
AFRL-AFOSR-JP-TR-2018-0072

Formal Model of a Multi-Core Kernel-based System

June Andronick
NATIONAL ICT AUSTRALIA LIMITED
L 5 13 GARDEN ST
EVELEIGH, 2015
AU

10/10/2018
Final Report

DISTRIBUTION A: Distribution approved for public release.

Air Force Research Laboratory
Air Force Office of Scientific Research

Asian Office of Aerospace Research and Development
Unit 45002, APO AP 96338-5002

Page 1 of 1

10/15/2018https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

 a. REPORT

Unclassified

 b. ABSTRACT

Unclassified

 c. THIS PAGE

Unclassified

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188). Respondents should be
aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)
 10-10-2018

2. REPORT TYPE
 Final

3. DATES COVERED (From - To)
 07 Jul 2015 to 06 Jul 2018

4. TITLE AND SUBTITLE
Formal Model of a Multi-Core Kernel-based System

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA2386-15-1-4055

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)
June Andronick, Carroll Morgan, Gerwin Klein

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NATIONAL ICT AUSTRALIA LIMITED
L 5 13 GARDEN ST
EVELEIGH, 2015 AU

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AOARD
UNIT 45002
APO AP 96338-5002

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/AFOSR IOA

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)
AFRL-AFOSR-JP-TR-2018-0072

12. DISTRIBUTION/AVAILABILITY STATEMENT
A DISTRIBUTION UNLIMITED: PB Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Professor Andronick and her research team sought to address the grand challenge of providing strong, mathematical guarantees for
software that runs on multi-core platforms, thus meeting the increasing demand for more computing power even for critical real-world
systems. The research team targeted the operating system kernel, which is the core and foundation of any software system.

Their approach was to to solve a large part of the scalability problem in foundational concurrency reasoning by exploiting automation in
modern machine-checked theorem proving. In addition, they sought to soundly reduce reasoning about interleaving with a faithful
representation of hardware and software mechanisms such as scheduling, priorities, interrupts, and locks; and to continue to exploit kernel
design principles for reducing verification effort.

The project has achieved all planned goals, including its stretch goals. They have defined a formal model of execution for a multi-core
kernel, as well as a low-level formal language to push the guarantees as close as possible to the real implementation. This framework has
been applied to a multi-core version of seL4 [Klein et al., 2009], the landmark verified microkernel, whose verification so far is restricted to
uniprocessor systems. They have defined a formal high-level model of multi-core seL4 and proved the correctness of its most critical
operation. They have also developed an initial refinement framework that will allow us to carry the proofs done at the high specification
level down to the low implementation level. The project paves the way for proving full functional correctness of multi-core, high-
performance microkernels.
15. SUBJECT TERMS
multicore kernel, AOARD

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

SAR

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON
SINGLETON, BRIANA

19b. TELEPHONE NUMBER (Include area code)
315-227-7007

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Page 1 of 1FORM SF 298

10/15/2018https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

FormalModel of aMulti-Core
Kernel-based System

AOARD Final Report

June Andronick, Gerwin Klein and Corey Lewis

firstname.lastname@data61.csiro.au

October 2018

DISTRIBUTION A: Approved for public release, distribution unlimited.

mailto:firstname.lastname@data61.csiro.au

Summary

This document is the final report of the project Formal Model of a Multi-Core Kernel-based

System, under AOARD grant 154055, that ran from July 2015 to July 2018.

The project addressed the grand challenge of providing strong, mathematical guarantees for

software that runs onmulti-core platforms, thusmeeting the increasing demand formore com-

puting power even for critical real-world systems. We targeted the operating system kernel,

which is the core and foundation of any software system.

The project has achieved all planned goal, including its stretch goals.

We have defined a formal model of execution for a multi-core kernel, as well as a low-level

formal language to push the guarantees as close as possible to the real implementation. We

have applied this framework to a multi-core version of seL4 [Klein et al., 2009], the landmark

verified microkernel, whose verification so far is restricted to uniprocessor systems. We have

defined a formal high-level model of multi-core seL4 and proved the correctness of its most

critical operation. We have also developed an initial refinement framework that will allow us

to carry the proofs done at the high specification level down to the low implementation level.

Theproject paves theway for proving full functional correctness ofmulti-core, high-performance

microkernels.

2 | Formal Model of a Multi-Core Kernel-based System © 2018 CSIRO

DISTRIBUTION A: Approved for public release, distribution unlimited.

1 Introduction

The software world keeps demanding more andmore computing power. End-users continue to

want increasingly better performing software devices. This frantic race does not spare critical

software systems, like autonomous vehicles ormedical devices, whichmust look into increasing

their performance by running concurrently on multiple processors/cores1.

This strongly intensifies the technological, financial and sociological challenge of performance

versus security, safety and correctness.

Critical software systems need strong guarantees about their correct behaviour, and existing

sequential techniques to provide such formal, mathematical proofs do not apply well to con-

current software. Reasoning about concurrent programs is much harder than reasoning about

sequential ones because of all the possible execution interleavings that need to be considered.

In this project we have created a framework for producing formal models and proofs of con-

current software, and we have demonstrated it by extending our landmark verification of the

seL4 operating system kernel [Klein et al., 2009] to a multi-core version.

An operating system kernel is the most critical part of a software system. It serves as an inter-

face between the hardware and the applications, and has privileged status: it controls all ap-

plications’ accesses and can enforce security, isolate faults, and avoid propagation of attacks.

This makes it the most important piece of software to verify formally. Our seL4 kernel is the

world’s most verified operating system kernel [Klein et al., 2009], with mathematical proofs of

correct execution [Klein et al., 2014] and security enforcement [Murray et al., 2013] of its bi-

nary implementation [Sewell et al., 2013]. This formal verification effort, partially funded from

a number of previous AOARD grants over the years, has led to great interest from industry,

with seL4 having been demonstrated in autonomous vehicles in the DARPA-funded HACMS

program[HACMS] and now being deployed in a wide range of areas. This verification landmark

is also pushing the boundaries of certification requirements, with seL4 currently going through

a security evaluation.

The seL4 proofs so far only apply to systems running on single-processor hardware, and we

are seeing increasing demand for multi-core support. In separate work, we have produced an

implementation of seL4 on multi-core hardware, based on a “big-lock” approach where most-

but-not-all of the code is protected by a lock [Peters et al., 2015]. The project presented here

has solved a number of the main research challenges to porting the existing proofs to this new

multi-core seL4; and we are now looking for funding opportunities to perform this full port

using our new framework.

In particular, within this project we have achieved the following significant milestones, produc-

ing:

1In this report we use the terms core and processor interchangeably.

© 2018 CSIRO Formal Model of a Multi-Core Kernel-based System | 3

DISTRIBUTION A: Approved for public release, distribution unlimited.

• a low-level, formal, concurrent, imperative language; we have extended the formal, se-

quential, imperative S®ÃÖ½ language [Schirmer, 2006, 2008] to support parallel execu-

tion, leading to the CÊÃÖ½ø language, and we have provided both Owicki-Gries and Rely-

Guarantee reasoning for CÊÃÖ½ø (Section 2.1);

• a formal model of interleaved execution of programs on multi-core hardware (Sec-

tion 2.2.1);

• a formal high-level model of multi-core seL4 and proof of correctness of its most critical

operation (Section 2.2.2 and Section 2.2.3);

• an initial refinement framework that will allow us to carry the proofs done at the high

level down to the low level (Section 2.3).

This achieves all of the milestones defined in the project proposal, including its stretch goals.

With most of the high-level research challenges solved and demonstrated, we would now be

able (funding permitting) to use this framework to lift the entire existing seL4 specifications and

correctness proofs fully into a multi-core setting.

This would result in a complete proof of correctness for the multi-core implementation of seL4

with respect to its high-level specification, which would achieve significant impact by provid-

ing the critical-software industry with a solution that achieves both performance and secu-

rity/safety/correctness.

4 | Formal Model of a Multi-Core Kernel-based System © 2018 CSIRO

DISTRIBUTION A: Approved for public release, distribution unlimited.

2 Results and contributions

We first describe the language we have defined for reasoning about low-level concurrent im-

perative programs, then our formalisation of multi-core interleaving and its use in an abstract

model and proof of multi-core seL4, and finally our initial framework to prove that this abstract

model can be refined down to the implementation.

2.1 CÊÃÖ½ø: formalising concurrent imperative programs

We have defined CÊÃÖ½ø, a formal, imperative, concurrent language, with a syntax, a seman-

tics, a set of logic rules, together with their soundness proof, and an automated verification

condition generator. The sections below explain the background and approach, and then give

an overview of each part of CÊÃÖ½ø. More details can be found in our published paper about

CÊÃÖ½ø [Amani et al., 2017], appended to this report.

CÊÃÖ½ø is available from the open source Archive of Formal Proofs [Amani et al., 2016]. It is

a general purpose concurrency reasoning framework, and hence can be used in other settings

that require reasoning about concurrent imperative programs.

2.1.1 Background and approach

Operating system kernels, like seL4, are written mostly as low-level, highly optimised C pro-

grams. Providing strong,mathematical guarantees that such codebehaves correctly andhas the

expected security properties requires a representation of the program in a formal language and

logic. A common approach is to formally define the syntax and semantics of the programming

language. The syntax describes all the possible constructs of the language, and the semantics

rigorously defines the effects of each construct on a general state of the machine that the pro-

gram runs on. A program logic is often added to ease the verification of specific programs. For

example, Hoare logic describes how to derive that some property, the postcondition, holds af-

ter the execution of the program from an initial state, described by a precondition. Using the

logic rules rather than the semantics to conclude properties about the program is only safe if

a soundness proof is provided for the logic itself. This guarantees that deriving a postcondition

using the rules does ensure that it holds on the state resulting from the execution in the seman-

tics. Finally, some automation is also often provided in the form of tools mechanically applying

the logic rules, such as a verification condition generator (VCG).

For instance, in our existing formal model and verification of (unicore) seL4, we first translate

the C implementation of seL4 into S®ÃÖ½ [Schirmer, 2006, 2008], within the Isabelle/HOL the-

orem prover [Nipkow et al., 2002]. Isabelle/HOL provides a general formal framework to build

models and prove properties about these models. The S®ÃÖ½ language is a generic, sequential

© 2018 CSIRO Formal Model of a Multi-Core Kernel-based System | 5

DISTRIBUTION A: Approved for public release, distribution unlimited.

and imperative language formalised in Isabelle/HOL and designed for program verification. It

can be used to model (almost) all C constructs (function calls, guards to check runtime failures,

etc). The S®ÃÖ½ framework also provides a standard Hoare logic for this language, along with

the corresponding VCG and soundness proof.

Another example is our work formalising the eChronos real-time operating system [Andronick

et al., 2015, 2016], where the code contains interrupt-driven concurrency. We use an exist-

ing framework within Isabelle/HOL called Hoare-Parallel [Prensa Nieto, 2002] that supports

verification of a concurrent high-level while-language called IMP. Hoare-Parallel provides a logic

based on the foundational Owicki-Gries (OG) method [Owicki and Gries, 1976], as well as the

more compositional Rely-Guarantee (RG) method [Jones, 1983], again along with a VCG and

proof of soundness.

IMP Hoare-Parallel High-level while-language

S®ÃÖ½ CÊÃÖ½ø Low-level C-like language

Sequential reasoning Concurrency reasoning

with Hoare logic with OG and RG

Figure 2.1: CÊÃÖ½ø, S®ÃÖ½, IMP and Hoare-Parallel

For this project, we combine the low-level details of S®ÃÖ½ with the concurrency support of

Hoare-Parallel, as depicted in Figure 2.1. CÊÃÖ½ø is defined as an extension to S®ÃÖ½with added

support for shared-variable concurrency.We have extended the S®ÃÖ½ abstract syntax with two

new constructors: parallel composition, and an await statement for synchronisation. We have

also defined practical logics based on the OG and RG methods. We have provided VCGs and

proven soundness for both logics.

2.1.2 Syntax and semantics

As mentioned previously, CÊÃÖ½ø is an extension of the S®ÃÖ½ abstract syntax, with the aim of

being able to easily reuse many of the tools previously developed for use with specifications

written in S®ÃÖ½. Therefore, we will begin by presenting the syntax and semantics that CÊÃÖ½ø

shares with S®ÃÖ½.

As expected, S®ÃÖ½ (and hence CÊÃÖ½ø) provides all of the standard imperative language con-

structs, such as variable assignment, sequential composition, conditional statements, while

loops, exceptions and function calls. Below is a list of the CÊÃÖ½ø commands taken from S®ÃÖ½,

with e representing shallowly embedded expressions1:

c = Skip | v := e | c1 ; ; c2 | IF e THEN c1 ELSE c2 FI

|WHILE eDO cOD | TRY c1 CATCH c2 END

| Throw | Call n |DynCom cs |Guard f g c

1Shallowly embeddedmeans that the concrete syntax is not represented; instead the semantics of the expres-

sion is directly encoded in Isabelle/HOL

6 | Formal Model of a Multi-Core Kernel-based System © 2018 CSIRO

DISTRIBUTION A: Approved for public release, distribution unlimited.

DynCom cs is a dynamic command with a cs argument that is a function from states to com-

mands. We use it to formalise argument passing and scoping in function calls. The Guard f g c

statement throws the fault f if the condition g is false and executes c otherwise. We use it

during verification to ensure that C programs do not exhibit undefined behaviour.

While S®ÃÖ½ has several equivalent semantics, we are mainly interested in its small-step se-

mantics, as CÊÃÖ½ømust have a similar small-step semantics to represent the fine-grained in-

terleaving of concurrent programs. This small-step semantics is represented by statements of

the form Γ ` 〈c, s〉 → 〈c′, s′〉, and is read as: program c in state s takes a step to program c′

and the updated state s′ under the procedure environment Γ which maps function names to

function bodies.

In addition to the commands taken from S®ÃÖ½, CÊÃÖ½ø has two new commands: Await b c

and Parallel [c1..cn]. Their semantics is that Await b c will block unless its guard b is true, in

which case it can atomically execute all of c. Parallel [c1..cn] performs a step of any ci that is

not blocked by an Await. Several complications arose due to combining these commands with

the intricacies of S®ÃÖ½; for example, we had to decide how parallel programs behave when

one component raises an exception. The details of these problems and exactly howwe defined

the semantics can be found in our published result [Amani et al., 2017].

2.1.3 Logic, VCG and soundness

In verificationof sequential programs themost commonly used technique is Hoare logic [Hoare,

1969], where programs are specified through pre- and post-conditions. Unfortunately, this can-

not be used when verifying a concurrent program, as both conditions could be interfered with

by another command being executed concurrently.

While there is a wide variety of techniques used to verify concurrent programs, many of them

follow a similar approach, which is to separate the problem into two cases, local correctness

and global correctness. A program is locally correct if it is correct with respect to a sequential

reading of its semantics, while it is globally correct if it is not interferedwith by other commands

that are executed concurrently.

The Owicki-Gries (OG)method [Owicki and Gries, 1976] mentioned above is one of the founda-

tional methods used to verify concurrent programs, and it was the first logic we implemented

for CÊÃÖ½ø. In this method we first use traditional Hoare logic to prove local correctness, be-

fore proving global correctness by showing that every atomic command in each concurrent

component does not invalidate the local correctness of other components in the system.

This method requires the concurrent programs to be fully annotated with manually created

assertions. Furthermore, the number of proof obligations the verification condition generator

(VCG) then creates from these annotations is quadratic in the number of lines of code to be

verified. Although we have shown in a previous project [Andronick et al., 2015, 2016] that it

is possible to verify complex programs with this approach, we believe that it is unlikely that

© 2018 CSIRO Formal Model of a Multi-Core Kernel-based System | 7

DISTRIBUTION A: Approved for public release, distribution unlimited.

OG will scale sufficiently to verify all of multi-core seL4. In short, we believe that OG is a good

method for small tomedium-sized programs, because it is relatively easy to apply, but for larger

programs a scalable method is needed.

One such compositional approach is that of Rely-Guarantee (RG) [Jones, 1983]. Here, instead

of annotating every atomic command with an intermediate assertion, we annotate each entire

component being run in parallel with both a rely and a guarantee. The rely captures the be-

haviour that a component expects from its environment, while the guarantee expresses bound-

aries on how the component is able to affect its environment. To verify a concurrent program

there are now three cases that need to be verified; each component must be locally correct

with respect to its rely, each component must satisfy its guarantee, and all of the relies and

guarantees must be compatible, in the precise sense that each of the guarantees must imply

each of the relies.

We have defined both RG and OG for CÊÃÖ½ø, implemented VCGs and proven both sound with

respect to the semantics. Furthermore, we have developed several examples using both of

these logics, including the large case-study presented in Section 2.2 which uses our RG frame-

work.

2.2 Model and proof of the big-lock kernel

A major component of this project was to build a model of the big-lock version of seL4 [Peters

et al., 2015], with a stretch goal of proving the correctness of its locking implementation. At

this stage we have successfully completed both of these goals, building a high-level model in

CÊÃÖ½ø and then using Rely-Guarantee to prove that the lock provides the required mutual

exclusion.

For this model we have focused on two aspects of the multi-core seL4 implementation; the

locking mechanism and the deletion algorithm, which must deal with some intricate details

after the introduction of multiple cores.

2.2.1 Model of interleaving

Before modelling and verifying the big-lock kernel we first needed to create a model of in-

terleaving that faithfully represented the fine-grained concurrency between multiple kernel

instances, user programs and device interrupts. The model we have developed is partly based

on our previous work which used OG to reason about a model of the small eChronos real-time

operating system (RTOS) [Andronick et al., 2015, 2016].

Roughly, the system is modelled as two levels of parallel composition, with full interleaving at

the top level and controlled interleaving in the second. The top level isD1||...||DM ||C1||...||CN ,

which represents the true concurrency possible between the devicesDi and different coresCj .

8 | Formal Model of a Multi-Core Kernel-based System © 2018 CSIRO

DISTRIBUTION A: Approved for public release, distribution unlimited.

Each core Cj is then the parallel composition Kj||MTj||U1
j ||...||UL

j ||Ij , which models the in-

terleaving between the kernel instanceKj and user threads Uk
j , along with the idle thread Ij .

However, this interleaving is controlled by the mode transition MTj , which switches control

from a user to the kernel when required.

The key feature of this framework is the controlled interleaving present within each core, which

uses a technique fromour previouswork calledawait-painting [Andronick et al., 2015, 2016]. To

control the interleaving we introduce an active-task variable for each core, ATj , and associate

the kernel and user tasks of that corewith unique identifiers. Each atomic statement c in task t is

then converted intoAwait (ATj = t) c, which as seen in Section 2.1.2means that the execution

of c is blocked until the await-condition holds. In particular, this means that if ATj = t then

only t can execute, and all other tasks are not able to interfere with it. Furthermore, there are

explicitly only two lines that modify ATj , one in MTj that sets ATj = Kernel, and one at the

end of the kernel task that sets it back to the current user.

In this way we model the true concurrency possible in real-world multi-core systems. There

is full interleaving between different cores and devices while within each core there is only

ever one routine that can execute. However, through the use of a parallel composition with

controlled interleaving we are able to represent relatively easily the way in which control can

jump from one routine to another and back again.

2.2.2 Abstract model of big-lock seL4

We have instantiated the interleaving model to our big-lock seL4 implementation [Peters et al.,

2015], meaning that we have provided amodel for the kernel codeKj used on each core. (Note

that the code is the same on each core.) The user programs Uk
j stay unspecified: we want to

prove that some properties are guaranteed by the kernel for any system composed of any user

applications running on top of the kernel.

We have intentionally specified the kernel itself at a very abstract level. This has allowed us to

focus on two critical issues: whether the locking mechanism correctly provides mutual exclu-

sion, and whether the deletion algorithm correctly protects the system from unsafe situations.

The main feature of the big-lock version of seL4 is that there is a large coarse-grained lock

around the kernel. This is intended to ensure that no two cores are executing inside the kernel

simultaneously, and makes most of the complex kernel code internally sequential. However,

this is not completely possible when deleting objects that other cores might depend on. In

this case, seL4 must ensure that all other cores do not currently depend on the object being

deleted, which can force those other cores to execute part of the kernel outside of the lock.

To understand this deletion issue in more detail, note that each core has several hardware

registers that in normal use contain a pointer to an object in memory. Safe execution of the

system requires that the objects these registers point to are valid; that is, they are the correct

type of object and have been correctly set up. If they are not valid then the specific core could

© 2018 CSIRO Formal Model of a Multi-Core Kernel-based System | 9

DISTRIBUTION A: Approved for public release, distribution unlimited.

kernel i ≡
acquire-lock-unless-ipi i;;

IF has-lock i

THEN IF exception i = Syscall Delete ∧
(∃ x. obj-to-delete x)

THEN delete i

ELSE SKIP

FI;;

schedule i;;

activate-thread i;;

release-lock i

ELSE handle-ipi i

FI;;

return-from-exception i

delete i ≡ select-obj i;;

init-barriers i;;

send-all-ipi i;;

wait-for-all-barriers i;;

delete-cap-cur-thr i;;

activate-thread i;;

invalidate-del-obj i;;

set-bsection i False

Figure 2.2: Model of the multi-core seL4 kernel

crash or violate the overall security policy.

To avoid this, before deleting such an object, an instance of the kernel first ensures that all other

cores do not depend on the specific object. However, as it is impossible for one core to inspect

the registers of another, the kernel instead does this by signalling the other cores to transition

to a state guaranteed not to depend on the object. For example, before the kernel running on

core i deletes a thread control block (TCB) x, it will first send a message to all other cores that

might be currently running x.2 Each of these cores will then switch control to their instances of

the kernel, which will execute a small section of code outside of the lock. This code switches

the current thread running on that core to the idle thread, which is guaranteed to always be

valid. Once all other cores signal completion of this process back to core i, the original kernel

instance can proceed to delete the TCB x.

With this in mind, an overview of the model we have developed for the kernel can be seen in

Figure 2.2. The fullmodel is approximately 100 lines of Isabelle source, as compared to the exist-

ing abstract specification which is approximately 1000 lines and the concrete implementation

which is 10,000 lines of C code. As mentioned, in this model we have focused primarily on the

big lock around the kernel and the synchronisation during deletion.

2.2.3 Proof of correctness

The statement we have proven about our model can be seen in Figure 2.3. It says that the com-

pletemulti-core system, starting in an initial state satisfying the global invariants and relying on

nothing else running in parallel3, can guarantee that it will always maintain the global invari-

ants. Furthermore, if it terminates then the global invariants holds and the multi-core system

2This message is sent via an inter-processor interrupt (IPI).
3This is expressed by the RELY {|False|}, which says that any step made by the environment is not accepted.

10 | Formal Model of a Multi-Core Kernel-based System © 2018 CSIRO

DISTRIBUTION A: Approved for public release, distribution unlimited.

0 < num-cores ∧ 0 < num-threads=⇒ Γ,Θ `∅ multi-core-system

PRE {|global-invs|}
RELY {|False|}
GUAR {|ºglobal-invs−→ ªglobal-invs|}
POST {|global-invs|}
ABR {|False|}

Figure 2.3: The correctness statement for our high-level model

must not abruptly terminate with an exception.

The global invariants used encompass the two properties described in Section 2.2.2. That is,

they require both mutual exclusion for the kernel, and that each core’s registers points to valid

objects. The invariants also cover a range of other properties that were required to complete

the proof. For example, we needed to know that the idle thread and its related objects are

always valid so that we could prove that switching to the idle thread preserves the invariant

about valid registers.

As part of the proof we had to develop local relies and guarantees for the different parts of the

system running in parallel. For example, each kernel instance running on a separate core still

maintains the global invariants, and additionally guarantees that various global variables are

only modified if the kernel lock is held. As we also prove mutual exclusion, this means that the

kernel instances can rely on these variables being unmodified when they hold the lock.

Proving this condition led to three main outcomes. First, the process was a significant test of

CÊÃÖ½ø and our RG framework that led to several improvements in proof automation. Second,

while not a complete proof down to the implementation, it helped us convince ourselves that

the current implementation of multi-core seL4 is indeed correct with respect to these proper-

ties. Finally, performing this proof forced us to develop relies and guarantees for the system

that we expect to reuse when we prove the full functional correctness down to the multi-core

seL4 implementation.

The proof itself was an iterative process involving several steps. These were:

• writing and modifying the model;

• developing relies and guarantees for the different components of the system;

• attempting to prove the goals produced by the verification condition generator (VCG);

• improving the VCG and other parts of the CÊÃÖ½ø RG framework.

The proof ended up taking approximately 1.5 person months and was approximately 850 lines

long. In comparison, the proofs for the complete model of unicore seL4 also required global

invariants, and the correctness proof for these invariants was approximately 32,000 lines.

© 2018 CSIRO Formal Model of a Multi-Core Kernel-based System | 11

DISTRIBUTION A: Approved for public release, distribution unlimited.

2.3 Concurrency aware refinement

A key lesson from our existing work on verifying the functional correctness of the unicore ver-

sion of seL4 is that wewant to prove properties at a high level of abstractionwhile still ensuring

that the properties hold at the code level. We do this by proving refinement between the code

and our abstract specification. This refinement guarantees that all possible behaviours of the

actual code are also possible behaviours of the model.

Unsurprisingly, the framework developed for the existing unicore seL4 refinement proofs is not

suitable for specifying and proving refinement between two concurrent programs. As the final

stretch goal and milestone of this project we have developed a new framework for proving

refinement of concurrent programs and have tested it on a worked example.

There are three key requirements for this new framework. First, it must be able to perform

atomicity refinement, where a simple, single-step abstract program is refined to one with mul-

tiple instructions. Secondly, the new refinement framework must be compositional so it can

scale to the size of the seL4 code. Third, like the original seL4 refinement framework, the new

framework must be contextual, which means that the refinement proof can make use of the

conditions that previous code has established.

There are two main aspects of our new framework; a specification language amenable to con-

currency reasoning and a definition of refinement that satisfies the above requirements.

2.3.1 Specification language

The existing abstract specification of unicore seL4 was written in Isabelle/HOL in a functional

style that expresses state change as amathematical structure known as amonad. In the case of

seL4, the specification uses the nondeterministic state monad with failure [Cock et al., 2008].

This style, in addition to enabling the usual Hoare logic and refinement reasoning, also allows

additional proof techniques such as rewriting to be applied to the specification directly. Since

our goal is to re-use as much as possible of the existing sequential seL4 proof, the concurrent

specification has to be in a similar monadic style, enabling the same kind of reasoning, but

for concurrent instead of sequential specifications. For this, we introduced a new interference

tracemonad, which is designed to be compatible with the existing proofs where possible, while

also enabling both concurrency reasoning at the abstract level and refinement to lower levels.

The key idea of the interference tracemonad is to record both the final result, as in the sequen-

tial model, and the trace of interactions between the program and its environment that led to

the results. The trace idea goes back to Aczel [1983], with each trace being a list of transitions

from one state to the next. Our model lifts this idea into a functional, monadic setting.

Along with the interference trace monad we have also developed a style of concurrency that

we call limited interference.Most other languages allow all possible interleavings, exceptwhere

explicitly forbidden by atomic section. In comparison, our limited interference approach allows

12 | Formal Model of a Multi-Core Kernel-based System © 2018 CSIRO

DISTRIBUTION A: Approved for public release, distribution unlimited.

no interleavings, except where explicitly allowed by a new special operator.

Themain reason that we are interested in this approach is that it allows us to reusemuch of the

existing specification and proof for unicore seL4. Due to the lock protecting the kernel, most of

the existing specification can be treated as an atomic block, with interference allowed only at

a few key points.

Our interference trace monad and limited interference approach has allowed us to develop an

RG logic where we can separate the local and global correctness proofs. In this way we can

mostly reuse the existing sequential proofs for local correctness, and separately prove global

correctness for our specification.

2.3.2 Definition of refinement

The existing seL4 proofs contain several proofs of refinement that we will need to reuse in a

complete proof of correctness for multi-core seL4. For this purpose we have developed a new

notion of refinement for use on the interference trace monad. To the best of our knowledge

this is the first formalisation of such a refinement framework for an Aczel style trace semantics.

However, we have noticed that there are similarities between our work and that of Liang et al.

[2012] who have also developed a simulation framework for data refinement in a small-step

rely-guarantee environment. While there are strong parallels between the issues both frame-

works solved, there is also a large difference in that they use an imperative language with deep

embedding, whereas we have a functional specification language with shallow, monadic em-

bedding.

The definitionwe have ended upwith satisfies all of our requirements. To allow parallel compo-

sition of data refinement we define what we call prefix fragment refinement. This definition is

additionally contextual both sequentially and in parallel, through optional assumptions about

the preconditions and rely conditions.

The other requirement of our refinement framework was that it enables refinement of atom-

icity, where we decompose an atomic block to several smaller steps. For this purpose we have

added additional state relations to the definition of prefix fragment refinement that allows re-

lated programs to temporarily diverge.

With this framework defined, we are now in a position (funding permitting) to use it to fully lift

the entire existing seL4 specifications and correctness proofs to a multi-core setting.

© 2018 CSIRO Formal Model of a Multi-Core Kernel-based System | 13

DISTRIBUTION A: Approved for public release, distribution unlimited.

3 Research Outcomes

Through this projectwehave solved several fundamental research challenges related to concur-

rency reasoning. We have developed COMPLX, a new language framework for reasoning about

low-level, concurrent code and have provided two proof logics for it. We have also constructed

a model of interleaving that faithfully represents the real hardware and software mechanisms

while enabling and optimising interference-freedomproofs.We then used this to create a high-

level model of multi-core seL4, alongwith a proof of correctness of its critical operation. Finally,

we have an initial framework for performing refinement of concurrent programs, which has

been designed to allow us to reuse the existing proofs of unicore seL4.

With these challenges solvedwe now believe that wewould be able to use this work to develop

a complete proof of correctness for multi-core seL4 with respect to a high level specification.

This would have significant impact as multi-core computing power is increasingly in demand,

even for critical software. It would enable formally verified software to be deployed onmodern,

concurrent systems, achieving both performance and security.

14 | Formal Model of a Multi-Core Kernel-based System © 2018 CSIRO

DISTRIBUTION A: Approved for public release, distribution unlimited.

Bibliography

Peter Aczel. On an inference rule for parallel composition, 1983. URL http://homepages.cs.ncl.

ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf. Private communication to Cliff Jones.

12

Sidney Amani, June Andronick, Maksym Bortin, Corey Lewis, Christine Rizkallah, and Joseph

Tuong. Complx: A verification framework for concurrent imperative programs. Archive of

Formal Proofs, Nov 2016. ISSN 2150-914x. http://isa-afp.org/entries/Complx.html, Formal

proof development. 5

Sidney Amani, June Andronick, Maksym Bortin, Corey Lewis, Christine Rizkallah, and Joey

Tuong. COMPLX: a verification framework for concurrent imperative programs. In Interna-

tional Conference on Certified Programs and Proofs, pages 138–150, Paris, France, Jan 2017.

ACM-SIGPLAN. 5, 7

June Andronick, Corey Lewis, and Carroll Morgan. Controlled Owicki-Gries concurrency: Rea-

soning about the preemptible eChronos embedded operating system. InWorkshop onMod-

els for Formal Analysis of Real Systems (MARS), 2015. 6, 7, 8, 9

June Andronick, Corey Lewis, Daniel Matichuk, Carroll Morgan, and Christine Rizkallah. Proof

of OS scheduling behavior in the presence of interrupt-induced concurrency. In International

Conference on Interactive Theorem Proving, Nancy, France, Aug 2016. 6, 7, 8, 9

David Cock, Gerwin Klein, and Thomas Sewell. Secure microkernels, state monads and scalable

refinement. In Otmane Ait Mohamed, César Muñoz, Sofiène Tahar, editor, 21st TPHOLs,

pages 167–182, Montreal, Canada, Aug 2008. Springer. doi: 10.1007/978-3-540-71067-7_

16. 12

HACMS. https://www.darpa.mil/program/high-assurance-cyber-military-systems. 3

C. A. R. Hoare. An axiomatic basis for computer programming. CACM, 12:576–580, 1969. ISSN

0001-0782. doi: 10.1145/363235.363259. 7

C. B. Jones. Tentative steps towards a development method for interfering programs. Trans.

Progr. Lang. & Syst., 5(4):596–619, 1983. 6, 8

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,

Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Har-

vey Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel. In SOSP, pages

207–220, Big Sky, MT, USA, Oct 2009. ACM. 2, 3

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal Kolanski,

and Gernot Heiser. Comprehensive formal verification of an OS microkernel. Trans. Comp.

Syst., 32(1):2:1–2:70, 2014. doi: 10.1145/2560537. 3

Hongjin Liang, Xinyu Feng, andMing Fu. A rely-guarantee-based simulation for verifying concur-

rent program transformations. In ACM SIGPLAN Notices, volume 47, pages 455–468. ACM,

2012. 13

© 2018 CSIRO Formal Model of a Multi-Core Kernel-based System | 15

DISTRIBUTION A: Approved for public release, distribution unlimited.

http://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
http://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
http://isa-afp.org/entries/Complx.html
https://www.darpa.mil/program/high-assurance-cyber-military-systems

TobyMurray, DanielMatichuk,MatthewBrassil, Peter Gammie, Timothy Bourke, Sean Seefried,

Corey Lewis, Xin Gao, and Gerwin Klein. seL4: from general purpose to a proof of information

flow enforcement. In S&P, pages 415–429, San Francisco, CA, May 2013. doi: 10.1109/SP.

2013.35. 3

Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. ISBN 978-3-540-43376-7. doi:

10.1007/3-540-45949-9. 5

Susan Owicki and David Gries. An axiomatic proof technique for parallel programs. Acta Infor-

matica, 6:319–340, 1976. 6, 7

Sean Peters, Adrian Danis, Kevin Elphinstone, and Gernot Heiser. For a microkernel, a big lock

is fine. In APSys, Tokyo, JP, Jul 2015. 3, 8, 9

Leonor PrensaNieto. Verification of parallel programswith theOwicki-Gries and rely-guarantee

methods in Isabelle/HOL. PhD thesis, T.U. München, 2002. 6

Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD thesis,

Technische Universität München, 2006. 4, 5

Norbert Schirmer. A sequential imperative programming language syntax, semantics, Hoare

logics and verification environment. Archive of Formal Proofs, Feb 2008. ISSN 2150-914x.

http://isa-afp.org/entries/Simpl.shtml, Formal proof development. 4, 5

Thomas Sewell, Magnus Myreen, and Gerwin Klein. Translation validation for a verified OS

kernel. In PLDI, pages 471–481, Seattle, Washington, USA, Jun 2013. ACM. 3

16 | Formal Model of a Multi-Core Kernel-based System © 2018 CSIRO

DISTRIBUTION A: Approved for public release, distribution unlimited.

http://isa-afp.org/entries/Simpl.shtml

DISTRIBUTION A: Approved for public release, distribution unlimited.

CONTACT US

t 1300 363 400

+61 3 9345 2176

e enquiries@data61.csiro.au

w www.data61.csiro.au

AT CSIRO WE SHAPE THE FUTURE

We do this by using science and technol-

ogy to solve real issues. Our researchmakes

a difference to industry, people and the

planet.

FOR FURTHER INFORMATION

June Andronick, Gerwin Klein and Corey Lewis

e firstname.lastname@data61.csiro.au

w trustworthy.systems

DISTRIBUTION A: Approved for public release, distribution unlimited.

mailto:enquiries@data61.csiro.au
http://www.data61.csiro.au
mailto:
http://trustworthy.systems

COMPLX: A Verification Framework
for Concurrent Imperative Programs

Sidney Amani1 June Andronick1,2 Maksym Bortin1

Corey Lewis1 Christine Rizkallah3,∗ Joseph Tuong4,∗

1Data61, CSIRO, Australia 2UNSW, Australia 3University of Pennsylvania, U.S. 4Freelancer, Australia
1 firstname.lastname@data61.csiro.au 3 criz@seas.upenn.edu 4 joey.tuong@gmail.com

∗ Work done while at Data61, CSIRO

Abstract
We propose a concurrency reasoning framework for im-
perative programs, based on the Owicki-Gries (OG) foun-
dational shared-variable concurrency method. Our frame-
work combines the approaches of Hoare-Parallel, a formal-
isation of OG in Isabelle/HOL for a simple while-language,
and SIMPL, a generic imperative language embedded in Is-
abelle/HOL, allowing formal reasoning on C programs.

We define the COMPLX language, extending the syntax
and semantics of SIMPL with support for parallel compo-
sition and synchronisation. We additionally define an OG
logic, which we prove sound w.r.t. the semantics, and a ver-
ification condition generator, both supporting involved low-
level imperative constructs such as function calls and abrupt
termination. We illustrate our framework on an example that
features exceptions, guards and function calls. We aim to
then target concurrent operating systems, such as the inter-
ruptible eChronos embedded operating system for which we
already have a model-level OG proof using Hoare-Parallel.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

Keywords formal verification, programming languages,
imperative code, concurrency, Owicki-Gries, Isabelle/HOL

1. Introduction
C is still the language of choice for developing software with
high performance and precise memory requirements, for it
allows aggressive manual optimisation. At the same time,

performance-demanding low-level systems, such as oper-
ating system (OS) kernels or real-time systems, also have
strong safety and security objectives, which call for for-
mal verification. Multiple frameworks for formal reasoning
about C programs exist and have successfully been used,
ranging from push-button automated tools to check the ab-
sence of classes of runtime errors, to more effort-intensive
interactive methods to prove deeper correctness properties.
We target the latter, minimising the trust needed in the tools,
maximising the strength of properties that can be proven. To
this end, we propose a framework for formal, interactive ver-
ification of shared-variable concurrent imperative low-level
programs, which can be combined with a C parser front end
for concurrent C code verification, paving the way to verified
interruptible or multicore systems.

We follow a common approach to reasoning about pro-
grams: embedding the given language within a powerful the-
orem prover, Isabelle/HOL [Nipkow et al. 2002] in our case.
That is, we define abstract and concrete syntax, and specify
runtime behaviour. Although it is possible to directly reason
over the semantics of programs, it is untenable and not scal-
able. It can instead be automated by the definition of a set of
logic rules, reducing the program’s correctness statement to
a series of simpler verification conditions. This verification
condition generator (VCG) is typically syntax-directed, un-
folding the proof according to the rules of the logic. In order
to justify such reasoning with our set of rules, we prove their
soundness with respect to the language’s formal semantics.

Such an infrastructure exists for reasoning about sequen-
tial C programs in Isabelle/HOL. C programs are translated
into SIMPL [Schirmer 2006, 2008], a generic, sequential,
imperative language formalised in Isabelle/HOL. The C-to-
Isabelle translation [Tuch et al. 2007] is unavoidably trusted,
parsing C code into formal logic, and is therefore as con-
servative and direct as possible. The SIMPL framework pro-
vides syntax and semantics for the language, as well as a
Hoare logic (with its soundness proof) and a VCG. It has
successfully been used in the landmark verification of the
seL4 microkernel, guaranteeing multiple correctness prop-

DISTRIBUTION A: Approved for public release, distribution unlimited.

erties of seL4 to the C implementation [Klein et al. 2010;
Murray et al. 2012]. The framework, however, lacks the abil-
ity to reason about concurrency.

We extend SIMPL with support for shared-variable con-
currency, following the foundational Owicki-Gries (OG)
method [Owicki and Gries 1976]. OG has been for-
malised in Isabelle/HOL’s library in the Hoare-Parallel the-
ory [Prensa Nieto 2002] for a simple high-level while-
language IMP. We chose OG over more recent variants
(e.g. Rely-Guarantee [Jones 1983], Concurrent Separation
Logic [OHearn 2007]) for the simplicity of OG logic
and its suitability to reason about potentially-racy high-
performance shared-variable system code: we previously
successfully used it for a model-level verification of the in-
terruptible eChronos embedded OS [Andronick et al. 2015,
2016]. The OS provides an API to applications for synchro-
nisation and locking, but the OS code itself shares racy mem-
ory state with interrupt handlers1. In this previous work, we
used Hoare-Parallel’s formalisation of OG and we demon-
strated how the well-known explosion of verification con-
ditions of the OG method can be efficiently handled by the
powerful automation of modern theorem provers and by the
careful modelling of controlled interleaving. We now want
to push our proofs down to guarantees about the C imple-
mentation, which is the motivation for the work presented
here.

Our contributions are the following:

• We propose the language COMPLX as an extension of
SIMPL with support for parallel composition and syn-
chronisation, and we define its concurrent semantics. We
largely reuse SIMPL’s existing infrastructure to facilitate
the port of existing verifications that use SIMPL (sec-
tion 3).
• We define a practical OG-based logic, inspired by Hoare-

Parallel, and a VCG to facilitate semi-automated proof
using the logic (section 4).
• We prove our logic sound with respect to the semantics,

ensuring that proofs using the logic are true guarantees
about the execution of the program (section 5).
• Finally, we present a case-study demonstrating the use

and practicality of this framework for the verification of
concurrent imperative programs (section 6).
• As part of the examples, we demonstrate how we support

concurrent function calls, including a technique to handle
arguments passing and local variables.

With additional work, the existing infrastructure around
SIMPL, including the C-to-Isabelle parser, can be updated to
enable reasoning about a significant subset of concurrent C
code in Isabelle/HOL. This would open up the applicability
to several existing codebases, including the eChronos OS,

1 Preventing races would require disabling interrupts, resulting in increases
of latency unacceptable for such real-time systems.

and potentially a multicore variant of seL4. Our framework
assumes that the granularity of interleaving is that of C
instructions; porting the guarantees down to executable code
and weak memory architectures is not in the scope of this
paper.

All our Isabelle/HOL formalisations and the case studies
are available online [COMPLX].

2. Background
In this section, we present existing work that our paper
combines and extends. The first section presents SIMPL,
an existing formalisation of sequential imperative programs
in Isabelle/HOL (and the existing infrastructure to verify
C code). The second presents Hoare-Parallel, an existing
formalisation of OG for a simple while-language in Is-
abelle/HOL. Our work consolidates those two components
to create a language that provides a basis for reasoning about
concurrent C code in Isabelle/HOL.

2.1 Verification of C in Isabelle/HOL
As mentioned in the introduction, SIMPL allows embedding
of real programming languages into Isabelle/HOL, and is
sufficiently expressive to model a substantial subset of C
features. SIMPL can be used directly for reasoning about
C code and it has indeed been used directly in the verifi-
cation of LEDA’s [Mehlhorn and Näher 1999] shortest path
checker [Rizkallah 2014].

A far more common verification approach though is using
the C-to-Isabelle parser [Tuch et al. 2007] which converts a
large subset of C99 code into low-level SIMPL code. SIMPL
and the C-to-Isabelle parser together provide an established
infrastructure for the verification of sequential C programs in
Isabelle/HOL. They have been used in the verification of the
seL4 microkernel which is written in C [Klein et al. 2010]
and in several other C verification projects [Amani et al.
2016; Murray et al. 2012; Noschinski et al. 2014].

Syntax SIMPL provides the usual imperative language
constructs, including functions, variable assignment, se-
quential composition, conditional statements, while loops,
and exceptions. SIMPL has no expression language of its
own; expressions are shallowly embedded. The notion of
state is also generic and left for instantiation; it is defined as
an Isabelle record of local and global variables (variables are
then simply functions on the state). The C-to-Isabelle parser
only supports side-effect-free expressions, modelled as Is-
abelle/HOL expressions, and it instantiates the state space
to C memory states. The following is a summary of SIMPL
syntactic forms, where e represents an expression:

c = Skip | v := e | c1 ; ; c2 | IF eTHEN c1 ELSE c2 FI
|WHILE eDO cOD |TRY c1 CATCH c2 END
|Throw |Call n |DynCom cs |Guard f g c

The DynCom cs statement is a dynamic (state depen-
dent) command that takes as argument cs which is a func-

DISTRIBUTION A: Approved for public release, distribution unlimited.

tion from states to commands. It is used in C verification to
encode argument passing and scoping in function calls. The
Guard f g c statement throws the fault f if the condition g
is false and executes c otherwise. It is used in C verifica-
tion to encode certain correctness conditions ensuring that
the C program does not exhibit undefined behaviour (e.g.
division by zero). Call just takes the name of the function
being called.

Semantics Computations in SIMPL are described by sev-
eral equivalent models, including big- and small-step seman-
tics. Here we are interested in the small-step semantics, as
we want to model the fine-grain interleaving of concurrent
programs.

The small-step semantics is represented by statements of
the form Γ ` 〈c, s〉 → 〈c′, s′〉 that read as: program c in state
s takes a step to program c′ and the updated state s′ under
the procedure environment Γ which maps function names
to function bodies. Both s and s′ are extended states: they
are either Normal states, representing typical execution flow
(including exception handling), or Stuck states, generated
by calls to non-existent procedures, or Fault states, gener-
ated by failed Guard statements. For normal program states,
s = Normal x, the semantics is as expected; whereas in
cases s = Stuck or s = Fault f we may only transform c to
Skip with s′ = s.

Exceptions are used to represent abrupt termination —
function calls and loops are wrapped in a try-catch block and
the C statements return, break, and continue are imple-
mented by assigning appropriate value to an auxiliary vari-
able and raising an exception with Throw . The exception is
caught by CATCH , mimicking an abrupt termination of the
TRY block.

Verification Specifications for SIMPL programs are given
as Hoare triples, where pre-conditions and post-conditions
are stated by Isabelle expressions. The SIMPL environment
provides a VCG for partial correctness that converts those
Hoare triples to a set of higher-order formulas that are eas-
ier to reason about. The Hoare triples are represented by
statements of the form Γ `/F P cQ,A, where P is the
pre-condition, Q is the post-condition for normal termina-
tion, A is the abrupt-condition for abrupt termination2, and
F is the set of faults allowed. A soundness proof guarantees
the safe use of the Hoare logic instead of directly reasoning
about the semantics: it states that if such a Hoare triple is
established, then all final states reached through the execu-
tion of the command (according to the semantics) from an
initial state that satisfies the pre-condition, will satisfy the
post-condition and the abrupt-condition.

2 Using Schirmer’s [Schirmer 2006] terminology, we refer to post-
conditions for abrupt-termination due to uncaught exceptions as abrupt-
conditions.

2.2 Verification of Concurrent Code in Isabelle/HOL
Hoare logic may be used to prove that a thread in a concur-
rent program is locally correct, i.e. that it is correct under a
sequential interpretation of its semantics without interleav-
ing of external commands. In order to prove that it is correct
in a concurrent setting, we have to additionally prove that it
is globally correct, i.e. that is is still correct considering all
possible interleavings with other threads in the system.

The Owicki-Gries [Owicki and Gries 1976] method for
the verification of shared-variable concurrent programs ex-
tends the proof method for sequential correctness with the
concept of interference freedom: each thread is first proved
to be locally correct and then each atomic command in each
thread is proved to not interfere with (i.e. invalidate) the local
correctness proof of another thread in parallel. If the proof of
local correctness for a command c requires a pre-condition
P , and cmay be interleaved with another command c′ whose
pre-condition is P ′, then in order to show interference free-
dom, we show that {P ′∧P} c′ {P} holds, i.e. that P remains
true after being interleaved with c′.

In order to satisfy the requirements for interference free-
dom over all threads in a system, it is necessary to store these
intermediate assertions. Unlike for a sequential program, we
may require post-conditions to be arbitrarily stronger than
the weakest pre-condition implied by the Hoare logic. For
this reason, we need to fully annotate the concurrent pro-
gram with intermediate assertions in order to verify its cor-
rectness relative to other threads in the system, in contrast to
a sequential program, for which these properties may largely
be automatically derived and discarded once used.

Hoare-Parallel [Prensa Nieto 2002] is a formal reason-
ing framework in Isabelle/HOL for a simple concurrent
language, including a formalisation of OG. The language
consists of assignment, sequential composition, condition-
als, loops, and two additional statements for concurrency:
Parallel [ac1..acn] and Await b c. The execution is mod-
elled through a small-step semantics; an await statement can
only do a step if its boolean guard b is true, in which case
its body c is executed atomically; a step of a parallel com-
position of programs is a step of any of its thread that is not
blocked on an await. Hoare-Parallel’s abstract syntax is de-
fined using the following mutually recursive datatype:

ac = AnnSeq ac ac |AnnBasic r f | AnnCond b ac ac
|AnnWhile r b r ac |AnnAwait r b c

and
c = Parallel [ac..ac] |Seq c c |Basic f |Cond b c c

|While b r c

The outer layer c performs sequential actions or initiates
a parallel composition, and the inner layer ac within the
parallel composition expresses a thread, with each action
annotated with an assertion r.

DISTRIBUTION A: Approved for public release, distribution unlimited.

COBEGIN . . . COEND is used as syntactic sugar
for Parallel . Throughout the paper we reuse the Hoare-
Parallel’s Parallel concrete syntax for COMPLX.

3. COMPLX: Syntax and Semantics
Recall that the aim of COMPLX is to enrich SIMPL with par-
allel composition and synchronisation. The Hoare-Parallel
development shows how the OG method can be formalised
in Isabelle/HOL, introducing syntax and the small-step se-
mantics for parallel components. We largely reuse this ap-
proach with two major deviations. Firstly, we do not incor-
porate annotations into COMPLX abstract syntax but rather
represent annotations using a separate datatype. Annotations
and programs will be related in the next section by means of
the OG logic. This way the abstract syntax remains simple
and clear, and we can reuse the existing C-to-Isabelle parser.
Secondly, we do not separate parallel and sequential pro-
grams into different layers, but rather have one datatype rep-
resenting both. These decisions make the soundness proof
more complicated, but allow COMPLX programs to have
nested parallelism, thus lifting unnecessary syntactic restric-
tions.

In this sense, COMPLX just extends the SIMPL abstract
syntax by two new constructors: Parallel cs and Await b c:

c = Skip | . . . |Parallel cs |Await b c

where Parallel takes a list of programs cs that run in par-
allel, and Await takes a set of states b specifying the await-
condition, and a program c representing the await-body. It is
worth noting that with nested parallelism we could use the
canonical binary parallel composition operator p ‖ q instead
of Parallel cs without any effect to semantic expressivity,
since Parallel cs can be represented by folding the binary
operator. On the other hand, an OG-rule for p ‖ q would
lack the possibility to collect and handle interference free-
dom of more than two parallel components within a single
proof obligation, but distribute it in accordance to the fold
strategy. To avoid such complications, Parallel takes a list
of parallel components directly in COMPLX abstract syntax
as shown above.

Next, we extend the small-step semantics of SIMPL to the
new language constructs. As mentioned previously, we use
small-step semantics to allow for reasoning about interleav-
ings between each atomic step. In what follows, we reuse
the SIMPL notation Γ ` 〈c, s〉 → 〈c′, s′〉 meaning that the
configuration 〈c, s〉, comprising a COMPLX program c and
a state s, can be transformed in one step to the configura-
tion 〈c′, s′〉 under the procedure environment Γ. As usual,
we write Γ ` 〈c, s〉 →∗ 〈c′, s′〉 for the reflexive-transitive
closure of the small-step relation.

To adapt the semantics of Parallel cs and Await b c from
Hoare-Parallel to SIMPL’s involved computation model, we
have to take into account several kinds of states: Normal ,
Fault , and Stuck , as well as exception handling. New sit-

uations arise that neither SIMPL nor the Hoare-Parallel for-
malisations had to deal with. For instance, we have to decide
how a parallel program shall behave in the case when one
of its threads raises an uncaught exception. In this case we
allow the parallel program to stop all other threads and exit
with the exception. The rule Parallel-Throw:

Throw ∈ set cs

Γ ` 〈Parallel cs, s〉 → 〈Throw , s〉

captures this behaviour, where set just converts a list to a set.
However, the parallel program may also continue its compu-
tation, delaying the exception, provided by the fundamental
Parallel rule:

Γ ` 〈csi, s〉 → 〈c, s′〉 i < |cs|
Γ ` 〈Parallel cs, s〉 → 〈Parallel cs[i := c], s′〉

where |cs| denotes the length of the list cs, csi the i-th
(counting from 0) element of cs, and cs[i := c] the list cs
with its i-th element replaced by c. Furthermore, a paral-
lel program is allowed to terminate properly only if all its
threads do so. This is described by the Parallel-Skip rule:

∀c ∈ set cs. c = Skip

Γ ` 〈Parallel cs, s〉 → 〈Skip, s〉

Next, for Await b c to be processed in a state Normal x,
the await-condition must be satisfied, i.e. x ∈ b must
hold. Otherwise the execution is blocked. Moreover, the
body of the await c must be a sequential program with-
out any further Await statements or Parallel composi-
tions. Following the Hoare-Parallel notation, we denote this
condition by atom com c. Now, any computation Γ `
〈c,Normal x〉 →∗ 〈Skip,Normal y〉 allows us to derive
Γ ` 〈Await b c,Normal x〉 → 〈Skip,Normal y〉. In other
words, if the await-body terminates in a number of small-
steps without any interleavings then Await b c can make the
same transition in a single step. Here again we have to con-
sider potential exceptions raised by c, in which case we let
Await b c throw an exception as well. These behaviours are
formalised by the following rules, where s = Normal x and
s′ = Normal y.

x ∈ b atom com c Γ ` 〈c, s〉 →∗ 〈Skip, s′〉
Γ ` 〈Await b c, s〉 → 〈Skip, s′〉

x ∈ b atom com c Γ ` 〈c, s〉 →∗ 〈Throw , s′〉
Γ ` 〈Await b c, s〉 → 〈Throw , s′〉

The cases when an execution of the await-body c results not
in Normal y, but in a state s′ other than normal (e.g. Stuck),
are handled in a similar manner: 〈Await b c,Normal x〉 can
take a single small-step to 〈Skip, s′〉.

4. Owicki-Gries Logic for COMPLX

Verification of programs by directly reasoning about the
semantics of the language is cumbersome and not easily

DISTRIBUTION A: Approved for public release, distribution unlimited.

amenable to automation. For sequential SIMPL programs,
SIMPL’s Hoare logic allows for weakest pre-condition style
reasoning, generating intermediate assertions, and a small
set of verification conditions that guarantee partial correct-
ness (i.e. correctness in case of termination). For our con-
current COMPLX programs, we create an OG logic, similar
to the one defined in Hoare-Parallel, that breaks down the
correctness of a parallel program into local correctness and
global correctness verification conditions.

4.1 Annotations
As explained in section 3, we use a single datatype to repre-
sent sequential and concurrent programs. Moreover, our OG
annotations are specified using a separate datatype called an
annotation tree, which is isomorphic to the abstract syntax
tree of the COMPLX program. The annotation tree contains
assertions at each step in the program and is represented as
follows:

a = AnnExpr r |AnnRec r a |AnnWhile r r a
|AnnComp a a |AnnCond r a a
|AnnPar l |AnnCall r i

Non-recursive command constructors such as Skip, Throw ,
etc. are annotated via an AnnExpr node, which carries a
single assertion r that is merely a set of states and is also
used for post-conditions of OG rules. AnnRec is used to
annotate recursive commands, such as Await , DynCom or
Guards, that hold another annotated command a. While-
commands require a special annotation type that provides
an assertion for the while, a loop invariant, as well as an
annotation tree for the loop body. Sequential composition
and Catch statements are annotated via AnnComp, where
an annotation sub-tree is provided for each component of the
sub-commands. Similarly, AnnCond is used for conditional
statements, but in addition to the two annotation sub-trees, it
carries an assertion for the conditional statement itself.

AnnPar is used to annotate Parallel statements, hence,
it stores a list l of triples containing an annotation tree, a
post-condition and an abrupt-condition, with one element
in the list per parallel component. The post-conditions and
abrupt-conditions must be specified by the user, because
they are part of the interference freedom requirements. More
specifically, we must show that none of these conditions can
be violated due to other components activity.

Finally, Call statements are annotated with AnnCall ,
which holds an assertion r and a routine index i of type
natural number, specifying which annotation tree to select
from the annotation environment. We return to this at the
end of subsection 4.2.

Despite having a separate datatype for the program and
the annotation tree, COMPLX’s syntactic sugar allows a user
to annotate a program directly. This way we specify asser-
tions at each step of the program, making it easy to keep
track of the assertions when following the control flow of
the program.

For instance, the following is a COMPLX program with
the annotations and program text combined.

x := 0;; y := 0;;
COBEGIN
{|a|} x := 1 {|Qx|}, {|Ax|} ‖ {|b|} y := 1 {|Qy|}, {|Ay|}

COEND

This produces two different trees, one for the program
itself (where Basic f models state update by the function
f , here variable assignment):

Seq (Basic (x update (λ-. 0)))
(Seq (Basic (y update (λ-. 0)))

(Parallel [Basic (x update (λ-. 1)),
Basic (y update (λ-. 1))]))

and a separate annotation tree of the form

AnnComp (AnnExpr {|True|})
(AnnComp (AnnExpr {|True|})

(AnnPar [(AnnExpr {|a|}, {|Qx|}, {|Ax|}),
(AnnExpr {|b|}, {|Qy|}, {|Ay|})]))

In the annotation tree, the trivial, unused assertions for
the sequential parts are automatically added by the syntactic
sugar, removing the burden from the user.

4.2 Owicki-Gries Rules
We define an OG statement of the form

Γ, Θ `/F a c {|Q|}, {|A|}

stating that the COMPLX program c with the annotation tree
a either ends in one of the fault states specified by F , or a
Normal state. If that Normal state is an exception, it must
satisfy the abrupt-condition A, otherwise it must satisfy the
post-condition Q. Γ is the procedure environment, mapping
function names to function bodies, and Θ is the annotation
environment, mapping function names to annotation trees.

To enable weakest pre-condition reasoning when proving
a sequential part of a program (i.e. within an Await or top-
level non-parallel commands), we have another OG state-
ment which takes an extra pre-condition {|P |}:

Γ, Θ `̀/F {|P|} a c {|Q|}, {|A|}

This means that we duplicate every OG rules and the
sequential version of a rule ignores the annotation tree. We
borrowed this idea from Hoare-Parallel, which also has two
versions for each rule. In our case, the annotation tree exists
but is only used as soon as we switch to parallel mode.

Figure 1 illustrates some of the important OG logic rules
for COMPLX. We omitted all the rules used for sequential
reasoning except for SeqParallel which allows switching
from sequential mode (denoted by) to parallel mode (de-
noted by `). This rule would be used when the program is

DISTRIBUTION A: Approved for public release, distribution unlimited.

P ⊆ pre (AnnPar as) Γ, Θ `/F (AnnPar as) (Parallel cs) {|Q|}, {|A|}
Γ, Θ `̀/F P (AnnPar as) (Parallel cs) {|Q|}, {|A|}

SEQPARALLEL

|as| = |cs| ∀ i<|cs|. Γ, Θ `/F (pres as[i]) cs[i] (postcond as[i]), (abrcond as[i])

interfree Γ Θ F as cs
⋂

map postcond as ⊆ {|Q|}
⋃

map abrcond as ⊆ {|A|}
Γ, Θ `/F (AnnPar as) (Parallel cs) {|Q|}, {|A|}

PARALLEL

Γ, Θ `̀/F (r ∩ b) P c {|Q|}, {|A|} atom-com c

Γ, Θ `/F (AnnRec r P) (Await b c) {|Q|}, {|A|}
AWAIT

r ⊆ pre a ∀ s∈r. Γ, Θ `/F a (d s) {|Q|}, {|A|}
Γ, Θ `/F (AnnRec r a) (DynCom d) {|Q|}, {|A|}

DYNCOM

Γ, Θ `/F P c {|Q|}, {|A|} r ∩ g ⊆ pre P r ∩ − g 6= ∅ −→ f ∈ F

Γ, Θ `/F (AnnRec r P) (Guard f g c) {|Q|}, {|A|}
GUARD

Θ p = Some as r ⊆ pre as[n] Γ p = Some b n < |as| Γ, Θ `/F as[n] b {|Q|}, {|A|}
Γ, Θ `/F (AnnCall r n) (Call p) {|Q|}, {|A|}

CALL

Figure 1: Some of the important derivation rules of COMPLX.

finished dealing with an initial sequential part and reaches
a parallel composition. Note that the pre-condition {|P |} in
the sequential OG statement disappears in the parallel one,
as long as it implies the pre-condition of the assertion tree.
Also note that the OG rules ensure that the annotation tree
and the program match, e.g. a Parallel statement can only be
proved correct if provided with an AnnPar annotation.

As explained in section 3, COMPLX allows for nested
Parallel statements. Several conditions must be met when
using the Parallel rule to derive a Parallel statement. Ev-
ery component of Parallel must itself be derivable. pres ,
postcond and abrcond respectively return the annotation
tree, the post-condition and the abrupt-condition of an el-
ement of the list in AnnPar described earlier. While the
intersection of the post-conditions of all components must
imply the post-condition of the overall Parallel , for abrupt-
conditions only one of the components must satisfy the
abrupt-condition of the Parallel . This is explained by the
fact that exceptions can interrupt other components. The key
requirement for derivability of Parallel is interfree which
specifies interference freedom — we return to this definition
in next section.

A derivation of Await b c requires a sequential derivation
of c with the assertion r combined with the condition b as
pre-condition. In addition, the command c must be deprived
of Parallel and Call statements since they cannot be atomic
and thus are forbidden in Await . This restriction is achieved
by the atom-com predicate and guarantees that a program
does not end in a Stuck state because of a non-atomic oper-
ation found in an Await .

Dynamic commands are functions that produce a com-
mand from a state. They provide a general mechanism to
model programs that need to introspect their state. For in-
stance, they could be used to model self-modifying code.
However, for C verification their use is limited to restoring
the value of local variables when a function is called. We

elaborate on this in section 6. In order to be able to reason
about dynamic commands in OG, we must be able to anno-
tate them. Since program annotations are static, they must
not depend on the state of the program. Thus our framework
restricts their use to dynamic commands that can be anno-
tated statically. DynCom is derivable so long as an annota-
tion tree a can be provided and that it allows derivation of the
command produced by the dynamic command d for any state
allowed by the assertion on DynCom . An additional require-
ment for the annotation tree to be valid is that its first asser-
tion must be allowed by the assertion on DynCom (i.e. r).
pre a returns the first assertion of the annotation tree a.

The Guard rule is straightforward. For the command
Guard f g c, if the guard condition g is not satisfied, the fault
f must be allowed by the fault set F of the OG statement.
The rule asserts this by requiring that, when the fault is not
allowed by the OG statement, the assertion r allows more
states than the ones that do not satisfy the guard.

The last interesting rule is Call . The annotation environ-
ment Θ stores a list of annotation trees per function. Since
a function can be called from multiple places and each call
may require a different set of assertions, multiple annotation
trees of the same function may be kept in the environment.
AnnCall provides a routine index to select which tree to use.
When deriving Call , the annotation environment needs to be
correctly initialised such that the requested annotation tree
matches the function body. This way a derivable program
cannot end in a Stuck state because of an undefined function
call. Ideally, this index would be computed by the translation
from C to COMPLX.

4.3 Interference Freedom
As explained in section 2, interference freedom states that,
for every atomic command c extracted from parallel com-
ponents, all the commands it may be interleaved with have
their assertions preserved by the execution of c. COMPLX’s

DISTRIBUTION A: Approved for public release, distribution unlimited.

interfree definition follows the same principle as Hoare-
Parallel’s, but with several important differences.

First, in order to support function calls we extract asser-
tions and atomics using relations instead of functions. Ex-
tracting assertions and atomic commands from a program
requires going through every statement including statements
inside function bodies. To avoid divergence, the extraction
functions must keep track of which functions have been pro-
cessed. The resulting function must maintain a state and
becomes hard to use when induction is required. In addi-
tion, COMPLX’s separation between program and annota-
tions makes it harder to extract assertions and atomics using
a function. Since the annotation tree and the program struc-
ture are not synchronised by construction, a function would
have to be partial or undefined if the annotation tree does not
match the structure of the program. To address these issues,
in COMPLX we use relations instead of functions to extract
assertions and atomics. Using a relation, any mismatch be-
tween annotation tree and program structure simply results
in the relation not holding, and the infinite-recursion prob-
lem goes away since the relation does not have to terminate.
More importantly, by using a relation we can describe an in-
finite set of assertions/atomics, which is specifically required
for DynCom .

Second, COMPLX’s semantics is significantly more com-
plicated than Hoare-Parallel’s. In particular, as the COMPLX
semantics executes the program, it reduces the program to a
final command (i.e. Skip or Throw) which denotes termina-
tion of execution. This is visible on most of the small-step se-
mantics rules presented in section 3, such as Parallel-Throw,
Parallel-Skip... Consequently, Skip and Throw commands
have two purposes: they denote final configurations, and they
also are legitimate commands that can be found in any given
program. In the latter case, they must be annotated manu-
ally. However, in the former case the COMPLX framework
must automatically generate assertions for them. Typically,
the assertion on a Skip will be the assertion of the next com-
mand, or, if it is the last command of the program, the post-
condition. Hence, the relation that extracts assertions takes
the post-condition and the abrupt-condition of the program
and generates the appropriate assertions for every semantics
rule that leads to a final configuration.

Finally, since COMPLX allows nested Parallel state-
ments, assertions need to be collected recursively on each
of the parallel components.

4.4 VCG
In order to automate the creation of verification conditions
for programs in COMPLX, we ported and extended Hoare-
Parallel’s VCG. We added support for several constructors,
including Catch , Call , Guard and DynCom . This involved
writing Isabelle/HOL tactic rules to decompose the deriva-
tion of these commands and convert interference freedom
goals to OG statements showing that assertions are pre-
served. As in Hoare-Parallel, most of the generated proof

obligations get easily discharged using Isabelle/HOL au-
tomation. This makes our framework ideal for concurrency
verification as finding the right correctness assertions should
be the bulk of the work for verifying a concurrent program.

5. Soundness Proof
Verification using logic rules and a VCG is much more effi-
cient than reasoning directly with the semantics, but it needs
to be proven sound if we want to preserve the same level
of trust. In this section we outline our proof that COMPLX’s
OG rules presented in section 4 are sound with respect to
the semantics presented in section 3. Namely we prove, in
Isabelle/HOL, the following theorem (identical to SIMPL’s
soundness theorem):

Γ, Θ `/F a c {|Q|}, {|A|} =⇒ Γ |=/F (pre a) c {|Q|}, {|A|}
This states that any Hoare triple3 that is derivable from the
OG-rules is valid, where validity is defined in terms of the
small-step semantics (below e.g. Normal ‘ {|P |} denotes the
image of {|P |} under Normal , embedding this {|P |} into
extended states):

Γ |=/F {|P|} c {|Q|}, {|A|} ≡
∀ s t c ′.

Γ ` (c, s)→∗ (c ′, t) −→
final (c ′, t) −→
s ∈ Normal ‘ {|P|} −→
t /∈ Fault ‘ F −→
c ′= Skip ∧ t ∈ Normal ‘ {|Q|} ∨ c ′= Throw ∧ t ∈ Normal ‘ {|A|}

That is, a program c is called valid if final states of any of
its full executions without any faults from a state s satisfying
P , satisfy the relevant post-condition. More precisely, if c
executes, after multiple steps, into either Skip or Throw
(denoted by final) then the final state t satisfies Q if c′ is
Skip and A if c′ is Throw . Note that a sequence of small-
steps cannot reach both, Skip and Throw . It is also worth
noting, that as a consequence of separating annotations from
programs, the notion of validity is purely semantical, thus
completely independent from annotations which are only
needed for derivability.

We now outline the main challenges in the soundness
proof that proceeds by induction on the structure of the OG-
rules. For the sake of brevity, in the following we will focus
on the cases when all considered states are Normal : apart
from these we get several corner cases, such as that guards
can fail only within specified Fault states or absence of un-
defined function calls. These are, however, of technical na-
ture and do not contribute much to the structure and com-
plexity of the overall proof.

All OG-rules, beside those for parallel composition and
synchronisation, retain their SIMPL form, such that in these
cases we proceed similarly to the sequential setting. This
changes, of course, as soon as we reach the parallel com-
position and await cases.

3 Technically, this is more a Hoare quadruple but we still use the more
traditional term of triple.

DISTRIBUTION A: Approved for public release, distribution unlimited.

The major challenges arise in the proof of the paral-
lel case, i.e. when c = Parallel cs . We can assume all the
premises of the OG-rule PARALLEL (see Figure 1), in partic-
ular that interference freedom holds for the parallel compo-
nents cswith respect to the annotation. Moreover, we can as-
sume Γ ` 〈Parallel cs,Normal x〉 →∗ 〈c′,Normal y〉 with
x satisfying the annotated pre-condition and c′ being Skip
or Throw . What we need to prove is that y satisfies the rele-
vant post-condition. For this we induct on the closure of the
small-step relation, and the challenge is to show that all the
assumed conditions (from the premise of the OG rule, e.g.
interference freedom) are preserved by each execution step
(to be able to apply the induction hypothesis). This is a chal-
lenge because each step ‘consumes’ a part of the program,
which needs to be reflected in the annotation tree. We cap-
ture this by a separate lemma, where we collect all the neces-
sary properties relating pre- and post-configurations of any
small-step. That is, if Γ ` 〈c,Normal x〉 → 〈c′,Normal y〉
holds for any c, x, c′, y, and the program c is derivable with
an annotation structure a by the OG-rules such that s satis-
fies the annotated pre-condition, then we can find an anno-
tation structure a′ such that c′ is derivable with a′, y satis-
fies the pre-condition in a′ and, moreover, any assertion or
atomic of a′ is an assertion or atomic of a, respectively. Since
the program c is an arbitrary COMPLX program, we induct
on the structure of c. Here again, only the await and paral-
lel cases are more involved. For await we can rely on the
canonical restriction that the body of any Await-construct
is purely sequential, i.e. a SIMPL program in fact. In the
parallel case, however, we have to deploy our interference
freedom assumption to show that any post-state of the whole
parallel construct will satisfy annotated conditions regard-
less of which of the constituting components does its small
step. To this end we need to establish a connection between
the small-step semantics and atomics as follows. Any pro-
gram transition Γ ` 〈c,Normalx〉 → 〈c′,Normal y〉, where
Normal x satisfies the annotated pre-condition and x 6= y,
can only happen due to an atomic subcomponent cc of c that
performs the step Γ ` 〈cc,Normal x〉 → 〈Skip,Normal y〉.
Now, the interference freedom property states that each of
such atomic steps preserves assertions of any component
other than the one that performs the step. This gives us the
preservation we need to carry assumptions over single steps
of execution.

For the proof of the top-level Await case we similarly
can assume Γ ` 〈Await b cc,Normal x〉 →∗ 〈c′,Normal y〉
with x satisfying the annotated pre-condition, c′ being Skip
or Throw , and Await b cc being derivable by the OG-rules.
Moreover, by induction hypothesis we also know that the
await-body cc is valid. On the other hand, from the se-
mantics of Await we can conclude that y can only be ob-
tained by a certain number of small-step transformations
of 〈cc,Normal x〉 until a Skip or Throw configuration is
reached, establishing the desired result.

6. Case Study
We used our COMPLX framework to reproduce the proof
of correctness of a few examples of concurrent algorithms
that had been verified within Hoare-Parallel, including the
proof of Peterson’s solution to the mutual exclusion prob-
lem [Prensa Nieto 2002]. Our proofs can be found on-
line [COMPLX] and were very easily achieved once our
framework was complete. This shows that COMPLX is ro-
bust and backward compatible with Hoare-Parallel, as none
of the proofs required extra work. The VCG generates ap-
proximately the same number of proof obligations and dis-
charging them takes a similar processing time. These exam-
ples, however, did not exercise any C-specific features.

To demonstrate the practicality of our framework in veri-
fying concurrent C code, we created an example (also avail-
able online [COMPLX]) of a concurrent C program that ex-
ercises the specific features that COMPLX supports. In par-
ticular, our example uses exceptions, guards and function
calls, all of which are not supported by Hoare-Parallel.

In our example, we extracted manually the program
model from the C source code. The C program and the COM-
PLX program are both less than 20 lines, and the whole
model is ≈230 lines of Isabelle/HOL definitions, includ-
ing the complete set of assertions used to annotate the pro-
gram and verify its correctness. The VCG generates 688
conditions and most of them are easily discharged using Is-
abelle/HOL automation. Once again, the bulk of the work
lies in finding the right correctness assertions.

The aim of the program is to compute the combined sum
of all the elements of multiple arrays. It does this by running
a number of threads in parallel, each computing the sum of
elements of one of the arrays, and then adding the result to
a global variable gsum shared by all threads. We restrict
the example to two arrays and threads, but this could be
generalised: we would then just need to generate accordingly
more copies of the function sumarr , pairwise disjoint in
local variables, such that each thread can invoke its own copy
of sumarr . The correctness statement for this program is:

Γ, Θ |`̀/F {|precond|}
COBEGIN

SCHEME [0 ≤ m < 2]
call-sumarr m
{|local-postcond m|}, {|False|}

COEND
{|postcond|}, {|False|}

The SCHEME syntax models a parametric number of par-
allel programs. Here we use it to model the creation of
two threads running concurrently, each calling the func-
tion sumarr . The post-condition (definition not shown)
states that the global variable gsum is indeed equal to
the combined sum of all elements of all arrays. Since the
function sumarr cannot terminate with an exception, the
abrupt-condition is false, which forces us to prove that all
exceptions are caught. As explained in section 4, prov-

DISTRIBUTION A: Approved for public release, distribution unlimited.

ing interference freedom also requires that we specify the
post-condition (local-postcond) and abrupt-condition (false
again) of the parallel component.

To begin we explain the state of the program, then how we
model function calls, and finally how the sumarr function is
defined.

State The state of the program is modelled with the
following record:

record sumarr state =
(* function arguments *)
tarr :: “routine⇒ word32 array”
tid :: “routine⇒ word32”
(* local variables of threads *)
ti :: “routine⇒ word32”
tsum :: “routine⇒ word32”
(* global variables *)
garr :: “(word32 array) array”
gsum :: word32
gdone :: word32
glock :: nat

We now explain the need for the routine argument. Major
challenges arise when attempting to verify parallel programs
that make use of function calls. In a sequential context,
a call to a function named f in a state s means that we
just lookup the body of f in the procedure environment Γ,
continue with the execution of Γf in the state s and return
to the calling routine afterwards. In a concurrent setting,
however, this execution could be interleaved with another
call of f invoked by a different thread. Thus, if Γf uses some
local variables, the model of the overall parallel program
might not behave as in reality, as both invocations of f can
interfere on the same local variables. Therefore, in our state,
function arguments and local variables are modelled as a
mapping from routine index to value. This allows concurrent
executions of a function to use different instances of the
variables.

In contrast, global variables are shared by all threads, so
they are not protected by a routine index. We use garr to
store two arrays of machine 32-bit words that will be passed
to each thread via argument tarr . The global variable gsum
is used to store the total result, whereas tsum stores the
local result used by each thread. The bit-field gdone is used
to indicate whether a thread has finished its computation.
Finally, the threads use glock as a mutually exclusive lock in
order to protect the shared variables gsum and gdone .

For the remainder of this section, {|...|} denotes the places
where assertions are required. To improve the readability
and to highlight the similarity between input source and
COMPLX model, we display our models without most of the
assertions.

Function calls We define call-sumarr as shown in Fig-
ure 2. The parameter m is the routine index (from the

call-sumarr m ≡
{|local-precond m|} CALLX (sumarr-init m)
{|sumarr-precond m|} (′′sumarr ′′, m) m
(sumarr-restore m) (λ- -. Skip)
{|sumarr-restore-post m|} {|sumarr-return-post m|}
{|False|} {|False|}

Figure 2: Annotations for the function sumarr .

callx init body restore return =
DynCom (λs. TRY

init;; body
CATCH

restore s;; THROW
END;;
DynCom (λt. restore s;; return s t))

Figure 3: Argument passing and scoping for function calls.

SCHEME) used to specify which copy of a local variable is
accessed. CALLX is syntactic sugar for calling a function
while passing arguments and implementing scoping, i.e. sav-
ing and restoring local variables. The computation is done
by a function callx shown in Figure 3 (CALLX combines it
with annotations, as we will explain shortly). The process of
calling a function involves several steps:

1. Saving the value of local variables by keeping a copy of
the state.

2. Initialising local variables and function arguments by
updating the state.

3. Executing the function body.

4. Restoring the value of local variables using the copy of
the state.

5. Extracting the return value of the function from the state.

Saving and restoring local variables is required to support
recursive functions and is equivalent to setting up and tearing
down the stack frame in C. Steps 1 and 5 of function calls
are both implemented using DynCom as seen in Figure 3.

The first DynCom is used to keep a copy of the state
that is later used for restoring local variables. As we can see,
callx is complicated by exceptions that may cross function
boundaries. When an exception is uncaught, the local vari-
ables must first be restored before the exception is propa-
gated.

Steps 2 and 4 use the provided functions init and restore.
In our example, there are two arguments being passed to
sumarr , the array tarr and the thread identifier tid . The
initialisation and restore functions are:

DISTRIBUTION A: Approved for public release, distribution unlimited.

sumarr-init m ≡
λs. s(|tarr := (tarr s)(m := (garr s)[m]),

tid := (tid s)(m := m + 1), ti := (ti s)(m := undefined),
tsum := (tsum s)(m := undefined)|)

sumarr-restore m ≡
λs t. t(|tarr := (tarr t)(m := tarr s m), tid := (tid t)(m := tid s m),

ti := (ti t)(m := ti s m), tsum := (tsum t)(m := tsum s m)|)

To reason about function calls in OG, the user also has
to provide assertions for every step in the control flow of
callx . To facilitate this, there is an equivalent helper function
ann callx . The arguments of the CALLX statement are
then the commands for dealing with argument passing and
scoping, the corresponding annotations, and the function
name and index used when looking up the procedure and
annotation environment.

One restriction of our current implementation of CALLX
is that both initialising and restoring local variables is per-
formed in one step. This does not match the reality of C,
which uses multiple instructions and can potentially be in-
terleaved. We believe that it would be relatively straightfor-
ward to change our framework to use multiple steps, one for
each local variable. Additionally, we should be able to create
syntactic sugar that hides many of these details from the end
user.

In Figure 2, local-precond corresponds to the first asser-
tion of the parallel component, whereas summar-precond is
the assertion once the arguments and local variables have
been initialised. The other assertions describe the state be-
fore restoring local variables (summar-restore) and before
extracting the return value from the state (summar-return),
for normal termination of the function. For abrupt termina-
tion these assertions are false, as the function sumarr cannot
terminate with an exception.

The sumarr function Returning to our case study, Fig-
ure 4a shows the body of the sumarr function, as it would
be implemented in C. The pointer tarr refers to the array of
unsigned integers that is being summed and tid is a thread
identifier of value 1 or 2 depending on the thread.

The loop calculates the sum of each element of the ar-
ray and at each iteration if the sum or the current element
exceeds MAXSUM, we break out of the loop and cap tsum
at MAXSUM. This prevents potential word overflows, as-
suming that NSUM and MAXSUM are chosen appropriately.
After the loop, we invoke the lock and unlock functions to
protect the global variables gsum and gdone. In the C code,
lock and unlock are implemented using a mutex.

Figure 4b shows the COMPLX model in Isabelle/HOL of
this function. As seen in subsection 4.1, COMPLX’s syntac-
tic sugar allows the program to be directly annotated. Addi-
tionally, concurrent executions of functions require different
instances of any local variables. Therefore, in Figure 4b we

parametrise sumarr with m, which is used as a routine in-
dex to select which local variables to use.

The first two lines initialise the local variables tsum and
ti to zero. Note that a for-loop is trivially converted to a
while-loop by moving the loop counter update to the end
of the loop body. The while-loop is wrapped inside a try-
catch statement because COMPLX, just like SIMPL, uses
exceptions to model early exit of a loop. Hence, the break
statement present in the C code is replaced with a Throw in
COMPLX, and the CATCH block only contains a Skip, i.e.
do nothing. This means that when the exception is thrown, it
has the effect of breaking out of the loop.

One of the most important aspects of verifying C code
is proving the absence of behaviours undefined by the C
standard. In both SIMPL and COMPLX undefined behaviours
are usually specified using guards. For instance, in our case
there could be undefined behaviour if an invalid pointer is
dereferenced. Therefore, every time a pointer is accessed it
must be protected by a guard forcing us to prove that the
pointer is indeed valid.

In Figure 4b, since tarr is a pointer, every access is
guarded with an array-in-bound check which guarantees
that tarr is a valid pointer and that the index ti is less
than the length of the array. If the guard is not satisfied the
program returns the fault InvalidMem indicating an invalid
memory access. Having explicit guard commands in COM-
PLX also allows us to reason about concurrent programs that
can actually end in a specific Fault state. For instance, we
are able to prove that in some circumstances a program is
guaranteed to result in a Fault state.

After the loop, the model calls the function lock , to ac-
quire the global mutex that protects the shared variables
gsum and gdone . Since lock and unlock only access a
global variable (the mutex) and do not take any arguments,
their call does not require saving and restoring of local vari-
ables. The definition of lock and unlock follows:

lock m ≡ {|...|} AWAIT glock = 0 THEN glock := 1 END

unlock m ≡ {|...|} glock := 0

The mutex is modelled by using glock , a global variable
set to 1 when the lock is held and 0 otherwise. The semantics
of Await guarantees that only one thread can be inside the
lock at a time.

Summary COMPLX was designed to reason about an ac-
curate representation of the C code, without requiring that
programmers radically change their programming style and
habits. A key feature of COMPLX is the syntactic sugar
which allows annotating programs directly on the program
model, despite having a separate datatype for annotation tree
and program. This gives us the best of both worlds: a user-
friendly framework for annotating program and a neat lan-
guage abstract syntax which is not cluttered with irrelevant
annotations. The lack of exceptions in Hoare-Parallel would
force reimplementing our code to avoid having a break

DISTRIBUTION A: Approved for public release, distribution unlimited.

void sumar r (unsigned i n t ∗ t a r r ,
unsigned i n t t i d)

{
unsigned i n t t i ;
unsigned i n t tsum ;

tsum = 0 ;
f o r (t i = 0 ; t i < NSUM; t i ++) {

tsum += t a r r [t i] ;
i f (tsum >= MAXSUM | |

t a r r [t i] >= MAXSUM) {
tsum = MAXSUM;
break ;

}
}
l o c k () ;
gsum += tsum ;
gdone |= t i d ;
un lo c k () ;

}

(a) C code

sumarr m ≡
{|...|} tsum := tsum(m := 0);;
{|...|} ti := ti(m := 0);;
TRY {|...|} WHILE ti m < NSUM INV {|...|}

DO {|...|} (InvalidMem, {|array-in-bound (tarr m) (ti m)|}) 7−→
{|...|} tsum := tsum(m := tsum m + array-nth (tarr m) (ti m));;
{|...|} (InvalidMem, {|array-in-bound (tarr m) (ti m)|}) 7−→
{|...|} IF MAXSUM ≤ tsum m ∨ MAXSUM ≤ array-nth (tarr m) (ti m)
THEN {|...|} tsum := tsum(m := MAXSUM);;

{|...|} THROW
ELSE {|...|} SKIP
FI;;
{|...|} ti := ti(m := ti m + 1)

OD
CATCH {|...|} SKIP END;;
{|...|} SCALL (′′lock ′′, 0) m;;
{|...|} gsum := gsum + tsum m;;
{|...|} gdone := (gdone OR tid m);;
{|...|} SCALL (′′unlock ′′, 0) m

(b) COMPLX model

Figure 4: The C code and matching COMPLX model of our case study

statement in the middle of the loop. Furthermore, support
for guard statements is critical to enable C verification, be-
cause they ensure that the semantics of the code is defined.
Finally, supporting function calls is a key requirement for
our framework, which we intend to use on larger scale veri-
fication projects.

7. Related Work
Logics for Concurrency Over the years, many logics were
developed for reasoning about concurrency, the oldest and
most straightforward of which is OG. OG provides, however,
no modular way to reason about memory and quickly leads
to an explosion in the number of verification conditions
that need to be proven. Rely-Guarantee (RG) [Jones 1983],
Concurrent Separation Logic (CSL) [OHearn 2007], and a
number of more recent combinations and extensions of these
(e.g. [Vafeiadis 2008; da Rocha Pinto et al. 2014]) have been
developed since to overcome the modularity issues of OG.
The separation-based logics typically rely on ownership over
shared state: threads need to lock their accesses to shared
state and ownership can be transferred along acquire/release
atomic memory accesses.

In recent work [Andronick et al. 2015, 2016], we found
that using the simple OG method is suitable for our reason-
ing of interrupt-induced concurrency in racy OS code. In that
code, the OS API functions, the scheduler and the interrupt
handlers all concurrently modify shared variables without
any synchronisation (in order to meet stringent low-latency
requirements). The correctness argument needs to rely on
fine-grain assertions at these sharing points; it cannot rely
on some atomicity or ownership argument. We used OG (at

the simple high-level language IMP) and we introduced a
technique that we called await-painting, essentially painting
our program with Await statements to limit the concurrency
to places where it actually occurs. This technique allowed us
to proof-engineer an Isabelle/HOL tactic that automatically
discharges most of the verification conditions generated by
OG. We successfully used the tactic to verify an abstract
model of the eChronos OS scheduling behaviour. COMPLX
will enable us to extend this verification to the C implemen-
tation.

In COMPLX, just like SIMPL, the notion of state is ab-
stract: we propose a generic language for reasoning about
concurrent imperative code. Modelling memory is orthogo-
nal to the work done in this paper. The C-to-Isabelle parser
defines a concrete notion of state on top of SIMPL which, for
instance, can be reasoned about using separation logic [Tuch
et al. 2007]. Building a framework in the spirit of FCSL
(fine-grained concurrent separation logic) [Nanevski et al.
2014; Sergey et al. 2015] on top of the COMPLX language
would be interesting future work.

Recent work showed that, as is, OG is unsound for weak
memory models but can be extended in a sound logic by
strengthening its interference-freedom condition [Lahav and
Vafeiadis 2015]. We could look at a similar approach if we
want to support weak memory models in the future.

Tools for Verification of Concurrent C We focus here
on tools that allow the verification of specific properties
or specifications, rather than e.g. static analysers that can
only detect specific classes of errors. VCC [Cohen et al.
2009] is an industrial-strength verification environment for
low-level concurrent system code. It is an assertional, auto-

DISTRIBUTION A: Approved for public release, distribution unlimited.

matic, deductive code verifier for C, where specifications in
the form of function contracts, data invariants, and loop in-
variants are added to the C code to guide VCC. From the
annotated program, VCC generates verification conditions,
which it then tries to discharge using the automatic theo-
rem prover Z3 [de Moura and Bjørner 2008] or through the
Boogie verifier [Barnett et al. 2006]. VCC has been used,
among others, to verify the Microsoft Hyper-V hypervisor
and has also been used in the Verisoft XT project [Verisoft
XT]. Moreover, Isabelle/HOL was used as a backend to
VCC for the verification of certifying graph algorithms from
LEDA [Alkassar et al. 2014]. When the C-to-Isabelle parser
was open-sourced, the LEDA verification project switched
to only using SIMPL and the C-to-Isabelle parser and redid
their verification completely within Isabelle/HOL, in order
to provide higher trust guarantees [Noschinski et al. 2014;
Rizkallah 2015]. Unlike an LCF based theorem prover (e.g.
Isabelle/HOL or Coq [Bertot and Castéran 2004]), VCC re-
lies on a large trusted computing base that includes the en-
tire VCC engine and Z3 [Noschinski et al. 2014; Rizkallah
2015]. Similar to VCC, VeriFast [Jacobs et al. 2010] relies
on Z3. We would like to enable reasoning about concurrency,
within an LCF based theorem prover in order not to compro-
mise on trust.

A number of recent efforts provide tools to reason about
concurrency in Coq. Most of these efforts are based on
CSL and primarily focus on modular reasoning about non-
racy shared memory. The Verified Software Toolchain [Ap-
pel 2012] provides machine-checked guarantees that the
CSL assertions about concurrent C code with primitive lock
operations hold down to the machine-language program.
Iris [Jung et al. 2015, 2016] is a general and expressive logic
with a simple set of verified primitive mechanisms and proof
rules for modular reasoning about shared memory. Once
again, we are targeting potentially-racy high-performance
code for which OG fine-grain assertions are well-suited.

8. Conclusion and Future Work
In this paper we have presented our COMPLX framework
for sound verification of concurrent imperative code in Is-
abelle/HOL. We have emphasised how we use the Owicki-
Gries method in order to extend the SIMPL tool to cope
with concurrency. This way our framework inherits support
for function calls and exception handling from SIMPL. The
presented case-study illustrates how these features can be
utilised in practical verification.

Future work includes more proof engineering to increase
ease of use, integration with the C-to-Isabelle parser, and
definition of more concrete notions of states.

With the work presented here, we bridge the gap between
the verification of abstract algorithms and that of their imper-
ative implementations. We plan to extend the C-to-Isabelle
parser to translate C code into COMPLX code to provide
guarantees for concurrent low-level C code, with the aim

to verify concurrent operating systems, such as the inter-
ruptible eChronos embedded operating system or multicore
seL4.

Acknowledgments
This research is supported by the Air Force Office of Scientific
Research, Asian Office of Aerospace Research and Development
(AOARD) and U.S. Army International Technology Center - Pa-
cific under grant FA2386-15-1-4055.

References
E. Alkassar, S. Böhme, K. Mehlhorn, and C. Rizkallah. A frame-

work for the verification of certifying computations. Journal of
Automated Reasoning, 52(3):241–273, 2014. ISSN 0168-7433.
doi: 10.1007/s10817-013-9289-2.

S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O’Connor,
J. Beeren, Y. Nagashima, J. Lim, T. Sewell, J. Tuong, G. Keller,
T. Murray, G. Klein, and G. Heiser. Cogent: Verifying high-
assurance file system implementations. In ASPLOS, Atlanta,
GA, USA, Apr 2016. doi: 10.1145/2872362.2872404.

J. Andronick, C. Lewis, and C. Morgan. Controlled Owicki-Gries
concurrency: Reasoning about the preemptible eChronos em-
bedded operating system. In Workshop on Models for Formal
Analysis of Real Systems (MARS), 2015.

J. Andronick, C. Lewis, D. Matichuk, C. Morgan, and C. Rizkallah.
Proof of OS scheduling behavior in the presence of interrupt-
induced concurrency. In International Conference on Interactive
Theorem Proving, Nancy, France, aug 2016.

A. W. Appel. Verified software toolchain. In A. Goodloe and
S. Person, editors, NASA Formal Methods - 4th International
Symposium, NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Pro-
ceedings, volume 7226 of Lecture Notes in Computer Science,
page 2. Springer, 2012.

M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino. Boogie: a modular reusable verifier for object-oriented
programs. In 4th FMCO, volume 4111 of LNCS, pages 364–
387, Amsterdam, The Netherlands, 2006. Springer.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Con-
structions. Texts in Theoretical Computer Science. An EATCS
Series. Springer, 2004. ISBN 3-540-20854-2. doi: 10.1007/
978-3-662-07964-5.

E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A practical system
for verifying concurrent C. In S. Berghofer, T. Nipkow, C. Ur-
ban, and M. Wenzel, editors, 22nd TPHOLs, volume 5674 of
LNCS, pages 23–42, Munich, Germany, 2009. Springer. doi:
10.1007/978-3-642-03359-9 2.

COMPLX. cf. http://ts.data61.csiro.au/projects/

concurrency/complx.

P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA: A
logic for time and data abstraction. volume 8586 of LNCS, pages
207–231. Springer, 2014. doi: 10.1007/978-3-662-44202-9 9.
URL http://dx.doi.org/10.1007/978-3-662-44202-9_

9.

DISTRIBUTION A: Approved for public release, distribution unlimited.

http://ts.data61.csiro.au/projects/concurrency/complx
http://ts.data61.csiro.au/projects/concurrency/complx
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1007/978-3-662-44202-9_9

L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In TACAS, volume 4963 of LNCS, pages 337–340, Budapest,
Hungary, Mar 2008. Springer. ISBN 978-3-540-78799-0. doi:
10.1007/978-3-540-78800-3 24.

B. Jacobs, J. Smans, and F. Piessens. A quick tour of the verifast
program verifier. In Programming Languages and Systems - 8th
Asian Symposium, APLAS 2010, Shanghai, China, November 28
- December 1, 2010. Proceedings, pages 304–311, 2010.

C. B. Jones. Tentative steps towards a development method for
interfering programs. Trans. Progr. Lang. & Syst., 5(4):596–619,
1983.

R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon,
L. Birkedal, and D. Dreyer. Iris: Monoids and invariants as an
orthogonal basis for concurrent reasoning. In S. K. Rajamani
and D. Walker, editors, Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015,
pages 637–650. ACM, 2015.

R. Jung, R. Krebbers, L. Birkedal, and D. Dreyer. Higher-order
ghost state. In J. Garrigue, G. Keller, and E. Sumii, editors, Pro-
ceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming, ICFP 2016, Nara, Japan, Septem-
ber 18-22, 2016, pages 256–269. ACM, 2016.

G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: Formal verifica-
tion of an operating-system kernel. CACM, 53(6):107–115, Jun
2010. doi: 10.1145/1743546.1743574.

O. Lahav and V. Vafeiadis. Owicki-Gries Reasoning for Weak
Memory Models, pages 311–323. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2015.

K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial
and Geometric Computing. Cambridge University Press, 1999.

T. Murray, D. Matichuk, M. Brassil, P. Gammie, and G. Klein. Non-
interference for operating system kernels. In Chris Hawblitzel
and Dale Miller, editor, CPP, pages 126–142, Kyoto, Dec 2012.
Springer. ISBN 978-3-642-35307-9.

A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco. Com-
municating state transition systems for fine-grained concurrent
resources. In European Symposium on Programming Languages
and Systems, pages 290–310. Springer, 2014.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002. ISBN 978-3-540-43376-7. doi: 10.1007/
3-540-45949-9.

L. Noschinski, C. Rizkallah, and K. Mehlhorn. Verification of cer-
tifying computations through AutoCorres and Simpl. In J. M.
Badger and K. Y. Rozier, editors, NASA Formal Methods, vol-
ume 8430 of LNCS, pages 46–61. Springer, 2014.

P. W. OHearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, Apr 2007. ISSN 0304-3975.
doi: 10.1016/j.tcs.2006.12.035.

S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs. Acta Informatica, 6:319–340, 1976.

L. Prensa Nieto. Verification of parallel programs with the Owicki-
Gries and rely-guarantee methods in Isabelle/HOL. PhD thesis,

T.U. München, 2002.

C. Rizkallah. A Simpl shortest path checker verification. In
Proceedings of Isabelle Workshop 2014, 2014.

C. Rizkallah. Verification of program computations. PhD the-
sis, Saarland University, 2015. URL http://scidok.sulb.

uni-saarland.de/volltexte/2015/6254/.

N. Schirmer. Verification of Sequential Imperative Programs in
Isabelle/HOL. PhD thesis, Technische Universität München,
2006.

N. Schirmer. A sequential imperative programming language
syntax, semantics, hoare logics and verification environment.
Archive of Formal Proofs, Feb 2008. ISSN 2150-914x. http://
isa-afp.org/entries/Simpl.shtml, Formal proof devel-
opment.

I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification
of fine-grained concurrent programs. In ACM SIGPLAN Notices,
volume 50, pages 77–87. ACM, 2015.

H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation
logic. In Martin Hofmann and Matthias Felleisen, editor, POPL,
pages 97–108, Nice, France, Jan 2007. ACM. ISBN 1-59593-
575-4.

V. Vafeiadis. Modular fine-grained concurrency verification. PhD
thesis, University of Cambridge, Computer Laboratory, jul 2008.

Verisoft XT. Verisoft XT. http://www.verisoftxt.de, 2010.

DISTRIBUTION A: Approved for public release, distribution unlimited.

http://scidok.sulb.uni-saarland.de/volltexte/2015/6254/
http://scidok.sulb.uni-saarland.de/volltexte/2015/6254/
http://isa-afp.org/entries/Simpl.shtml
http://isa-afp.org/entries/Simpl.shtml
http://www.verisoftxt.de

	DTIC Title Page
	SF298
	15IOA055_Final_Performance
	Introduction
	Results and contributions
	99993em.5Complx: formalising concurrent imperative programs
	Background and approach
	Syntax and semantics
	Logic, VCG and soundness

	Model and proof of the big-lock kernel
	Model of interleaving
	Abstract model of big-lock seL4
	Proof of correctness

	Concurrency aware refinement
	Specification language
	Definition of refinement

	Research Outcomes
	Introduction
	Background
	Verification of C in Isabelle/HOL
	Verification of Concurrent Code in Isabelle/HOL

	99993em.5Complx: Syntax and Semantics
	Owicki-Gries Logic for 99993em.5Complx
	Annotations
	Owicki-Gries Rules
	Interference Freedom
	VCG

	Soundness Proof
	Case Study
	Related Work
	Conclusion and Future Work

