;,1,
which means the sequence is a non-decrease series of real numbers. We choose a uniform knot vector, in which the
individual knot valued is evenly spaced. For the smoothness of the curve, we consider the order of the B-spline to be
3. Then the knot vector can be defined as:

X0 ifi<k
=4 i1 + % ifk<i<n (131)
X ifi>n

where x; is the Euclidean distance between bus i and the prototype of the cluster. We can use the knot vector and
the control points calculated according to approximate points by (127) to construct the B-spline Membership Function
(BMF) to represent the membership degree.
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Now we obtain a set of data from (127) which are treated as approximate points. We want to construct the mem-
bership function in term of B-spline curves. Hence the main task is to find out the set of control points for the B-spline
curve to approach these approximate points. The error function should be defined as follows [111]:

e(x)) = d(xj) ~ u(x)) = d(x)) = Y PiNik(x)) (132)
i=0

where d(x;) is the membership degree obtained from (127). The mean square error J can be defined as:

n m n 2
7= 26) = D)= Y piiaty) (133)
7=0 7=0 i=0
The error J function is optimized when the control points {p;,i = 0, 1,...,nr} can be found out to make the B-spline

curve approximate d(x;). Therefore the partial derivative of J with respect to p; should be zero, which means:

aJ - <
oy = 2 2|00 - ) PiNia ) [Nl = 0 (134)
which yields:
Z d(xj)Ni(x;) = Z Z PN (2 )IN; e (x5) (135)
=0 7=0 1=0
If we let: .
Qi = ) dix)Nix(x;) (136)
=0
Ny = Z Nix(xj)Npi(x;) (137)

J=0

then we can substitute them into (135) and we can obtain:

Qi=ZPlNil fori=0,1,2,...,n (138)

i=0

We can rewrite it to a matrix form as follows:

Q=NP (139)
where
Q=1[00 O1-- 0l
N()O NO] can N()n
N= ]\7.10 N-n
Nw Na ... Nuy
P =1[popi...pnl (140)

Thus from the above equation, we can acquire the control points P which will lead the least squared error:
P=N1Q (141)

then, the B-spline membership function can be constructed as the following:
() = > pilNix(x) (142)
i=0

Now, the algorithm to evaluate the membership degree is modified as follows:
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Algorithm 5 B-spline based maximize overlap FCM
Set the number of cluster ¢, the fuzziness index m, the parameters o and 7, accuracy parameter €, the maximum
number of iterations ¢, and the initialized fuzzy membership degree uj;;
repeat
Computing the control points by (141)
Computing the BMF of every bus by (142);
Computing the cluster prototypes v; by (128);
Computing the approximate membership degree u;;by (127);
until [|J4! — J¥|| < € or reach the maximum number of iterations 7.

(a) standard FCM (b) maximum overlap FCM (c) B-spline based maximum overlap FCM

Figure 46: The cluster performance of three algorithms (Case 1)

5.4 Example

To verify our proposed B-spline based maximize overlap FCM algorithm, we have conducted two experiments to
compare our algorithm with maximize overlap FCM algorithm and standard FCM algorithm. In Case 1, we can use an
artificial data set to represent the buses in a power system. The experiment result shows that our proposed algorithm can
maximize the overlap area when comparing with the standard FCM algorithm. Suppose the the data can be classified
to four subsystems. We can set some parameters as follows: the fuzziness index m = 2, 0 < & < 1. In our experiment,
we can set & to be 0.2 and n to be 0.01, accuracy parameter € = 10~° and the maximal iteration number ¢ = 200. When
[|741 — J¥ || < € or t > 200, the algorithm will terminate.

We set the defuzziness parameter to be 0.1, which means if the difference of two largest membership degrees is less
than this number, then the bus will belong to both corresponding areas, otherwise, the bus will belong to the area with
the largest membership degree. Figure 46 shows the result of the standard FCM algorithm, maximum overlap FCM
and B-spline based maximum overlap FCM. We can see both maximum overlap FCM and B-spline based maximum
overlap FCM have better performance than the standard FCM because they can generate more overlap buses after the
cluster process. This will strengthen the communication between the subsystems of the power system.

The standard FCM will have fewer overlap areas when comparing with other two algorithms as shown in Figure
46. The last two algorithms will have the similar performance in which the maximum overlap FCM will generate
15 buses in the overlap areas and B-spline based maximum overlap FCM will generate 14 buses out of 100 buses.
The standard FCM will only generate 7 buses in the overlap areas. However, the iteration number of B-spline based
maximum overlap FCM is less than the maximum overlap FCM. And we can improve the convergence speed of our
algorithm by using B-spline as membership degrees. According to Figure 47, the number of iteration steps of B-spline
based maximum overlap FCM is 38, which is less than 84—the number of iteration steps of maximum overlap FCM.

Now in Case 2, we consider an IEEE 39-bus system in which there are 39 buses instead of 100 buses in Case 1.
And other parameters are the same as in Case 1. Figure 48 shows the result of these three algorithms. From Figure 48,
we can see the maximum overlap FCM generates 13 buses in the overlap areas, and B-spline based maximum overlap
FCM generates 12 buses in the overlap areas. Both of them perform better than the standard FCM which generates
only 4 buses in the overlap areas. Therefore maximum overlap FCM and B-spline based maximum overlap FCM will
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Figure 48: The cluster performance of three algorithms (Case 2)

have more strong connection between areas than standard FCM. Figure 49 shows the convergence speed of these three
algorithms in Case 2. We can find that the number of iteration steps of B-spline based maximum overlap is 52, which
is less than 70-the number of iteration steps of maximum overlap FCM. Also, from Figure 47 and Figure 49, we can
see the magnitude of fluctuation of both maximum overlap FCM and B-spline based maximum overlap FCM are less
than that of standard FCM.

5.5 Motion Planning for AmigoBot with Line Segment Based Map and Voronoi Diagram

The motion planning problem for robots refers to obtaining a collision-free path in an either known or unknown
environment with some obstacles. Also, the path is often required to meet some optimal conditions, such as kinematic
constraints and distance length restriction. Generally speaking, the problems related to motion planning in an unknown
environment involve mapping, localization, collision avoidance, and trajectory tracking. Among them, mapping of the
unknown environment with detective sensors is fundamental to the others [112]. A robot needs to reason geometrically
about the unknown real-world environment from sensor readings and to represent it with the configuration space or
C-space [113], only when the motion of the robot can be planned. Thus, mapping of the unknown environment is a
crucial preliminary task for robots to automatically implement other assignments.

Two essentials should be considered in representation of the environment with a map: metric and topology. The
metric framework is to represent obstacles in the two-dimensional or three-dimensional space with precise coordinates,

58



0.14 T T T T T T

X standard FCM
% maximum overiap FCM
0121 B-spline based maximum overlap FCM | 7
X
0.1 X A
0.08f * .
X
X
0.06 x p
X
0.04 - ) « -

Figure 49: Iteration number of three algorithms (Case 2)

and the topological framework is to represent the relations between the obstacles. In other words, metric maps acquire
geometrical features and properties of the environment, while the topological methods are focused on connectivity of
points [114]. Thus, if a map with the accurate and complete information of metric and topology about the environment
can be retrieved, then it is an easier task for a robot to plan a collision-free path. Unfortunately, the metric and topology
cannot easily be integrated into a map, which will dramatically increase the computational effort in map building.

A compromised alternative approach is to build a map only with accurate metric information or with a simple
topological information about the environment. Besides, the map can be retracted to a topological one which has the
complete information about the environment and can be effectively utilized to plan the path for robots. In this report,
a line segment based map is first constructed to represent the environment and then, a Voronoi diagram is retracted
from the line segment based map and is applied to path planning of the AmigoBot. Compared to occupancy grid maps,
the line segment based map is a good alternative for several reasons. First, it has low-level topological information
about the environment, i.e., a set of point obstacles is represented with a line. Second, it is more concise and suitable
for this method to represent large range environments and it is known that less storage memory is needed in this case.
Moreover, line segments can be represented with much fewer points in the two-dimensional space and this method can
greatly reduce the computational complexity when generating the Voronoi diagram due to its fewer points in the map.

As one of the most fundamental data structures in computational geometry, the Voronoi diagram has many appli-
cations for a wide range of problems inside and outside computer science, such as associative file searching, cluster
analysis, scheduling record access, and collision detection [115]. The Voronoi diagram is also one of the earliest
methods applied to the motion planning problem for robots. It is an excellent retraction method to build a map with
useful topelogical information about the environment for motion planning. According to the definition of the Voronoi
diagram, given some number of point or line obstacles, their Voronoi diagram divides the space based on the nearest-
neighbor rule. As a result, the points in the edges of the Voronoi diagram are with the maximizing clearance between
points and obstacles. Thus, the motion planning problem here is to find a path along the edges of the Voronoi diagram
with a desired clearance from the initial configuration to the goal.

Many related works have been done for motion planning with the Voronoi diagram. The earliest work is done
in [116], where a collision-free path for a disc is planned with a generalized Voronoi diagram in an environment
with polygonal obstacles. Later, Fortune proposed a sweep line technique to compute the Voronoi diagram in [117].
This sweep line algorithm is widely used even nowadays for its simplicity and thus has many derivatives and variants
[118,119]. On the other hand, an algorithm based on the Voronoi diagram to compute an optimal path between
a source and destination in the presence of simple disjoint polygonal obstacles is addressed in [120]. Meanwhile,
Sakahara proposed a Voronoi-based StRRT (Spatiotemporal RRT) algorithm subjected to biasing extraction of sample
points toward the border of a generalized Voronoi diagram to plan safe trajectories in [121]. In [122], an approximation
method based on Voronoi duals to compute the shortest path in undirected graphs is presented.

To plan the motion with the Voronoi diagram, the robot needs to construct a more concise map to reduce the
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computational complexity. Compared to polygon road maps and grid-based maps, the line segment based map is a
compromised alternative approach to represent the unknown environment, which has lower time complexity and needs
less storage in construction. The line segment based map has sprung up a lot of research work in recent decade [123—
125]. For instance, some line extraction algorithms on 2D laser scans are presented and experimented in [126, 127].
Also, a Split-and-Merge Fuzzy line extractor is proposed in [128] to construct a line segment based map for robots.

In this report, a line segment based map is constructed from the readings of sonar sensors installed on an AmigoBot.
Different from the existing line segment extracting algorithms mentioned above which construct a line from a set of
readings detected with laser sensors, in our proposed algorithm the lines have to be constructed incrementally with
scatter obstacles detected from eight sonar sensors. Three key algorithms, Generate — Line, Line — Fitting, and
Merge— Line, are proposed respectively to construct a concise line segment based map. Algorithm Clear—Intersection
is also designed to eliminate the intersecting lines. Then, a Voronoi diagram is generated with Fortune’s sweep line
algorithm. Next, Dijkstra’s algorithm is applied in searching for a shortest path along the edges of the Voronoi diagram.
Terminology Clearance is defined and calculated for the planned path to keep a safe distance with obstacles. Finally,
a tracking control method is designed with Line — of — Sight (LOS) approach to track the reference path. Simulation
and experiment results are given to illustrate the efficacy of the proposed motion planning method. This research is
part of the larger problem of threat detection and localization using multiple autonomous sensors [129] and can be
used to construct a feasible path for mobile autonomous robots to detect and localize some contaminants or radioactive
signatures in a geographic area.

An AmigoBot has two different driving wheels and a balance caster as shown in Fig. 50. Each drive axle is attached
with a high-resotution optical quadrature shaft encoder for position and speed sensing and also dead-reckoning. The
distribution of sonar sensors mounted on an AmigoBot is shown in Fig. 51. The sonar sensors have a sensitivity range
from 10 cm to more than 3 meters and can provide a 360-degree sensing coverage [130]. Research on mapping

Figure 50: AmigoBot

and localization problems of robots in indoor environments have some important application values for service robots.
'With only sonar sensors, an AmigoBot is capable of detecting an unknown environment and building up a map with the
dead-reckoning approach. Dead-reckoning is a simple but unreliable approach for long-term missions due to the time-
increasing drift of estimates of robot location. For an AmigoBot, the locations estimated with the inertial navigation
system are not accurate enough when the robot is turning or accelerating, which results in the shift of the positions of
obstacles. Therefore, we envision that a two-step process is needed to solve this issue. The work done in this report will

-~ be the first step by building up a line segment based map to represent the unknown world and plan the path to navigate

#7 s g AmigoBot. The{next future WOfk)WlH mphas1ze on'the localization of robots which is so called the simultaneous
localization and mapping j;LAM) problem.

The mechanism of the motion planning system designed in this report is shown in Fig. 52. With perception from

sonar sensors, the real-world environment is modeled with a line segment based map. Topological information of the

environment is retracted from the line segment based map with a Voronoi diagram and then a shortest reference path
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Figure 51: Sonar Distribution 4

with safe clearance is searched from it. With a motion control method, an AmigoBot(:is to}ack the reference path
in the real-world environment from the initial configuration to the final destination. In thefollowing discussion, the

Perception Rez}l World Motion
Environment Control
Line Segment Voronoi Reference
based Map Diagram Path

Figure 52: Flow Chart of Motion Planning System
distance between two points p; € RZ and p ;€ R is defined as the Euclidean distance d(p;, p i) = {lpi~ pjll. The distance
between a point p; and a line segment € is defined as d(p;, £) = mir} llpi = pjll. Also, the perpendicular distance of a
p;€
point p; to a line segment £ is defined with dp(p;, £) = mfmf llpi — p;ll, where £* is the extension of £,
pietult

The distance between two line segments ¢; and ¢; is defined with Hausdorff distance [131]. HausdorfT distance is
the maximum distance of a set to the nearest point in the other set [131]. Hausdorff distance from line segment ¢; to
line segment ¢; is a max — min function, defined as

dn(€;, ¢)) = max{min d(p;. p))} (143)

pieti pjet;
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It should be noted that Hausdorff distance is directed and so is asymmetric, which means that most of times dy(£;, £;)
is not equal to dg(£;, £;). An undirected distance measure of two line segments is defined with the directed Hausdorff
distance dy(£;, €;) and dy(f, ;) as

d(t;, ;) = max(du(Li, €), du (L}, £)) (144)

With only eight sonar sensors, an AmigoBot needs to construct the line segment based map incrementally at each
sampling time. Two principles are needed for constructing such algorithms to obtain a concise map with complete and
accurate information about the environment: one is to save the information about the environment as much as possible
and the other is to extract the primitive information about the environment with lines as accurately as possible. Bearing
this in mind, three algorithms are developed respectively and implemented successively. Algorithm Generate — Line
is the first one to insert the obstacles detected into the map and generates lines with some simple criteria. The second
algorithm Line — Fitting is to extract a line from the preliminary results generated with Algorithm Generate — Line.
Finally, Algorithm Merge —~ Line is implemented to eliminate the redundant lines to make a concise map.

The line segment map is stored with a data structure of tree and each branch includes two nodes which represent
the two ending points of P; and P, of a line segment, or one node which represents one ending point of a line segment
that has not been generated. The node of a tree is defined with (x, y), where (x,y) is the position of the point in R%.
There are only two different kinds of obstacles in the line segment based map denoted with M, which are lines £; and
points p;, where £ € M and p; € M. Lines represent a set of obstacles such as wall, closed door and some obstacle
with length being big enough in the horizontal place. Points represent a kind of obstac ith small length such as
the legs of a table or a desk or a walking stick. When a new obstacle B; is detected, the building algorithm should
decide whether it should be inserted as an ending point of a line or it is a discrete point. Simple criteria are defined
with distance as follows.

Definition 1. An obstacle B;(x;,y;) is considered to be in M, if d(B;, p;) < D1 or d(B;, &) < Dy for any &, € M or any
pPj eM.

Definition 2. An obstacle Bi(x;,y;) can be jointed with p; € M as one new line if d(B;, pj) = Dy and d(B;, p;) < D-.

Definition 3. An obstacle B;(x;,y;) is added to M as one discrete point if d(B;, p;) > Dy, V& € M, and d(B;, {;) > Dy,
ij eEM.

Parameters Dy and D, are two distances designed to evaluate the length of obstacles in the horizontal place. It
is assumed that D; > 0 and D, > D;. With the three criteria given above, the algorithm to generate a new line
is proposed as shown in Algorithm 1. Each obstacle detected is evaluated either to be ignored as a redundant one
according to Definition 1 or to be connected with a starting point to generate a new line according to Definition 2, or
to be add to M as new discrete point according to Definition 3.

The time complexity of this algorithm is only O(n). Although it is primitive and coarse when generating a line, it
saves the information as completely as possible and also extracts some preliminary information about the environment
with a fast processing speed. Algorithm Generate — Line has a fast response to extract a new line, but it neglects the
possibility of generating duplicate lines. The following algorithm Merge— Line as shown in Algorithm 2 is an effective
and simple way to eliminate the redundant lines. The two lines who are reduplicated to each other will be determined
with Hausdorft distance.

Definition 4. Two lines €; and £; are merged if d(€;,£;) < Linin.

Lpin is a distance to evaluate the reduplication of two lines. With this definition, if d(£;,€;) < Ly, then the shorter
one will be merged with the longer one. The time complexity of this algorithm is O(n?). It is an effective approach to
make the map more concise. The next step is to refine the line segment based map to be as accurate as possible with
Algorithm Line — Fitting.

The map generated with the above algorithms has lots of discrete line segments and points, of which many can
be jointed and represented with one longer line segment. In this section, an algorithm Line — Fitting is proposed to
reduce the number of discrete line segments and points, and to refine the map with a satisfactory accuracy. First, the
line segments in M are classified with a pipe according to Definitions 5 and 6. Each pipe is set with a line segment ¢;
of M ordered by length. All the discrete line segments in the pipe have a similar orientation angle and close distance
with ending points.

O0perator “ > ” denotes the order of the iterator for each branch in M.
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Definition 5. A line €;(p1, pj2) is considered to be in the Pipe of line {; only if it satisfies the following two conditions:
(i) dp(pj1, €) < duin and dp(pj2, ;) < dypin
(ii) d(pj1, €i) < dpax 0r A(pj2, €) < dipax

Definition 6. A point p; is considered to be in the Pipe of line £; only if it satisfies dp(p j, €;) < dpin and d(p;, €;) < dinax.

The parameters dy;, and d,,, are two distances to adjust Pipe. With Definitions 5 and 6, the line segments and
points in Pipe can be chained and fitted with a longer line segment £. Next, least squares fitting is applied to calculating
the line £; with minimum sum of squares of offsets of all the points in Pipe from line £;. Define line £y withy = kx+b,
Vk € (—oo, 00). Assume that there are N points in Pipe, P;(x;,y;) € Pipe,i =1,2,...,N. LetX = Zﬁl X, Y = Zf‘il Vi
X1 =3 xy,and X, = T, x%. According to the least squares method, if (NX, — X?) # 0, then the parameters k and
b can be calculated by

k= (NX; - XY)/(NX; — X?)

b= (XY -XX)/(NX; - X?) (145)
Otherwise, if (NX, — X?) = 0, then the line ¢ ¢ is defined as x + b = 0 and the parameter b is calculated by
b=-X/N (146)

Since the nature of the least-square method is to minimize the sum of squares of offsets for all points, it does not have
the ability to distinguish the points with gross offset. Therefore, gross offset checking with distance dy, is added to
algorithm Line — Fitting. It eliminates the point p; € Pipe with maximum offset d(p;, £;) which is bigger than d,;, and
then re-calculate the line £ with the left points. This checking will be repeated until the offsets of all point are little
than d;, .

After the parameter of line £y is calculated with satisfactory offset dy.i,, the two ending points of line £; should be
determined. In this report, a simple criterion is utilized to select the two ending points. First, we find four points with
max(x;), min(x;), max(y;), and min(y;) in Pipe, and calculate their projecting points P ji(xp;, yp;) on {5 with Definition 7.
The two projecting points with min(xp;) and max(x,;) or with min(y,;) and max(y,;) are then selected as the ending
points of ;.

Definition 7. The projecting point p; € € of a point p; to line segment £ is the point with the minimum distance d(p;, £).

The main pseudo code of the algorithm Line — Firting is shown in Algorithm 3. The time complexity of this
algorithm is O(n?). Algorithm Line — Fitting is implemented before generating the Voronoi diagram. It remarkably
reduces the scale of the line segment based map and also reduces the complexity of computing the Voronoi diagram.
The Line segment based map only contains the information of obstacles about the real-world environment and cannot
be directly used for motion planning of robots. The motion of a robot should be planned in the Cy., space. The
Voronoi diagram provides a retraction method to extract the information about the Cy,.. space from the line segment
based map and retract it as a topological graph.

In this report, the notion of Configuration S pace is defined with C = R? and Cy, is a polygonal limited subset
whose boundary dC/y.. is entirely made of line segments. In computational geometry, the Voronoi diagram is a par-
titioning process of a plane into regions based on distance to points in a specific subset of the plane according to the
nearest-neighbor rule. The set of points in the generalized Voronoi diagram has the useful property of maximizing the
clearance between the points and obstacles. Normally, for g € Cyy,, define

Clearance(q) = min |ig — pl| (147)
PEIC free

and

near(q) = {llq - pllpesc;,, = Clearance(q)} (148)
where near(q) is the set of boundary points of Cyy. minimizing the distance to g. Then the generalized Voronoi
diagram is given by {g € Ce.,|near(q)| > 1}, that is, the set of points in C.. with at least two nearest neighbors in
the boundary of Cy,,,. Therefore, the generalized Voronoi diagram is a retraction method, which is the locus of points
that are equidistant from the closest two or more obstacle boundaries.

As a retraction method, the generalized Voronoi diagram denoted with Vor, has the following properties [132]:

(i) The Voronoi diagram is a retraction which has a continuous map p : C e — Vor, Vor C Cyree, and p(Vor) = Vor.
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(ii) The Voronoi diagram is a retraction with connectivity preserving, i.e., Yx € Cfre, ¢ and p(g) belong to the same
connected component of C,,,.

(iii) There exists a path between g € Cy,,. and p € C,.. if and only if there exists a path in Vor between p(p) and
P(g).

For example, define the map p(g), g € Cy.., as the nearest edge ¢; € Vor of q. Then the properties listed above can be
easily proved and illustrated [133].

In this report, Fortune’s sweep line algorithm in [117] is applied to generate a Voronoi diagram from the line
segment based map. Due to the fact that the discrete points are mostly eliminated by Algorithms Merge — Line and
Line — Fitting, only line segments in M are included in generating the Voronoi diagram. In addition, two points of the
position of an AmigoBot g, and the goal g are added as obstacles to guarantee that there always exists a nearest edge
to gs (gg) in Vor and no other obstacles lie between them. Also, the intersecting line segments are disposed by use of
Algorithm Clear — Intersection to reduce the complexity of the generating algorithm. Only two types of intersecting
line segments are considered as shown in Fig. 53. With Algorithm Clear — Intersection, the intersecting line segments

P Py

P3
A B

Figure 53: Two Types of Intersection

as (A) in Fig. 53 are divided into four new line segments €;(P1, P;), £2(P2, Pi), £3(P3, P;), and £4(P4, P;). As in (B) the
line £(Ps3, Py) is divided into two new lines €1(P3, Py) and £,(P,, P;).

There are two categories of geometric configuration in the Voronoi diagram: linear line segments and parabolic
curves. To facilitate the searching for the shorted path with Dijkstra’s algorithm, parabolic curves are discretized
as line segments. Thus, in the following Path — Planning algorithm, there are only line segments in the Voronoi
diagram Vor. After the Voronoi diagram Vor is built from the line segment based map M, Clearance is checked
before planning the path. For each edge ¢; € Vor included in searching the accessible path, the action is only taken if
Clearance(q) > SafeDist, ¥Yq € e;, where SafeDist is a minimum distance between the gap formed by obstacles that
can allow the AmigoBot to go through with a safe margin.

The path planning algorithm is shown in Algorithm 4. gg is the starting point and g¢ is the ending point of the
path. The map p(g), ¢ € Cye., is defined as the nearest edge ¢; € Vor of ¢g. Dijkstra’s Algorithm is applied to search
the shorted path in Vor. The line segment added from gs to p(gs) is defined as the line segment £(gs, gp), where gp is
the point associated with d(gs, 0(gs)). It is the same for the line segment added from ¢g to p(gs). The time complexity
of this Dijkstra’s searching algorithm is O(V?) where V is the number of vertices for the Voronoi graph. The path
planning algorithm is only implemented when the obstacle newly detected is in collision with the Path.

In this report, the LOS approach is used to design the path tracking control law for an AmigBot. With this LOS
approach, the path tracking problem is simplified as an angle tracking problem. Specifically, assume that the current
line segment to be tracked is e; € Path. Denote the position of the AmigoBot in R? by ¢, and define gp € ¢; as the
point associated with d(g,, e;) and gr € e; as the point associated with d(gr. gp) = kL ahead of gp along the forward
direction, where k > 0 is a designed parameter and L is the length of the AmigoBot. Then the LOS angle 6g to be
tracked for the AmigoBot is defined as the direction from point g, to gz.

A PD controller is designed to track angle 6 as in (150). The angle tracking error is defined in (149).

[ sin6, - 6p), 16, - 6kll < 7/2
g ‘{ sign(@, - 6g), 116, — gl > /2 (149

64



where 6,,0r € [—n, 7] and sign(-) is the sign function. Then, the PD control law for the right and left wheels of the
AmigoBot is designed as in (150).

VR = W

Vi Ve + kaE + kdéE

where V, and V are the velocities of the left and right wheels, Vj, is the desired constant speed, and k, > 0 and ks > 0
are the parameters of the PD controller.

A Simulation in MobileSim environment is conducted to verify the proposed motion planning method for the
AmigoBot. MobileSim is a simulator for Mobile Robots/ActivMedia robots based on the Stage robot simulator library
[130] and is widely used to testify the motion planning algorithms and control methods. The setting environment
is shown in Fig. 54. A box is added in order to enclose the map and avoid the infinite edges while generating the
Voronoi diagram. The four points of the box in this simulation are given with A(—3000, —4000), B(-3000,4000),
C(21000, 4000) and D(21000, —4000).

(150)

Goal
D ]
©,0) (18000, 0)

Figure 54: Environment Setting in MobileSim

The parameters in the map building algorithms are designed with D; = 20 mm, D, = 200 mm, L,;, = 50 mm,
dmin = 50 mm, and d,,,, = 200 mm. The parameters in motion planning are designed with SafeDist = 300 mm,
Vo = 50 mm/s, k, = 60, and k; = 5. The algorithms are coded with C + + and compiled in Visual Studio 2008. All
the results are saved in text files and plotted as figures through MATLAB. The results in Fig. 55 and Fig. 56 show the
Voronoi diagram and reference path generated at the sampled time instants 1 = 534 s and ¢ = 704 s. With Clearance in
the algorithm, it can be seen that the reference path is safe to obstacles and is also the shortest from the current position
of the AmigoBot to the final destination.

The final Voronoi diagram generated by our proposed algorithm is given by Fig. 57. It can be seen that the Voronoi
diagram is an excellent approach to extract the topological information from Cy... The trace of the AmogoBot from
the initial position to the final destination is shown in Fig. 58. In most of time the robot is tracking the path with the
maximum clearance, which is the dominant advantage of the Voronoi diagram. The line segment based map finally
constructed in Fig. 58 is concise and has only 139 segments. It successfully represents the environment with the
primary information and also with a satisfactory accuracy. From these results, it can be seen that the proposed line
segment based map and motion planning method with the Voronoi diagram have achieved a successful application for
an AmigoBot to move in an unknown environment.

The experimental environment setting for AmigoBot is shown in Fig. 59. The initial position of AmigoBot is set
with (0, 0) and the goal position is given with (8000, 0). The four points of the added box to map in this experiment
are given with A(—3000, 5000), B(-3000, —5000), C(15000, —5000) and D(150600, 5000). The parameters in the map
building and motion planning algorithms are all set with the same values as that in the simulation above. Experiment
results are given in the following figures. Fig. 60 and Fig. 61 give the constructed map M (plotted with black lines), the
Voronoi diagram Vor (plotted with blue lines)and the reference Path (plotted with red lines) respectively at the sample
times k = 676 and at the last sample time . It is obvious that the path is collision-free and is with safe clearance. Also,
it can be seen that the constructed line segment map M in Fig. 62 is almost perfect to represent the continuous obstacles
such as the wall and the box.

The trace of AmigoBot in Fig. 58 illustrates the biggest advantage of the proposed Voronoi diagram based motion
planning method once-again, that is, AmigoBot moves from the initial position to the goal with almost maximum
clearance. Howevg‘f, ogne errors caused by the limitations of sonar sensors are also shown in Fig. 62. The obstacles in

/é.
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the circle (plotted with green dotted line) are not existent in the real world but are caused by specular reflection. These
errors are inevitable in experiment and need to be erased with heuristic knowledge.

=

Figure 59: Experimental Setting for AmigoBot
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