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I — General Introduction & Project Objectives

1.1 Introduction & Motivation

There have been multiple demonstrations of neuro-inspired systems achieving computation with high-
energy efficiency [Merollal4], while performing complex tasks such as pattern. The definite objective of
these lines of research is to provide learning and cognitive capacities to engineered systems comparable to
those of complex neural architectures such as the mammal brain.

Amongst the many existing proposal in cognitive computing, reservoir computing has focused
significant attention since its initial discovery a decade ago [Jaeger02]. The main idea is illustrated in Fig.
(1a). It consists of three-layer architecture: (i) an input layer detect the data and transmit it first to the
second layer (ii) a dynamical networks with a complex topology including recurring loops and then to (iii)
an output layer. This generic structure, also known as an echo-state network (ESN) [Jaeger04], allows to
map the input data to a higher-dimensional space before being processed by the output nodes, which
apply a simple readout function with optimized coefficients (weights) via training. The trained output
allows for the input to be mapped to its corresponding class. The training is similar to that of an artificial
neural network, except here the only part of the reservoir computer to be trained is the output. Reservoir
computing has proven to be particularly effective in complex computation tasks such as spoken digit
recognition and time-series (e.g.: chaotic, financial) forecasting but was mostly realized in simulations.

Physical Implementation of ESN has focused research efforts in the past five years. Photonic systems
are especially promising because of their large bandwidth and integration. However, the main downside
of this technology is the difficulty to interconnect a large number of photonics devices together, thus
making large photonics reservoir hard to realize. For this reason, the first optical realization followed the
principle of Fig. (1b): A single optical node is used with a time-delay feedback line. The feedback line is
wire-taped at different locations, corresponding to the position of virtual nodes, and the taped signals are
sent to the output layer for computation. This approach using various optoelectronic configurations ith
delayed feedback has proven that optical reservoir computers can perform with state-of-art performance
on typical benchmark from the machine learning community [Appeltantll, Paquotll, Largerl2,
Martinenghil2]. However, they are limited to simple unidirectional topology and cannot benefit from the
computing power of multiple interconnected physical nodes; they also are constrained to process data in a
serial fashion, but they
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Figure 1 — (a) generic representation of a reservoir computer with p input physical nodes (ins, . p), a
dynamical network with random topology comprising N physical nodes (NL4,. ) and n output nodes that
match the input data to their corresponding class. (b) Physical implementation using a single nonlinear node
(electronic or photonic system) (NL) and feedback time line with delay t, where N virtual nodes realizing the
function “copy” are placed. The N nodes feed the output layer to classify the input data.

1.2 Project Objectives
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The main objectives of the project have evolved since the original proposal, and will be detailed below,
but they have kept their original motivation of providing novel paradigms of implementations for optical
machine-learning architectures and more specifically reservoir computing.

The first objective is to design a large-scale spatiotemporal photonic network with several thousands if
nonlinear nodes to realize the physical embodiment of a reservoir computer. The second objective is to
study the possibility of photonics integration of reservoir computer for optical telecom applications. The
third objective is to design online training procedure for photonics reservoir computing with full analog
output (as most design relies on batch training and digitalization of system’s states and output).

References for Introduction & Context

[Appeltant11] L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, and 1. Fischer,
“Information processing using a single dynamical node as complex system,” Nat. Commun. 2,468 (2011)

[Jaeger02] H. Jaeger, “Short Term Memory in Echo State Networks”. Fraunhofer Institute for Autonomous Intelligent Systems, Tech. Rep. 152
(2002)

[Jaeger04] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication,” Science
304, 78 (2004)

[Larger12] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, I. Fischer,* ‘Photonic information
processing beyond Turing: an optoelectronic implementation of reservoir computing,”” Opt. Express 20,3241 (2012)

[Martinenghil2] R. Martinenghi, S. Rybalko, M. Jacquot, Y. Chembo, L. Larger, ‘‘Photonic Nonlinear Transient Computing with Multiple-
Delay Wavelength Dynamics,”” Phys. Rev. Lett. 108, 244101 (2012)

[Merollal4] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson, N. Imam, C. Guo, Y. Nakamura,
B. Brezzo, 1. Vo, S K. Esser, R. Appuswamy, B Taba, A. Amir, M.D. Flickner, W.P. Risk, R. Manohar, and D.S. Modha, “A million spiking-
neuron integrated circuit with a scalable communication network and interface”, Science 345, 668 (2014)

[Paquot11] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman & S. Massar, “Optoelectronic Reservoir Computing,”
Sci. Rep. 2,287 (2011)

II - Scientific/Technical Results

11.1 - First Work Package: Design of a large-scale photonics networks

In this first work package WPI1, we have initiated the construction of a photonics-based setup
described propose to adapt an existing setup [Hagerstrom12] previously used for the fundamental study of
dynamical network and make into a high-speed reservoir computing.

Our proposed dynamical photonic network is shown in Fig. 2. The setup consists of four main
components: (i) an laser source at 532 nm (green color) by Coherent, (ii) a high-speed spatial-light
modulator (512x512 pixels with refresh rate >300 Hz) by Meadowlark, (iii) a 1.3 Million pixel high-
speed camera from Photron (>2000 fps, but exploited in the >100 fps regime), and (iv) an electronic
feedback that couples the pixels state of the camera with those of the spatial modulator. Based on Fig. 2,
the principle of operation of the photonics network is the following one: a spatiotemporal phase pattern is
imprinted by the SLM on the optical beam. The phase pattern is detected by the camera and converted
nonlinearly into an intensity pattern. This information is digitized and fed back in real time to specific
pixels of the SLM following a specific network topology and thus controlling dynamically the liquid-
crystal orientation. This forms a network of photonic pixel described mathematically as coupled maps.
Although, each individual component does not have very high speed, the overall bandwidth of the
architecture could potentially reach 100 MSymbol/s (where a symbol is coded on 8 or 16 bits depending
on the SLM and camera properties).

In our setup, the state of the SLM pixel is given by a phase value (in the interval [0,2n] with a 16 bit
resolution). Each camera’s pixel detects a nonlinear transformation of the SLM phase states through a
combination of quarter-wave plate (QWP) and a polarized beam splitter (PBS). The combination of these
two polarization-sensitive optical devices allows for a nonlinear phase-to-intensity conversion, which is
necessary because the camera is only sensitive to intensity. The output of the polarized beam splitter is
imaged by a 4-f optical setup with a 2 reduction factor to accommodate the difference in sensor size
between the SLM and the camera. The electronic feedback is currently realized with a computer and
Matlab is used to handle the various devices and realize the photonics network. We plan on using a DSP
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or PFGA board to handle the devices in an future version of the setup to further improve speed. A photo
of our current experimental setup is depicted in Fig. 2 (b)-(c). The electronic feedback is also used to
realize non-trivial coupling between the various pixels via matrix multiplication. This allows for precise
and controllable coupling between pixels (i.e. the nodes of the photonics network) but increase the
computing load on the non-optical part of the setup. We are considering alternative optical coupling using
spatial filtering in the optical domain; the downside being a lack of controllability on the coupling values.

In its current development state, the photonic network is now realized and we need to characterize its
performance as a reservoir computer. This task is currently in progress and we will be finalized in the
continuing grant awarded to us by the AFOSR. At the moment, we can currently manage to select an area
of 50x50 pixels at the center of the SLM and camera, where is illumination is quasi-uniform and has the
lowest amount of optical distortion (NB: we use 2” optical elements specifically to avoid such unwanted
effects). These pixels represent the accessible nodes of the network. We are currently testing to see if each
individual pixel is accessible or if they need to be grouped into macro-pixels to guarantee proper temporal
behavior consistent with theoretical models.
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Figure 2 - (a) Proposed setup for the spatiotemporal reservoir computer including an high-speed spatial light
modulator, a 4-f optical system, a quarter-wave plate (QWP), a polarized beam splitter (PBS), a laser diode at
532 nm (LD), a high-speed camera, and FPGA/DSP board for network connectivity. The reservoir computer
consists of this high-speed photonic reservoir with the addition of an input layer (free port of the PBS or
electronic hardwiring at the output of the camera) and the output layer located on the FPGA/DSP board. (b)-
(c) Pictures of the experimental setup showing the illuminated spatial-light modulator and the optical arm
with the 4-f optical system in front of the high-speed camera.
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WP1 has undergone some delay, mainly due to the construction of the entire lab and of the time needed to
recruit of people to assemble and test the setup. With the continuing grant awarded by theAFOSR, we
will have time to conduct performance analysis on our working setup. We have thus redirected part of our
effort in the current grant to WP2 and WP3.

References for WP1

[Hagerstrom12] A. M.. Hagerstrom, Thomas E. Murphy, R. Roy, P. Hével, I. Omelchenko, and E. Scholl: Experimental Observation of Chimeras
in Coupled-Map Lattices, Nature Phys. 8, 658 (2012).

11.2 - Second Work Package: scalable photonic reservoir computers on a photonic chip

In this work package WP2, we propose a systematic numerical study of an optical reservoir computer
integrated on Silicon-based photonics integrated chip. We aim with such structure at recognizing binary
headers of information packets circulating in optical networks at ultra-high speed (>10 Gb/s). Our current
target application is a 5-bit header recognition. We have for the moment concentrated our effort on the
performances of a 4x4 swirl-topology integrated photonic reservoir using non-linear micro-ring
resonators as nodes and interconnected via long (cm long) planar waveguide (i.e. there is non-negligible
transmission delays between nodes). The swirl topology is illustrated in Fig. 3(a) and depiction of non-
linear ring is also given in Fig. 3(b). Note that the swirl topology was already proposed in [Vandoornel4]
for a microchip made of linear, passive optical devices (optical splitter, combiners, and delay lines).

(a) (b)
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Figure 3 - (a) illustration of the 4x4 SWIRL topology for interconnected micro-rings. The interconnection are
realized with cm-long planar waveguide and represented by directed arrows. The SWIRL topology has
recurrence, which is necessary for reservoir computing, and ensures an efficient mixing of input data. This
also avoids the use of too many connections, which are detrimental from a power budget perspective
because of the radiated loss in planar combiners. (b) lllustration of a micro-ring. The typical sizes used in our
simulation are a radius of 4 um, a waveguide cross-section of 540x220 nm, and an approximate Q factor of 2-
3x10°. The quantity “a” represents the optical mode (phase and amplitude) in the microring (one of the state
variable of the system). Signals “sj,” and “so.” are the input and output optical signals, respectively.

This architecture has a small number of nodes in our current approach, but remains scalable. However, it
still suffers from power management issues (due to losses in the waveguide 3 dB/cm and to the planar
combiner losing 6 dB of power by evanescent radiation). Nevertheless, this is still a very promising
approach for fully-integrated, optical machine-learning implementation with scalable features.

We have analyzed the performances of the proposed integrated reservoir with micro-rings on a classical
nonlinear Boolean task (the delayed XOR task) [Vandoornel4] for (i) various designs of the reservoir in
terms of lengths of the waveguides between consecutive nodes, and (ii) various injection parameters
(injected power and optical detuning). From this analysis, we find that this kind of reservoir can perform -

for a large variety of parameters - the delayed XOR task at 20 Gb/s with bit error rates lower than 10~ and
an averaged injection power lower than 3.0 mW.
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We have based our analysis using the coupled-mode theory (CMT) approach [Fan03] and developed a set
of oriented-object Python scripts to simulate numerically the complex nonlinear effects taking place in the
silicon micro-ring (such as two-photon absorption, free carrier absorption and dispersion). Each micro-
ring is described by four state variables: the optical phase and amplitude of the optical mode in the cavity,
the free-carrier concentration, and the temperature difference between the ring cavity and the substrate.
They evolve according to four nonlinear ordinary differential equations (ODE) [VanVaerenbergl2].
Hence, the full network state representation comprises 84 linearly coupled nonlinear ODE:s.

To analyze the performance of the reservoir, we feed bits in the reservoir by injected each node with
modulated optical power. We use a return-to-zero (RZ) baseband modulation between two predefined
power level, thus corresponding to feed binary data in the reservoir. Because each node can exhibit
nonlinear instabilities, the modulation depth and the choice of the optical frequency of the light injected
with respect to the intrinsic resonance frequency of each micro ring is of critical importance. We have
computed a stability diagram (with continuation techniques) in the plane of optical injection / optical
detuning for a single micro-resonators. Because of the linear optical coupling between the micro-rings in
the network, our analysis can be reduced to the stability properties of a single node to then infer the
combination of injection parameter that will lead to stable operating point with rich transient features for
the entire network. We found the optimum injection power for reservoir computing corresponds to
exploiting each micro-ring resonators close to its instability, which is reminiscent of prior work on
exploiting dynamical systems at the edge of instability to unlock their computing power [Bertschinger04].

The XOR task under consideration consists of producing the following binary signal y[k] = XOR(x[k],
x[k-1]) with consecutive bits x[k] and x[k-1]. To train the linear output of the reservoir to match y[k]
based on input x[k], we perform a regularized ridge regression on 16,000 bits send to the various node,
and we use the SciKit-learn library of Python [Scikit16]. The testing is then done on the 4,000 remaining
bits, on the best case resulting from the five-fold cross-validation. We report the error rates on the test

data; hence, the minimum measurable error rate is 2.5x10™*. Multiple-input simulations are performed
with the same bit stream injected with the same input weights on all 16-nodes. For the readout layer, we
use also the states of all 16-nodes to perform the training and the testing of the reservoir.

Among the various tunable and design parameters of the network, we have identified that the inter-delay
connection must be approximately 20 ps for optimal level of performance — This inter-delay value is
commensurate with the fastest intrinsic time-scale of the micro-ring resonator. For the targeted 20 Gb/s
data rate, as shown in Fig. 4(a)-(b), we also found that the optimal level of input power has to be close to
instability with approx. 0.3 mW per node and the optical detuning must be taken out the range of the
resonant absorption peak of the micro-ring (typically the detuning is exceed +/- 50 pm).

(a) (b)
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Figure 4 — (a) Error rate - for the XOR task - as a function of the optical detuning for a power modulation
between Pj,o = 0.0 mW and Pi, 1 = 0.5 mW, an interdelay of 18.75 ps, and a bitrate 20 Gb/s. (b) Error rate as a
function of the high value of the power modulation (Pi,1) for an optical detuning AA = 50 pm, an interdelay of
18.75 ps, and a bitrate of 20 Gb/s.Error bars are given for seven series of simulations. The minimum
acceptable error rate is 1 0’
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We have demonstrated in WP2 that the proposed integrated reservoir can perform well on a typical
Boolean task, with very low power consumption. The power budget could even be further reduced in
future work by reducing the number of nodes optically injected, for instance by injecting the data only on
the four central nodes, as suggested in previous work by some of the authors [Katumbal7] with a passive
chip. Moreover, from an experimental point of view, it is simpler to inject the data on less nodes, as it
reduces the routing density on the chip. Finally, current simulation results are encouraging enough to
justify a hardware implementation. This could be envisioned in a near future providing additional funding
using the PICs4All European technological platform [Pics4all16], where designs of photonics chips can
be realized on demand for research teams at a reasonable cost.

References for WP2

[Bertschinger 04] N. Bertschinger, and T. Natschldger, ‘‘Real-time computation at the edge of chaos in recurrent neural networks’’. Neural
Comput. 16, 1413-1436 (2004).

[Fan03] S. Fan, W. Suh, and JD Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators”, JOSA A 20, 569—
572 (2003).

[Katumbal7] A.Katumba, M. Freiberger, P. Bienstman, and J. Dambre, “A Multiple-Input Strategy to Efficient Integrated Photonic Reservoir
Computing” Cognitive Computation 9, 303-314 (2017).

[Pics4all16] http://pics4all. jeppix.eu (2016)

[Scikit16] http://scikit-learn.org/ (2016).

[Vandoorne14] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P.
Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5, 3541-1-4 (2014).
[VanVaerenberg12] T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman,
“Cascadable ecitability in microrings,”Opt. Express 20,20292 (2012).

11.3 - Third Work Package: Online training of analogue readout layers in photonic reservoir computers

The major drawback in most experimental implementations of reservoir computing is the absence of
efficient readout mechanisms: the states of the neurons are collected and post-processed on a computer,
severely reducing the processing speeds and thus limiting the applicability. An analog readout would
resolve this issue. This research direction has already been investigated experimentally in [Smeieril2,
Duportl6, Vinckier16], but all these implementations suffered from significant performance degradation
due to the complex structure of the readout layer.

In this work package WP3, we address the above issues with the online learning approach. Online training
has attracted much attention in the machine learning community because it allows training the system
gradually, as the input data becomes available. In the case of hardware systems, online training can easily
cope with drifts in the hardware setup, as the system will adapt to gradual changes in the hardware
components. The important point in the present context is that, compared to previously used offline
(batch) methods, in online training based on gradient descent, no assumption is necessary about how these
weights contribute to the output signal. That is, it is not necessary to model the output layer. Furthermore,
the transfer function of the readout layer could in principle be nonlinear.

Promising numerical proofs of these ideas have been published in [Antonik17]. The current step in this
work package is to demonstrate the benefits of online learning experimentally. We have first decided to
test this concept on a simple time-delay photonic reservoir computer (see Fig. 1(b)) known as the
optoelectronic oscillator. So far, we have realized the experimental setup, based on [Smeieril2] and
[Pacquot12] and depicted in Fig. 5. This consists comprising a telecom laser source (SLD), a Mach-
Zehnder modulator (MZ), which provides the nonlinearity in the system, a long optical fiber of 1.6 km to
realize the delay lines, an optical attenuator (Att) to control the feedback gain, a photo-detector (Pf) and a
band-pass filter (Amp) that control the voltage of the RF port of the MZ. In addition, we have proposed
an analog readout layer comprised of a two-output MZ and balanced photo-diode (Pb) followed by a
capacitor (C), which allows for the analog summation of each state (corresponding to delayed states
sampled at different time in the delay line). Each delayed state is multiplied by the correct weighting
factor calculated by an online optimization algorithm implemented directly on an Field Programmable
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Gate Array (FPGA) board Xilinx Virtex 6 and converted into an analog voltage signal by a digital-to-
analog converter (DAC) applied to the RF port of the MZ in the output layer. An analog-to-digital
converter (ADC) is needed to control the value of the analog output and ensure the proper behavior of the
output layer.

(a) (b)

Analogue readout

Opto-electronic reservoir

Figure 5 — (a) Proposed setup for an optical reservoir computer based on an optoelectronic oscillator with an
analog output layer and an FPGA board for hardware online training. SLD: semi-conductor laser diode, MZ:
Mach-Zehnder modulator, Att : optical attenuator, Pf, Pr : photodiode, Amp : band-pass filter with tunable
gain, Pb : balanced photodiode, FPGA : Field-programmable gate array. (b) Photo of the experimental setup
in our laboratory, this work is realized in collaboration with Université Libre de Bruxelles (ULB), Belgium.

We have currently programmed the training scheme through a simple gradient descent. Figure 6 shows
the preliminary results on a nonlinear task known as the non-linear channel equalization, which consists
of binary signal regeneration after propagation in a communication channel (e.g.: optical fiber, WIFI) and
is thus important for telecom applications. We monitor the symbol error rate on the channel equalization
task and observe that it quickly decreases from 0.75 (i.e. a random guess by the reservoir for inferring the

regenerated symbol) down to 0.01. However, the performance is yet to achieve the target error rates of 10
4. as multiple system’s parameters still need to be optimized in this experiment. We plan on conducting
more thorough analysis in the continuing grant given by the AFOSR. We also plan on applying the online
learning strategy to the large-scale photonics network in WP1 and integrated photonics devices in WP2,
as such free-space optical setups are known to exhibits drifts over time.

Training error

Symbol error rate

0 20 40 g0 a0 100
lterations

Figure 6 — Evolution of the training error as a function of iteration of the training showing a rapid decay
towards symbol error rate <0.01 in the nonlinear channel equalization task.
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References for WP3

[Smeieri12] A. Smerieri, F. Duport, Y. Paquot, B. Schrauwen, M. Haelterman, S. Massar, 944-952 (2012)

[Duport16] F. Duport, A. Smerieri, A. Akrout, M. Haelterman, S. Massar, Sci Rep. 6,22381 (2016)

[Vinckier16] Q. Vinckier, A. Bouwens, M. Haelterman, S. Massar, Opt Soc Amer. SF1F.1. (2016)
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IIT —Project Management and strategic initiative

111.]1 — Management

The project started with the first review meeting with the annual review in Arlington, VA for the
“Computational Cognition and Machine Intelligence program” in November 2015. The creation of a
dedicated lab space to support the research of the grant started early 2016, when funding was made
available. We have arranged a fully equipped 20m’ research space specifically dedicated to studies on
photonics implementation of machine learning concepts in direct relation with the AFOSR grant. This
initial step has taken more than 12 months to have a lab space to be operational. A picture of the space as
of October 2017 is given in Fig. 7.

Figure 7 — Picture of the lab space at CentraleSupélec and managed by Dr. Rontani. This lab space has been
built specifically to conduct research supported by the current and continuing grants given by the AFOSR on
photonics neuro-inspired computing.

In October 2016, WP1-WP3 started. In April 2017, we identified Mr. Antonik (then a PhD candidate) for
a postdoctoral position in real-time implementation of machine learning concepts. Mr Antonik worked on
the current grant and on the continuation grant awarded by the AFOSR. Funding in personal from the
grant was secured to pay for the first months of his postdoctoral position (the continuing grant being used
to prolonged research on optical machine learning). The preparation of his recruitment at

DISTRIBUTION A: Distribution has been approved for public release



CentraleSupélec required the funding to be pre-allocated to establish the contract and pay the wages, and
hence allowing us to use the grand money in prior to the end of grant. In October 2017, Dr. Antonik
joined our team directly from the Université Libre de Bruxelles (ULB, Belgium) and has started working
on various machine-learning concepts for WP1 and WP3 such as the large-scale spatiotemporal reservoir
computer and hardware implementation of online training.

We have redefined our research effort during the 2016-2017 period based on what we considered to be
the most promising direction within the broad context of the project of producing scalable photonics
machine for neuro-inspired computation. Preliminary studies on photonics integration of scalable
architectures are in our opinion one of the growing and critical field for future development of
commercial photonics-based machine-learning solutions. This is why we have devoted some time on their
numerical simulations to prepare future hardware implementations (upon available funding). Our large-
scale spatiotemporal platform, however, allows us to test more fundamental concepts related to learning
and emergence of cognition in networks of photonics-based dynamical systems.

111.2 — Scientific production

During the grand period, we have produced and communicated multiple results related to WP2. We have
presented the results at international conferences and workshops listed below:

1 poster presentation at the workshop “Dynamical System and Brain Inspired Computing” (Brussels,
Belgium)

Nonlinear microring resonators on silicon photonic chip for brain inspired computing
Florian Denis-le Coarer, Damien Rontani, Andrew Katumba, Matthias Freiberger, Joni Dambre, Peter
Bienstman, Marc Sciamanna

1 poster presentation at the international conference “Dynamics Days Europe” (Szeged, Hungary) :

Reservoir computing on an active silicon photonics chip using nonlinear microrings resonators
F. Denis-le Coarer, D. Rontani, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, M. Sciamanna

1 invited talk at the workshop “Dynamical Systems and Brain-inspired Information Processing”
(Konstanz, Germany)

Photonics Reservoir Computing Using a small network of nonlinear Micro-ring oscillators
D. Rontani, F. Denis-le Coarer, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, M. Sciamanna

1 invited talk at the international conference “NOLTA” (Cancun, Mexico)

Reservoir Computing with Nonlinear Micro-Resonators on a Silicon Photonics Chip
D. Rontani, F. Denis-le Coarer, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, M. Sciamanna

There is also 1 paper in preparation to be submitted to the IEEE Journal of Selected Topics of Quantum
Electronics.

We have also submitted for two invited oral presentations for a Special Session and of the 2018 edition
of the NOLTA conference on preliminary results on WP1 and WP3 (these results are also possible thanks
to the continuation grant from AFOSR):
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Towards online-trained analogue readout layer for photonic reservoir computers (for WP3)
P. Antonik, D. Rontani, M. Haelterman, S. Massar

Performance of large photonics networks for reservoir computing (for WP1)
P. Antonik, N. Marsal, D. Briinner, D. Rontani

111.2 — Strategic Initiative

During the grant period, we have leveraged our existing lab space on photonics-based machine learning
and our growing expertise to start strategic collaboration with European collaborators.

We have initiated a fruitful collaboration with scientists at the University of Ghent (Belgium) related to
the study of integrated photonics reservoir computing using nonlinear elements. This collaboration
supports our activities in WP2. We have leveraged their knowledge of Silicon Photonics chip and
machine learning with our competence in nonlinear dynamics and machine learning to propose novel
designs with nonlinear micro-rings for the design of reservoir computers. This partnership has growing
steadily and started in October 2016.

We have initiated collaboration with the Université Libre de Bruxelles (ULB, Belgium) on topics related
to online and adaptive learning of scalable optoelectronic reservoir computer for telecom-oriented
applications. This supports our growing activities in WP3. This partnership has growing steadily with the
arrival of our Postdoctoral researcher in October 2017.

We have also initiated a partnership with the Université of Franche-Comté and Centre National de la
Recherche Scientifique (CNRS) to develop activities related to the training of fully analog output layer
for large-scale spatiotemporal networks. This partnership has started in November 2017.

Thanks to the AFOSR grant, we have also succeeded in receiving competitive match-funding grant by our
local state (the Region Grand-Est in France). As a result, we have received an additional 20 k€ in
December 2017 to further support our current postdoctoral researcher on large-scale spatiotemporal
neuromorphic computing in addition to the current AFOSR grant.
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