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Introduction: Quantum coherence is the key feature that differentiates

a quantum computer from a classical one. It is the property that

allows for the quantum parallelism, which, in turn, gives the speed-up

of the quantum computation (e.g., the Shor’s factoring

algorithm). Unfortunately, the elements (qubits) of any conceivable

quantum computer interact with the environment, leading to coherence

loss. Thus, to enable quantum computation, coherence has to be

constantly protected.  



The project targets optimized coherence

protection, a key enabling technology for solid-state quantum

computation (QC). The idea is to design new families of quantum

error-correcting codes (QECCs) that combine good parameters with a

feasible near-optimal on-chip implementation, and have an additional

advantage of built-in dynamical decoupling at the level of individual

qubits.  



Quantum error correction is the first and the main ingredient of the

project. QECCs are constructed in direct analogy to classical error

correction. The benefits of the latter are evidenced by a drastic

improvements in quality of data and images transmitted or stored over

a variety of noisy channels such as satellite communication, CDs, hard

disks, and flash drives. In quantum error correction, a number of

additional redundant qubits is introduced.  Quantum information is

encoded in certain highly-entangled states in such a way that errors

which happen on one, or even on several qubits can be corrected. To


Report Date:  31-Jul-2014

INVESTIGATOR(S):

Phone Number:  9518272924
Principal:  N

Phone Number:  9518275644
Principal:  Y

Name:  Ilya  Dumer 
Email:  Ilya.Dumer@ucr.edu

Name:  Leonid  Pryadko 
Email:  leonid.pryadko@ucr.edu



this end, error syndrome needs to be measured fairly often; it allows

one to decide how to correct the encoded state. While these

measurements are performed on the quantum system, they are designed

not to measure the actual encoded quantum state---otherwise the

coherence would be destroyed. The difficulty is that measurements for

a generic code are complicated, and yet they need to be performed

often. Code optimization targets to build codes with good parameters

(many qubits encoded without too much redundancy), and yet with simple

stabilizer generators (whose measurement results constitute the error

syndrome) which can be measured easier, and also in parallel.



For solid-state qubits, errors are often correlated in

time. Correlated errors can be seen as a slow parameter drift

resulting from various processes in the material: precession of

nuclear spins, fluctuations in charge traps present in the insulator,

etc. While these perturbing terms are typically small, correlation in

time means that they act in the same direction over a long time. As a

result, time-correlated errors can dominate the decoherence

rate. While QECCs can be used to deal with such errors, fast

decoherence would require a frequent measurement-correction cycle.



Dynamical decoupling (DD) is a passive error-protection technique most

suitable for dealing with errors correlated in time. It is related to

refocusing in nuclear magnetic resonance (NMR). The goal of DD is to

prevent errors from happening in the first place.  This is done by

driving rapid evolution (rotation) of the quantum system to be

protected in such a way that the perturbing terms in the rotating

frame constantly change sign. The rotation is usually achieved with

sequences of control pulses analogous to those in NMR. As a result,

the perturbation no longer acts in the same direction; the associated

rate of coherence loss is greately reduced. One wants to have this

additional rapid rotation of qubits, and at the same time be able to

perform the operations necessary for error correction and for the

actual algorithm the quantum computer is designed to perform.



While DD does not require any additional qubits to work, the resource

that is used is the bandwidth. Especially for solid-state qubits it is

extremely important to carefully optimize the pulse shapes and

sequences, which was the subject studied by the PI for some time.

Incorporating the DD as the first-line coherence protection could

increase the qubit coherence time by orders of magnitude, making a

crucial difference for enabling the use of a particular QC

architecture.

RPPR Final Report 
as of 03-Jun-2018

Accomplishments:  Code design: The approach proposed originally was based on the

code-word stabilized codes[1]. This was implemented during the first

year in Ref. 2. Subsequently, the design goal was shifted to target

quantum sparse-graph codes[3]. These are analogous to classical

low-density-parity-check (LDPC) codes widely used in digital

communication, data storage, and related areas. The advantages of

quantum LDPC codes are that (i) they offer simple, low-depth

structure, (ii) the syndrome measurements are simpler and can be done

in parallel, and (iii) the amount of classical processing needed for

error correction is expected to be smaller. Specific focus in the last

two years was on designing and investigating the properties of codes

related to hypergraph-product codes invented by Tillich and Zemor[4].

This resulted in publications [5, 6]. Characterization of such codes

lead to publication [7] which proves a major result, the existence of

a fault-tolerant error-correction threshold for quantum LDPC
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codes. Related work aimed at understanding this result, by studying

phase transitions in non-local Ising models [9]. Additional related work targeted development of algorithms for

distance verification of quantum LDPC codes[10, 11].



Dynamical decoupling: Ultimately, any error correction algorithm can

be presented as a sequence of elementary gates which include a

universal set of one- and two-qubit unitary operations, and

single-qubit measurements. Integrating error correction with dynamical

decoupling can be done by designing dynamically-protected gates. For

qubits actively involved in a gate, the control pulses should provide

for the desired evolution. For all of the qubits, involved in the gate

or not, the pulse sequence should also average out the stray fields

acting on the qubits, as well as the undesired couplings between the

qubits. Some of the background research (optimized pulse shapes and

sequences, and associated simulations) has been previously done by the

PI [12]. For high-order cancelation in non-trivial single-qubit gates,

the design techniques have been developed in Ref. 13. The main results

of the supported studies are published in Refs. 14 and 15. Additional

applications of dynamical decoupling have been explored in

Ref. 16.
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Training Opportunities:  Two graduate students have been trained: 



Dr. Kathleen E. Hamilton (presently at  Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, 
Tennessee, 37821, USA), and 



Dr. David Drummond 



Two postdoctoral researchers have been trained: 



Dr. A.A. Kovalev, currently an Assistant Professor at the University of Nebraska--Lincoln. 



Dr. Amrit De, currently a Research Scientist at the PHYSICAL OPTICS CORPORATION

Results Dissemination:  Major venue for dissemination of the result was by published papers.

In addition, a number of talks have been given by the PI, co-PI, and associated graduate students and postdocs.



RPPR Final Report 
as of 03-Jun-2018

Honors and Awards:  Nothing to Report

Protocol Activity Status: 

Technology Transfer:  Nothing to Report

PARTICIPANTS:

Person Months Worked:  3.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Person Months Worked:  3.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Person Months Worked:  12.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Person Months Worked:  12.00 Funding Support:  
Project Contribution:    
International Collaboration:    
International Travel:    
National Academy Member: N 

Participant Type:  PD/PI
Participant:  Leonid P Pryadko 

Other Collaborators:    

Participant Type:  Co-Investigator
Participant:  Ilya  Dumer 

Other Collaborators:    

Participant Type:  Postdoctoral (scholar, fellow or other postdoctoral position)
Participant:  Amrit  De 

Other Collaborators:    

Participant Type:  Postdoctoral (scholar, fellow or other postdoctoral position)
Participant:  Alexey A. Kovalev 

Other Collaborators:    

ARTICLES:



RPPR Final Report 
as of 03-Jun-2018

Publication Identifier:  10.1103/PhysRevA.84.062319
First Page #:  0Volume:  84

Date Submitted:  

Authors:  

Distribution Statement:  1-Approved for public release; distribution is unlimited.
Acknowledged Federal Support:  

Publication Identifier:  10.1103/PhysRevA.87.020304
First Page #:  0Volume:  87

Date Submitted:  

Authors:  

Distribution Statement:  1-Approved for public release; distribution is unlimited.
Acknowledged Federal Support:  

Publication Type:  Journal Article
Journal:  Physical Review A

Publication Location:  
Article Title:  Design of additive quantum codes via the code-word-stabilized framework

Keywords:  code-word stabilized codes, quantum LDPC codes, Gilbert-Varshamov bound, quantum cyclic codes
Abstract:  We consider design of the quantum stabilizer codes via a two-step, low-complexity approach based on 
the framework of codeword-stabilized (CWS) codes. In this framework, each quantum CWS code can be specified 
by a graph and a binary code. For codes that can be obtained from a given graph, we give several upper bounds 
on the distance of a generic (additive or nonadditive) CWS code, and the lower Gilbert-Varshamov bound for the 
existence of additive CWS codes. We also consider additive cyclic CWS codes and show that these codes 
correspond to a previously unexplored class of single-generator cyclic stabilizer codes.We present several 
families of simple stabilizer codes with relatively good parameters.

Publication Type:  Journal Article
Journal:  Physical Review A

Publication Location:  
Article Title:  Fault tolerance of quantum low-density parity check codes with sublinear distance scaling

Keywords:  LDPC, fault-tolerance, quantum error correction code, low-density parity-check code, threshold 
theorem
Abstract:  We study the fault tolerance of quantum low-density parity check (LDPC) codes, such as generalized 
toric codes with a finite rate suggested by Tillich and Zémor [in ISIT 2009: IEEE International Symposium on 
Information Theory (IEEE, New York, 2009)]. We show that any family of quantum LDPC codes where each 
syndrome measurement involves a limited number of qubits and each qubit is involved in a limited number of 
measurements (as well as any similarly limited family of classical LDPC codes), in which distance scales as a 
positive power ? of the number of physical qubits (?<1 for “bad” codes), has a finite error probability threshold. We 
conclude that for sufficiently large quantum computers, quantum LDPC codes can offer an advantage over the 
toric codes.

Publication Identifier Type:  DOI
Issue:  6

Date Published:  

Publication Identifier Type:  DOI
Issue:  2

Date Published:  

Peer Reviewed: Y 

Peer Reviewed: Y 

Publication Status: 1-Published

Publication Status: 1-Published



RPPR Final Report 
as of 03-Jun-2018

Publication Identifier:  10.1103/PhysRevLett.110.070503
First Page #:  0Volume:  110

Date Submitted:  

Authors:  

Distribution Statement:  1-Approved for public release; distribution is unlimited.
Acknowledged Federal Support:  

Publication Identifier:  10.1103/PhysRevB.86.245307
First Page #:  0Volume:  86

Date Submitted:  

Authors:  

Distribution Statement:  1-Approved for public release; distribution is unlimited.
Acknowledged Federal Support:  

Publication Type:  Journal Article
Journal:  Physical Review Letters

Publication Location:  
Article Title:  Universal Set of Scalable Dynamically Corrected Gates for Quantum Error Correction with Always-
on Qubit Couplings

Keywords:  Dynamical decoupling, universal gate set, DCG gates
Abstract:  We construct a universal set of high fidelity quantum gates to be used on a sparse bipartite lattice with 
always-on Ising couplings. The gates are based on dynamical decoupling sequences using shaped pulses, they 
protect against low-frequency phase noise, and can be run in parallel on non-neighboring qubits. This makes 
them suitable for implementing quantum error correction with low-density parity check codes like the surface 
codes and their finite-rate generalizations. We illustrate the construction by simulating the quantum Zeno effect 
with the [[4, 2, 2]] toric code on a spin chain.

Publication Type:  Journal Article
Journal:  Physical Review B

Publication Location:  
Article Title:  Suppression of hyperfine dephasing by spatial exchange of double quantum dots

Keywords:  Dynamical decoupling, double quantum dot qubits, spin qubits, quantum dot qubits
Abstract:  We examine the logical qubit system of a pair of electron spins in double quantum dots. Each electron 
experiences a different hyperfine interaction with the local nuclei of the lattice, leading to a relative phase 
difference, and thus decoherence. Methods such as nuclei polarization, state narrowing, and spin-echo pulses 
have been proposed to delay decoherence. Instead we propose to suppress hyperfine dephasing by the adiabatic 
rotation of the dots in real space, leading to the same average hyperfine interaction. We show that the additional 
effects due to the motion in the presence of spin-orbit coupling are still smaller than the hyperfine interaction, and 
result in an infidelity below 0.0001 after ten decoupling cycles. We discuss a possible experimental setup and 
physical constraints for this proposal.

Publication Identifier Type:  DOI
Issue:  7

Date Published:  

Publication Identifier Type:  DOI
Issue:  24

Date Published:  

Peer Reviewed: Y 

Peer Reviewed: Y 

Publication Status: 1-Published

Publication Status: 1-Published



RPPR Final Report 
as of 03-Jun-2018

Publication Identifier:  10.1103/PhysRevA.88.012311
First Page #:  0Volume:  88

Date Submitted:  

Authors:  

Distribution Statement:  1-Approved for public release; distribution is unlimited.
Acknowledged Federal Support:  

Publication Type:  Journal Article
Journal:  Physical Review A

Publication Location:  
Article Title:  Quantum Kronecker sum-product low-density parity-check codes with finite rate

Keywords:  LDPC codes, quantum error correction codes, low-density parity check codes
Abstract:  We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) 
codes by Tillich and Zémor and generalized bicycle codes by MacKay et al. as limiting cases. The construction 
allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block 
length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical 
low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes 
generally have a wider range of parameters; in particular, they can have a higher rate while preserving the 
estimated error threshold.

Publication Identifier Type:  DOI
Issue:  1

Date Published:  

Peer Reviewed: Y Publication Status: 1-Published

CONFERENCE PAPERS:

Date Received:  28-May-2018 Date Published:  Conference Date:  01-Jul-2012

Authors:  A. A. Kovalev, L. P. Pryadko
Acknowledged Federal Support:  Y

Date Received:  28-May-2018 Date Published:  Conference Date:  29-Jun-2014

Authors:  I. Dumer, A. A. Kovalev, L. P. Pryadko
Acknowledged Federal Support:  Y

Publication Type:  Conference Paper or Presentation
Conference Name:  2012 IEEE International Symposium on Information Theory - ISIT

Conference Location:  Cambridge, MA, USA
Paper Title:  Improved quantum hypergraph-product LDPC codes

Publication Type:  Conference Paper or Presentation
Conference Name:  2014 IEEE International Symposium on Information Theory (ISIT)

Conference Location:  Honolulu, HI, USA
Paper Title:  Numerical techniques for finding the distances of quantum codes

Publication Status: 1-Published

Publication Status: 1-Published



Technical Progress Report on the award W911NF-11-1-0027
‘‘Lattice Codes with Built-in Dynamical Protection for Solid-State

Quantum Computation’’.

PI: Leonid P. Pryadko

Department of Physics & Astronomy,

University of California, Riverside, California 92521, USA

Co-PI: Ilya Dumer

Department of Electrical Engineering,

University of California, Riverside, California 92521, USA

(Dated: May 28, 2018)

Research progressed in two directions: (a) theory of quantum error correction and

(b) dynamical decoupling (DD). Research in quantum error correction concentrated

on quantum low-density parity-check (LDPC) codes. Most important result is the

proof of the existence of a finite fault-tolerant error-correction threshold. This makes

quantum LDPC codes the only class of quantum error-correcting codes (QECCs)

where such a threshold is known to exist in a finite rate code. Also, several new

families of finite-rate quantum LDPC codes have been constructed. In the part

of the project related to dynamical decoupling, dynamically-corrected single-qubit

and two-qubit quantum gates on bipartite lattices have been constructed to enable

integration with error correction cycle for any quantum LDPC code. Repeated cycles

of error correction with the [[4, 2, 2]] QECC have been simulated by integrating

full unitary dynamics of up to five qubits driven with the constructed gate set.

The corresponding error operators have also been analyzed, with a proof that this

construction can be used to build fault-tolerant quantum memory using toric code.

I. MAJOR GOALS OF THE PROJECT

Introduction: Quantum coherence is the key feature that differentiates a quantum
computer from a classical one. It is the property that allows for the quantum parallelism,
which, in turn, gives the speed-up of the quantum computation (e.g., the Shor’s factoring
algorithm). Unfortunately, the elements (qubits) of any conceivable quantum computer
interact with the environment, leading to coherence loss. Thus, to enable quantum
computation, coherence has to be constantly protected.

The project targets optimized coherence protection, a key enabling technology for solid-state
quantum computation (QC). The idea is to design new families of quantum error-correcting
codes (QECCs) that combine good parameters with a feasible near-optimal on-chip
implementation, and have an additional advantage of built-in dynamical decoupling at the
level of individual qubits.

Quantum error correction is the first and the main ingredient of the project. QECCs
are constructed in direct analogy to classical error correction. The benefits of the latter are
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evidenced by a drastic improvements in quality of data and images transmitted or stored
over a variety of noisy channels such as satellite communication, CDs, hard disks, and flash
drives. In quantum error correction, a number of additional redundant qubits is introduced.
Quantum information is encoded in certain highly-entangled states in such a way that errors
which happen on one, or even on several qubits can be corrected. To this end, error
syndrome needs to be measured fairly often; it allows one to decide how to correct the
encoded state. While these measurements are performed on the quantum system, they are
designed not to measure the actual encoded quantum state---otherwise the coherence would
be destroyed. The difficulty is that measurements for a generic code are complicated, and
yet they need to be performed often. Code optimization targets to build codes with good
parameters (many qubits encoded without too much redundancy), and yet with simple
stabilizer generators (whose measurement results constitute the error syndrome) which can
be measured easier, and also in parallel.

For solid-state qubits, errors are often correlated in time. Correlated errors can be seen as a
slow parameter drift resulting from various processes in the material: precession of nuclear
spins, fluctuations in charge traps present in the insulator, etc. While these perturbing
terms are typically small, correlation in time means that they act in the same direction over
a long time. As a result, time-correlated errors can dominate the decoherence rate. While
QECCs can be used to deal with such errors, fast decoherence would require a frequent
measurement-correction cycle.

Dynamical decoupling (DD) is a passive error-protection technique most suitable for
dealing with errors correlated in time. It is related to refocusing in nuclear magnetic
resonance (NMR). The goal of DD is to prevent errors from happening in the first place.
This is done by driving rapid evolution (rotation) of the quantum system to be protected in
such a way that the perturbing terms in the rotating frame constantly change sign. The
rotation is usually achieved with sequences of control pulses analogous to those in NMR. As
a result, the perturbation no longer acts in the same direction; the associated rate of
coherence loss is greately reduced. One wants to have this additional rapid rotation of
qubits, and at the same time be able to perform the operations necessary for error correction
and for the actual algorithm the quantum computer is designed to perform.

While DD does not require any additional qubits to work, the resource that is used is the
bandwidth. Especially for solid-state qubits it is extremely important to carefully optimize
the pulse shapes and sequences, which was the subject studied by the PI for some time.
Incorporating the DD as the first-line coherence protection could increase the qubit
coherence time by orders of magnitude, making a crucial difference for enabling the use of a
particular QC architecture.

Approach and summary of resuts: Designing a QECC is a problem of exponential
complexity, and optimization in the space of QECCs is a very difficult problem.

Code design: The approach proposed originally was based on the code-word stabilized
codes[1]. This was implemented during the first year in Ref. 2. Subsequently, the design
goal was shifted to target quantum sparse-graph codes[3]. These are analogous to classical
low-density-parity-check (LDPC) codes widely used in digital communication, data storage,
and related areas. The advantages of quantum LDPC codes are that (i) they offer simple,
low-depth structure, (ii) the syndrome measurements are simpler and can be done in
parallel, and (iii) the amount of classical processing needed for error correction is expected
to be smaller. Specific focus in the last two years was on designing and investigating the
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properties of codes related to hypergraph-product codes invented by Tillich and Zemor[4].
This resulted in publications [5, 6]. Characterization of such codes lead to publication [7]
which proves a major result, the existence of a fault-tolerant error-correction threshold for
quantum LDPC codes. Related work aimed at understanding this result, by studying phase
transitions in non-local percolation [8] and Ising models[9]. Additional related work targeted
development of algorithms for distance verification of quantum LDPC codes[10, 11].

Dynamical decoupling: Ultimately, any error correction algorithm can be presented as a
sequence of elementary gates which include a universal set of one- and two-qubit unitary
operations, and single-qubit measurements. Integrating error correction with dynamical
decoupling can be done by designing dynamically-protected gates. For qubits actively
involved in a gate, the control pulses should provide for the desired evolution. For all of the
qubits, involved in the gate or not, the pulse sequence should also average out the stray
fields acting on the qubits, as well as the undesired couplings between the qubits. Some of
the background research (optimized pulse shapes and sequences, and associated simulations)
has been previously done by the PI[12]. For high-order cancelation in non-trivial
single-qubit gates, the design techniques have been developed in Ref. 13. The main results
of the supported studies are published in Refs. 14 and 15. Additional applications of
dynamical decoupling have been explored in Refs. 16--18.

II. DESIGN AND ANALYSIS OF QUANTUM LDPC CODES

Quantum low-density parity check (LDPC) codes[3, 4, 19],also known as quantum
sparse-graph codes, are an analog of classical LDPC codes. Technically, these are just
stabilizer codes, but with stabilizer generators which involve only a few qubits compared to
the number of qubits used in the code. Such codes are most often degenerate: some errors
have trivial effect and do not require any correction. Compared to general quantum codes,
with a quantum LDPC code, each quantum measurement involves fewer qubits,
measurements can be done in parallel, and also the classical processing could potentially be
enormously simplified.

The most famous family of quantum sparse-graph codes is Kitaev’s toric construction[20]: it
has a relatively high threshold for scalable quantum computation, around 1% total error
probability per quantum gate or a qubit measurement, and uses only local gates [21--24].
One disadvantage is that all toric and related surface codes encode few qubits (in technical
terms, they have asymptotically zero rate[25]); thus they require many redundant physical
qubits[23].

Finite-rate quantum LDPC codes are also possible[4]With these, fewer redundant qubits
may be necessary to build a useful quantum computer.

Quantum sparse graph codes are commonly called quantum LDPC codes by analogy with
the classical low density parity-check codes[26]. These latter codes have fast and efficient
(capacity-approaching) decoders. Over the last ten years classical LDPC codes have become
a significant component of industrial standards for satellite communications, Wi-Fi, and
gigabit ethernet, to name a few. The success of classical LDPC codes is the reason for some
of the interest in the quantum LDPC codes.
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A. Fault-tolerance of quantum LDPC codes

All families of quantum LDPC codes where distance is known have asymptotically zero
relative distance. The toric and related surface codes[20, 26], their finite-rate
generalizations[4--6], and some unrelated constructions[27, 28] have distances scaling
asymptotically as a square root of the block length n, with the record set in Ref. 29 for a
single-qubit-encoding code whose distance scales as n1/2 log n.

While the existence of a fault-tolerant error correction threshold has been in the past
explicitly demonstrated for topological toric and related surface codes[20, 30, 31], the
question of fault-tolerance for other codes with sublinear distance scaling is generally far
from trivial. Indeed, typical random uncorrelated errors are characterized by a per-qubit
probability, p; in a code of block length n a typical error involves pn qubits while a
sublinear distance, d ∝ nα with 0 < α < 1, only guarantees that much smaller errors
involving up to d− 1 qubits can be detected, let alone corrected.

This problem has been solved[7] for LDPC codes by the PI in collaboration with Alexey
Kovalev. For random uncorrelated (qu)bit errors (e.g., quantum depolarizing channel), we
established the existence and gave a lower bound for the single (qu)bit error rate below
which the decoding with probability one is possible, and analyzed the scaling of successful
decoding probability with the block length. The main result is formulated as

Theorem 3 from Ref. 7: For an infinite family of (j, `)-limited LDPC codes, quantum or
classical, where the distance d scales as a power law at large n, asymptotically certain
recovery is possible for (qu)bit depolarizing probabilities p < pd ≥ p1, where
4p1(1− p1) = p20(1− p0)2(z−2) < [e(z − 1)]−2, p1 < 1/2, and e is the base of the natural
logarithm. A threshold pd > 0 also exists for code families with distance scaling
logarithmically at large n.

Here the parameter z ≡ (`− 1)j characterizes the sparsity of the code, j and ` respectively
are the maximum weights of a column and a row of the parity-check matrix, in the case of a
classical binary code. For a quantum code, j is the maximum number of independent
stabilizer generators which can involve a given qubit, and ` is the maximum number of
qubits which can be involved in a stabilizer generator. Note that this Theorem is also a new
result for the much better studied classical LDPC codes.

This result has been obtained by noticing that for an LDPC code likely errors separate into
small independent clusters which do not have any stabilizer generators in common. More
precisely, a graph G is defined with the vertices labeled by qubits, and any two vertices
connected iff the corresponding qubits participate in the same stabilizer generator. The
maximum degree of this graph is z; the clustering property is analogous to the cluster
theorem in the theory of phase transitions[32]. We also gave related bounds for
fault-tolerant operation in the presence of syndrome measurement errors.

Ref. 7 established quantum LDPC codes as the first family of quantum error correction
codes where a finite fault-tolerant error correction threshold is known to
coexist with the finite rate. Potentially, this could have huge implications for the
resources needed for quantum computers of the future.

A similar analysis for errors when the erroneous (qu)bits are known (erasure channel)
allowed us to establish an upper limit for the achievable rate of a quantum LDPC code with
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power-law scaling of the distance with block length. These results are important since,
unlike for regular QEC codes, there are very few general lower (existence) or upper bounds
for quantum LDPC codes[33].

The lower threshold bound in Ref. 7 is related to percolation on certain graph related to the
Tanner graph of the corresponding code. In the case of quantum codes related to graphs
(e.g., the hyperbolic codes[34]), the percolation threshold is more closely related to the
erasure threshold. Therefore, bounds on percolation can shed some light on the decoding
properties of the quantum codes. This relation was explored in Ref. 8, which established a
previously unknown bound for percolation threshold on infinite graphs.

The successful maximum-likelihood decoding probability of a quantum LDPC code can be
related to an average ratio of partition functions of two random-bond Ising models
associated with the code. This relation was first pointed in the case of surface codes by
Dennis et al.[20]. In the case of general quantum LDPC codes, this relation was explored by
the PI in the preprint Ref. 7. Here, for a given single-qubit error probability p, maximum
decoding probability is achieved at the temperature which corresponds to the Nishimori
line[35]; temperatures away from the Nishimori line correspond to sub-optimal decoding.
For a sequence of quantum LDPC codes, an asymtotically decodable region was defined as
that where decoding probability converges to one. Main result [7] is that this implies a
certain lower bound on the tension of defects associated with the code (such defects are
related to codewords). Second, the optimality of the Nishimori line decoding was confirmed
using precise inequalities.

B. Construction of quantum LDPC codes

1. Simplified construction of stabilizer codes using the CWS formalism

In the paper [2] we explored how the framework of CWS codes can be used to relegate the
design of quantum stabilizer codes to classical binary linear codes in order to simplify the
overall design. In particular, we formulated several theorems framing the parameters of an
additive CWS code which can be obtained from a given graph. We also suggested a simple
decomposition of the F4 generator matrix corresponding to the stabilizer in terms of the
graph adjacency matrix and the parity check matrix of the binary code. Finally, we
designed several graph families corresponding to regular lattices which result in some
particularly good codes. These include graphs with circulant adjacency matrices which can
be used to construct single-generator cyclic additive codes, a class of codes overlooked in
previous publications. In particular, we proved the existence of single-generator cyclic
additive codes with the parameters [[km, k,m]], k > 10 and [[t2 + (t+ 1)2, 1, 2t+ 1]] (the
sequence of smallest toric codes). Note that these code families have distances that are not
bounded, unlike any CWS code families constructed previously[1, 36].

For generic (non-cyclic) codes, the idea is that in order to construct a non-degenerate
quantum stabilizer code Q with the parameters [[n, k, d]], we first choose an order-n simple
graph that obeys the following properties.

• The degree r of each vertex is at least d− 1.
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• For any two vertices with degrees r1 and r2, which share r12 of their neighbors, the
following inequality should be satisfied: d ≥ 2 + r1 + r2 − r12.

• The graph-state distance d′(G) corresponding to the graph is not smaller than d.

The first two properties actually follow from the last one, but they are easier to check.

After a suitable graph is found, we construct a classical linear binary code C with the
parameters [n, k, d(C)], with distance d(C) ≥ d, that can correct the binary error patterns
induced by the graph. The rule is simple: for a quantum error of the form
E =

∏
iX

vi
∏

j Z
uj , the corresponding classical error is a vector with binary components

ei = ui +
∑

j Rijvj mod 2, where Rij is the adjacency matrix of the graph.

We justify the technique by proving the Gilbert-Varshamov (GV) bound for a minimum
distance d of a quantum code that can be obtained from a specific graph[2]. The value of
the bound for given n and k is exactly the same as for all stabilizer codes. While this does
not guarantee that a code with record parameters can be found for every graph, it does
provide a guarantee of a minimum performance. Generally, if it can be proved that a family
of codes satisfies the GV bound, one expects that the family is large enough to include very
good codes.

The technique is modified for cyclic codes. Here, one first selects a cyclic binary code
[n, k, d(C)], specified by the parity-check polynomial p(x) which must divide xn − 1, of
degree deg p(x) = k, and d(C) ≥ d. The second step is to choose the polynomial r(x) which
actually maps quantum errors to classical: the polynomial g(x) = p(x)[ω + r(x)] generates
the additive F4 code corresponding to the stabilizer. Here ω is the generator of the field F4

which satisfies the equation ω2 = ω + 1. For CWS cyclic codes, the polynomial r(x) must be
symmetric with respect to the free term, r(xn−1) = r(x) modxn − 1. More general condition
p(x)p(xn−1)[r(x) + r(xn−1)] = 0 modxn − 1 defines single-generator additive cyclic codes, a
family of quantum codes overlooked previously (see Theorem 14 in Ref. 37).

While we were not able to prove a general GV bound for the quantum cyclic codes
generated from a given binary cyclic code, we proved such a bound in two special cases
corresponding to binary codes with irreducible generator polynomials, q(x) ≡ (xn − 1)/p(x).
Thus, e.g., we were able to prove the existence of additive cyclic codes with the parameters
of generalized repetition codes, [[km, k,m]] (the actual proof works for 10 < k = ms, with
certain m, but empirically there is no difference between these and generic values, as long as
k > 5.) Another highlight is the discovery of a family of cyclic codes with the parameters
[[t2 + (t+ 1)2, 1, 2t+ 1]], t = 1, 2, . . ., which are actually the smallest toric codes[20, 26, 37].
This result was rather unexpected since toric (surface) codes are designed on a
two-dimensional surface; in this case the surface is generated by wrapping a line around a
cylinder in a highly non-trivial pattern.

2. Finite rate quantum LDPC codes

Second approach was designing codes related to quantum Hypergraph codes invented by
Tillich and Zemor[4]. Two papers have been published on the subject [5, 6]. Unlike the toric
and related surface codes which encode a finite number k of qubits, such codes can encode a
finite fraction of qubits, k/n, where n is the block length, the total number of qubits
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directly involved in the code. At the same time these codes admit a convenient
two-dimensional qubit layout (see Fig. 1, Left). While the numerical studies are still in
progress, it appears that in spite of their finite rates, these codes have thresholds
approaching that for the toric code.
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FIG. 1. Left: Planar layout of the hypergraph-product code[5] [[450, 98, 5]]. Dark and light gray

squares---two sublattices of physical qubits; lines: two pairs of anticommuting logical operators

(red and blue, respectively, X and Z operators, green---overlap of Z and X operators); arrows: two

stabilizer generators. Other stabilizer generators are obtained by shifts over the same sublattice

with periodic boundaries; all of these operators need to be measured every error-correcting cycle.

Shaded region: each physical qubit uniquely corresponds to a pair of logical operators, thus k = 98

encoded logical qubits. Note that the toric code with the same dimensions (not shown) encodes

only k = 2 qubits but has a larger distance d = 15.

Right: Simulated infidelity for a single run of repeated error correction with the [[5, 1, 3]] code

using the universal set of gates from Ref. 14. Time axis in units of single-pulse duration, τp, starts

at the end of the encoding circuit. One ancilla connected via Ising couplings to each of n = 5 qubits

in a star-like geometry was used, with correlated classical noise as a source of dephasing. Each

point is taken either right before or right after one of the stabilizer measurements as indicated.

Circles and squares correspond to the infidelity of the encoded state, the corresponding curves shoot

up whenever an error is detected (correction is applied after the cycle of four measurements). Two

infidelities at the end of the decoding correspond to full-system six-qubit fidelity and the single

decoded-qubit fidelity with other qubits traced out. Note that the noise amplitude is quite large:

in the absence of decoupling pulses this would require an error correction cycle of . 5τp for the

bottom plot (5× 102τp for the top plot), much shorter than 25× 102τp used.

The construction of new codes is based on an algebraic version[5] of the quantum
hypergraph-product (QHP) ansatz introduced by Tillich and Zémor[4]. Namely, a quantum
code is constructed from two binary matrices, H1 (dimensions r1 × n1) and H2 (dimensions
r2 × n2), as a CSS code with the stabilizer [5]

Gx = (E2 ⊗H1,H2 ⊗ E1), Gz = (HT
2 ⊗ Ẽ1, Ẽ2 ⊗HT

1 ). (1)

Here each matrix is composed of two blocks constructed as Kronecker products (denoted

with ‘‘⊗’’), and Ei and Ẽi, i = 1, 2, are unit matrices of dimensions given by ri and ni,
respectively. In the original construction[4], given the binary parity check matrix H1 = HT

2
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of a classical LDPC code [nc, kc, dc], the QHPC (1) is a CSS code with the parameters
[[n = n2

c + (nc − kc)2, k = k2c , d = dc]].

When redundant rows are added to the matrix H1 = HT
2 to make it square, r1 = n1 = nc,

the parameters of the resulting quantum code are[5] [[n = 2n2
c , 2k

2
c , dc]]. This is easiest to

achieve when the classical code is cyclic, by taking H1 to be a square circulant matrix
corresponding to the parity check polynomial. A representative example is shown in Fig. 1,
Left, where the code with parameters [[450, 98, 5]] is obtained from the check polynomial
h(x) = 1 + x+ x3 + x7 corresponding to the binary code [15, 7, 5]. Similar to the toric code,
the qubits are mapped to the bonds of a two-dimensional square lattice, and stabilizer
generators are obtained by shifting the same patterns along the lattice, with periodic
boundary conditions. The hyperbicycle codes suggested in Ref. 6 have the same local
structure except with changed lattice periodicity. This modifies the code parameters (block
length n, the number of encoded qubits, and the distance d), but the upper and the lower
bounds on the distance both scale as a square root of the block length, d ∝

√
n. This shows

that the constructed codes have a finite fault-tolerant error correction threshold[7].

Compared to the original hypergraph-product construction[4], the main advantages of the
new code families is the added flexibility of parameters and a somewhat higher rate. In
addition, thus constructed variants of the same code could be used to construct
fault-tolerant operations by code deformations.

C. Error clustering for quantum LDPC codes

The third direction of research in quantum LDPC codes was to study the consequences of
the clustering of a likely error in such codes noticed in Ref. 7. In particular, we suggested in
Ref. 7, that the error clustering could be used to construct a new polynomial-time algorithm
for syndrome-based decoding, an extremely important problem for quantum LDPC
codes[38]. We have constructed and implemented a version of cluster-based syndrome
decoding algorithm which goes over all small clusters of qubits connected to non-zero
syndrome bits, with subsequent minimal-weight matching using Knuth’s DLX algorithm (this
technique is an extension of the minimal-weight matching for the toric and related
codes[20, 21]). The technique has the complexity scaling as n log n, and is very fast for small
p . (2z)−1 where few-qubit clusters are dominant. Unfortunately, with p increasing toward
the error-correction threshold, larger clusters are needed and the overall complexity rapidly
increases.

Another problem related to syndrome-based decoding is that of finding the distance of a
code. In the paper[10] presented at the 2013 Information Theory and Applications (ITA)
workshop in San Diego, we suggested a novel classical algorithm for finding the distance of a
quantum LDPC code. Again, the idea of the algorithm is to look for a possible
minimum-weight codeword only among those forming connected clusters. We also review
the existing algorithms for finding the minimal distance of a code and show that the
algorithm constructed in Ref. 10 is exponentially faster in a certain range of parameters (all
known algorithms have complexity that scales exponentially with the block length.)

This technique was further analyzed in the subsequent conference paper [11]. Here, a
number of generic distance finding algorithms for binary codes have been analyzed in
application to quantum LDPC codes. While the cluster-based algorithm is near-optimal with



9

high-rate codes, the random-window (RW) algorithm has been identified as most efficient so
far. While this latter algorithm has exponential complexity, it works very fast (polynomial
complexity) to filter out ‘‘bad’’ codes which contain small-distance codewords. This feature
may be useful for further studies searching for quantum LDPC with certain properties.

III. MULTI-QUBIT GATES BASED ON DECOUPLING PULSE SEQUENCES

Building a quantum computer with hundreds or thousands of qubits with gates concurrently
operating at such an accuracy is a great physics and engineering challenge. It is pursued by
a number of groups, using different physical systems for implementing qubits. However, the
corresponding control algorithms need not necessarily be developed from scratch, since
different physical systems may share some key properties.

In particular, qubits with always-on couplings are a natural model for several potential
quantum computer (QC) architectures such as the original Kane proposal, nitrogen vacancy
centers in diamond, superconducting phase qubits , and circuit QED lattices.When
compared to their counterparts with tunable couplings, qubits with always-on couplings can
be expected to have better parameter stability and longer coherence times. In addition there
is also much to be benefited from over sixty years of development in nuclear magnetic
resonance (NMR) which has resulted in an amazing degree of control available to such
systems[39, 40].

Related coherent control techniques based on carefully designed pulse sequences used to
selectively decouple parts of the system Hamiltonian have been further developed in
application to quantum computation[41--47]. While NMR quantum computation is not
easily scalable[48], it still holds several records for the number of coherently controlled
qubits[40]. However, some of these records have been achieved with the help of
strongly-modulated pulses, computer-generated single- and multi-qubit gates tailored for a
particular system Hamiltonian[49--52]. While such gates can be used in other QC
architectures[53], they may violate scalability.

On the other hand, NMR-inspired techniques like dynamical decoupling (DD) can also be
used to control large systems with local interactions, where pulses and sequences intended
for a large system can be designed to a given order in the Magnus series[54] on small qubit
clusters[12]. DD is also excellent in producing accurate control for systems where not all
interactions are known as one can decouple interactions with the given symmetry[55, 56].
Moreover, DD works best against errors coming from low-frequency bath degrees of freedom
which tend to dominate the decoherence rates, and it does not require additional qubits. In
short, DD is an excellent choice for the first level of coherence protection; it’s use could
greatly reduce the required repetition rate of the QEC cycle.

This is well recognized in the research community, and applications of DD for quantum
computation are actively investigated by a number of groups. However, most publications
on the subject illustrate general principles using just a single qubit as an example, leaving
out the issues of design and simulation of scalable approaches to multi-qubit dynamical
decoupling. While the techniques for larger systems exist, they typically require longer
decoupling sequences[13, 45, 55].

The goal of this part of the project is to provide a scalable benchmark implementation of a
universal set of accurate gates using soft pulses for a system with always-on qubit couplings.



10

Specifically, we constructed[14] gates with built-in DD-protection against low-frequency
phase noise for a set of qubits with bipartite Ising coupling (where qubits in partition A are
only coupled to the qubits in partition B), like a chain or square lattice of qubits with the
nearest-neighbor (n.n.) couplings. The constructed gates use finite-amplitude shaped pulses
which can be implemented experimentally, are scalable, in the sense that the same
construction works for an arbitrary bipartite graph, and they can also be executed in
parallel for different qubits and/or qubit pairs, which is one of the necessary requirements
for building a useable (large) quantum computer. The couplings need not be the same for
parallel operation[15]. The gates are accurate to second order in the Magnus expansion,
meaning that in the limit of very slow (classical) bath the infidelity scales as sixths or higher
power of the system-bath coupling in units of inverse pulse duration.

We demonstrated the accuracy of the constructed gates by simulating the repeated Zeno
effect for the [[4, 2, 2]] error-detecting toric code, implemented on a five-qubit chain[14]. We
have also analyzed the error operators associated with the constructed gates[15]. Namely we
first analyzed the errors analytically up to a cubic order in the Magnus expansion. We
further studied these errors numerically by explicitly integrating the Schrödinger equation
for time evolution of clusters of up to six qubits, and gave a bound on high-order errors for
qubits on a large square lattice. Using this bound, we analytically proved that with large
enough toric code the present gate set can be used to implement a fault-tolerant quantum
memory[15].

A. Pulse sequence design

Basic idea is that during the operation of the QC with always-on couplings, two periodic
sequences are constantly executed on the two sublattices, e.g., with total period 16τ :

A : X− X− X− X−−X− X− X− X,

B : −X− X− X− X X− X− X− X−,

where X represents a π pulse and − a null pulse (no pulse) on the particular sublattice.
When the pulses are second-order self-refocusing pulses[12], these sequences suppress the
Ising couplings between the sublattices to second order in the Magnus expansion, meaning
that the error in the unitary matrix scales with (τJ)3, wher τ is the pulse duration, and the
corresponding infidelity scales as (τJ)6.

When we need to turn on the coupling between two neighboring qubits, the sequences on
these qubits are replaced by

A′ : X−−− X−−−−−− X−−− X,

B′ : − X−−− X −−−− X −−− X−,

so that the Ising coupling between these qubits is only decoupled half of the time, while the
coupling to other qubits continues to be removed. As a result, if the system Hamiltonian is
H = 1

2
J
∑
〈ij〉 σ

z
i σ

z
j , the effective evolution operator becomes U = exp(−iJzσzaσzb t/4), where

t = 16τ is total duration of the sequence. Repeating the sequence, we can generate an
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FIG. 2. (Color online) Schematic design of the ZZ-rotation gate on a bipartite Ising network

using δ-pulses. Pulses are indicated with vertical red lines (all of them are π pulses around the

x-axis). Sequences A and B are applied on idle qubits of the two sublattices. The regions shaded

in gray correspond to time intervals where the signs of σz on the corresponding sublattice is not

inverted, while yellow shading along the intermediate line labeled AB represents the sign of the

coupling term σz ⊗ σz. All of these occupy exactly half of the total cycle duration, indicating that

the corresponding leading-order average Hamiltonians are all zero. The lines labeled A′ and B′

correspond to a pair of qubits to be coupled. They are decoupled both from the on-site noise and

from the neighboring dual-sublattice qubits as can be seen from the shading along lines labeled A′,

B′, AB′, and BA′. On the other hand, the mutual coupling (line A′B′) does not average to zero,

which allows for the controlled-phase gate to be constructed.

arbitrary two-qubit phase rotation. The version of these sequences which allows for unequal
inter-qubit couplings is schematically shown in Fig. ??.

With addition of the single-qubit gates, we have a universal set[57]. Indeed, e.g., the CNOT
gate can be constructed using the identity [58]:

CNOT = eiπ/4Y1X2X̄1Ȳ1Ȳ2e
−iπ/4σz

1σ
z
2Y2, (2)

where Xi ≡ exp
(
−iπ

4
σxi
)
, Yi ≡ exp

(
−iπ

4
σyi
)
, are π/2 pulses, and X̄i denotes the

corresponding conjugate gates. The complete pulse sequence used to implement a CNOT
gate is shown in Fig. 3.

Such sequencs can be run simultaneously on many pairs of qubits as long as qubits from
different pairs are not mutually coupled.

A single-qubit rotations are implemented using the dynamically corrected gates (DCGs)
invented by Khodjasteh et al.[13, 59, 60] In essence, the original DCG construction[13] is a
generalization of the Eulerian path DD-sequence-generation technique[44] which allows for a
construction of composite pulses accurate to leading order in the Magnus expansion. We use
this technique to implement arbitrary single-qubit rotations; again, on a bipartite lattice
these gates can be executed in parallel on any non-neighboring qubits.

For example, to implement the toric code[20, 23], one can use square lattice with n.n. Ising
couplings between the qubits, with one sublattice used for qubits, and the other for ancillae.
More generally, to implement an arbitrary LDPC code, one can use the network of couplings
between the qubits and the ancillae form the corresponding Tanner graph. In particular, for
hypergraph-product and related codes[4, 5] one can use the square lattice layout with
additional connections, see code layout in Fig. 1, Left.
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FIG. 3. (Color online) Pulse sequences used to implement the CNOT gate between qubits Q5

and Q6 on a star graph. It is a combination of four DCG gates and a ZZ-coupling sequence.

Second-order self-refocusing pulse shapes Q1(π) and Q1(π/2) from Refs. 12 are used. Shading

shows the direction of the applied pulses as indicated. The unit surrounded by vertical red lines,

16τp ≤ t ≤ 32τp, should be repeated Nrep times, for the total sequence duration 16(Nrep + 4)τp.

B. Analysis of error operators

In Ref. 15, we have carefully analyzed the errors associated with the universal gate set based
on soft-pulse dynamical decoupling sequences. When used with second-order NMR-style
self-refocusing pulses, the constructed sequences eliminate the inter-qubit couplings to
second order, and in addition decouple time-independent on-site Ising terms (chemical shifts)
also to second order. Fluctuating Ising term (low-frequency phase noise) is decoupled to
linear order; second order decoupling of such terms can also be achieved using a
symmetrized version of the same construction.

The basic two-qubit gate is an arbitrary-angle ZZ-rotation; it can be viewed as a continuous
family of doubled Eulerian sequences[44] which allow flexibility of the effective coupling:
same average rotation rate can be achieved for qubit pairs with differing Ising couplings.
These gates can also be executed in parallel on an arbitrary number of qubit pairs with the
restriction that qubits from different pairs cannot be directly connected to each other. In
addition to providing controlled removal of unwanted Ising couplings to quadratic order
(when used with second-order NMR-style self-refocusing pulses), these sequences also
decouple low-frequency phase noise to the same order.

We characterized the accuracy of the constructed gates in few-qubit systems using an
extension of the analytical average-Hamiltonian expansion[12], and also numerically by
integrating full quantum dynamics of clusters of up to six qubits in the presence of control
pulses, coupling Hamiltonian, and additional on-site Ising terms. These simulations
confirmed that the gates are working as designed, with the systematic portion of the average
infidelity of a CNOT gate as small as 10−11 on a chain and 10−8 on an n = 6 star graph
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with Nrep = 5 repetitions of the basic sequence.

We also went beyond the fidelity and analyzed the weight distribution of systematic errors
generated by our sequences. It turned out that single- and two-qubit errors are relatively
suppressed, while errors of larger weights dominate the evolution. Such an error distribution
is expected in any control scheme based on perturbation theory.

Scalable quantum computation being the primary target of the present construction, we also
analyzed the error patterns that would be expected when this or similarly constructed gate
sets are used in a large system. It turned out that for sequences suppressing the inter-qubit
couplings to order K, when the couplings are small compared to the inverse sequence
duration, dominant errors are formed by clusters involving up to K + 1 bonds (up to K + 2
qubits). While such clusters can sometimes merge forming larger-weight errors, we show
that one can choose the parameters so that large error clusters do not form during a
measurement cycle that involves several CNOT and single-qubit gates. We analyzed
specifically the measurement cycle of the toric code and the corresponding planar layout of
qubits and ancillae, and demonstrated that fault tolerant quantum memory can indeed be
implemented using our gate set.

We also mentioned that the obtained exponential bound for the amplitude of a large error
clusters is also compatible with the threshold analysis for concatenated codes with noise that
involves long-range temporal and spatial correlations[61, 62]. Fault-tolerance with a
concatenated code using the present gate set can be demonstrated by choosing a suitable
qubit network, e.g., a linear qubit chain[63--65].

C. Network design principles

The most important parameter that governs the likelihood of a run-away large-weight error
formation is the sparsity of the coupling network. It can be characterized by the maximum
degree z of the corresponding graph. On a chain with z = 2, there are only s+ 1 clusters
with s bonds involving a given qubit; with z > 2, the cluster number grows exponentially
with s. This growth has to be overcome by the small expansion parameter α ≡ Jτseq: the
amplitude of an error cluster involving s bonds scales as αs.

On the other hand, when a large number of qubits are coupled to a single qubit or other
quantum system like a harmonic oscillator, it would be much more difficult to control the
run-away large weight error formation. We believe this applies not only to the present gate
set based on decoupling sequences, but generally to any kind of control scheme where
perturbation theory is used, e.g., controlled coupling schemes based on tuning qubits in and
out of resonance.

IV. CONCLUSIONS

The supported research substantially advanced our understanding of the quantum LDPC
codes and possibilities of their implementation. Key results include the proof of the
existence of finite fault-tolerant error correction threshold for quantum LDPC codes[7], new
constructions of quantum LDPC codes with simple planar qubit layouts[5, 6], an
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implementation of a universal gate set based on decoupling sequences[14], and the proof that
these gates can be used to implement fault-tolerant quantum memory using the toric
code[15].
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