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ABSTRACT Each living cell needs to solve a resource allocation problem, in which multiple inputs (uptake
fluxes) and outputs (secretion fluxes) are the outcome of the stoichiometry of biochemical pathways and the
regulation of metabolic enzymes. Quantifying the efficiency with which a cell solves this resource allocation
problem constitutes a basic question in ‘‘cellular economics.’’ In this letter, we propose the use of data
envelopment analysis (DEA) to define multidimensional yields that can capture the multidimensional nature
of cell input–output processes. The DEA, by treating cells as decision-making units, enables one to introduce
the concept of efficiency frontier that is both intimately connected to the shadow prices of flux balance
analysis and useful to estimate the phenotypic phase space from experimental measurements of fluxes.

INDEX TERMS Data envelopment analysis, flux balance analysis, cell efficiency, linear programming.

I. INTRODUCTION

CELLULAR metabolism is comprised of hundreds of
biochemical reactions, forming a highly interconnected

network [6]. This network is responsible for guaranteeing a
supply of energy and building blocks to the cell. The usage
of each reaction in this network depends on environmental
and internal parameters, such as availability of nutrients or
interactions with other organisms. Understanding the detailed
time-dependent orchestration of enzyme levels for directing
metabolic rates (or fluxes) under different conditions consti-
tutes a dauntingly complex problem. However, simplifying
assumptions have been successfully employed to understand
how, at steady state, a cell may be able to balance incoming
resources and metabolic tasks to efficiently maintain itself
into a balanced homeostatic state. In particular, by using a
steady-state approximation to constrain the space of possible
metabolic fluxes, and by employing optimality principles to
search this space for biologically meaningful states [6], it has
been possible to model the behavior of biochemical networks
at the genome scale, with useful applications in metabolic
engineering, cancer research, and environmental studies.

Despite these successes, constraint-based models of
metabolism remain a coarse approximation of a very complex
biological reality. In particular, due to the nature of flux
balance analysis (FBA) [3], and in line with standard defi-
nitions of yields in metabolic engineering, FBA calculations
often end up estimating the optimal value of one specific
cellular output (usually the biomass production, or growth
rate) relative to the most limiting environmental resource
(e.g., the carbon source). This focus on a single yield does not

accurately reflect the fact that living systems generally face
decisions about the simultaneous management of multiple
input sources (e.g., uptake of carbon, nitrogen, and sulfur),
and multiple output tasks (e.g., growth and storage of excess
carbon).

Here, we apply to metabolic network modeling a linear
programming (LP) method called data envelopment analy-
sis (DEA), which has been extensively used to study complex
decision-making strategies in economical systems, even in
the presence of multiple inputs and outputs [5]. We will
first introduce the main DEA concepts, and map the DEA
formalism onto a metabolic network optimization problem.
Next, we will demonstrate the power of the DEA in this con-
text, by showing how it establishes new connections between
experimental measurements of uptake/secretion fluxes and
the FBA feasible space.

II. BACKGROUND
A decision-making unit (DMU) is any entity that uses M
inputs x ∈ RM+ to produce N outputs y ∈ RN+. Two DMUs are
homogeneous, if they use the same set of inputs and produce
the same set of outputs. Given a set 0 of homogeneous
DMUs, on one side, the DEA provides an estimate of the
performance (or efficiency) of each DMU in 0 relative to
the best observed practice in this set of DMUs. On the other
side, DEA infers the expected performances of DMUs that,
although not in0, have input/output values similar to the ones
of the DMUs in 0.

DEA describes the DMUs as black boxes, as it assesses
a DMU efficiency only on the basis of the DMU input and
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FIGURE 1. Top: representation of a single-input single-output DMU, and
table exemplifying DMUs’ input/output values. Bottom- (a) Visualization
of DEA DMUs on the input/output plane. (b) DMUs convex hull and
efficient frontier.

output values without requiring the knowledge of the pro-
cesses that the DMU uses to transform its inputs into outputs
[Fig. 1(a)]. Specifically, DEA defines the efficiency of the ith
DMU ui in 0 as the weighted ratio of the outputs over the
inputs, that is

ei = µT yi/νT xi (1)

where (xi, yi) are the input and output vectors of ui, and
(ν, µ) is the associated weights’ vectors. Under the efficiency
definition (1), each DMU u0 in 0 exhibits constant return to
scale characteristics: for every positive scalar t that multiplies
the input vector x0, DMU u0 proportionally increases its
outputs, i.e., it produces t ·y0. If, instead, the outputs of DMUs
in 0 rise more than or less than proportionately with inputs,
we say that they exhibit variable, respectively, increasing
or decreasing, returns to scale (VRS). The DEA deals with
this latter situation by introducing a scale variable q in the
definition of efficiency, that now becomes

ei = µT yi + q/νT xi (2)

where q assumes a positive, negative, or null value if DMU ui
exhibits increasing, decreasing, or constant returns to scale.

When DMU u0 is under evaluation, the DEA determines
nonnegative weights (ν, µ), and possibly q, that maximize e0,
subject to the constraint that the efficiency of every DMU in
0 is bounded above by 1, that is,

max
ν,µ≥0,q

e0 s.t. ei ≤ 1, i ∈ 0. (3)

Problem (3) can be formulated as a dual pair of LP problems,
as first shown in [2] for the CRS case, and in [1] for the VRS
case.

We say that DMU u0 is more efficient than u1 if it uses
no more inputs to produce no fewer outputs and is doing
strictly better in at least one dimension. In this situation, e0
is greater than e1. If no other DMU in 0 is more efficient

than u0, we simply say that u0 is efficient. In this situation,
e0 is equal to 1. The convex hull of 0 is the smallest convex
polyhedron H that includes all the DMUs in 0. Each point of
H represents a possible DMU, whose inputs and outputs are
convex combinations of the corresponding inputs and outputs
of DMUs in 0. DMUs in H are similar to the ones in 0 in
the sense that they assume intermediate values between the
values assumed by the corresponding inputs and outputs of
the DMUs in 0. The efficient frontier is the set of efficient
DMUs in H [1]. The black line in Fig. 1(b) delimits the set H
of the DMUs in Fig. 1(a). The thick part of the line is the
efficient frontier F . Note that, by construction, the vertexes
of F are efficient DMUs in 0.

III. CELLS as DMUs
In evaluating cellular metabolism, we may think of a cell as a
DMU. The weighted DMU input and output variables may be
viewed as corresponding to cellular uptake/secretion fluxes,
i.e., the fluxes that cross the cellular boundaries. For the case
of a single input and a single output, the DEA efficiency
converges to a classical yield. More complex DEA efficiency
functions may correspond to other physical quantities (e.g.,
biomass production yield relative to total carbon consumed).
However, in general, the whole point of the DEA is to enable
an estimate of the importance of different inputs and outputs
for the efficiency of a system, even if the inputs and outputs
do not have the same units, and their linear combinations
through the weights do not necessarily represent any physical
quantity.

Since the cellular metabolic response to changing condi-
tions may be nonlinear, an increase of available resources
may correspond to a nonproportional increase of growth rate
and other metabolite secretion rates. In applying the DEA
to cellular metabolism, we will therefore focus on variable
return-to-scale models.

Observe also that cellular metabolism properties, as com-
puted by DEA, should be thought of as averages over time
and over a whole population, that do not aim to capture faster
dynamic, e.g. from cell cycle oscillations and fluctuations.
This approximation, implicitly assumed also in most FBA
calculations, implies that, in what follows, we will focus on
comparing populations of cells rather than single cells. Thus,
each DMU can be thought of as representative of one of these
populations.

IV. DEA and FLUX BALANCE ANALYSIS
In this section, we investigate the relationship between DEA
and FBA. In particular, we will demonstrate that the DEA
VRS efficient frontier is closely related to the phenotypic
phase plane (PhPP) surface, a geometrical entity useful for
representing different discrete states expected in the FBA cal-
culations of metabolism [3]. Notably, standard DEA deriva-
tions provide a natural framework for inferring an approx-
imate PhPP surface from experimental data, even in the
absence of any knowledge about the stoichiometry of the
underlying metabolic network. We will first illustrate this
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concept with a simple yet nontrivial toy model. From the
DEA perspective, this model corresponds to a set of single-
input single-output DMUs/cells in 0 (Fig. 1). From the FBA
viewpoint, these cells are feasible steady states of a metabolic
network defined by a set of reactions and constraints (Fig. 2).
The connection between DEA and FBA is made by assuming
that the FBAmodel describes the metabolic states of the cells
in 0: the input and output of each the DMU in the DEA
model correspond, respectively, to the uptake of metabolite A
(flux x) and the secretion of metabolite B (flux y).

FIGURE 2. Left: toy metabolic network with its steady state and capacity
constraints. Right: corresponding FBA feasibility set and PhPP surface.

A. FLUX BALANCE ANALYSIS
The structure of a cellular metabolic network involving L
metabolites and R reactions can be described by a stoichio-
metric matrix S ∈ RL×R, whose element Slr corresponds to
the amount of metabolite l that participates in reaction r . Slr is
positive if metabolite l is a product in reaction r , and negative
if it is a reactant. Let v = {vr : r = 1, . . . ,R} be the vector of
metabolic fluxes. FBA identifies the steady-state flux vector v
maximizing a given linear objective function and is generally
formulated as the following LP problem:

max
v

∑R

r=1
crvr (4a)∑R

r=1
Slrvr = 0 l = 1, . . . ,L (4b)

ar ≤ vr ≤ br r = 1, . . . ,R (4c)

where c = {cr : r = 1, . . . ,R} is the objective function vec-
tor, and ar and br define capacity constraints. One of the
most commonly used objective functions is the maximization
of the growth rate, based on the hypothesis that microbial
organisms have evolved toward an optimally efficient growth
capacity [4]. Overall, the steady state (4b) and capacity (4c)
constraints define the feasible set of the FBA problem, which
we denote by 8.

The PhPP surface F8 is defined as the set of points in
8 that optimize the objective function (4a) for a fixed set
of values of the nutrient uptake rates (i.e., the input fluxes).
The PhPP has been shown to provide a useful geometri-
cal illustration of how cells may adopt different metabolic
strategies based on environmental conditions, including evo-
lutionary trajectories [4], [6]. Due to the LP structure of
model (4), the PhPP is composed of some facets of 8,
which can be computed using the shadow prices of the
FBA problem. In the presence of multiple inputs, we can
identify isoclines on the facets (or phases) of the PhPP,

i.e., sets of points (lines) on a facet of the PhPP whose
inputs lead to the same value of the objective function.
The slope of the isoclines can be calculated as the ratio of
shadow prices of (4) and is different on each facet of the
PhPP.

For our toy model, the steady state of the metabolic net-
work translates into a set of metabolite conservation con-
straints (equalities in Fig. 2). These, together with additional
capacity constraints (inequalities in Fig. 2), define the feasi-
bility set 8. The projection of 8 on the subspace of the two
fluxes x and y, whichwe call8⊥, corresponds, in Fig. 2, to the
polyhedron enclosed by red lines, with vertexes in the points
(0,0), (2,4), (5,7), and (3,3).

To better grasp the structure of 8⊥ in the toy model,
consider, as an example, an input flux x = 1. If all this
flux is consumed by reaction v1, we observe an output flux
y = 1. Conversely, if all this flux is consumed by reaction
v2, we observe y = 2. For any intermediate distribution of
the input flux, we observe 1 ≤ y ≤ 2 (due to the different
stoichiometries of B in v1 and v2). If we assume that the
objective of hypothetical cells with this toy metabolism is
to maximize the output flow y for each fixed input x, then
we expect that cellular input/output flux values measured
in hypothetical experiments would be either on or close to
the polyhedron facets delimited by vertexes (0,0) and (2,4)
for 0 ≤ x ≤ 2, delimited by vertexes (2,4) and (5,7) for
2 ≤ x ≤ 5. These two facets are the projection F8

⊥
of the

PhPP surface F8 on the input/output space. In any case, we
expect that input/output values of any toy cell will fall within
the8⊥; otherwise, their metabolic fluxes would violate either
the stoichiometric equations or the capacity constraints. It is
also worth noting that the output-to-input ratio y/x is not
constant for the cells in 8⊥, not even for the cells that lay
on the two facets (0,0)-(2,4) and (2,4)-(5,7). Indeed, y/x = 2
for the cells that lays on the facet (0,0)-(2,4) as they produce
2 units of outputs for each unit of input x, whereas the ratio
y/x declines with an increase in x for cells on the facet
(2,4)-(5,7) as they increase their output production only by 1
for each additional unit of input x. In other words, the output-
to-input ratio presents a variable (decreasing) return-to-scale.

This example translates the description of a simple
metabolic network in the language routinely used in the DEA
theory. Intuitively, by comparing Figs. 1(b) and 2, one can
see the similarity between the DEA efficiency frontier and the
FBA PhPP surface. In Section IV-B, we formalize the above-
mentioned intuition in a theorem and show that the DEA
frontier can serve as an approximation of the PhPP, whose
accuracy increases with the number of DMUs available. We
also see how the efficiency definition as in (2) can describe
DMUs’ variable return to scale.

B. DEA VRS CAN HELP ESTIMATE the PhPP
Theorem 1: If an FBA model describes the metabolic net-

work of the cells/DMUs in a DEA set0, then the DEA convex
hull H is included in or equal to the FBA set 8⊥ (e.g., see
Fig. 3).

VOLUME 2, NO. 3, SEPTEMBER 2016 29



Castelli et al.: Cell as a DMU

FIGURE 3. Relation between the FBA feasibility set and the DEA convex
hull.

Proof: If the FBA model correctly describes the cells in
0, the inputs/outputs of these cells should fall in the FBA set
8⊥, i.e., 0 ⊂ 8⊥, and either lay on or close to the projection
of the PhPP surface. The theorem is then proved by observing
that both 8⊥ and H are convex polyhedra, and the vertexes
of the latter are in 0. �
Corollary 1: a) If 0 includes the vertexes of F8

⊥
, then the

DEA efficient frontier F is equal to F8
⊥
. b) If DMUs in 0 are

uniformly randomly sampled from8, then the DEA efficient
frontier F is equal, with probability equal to 1, to F8

⊥
when

the number of DMUs goes to infinity.
Theorem 1 and Corollary 1 point out that DEA, using only

the knowledge of the input/output values of a sample 0, can
provide an approximate description of 8⊥. Thus, a descrip-
tion of the PhPP can be obtained either from the complete
knowledge of the stoichiometry and subsequent FBA calcula-
tions, or, in an approximated way, through the DEA frontier,
which can be derived solely based on a set of input/output
measurements. The larger this set of measurements, the better
the DEA frontier approximation.

C. DEA ESTIMATE OF PhPP ISOCLINES
We finally show an additional correspondence between the
DEA VRS efficient frontier and the FBA PhPP. In partic-
ular, the slopes of isoclines used to characterize the PhPP
(which are derived from the FBA shadow prices) can be
estimated using the weights computed in the DEA model.
Considering again our toy model, we assume that F = F8

⊥
,

which means that all DMUs are efficient (see Corollary 1).
By solving, as in [1], the LP formulation of model (3), the
optimal weights are (µ∗, ν∗, q∗) = (1/2, 1, 0) which imply
ex =

µ∗(2x)+q∗

ν∗x = 1 for all DMUs (x, 2x) on the 8⊥ facet
(0,0)-(2,4), and (µ∗, ν∗, q∗) = (1, 1,−2) which imply ex =
µ∗(x+2)+q∗

ν∗x = 1 for all DMUs (x, x + 2) on the 8⊥ facet
(2,4)−(5,7).
The key result is that, for each input value x, the ratio

ν∗/µ∗ is equal to the slope of the corresponding facet of
F8
⊥
, i.e., it defines a marginal productivity, which can also

be viewed as the extra output gained by adding one unit of
input. A similar concept can be easily extended for multiple-
inputs multiple-outputs DMUs. In this latter situation, the
ratio between the weights of two different inputs defines a

marginal rate of substitution. It represents the combination
of the two metabolite uptake rates that leads to the same
value of the outputs, that is the slope of the isocline of F8

⊥
.

Furthermore, it can be proved that when F is different from
F8
⊥
and 0 includes a DMU ui lying on a facet of F8⊥ , then the

slope of the isoclines of this phase is bounded by the values of
the slopes of the isoclines of the hyperplanes enveloping H ,
which have ui as a vertex.

V. DISCUSSION
Borrowing concepts from economics and operations
research, we have examined the possible benefits of
treating cells and their metabolism as DMUs, which
consume resources to produce outputs. The DEA defini-
tions and results can then be used to measure and com-
pare the metabolic efficiency of different cell populations.
Notably, DEA can handle the presence of multiple inputs
(e.g., uptake of different carbon sources) andmultiple outputs
(e.g., biomass and secretion of waste products), appropriately
comparing the performance of different organisms.

DEA makes it possible to partition a set of observed cell
populations into efficient and inefficient ones. The set of effi-
cient cells defines a concave surface called efficient frontier
that is related to the surface of the FBA PhPP. We show that
the DEA production frontier approximates the PhPP. This is
noteworthy because it enables an estimation of the PhPP from
experimental measurements of input/output fluxes, instead of
necessarily requiring complete knowledge of reaction stoi-
chiometry and detailed FBA calculations.

While the aim of this letter was to introduce for the first
time the correspondence between DEA and FBA, and illus-
trate the potential applications of DEA approaches in study-
ing cellular metabolism, many other concepts introduced in
the vast DEA literature could be similarly applied to cellu-
lar systems. More advanced approaches, for example, could
help deal with imperfect information about the value of the
input/output fluxes or with data coming from different envi-
ronments in which different external factors may influence
the behavior of DMUs (see, e.g., [5]).
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