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Abtract

Given a large set of heterogeneous and longitudinal objects each associated with

longitudinal actions that follow a general action protocol, we consider the problem of

recommending appropriate actions for a new object in its longitudinal process where

current studies seem too rigid with fixed intervals of action periods corresponding

to the varying-length longitudinal process objects. The proposal aims to develop

machine learning methods for this recommendation task. The proposal is unique in

its approach to deliver three new bodies of theory and techniques for: (a) Clustering

heterogeneous and longitudinal objects into subgroups of similar objects. To this

end, our learning framework overcomes the challenge of mixed data representation

by adopting a mixed-variate restricted Boltzmann machine; (b) Learning an action

protocol for each subgroup; (c) Recommend actions for a new object in its action

process based on the learned protocol of the subgroup it belongs to and the actions of

its nearest neighbors. To tackle the varying-length longitudinal records, we propose

an algorithm taking into account selected actions and construct represented trees

to leverage both frequent and infrequent features. Under the general framework,

concerete techniques are developed to learn treatment protocols for patient subgroups

of a disease and to recommend the treatment for a patient.
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1. Introduction

Disease diagnosis and treatment are essential aspects of healthcare. Disease diagnosis

is a process in which preexisting set of categories is agreed upon by the medical

profession to designate a specific condition [1] while a comprehensive treatment is a

normalized care plan where therapeutic interventions and medicines for a particular

disease are organized on a timeline [2, 3]. While the diagnosis prediction problem has

been studied extensively over the past decades [4, 5, 6, 7, 8, 9], the treatment learning

and recommendation problem is still in the early development stage [10, 11, 12, 13, 14].

Recently, addressing the second problem becomes more urgent due to several reasons.

First, there are constraints on budgets of medication resources allocated to hospitals

[15, 16, 17]. As a result, in many cases, hospitals need to customize treatments

to fit the available resources but still ensure the treatment quality. Second, even

under similar diagnostic codes, patients often suffer various symptoms that should be

treated flexibly. Thus, capturing the patterns among various treatments in practice

turns out to be helpful to assist not only managers in managing their resources [18]

but also the less working physicians in grasping treatment patterns often used in their

organization.

Principally, one can learn treatment for a particular disease through medical do-

main knowledge. It can be a piece of written information available in the literature

[19, 20, 21] or gained experiences. As there is a wide range of domain knowledge that

should be taken into account, the knowledge-driven approach may require much time

and effort to absorb such knowledge. In recent years, the fast development of elec-

tronic medical records (EMRs) has enabled addressing the problem via data-driven

approaches where one can derive treatment patterns of patient cohort and recommend

treatment for new patients automatically from a massive amount of patient medical

records.

Under the light of the data-driven approach, it is obvious that patients who share

many symptoms, laboratory indicators, and much demographic information are likely

to share common treatment patterns. However, most current studies in the literature

have exploited merely limited patient information. The unavailability of rich feature

medical records could be attributed to the difficulty in data collection [22, 23]. Even if

different kinds of patient data are made fully available, they usually exist in different

data types that are difficult to feed current data mining methods. In addition to

the data collection and representation issues, it is challenging to capture medical

domain knowledge hidden in prescription records. For instance, it is well-known that
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physicians usually deliver treatment through periods. Obviously, the derivation of

treatment patterns over a particular period highly depends on the prescription drugs

in that period. Unfortunately, in many cases, physicians did not point out explicitly

where is the treatment period intervals in varying-length prescription records. This

fact poses challenges in identifying suitable treatment periods and their associated

treatment patterns.

The objective of this work is twofold. First, we aim to propose a treatment

learning framework which addresses the above challenges. Our learning framework

divides a patient cohort into clusters namely subcohort where treatment patterns over

periods for each subcohort are discovered subsequently. To overcome the issue of rep-

resenting mixed-type data, we employ a mixed-variate restricted Boltzmann machine

(MV.RBM) [24]. The advantage of this model is at its robustness in transforming

mixed-type objects to their homogeneous representation. To tackle the challenge

of treatment period identification, we propose an algorithm which tries to capture

significant changes in prescription indications. More interestingly, we construct pre-

scription trees based on prescription drugs’ frequencies to leverage treatment patterns

for each subcohort. Second, we propose a treatment recommendation framework that

suggests top M prescription drugs for new patients by taking into account the typical

treatments extracted from learned prescription trees of similar patients. Our recom-

mendation framework captures the intuition that the treatment of new patients can

be learned from the prescription records of neighbor patients.

In short, we propose two frameworks, a treatment learning framework and a treat-

ment recommendation framework. The main contributions of our work are summa-

rized as follows.

1. First, by adopting an MV.RBM for learning a homogeneous representation of

mixed-type patient records, we encourage exploiting more patient features for

maximizing the capability of data utilization.

2. Second, we employ both the knowledge-driven approach and data-driven ap-

proach in the treatment learning framework. The exploited medical domain

knowledge is prescription indications in treating a disease. The incorporated

domain knowledge seems more interpretable to identify unseen treatment peri-

ods in varying-length prescription records.

3. Third, we propose a new way to represent treatment patterns flexibly by a

prescription tree where each path summarizes the frequency of a sequence of
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prescription drugs for each subcohort. The tree is not only meaningful for

physicians to capture frequent and infrequent prescription drugs but also helpful

to assist the treatment recommendation framework in finding typical drugs of

neighbor patients to be recommended for new patients.

4. Fourth, we propose a flexible recommendation framework which allows taking

into account prescription drugs from neighbor patients. Our experimental eval-

uation shows the appropriateness of the idea learning from the neighborhood

patients for the treatment recommendation task.

5. Fifth, we propose a mechanism to label prescription drugs’ indication from

external medical domain resources. Our indication labeling framework is useful

not only for identifying treatment periods of patients but also for interpreting

typical treatment patterns of each subcohort.

2. Related Work

2.1 Clinical Pathway Mining

In the early development of healthcare mining, prescription records were not published

widely for research purpose. The most related studies at that time focused on mining

clinical pathway, a close concept of treatment where research objects are clinical

procedures such as examination, treatment, prescription, nursing visit. Lin et al.

[25] developed a graph mining technique to discover dependency patterns of clinical

pathways for curing brain stroke. Haytham et at. [26] combined a b-color based

framework with Markov model for clinical pathway clustering and prediction. Bouarfa

et al. [27] developed tree-guide and global pair-wise multiple sequence alignment

to detect consensus workflow and outliers from clinical activity logs. Chen et al.

[28] proposed a model to learn and categorize workflows based on their duration for

efficient workflow management.

We note that the treatment mining problem and the clinical pathway mining

problem share some properties. Both address treatment data which could be treated

as a sequence of events, i.e., clinical procedures or medications, at different granularity

levels. However, while the research objects of the first problem are often a few clinical

procedures, those of the second problem could be thousand of prescription drugs plus

additional information on dosage, routes. These characteristics make the treatment

mining problem generally more challenging to tackle compared to the clinical pathway

mining problem. Another difference is the extent to which patient health status is
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affected by solving each problem. It can be seen that compared to the clinical mining

problem, the treatment mining problem whose research object are medications that

are supposed to affect more directly to patient status.

2.2 Probabilistic-based Approach

In recent years, probabilistic models have emerged as a promising technique for solv-

ing many data mining problems. In the field of healthcare, a variety of probabilistic

models has been proposed to learn patterns of clinical pathways or treatments. Huang

et al. [29] extracted treatment pattern as latent variables generated from a proba-

bilistic topic model which captured the link between patient features and treatments.

Lu et al. [30] modeled the diagnosis, contextual information, medication by a mul-

tiple channel LDA approach. In that work, they assumed the co-occurrences among

disease, medications were generated by latent health status group structure. Xu et

al. [31] developed a topic model which exploited billing information and prescription

records to discover the execution path of clinical pathways. Park et al. [32] proposed

a disease-medicine topic model summarizing prescription records from insurance data.

Recently, Yao et al. [33] et al. have developed a topic model which describes the gen-

erating process of prescription records from traditional Chinese medicine in books.

The main drawback of the studies following probabilistic approach is that they

employed many hyperparameters which are assumed to follow some distributions

without justification from medical domain knowledge. This limitation, therefore,

weakens the interpretation of the developed probabilistic models considerably.

2.3 Deep learning-based Approach

Besides the probabilistic-based approach, deep learning recently has shown its promise

in solving healthcare mining issue. Pham et al. [34] proposed Deepcare, a dynamic

neuron network based on LSTM model to predict future medical outcomes. This

framework is designed for multitasking including modeling disease progression, recom-

mending necessary intervention, and predicting future risks. Le et al. [35] developed

a memory-augmented neuron network to predict sequences of medications and pro-

cedure. The memory-augmented network is featured with dual controllers where one

for encoding medical history data, and the other for decoding treatment sequences.

More recently, Jin et al. [14] have addressed the treatment sequence prediction by a

multifaceted LSTM framework designed for different types of EMRs.
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Despite the outstanding performances obtained in many applications, the deep

learning approach for healthcare still suffers limitations concerning model interpre-

tation. Most of the current models have not paid attention to integrate medical

domain knowledge that makes them convincing to physicians. Additionally, the de-

veloped models are usually black box models. The recommendation results are uneasy

to be explained under the healthcare perspective.

2.4 Reinforcement-based Approach

Another approach to deal with the treatment recommendation problem is using the

reinforcement learning methods. In this stream, most studies represented outcomes

and treatments as sequences of states and actions. The reinforcement algorithms

are then employed to find optimal treatment sequences. Zhao et al. [36] utilized a

Q learning method to find optimal medications for non-small cell lung cancer from

clinical trials. In that work, the authors employed a modified support vector regres-

sion to approximate the Q-function. Liu et al. [37] proposed a deep reinforcement

learning framework to optimize dynamic treatment regimens from medical registry

data. The authors predicted possible clinical procedures via a supervised learning

step and estimated the long-term value function of dynamic treatment via a deep

reinforcement learning step. Nemati et al. [38] investigated the optimal usage of hep-

arin by deep reinforcement learning together with Hidden Markov Model. Recently,

Wang et al. [12] have developed a framework which combines supervised learning

and reinforcement learning to find optimal dynamic treatments using published real

world electronic medical records.

Studies following this approach are typically conducted for clinical trials with

available treatment outcomes. For prescription records, treatment outcomes could

be reported in daily nursing notes or laboratory indicators. However, identifying the

corresponding outcomes for every doctor’s order in the clinical context is challeng-

ing as it may require deep domain knowledge. Consequently, this drawback makes

the implementation of reinforcement learning seems to be impractical for real-world

EMRs.

2.5 Frequency-based Approach

The third approach derives treatment patterns based on prescription drugs’ frequen-

cies. For clinical pathway mining, Lin et al. [25] constructed dependency graphs

which took into account the frequency of clinical process. The dependency graphs
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then were used to discover frequent clinical pathways. Hirano et al. [39] mined typi-

cal treatment processes based on occurrence and transition frequency maps. In that

work, the author characterized each treatment sequence by a typicalness index and

selected the highest typicalness values as candidate patterns. Sun et al. [40] proposed

a similar measure among prescription records to divide them into clusters and find

frequent drugs among core patients of each cluster as treatment patterns.

The limitation of the above works is that while they proposed many approaches

to reveal frequent treatment patterns, they almost ignore infrequent patterns which

may be useful for physicians to reduce the risk of prescribing drugs mistakenly.

3. Problem Formulation

We consider a set of patients {p1, p2, , pN} who were diagnosed with similar disease

codes. Each pi is a heterogeneous object consisting of different data components

such as basic demographic information Infopi , laboratory examination data Labpi ,

nursing notes Notepi , and prescription data Prescpi . It is noted that the elements

Labpi , Notepi and Prescpi are longitudinal components over nlpi , n
n
pi
, nppi timestamps,

respectively. Each component is a set of features that could be detailed further. For

instance, the Info component for patient pi can be decomposed into:

Infopi = {Infoagepi
, Infogenderpi

, Infomarriagepi
, InfohistIllnesspi

...}

describes in details the age, gender, marriage status, history of illness, to name a few,

of patient pi. The component Prescpi describes information about prescription drugs

over nppi timestamps. It can be decomposed as follows.

Prescpi = {Presctp1pi , P resc
tp2
pi
, ..., P resc

tp
n
p
pi

pi }

where each Prescj = {drj1, drj2, ...} is a set of drugs prescribed at timestamp j.

Each drug dr = {name, startdate, enddate, dosage, route} is a compound object

characterized by information about drug name, starting date, ending time of usage

and the route delivered to patients. The component Notepi contains nursing notes

written in text format about pi’s treatment progress over nnpi timestamps.

Notepi = {Notetn1
pi
, Notetn2

pi
..., Note

tnnnpi
pi }

The component Labpi describes different measurement values of patient condition in

nlpi timestamps.

Labpi = {Labtl1pi , Lab
tl2
pi
, ..., Lab

tl
nlpi

pi }
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where each Labj = {ij1, ij2, ...} is a set of indicator values at time stamp j. Each

i = {name, value} is an indicator characterized by its name and value.

This research aims to construct the following frameworks.

1. A treatment learning framework that utilizes all relevant features from the com-

ponents {Info, Lab, Note, Presc} to learn treatment patterns of each subco-

hort over n periods τ1, τ2, ..., τn. We note that the n treatment periods are not

given in advance. Therefore, identifying n treatment periods for each patient is

a subtask of this framework.

2. A treatment recommendation framework to recommend top M drugs that could

be prescribed over n periods for new patients.

We denote the set of patients {p1, p2, , pN} whose medical records are utilized to

construct the treatment learning framework as training patients. The terms new

patients and testing patients are used interchangeably in this report.

4. Treatment Learning Framework

In this section, we describe our framework for the treatment learning problem given

medical records of training patients having the same diagnostic codes. The learning

framework captures the intuition that patients who share as many latent features

underlying their health condition and profiles as possible are likely to belong to the

same subcohort. Patients in each subcohort, as a result, could share patterns in

treatment. Figure 1 describes an overview of the proposed treatment learning frame-

work. It consists of two major tasks: clustering patients into subcohorts and learning

typical treatment patterns for each subcohort. We note that in this figure, the term

regimens is equivalent to the term treatment patterns and the term regimen trees

is equivalent to prescription trees. We present all relevant steps of the treatment

learning framework in the following subsections.

4.1 Data Preprocessing

The framework collects two sets of training patients’ medical records to accomplish

the above tasks. One is the set of components {Lab, Info, Note} named as non-

treatment based records to serve for the subcohort construction and the other is the

component Presc named as treatment based records to serve for the derivation of

treatment patterns of each subcohort. We note that non-treatment based data con-

tains both static (Info) and longitudinal data ({Lab, Note}). As the ultimate goal of

9
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Figure 1: Overview of the treatment learning framework.

our work is to recommend prescription drugs for new patients from the early days of

their admission, we only collect initial values of longitudinal non-treatment-base data

of training patients, i.e.the data recorded at timestamp tl1, tn1, respectively. Our

data collection’s strategy assumes that patients with similar initial signs, symptoms,

or laboratory indicators are probably treated by similar care plans.

We encode categorical features as one-hot encoding vectors and normalize numer-

ical features to zero-mean unit-variance. For text data, we extract initial relevant

features by cTAKES [41], a well-known tool designed for clinical text processing. Its

primary function is to identify clinical terms in a given text and link them to concepts

in the Unified Medical Language System (UMLS) [42], a large ontology constructed

for the biomedical domain. Not only do cTAKES normalize discovered clinical terms,

but it also allows distinguishing semantic types of clinical terms. In our framework,
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Gi(vi) Hik(vi) Pi(vi|h)

Binary aivi wikvi
exp(aivi+

∑
k wikhkvi)

1+exp(ai+
∑
k wikhk)

Gaussian −v2i /2σ2 + aivi wikvi N (σ2
i (ai +

∑
k wikhk), σi)

Categorical
∑

m aimδm[vi]
∑

m,k aimkδm[vi]
exp(

∑
m aimδm[vi])+

∑
m,k wimkδm[vi]hk)∑

l exp(ail+
∑
k wilkhk)

Table 1: The type specific functions in the MV.RBM model

we are interested in the extracted terms with specific clinical meanings to represent

training and testing patients. Thus, we select the terms linked to clinical concepts of

which semantic types are signs/symptoms or diseases.

4.2 Data Representation and Patient Clustering

The encoded non-treatment based data is mixed of numerical, binary or categorical

data types. Such heterogeneous input vectors are often difficult to feed to clustering

methods. To this end, we employ an MV.RBM, a powerful unsupervised representa-

tion model, to transform encoded input vectors to their homogeneous representations.

MV.RBM is an extension of RBM model developed for heterogeneous input units.

In the MV.RBM architecture, the data type of input layer is designed for not only

binary units, but also numerical or categorical units. Denote v = (v1, v2, .., vN) as the

set of visible input units and h = (h1, h2, .., hK) as the set of hidden units. MV.RBM

defines a more deliberate energy function which covers the case of other data types

in addition to binary data. The formula of the energy function is given as follows:

E(v,h) = −(
∑
i

Gi(vi) +
∑
k

bkhk +
∑
ik

Hik(vi)hk)

where b = (b1, b2, .., bN) are biases vectors for hidden layer, Gi(vi) and Hik(vi) are

specified-type functions. By exploiting the conditional independence property within

nodes in a layer of bipartite structure, we can get the following factorization equations:

P (v|h) =
N∏
i=1

Pi(vi|h); P (h|v) =
K∏
k=1

P (hk|v)

Pi(vi|h) =
1

Z(h)
exp(Gi(vi) +

∑
k

Hik(vi)hk)

P (h1k|v) =
1

1 + exp(−wk −
∑

iHik(vi)
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Figure 2: A MV.RBM for patient records. The green, blue and orange circles represent
for binary, categorical and continuous input units. The circles with labels D, S, L
indicate demographic, signs/symptoms and laboratory data, respectively.

where h1k indicates the assignment hk = 1, and Z(h) is a normalization constant.

The functions Gi(vi), Hik(vi) and corresponding Pi(vi|h) for each kind of data are

given in Table 1 [24]. We note that in Table 1, ai, aim are input bias parameters,

wik, wimk are input-hidden weighting parameters. Those with extra subscript m

are dedicated for categorical features. The inference step for model parameters θ =

(b, a, w) can be found in [24].

Assuming input features are mutually independent given their latent factors, Fig-

ure 2 demonstrates how to feed non-treatment features by MV.RBM. Without losing

generality, we suppose demographic features takes either numerical, binary or cate-

gorical values while indicator features take numerical values. For text data, we extract

signs/symptom or disease UMLS concepts as described in the previous section and

represent them by one-hot encoding vectors. After training the MV.RBM, we con-

sider the hidden states as transformed features of encoded input vectors. The latent

representation vectors then can be fed easily by clustering methods. In this particular

work, we use Hierarchical clustering with Hamming distance to cluster representation

vectors of training patients. Based on a survey about hierarchical clustering methods

for binary vectors [43], we decide to use the complete linkage as it was reported to

return low error rate when used in combination with symmetric measures.

4.3 Prescription Drugs’ Normalization and Indication Assignment

This section describes our approach for preprocessing treatment based data. As

physicians usually prescribe patients the same ingredient drugs under various names,

it is crucial to perform drug normalization before doing further steps. For every

prescription drug, we use cTAKES to identify its candidate UMLS clinical concepts

and select the ones whose semantic is about medication. In case a few medication

12
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Figure 3: Overview of the framework for labeling prescription drug’s indication
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concepts are suggested for the same prescription drug, we revise the mapping by

confirmation from domain experts and select the most appropriate one.

Besides normalizing drug name, labeling drug indication is one of the most im-

portant steps which assist the subsequent tasks in our work. Drugs with available

indication labels are not only necessary for measuring the change of indication in

prescription records but also meaningful in interpreting treatment patterns of pa-

tient subcohorts. For every normalized drug dr, we try to identify which diseases or

symptoms are treated by dr and classify dr’s indication to one of the three following

indication groups which are the primary group, symptom group or risk factor group.

The primary group consists of drugs to treat at least one of the diagnostic diseases or

their closed diseases. The symptom group is a set of drugs to treat typical symptoms

of the considering diseases while the risk factor group is determined as a set of drugs

to treat risk factors that may cause the considering diseases.

Figure 3 illustrates the idea of labeling drug indication. We collect from Wikipedia

and biomedical literature text sections regarding the definitions, typical symptoms

and risk factors of the considering diseases. These texts are then processed by

cTAKES to extract UMLS concepts of which semantic types are about symptoms

or diseases. For normalized drugs, we look for their indication description given in

the DrugBank database. We take into account all synonym drugs to ensure that the

indication of every normalized drug has been found in the database. The labeling

mechanism works as follows. Given a normalized drug, we process its associated indi-

cation text by cTAKES and extract UMLS concepts which are diseases or symptoms

which can be cured by the considering drug. We label all prescription drugs to the

primary group, symptom healing group, risk factor healing group in that priority if

their indication texts and the text sections describing the definition, the symptom,

the risk factor of the considering diseases share common disease or symptom UMLS

concepts. We note that our indication labeling mechanism also allows identifying in

details the diseases or symptoms treated by every normalized drug. This feature is

useful in interpreting the treatment patterns of each subcohort which will be presented

in the later part of this report.

4.4 Treatment Period Identification

Patient prescription records are complex and varying-length objects. In the liter-

ature, researchers split prescription records by fixed intervals of treatment periods

[40, 44]. As treatment period identification process may affect the derivation of treat-
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ment patterns significantly, dividing treatment records by fixed intervals without a

domain integration seems too rigid. In this work, we address this issue flexibly by a

domain-based approach. The main idea is inspired by the observation that patients

are possibly in a new treatment period whenever there is a significant change in pre-

scription indication given to the patients. To characterize the strength of indication

changes in prescription records, we construct an accumulated score for each times-

tamp which takes into account prescription drugs which are new, recent stoppage,

redelivered with dosage changed. Based on the drugs’ indication group, we count

on the number of drugs among those drugs which belong to the primary indication,

symptom group, or risk factor group. The accumulated scores aggregate these quan-

tities weighted by their importance in treating the considering disease. We assign the

weights in decreasing order of primary, symptom, or risk factor group.

Algorithm 1: Scoring prescription records
Data: Θ, T , MDB, SDB
Result: return scores as a list of accumulated scores

1 Initialize U as an empty set ; . set of recently delivered drugs

2 Initialize scores as an empty list ;
3 aScore := 0 ; . the accumulated score

4 for each d ∈ T do
5 D := {dr | ∀dr ∈ Θ ∧ dr.startdate == d} ; . delivered drugs on date d

6 N := {dr | ∀dr ∈ D ∧ dr.name /∈ U.name} ; . newly delivered drugs

7 DC := {dr | ∀dr ∈ D,∃dr′ ∈ U such that dr.name == dr′.name ∧ dr.dosage <>
dr′.dosage} ; . dosage changed drugs

8 S := {dr | ∀dr ∈ U ∧ dr.name /∈ D.name ∧ dr.enddate < d} ; . recently

stopped using drugs

9 for each d′ ∈ U do
10 if ∃d′′ ∈ D such that d′.name == d′′.name then
11 d′ := d′′ ; . update U with redelivered drugs

12 U := (U \ S) ∪N ; . update U with newly delivered drugs

13 CD := N ∪DC ∪ S ; . considering drugs for calculating scores

14 CMD := CD.name ∩MDB; . considering main drugs

15 CSD := CD.name ∩ SDB; . considering symptom-healing drugs

16 UD := CD.name \ (CMD ∪ CSD); . unclassified drugs

17 aScore = aScore + |CMD| × wmain + |CSD| × wsymp + |UD| × wunk;
18 Add aScore to scores

Our notations for the treatment period identification algorithm are explained as

follows. We denote drp,tj = < name, startdate, enddate, dosage > to characterize ev-

ery drug drj prescribed for patient p at specific timestamp t by its normalized drug
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name, starting date, ending date of usage, and the dosage. Let Θp = {drp,tj .name}
be the set of drugs given to the patient, T p = {drp,tj .startdate} be the ordered set

of prescribed dates, and PD, SD, RD be sets of primary drug, symptom-healing

drugs, risk factors healing drugs which have been identified in the previous section,

respectively. The detailed algorithm for scoring changes in prescription indications

for a patient p at the timestamp t is presented in Algorithm 3. For readability, we

remove the superscript p, t, j and use Set notations in the pseudocode.

4.5 Prescription Tree Construction

We have demonstrated our domain-embedded algorithm for the treatment period

identification. In this section, we describe how treatment patterns over a period for

each patient subcohort are derived. It is worth noting that this step takes into account

normalized drug names only. Information regarding dosage, route, chronological order

among drugs in each period is supposed to be decided by physicians.

In the literature, treatment patterns are often discovered as a set of frequent pre-

scription drugs from core patients of each subcohort [40]. This approach, however,

often requires a minimum support threshold which is subjective and sensitive. More-

over, it is uneasy for physicians to figure out the set of infrequent prescription drugs

under this approach.

Algorithm 2: Procedure for the construction of a prescription tree

Tree(d, ν,Γ,Ωδν ,Λ)
1 if Ωδν is ∅ or d == Υ then
2 return

3 k := arg max
i

∑n
j=1 aij ;

4 Γ[δν , k] := “↖”;
5 δk := δν ∪ k ;
6 Ωδk := Ωk

δν
;

7 Ωδν+ := Ω−kδν ;

8 Λδk := {j s.t ωkjδν = 1} ;
9 if |Λδk | < ε then

10 Tree(d,Ωδk , ν,Λ);
11 else
12 Tree(d+ 1,Ωδk , k,Λ);
13 Tree(d,Ωδν+ , ν,Λ);

14 return ;
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To this end, we suggest organizing treatment patterns in a tree form where each

node represents a prescription drug. At a considering node, we extract prescription

records of patients who were prescribed by the nodes from the root until the consid-

ering node. The leftmost child node is labeled with the most frequently prescribed

drug apart from those linked with the parent nodes. Determining drug label of the

next child node follows the same mechanism, but we exclude prescription records of

patients who were treated by left-hand side nodes on the same level. We continue

this procedure recursively until the number of patients treated with drugs from the

root until that node is less than some threshold. Besides labeling drugs for prescrip-

tion tree’ nodes, we also save the IDs of the patients who were treated by the set

of drugs from the root until each node. It is of interest to note that each patient is

treated by nodes on a unique path in the tree. We named this path as treatment

path of those patients linked with its node. This property is useful for the treatment

recommendation task presented in the subsequent section. We denote the notations

for the prescription tree construction algorithm as follows.

• d: the current depth of the constructing prescription tree.

• ν: the constructing node.

• Γ: the constructing prescription tree.

• δν : the treatment path from the root until ν.

• δν+: the treatment path from the root until the next unlabeled child node of ν.

• Ωδν : the current patient-drug interaction matrix corresponding to treatment

path δν . Table 2 illustrates the initial interaction matrix Ωδφ of the root node

where {
ωkjδφ = 1 indicates patient pj is treated with drug drk

ωijδφ = 0 indicates patient pj is not treated with drug drk

• Ωk = (ωij): the interaction matrix of patients were treated with drug k, where{
i such that i 6= k

j such that akj = 1
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• Ω−k = (ωij): the interaction matrix of patients were not treated with drug k,

where {
i such that i 6= k

j such that akj = 0

• Λδν : the patient ids of patients who were treated by drugs on δν .

• ε: the threshold to stop constructing prescription tree.

• Υ: the highest depth of the prescription tree.

Algorithm 2 demonstrates the detailed algorithm of the construction of the

treatment tree for a patient subcohort over a specific period.

p1 p2 ... pj ... pn
dr1 ω11 ω12 ... ω1j ... ω1n

dr2 ω21 ω22 ... ω2j ... ω2n

... ... ... ... ... ... 1

drk ωk1 ωk2 ... ωkj ... ωkn

... ... ... ... ... ... ...

drm ωm1 ωm2 ... ωmj ... ωmn

Table 2: The initial drug-patient interaction matrix.

5. Treatment Recommendation Framework

This section presents a framework aiming to assist physicians for the treatment rec-

ommendation task. In the medical field, we assume that physicians have sufficient

knowledge to filter out the necessary medications among those recommended. One of

the most important things is to provide an explainable recommendation mechanism

that is able to show which known patients’ prescription records the recommendation

is based on and how those records are integrated to derive the recommendation re-

sults. A treatment recommendation framework therefore, requires being good not

only in terms of evaluation metrics but also in terms of explainability. Unfortunately,

this issue is underestimated in most of the related studies.

Intuitively, one can suggest treatment for new patient based on prescription drugs

of the most similar known patient, i.e. the nearest neighbor patient. However, it is
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Figure 4: Overview of the recommendation framework.

uneasy to identify such patient since he may not have been recorded in the database,

or he is just similar to the new patient partially in several aspects. As a result, the

treatment of the new patient and the treatment of the nearest neighbor patient may

not be identical in reality. To this end, we propose a neighbor-based treatment rec-

ommendation framework that mimics human intuition to suggest treatment for new

patients based on their K neighbors’ treatments. Figure 4 describes our idea for the

treatment recommendation framework. Given a new patient p, we only consider his

initial non-prescription based feature vector and transfer it to the binary form through

the parameters θ̂ = (â, b̂, ŵ) learned by the trained MV.RBM used for representing

mixed type vectors of training patients. Let hp be the binary hidden vector of p, hp
′

be the binary hidden vector of training patient p′, the similarity between two patients

is defined by the Hamming distance between their latent representations as below.

dpp′ = Hamming(hp, hp
′
) =

1

|h|

|h|∑
i=1

I(hpi 6= hp
′

i )

In our proposed framework, we utilize the resulting prescription trees to find the

K associated treatment paths of the neighbors. Each treatment path is considered
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as a set of typical drugs treating one of the K neighbors and therefore contributes in

the construction of treatment for patient p. It is worth noting that to capture the

variant in treatments of similar patients, the K neighbor patients and their associated

treatment paths can belong to different subcohorts. Let δp
′

= {drp
′

1 , dr
p′

2 , ...dr
p′

M}
denote the set of drugs linked with the treatment path of p′, we find the K similar

patients p1, p2, ..., pK of p and utilize the associated δp1 , ..., δpK and the distances

dpp1 , d
p
p2
, ...dppK to recommend M drugs for p. Let C = {dr1, dr2, ..., drj} be the set of

distinct drugs named as candidate drugs unioned from δp1 , ..., δpK . We propose two

following recommendation approaches.

5.1 Non-weighting Approach

The intuition underlying this approach is that prescription drugs delivered to many

neighbors are likely to be used for new patient. Therefore, for every candidate drug dr

in C, we compute its path frequency freqpd, i.e how many treatment paths contains

dr as one of the criteria for recommendation. Drugs with higher path frequency

indicates that it is prescribed for a greater number of neighbor patients and hence,

have a higher probability to be recommended for new patients. The formula of freqpdr
is provided as follows.

freqpdr =
K∑
i=1

I(dr ∈ δpi) (1)

To solve the case dr has the same path frequency with other drugs, we propose

considering a distance priority metric dpdr, another measure which takes into account

the distance from test patient to the neighbors whose treatment paths contain dr.

The greater the sum of the inverse distance from those neighbors to p, the higher

priory the drug is selected as candidate drugs. We provide the formula of dpdr as

below.

distpdr =
K∑
i=1

I(dr ∈ δpi)× 1

dp
pi

(2)

Algorithm 3 provides a pseudocode for recommending drugs for new patient p

using non-weighting approach.

5.2 Weighting Approach

The non-weighting approach simply takes into account the frequency of candidate

drugs among K treatment paths. This approach, however, seems to work effectively
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Algorithm 3: Recommending prescription drugs for new patient p

Data: Γ, Λ, θ, vp, H train

Result: return top M recommended drugs
1 Compute hp = P (h|vp, θ);
2 Compute similarity between hp and each training patient in H train;
3 Select K most similar patients p1, p2, ..., pK ;
4 Trace associated treatment paths γp1 , γp2 , ..., γpK through tracing variables Λ ;

5 C =
⋃K
i=1 γ

pi ;
6 for each dr ∈ C do
7 Compute freqpdr by equation (1);
8 Compute distpdr by equation (2);

9 Return top M drugs sorted by (freqp, distp);

only if the K neighbors are reliable neighbors, i.e their treatments are highly relevant

to p’s treatment. In case the prescription drugs of K neighbors are quite different from

p, we propose a more deliberate framework which assign a weight to each node on the

K treatment paths to indicate how likely that node is selected when its associated

treatment path is used as treatment for some neighbor patients. To do that, we split

the training patients into several subsets where we consider each subset as sub-test

patients and the rests are sub-training patients. For each patient in the sub-tests, we

query his K1 neighbors p1, p2, ...pK1 and their associated treatment paths δp1 , ..., δpK1 .

For each patient pj in the sub-training set, let Spj be the set of patients who have p

as one of their K1 neighbors. We assign a hitting-score hitδ
pj

dr to each drug dr on the

treatment path δpj of training patient pj as follows.

hitδ
pj

dr =
∑
pk∈Spj

d
pj
pk
× I(dr ∈ δpk)

In the above formula, every time drug dr was used to treat a patient pk in Spj ,

we add to the hitting score hitδ
pj

dr a reward equal to the distance d
pj
pk

. The meaning is

that when pj and pk are far neighbors and dr has been found in the treatment of pk, it

is added more weight than the closer neighbors as an compensation for the possibility

of incorrectly identifying close neighbors. In case pj and pk are close neighbors and dr

has been found in the treatment of pk , as there is a high possibility dr can be found

in the treatment of pk, hence we add a relative small award equal to their distance to

the hitting score.
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After weighting all nodes in the prescription trees with sub train and sub test sets

from training patients, we perform the procedure for selecting recommendation drugs

for testing patient p. For each candidate drug dr in the set C, we compute an average

hitting score hitpdr weighted by the distances from the test patient to neighbors whose

treatment paths include dr. The formula of hitpdr is given as follows.

hitpdr =
1∑K

i=1 I(dr ∈ δpi)

K∑
i=1

I(dr ∈ δpi)× hitδpidr × d
p
pi

(3)

Algorithm 4 summarizes the idea of the weighting approach in pseudocode.

Algorithm 4: Recommending prescription drugs for new patient p with
weighted nodes

Data: Γ, Λ, θ, vp, H train

Result: return top M recommended drugs
1 Split training set into subtrain and subtest sets ;
2 Initialize all nodes in the prescription trees with 0 hitting score;
3 for each pair (subtrain , subtest) do
4 for each p in the subtest do
5 Select K1 most similar patients p1, p2, ..., pK1 among subtrain set ;
6 Trace associated treatment paths γp1 , γp2 , ..., γpK1 through tracing

variables Λ ;
7 for each γpi do
8 for each dr in γpi do

9 If p was treated with dr hitδ
pj

dr = hitδ
pj

dr + dp
pi

10 Compute hp = P (h|vp, θ);
11 Compute similarity between hp and each training patient in H train;
12 Select K most similar patients p1, p2, ..., pK ;
13 Trace associated treatment paths γp1 , γp2 , ..., γpK through tracing variables Λ ;

14 C =
⋃K
i=1 γ

pi ;
15 for each dr ∈ C do

16 Compute hitpdr by equation (3);

17 Return top M drugs sorted by hitpdr;

6. Experimental Evaluation

In this section, we focus on evaluating the efficacy of our proposed treatment rec-

ommendation framework in comparison to several explainable methods for medical
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domain problem. We also present intermediate results expressing clinical meanings

and the possible interpretation of resulting prescription trees.

6.1 Evaluation Metric

Let us denote the notations for this section are as follows:

• M : the number of recommended drugs.

• T : the test set, i.e set of new patients.

• n: the number of treatment periods.

• D̂πj
p : the set of recommended drugs for the testing patient p in period πj.

• Dπj
p : the set of actual prescription drugs for p in period πj.

We use precision, recall, and F1 score, the three well-known evaluation metrics, to

evaluate the performance of our treatment recommendation framework. The formulas

of these metrics are given as follows.

recall =
1

|T | × n
∑
p∈T

n∑
j=1

|D̂πj
p ∩Dπj

p |
|Dπj

p |

precision =
1

|T | × n
∑
p∈T

n∑
j=1

|D̂πj
p ∩Dπj

p |
M

F1 =
2× precision× recall
precision+ recall

6.2 Dataset

Our experiments were performed on MIMIC databases [45], a real world publicly

available EMRs database. It consists of nearly 60000 patients who stayed in critical

care units of the Beth Israel Deaconess Medical Center between 2001 and 2012.

Although our framework is designed for a set of patients who have the same

diagnostic codes, it is uneasy to find such large datasets in reality since patients are

usually diagnosed with non-identical series of ICD-9 codes. Therefore, we consider

patients with the same first diagnostic code as a cohort. Table 3 reports top five

single admission cohorts in the MIMIC III database.

We extracted patient records of the first, the second and the fifth cohort for our

experimental evaluation as these cohorts seem to be less relevant to each other. For
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(a) (b)

(c)

Figure 5: The histogram of number of prescription drugs per patient in three cohorts.

short, we name the three cohort as the coronary artery, septicemia, and respiratory

cohort. We extract only patients who were prescribed more than three days for each

subcohort. Those with no prescription data or nursing note data are not taken into

account in our experiments. We use cTAKES to extract initial signs/symptoms.

Sign/symptom features which appear less than 5% or greater than 95% in the cohort

are excluded. As not all patients have laboratory tests on all indicators, we fill out

the indicator features with unavailable values to 0. For demographic data, we only

collect the features that probably affect patient health status for example gender,

age, marriage status. For prescription data, we carefully normalize drug names by

selecting the most appropriate UMLS term for each prescription drug. Some UMLS
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Primary ICD 9 Name Number of patients

41401
Coronary atherosclerosis of native
coronary artery

3430

0389 Unspecified septicemia 1805
41071 Subendocardial infarction 1654
4241 Aortic valve disorders 1122
51881 Acute respiratory failure 945

Table 3: Top 5 primary codes with singe admission

Coronary artery Septicemia Respiratory

Number of patients 3430 1805 945

Number of processed patients 2751 1359 658

Number of prescription drugs 1251 1238 1047

Number of normalized drugs 599 630 537

Number of drugs with
relevant indication labels

244 190 100

Table 4: Statistic about datasets used in our experimental evaluation

medication terms have equivalent terms in DrugBank database but it is hard to find

their indication text if using the UMLS medication terms. For such cases, we use the

DrugBank terms instead. It is noted that we only recommend the prescription drugs

with indication labels as they are highly relevant drugs to treat the primary diagnosis

code.

Table 4 presents an overview of the datasets before and after preprocessing. There

are more than 500 prescription drugs delivered to each cohort. Figure 5 provides the

histogram of the number of prescription drugs with indication labels delivered to each

patient on the three cohorts and Table 5 provides a list of top 15 prescription drugs

in each cohort. Most patients were treated with more than 10 labeled drugs.

6.3 Parameter setting

This section describes our parameter selection. We set the number of hidden units

in the trained MV.RBM models to 100 units since the learning error rate does not

decrease significantly with a larger size of hidden units. Regarding the number of

subcohorts set in the clustering analysis step, Figure 6 shows the resulting dendrogram

of coronary, respiratory and septicemia cohort, respectively. We find that in these

cohorts, training patients are well separated at the distance above 0.6. However,
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Cornonary potassium chloride; aspirin; metoprolol; acetaminophen; insulin
lispro;docusate; sodium chloride; furosemide; oxycodone; magnesium sul-
fate

Septicemia vancomycin; heparin; potassium chloride; sodium chloride; magnesium sul-
fate; insulin lispro; acetaminophen; furosemide; pantoprazole; docusate

Respiratory heparin; potassium chloride; salbutamol; furosemide;insulin lispro; van-
comycin; sodium chloride; ipratropium;docusate; metoprolol

Table 5: The top 10 prescription drugs in three cohorts
y

splitting the training patients at this distance will result in large size subcohorts

where treatment in each subcohort may vary considerably. For this reason, we cut

the dendrograms at the distance 0.4 to obtain more small-size clusters.

(a) (b)

(c)

Figure 6: The clustering results of coronary cohort, respiratory cohort, and septicemia
cohort, respectively.

Regarding the depth parameter of the prescription tree, we set it to the number of

prescription drugs M to be recommended. For the number of treatment periods n, it

is not easy to be confirmed by domain knowledge. Indeed, in our work, it plays a role

as to which extent our recommendation framework concerns about the order of groups
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of recommendation drugs. The higher value of n, the more important to force these

groups to preserve the chronological order of delivered time. For this particular work,

we split the prescription records of patients in all datasets into three periods where

the splitting point are the timestamps of which the associated accumulated indication

scores change significantly. For the weighting parameters of indication groups in the

treatment period identification algorithm, we ask for an expert’s advice to assign the

weight of main group, symptom group, risk factor group to 1, 0.7, 0.5, respectively.

In the treatment recommendation framework using both weighting and non-weighting

approach, we vary the number of neighbors K with 5, 10, 15, 20, 30, 40, 50, 80, 100

and 200 neighbors. For the weighting approach, we split the training set into 5 subsets

and then learn the hitting score of nodes in the treatment paths of training patients.

The number of sub training neighbors K1 is varied with 50, 100, 150, 200 neighbors.

6.4 Baseline

We consider our treatment recommendation problem as the top-M item recommen-

dation problem where users are patients and items are prescription drugs. Although

rich side information about patients such as patient demographic, indicator, progres-

sive data is available, it is not straightforward to exploit such information to leverage

user preferences, i.e how likely a prescription drug is given to a patient. For this rea-

son, we compare our proposed recommendation framework to an API implemented

for recommender system with implicit feedback in Graphlab library 1. This API was

implemented based on the idea presented in [46, 47, 48]. In the implicit case, there is

no target value, the API uses the logistic loss to fit a model that attempts to predict

all the given (user, item) pairs in the training data as 1 and all others as 0 2.

We report the results using three solvers: implicit alternative least square [47],

stochastic gradient descent [49] and adaptive stochastic gradient descent. For short,

we name these baselines as GraphLab + IALS, Graphlab + SGD and Graphlab +

ASDG, respectively. We also test our framework when using K = 1, i.e recommending

based on prescription drugs of the nearest neighbor patient only.

To estimate the hitting weight of the nodes in prescription tree more accurately,

we prefer to set a relative large number of K1. We fix K1 = 100 and report the results

by using weighting and non-weighting approach in three scenario as follows.

1. https://turi.com/products/create/docs/graphlab.toolkits.recommender.html
2. https://turi.com/products/create/docs/generated/graphlab.recommender.ranking_

factorization_recommender.RankingFactorizationRecommender.html
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Sample text Coronary artery disease (CAD), also known as ischemic heart disease
(IHD), refers to a group of diseases which includes stable angina, un-
stable angina, myocardial infarction, and sudden cardiac death. It
is within the group of cardiovascular diseases of which it is the most
common type.

Extracted terms coronary artery disease; coronary heart disease; cardiovascular dis-
eases; coronary arteriosclerosis; myocardial ischemia; arteriopathic
disease; myocardial infarction; stable angina; angina, unstable; coro-
nary artery

Table 6: Sample extracted UMLS terms by using cTAKES.

• Using a relative small value of K(K = 20), named shortly as Weighting (K=20)

and Non-Weighting (K = 20).

• Using a relative large value of K(K = 50), named shortly as Weighting (K=50)

and Non-Weighting (K = 50).

• Using a large value of K(K = 200), named shortly as Weighting (K=200) and

Non-Weighting (K = 200).

7. Result

We first present intermediate results followed by an example of a resulting prescrip-

tion tree and its interpretation. Lastly, we show the performance of our proposed

framework for the treatment recommendation task. Table 6 gives an example of

UMLS construction extraction for the definition of coronary artery disease by using

cTAKES. It can be seen that all extracted UMLS terms are relevant to coronary

artery disease or its close diseases.

Table 7, 8, 9, 10, 11, 12 provide lists of extracted UMLS terms for the three text

sections and medication terms belonging to the three indication groups of coronary

artery cohort, respiratory cohort and septicemia cohort, respectively. We note that

extraction of UMLS terms for the definition, the sign/symptom and the risk fac-

tor text sections of each disease cohort requires a little efforts to double check and

eliminate possible irrelevant concepts that may be mixed in the results.

Figure 7 gives an example of resulting prescription tree over a specific period in a

subcohort of the coronary cohort. It is noted that some nodes have a prefix “m”,“s”,

“r” to indicate the associated prescription drugs are primary, sign/symptom or risk
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Definition coronary artery disease; coronary heart disease; cardiovascular dis-
eases; coronary arteriosclerosis; myocardial ischemia; arteriopathic
disease; myocardial infarction; stable angina; angina, unstable; coro-
nary artery

Signs/symptoms common cold; dyssomnias; coronary artery rupture; arteriopathic dis-
ease; myocardial infarction; stomach diseases; cardiac arrest; heart
failure; stable angina; angina, unstable; cold sweat; feeling tired;
vomiting; tired; fatigue; heartburn; chest pain; dyspepsia; pain; light-
headedness; nausea; chest discomfort; dyspnea; actual discomfort;
syncope; stress; does walk up stairs; palpitations; sweating; irregular
heart beat; cardiac arrhythmia; angina pectoris; swelling; does climb;
infarction; obstruction; occlusion of artery (disorder); thrombus

Risk factors heart diseases; atherosclerosis; diabetes mellitus; obesity; rheumatoid
arthritis; metabolic syndrome x; chronic kidney diseases; endometrio-
sis; lupus erythematosus; hypercholesterolemia; cerebrovascular ac-
cident; hypertensive disease; arteriopathic disease; kidney diseases;
arthritis; adult disease; overweight; malaise; stress; diet poor; hypoki-
nesia; suicidal; depressive disorder; drug abuse; sexual abuse; insulin
resistance

Table 7: Extracted UMLS terms for the text sections about the definition, the typical
symptoms and the risk factors of coronary artery cohort.

Primary nifedipine; eplerenone; aprotinin; timolol; isosorbide mononitrate;
ibuprofen; ramipril; candesartan cilexetil; valsartan; atorvastatin;
nicardipine; vitamin e; dopamine; cangrelor; abciximab; captopril

Signs/symptoms sulindac; indapamide; sertraline; aluminum hydroxide; triamterene;
tramadol; nitroglycerin; oxycodone; dipyridamole; dyclonine; nitro-
prusside; magnesium oxide; procainamide; cholestyramine; fentanyl;
fosinopril

Risk factors escitalopram; betaxolol; repaglinide; terazosin; dorzolamide; lan-
thanum carbonate; insulin glargine; pindolol; felodipine; brimonidine;
prednisolone; desmopressin; vasopressin; sevelamer; glimepiride; eze-
timibe

Table 8: Medication terms belonging to the primary, the sign/symptom, the risk
factor indication groups of coronary atery cohort.
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Definition respiratory failure without hypercapnia; acute respiratory fail-
ure; acute-on-chronic respiratory failure; spastic ataxia, charlevoix-
saguenay type; respiratory failure; chronic respiratory failure; respi-
ratory depression; respiratory tract structure; respiratory tract infec-
tions; lower respiratory tract structure; lower respiratory tract infec-
tion

Signs/symptoms increased sweating; restlessness; shallow breathing; cardiac arrhyth-
mia; irregular heart beat; unconscious state; drowsiness; tachypnea;
sweating; confusion; anxiety

Risk factors chronic obstructive airway disease; lung diseases; communicable dis-
eases; asthma; heart failure; airway obstruction; chronic lung disease;
infectious disease of lung; respiratory failure; thrombophilia; pneu-
mothorax; respiration disorders

Table 9: Extracted UMLS terms for the text sections about the definition, the typical
symptoms and the risk factors of respiratory cohort.

Primary clindamycin; ciprofloxacin; ceftazidime; amoxicillin; cephalexin;
trimethoprim; tramadol; doxycycline; naloxone; guaifenesin; ery-
thromycin; clarithromycin; aztreonam; benzocaine; dyclonine

Signs/symptoms paroxetine; escitalopram; quinidine; chloral hydrate; oxazepam;
modafinil; melatonin; diazepam; alprazolam; digoxin; doxepin; ropini-
role; disopyramide; chlorpromazine; fluoxetine; lorazepam

Risk factors theophylline; nesiritide; tobramycin; furosemide; cefepime; valsartan;
hydrocortisone; nevirapine; vitamin e; irbesartan; captopril; ampi-
cillin; torsemide; ethacrynate; nitroprusside; ribavirin

Table 10: Medication terms belonging to the primary, the sign/symptom, the risk
factor indication groups of coronary septicemia cohort.

30

DISTRIBUTION A:  Approved for public release, distribution unlimited



Definition bacterial infections; bacteremia; sepsis; communicable diseases; bac-
terial sepsis

Signs/symptoms oliguria; hyperglycemia; dehydration; common cold; alkalosis; diar-
rhea; lightheadedness; actual discomfort; chest pain; syncope; vom-
iting; dyspnea; nausea; pain; death anxiety; cold intolerance; exan-
thema; agitation; tremor; dizziness; weakness; chills; fever with chills;
single organ dysfunction; myalgia; fever

Risk factors infections, hospital; chronic disease; acquired immunodeficiency syn-
drome; diabetes mellitus; kidney diseases; sepsis due to fungus; infec-
tions of musculoskeletal system; pneumonia; soft tissue infections; hiv
infections; urinary tract infection; candidiasis; senility

Table 11: Extracted UMLS terms for the text sections about the definition, the typ-
ical symptoms and the risk factors of septicemia cohort.

Primary benzylpenicillin; cefepime; delavirdine; doxycycline; nevirapine;
dopamine; raltegravir; tenofovir disoproxil; ampicillin; neomycin;
ciprofloxacin; sulfamethoxazole; imipenem; cefalotin; lamivudine; os-
eltamivir

Signs/symptoms clonidine; meperidine; escitalopram; nesiritide; paroxetine; nortripty-
line; haloperidol; tramadol; cyclobenzaprine; loperamide; sodium bi-
carbonate; hydrocodone; oxycodone; ibuprofen; chlorpheniramine;
hydromorphone

Risk factors vasopressin; vancomycin; daptomycin; amikacin; lanthanum carbon-
ate; bacitracin; furosemide; ramipril; repaglinide; levocarnitine; pen-
tamidine; maraviroc; famciclovir; nitrofurantoin; amphotericin b;
rosiglitazone

Table 12: Extracted septicemia’s medication terms belonging to the primary, the
sign/symptom, the risk factor indication groups.
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factor drugs, respectively. The suffix number in each node named as node frequency

indicates how many patients were prescribed by drugs on the path from the root node

until that node excluding the drug with higher prescription frequency on the same

level of that drug and those with higher prescription frequency on the same level of

parent nodes. The sample prescription tree can be interpreted as follow. Starting

from the root node, the primary drug metoprolol is the most prescription drug which

was prescribed for 59 patients. Among the patients treated with metoprolol, the

symptom drug furosemide is the most prescription drug treating 48 patients . Among

the patients who were not treated with metoprolol, aspirin is the most prescription

drug treating 3 patients. The remaining nodes in the tree can be explained in a similar

way. It can be noticed that the treatment path (metoprolol, furosemide, potassium

chloride, insulin lipspro, aspirin, acetaminophen, docusate, bisacodyl, magnesium

hydroxide, oxycodone) was prescribed with high node frequency. This set can be

considered as the primary treatment pattern of the considering subcohort.

In the indication assignment framework, we can recognize not only the indication

group of a prescription drug but also the signs/symptoms treated by that drug. This

property allows interpreting in depth the discovered treatment pattern sets. For ex-

ample, besides the main drugs metoprolol , aspirin (cure myocardial infarction, the

UMLS term highly relevant to the definition of coronary artery disease), the primary

treatment pattern set also includes symptom drugs furosemide, acetaminophen, mag-

nesium hydroxi (cure pain symptom, heart failure, heartburn symptom), risk factor

drugs insulin lispro (cure diabetes mellitus disease). It can be inferred that most of

the patients in the subcohort of sample prescription tree probably suffered symptoms

of heart disease and diabetes disease.

Besides the set of frequent pattern drugs, the resulting prescription tree also allows

recognizing a set of drugs which are not frequently described together. For instance,

in the above example, the drug ibuprofen is not likely to be prescribed together with

metoprolol. Another example is the case of potassium chloride. It can be seen that

among patients who were prescribed with metoprolol, potassium chloride are rarely

used without furosemide. The above example shows the usefulness of prescription

trees constructed by our treatment learning framework. Such property is not easy to

be recognized by learning frequent treatment patterns only.

Table 13, 14, 15 report the performance of the proposed treatment recommen-

dation framework and the baselines on coronary artery, septicemia and respiratory

cohort, respectively. Note that in our experiments, we randomly selected 20% of pa-
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Figure 7: An example of resulting prescription tree.
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tients in each cohort for testing. The obtained results show that in best cases, our

framework achieves competitive results to the baselines over all evaluation metrics.

Among three cohorts, the weighting approach seems to work well with the septicemia

and respiratory cohort. This can be explained by the fact that treatments among

similar patients in the coronary cohort may not be much different compared to those

of the two other cohorts (higher obtained precision). In all cohorts, using a rela-

tive large enough number of neighbors (K = 50) yields almost as good as the best

reported cases. This property is useful to show case-patients the recommendation

results based on. Moreover, in the septicemia and respiratory cohorts, the higher

obtained values when using weighting approach with a small number of neighbors

(K = 20, K = 50) compared to the non-weighting approach indicate that it is better

to employ the weighting approach to deal with the high variety of treatments in these

cohorts. The poor performance when using the nearest neighbor approach confirms

that combining treatment from neighbors are necessary for improving the efficacy

of treatment recommendation frameworks, especially when identifying the nearest

neighbor patient is almost uncertain.

8. Discussion

Our work obtains more interesting results in terms of domain exploitation and knowl-

edge representation compared to related works in the literature. First, rather than

defining treatment periods as fixed intervals, we track the change of drug indication

in prescribed drugs as a hint to discover treatment periods. It can be seen that the

idea fits our natural thinking on detecting patients’ treatment periods given their

prescription records. Second, by representing the learned treatment patterns in form

of prescription trees, our treatment learning framework not only reflects the usage-

frequency of drugs fully but also allows doctors to quickly recognize groups of frequent

and infrequent prescription drugs in each patient subcohort. Therefore, in terms of

knowledge representation, it could be said that our treatment learning framework is

superior to most of the current studies which focused solely on frequent treatment

patterns.

Another finding of our work is that the idea of learning from neighbor patients

seems to work fine for the treatment recommendation task. Our experimental eval-

uation has shown that combining treatment patterns from many neighbors could be

useful to improve the efficacy of the treatment recommendation framework. We have

proposed the weighting and non-weighting recommendation approach with competi-
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Metric
Method

M
3 5 7 10

Precision

CF+IALS 0.444 0.445 0.481 0.462

CF+ADA 0.768 0.702 0.652 0.58

CF+SGD 0.778 0.697 0.648 0.577

Nearest Neighbor 0.692 0.597 0.526 0.396

Weighting (K=20) 0.763 0.685 0.635 0.567

Non-Weighting (K=20) 0.757 0.7 0.661 0.59

Weighting (K=50) 0.772 0.694 0.645 0.572

Non-Weighting (K=50) 0.757 0.701 0.661 0.597

Weighting (K=200) 0.768 0.688 0.641 0.569

Non-Weighting (K=200) 0.752 0.696 0.656 0.594

Recall

CF+IALS 0.125 0.242 0.346 0.472

CF+ADA 0.267 0.378 0.471 0.583

CF+SGD 0.27 0.368 0.47 0.579

Nearest Neighbor 0.237 0.317 0.377 0.4

Weighting (K=20) 0.265 0.367 0.463 0.573

Non-Weighting (K=20) 0.267 0.379 0.481 0.598

Weighting (K=50) 0.27 0.372 0.469 0.577

Non-Weighting (K=50) 0.267 0.38 0.48 0.603

Weighting (K=200) 0.267 0.371 0.469 0.574

Non-Weighting (K=200) 0.265 0.377 0.477 0.6

F1-score

CF+IALS 0.195 0.313 0.402 0.467

CF+ADA 0.396 0.491 0.547 0.581

CF+SGD 0.4 0.482 0.545 0.578

Nearest Neighbor 0.353 0.414 0.439 0.398

Weighting (K=20) 0.393 0.478 0.536 0.57

Non-Weighting (K=20) 0.394 0.492 0.557 0.594

Weighting (K=50) 0.4 0.485 0.543 0.574

Non-Weighting (K=50) 0.395 0.493 0.557 0.6

Weighting (K=200) 0.396 0.482 0.542 0.572

Non-Weighting (K=200) 0.392 0.489 0.552 0.597

Table 13: Experimental results for treatment recommendation task performed on
coronary artery cohort
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Metric
Method

M
3 5 7 10

Precision

CF+IALS 0.182 0.191 0.208 0.177

CF+ADA 0.406 0.353 0.319 0.284

CF+SGD 0.417 0.357 0.321 0.286

Nearest Neighbor 0.261 0.188 0.139 0.097

Weighting (K=20) 0.41 0.349 0.317 0.28

Non-Weighting (K=20) 0.397 0.341 0.305 0.261

Weighting (K=50) 0.413 0.356 0.322 0.285

Non-Weighting (K=50) 0.398 0.351 0.311 0.271

Weighting (K=200) 0.415 0.358 0.321 0.286

Non-Weighting (K=200) 0.408 0.353 0.317 0.278

Recall

CF+IALS 0.119 0.203 0.287 0.346

CF+ADA 0.242 0.352 0.439 0.553

CF+SGD 0.25 0.353 0.44 0.558

Nearest Neighbor 0.143 0.169 0.174 0.175

Weighting (K=20) 0.244 0.342 0.434 0.543

Non-Weighting (K=20) 0.235 0.338 0.42 0.504

Weighting (K=50) 0.245 0.352 0.444 0.557

Non-Weighting (K=50) 0.236 0.345 0.426 0.53

Weighting (K=200) 0.248 0.356 0.443 0.557

Non-Weighting (K=200) 0.242 0.347 0.437 0.546

F1-score

CF+IALS 0.144 0.196 0.241 0.235

CF+ADA 0.303 0.353 0.37 0.376

CF+SGD 0.313 0.355 0.371 0.379

Nearest Neighbor 0.184 0.178 0.154 0.125

Weighting (K=20) 0.306 0.346 0.366 0.369

Non-Weighting (K=20) 0.296 0.34 0.353 0.344

Weighting (K=50) 0.308 0.354 0.373 0.377

Non-Weighting (K=50) 0.296 0.348 0.36 0.358

Weighting (K=200) 0.31 0.357 0.372 0.378

Non-Weighting (K=200) 0.304 0.35 0.368 0.368

Table 14: Experimental results for treatment recommendation task performed on sep-
ticemia cohort
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Metric
Method

M
3 5 7 10

Precision

CF+IALS 0.258 0.24 0.229 0.179

CF+ADA 0.419 0.33 0.272 0.212

CF+SGD 0.426 0.336 0.272 0.213

Nearest Neighbor 0.233 0.153 0.112 0.078

Weighting (K=20) 0.419 0.334 0.27 0.211

Non-Weighting (K=20) 0.394 0.307 0.251 0.2

Weighting (K=50) 0.425 0.332 0.272 0.211

Non-Weighting (K=50) 0.405 0.322 0.26 0.207

Weighting (K=200) 0.426 0.335 0.272 0.213

Non-Weighting (K=200) 0.416 0.331 0.269 0.214

Recall

CF+IALS 0.242 0.397 0.532 0.589

CF+ADA 0.421 0.543 0.612 0.672

CF+SGD 0.426 0.554 0.616 0.672

Nearest Neighbor 0.224 0.237 0.24 0.24

Weighting (K=20) 0.42 0.548 0.609 0.664

Non-Weighting (K=20) 0.381 0.499 0.566 0.643

Weighting (K=50) 0.426 0.55 0.616 0.667

Non-Weighting (K=50) 0.396 0.526 0.595 0.66

Weighting (K=200) 0.426 0.549 0.613 0.676

Non-Weighting (K=200) 0.414 0.545 0.613 0.682

F1-score

CF+IALS 0.249 0.299 0.321 0.275

CF+ADA 0.42 0.41 0.377 0.323

CF+SGD 0.426 0.418 0.377 0.323

Nearest Neighbor 0.228 0.186 0.153 0.118

Weighting (K=20) 0.42 0.415 0.375 0.32

Non-Weighting (K=20) 0.388 0.38 0.348 0.305

Weighting (K=50) 0.425 0.414 0.377 0.321

Non-Weighting (K=50) 0.4 0.4 0.362 0.316

Weighting (K=200) 0.426 0.416 0.377 0.324

Non-Weighting (K=200) 0.415 0.412 0.374 0.326

Table 15: Experimental results for treatment recommendation task performed on res-
piratory cohort
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tive results to the baseline. Each approach is appropriate for some different types of

cohorts depending on the degree of treatment variants. More importantly, our case

based framework seems to fit well for medical domain where the model’s explainabil-

ity is important. Based on these results we conclude that the proposed approach is

generic enough as a case based recommendation framework. Some unsolved issues in

this project will be addressed in another project titled “Autonomous action learning

with new data-dependent similarity measure and dynamic action recommendation”.
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