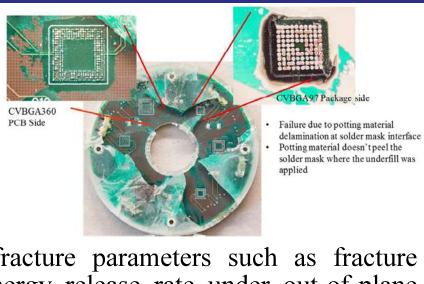
RT 184: Electronic Survivability in Harsh Environments

Pradeep Lall

John and Anne MacFarlane Endowed Professor Director, NSF-CAVE3 Electronics Research Center Technical Council and Governing Council of NextFlex

> Auburn University Auburn, AL 36849 (O) 334-844-3424 Email: lall@auburn.edu

REPORT DOCUMENTATION PAGE


Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information it it does not display a currently valid OMB control number.

subject to any penalty PLEASE DO NOT	ofor failing to comply with RETURN YOUR FO	a collection of in RM TO THE	formation if it does not displa ABOVE ADDRESS.	y a currently valid	OMB contro	ıl number.
1. REPORT DAT	E (DD-MM-YYYY)	2. REPOR	T TYPE			3. DATES COVERED (From - To)
4. TITLE AND S	UBTITLE	<u>.l</u>			5a. CC	ONTRACT NUMBER
					5b. GR	RANT NUMBER
					5c. PR	OGRAM ELEMENT NUMBER
6. AUTHOR(S)					5d. PR	OJECT NUMBER
					5e. TA	SK NUMBER
					5f. WC	DRK UNIT NUMBER
7. PERFORMING	G ORGANIZATION N	AME(S) AND	ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING	3/MONITORING AGE	NCY NAME	S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
						11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTIO	ON/AVAILABILITY S	TATEMENT				<u>. </u>
13. SUPPLEMEN	TARY NOTES					
14. ABSTRACT						
15. SUBJECT TE	:RMS					
	LASSIFICATION OF b. ABSTRACT c. TI	: 1 HIS PAGE	7. LIMITATION OF ABSTRACT	18. NUMBER OF Pages		AME OF RESPONSIBLE PERSON
				1 7000	19b. TE	LEPHONE NUMBER (Include area code)

Measurement of Interfacial Fracture Toughness and Cohesive-Zone Models of Potting Compounds with FR4 PCBs

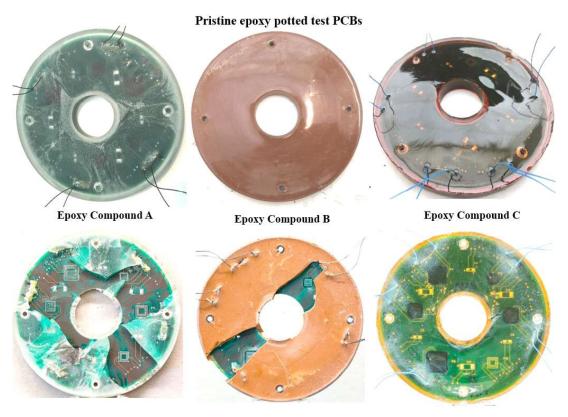
K. Dornala, P. Lall

Epoxy-A potting material failure @ 25,000g mechanical shock

l Determina	tion	of the	e fractu	re parai	neters	such	as	fracture	2
toughness				-					
deformation	n							_	

- ☐ Effect of process parameters such as cure schedule and temperature on fracture toughness and characterize the mechanics of interface delamination of potting-PCB interface.
- ☐ Create modeling framework for delamination prediction.

- UNIVERSI


Introduction

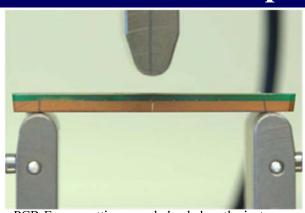
Electronic components operating under extreme thermo-
mechanical stresses are often protected underfills and potting
encapsulation to mitigate the thermal and vibration shock
loads.
Encapsulation of the PCB with epoxy resin provides complete
insulation for the unit thereby combining good electrical
properties with excellent mechanical protection.
In military and defense applications these components are
often subjected to mechanical shock loads of 50,000g and are
expected to perform with reliability.
The cured potting materials are prone to interfacial
delamination under bending loading which in turn potentially
cause failures in the package interconnects.
_ _ _ _

Failure Modes at potting-PCB interface under 25,000g shock

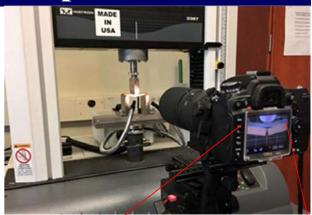
High-g shock tested PCBs at 25,000g

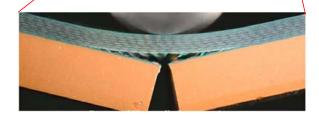
Test Vehicle

Specimen Preparation


- Epoxy material-A is a clear two part system. Stiffer cured material of the three.
- Epoxy material-B is a brown color two-part system with a hardness value between A and C.
- Epoxy material-C is an amber color three part system. Softer cured material.

Potting System	Tg (°C)	Density (Kg/m3)	Elastic Modulus (GPa)	Max Elongation %	Hardness
A	122	1024	2.81	4	ShoreD 85
В	60	1320	1.42	12	ShoreD 72
С	~85	936	0.315	80	ShoreD 35-45

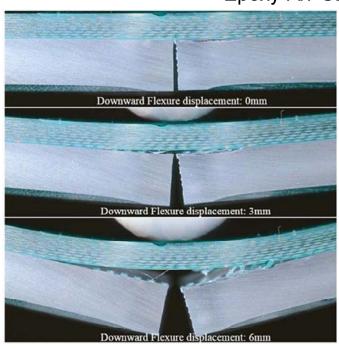

Experiment setup

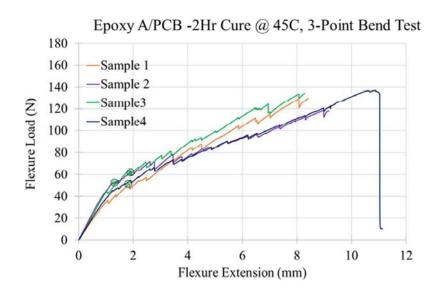

PCB-Epoxy potting sample loaded on the instron three point bend fixture

Cure Time	7Day	2hr	2hr	2hr	2hr
Cure Temp	25°C	45°C	75°C	95°C	125°C
Epoxy A	X	X	X	X	X
Epoxy C	X	X	X	X	X

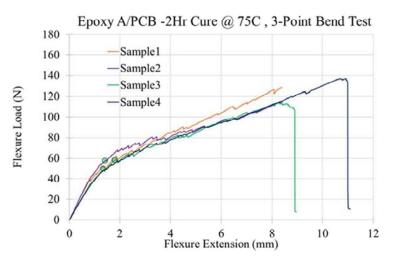
Cure Time	7Day	1hr	1hr	1hr	1hr
Cure Temp	25°C	45°C	75°C	95°C	125°C
Ероху В	X	X	X	X	X

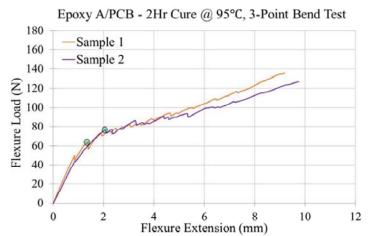
Video recording setup



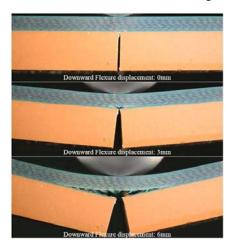

Flexure rate: 2mm/min

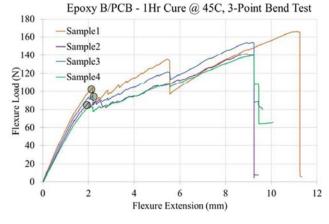
Epoxy-A/PCB Potting 3-point bend test

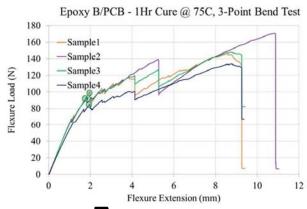


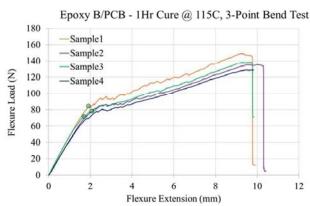


Effect of cure temperature @ 2hr cure time

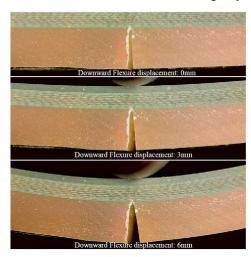


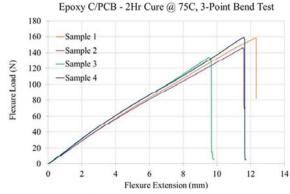


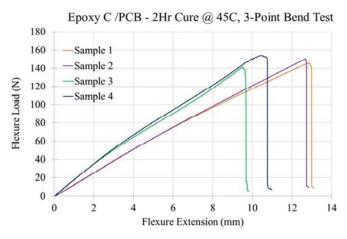


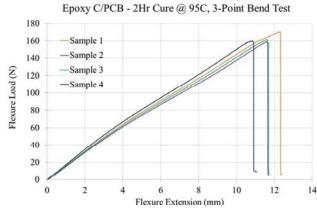


Epoxy-B/PCB potting 3-point bend test

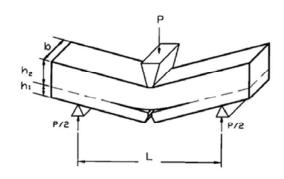





cave³


AUBURN UNIVERSITY

Epoxy-C/PCB potting 3-point bend test



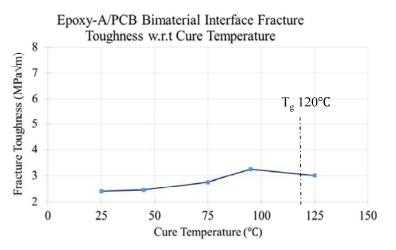
cave³

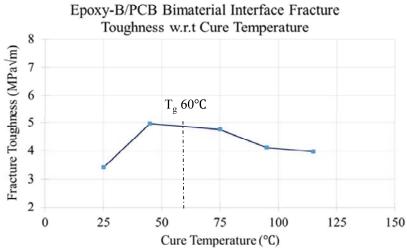
Fracture toughness calculations

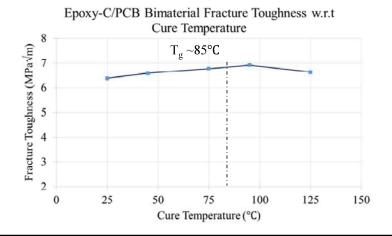
$$G_s = \frac{M^2(1-v^2)}{2E}(\frac{1}{I_2} - \frac{1}{I_1})$$

$$I_c = \frac{h_1^3}{12} + \frac{h_2^3}{12} + h_1 h_2 (h_1 + h_2)/4, I_2 = \frac{h_2^3}{12}$$

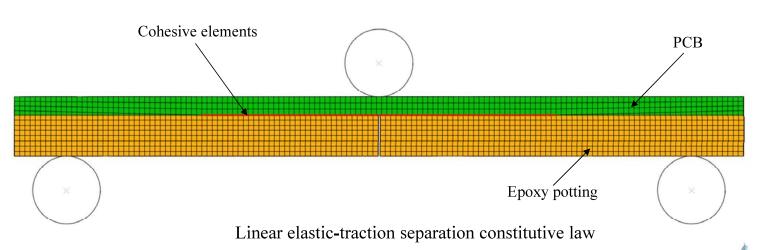
$$K_c = \left(\frac{G_c E}{1-v^2}\right)^{1/2}, M = Pl/4b$$

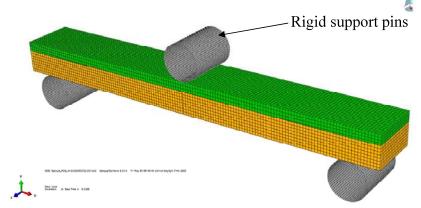

C	Fracture Toughness K _C (Mpa.m ^{1/2})					
Cure Temperature	Epoxy A Specimen	Epoxy B Specimen	Epoxy C Specimen			
25°C	2.40	3.40	6.38			
45°C	2.45	4.96	6.58			
75°C	2.76	4.75	6.77			
95°C	3.24	4.11	6.92			
115°C	N/A	3.96	N/A			
125°C	3.10	N/A	6.63			


Pozuelo, M., et al. "Fracture toughness for interfacial delamination of Cr–Mo steel multilayer laminate." Materials Science and Technology 25.5 (2009): 632-635.



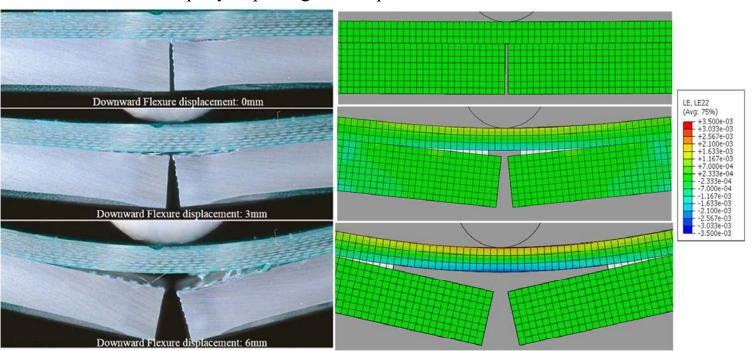
Fracture toughness vs Cure temperature



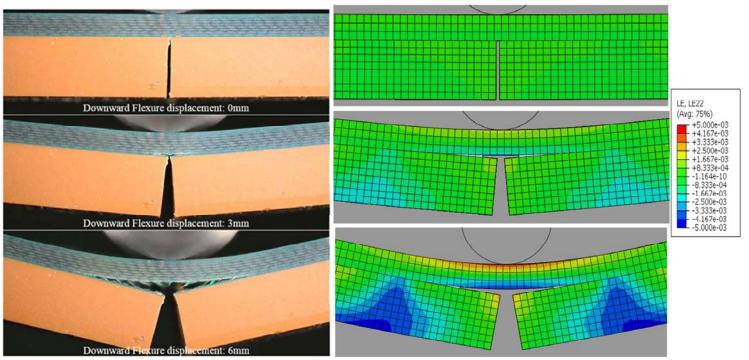

_

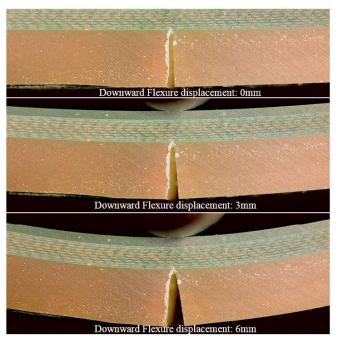
AUBURN UNIVERSITY

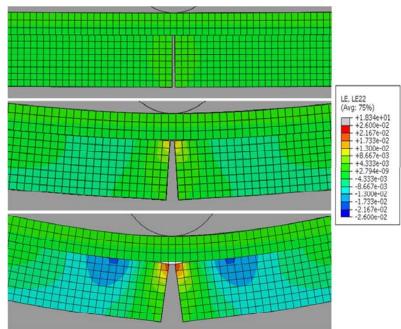
ABAQUS-Standard Model


Material	Element Type
PCB	C3D8
Epoxy	C3D8
Cohesive	COH3D8
Rigid Pins	R3D4

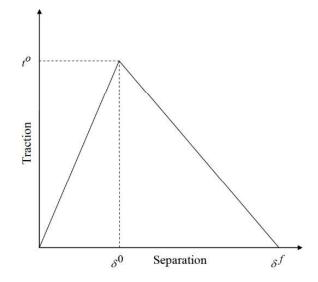
AUBURN


Epoxy-A potting PCB 3-point bend test

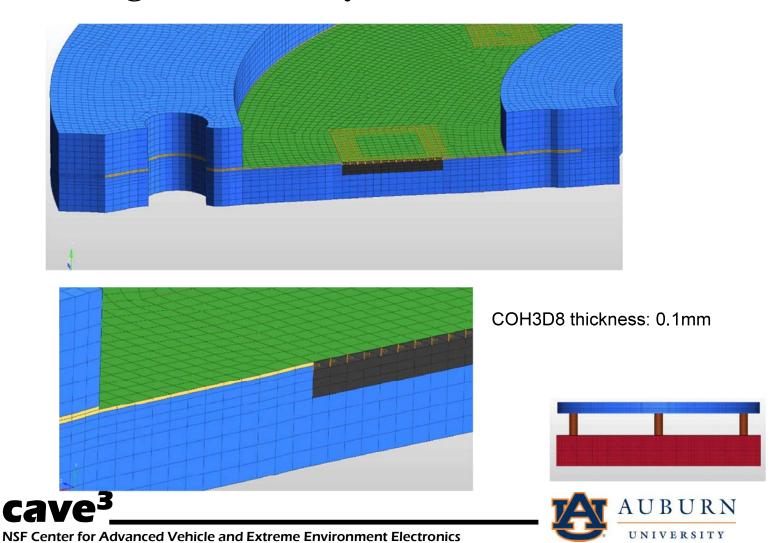

Epoxy-B potting PCB 3-point bend test

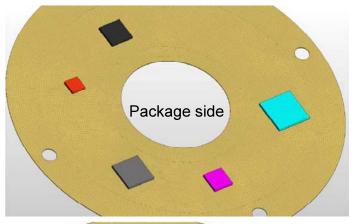


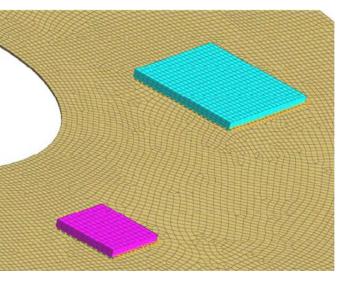
Epoxy-C potting PCB 3-point bend test

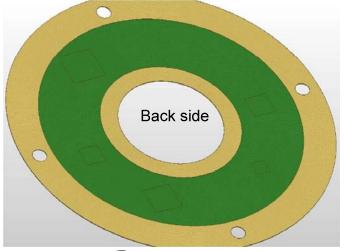


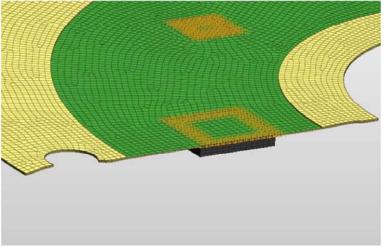
FE constitutive behavior


- The constitutive behavior of the cohesive elements is characterized by the traction-separation law of fracture mechanics.
- It takes into account the amount of energy required to create new surface i.e, interfacial crack.
- In the damage process, failure of package occurs due to degradation of the material stiffness. The softening behavior of cohesive zone after the damage initiation criterion is satisfied, is defined using the damage evolution law.
- The damage evolution law describes the rate at which the material stiffness is degrades once the corresponding initiation criterion is reached.

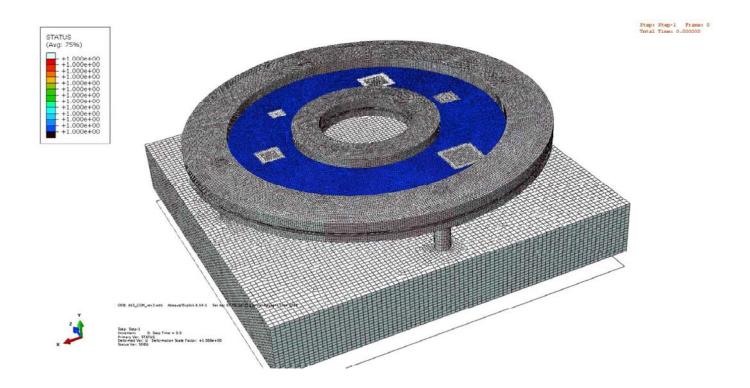




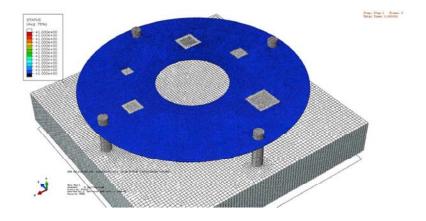

Modeling Cohesive Layer



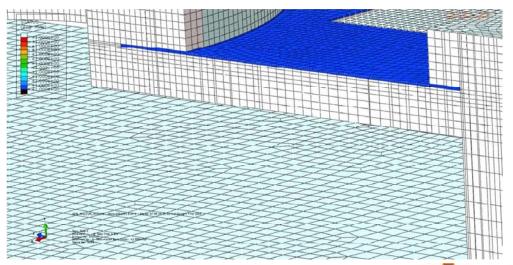
Modeling Cohesive Layer

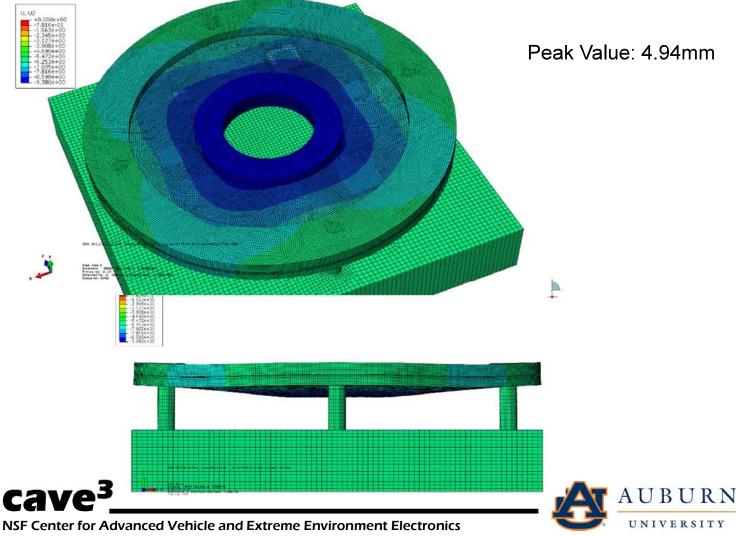


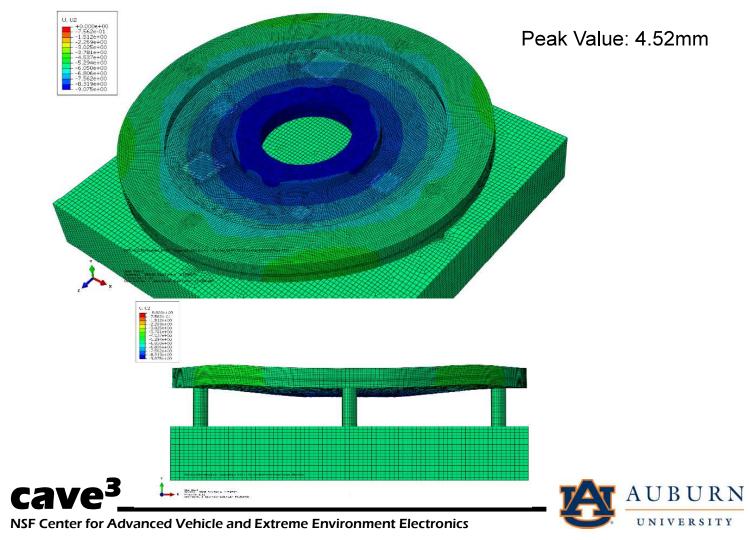
cave³



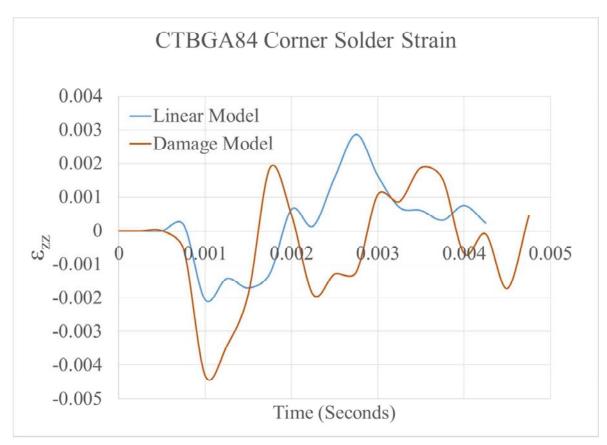
Simulation Status Output




Video Snapshots


cave³

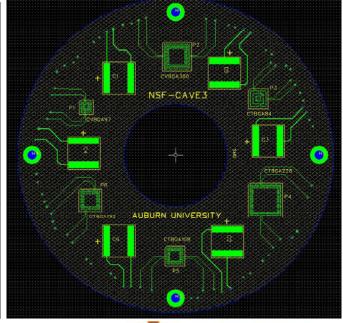
AUBURN UNIVERSITY


Out-of-plane displacement cohesive model

Out-of-plane displacement linear elastic model

Linear Elastic vs CZM

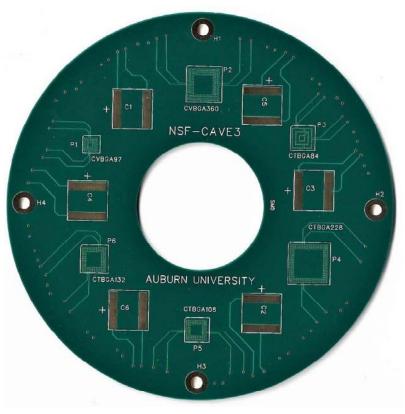
cave³

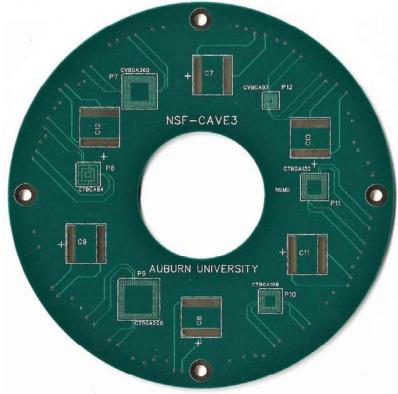


TV-1: 0.4mm, 0.5mm packages

TV1 with 0.4mm and 0.5mm polymer interconnects correlates high-g test data with already tested SAC305 interconnects of the same design

- Addition of 3640 MLC capacitors
- SMD and NSMD pads on front and back sides of PCB respectively
- 4 Layer PCB design


Package	Ball Pitch	Polymer Ball Dia	Topline ref no.
CVBGA97	0.4mm	250μm	NN2-SOL250-10C40SA
CVBGA360	0.4mm	250μm	NN2-SOL250-10C40SA
CTBGA84	0.5mm	310µm	NN2-SOL310-10C40SA
CTBGA132	0.5mm	310µm	NN2-SOL310-10C40SA
CTBGA228	0.5mm	310µm	NN2-SOL310-10C40SA



TV1 - Fabricated

SMD Side

NSF Center for Advanced Vehicle and Extreme Environment Electronics

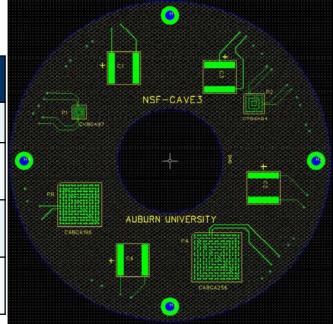
NSMD Side

TV-1: Proposed Test Matrix

Number of boards to test for each condition							
PCB Side		10,000g		25,000g			
	0.1ms	0.2ms	0.3ms	0.05ms	0.1ms	0.2ms	
NSMD	2	2	2	2	2	2	
SMD	2	2	2	2	2	2	

Note:

- Every board has one component each of CVBGA97, CVBGA360, CTBGA84, CTBGA132 and CTBGA228 per side.
- So, in total we need 24 polymer core assemblies for each component type.


New TV: 0.4mm, 0.5mm and 1mm packages

Design includes 0.4mm, 0.5mm and 1mm BGAs. 0.4mm and 0.5mm packages are at same location as previously tested boards.

- Addition of 3640 MLC capacitors
- · SMD and NSMD pads on front and back sides of PCB respectively

4 Layer PCB design

Package	Ball Pitch	Polymer Ball Dia	Topline ref no.
CVBGA97	0.4mm	250μm	NN2-SOL250-10C40SA
CTBGA84	0.5mm	310µm	NN2-SOL310-10C40SA
CABGA196	1mm	670µm	NN2-SOL670-20C40SAH
CABGA256	1mm	670µm	NN2-SOL670-20C40SAH

Front-SMD side

Proposed Test Matrix

Number of boards to test for each condition								
PCB	10,0)00g	25,000g					
Side	0.1ms 0.3ms		0.05ms	0.2ms				
NSMD	2	2	2	2				
SMD	2	2	2	2				

USE - CAVE3 AUBURN UNIVERSITY LEG CARRASSE LEG CARRASSE

Back-NSMD side

Note:

- Every board has one component each of CVBGA97, CTBGA84, CABGA196 and CABGA256 per side.
- So, in total we need 16 polymer core assemblies for each component type.

Total package assemblies

Package	Ball Pitch	Polymer Ball Dia	Topline ref no.	No. of polymer balled assemblies needed
CVBGA97	0.4mm	250µm	NN2-SOL250-10C40SA	16
CTBGA84	0.5mm	310µm	NN2-SOL310-10C40SA	16
CABGA196	1mm	670µm	NN2-SOL670-20C40SAH	16
CABGA256	1mm	670μm	NN2-SOL670-20C40SAH	16

Summary & Conclusions

- Interfacial toughness of potting compounds-PCB interface has been measured
- Effect of cure condition on K_{1C} is quantified
- In general a weak interface will promote the delamination along the interface while a strong once will not delaminate at all.
- Higher compliance in the cured epoxy resin allows for higher energy storage without delamination.
- Peak fracture toughness values were observed when cured just before the $T_{\rm g}$ for all the epoxy materials.

Reliability of a Fuze Assembly Using Micro-CT data based FE and Digital Volume Correlation

N. Kothari, P. Lall

Fuze assemblies are often subjected to harsh environments like high					
temperature, high g and low g shocks and vibration, from the time of					
manufacturing, storage and service life.					
Monitoring the internal damage sustained and the degradation in the					
materials is challenging but required to study reliability.					
Densely packed electrical assemblies like fuze, contain large number of					
components, potted in protective adhesives.					
The number of components, material types, irregular geometry of the					
components and the geometric details of the assembly makes conventional					
CAD modeling, meshing and Finite Element(FE) modeling of these large					
assemblies extremely time consuming					
In this work, X-ray MicroCT based Digital Volume Correlation and X-ray					
MicroCT based finite element models to experimentally measure					
deformations have been investigated.					

Motivation

- Missiles in Army inventory must withstand long periods of storage and be "launch ready".
- Along side the extreme temperature soaks and aging, they also endure the abuse of frequent transportation and handling.
- Need for better Cost Effective
 Techniques to reassess the shelf life to make the missiles more cost effective.
- Need for non-destructive method that can actively track the damage progression in terms of deformations and strains over the entire domain.

 Lack of literature on the studies involving damage quantification on fuze assemblies when subjected to harsh environments

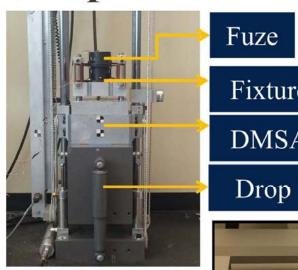
State of Art

Contribution Area	Contribution	Authors
Reliability Studies	RUL Prediction of fine pitch BGA in Missile electronics	Lall 2016
	Component Reliability in Fuze electronics	Li 2016, Ya 2010
	System Reliability in Fuze Electronics	Zhi-Feng 2010
	Failure Threshold Statistics of Fuze	Hager 2016
Simulations on internal functioning	Finite Element modeling approach	Lall 2016,Lall2017, Li 2016
	Virtual Test Platforms for Fuze	Hongshung 2010
CT Data based FE modeling	Human Body Models	Taddei 2006,Yi 2014,Rahman 2009,Diemente 1991
	Electronics Packaging	Lall 2016, Lall 2016, Lall 2017
Digital Volume Correlation	Human Body	Tozzi 2016, Palanca 2016 and Gilliard 2014
	Electronics Packaging	Lall 2016, Lall 2016, Lall 2017

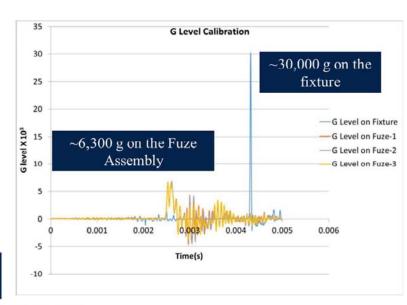
Hypothesis and Objective

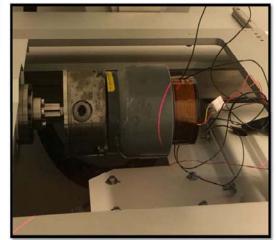
Hypothesis

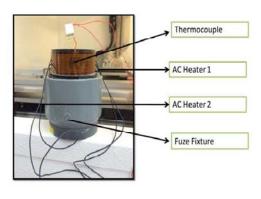
- Electrical sub-assemblies inside of a densely packed Fuze assembly, can be monitored for deformations and strains in a non-destructive way over it's service life.
- Deformations and strains, can be recorded over the entire domain of the fuze assembly as a function of time.


Objectives

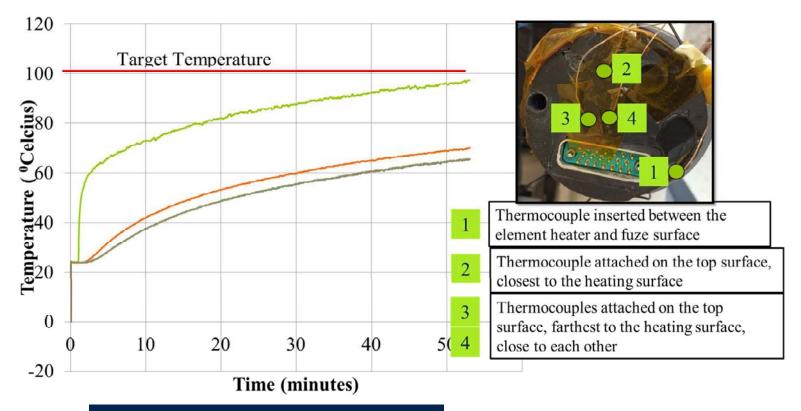
- Use the micro-CT data to compute deformation, strain and nature of deformation upon external load experimentally and using FE modeling
- Come up with a technique to remove the human error involved in scanning the fuze at different time intervals.


Test Vehicle and Setup

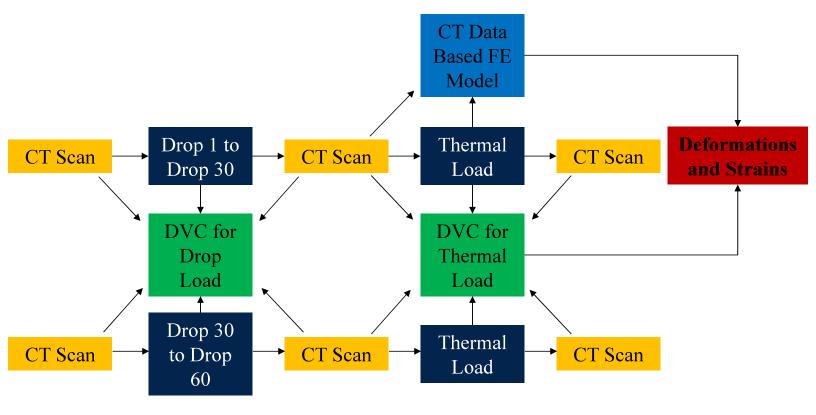



Fixture

DMSA


Drop Tower

Thermal Load Profile



Thermal Load:100°C

Test Plan

Digital Volume Correlation

Voltage: 130 kV

Current: 40

microAmps

Type of scan: 1024

X 1024 X 1024

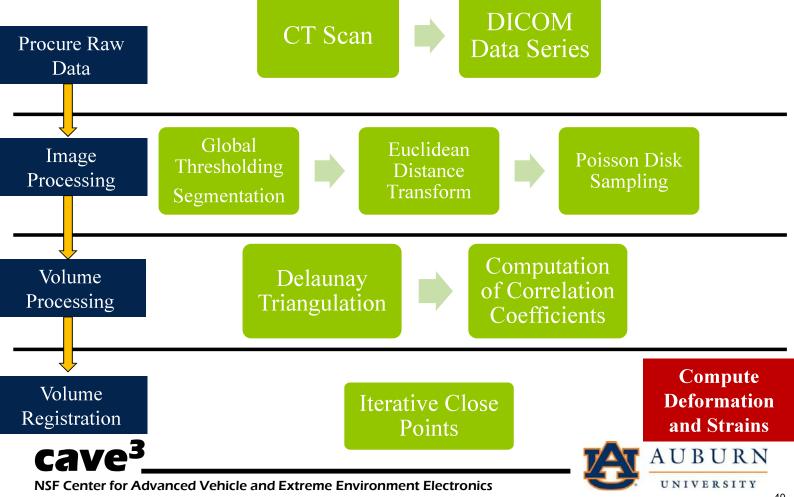
Resolution: 0.0628

mm

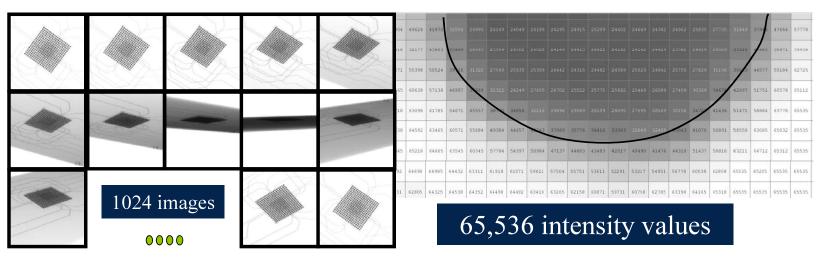
Step Size: 1 voxel

$$C = 1 - \frac{\sum_{i=1}^{L} \sum_{j=1}^{M} \sum_{k=1}^{N} (V_{ijk} - \overline{V})(V'_{ijk} - \overline{V'})}{\sqrt{\sum_{i=1}^{L} \sum_{j=1}^{M} \sum_{k=1}^{N} (V_{ijk} - \overline{V})^{2}(V'_{ijk} - \overline{V'})^{2}}}$$

 V_{ijk} : contains the grayscale values,


 \overline{V} : mean of the grayscale values in the subset,

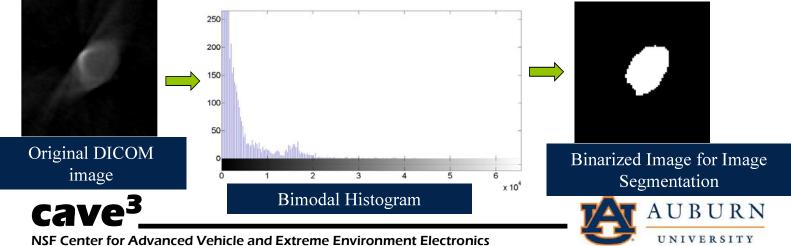
C: Correlation coefficient for the quantity being minimized for calculation of the deformation accrued in the structure



Digital Volume Correlation

Micro-CT Scan DICOM Data

16 bit grayscale images

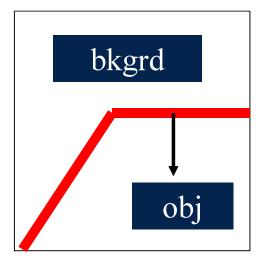


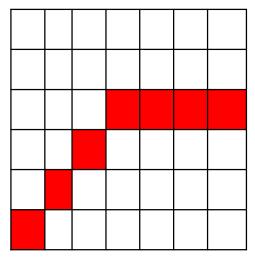
Global Threshold Segmentation

- As per this technique, the voxels are partitioned depending on their intensity value (radio density in this case)
- As per the input Threshold value T:

•
$$g(x,y) = \begin{cases} 1, & \text{if } f(x,y) > T \\ 0, & \text{if } f(x,y) \le T \end{cases}$$

- The erroneous data is known to be minimum only if:
 - Histogram is bimodal



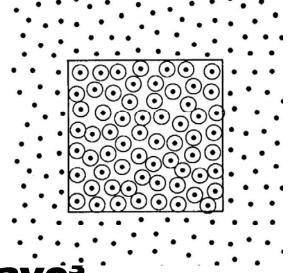

Euclidean Distance Transform

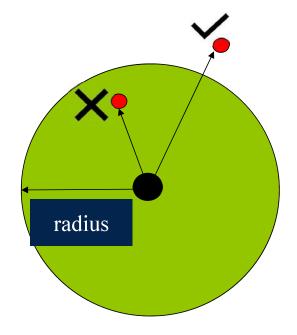
 $I(x,y) \in \{Obj,bkgrd\}$

$$I_d(x,y) \in \begin{cases} 0 & I(x,y) \in \{bkgrd\} \\ \min \left(\left| |(x-x_0),(y-y_0)| \right| \forall I(x_0,y_0) \in \{bkgrd\} \right) & I(x,y) \in \{obj\} \end{cases}$$

$$||x,y|| = \sqrt[2]{x^2 + y^2}$$

5	4	3	2	2	2	2
4	3	2	1	1	1	1
3	2	1	0	0	0	0
2	1	0	1	1	1	1
1	0	1	2	2	2	2
0	1	2	3	3	3	3


cave³



Poisson Disk Sampling

Poisson distribution of samples

$$P(x,\mu) = \frac{(e^{-\mu})(\mu^x)}{x!}$$

Potential samples are generated iteratively and checked for if they meet the acceptance criteria for acceptance or rejection

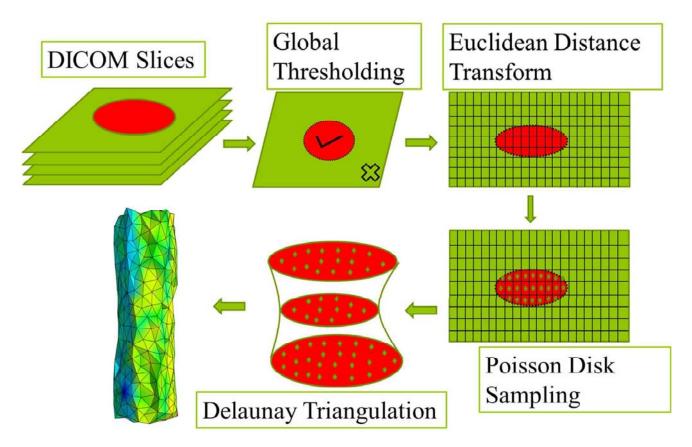
Iterative Close Points

Let P be a matrix whose *i*-th column is vector $\mathbf{p_i} - \mathbf{c_D}$

Let Q be a matrix whose *i*-th column is vector $q_i - c_R$

Forming the cross-covariance matrix $M = P \times Q^T$

Translating and rotating the source to find new position


$$p'_i = c_R + R.(p_i - c_D)$$

 p'_{i} is the target position of point p_{i}

Now the rotation matrix R is found as a matrix that maximizes the trace

Tr[R.M]

Digital Volume Correlation

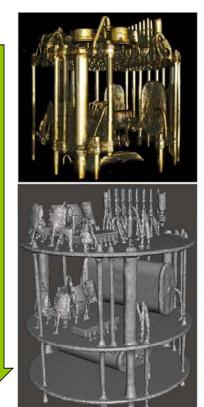
cave³.

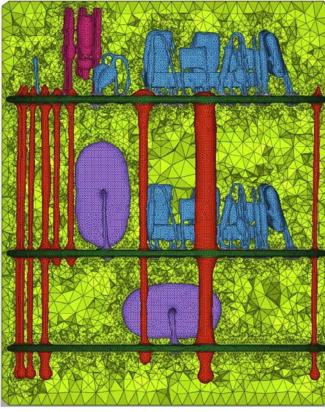
MicroCT Data to FE Mesh Conversion

Acquire DICOM Data

Gaussian Image Blurring

Otsu Image Segmentation/Global Threshold Segmentation

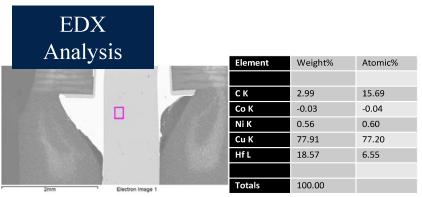

Image Clustering: Marching Cubes

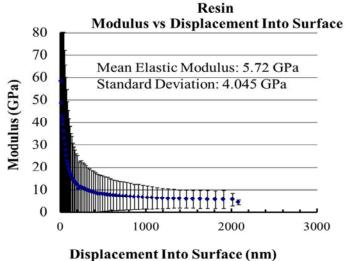

Geometry Repair: Weight minimization triangulation

Poisson's surface recostruction

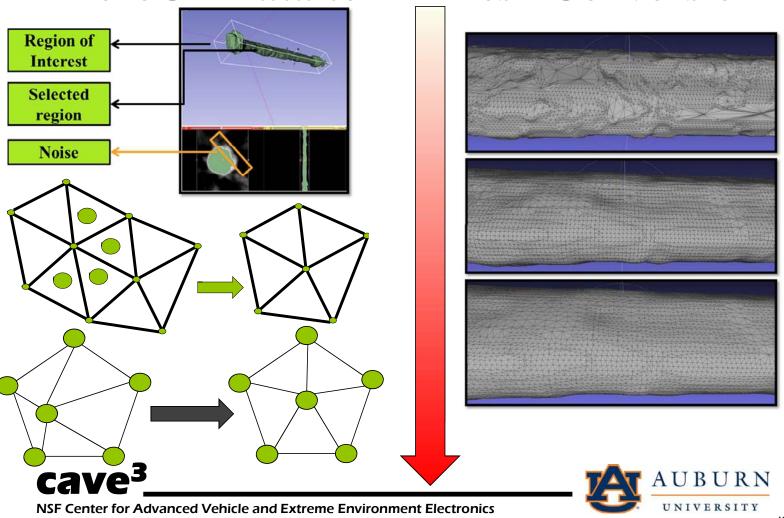
Laplacian Mesh Smoothing

Delaunay Triangulation



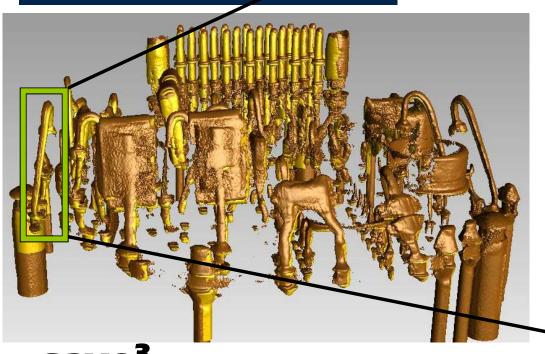


Material Properties

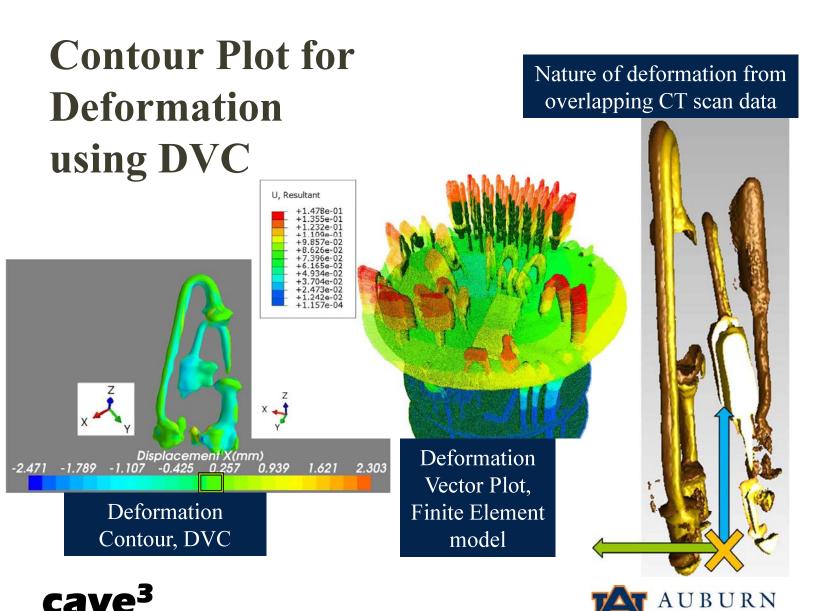


Nano-indenetation of Skeletal Structure Material 112 110 Young's Modulus (GPa) 108 104 102 100 Standard Deviation - 3.23 GPa Average - 104.93 GPa 96 2 X Data

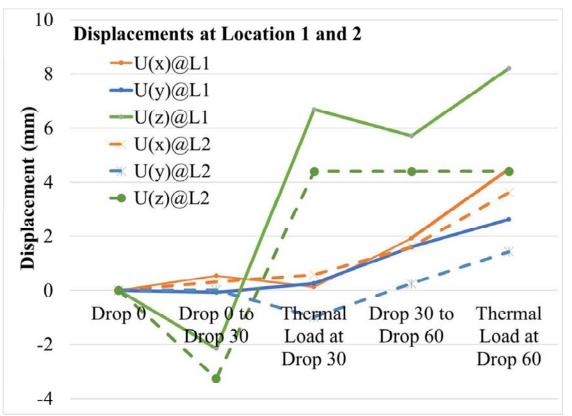
Material	Elastic Modulus (GPa)
Skeletal Structure Material	104.93
Potting Resin	5.72

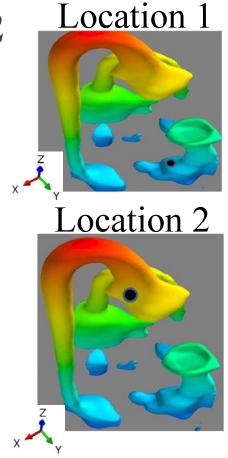

MicroCT Data to FE Mesh Conversion

Nature of Displacement upon Thermal Load from overlapping of CT Scans


Reference Scan

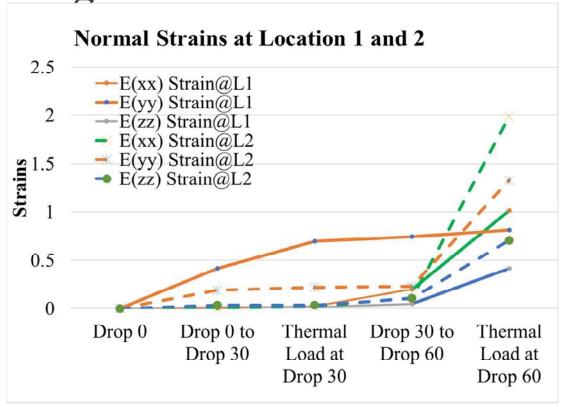
Deformed Scan(Thermal Load)

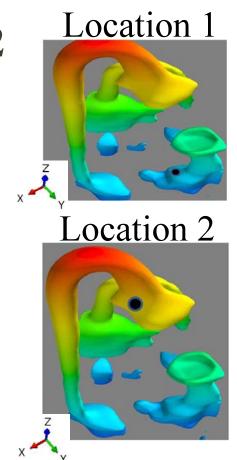




NSF Center for Advanced Vehicle and Extreme Environment Electronics

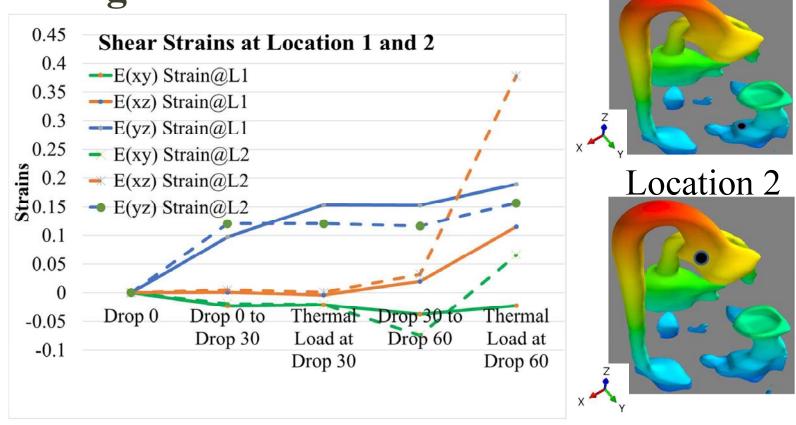
Comparison of Deformation Progressions at Location 1 & 2




cave³

NSF Center for Advanced Vehicle and Extreme Environment Electronics

Comparison of Normal Strain Progressions at Location 1 & 2



Comparison of Shear Strain
Progressions at Location 1 & 2 Location 1

cave³

AUBURN UNIVERSITY

Summary and Conclusions

- In this paper we have used field extracted fuze assembly and used it for non-destructive evaluation to gauge its response to high-g mechanical shock events.
- A comprehensive fuze assembly was successfully conerted into a finite element mesh, using the microCT scan data in a nondestructive way
- Electrical sub-assemblies inside of a densely packed Fuze assembly, were successfully monitored for deformations and strains in a non-destructive way over as a function of time
- The nature of deformation found on the top board assembly by overlapping the CT scan data, was found to be consistent with results from Digital Volume Correlation and micro-CT based Finite Element model results.

