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Foreword

In computer security, a side-channel attack is any attack based on information
gained from the implementation of a computer system, rather than weaknesses in
the implemented algorithm itself (e.g. cryptanalysis and software bugs). Timing
information, power consumption, electromagnetic leaks or even sound can provide
an extra source of information, which can be exploited.

�Wikipedia (accessed June 13, 2018)

An algorithmic complexity attack is a form of computer attack that exploits
known cases in which an algorithm used in a piece of software will exhibit worst
case behavior. This type of attack can be used to achieve a denial-of-service.

�Wikipedia (accessed June 13, 2018)
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1 SUMMARY

Critical components of national cyberinfrastructure have been hardened to withstand tradi-
tional exploit-based attacks that target erroneous program behavior to compromise security.
Looking forward, such systems will be subject to a new class of attacks that do not rely
on errors but rather exploit the inherent resource usage of the services the infrastructure
provides. Such attacks have the potential to cripple critical services that are nonetheless
correct. Program analysis has proved to be a powerful technique for detecting erroneous
software behavior. However, termination/liveness, resource usage bounds, and side-channel
capacity are increasingly di�cult re�nements of the basic program analysis problem. Prior
work failed to meet the requirements of speed and scale for the systematic analysis of large
scale software systems and has not focused on the domain of exploitable resource usage
patterns.

This report presents the technical accomplishments of the project SOUCIS: Sound
Over- & Under-Approximations of Complexity & Information Security. The
technical keystones of the project are the use of sound over-approximating static analysis
in conjunction with precise under-approximating analysis. For the �rst, we employed a pro-
gram veri�cation perspective: over approximation techniques that attempt to guarantee the
absence of vulnerabilities. We have developed sound static analyses that abstractly charac-
terize all of the possible behaviors of the program and then attempt to mathematically prove
that this abstraction is free of vulnerabilities. However, the competing needs of both scala-
bility and precision are known to be problematic for such analyses. This problem motivated
our development of more precise, scalable techniques that may fall short of characterizing
all possible executions. These include randomized, fuzz testing and machine learning. We
also developed hybrid techniques providing the bene�ts of both thrusts: tests over some runs
induce hypotheses that can be veri�ed correct for all of them. To ease the task of using these
techniques together, we developed a collaborative workbench that helps invoke various tools,
visualize the results, and store and share them for analyst collaboration.

The results of the SOUCIS project include code artifacts, technical reports, and published
papers appearing in peer-reviewed scienti�c venues.

2 INTRODUCTION

Critical components of national cyberinfrastructure have been hardened to withstand tradi-
tional exploit-based attacks that target erroneous program behavior to compromise security.
Looking forward, such systems will be subject to a new class of attacks that do not rely
on errors but rather exploit the inherent resource usage of the services the infrastructure
provides. Such attacks have the potential to cripple critical services that are nonetheless
correct. Program analysis has proved to be a powerful technique for detecting erroneous
software behavior. However, termination/liveness, resource usage bounds, and side-channel
capacity are increasingly di�cult re�nements of the basic program analysis problem.

The overall setup of the Sound Over- and Under-Approximations of Complexity and
Information Security (SOUCIS) project was to enable sound, highly automated program
analysis for the elimination of complexity and side-channel vulnerabilities in applications for

1
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which only bytecode source is available. Importantly, the approach aimed to combine several
analysis techniques, taking the best features of each to create a better whole.

Over its three years, the project advanced the state of the art of several techniques.
Through several systematic, empirically-informed studies, we uncovered key features lacking
in existing work, and pointed to new directions for exploration. The project also improved
the current practice of code review by providing new tools for analysts. Technical papers
derived from the SOUCIS project were published in top venues, and important code artifacts
have been publicly released.

The next section of this report presents a technical overview of the SOUCIS project,
organizing its various lines of inquiry. The following section details the actual research
results while going into greater technical detail.

3 METHODS, ASSUMPTIONS, AND PROCEDURES

The work�ow of the SOUCIS approach to �nding side channels and complexity attacks is
presented in Figure 1.

At the start, the analyst provides the program to analyze along with an interaction
model. The analyst provides annotations to the input program, e.g., to identify which data
is secret. The interaction model describes how we expect the potential adversary to interact
with the program; this is sometimes called the harness. The next step is slicing. The input
program could be large, and yet the attacker-controlled input and/or the secrets to protect
may have a relatively meager in�uence on program execution. This can be performed with
the assistance of a taint analysis or by hand. Then there are two broad kinds of analysis:
an over-approximating (e.g., static) analysis and an under-approximating (e.g., dynamic)
analysis.

2
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3.1 Overapproximate Analysis

On the static analysis side, SOUCIS advanced the use of static analysis techniques for iden-
tifying timing side channels. The core technique is found in our work on the Blazer tool [4].
Blazer establishes a novel decomposition methodology. The key insight is that we can break
down a program into pieces and prove freedom from timing channels in each piece, making
the problem more tractible. Blazer brings together control-�ow analysis, information-�ow
analysis, static bounds analysis, and abstract interpretation. It combines the information
from these analyses in a novel algorithm that partitions and checks subprograms to prove
freedom from vulnerable timing channels or �nd where a potential leak may be found. This
work is discussed in Section 4.1.

Information �ow analysis is a crucial component of the Blazer approach (and that of
other, related projects), as it identi�es key portions of the program that are subject to attack.
Unfortunately, we were never able to arrive at a satisfactory solution. Our assumption was
that we could use any one of several existing, publicly available tools. Many such tools exist,
with published papers about them showing impressive results. However, our experience with
three tools was that each had signi�cant limitations, thus pointing to the need for further
research. We detail our observations in this regard in Section 4.1.3.

Another crucial piece of Blazer is its use of abstract interpretation [5, 6] to infer numeric
invariants about a target program. These invariants feed into the determination of resource
usage which could either depend on secret values or be manipulated by an attacker. A key
challenge for abstract interpretation in this context is the need to provide precise invariants
for real-world Java programs. While abstract interpretation is well studied, and existing
tools exist for Java programs, we were surprised to discover that no existing tool handled
full Java. Real-world Java programs are large, have many interacting methods, and make
heavy use of heap-allocated objects. To support such programs, we developed one of the
few fully automated numeric static analyses for Java. Developing this tool was a signi�cant
technical challenge, in part because there are many design decisions whose interaction is not
well understood. For example, while the precision/performance tradeo� of di�erent imple-
mentations of numeric domains is understood, the interaction of that domain with di�erent
ways of implementing a heap model is not. To put our tool on �rm footing, we implemented
a variety of options and systematically evaluated them on real-world programs [7]. In total,
we studied 162 analysis con�gurations to assess both how individual con�guration options
performed overall and to study interactions between di�erent options. Details about the
di�erent con�gurations and the results of our study are given in Section 4.2.

A precise, scalable static analysis is hard to develop, and our study con�rmed that. As
such, we also explored a hybrid analysis, with static and dynamic components, for inferring
numeric invariants [8]. This analysis, called NumInv, dynamically infers expressive poly-
nomial equality invariants and linear inequality relations from traces at speci�ed program
locations. It also infers candidate equality invariants. Such invariants are then con�rmed
as correct for all inputs using a static veri�er. If a candidate invariant is incorrect the
veri�er returns counterexample traces, which the dynamic inference engine can use to infer
more accurate invariants. This iterative process is called CounterExample Guided Invariant
geneRation. The �nal, correct invariants can be fed into Blazer. We also found that by in-
strumenting the program with a resource counter, NumInv could also infer an invariant that

3
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re�ects running time, directly. Section 4.3 describes NumInv's algorithm in greater depth,
and our empirical results.

3.2 Underapproximate Analysis

The underapproximate analyses in SOUCIS aim to be more precise and scalable, but risk
missing bugs as they may not apply to all program runs. As such, they are best for iden-
tifying the possibility of bugs, rather than proving their absence. We considered two basic
approaches: fuzz testing and machine learning.

SOUCIS brought fuzz-testing approaches to the problems of algorithmic complexity and
side-channel vulnerabilities. While testing approaches are underapproximate, i.e., they are
not guaranteed to �nd a vulnerability if one exists, such approaches have the bene�t of �nding
individual program executions that lead to security violations. Moreover, fuzz-testing can
handle complicated control �ow that may be di�cult for static analysis tools.

There were several challenges to enabling a fuzzing approach to side-channel and com-
plexity attack analysis. The vulnerable portion of a large program may be very small, so
the fuzzer needs to be guided towards potential vulnerabilities, rather than randomly se-
lecting inputs. As such, our fuzzer (following the lead of libfuzzer [9]) supports the use of
harnesses to focus fuzzing e�ort at internal methods. Client-server applications require new
techniques for fuzzing server code. In particular, servers are interactive not batch oriented,
and so may communicate via sockets or a User Interface (UI), rather than �les. We built
support for Input/Output (I/O) mocking to allow this sort of interaction. In addition, servers
are often stateful : one interaction may change the state of the server, causing a subsequent
interaction to behave di�erently than it might have otherwise. To ensure repeatability and
systematic exploration we implemented e�cient support for memory checkpointing. Finally,
we organized our fuzzing architecture to support multiple runs and checks of relational prop-
erties across runs. Doing so permits determining the presence of side channels. Section 4.4
discusses the work on fuzzing.

Fuzz testing has enjoyed great success at discovering security critical bugs in real soft-
ware. Recently, researchers have devoted signi�cant e�ort to devising new fuzzing techniques,
strategies, and algorithms. Such new ideas are primarily evaluated experimentally so an im-
portant question is: What experimental setup is needed to produce trustworthy results?
We surveyed the recent research literature and assessed the experimental evaluations carried
out by 32 fuzzing papers. We found problems in every evaluation we considered. We then
performed our own extensive experimental evaluation using an existing fuzzer. Our results
showed that the general problems we found in existing experimental evaluations can indeed
translate to actual wrong or misleading assessments. We developed some guidelines that we
hope will help improve experimental evaluations of fuzz testing algorithms, making reported
results more robust [10]. We summarize our results, and recommendations for improving
future evaluations, in Section 4.5.

SOUCIS also developed a machine learning-based approach to identify vulnerabilities.
The general idea is to develop a code-similarity functionality approximated by a neural
network. In doing so, we can create a database of vulnerable code samples, and examine
whether a new binary function is similar to any existing vulnerable code sample to detect
potential vulnerabilities. We showed that our approach is both more e�ective and more

4
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e�cient than previous approaches on the vulnerability detection task [11]. More details can
be found in Section 4.6.

3.3 Workbench

To streamline the analyst's work�ow when considering whether a target program has a side
channel or complexity-attack vulnerability, we developed a tool called the Workbench. This
browser-based tool permitted the analyst to organize the target programs in a work�ow, and
to kick o� analysis tools (SOUCIS tools, and others from o� the shelf) and organize the
results. Initially, the static analysis tools generated and displayed web pages for an analyst
to inspect the results of the static analysis. But there was little interaction, and no ability
to invoke the tools. Ultimately, we developed a distributed analysis Workbench comprising
the following components: (i) a single Controller node, acting as the user interface and
task dispatcher; (ii) a single, though potentially distributable, database that holds all inputs
and outputs, including intermediate results; and (iii) multiple Worker nodes that perform
the actual tasks. The Workbench is discussed in Section 4.7. During the engagements, we
used a combination of command-line tools, the graphical output of the tools, as well as the
workbench to help run and collect data on the results of analyzing the challenge programs.

4 RESULTS AND DISCUSSION

4.1 Static Analysis for Timing Channels

We are interested in verifying that programs are free of timing channels. A timing channel
is a 2-safety property: to prove its absence we have to show that for any pair of executions
involving the same public inputs but di�erent secret inputs, the publicly observed running
time is the same. It seems appealing to leverage the success of abstract interpretation [5, 6].
Abstract interpretation tools enjoy rigorous guarantees and provide formal proofs of various
safety and liveness properties. They also are e�cient. Implementations such as Astrée [12,
13] are able to validate properties of large C programs.

Abstract interpretation-based techniques focus on single executions, but to prove 2-safety
properties (or indeed, k-safety, for any k) we need to relate multiple executions. A clever way
to do this is to employ self-composition [14, 15]: To reason about k runs of a program, we can
concatenate k copies of it (with variables suitably renamed) and then assert a property that
relates variables in di�erent copies. For our timing channel property, we could concatenate
the program with itself, require that public inputs to both copies be the same, and then assert
that execution counters inserted for each copy are (approximately) equal at the conclusion,
despite allowed variation of secret inputs. Self-composition can be expensive due to the
explosion of the cross-product state space. As such, several works have looked to improve
the basic idea by exploiting structural similarities in the program (e.g., using interleaving
composition [16, 17, 18]). Other works applied similar ideas to improve relational veri�ers
directly [19, 20, 21, 22]. These approaches (and others) nevertheless rely, at least implicitly,
on making k copies of the program, which means that invariants are split across the product
program. The result can be either poor performance or key information being lost due to
abstraction during �xpoint computation.

5
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With a focus on verifying the absence of timing channels, we depart from the composition-
based strategies and instead establish a novel decomposition methodology. Our key insight is
that rather than prove a relational property about all pairs of execution traces, we can prove
a non-relational property about each trace in a certain trace partition, computed iteratively.

We implemented our approach in a tool called Blazer. It works by equipping a standard
abstract interpreter with the ability to consult an oracle to decide which Control-Flow Graph
(CFG) arcs to follow, thus deriving partition-speci�c invariants. Blazer initially considers a
partition with all paths in the program. If Blazer proves that all partition elements Ti have
tight bounds on running times, the property is proved. If not, Blazer further sub-partitions
Ti into smaller groups of paths, where the di�erence in paths between the partitions is
not dependent on a secret's value (as determined by taint analysis). It then iterates until
either the property is proved or no further subpartition is possible. In the latter case, Blazer
attempts to synthesize possible attacks. In particular, it generates sub-partitions and running
times based on secret information (i.e., is tainted); if a di�erence in secret values results in
observable di�erences in running time, then there is a possible attack.

We evaluated Blazer on a collection of 25 benchmarks, including 12 tricky hand-crafted
benchmarks, 7 programs from the literature [1, 2, 3], and 6 fragments of STAC challenge
problems [23]. We �nd that Blazer is able to prove the absence of timing channels when the
program is safe or else synthesize an attack speci�cation in all but two cases.

Full details of the formalism, algorithm, and evaluation can be found in the published
paper [4]. In the remainder of this section we present our approach (�4.1.1), experimental
results (�4.1.2), and the challenges we had with using o�-the-shelf taint analysis with Blazer
(�4.1.3).

4.1.1 Approach. We will use simple examples to present the key idea of using a partition
of executions to prove timing channel freedom. We then describe our algorithm in more
detail, explaining how partitioning is interleaved with running time computation. Finally,
we explain how the same basic approach can be used to synthesize a possible attack when
timing channel freedom cannot be proved.

Consider the following example program.

Example 1.

1 void foo(int high, uint low) {
2 if (high == 0) {
3 i = 0;
4 while(i < low) i++;
5 }
6 else {
7 i = low;
8 while(i > 0) i´´;
9 }

10 }

This program takes a secret input high, and an attacker-controlled (tainted) input, low.
A program is said to have a timing channel if the attacker, assumed to know the program
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code, can infer information about the high by observing the program's running time (perhaps
iteratively varying the input low). The execution of this particular program branches on
secret variable high so we may wonder whether there is a timing channel. Proving there is
not one requires, in principle, that we relate all pairs of execution traces. Doing so directly
(e.g. by constructing a self-composition [14, 16] or a relational program analysis [24, 25, 19,
21, 22]) can magnify the overall state space to consider.

We show that we can instead prove that all executions (later: execution partitions) share
the same property. For timing channels, we want to prove that each execution of the above
program has a running time that is a function of (only) low. In this case we can be more
speci�c: the running time is linear in low (for some �xed linear function). We might write
this as a property P lin

low, and then write:

@π P JCK. P lin
lowpπq

where JCK is the set of all execution traces of the program C. An obvious consequence of
this is that every pair of executions π1, π2 share P

lin
low. As such, it is clear that there can be

no timing channel.
The key idea of our approach is to break down the executions of the program into various

cases, depending on high-independent branching, and in each case discover a running time
property P that describes all traces in that case. To do this, we symbolically (and automati-
cally) discover a partitioning of the execution traces T “ T1, ..., Tn such that JCK “

Ť

iPr1,ns Ti
so that we can �nd some Pi to characterize the running time for all π P Ti. As long as each
Pi is independently acceptable (i.e., running time does not depend (much) on high), then the
overall program satis�es the desired property. In Example 1, we only needed one partition
component. Here is another example.

Example 2.

1 void bar(int high, int low) {
2 int i;
3 if (low > 0) { // O(2*low)
4 i = 0;
5 while(i<low) i++;
6 while(i>0) i´´;
7 } else { // O(1)
8 if (high == 0) { i = 5; } else { i = 0; i++; }
9 }

10 }

In this program, not all executions have the same symbolic running time. If low is 
positive, the execution will be linear in low, otherwise it will be either one instruction or two, 
depending on the value of high. To discover this, we can form a partition of the execution 
traces as follows:

Tą fi tπ | inpπqrlows ą 0u and Tď fi tπ | inpπqrlows ď 0u
where JCK Ď Tą YTď and inpπqrlows means the value of the low input variable of trace π. For 

now, let us assume this partition is given to us (we describe how we get the partition shortly). 
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With some help (discussed below), we can coerce an o�-the-shelf abstract interpreter to now
perform two analyses proving, respectively, that:

@π P Tą. P
lin
lowpπq and @π P Tď. P

const
c pπq.

Here, property P const
c pπq means that the running time of the trace is within some (�xed)

small attacker-unobservable bound (say, ε) of the constant c. For this example, c “ 1 with
ε “ 1.

These two proofs establish relationships between any two copartitional traces (two traces
in Tą or two traces in Tď). But what about some π0 P Tą and some π1 P Tď? These two traces
have di�erent symbolic running times. However, notice that the path condition (whether
low is above 0) depends only on variable low and not on secret variable high. Consequently,
we can immediately conclude that, although traces from two di�erent partition components
have di�erent running times, these di�erences cannot be correlated with high's value.

Synthesizing Partitions with Trails. Our trace partition in Example 2 considered dif-
ferent input values: those for which low ą 0, or not. This distinction corresponds to whether
we branch at line 3, or not. Our algorithm likewise develops a partition by considering sets of
paths, particularly those that take a branch one way vs. the other. Paths are speci�ed using
annotated regular expressions tr that we call trails, which for the purposes of this example
have the following grammar:

tr ::= ij || iÓ || tr1 ¨ tr2 || tr1 |α tr2 || tr
˚
α

Trails are de�ned over edges ij in a control-�ow graph, where i and j represent CFG blocks
in the program. We also permit edge iÓ, meaning a block i that subsequently moves to the
exit block. We use ¨ for sequential composition (often dropped when clear from context),
vertical bar for branching, and star for looping. Both branching and looping regex operators
are annotated with α P tl,h,pl,hqu. Symbol l is used to mean low, h to mean high, or l,h to
mean both. Here is an example:1

23 ¨ p34 ¨ 45 ¨ 5˚l ¨ ¨ ¨ q |l p38 ¨ ¨ ¨ q

This represents executions of Example 2. These executions start on line 2 and proceed to
line 3, characterized by edge 23. Then they follow the branch at line 3, which depends on
low input, as indicated by the annotation l. According to the left-hand side of the branch,
this trail considers executions that go from line 3 to 4 and then 4 to 5 and then 0 or more
times through line 5, due to the low-dependent loop, etc. According to the right-hand side
of the branch |l, the trail also considers executions that go from 3 to 8 (etc.).

The trail-based partition is generated iteratively. We start with a trail that characterizes
all possible executions of the program; we call this the most general trail, trmg. We attempt
to compute the running time of all paths characterized by this trail. If the running time is
primarily a function of low input, with constant-bounded e�ect from high, then we are done.
If this is not possible, we further break down the trail at low-dependent (only) branching

1For this example we refer to line numbers, rather than CFG blocks (as used by our actual algorithm),
for clarity.
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1 loginSafe(String username, byte[] guess) {
2 boolean dummy, matches = true;
3 byte[] user_pw = retrievePassword(username);
4 if(user_pw == null)
5 return false;
6 for(int i = 0; i < guess.length; i++) {
7 if (i < user_pw.length) {
8 if(guess[i] != user_pw[i]) matches = false;
9 else dummy = true;

10 } else {
11 dummy = true; matches = false;
12 }
13 }
14 return matches; }

trmg — Most general trail

All paths are possible

[8, 23*g.len+10]

tr2 — Must enter for loop

[19*g.len+10, 

23*g.len+10]

tr1 — May exit on line 5

[8, 8]

taint taint

1 loginBad(String username, byte[] guess) {
2 byte[] user_pw = retrievePassword(

username);
3 if(user_pw == null)
4 return false;
5 for(int i = 0; i < guess.length; i++) {
6 if (i < user_pw.length) {
7 if(guess[i] != user_pw[i])
8 return false;
9 } else {

10 return false;
11 }
12 }
13 return true; }

trmg — Most general trail

All paths are possible

tr1— Exits on Line 4

taint

[6,6]

tr2— Must enter for loop

taint

[28 , 20*max(g.len,p.len)+8]

tr3— Within for loop,

can take early exits

sec

[6 , 20*max(g.len-1,p.len)+8]

tr4 — Within for loop, 

cannot take early exit

sec

[6 , 20*g.len+8]

[6 , 20*g.len+8]

Figure 2: Two Versions of a Program That Validates a Password (Left Column)
and the Corresponding Output of our Tool Blazer (Right Column). Each

Rectangle Represents a Trail, and Each Downarrow from a Trail Represents a
Subtrail; the taint and sec Annotations Indicate on What Sort of Data the
Subtrail Was Created; the Balloons Contain Ranges rx, ys that Indicate the
Lower/Upper Bound on the Trail's Running Time in Terms of Number of

Instructions (g.len is Short for guess.length and p.len is Short for
user_pw.length); Bolded (Green) Nodes Indicate Areas Where the Program is

Safe and Double-Line (Red) Nodes Indicate an Attack Speci�cation

points. For Example 2, this results in a trail describing all paths for all true paths through
line 3, and another for all false paths.

Ultimately, the �nal partition is a collection of trails tr1, ..., trn such that:

1. The union of all of the trails' languages covers the language of trmg. That is,
Ť

iPr1,ns Lptriq Ě

Lptrmgq.
2. Trails correlate to the branching decisions that depend only on low security variables.
3. Each trail tri is such that every execution's running time can be described by a single

function Pi, e.g. P
lin
low. Hence it can be proved that @π P Lptriq X JCK, that π |ù Pi.

Thanks to the formal guarantees of our decomposition this su�ces to entail that the overall
program is free of timing channels.
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More elaborate example. Consider the program loginSafe at the top of Figure 2. This
function looks up the given username (a non-secret) and if the user is known, checks that
the given guess matches the user's password. We return true if so, and false otherwise.2

To the right of the code is a visual depiction of the a tree of trail speci�cations. The
top box represents the most general trail, which is our starting point. With it, we compute
the running time of executions that follow this trail. This is embodied in a component
called BoundAnalysis. Technically, to implement BoundAnalysis we equip an o�-the-
self abstract interpreter with the ability to be restricted to a given trail, leverage the seeding
technique [26] to compute transition invariants [27], and match these invariants against a
database of complexity bound lemmas [28, 29]. The result of applying BoundAnalysis to
trmg is that it computes a lower bound of 8 and an upper bound of 23ˆ g.len` 10 (depicted
as a cloud), where g.len is shorthand for guess.length.

With the range of running times in hand, we now ask whether the range is narrow : that
the running time of the given executions is a function of low variables plus up to a maximum
constant value c, where c is a limit on the observability of the attacker, i.e., the di�erence
between the longest and shortest running time is c. If we �nd that the range between a
given lower/upper bound is narrow then we know we mark the code as free from timing
channels. For trmg, we �nd that this bound is not narrow. This means we need to partition
trmg according to (only) tainted data, and then try again, for each partition.

We do this using a component called RefinePartition. In this case it splits the most
general trail into two based on the branch at line 4. The parent-child relationship in the
tree shown in the �gure tracks this subtrail relationship. Edges are annotated as to whether
the subtrail was chosen based on branching on low data (when trying to prove safety) or
based on branching on high data (when trying to synthesize an attack, discussed shortly).
For legibility, we have replaced each trail's regular expression with an intuitive description
of the trail it speci�es.

Now we compute the running times for these two trails separately. The left-hand trail has
running time 8�this is the trail that exits on line 4. The right side has a running time that
is a direct function of g.len. These two running times individually satisfy our narrowness
criterion for timing channel freedom. In particular, the constant one does trivially, and the
range on the right side does assuming that g.len ď n for some �xed size that does not exceed
the power of the attacker (which can be speci�ed); e.g., if n “ 100, the running time is
equivalent to 21ˆ g.len˘ 210, which is safe assuming the adversary's observational power is
bounded by the constant 210. As such, because each one is acceptable, the two together are
as well, and the program is sure to be free of timing channels.

Synthesizing Attacks. Our partitioning strategy is also useful for �nding possible attacks
if a program is not free of timing channels. To see how this works, consider the bottom of
Figure 10. For this example, there is a timing channel (based on a bug in the Tenex password
checker [30])�if the program exits on either lines 8 or 10, then the running time reveals the
length of the pre�x of guess that matches the real password.

When trying to prove this program is timing-channel free, the bound analysis will discover

2We do not consider the presence or non-presence of a username in the database to be secret information,
for this example.
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running time bounds similar to the correct example: a lower bound of 6 and an upper bound
of 20ˆ g.len` 8. As such, it will partition again according to the tainted branch on line 3.
This time, though, the running times of the two partition trails do not meet our narrowness
criterion: while the trail on the left hand side is narrow (due to the exit on line 4), the trail
on the right hand side is not narrow: it has a constant lower bound and an upper bound
that relies on both g.len and the length of the actual password. Unfortunately, we cannot
easily sub-partition the right side further, since branches in the loop also depend on secret
information�partitioning is only permitted on low data. As such we have found a potential
problem.

At this point, the tool changes gears and attempts to discover a vulnerability. To this
end, RefinePartition generates the next two trails (tr3 and tr4). These trails di�er based
on whether or not the shortcut return statement can be taken on Line 7 (or 10). For both tr3
and tr4, our toolchain computes a lower bound of constant running time, corresponding to
the early exit on line 4. For tr4, our toolchain computes a linear running time of 20ˆg.len`8
for the upper bound. Meanwhile, tr3 forces the program to return early after entering the
loop, either by taking the return statement on Line 8 or the return statement on Line 10. For
tr3, our toolchain computes a range of running times, di�erent from the ones computed for
tr4. With this, the tool reports a vulnerability: there are two trails (tr3 and tr4), the choice
between them depends on high data (arcs labeled sec), and yet they have di�erent running
times. Therefore, for the same low input there can be two di�erent possible executions that
yield di�erent running times as the branching depends on the value of the secret.

We call this output an attack speci�cation. Because we are working with a static anal-
ysis, the result of our tool is not immediately two concrete traces. However, it provides a
speci�cation for two traces that witness the attack. All that remains is to ensure that these
traces are feasible by �nding justifying inputs. This can be done manually by a programmer
or via an under-approximate analysis (e.g., a symbolic execution [3]).

4.1.2 Evaluation. We implemented our decomposition-based approach in a tool called
Blazer and it on 24 benchmarks, including 6 examples drawn from the STAC challenge
problems, and 6 real-world programs in which timing attacks were exploited and reported in
cryptography papers [1, 2, 3]. Benchmarks are paired up so that there are two versions: the
�unsafe� version is expected to be vulnerable to timing-channel attacks while the �safe� one
is not. For third-party benchmarks, we created safe versions by hand (except for User). Our
experiment harness executes Blazer on both the safe and unsafe versions of each benchmark.

Benchmarks. Our benchmarks, which re�ect a broad range of code patterns, are up to
100 basic blocks in size (details reported later in this section). Figure 3 illustrates some
selected examples.

• MicroBench. These are hand-crafted to exercise the various aspects of Blazer. We
start with simple examples; nosecret_safe tests the basics of side-channel detection,
which can only occur when there is a secret. The others are more intricate. The
loopAndBranch benchmark, for instance, is shown in Figure 3. At �rst this seems to
have a vulnerability, but the potentially vulnerable trail is infeasible, which is caught by
the abstract interpreter. Also shown in Figure 3 is the classic Unix login vulnerability
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1 void loopAndbranch_safe(int high, int low) {
2 int i = high;
3 if(low < 0) { while(i > 0) i´´; }
4 else {
5 low = low + 10; // low is above 0
6 if(low >= 10) { int j = high; while(j>0) j´´; }
7 else { if(high<0) { int k = high; while (k>0) k

´´; } }
8 } }

1 boolean login_safe(String u, String p) {
2 boolean outcome = false;
3 if (map.containsKey(u)) {
4 if (map.get(u).equals(md5(p)))
5 outcome = true;
6 } else {
7 if (map.get(u).equals(md5(p))) { } // remove

for unsafe
8 }
9 return outcome; }

1 BigInteger modPow1_safe(BigInteger base,
BigInteger exponent, BigInteger modulus) {

2 BigInteger s = BigInteger.valueOf(1);
3 int width = exponent.bitLength();
4 for (int i = 0; i < width; i++) {
5 s = s.multiply(s).mod(modulus);
6 if (exponent.testBit(width ´ i ´ 1))
7 s = s.multiply(base).mod(modulus);
8 else s.multiply(base).mod(modulus); //

remove for unsafe
9 }

10 return s; }

Figure 3: Some Examples Selected from the Benchmarks. For Lack of Space,
only the Main Methods are Shown

that leaks usernames. When line 7 is removed, the program takes longer when a
username exists because it hashes the input password via md5.
• STAC. Several benchmarks were extracted from the STAC challenge problems. modPow1
(shown in Figure 3) and modPow2 perform cryptographic arithmetic using the Java
BigInteger library.
• Literature. We have also crafted examples taken from papers that demonstrate timing
attacks on real-world cryptographic methods. These include Genkin et al. [1] (GPT ),
Kocher [2] (K96 ), and Pasareanu et al. [3] (PPM16 ). The example from PPM16 is
discussed in Section 4.3.1 and shown in Figure 10.
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Blazer supports manually-speci�ed summaries of running times so we specify running
times for library calls such as those to the Java BigInteger library (in modPow# and Cryptography
benchmarks).

Observer modeling. As discussed in the implementation section, observable running time
di�erences are modeled in several ways. We designed the MicroBench so that distinguishing
between safe and unsafe is possible by evaluating computational complexity, e.g., linear vs.
quadratic. The variables are assumed to be unbounded, while a safe program is assumed to
be one where the symbolic running times have the same polynomial degree. While su�cient
for these hand-crafted micro-benchmarks, this model of observability is too simplistic for
real-world code.

For the real-world examples from STAC and Literature, we use a model of observable
running time based on concrete di�erences in bytecode instructions between partitions. We
assume some reasonable maximum for the input variables, e.g., 4096 bits for the crypto-
graphic benchmarks. Then we plug these values into the symbolic bound expressions to get
a concrete estimate of the maximum number of bytecode instructions. Using this method,
an observable di�erence is de�ned by some minimum threshold in the di�erence between the
number of instructions. For these benchmarks, we use a low number of instructions (25,000)
to de�ne the observable di�erence in running time. In real-world applications of this veri�ca-
tion, observability depends on many factors, including hardware, operating system, network
latency, etc, and would need to have application-speci�c calibration.

Results. The benchmarks were run sequentially on a single commodity Personal Com-
puter with a quad-core 3.07 gigahertz processor and 12 gigabytes of Random Access Memory
(RAM). Running time is collected for both safety veri�cation alone as well as safety veri�-
cation plus the search for an attack speci�cation. The latter running time only applies to
the unsafe benchmark, since the tool halts if it proves safety. Running time is measured by
performing �ve runs and taking the median.

Table 1 shows the results. The Benchmark column identi�es the benchmark's method
and alternates between the safe and unsafe versions. Size indicates the number of basic
blocks in the method's control-�ow graph. The Safety Time column shows the tool's
median running time in seconds for safety veri�cation alone, while the w/Attack Time
column is the median running for safety veri�cation and the subsequent search for an attack
speci�cation.

Our tool is sound: it either determines the program is safe, �nds an attack speci�cation,
or gives up. For every safe benchmark, Blazer veri�ed the safety of the benchmark. In all
unsafe benchmarks, the tool found an attack speci�cation, i.e., two candidate subtrails with
di�ering running times, except for gpt14_unsafe.

For most benchmarks, the safety veri�cation takes only a few seconds, save some notable
outliers. The running time for generating an attack speci�cation, which includes the safety
veri�cation, often takes longer, because it is a computationally more intensive step. It takes
the trails tree output from safety veri�cation and further decomposes it into subtrails.

As for the outliers, the running time appears loosely related to the number of basic blocks
in the program, as shown by the very high running times of the outliers modPow1_unsafe,

13

Approved for Public Release; Distribution Unlimited.



Table 1: The Results of Applying Our Tool Blazer to a Variety of Benchmarks:
Hand-Made Examples, Examples from the Literature [1, 2, 3], and Extracted
from STAC Challenge Problems. Median Running Times Are Shown for Safety
Veri�cation Alone as Well as Safety Veri�cation Plus the Search for an Attack
Speci�cation. The Safe Benchmarks Need no Search for Attack Speci�cation,
so No Running Time is Shown. (Size = number of basic blocks in CFG, s =

seconds)

Safety w/Attack
Benchmark Size Time (s) Time (s)
MicroBench
array_safe 16 1.60 �
array_unsafe 14 0.16 0.70
loopBranch_safe 15 0.23 �
loopBranch_unsafe 15 0.65 1.54
nosecret_safe 7 0.35 �
notaint_unsafe 9 0.28 1.77
sanity_safe 10 0.63 �
sanity_unsafe 9 0.30 0.58
straightline_safe 7 0.21 �
straightline_unsafe 7 22.20 28.49
unixlogin_safe 16 0.86 �
unixlogin_unsafe 11 0.77 1.27
STAC
modPow1_safe 18 1.47 �
modPow1_unsafe 58 218.54 464.52
modPow2_safe 20 1.62 �
modPow2_unsafe 106 7813.68 31758.92
pwdEqual_safe 16 2.70 �
pwdEqual_unsafe 15 1.30 2.90
Literature
gpt14_safe 15 1.43 �
gpt14_unsafe 26 219.30 1554.64
k96_safe 17 0.70 �
k96_unsafe 15 1.29 3.14
login_safe 18 6.54 �
login_unsafe 17 4.40 9.10
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modPow2_unsafe, and gpt14_unsafe. This is due to a combinatorial explosion of subtrails,
superlinear with respect to the number of conditional branches, as well as the increased
memory pressure of storing and processing the tree of decomposed subtrails. The running
time for straightline_unsafe is an exception to this relationship: it has few basic blocks
but a long running time. This is likely due to a particularly large basic block that has 90
instructions, increasing the processing time of the subtrails that contain it.

4.1.3 Experience report: Taint Analysis. Taint analysis (aka information �ow anal-
ysis) is an important component of SOUCIS analysis, especially in the Blazer approach just
described. In particular, taint analysis enables tracking of the �ow of secret values through a
program to focus on the vulnerable parts of the program that interact with secrets. Doing so
makes the subsequent analysis task smaller, and more tractable. In the course of the project,
we tried three di�erent o�-the-shelf taint analysis tools, JOANA [31], Pidgin [32], and Soot
info-�ow [33]. Despite the strongly encouraging published results, we found that no tool
could consistently handle the size and complexity of target programs we considered. Worse,
when tools did produce an answer, we found they could di�er on the answer produced. Our
experience leads us to believe that Java-based taint analysis is far from a solved problem
and more serious work is needed.

The JOANA tool was an easy choice, because it operates on T. J. Watson Library for
Analysis (WALA), the same underlying analysis framework that on which our own analysis
tools, including the abstract interpreter and Blazer, operate. After working with the �rst 
engagement's challenge problems, we found that it could not e�ciently produce results for
STAC challenge programs that use 3rd party libraries. We pro�led the taint analysis tool
and found that the reason for this lack of scalability is that JOANA cannot generate system
dependence graphs for these programs. The system dependence graph is the �rst step to
tracking information �ow through the programs. Without it, we would not be able to track
the �ow of secret values, a necessity for our static analysis approach.

We then experimented with the Pidgin information �ow tool, which was capable of gener-
ating dependence graphs more quickly. Pidgin uses a multi-threaded pointer analysis engine,
which signi�cantly outperformed the pointer analysis used by JOANA. We enhanced Pidgin's
dependence graph construction to help reduce the number of false positives on challenge pro-
grams, but by the third set of challenge programs, Pidgin's weaknesses were showing. Pidgin
could produce a program dependence graph for most of the problems, but many were incom-
plete and queries on them did not correctly track the �ow of the secret. Ultimately, only we
were only able to get  correct results on  one  out of the eight groups  of challenge
programs. This translated    to only five  of the 25 challenge questions.

Due to the limitations  of Pidgin,  we started  exploring Soot infoflow, a taint  analysis  tool with a 
strong track  record of analyzing Android Java  programs with FlowDroid [34]. We also 
discovered that  a team also working on STAC had used Soot infof l ow and reported good results 
with Soot on two of the STAC challenge problems. This tool fared better than the previous tools, but 
still had trouble on many of the challenge  problems.

This experience suggests that a revolutionary step forward is needed to improve taint 
analysis to the point that it can work for large programs.
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4.2 Design Tradeo�s in Numeric Static Analysis for Java

Static analysis of numeric program properties has a broad range of useful applications. Such
analyses can potentially detect array bounds errors [35], analyze a program's resource us-
age [29, 28], detect side channels [36, 37], and discover vectors for denial of service at-
tacks [38, 39]. One of the major approaches to numeric static analysis is abstract interpre-
tation [5], in which program statements are evaluated over an abstract domain until a �xed
point is reached. Indeed, the �rst paper on abstract interpretation [5] used numeric intervals
as one example abstract domain, and many subsequent researchers have explored abstract
interpretation-based numeric static analysis [40, 41, 42, 43, 44, 45].

Abstract interpretation is an important part of the SOUCIS approach. Blazer uses an
abstract interpreter to obtain program numeric invariants (Section 4.1). The performance
and precision of the abstract interpreter signi�cantly a�ect its ability to e�ectively detect
timing-channel attacks.

Despite the long history, applying abstract interpretation to real-world Java programs
remains a challenge. Such programs are large, have many interacting methods, and make
heavy use of heap-allocated objects. In considering how to build an analysis that aims to be
sound but also precise, prior work has explored some of these challenges, but not all of them
together. For example, several works have considered the impact of the choice of numeric
domain (e.g., intervals vs. convex polyhedra) in trading o� precision for performance but
not considered other tradeo�s [42, 46]. Other works have considered how to integrate a
numeric domain with analysis of the heap, but unsoundly model method calls [40] and/or
focus on very precise properties that do not scale beyond small programs [41, 42]. Some
scalability can be recovered by using programmer-speci�ed pre- and post-conditions [43]. In
all of these cases, there is a lack of consideration of the broader design space in which many
implementation choices interact. Understanding the design tradeo�s is important to produce
a practical abstract interpreter to be used for detecting timing-channel attacks.

To bridge this gap, we implemented and systematically evaluated a large design space
of fully automated, abstract interpretation-based numeric static analyses for Java. Each
analysis is identi�ed by a choice of �ve con�gurable options�the numeric domain, the heap
abstraction, the object representation, the interprocedural analysis order, and the level of
context sensitivity. In total, we study 162 analysis con�gurations to assess both how in-
dividual con�guration options perform overall and to study interactions between di�erent
options. To our knowledge, our basic analysis is one of the few fully automated numeric
static analyses for Java, and we do not know of any prior work that has studied such a large
static analysis design space.

Our tool is publicly available at https://github.com/plum-umd/JANA. See [7] for more
details of our approach and evaluation.

4.2.1 Analysis Con�gurations options. We selected analysis con�guration options
that are well-known in the static analysis literature and that are key choices in designing a
Java static analysis. Table 2 summarizes the key choices we study.

For the numeric domain, we considered both intervals (INT) [47] and convex polyhedra
(POL) [6], as these are popular and bookend the precision/performance spectrum.

Modeling the �ow of data through the heap requires handling pointers and aliasing. We
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Table 2: Analysis Con�guration Options, and their Possible Settings

Con�g. Option Setting Description

Numeric
domain (ND)

INT Intervals
POL Polyhedra

Heap
abstraction

(HA)

SO Only summary objects
AP Only access paths

AP+SO Both access paths and summary objects
Abstract object
representation

(OR)

ALLO Alloc-site abstraction
CLAS Class-based abstraction
SMUS Alloc-site except Strings

Inter-procedural
analysis order

(AO)

TD Top-down
BU Bottom-up

TD+BU Hybrid top-down and bottom-up

Context
sensitivity (CS)

CI Context-insensitive
1CFA 1-CFA
1TYP Type-sensitive

consider three di�erent choices of heap abstraction: using summary objects (SO) [40, 48],
which are weakly updated, to summarize multiple heap locations; access paths (AP) [49, 50],
which are strongly updated ; and a combination of the two (AP+SO).

To implement these abstractions, we use an ahead-of-time, global points-to analysis [51],
which maps static/local variables and heap-allocated �elds to abstract objects. We explore
three variants of abstract object representation: the standard allocation-site abstraction (the
most precise) in which each syntactic new in the program represents an abstract object
(ALLO); class-based abstraction (the least precise) in which each class represents all instances
of that class (CLAS); and a smushed string abstraction (intermediate precision) which is the
same as allocation-site abstraction except strings are modeled using a class-based abstrac-
tion [52] (SMUS).

We compare three choices in the interprocedural analysis order we use to model method
calls: top-down analysis (TD), which starts with main and analyzes callees as they are
encountered; and bottom-up analysis (BU), which starts at the leaves of the call tree and
instantiates method summaries at call sites; and a hybrid analysis that is bottom-up for
library methods and top-down for application code (TD+BU). In general, top-down analysis
explores fewer methods, but it may analyze callees multiple times. Bottom-up analysis
explores each method once but needs to create summaries, which can be expensive.

Finally, we compare three kinds of context-sensitivity in the points-to analysis: context-
insensitive analysis (CI), 1-CFA analysis [53] in which one level of calling context is used
to discriminate pointers (1CFA), and type-sensitive analysis [54] in which the type of the
receiver is the context (1YP).

4.2.2 Evaluation. We implemented our analysis using WALA [55] for its intermediate
representation and points-to analyses and either APRON numerical abstract domain li-
brary [56, 57] or ETH Library for Numerical Analysis (ELINA) [58, 59] for the interval or
polyhedral, respectively, numeric domain. We then applied all 162 analysis con�gurations to
the DaCapo benchmark suite [60] (see Table 4), using the numeric analysis to try to prove
array accesses are within bounds. We measured the analyses' performance and the number
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of array bounds checks they discharged. We analyzed our results by using a multiple linear
regression over analysis features and outcomes, and by performing data visualizations.

Since many analysis con�gurations are time-intensive, we set a limit of 1 hour for running
a benchmark under a particular con�guration. All performance results reported are the
median of the three runs. We also use the median precision result, though note the analyses
are deterministic, so the precision does not vary except in the case of timeouts. Thus,
we treat an analysis as not timing out as long as either two or three of the three runs
completed, and otherwise it is a timeout. Among the 1782 median results (11 benchmarks,
162 con�gurations), 667 of them (37%) timed out. The percentage of the con�gurations that
timed out analyzing a program ranged from 0% (xalan) to 90% (chart).

We studied three research questions.
Research Question (RQ) 1: we examined how analysis con�guration a�ects perfor-

mance. Table 3 summarizes our regression model for performance. We measure performance
as the time to run both the core analysis and perform array index out-of-bounds checking.
If a con�guration timed out while analyzing a program, we set its running time as one hour,
the time limit (characterizing a lower bound on the con�guration's performance impact).
Another option would have been to leave the con�guration out of the regression, but doing
so would underrepresent the important negative contribution to performance.

In the top part of the table, the �rst column shows the independent variables and the
second column shows a setting. One of the settings, identi�ed by dashes in the remaining
columns, is the baseline in the regression. We use the following settings as baselines: TD,
AP+SO, 1TYP, ALLO, and POL. We chose the baseline according to what we expected to be
the most precise settings. For the other settings, the third column shows the estimated e�ect
of that setting with all other settings (including the choice of program, each an independent
variable) held �xed. For example, the �fth row of the table shows that AP (only) decreases
overall analysis time by 37.6 minutes compared to AP+SO (and the other baseline settings).
The fourth column shows the 95% con�dence interval around the estimate (the performance
di�erence of an analysis option to the baseline is contained in the interval between the
two times provided). The last column shows the p-value: the probability that, when the
null hypothesis is true, the statistical summary is the same or of greater magnitude than
the observed results. As is standard, we consider p-values less than 0.05 (5%) signi�cant;
such rows are highlighted green. The bottom part of the table shows the additional e�ects
of two-way combinations of options compared to the baseline e�ects of each option. Any
interactions not included were deemed not to have meaningful e�ect and thus were dropped
by the model generation process [61].

Table 3 presents several interesting performance trends. We found that using summary
objects causes signi�cant slowdowns, e.g., the vast majority of the analysis runs that timed
out used summary objects. We also found that polyhedral analysis incurs a signi�cant slow-
down, but only half as much as summary objects. Surprisingly, bottom-up analysis provided
little performance advantage generally, though it did provide some bene�t for particular
object representations. Finally, context-insensitive analysis is faster than context-sensitive
analysis, as might be expected, but the di�erence is not great when combined with more
approximate (class-based and smushed string) abstract object representations.

RQ2: we examined how analysis con�guration a�ects precision. We found that using
access paths is critical to precision. We also found that the bottom-up analysis has worse
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Table 3: Model of Run-Time Performance in Terms of Analysis Con�guration
Options (Table 2), Including Two-Way Interactions. Independent Variables for
Individual Programs not Shown. R2 of 0.72. (Explained or total variation �

how close data are to the �tted regression line) [Est. (min) = estimated e�ect
in minutes, CI = con�dence interval (units in minutes)].

Option Setting Est. (min) CI p-value

AO
TD - - -
BU -1.98 [-6.3, 1.76] 0.336

TD+BU 1.97 [-1.78, 6.87] 0.364

HA
AP+SO - - -

AP -37.6 [-42.36, -32.84] ă0.001
SO 0.15 [-4.60, 4.91] 0.949

CS
1TYP - - -

CI -7.09 [-10.89, -3.28] ă0.001
1CFA 1.62 [-2.19, 5.42] 0.405

OR
ALLO - - -
CLAS -11.00 [-15.44, -6.56] ă0.001
SMUS -7.15 [-11.59, -2.70] 0.002

ND
POL - - -
INT -16.51 [-19.56, -13.46] ă0.001

AO:HA

TD:AP+SO - - -
BU:AP -5.31 [-9.35, -1.27] 0.01

TD+BU:AP -3.13 [-7.38, 1.12] 0.15
BU:SO 0.11 [-3.92, 4.15] 0.956

TD+BU:SO -0.08 [-4.33, 4.17] 0.97

AO:OR

TD:ALLO - - -
BU:CLAS -8.87 [-12.91, -4.83] ă0.001
BU:SMUS -4.23 [-8.27, -0.19] 0.04

TD+BU:CLAS -4.07 [-8.32, 0.19] 0.06
TD+BU:SMUS -2.52 [-6.77, 1.74] 0.247

AO:ND
TD:POL - - -
BU:INT 8.04 [4.73, 11.33] ă0.001

TD+BU:INT 2.35 [-1.12, 5.82] 0.185

HA:CS

AP+SO:1TYP - - -
AP:1CFA 7.01 [2.83, 11.17] ă0.001
AP:CI 3.38 [-0.79, 7.54] 0.112
SO:CI -0.20 [-4.37, 3.96] 0.924

SO:1CFA -0.21 [-4.37, 3.95] 0.921

HA:OR

AP+SO:ALLO - - -
AP:CLAS 9.55 [5.37, 13.71] ă0.001
AP:SMUS 6.25 [2.08, 10.42] ă0.001
SO:SMUS 0.07 [-4.09, 4.24] 0.973
SO:CLAS -0.43 [-4.59, 3.73] 0.839

HA:ND
AP+SO:POL - - -

AP:INT 6.94 [3.53, 10.34] ă0.001
SO:INT 0.08 [-3.32, 3.48] 0.964

CS:OR

1TYP:ALLO - - -
CI:CLAS 4.76 [0.59, 8.93] 0.025

CI:SMUS 4.02 [-0.15, 8.18] 0.05
1CFA:CLAS -3.09 [-7.25, 1.08] 0.147
1CFA:SMUS -0.52 [-4.68, 3.64] 0.807

precision than top-down analysis, especially when using summary objects, and that using a
more precise abstract object representation improves precision. But other traditional ways of
improving precision do so only slightly (the polyhedral domain) or not signi�cantly (context-
sensitivity).

RQ3: we looked at the precision/performance tradeo� for all programs. To begin our
discussion, Table 4 shows the fastest con�guration and the most precise con�guration for
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Table 4: Benchmarks and Overall Results (Prog = program, min = minutes).

# Best Performance Best Precision
Prog Size Checks Time(min) # Checks Percent Time(min) # Checks Percent

BU-AP-CI-CLAS-INT TD-AP+SO-1TYP-CLAS-INT
antlr 55734 1526 0.6 1176 77.1% 18.5 1306 85.6%

BU-AP-CI-CLAS-INT TD-AP-1TYP-SMUS-POL
bloat 150197 4621 4.0 2538 54.9% 17.2 2795 60.5%

BU-AP-CI-CLAS-INT TD-AP-1TYP-SMUS-INT
chart 167621 7965 3.3 5593 70.2% 7.7 5654 71.0%

BU-AP-CI-ALLO-INT TD-AP+SO-1TYP-SMUS-POL
eclipse 18938 1043 0.2 896 85.9% 3.3 977 93.7%

BU-AP-CI-CLAS-INT TD-AP+SO-1CFA-SMUS-INT
fop 33243 1337 0.4 998 74.6% 2.6 1137 85.0%

BU-AP-CI-SMUS-INT TD-AP+SO-CI-SMUS-INT
hsqldb 19497 1020 0.3 911 89.3% 1.4 975 95.6%

BU-AP-CI-SMUS-INT TD-AP-1CFA-CLAS-POL
jython 127661 4232 1.3 2667 63.0% 33.6 2919 69.0%

BU-AP-CI-SMUS-INT TD-AP+SO-1TYP-ALLO-INT
luindex 69027 2764 1.8 1682 60.9% 46.8 2015 72.9%

BU-AP-CI-CLAS-INT TD-AP+SO-1CFA-ALLO-POL
lusearch 20242 1062 0.2 912 85.9% 54.2 979 92.2%

BU-AP-CI-CLAS-INT TD-AP+SO-CI-CLAS-INT
pmd 116422 4402 1.7 3153 71.6% 49.5 3301 75.0%

BU-AP-CI-CLAS-INT TD-AP+SO-1CFA-SMUS-POL
xalan 20315 1043 0.2 912 87.4% 3.8 981 94.1%

each benchmark. Further, the table shows the con�gurations' running time, number of checks
discharged, and percentage of checks discharged.

We see several interesting patterns in this table, though note the table shows just two data
points and not the full distribution. First, the con�gurations in each column are remarkably
consistent. The fastest con�gurations are all of the form BU-AP-CI-*-INT, only varying in
the abstract object representation. The most precise con�gurations are more variable, but
all include TD and some form of AP. The rest of the options di�er somewhat, with di�erent
forms of precision bene�ting di�erent benchmarks. Finally, notice that, overall, the fastest
con�gurations are much faster than the most precise con�gurations�often by an order of
magnitude�but they are not that much less precise�typically by 5�10 percentage points.

To delve further into the tradeo�, we examine, for each program, the overall performance
and precision distribution for the analysis con�gurations, focusing on particular options (HA,
AO, etc.). As settings of option HA have come up prominently in our discussion so far, we
start with it and then move through the other options. Figure 4 gives per-benchmark scatter
plots of this data. Each plotted point corresponds to one con�guration, with its performance
on the x-axis and number of discharged array bounds checks on the y-axis. We regard a
con�guration that times out as discharging no checks, so it is plotted at (60, 0). The shape
of a point indicates the HA setting of the corresponding con�guration: black circle for AP,
red triangle for AP+SO, and blue cross for SO. As a general trend, we see that access paths
improve precision and do little to harm performance; they should always be enabled. More
speci�cally, con�gurations using AP and AP+SO (when they do not time out) are always
toward the top of the graph, meaning good precision. Moreover, the performance pro�le of
SO and AP+SO is quite similar, as evidenced by related clusters in the graphs di�ering in
the y-axis, but not the x-axis. In only one case did AP+SO time out when SO alone did
not.3

3In particular, for eclipse, con�guration TD+BU-SO-1CFA-ALLO-POL �nished at 59 minutes, while
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Figure 4: Tradeo�s: AP vs. SO vs. AP+SO
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In addition to the above observation, we found top-down analysis works better than
bottom-up. While summary objects, originally proposed by Fu [40], do help precision for
some programs, the bene�ts are often marginal when considered as a percentage of all checks,
so they tend not to outweigh their large performance disadvantage. Lastly, we found that
the precision gains for more precise object representations and polyhedra are modest, and
performance costs can be magni�ed by other analysis features.

4.2.3 Conclusion and Future Work. Systematically implementing and evaluating a
novel family of techniques to handle method calls, heap-allocated objects, and numeric
analysis led to some interesting conclusions. Among others, we discovered that strongly
updatable access paths are always a good idea, adding signi�cant precision at very little
performance cost. We also found that top-down analysis also tended to improve precision
at little cost, compared to bottom-up analysis. On the other hand, while summary objects
did add precision when combined with access paths, they also added signi�cant performance
overhead, often resulting in timeouts. The polyhedral numeric domain improved precision,
but would time out when using a richer heap abstraction; intervals and a richer heap would
work better.

The results of our study suggest several directions for future work that may improve
the capability of SOUCIS approaches. A systematic study of Blazer (Section 4.1) using
statistical analysis and data visualization will help discover better design tradeo�s, leading
to better performance and precision in detecting timing-channel attacks. Another direction
is to investigate more scalable and precise techniques to further improve the tool, e.g., a
more sparse representation of summary objects that retains their modest precision bene�ts,
but avoids the overall blowup. Finally, the results of our Java numeric analysis may be used
to detect other important security bugs, e.g., algorithmic complexity vulnerabilities.

TD+BU-AP+SO-1CFA-ALLO-POL timed out.
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4.3 Bound Analysis Using Dynamic Invariants

The automated discovery of program invariants�relations among variables that are guar-
anteed to hold at certain locations of a program�is an important research area in program
analysis and veri�cation. Generated invariants can be used to prove correctness assertions,
reason about resource usage, establish security properties, provide formal documentation,
and more [62, 63, 64, 65, 66, 67]. In the context of the SOUCIS approach, invariants are
needed by Blazer, described in Section 4.1, in order to compute running times as part of the
decomposition-based static analysis.

A particularly useful class of invariants, especially in the context of using them for in-
ferring running times, are numerical invariants, which involve relations among numerical
program variables. Within this class of invariants, nonlinear polynomial relations, e.g.,
x ď y2, x “ qy ` r, arise in many scienti�c, engineering, and safety- and security-critical
applications.4 For example, the commercial analyzer Astrée, which has been applied to
verify the absence of errors in the Airbus A340/A380 avionic systems [13, 12], implements
the ellipsoid abstract domain [68] to represent and analyze a class of quadratic inequality
invariants. Complexity analysis, which aims to determine a program's performance charac-
teristics [28, 69, 70], perhaps to identify possible security problems [71, 4], also makes use of
polynomial invariants, e.g., Opn2 ` 2mq where n,m are some program inputs. In addition,
such polynomial invariants have been found useful in the analysis of hybrid systems [72, 73],
and in fact are required for implementations of common mathematical functions such as
mult, div, square, sqrt and mod.

A static analysis can reason about all program paths soundly, but doing so is often expen-
sive and is only possible for relatively simple forms of invariants [74]. For Blazer in particular,
we found our abstract interpretation-based approach had di�culty producing precise invari-
ants at scale. Dynamic analyses limit their attention to only some of a program's paths, and
as a result can often be more e�cient and produce more expressive invariants, but provide
no guarantee that those invariants are correct [67, 75]. Recently, several systems (such as the
Precondition Inference Engine (PIE) [76], the Implication Counter-Examples (ICE) learning
model [77] and Guess-and-Check [78]) have been developed that take a hybrid approach:
use a dynamic analysis to infer candidate invariants but then con�rm these invariants are
correct for all inputs using a static veri�er. When invariants are incorrect the veri�er returns
counterexample traces which the dynamic inference engine can use to infer more accurate
invariants. This iterative process is called CounterExample Guided Invariant geneRation
(CEGIR).

While the CEGIR approach is promising, existing tools have some practical limita-
tions. One limitation is that they �nd invariants strong enough to prove a particular
(programmer-provided) postcondition where the quality of the generated invariants depends
on the strength of the postcondition. As such, they are not well suited for automated analyses
on code that lacks such formal speci�cations. Another limitation is that these tools employ
a sound static veri�er, which aims to de�nitively prove that an invariant holds. While this
is a good goal, it turns out to be a signi�cant restriction on the quality of the invariants that
can ultimately be inferred�it can be quite challenging to do when invariants are nonlinear
polynomials and involve many program variables.

4We refer to nonlinear polynomial relations such as x “ qy ` r, x ď y2 simply as polynomial relations.
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We developed a new CEGIR algorithm called NumInv that overcomes these limitations.
It has two main components. First, it uses algorithms from Dynamic Invariant Generator
(DIG) [79, 75] to dynamically infer expressive polynomial equality invariants and linear
inequality relations from traces at speci�ed program locations. Second, it uses KLEE [80],
a symbolic executor, to check candidate invariants and produce counterexamples when they
fail to hold. To check that an invariant p holds at location L, NumInv transforms the input
program so that L is guarded by the conditional  p. If KLEE is able to reach L then p
must not be an invariant, and so it outputs a counterexample consisting of the relevant
input values at that location. On the other hand, if KLEE never reaches that location
prior to timing out, then NumInv accepts the invariant as correct. Although this technique
is unsound, KLEE, by its nature as a symbolic executor, turns out to be very e�ective in
discovering counterexamples to refute invalid candidates.

We evaluated NumInv by using it to infer invariants on more than 90 benchmark pro-
grams taken from the Nonlinear Arithmetic (NLA) [79] and Hoare Logic with Abduction
(HOLA) [81] suites for program veri�cation and from examples in the literature on complex-
ity bound analysis [28, 69, 82]. Our results show that NumInv generates su�ciently strong
invariants to verify correctness and to understand the semantics of 23/27 NLA programs
containing nontrivial arithmetic and polynomial relations. We also �nd that NumInv dis-
covers highly precise invariants describing nontrivial complexity bounds for 18/19 programs
used to benchmark static complexity analysis techniques (in fact, for 4 programs, NumInv
obtains more informative bounds than what were given in the literature). We note that both
ICE and PIE cannot �nd any of these invariants produced by NumInv, even when we explic-
itly tell these tools that they should attempt to verify these invariants. Finally, on the 46
HOLA programs, we compare NumInv directly with PIE. We �nd it performs competitively:
in 36/46 cases its inferred invariants match PIE's, are stronger, or are more descriptive.

Thus, although NumInv can potentially return unsound invariants, our experience shows
that it is practical and e�ective in removing invalid candidates and in handling di�cult pro-
grams with complex invariants. We believe that NumInv strikes a practical balance between
correctness and expressive power, allowing it to discover complex, yet interesting and useful
invariants out of the reach of the current state of the art.

Full details of the approach and experimental results are present in the published pa-
per [8]. In the remainder of this section we outline NumInv's approach in more detail,
summarize key results focusing on running time inference, and sketch extensions we have
worked on since the published paper.

4.3.1 Approach. NumInv generates invariants using the technique of counterexample-
guided invariant generation (CEGIR). At a high level, CEGIR consists of two components:
a dynamic analysis that infers candidate invariants from execution traces, and a static veri�er
to check candidates against the program code. If a candidate invariant is spurious, the veri�er
also provides counterexamples (cex s). Traces from these cexs are recycled to repeat the
process, hopefully producing accurate results. These steps of inferring and checking repeat
until no new cexs or (true) invariants are found. The CEGIR approach is basically exploiting
the observation that inferring a sound solution directly is often harder than checking a
(cheaply generated) candidate solution.
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Other promising CEGIR algorithms, e.g., the ICE, PIE and Guess-and-Check tools, have
been developed in recent years that take the same approach [77, 76, 78], though they refer
to it di�erently. These approaches have been able to prove correctness of speci�cations by
inferring inductive loop invariants, or su�cient and necessary preconditions. Some of these
works (ICE and PIE) are veri�cation oriented, i.e. they infer invariants to speci�cally prove
a given assertion. In this approach, the computation of these �helper� invariants strictly
depends on the given assertions, e.g., if the intended assertion is True then the inferred
invariant can be just True.

NumInv has di�erent goals and takes a di�erent approach. Our goals are both discovery
and veri�cation, and our approach is to �nd the strongest possible invariant at any arbitrarily
given location. When given an undocumented program, NumInv can discover interesting
properties and provide formal speci�cations. For example, NumInv can reveal a stronger
postcondition than the user might think to write down, and the user doesn't have to write
down any postconditions at all. Moreover, when given a speci�c assertion, the resulting
invariant from NumInv can help prove it (e.g., if the invariant matches or is stronger than
the assertion). Empirically, NumInv can frequently infer invariants that are at least as strong
as the postcondition, and frequently, stronger.

NumInv. NumInv infers candidate invariants using the algorithms from DIG [79, 75], which
produce equality and inequality relations from traces. To check invariants, NumInv invokes
KLEE [80], a symbolic executor that is able to synthesize test cases for failing tests.

KLEE as a �veri�er�. NumInv generates candidate invariants at program locations L of
interest (e.g., at the start of loops or at the end of functions). To check whether a property
p holds at a location L, NumInv asks KLEE to determine the reachability of the location L
when guarded by  p. For example, to check whether the relation x “ qy ` r is an invariant
at some location L, NumInv modi�es the program as follows

...

if (!(x==qy+r)){

[L]

save(x,y,q,r); //cex traces

abort();

}

...

KLEE then runs this program, systematically exploring the space of possible inputs. If,
during this process, location L is reached, then the relation does not hold, so a cex consisting
of the values of the relevant input variables is saved for subsequent inference. On the other
hand, KLEE may be able to explore all program paths and thus verify that indeed that
invariant p holds. Or, if this is infeasible, NumInv terminates KLEE after some timeout.

The use of KLEE as the veri�er is a key feature of NumInv. Because programs often
contain a very large number of possible paths, KLEE rarely explores all of them. However,
in our experience if it does not quickly �nd a counterexample for p then p very likely holds.
This is true even when p is a nonlinear polynomial relation. As such, KLEE serves as
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a practical improvement over existing theorem provers and constraint solvers, for which
reasoning over general polynomial arithmetic is a signi�cant challenge.

Inferring polynomial equalities and linear inequalities. NumInv uses two CEGIR
algorithms to �nd candidate numerical relations p at program locations of interest. The
�rst algorithm �nds polynomial equalities. To do this, for each program location L, NumInv
produces a template equation c1t1 ` c2t2 ¨ ¨ ¨ cntn “ 0. This equation contains n unknown
coe�cients ci and n terms ti, with one term for each possible combination of relevant program
variables, up to some degree d. NumInv calls KLEE on the program to systematically
obtain many possible valuations of relevant variables at L. Each distinct observed valuation,
which we call a trace, is substituted into the template to form an instantiated equation.
After obtaining at least n traces, NumInv solves the ci using the resulting set of equations.
Substituting the solutions back into the template, we can extract candidate invariants. At
this point, NumInv enters a CEGIR loop that tests the candidate invariants by using KLEE
as described above. Any spurious invariants are dropped, and the corresponding cex traces
are used to infer new candidates, as described above, until no additional true invariants are
found.

NumInv's second algorithm tries to infer linear inequalities in the form of octagons, which
are inequalities over two variables, containing eight edges. It re�nes the bounds on the
candidate invariants using a divide-and-conquer algorithm. Once again, NumInv estimates
and obtains an initial set of traces. It enumerates all possible octagonal inequality forms
involving one and two variables and uses KLEE to check inequalities under these forms are
within certain ranges rminV,maxV s. It then narrows this range, iteratively seeking tighter
lower and upper bounds.

Finally, from the obtained equality and inequality invariants, NumInv removes any invari-
ants that are logical implications of other invariants. For instance, we suppress the invariant
x2 “ y2 if another invariant x “ y is also found because the latter implies the former.
We check possible implications using an SMT solver (checking whether the negation of the
implication is unsatis�able).

4.3.2 Results.

Computational Complexity. We used NumInv to discover invariants from a variety of
interesting programs; details are present in our published paper. Here, we focus on NumInv's
ability to discover invariants capturing a program's computational complexity, e.g., Opn3q

where n is some input. Figure 5 shows the program triple with three nested loops, adapted
from the program in Figure 2 of Gulwani et al. [28]. The complexity of this program, i.e.,
the total number of iterations of all three loops at location L, appears to be OpnmNq at
�rst glance. Additional analysis yields a more precise bound of Opn ` mn ` Nq because
the number of iterations of the innermost loop is bounded by N instead of nmN and it
furthermore directly a�ects the running time of the outermost loop [28].

When given this program, NumInv discovers an interesting and unexpected postcondition
at location L about the counter variable t, which is a ghost variable introduced to count loop
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void triple(int n, int m, int N){

assert (0 <= n && 0 <= m && 0 <= N);

int i = 0, j = 0, k = 0; int t = 0;

while(i < n){//loop 1

j = 0; t++;

while(j<m){//loop 2

j++; k=i; t++;

while (k<N){k++; t++;}// loop 3

i=k;

}

i++;

}

[L]

}

Figure 5: An Example Program That Has Muliple Polynomial Complexity
Bounds

iterations:
N2mt`Nm2t´Nmnt´m2nt´Nmt2 `mnt2 `Nmt

´Nnt´ 2mnt`Nt2 `mt2 ` nt2 ´ t2 ´ nt` t2 “ 0.

At �rst glance, this quartic (degree 4) equality with 15 terms looks incomprehensible and
quite di�erent than the expected bound Opn`mn`Nq or even OpmnNq. However, solving
this equation for t, i.e., �nding the roots, yields three solutions t “ 0, t “ N `m ` 1, and
t “ n´mpN ´nq. Careful analysis reveals that these results actually describe three distinct
and exact bounds of this program:

t “ 0 when n “ 0,

t “ N `m` 1 when n ď N,

t “ n´mpN ´ nq when n ą N.

Thus, NumInv can �nd numerical invariants that represent precise program complexity.
More importantly, the obtained relations can describe expressive and nontrivial disjunctive
invariants, which capture di�erent possible complexity bounds of a program. As can be seen
in [8], NumInv produced very promising results that capture the precise complexity bounds
for the benchmarks programs.

Examples from Engagements. NumInv helped with attacking some of the canonical ex-
amples distributed by STAC white team. In Figure 6, the method canonical() is presented
with integer inputs guess, secret, n and t. Depending on whether guess is less than or
equal to secret, or not, there are two di�erent cases, exhibiting two di�erent sets of possible
running times, this time depending on the value of t. In particular, if guess ă“ secret,
then the running time of the method is Op1q, Opnq or Opn3q, respectively when t “ 0, t “ 1
or otherwise. On the other hand, if guess ą secret, the running time of the method is
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Op1q, Opn2q or Opn3q, respectively when t “ 0, t “ 1 or otherwise. Irrespective of the
values of guess and secret, the lower bound of the complexity of the method is Op1q and
the upper bound is Opn3q. Nevertheless, the program is still insecure, as to whether guess
is less than or equal to secret can be observed, through its running time, when the value
of t is 2. An analysis that searches only for the upper and lower bounds of the program,
would not be able to classify it as insecure.

We ran NumInv on this method, using two di�erent assertions at the beginning of the
method, to arti�cially restrict the execution to the two cases of whether guess ă“ secret

or guess ą secret. For the two distinct cases, NumInv returned the invariant:

n4
¨ p2 ´ n3

¨ p3 ´ n4
¨ p` n3

¨ p2 ´ n ¨ p3 ` p4 ` n ¨ p2 ´ p2 “ 0.

This equation is equivalent to

p ¨ pp´ n3
q ¨ pp´ nq ¨ pp´ 1q “ 0,

which gives the 3 distinct cases:

p “ 1 when t “ 1,

p “ n when t “ 2,

p “ n3 when t ‰ 2 and t ‰ 1,

with p “ 0 corresponding to the cases where the assertion is false. Changing the assertion
to guess>secret, we similarly obtain the result that p “ 1 when t “ 1, p “ n2 when t “ 2,
and p “ n3 otherwise. Comparing these two sets of possible complexities, we observe that
whether guess ą secret is observable, and thus deduce that this program is insecure to
timing attacks.

4.3.3 Extensions. Since our published paper, a few more extensions have been applied to
this work. The �rst is generalizing the equation solving part of the algorithm to instead use
regression methods for approximating, instead the polynomial equation that best captures
the relationship between the input variables and the program resources. As a result, the
methodology works with more general programs, and allowing more noisy observations as
well as probabilistic behavior. As a very simple example, consider the program in Figure 7.
The number of loop iterations (t) of this program, is n

2
when n is even, and pn`1q

2
when

n is odd, since the increment for i at each iteration is a which is equal to 2. It is not
easy to capture this relationship with an equation of degree 1 over variables a, t and n. An
equation of degree 2 that could work is pt´ n

2
q ¨ pt´ pn´1q

2
q “ 0. Then, the degree of such an

equation depends on the value of a, making it infeasible to generate equations that capture
the complexity of the program for large values of a.

The approach we follow instead, is to generate enough traces, and then perform linear
regression over the same terms considered in NumInv. For the program such as the one
above, the relationship that a regression method would output is t “ n

2
, and more generally

t “ n
a
for a being a variable. The approach can also work on programs that involve random

variables, and in many cases data structures, such as arrays.

28

Approved for Public Release; Distribution Unlimited.



void canonical(int guess, int t, int n, int secret) {

int p = 0;

int i = 0;

assert(guess <= secret);

if(guess <= secret){

if(t == 1){

p += 1;

} else if(t == 2){

for(i = 0; i<n;i++){

p += 1;

}

} else{

for(i = 0; i<n*n*n;i++){

p += 1;

}

}

} else {

if(t == 1){

p += 1;

} else if(t == 2){

for(i = 0; i<n*n;i++){

p += 1;

}

} else{

for(i = 0; i<n*n*n;i++){

p += 1;

}

}

}

//%%%traces: int n, int p

}

Figure 6: An Example Program That Has Muliple Polynomial Complexity
Bounds, and Which Bounds Are Di�erent Depending on Whether

guess <= secret

Secondly, we have extended the tool to apply the above procedure iteratively in order to
�nd upper and lower bounds. Informally, the tool generates traces to obtain an equational
relationship between the variables and the program resources using the regression method
described above, and then �lters the traces to keep those where the resource variable has
a value larger (respectively smaller) than the one described by the relation, converging in
this way to the upper (respectively lower) bound of the complexity of the program. For
example, for the simple program in Figure 8, the procedure quickly returns the upper bound
n2. This approach has also been successful on examples that operate on data structures such
as arrays, managing to �nd the upper bounds, for example, for various sorting algorithms,
without being aware of the semantics of the program. As the approach tries to dynamically
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void loopMod2(int n){

assert (0 <= n);

int i = 0, t = 0;

int a = 2;

while(i < n){

t++;

i+=a;

}

}

Figure 7: An Example Program with Approximate Running Time n
a

void nsq(int n){

assert (0 <= n);

if (nondet()) {

for (int i = 0; i < n; ++i) {

t++;

}

} else {

for (int i = 0; i < n*n; ++i) {

t++;

}

}

}

Figure 8: An Example Program That Non-Deterministically Has Running
Time Between n and n2

�nd inputs that would cause the worst case complexity, it naturally works on smaller inputs
better than on larger ones.
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4.4 Fuzzing for Complexity Attacks and Side-Channel Attacks

In the previous three sections we have focused on the Sound, Overapproximate analysis
component of SOUCIS. In particular, Blazer, Java Numeric Analysis (JANA), and NumInv all
aim to draw conclusions that are true for all program runs. On the other hand, such kinds of
analysis have di�culty scaling to large programs, or else have di�culty producing su�ciently
precise results. NumInv makes use of dynamic analysis to get around some of these problems,
but we could even go one step further, leaning even more heavily on underapproximate
analysis approaches. In this section, we consider work we did to apply fuzz testing (or
simply, fuzzing) to discover complexity attacks (and some initial forays into discovering side
channels).

Fuzzing is a bug-�nding methodology that has good traction and success in the software
development ecosystem. Fuzzing involves automatically and e�ciently generating and exe-
cuting test cases for a program while monitoring the program for failure. There are many
di�erent parameters and variables for fuzzing: how test cases are generated, what exactly
is monitored, and how failure is de�ned. In general, developers consider crashes as failures,
and fuzzing has been very e�ective at �nding single inputs that can crash applications, espe-
cially applications that perform �le based I/O. Fuzzers like libfuzzer [9] and American Fuzzy
Lop (AFL) [83] are very e�ective in this space. Later, we present a general framework that
describes these fuzzers and their variations.

Existing fuzzers work well when programs �t into an existing fuzzers methodology.
Fuzzers today do well in a few speci�c scenarios: the program does �le I/O, and the goal
of the analysis to �nd crashes. What about programs that don't perform �le I/O, such as
web servers? Or if the goal of the analysis is to �nd timing-based side-channels? Then the
utility of existing fuzzers and fuzzing algorithms is much less clear.

This section starts by reviewing the state of the art in fuzz testing. Next, it discusses our
own fuzzer design, and key features that it needed to support STAC programs, notably I/O
mocking, memory checkpointing, multi-run (k) fuzzing. Finally, we conclude with a summary
of results obtained to date, and sketch plans for future extensions involving integration with
static analysis.

4.4.1 Fuzzing in review. There are many di�erent dynamic analyses that can be de-
scribed as �fuzzing.� A unifying feature of fuzzers is that they operate on, and produce,
concrete inputs. Otherwise, fuzzers might be instantiated with many di�erent design choices
and many di�erent parameter settings. In this section, we outline the basics of how fuzzers
work, and then touch on the advances of 32 recently published papers.

Most modern fuzzers follow the procedure outlined in Figure 9. The process begins by
choosing a corpus of �seed� inputs with which to test the target program. The fuzzer then
repeatedly mutates these inputs and evaluates the program under test. If the result produces
�interesting� behavior, the fuzzer keeps the mutated input for future use and records what
was observed. Eventually the fuzzer stops, either due to reaching a particular goal (e.g.,
�nding a certain sort of bug) or reaching a timeout.

Di�erent fuzzers record di�erent observations when running the program under test. In a
�black box� fuzzer, a single observation is made: whether the program crashed. In �gray box�
fuzzing, observations also consist of intermediate information about the execution, for ex-
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Core fuzzing algorithm:

corpus Ð initSeedCorpus()
queue Ð
observations ÐH

while  isDone(observations,queue) do
candidate Ð choose(queue, observations)
mutated Ð mutate(candidate,observations)
observation Ð eval(mutated)
if isInteresting(observation,observations) then

queue Ð queue Y mutated
observations Ð observations Y observation

end if
end while

parameterized by functions:

• initSeedCorpus: Initialize a new seed corpus.

• isDone: Determine if the fuzzing should stop or not based on progress toward a goal,
or a timeout.

• choose: Choose at least one candidate seed from the queue for mutation.

• mutate: From at least one seed and any observations made about the program so far,
produce a new candidate seed.

• eval: Evaluate a seed on the program to produce an observation.

• isInteresting: Determine if the observations produced from an evaluation on a mu-
tated seed indicate that the input should be preserved or not.

Figure 9: Fuzzing, in a Nutshell

ample, the branches taken during execution as determined by pairs of basic block identi�ers
executed directly in sequence. �White box� fuzzers can make observations and modi�cations
by exploiting the semantics of application source (or binary) code, possibly involving sophis-
ticated reasoning. Gathering additional observations adds overhead. Di�erent fuzzers make
di�erent choices, hoping to trade higher overhead for better bug-�nding e�ectiveness.

Usually, the ultimate goal of a fuzzer is to generate an input that causes the program
to crash. In some fuzzer con�gurations, isDone checks the queue to see if there have been
any crashes, and if there have been, it breaks the loop. Other fuzzer con�gurations seek
to collect as many di�erent crashes as they can, and so will not stop after the �rst crash.
For example, by default, libfuzzer [9] will stop when it discovers a crash, while AFL
will continue and attempt to discover di�erent crashes. Other types of observations are
also desirable, such as longer running times that could indicate the presence of algorithmic
complexity vulnerabilities [84]. In any of these cases, the output from the fuzzer is some
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concrete input(s) and con�gurations that can be used from outside of the fuzzer to reproduce
the observation. This allows software developers to con�rm, reproduce, and debug issues.

Fuzzing is an active area of research, and many works have been published in the last 5
or 6 years that improve upon this basic algorithm. We consider each part of the algorithm,
next, and describe papers that aim to advance it.

initSeedCorpus. Sky�re [85] and Orthrus [86] propose to improve the initial seed
selection by running an up-front analysis on the program to bootstrap information both for
creating the corpus and assisting the mutators. QuickFuzz [87, 88] allows seed generation
through the use of grammars that specify the structure of valid, or interesting, inputs.
DIFUZE performs an up-front static analysis to identify the structure of inputs to device
drivers prior to fuzzing [89].

mutate. SYMFUZZ [90] uses a symbolic executor to determine the number of bits of a
seed to mutate. Several other works change mutate to be aware of taint-level observations
about the program behavior, speci�cally mutating inputs that are used by the program
[91, 92, 93, 94]. Where other fuzzers use pre-de�ned data mutation strategies like bit �ipping
or rand replacement, MutaGen uses fragments of the program under test that parse or
manipulate the input as mutators through dynamic slicing [95]. Scheduled Document Object
Model (DOM) Fuzzer (SDF) uses properties of the seeds themselves to guide mutation [96].
Sometimes, a grammar is used to guide mutation [97, 98]. Chizpur�e's [99] mutator exploits
knowledge of Java-level language constructs to assist in-process fuzzing of Android system
services.

eval. Driller [100] and MAYHEM [92] observe that some conditional guards in the pro-
gram are di�cult to satisfy via brute force guessing, and so (occasionally) invoke a symbolic
executor during the eval phase to get past them. Semi-Symbolic Fuzz Testing (S2F) also
makes use of a symbolic executor during eval [101]. Other work focuses on increasing the
speed of eval by making changes to the operating system [102] or using di�erent low level
primitives to observe the e�ect of executions [103, 104, 98]. T-Fuzz [105] will transform
the program to remove checks on the input that prevent new code from being reached.
The MEDS [106] memory error detector, like AddressSanitizer (ASAN), performs run time
analysis to detect errors during fuzzing.

isInteresting. While most papers focus on the crashes, some work changes observation
to consider di�erent classes of program behavior as interesting, e.g., longer running time [84],
or di�erential behavior [107]. Steelix [93] and Angora [94] instrument the program so that
�ner grained information about progress towards satisfying a condition is exposed through
observation. Dowser and VUzzer [108, 91] uses a static analysis to assign di�erent rewards
to program points based on either a likely-hood estimation that traveling through that point
will result in a vulnerability, or for reaching a deeper point in the CFG.

choose. Several works select the next input candidate based on whether it reaches
particular areas of the program [91, 109, 110, 111]. Other work explores di�erent algorithms
for selecting candidate seeds [112, 113].

4.4.2 A Java Fuzzer for Side Channel and Complexity Attacks. As part of SOUCIS
we have been building a fuzzer for Java programs. It works by using the Java ASM bytecode
rewriting framework to carry out program rewriting in the style of AFL and libfuzzer, along
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with fuzzing algorithms that match AFL and libfuzzer. The architecture of our fuzzer is
similar to those in the state of the art (per Figure 9), but includes some important exten-
sions. It most resembles libfuzzer in that it requires a user to write a harness which invokes
the target program's method(s) to fuzz; this harness is repeatedly called by the main fuzzing
loop with new, random input.

Our fuzzer contains a number of novel features. First of all, we have worked to make it
support programs that are interactive, i.e., servers or user-facing programs, rather just batch
programs that process �les. We do this by supporting what we call I/O mocking. Second,
we have worked to support fuzzing stateful programs, i.e., those whose internal state changes
with each interaction. The standard assumption of existing fuzzers is that the state of the
target program is not a�ected from one test to another. To address this issue, we integrate
memory checkpointing as part of our fuzzer, so that we can quickly roll back state changes as
a result of a particular test. Finally, we have generalized the fuzzing loop to support di�erent
classes of input, i.e., secret values vs. public ones. Doing so allows us to, for example, �x
public values while repeatedly generating new secret values. This support is necessary for
�nding side channels.

I/O mocking For some applications, it is obvious how a fuzzer would concretely execute
the application with input, such as a program that takes input from a �le or stdin. However,
many applications do not �t neatly into this structure, such as server software or cloud
applications. These applications take input from a network socket or even more general
constructs like web server frameworks, where input is provided through speci�c Application
Programming Interfaces (APIs) or an application framework that abstracts the source of the
I/O. Existing fuzzing methodologies, both in fuzzers that we have created as well as libfuzzer,
support these types of applications by having developers and analysts write harnesses that
connect the fuzzer-generated inputs to the methods in the application that can be fuzzed.
However, writing these harnesses is a tedious manual process, and errors in the harnesses
could result in false positives.

We identify locations in the program we are testing where I/O methods are used, and
use program re-writing to replace calls to those methods with calls to methods internal to
the fuzzer. Then, instead of creating a speci�c harness that chooses an entry point in the
program to start fuzzing from, we start the program from main and allow it to run normally.
In speci�c instances, we could start the program from an intermediate state if such a state
is identi�able, for example, running a program until it processes input, then saving program
state at that point and reverting to it for each test case. As the fuzzed program reads data,
instead of invoking library I/O routines, it invokes our mocked I/O routines, and so data
generated by the fuzzer is immediately returned.

Memory checkpointing. One concern with in-process fuzzing is that methods invoked
by the fuzzer might make global changes to memory, and that sequences of these global
changes to memory might lead the program program into a state that would be impossible
outside of the fuzzing environment. This would produce false positives. To mitigate this, we
integrated a memory checkpointing system, CROCHET [114], into our Java fuzzer. Doing
so allowed us to snapshot the state before each fuzzing iteration and roll back changes made
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1 private byte[] secret;

2 public boolean safeCheck(byte[] input) {

3 int r = true;

4 for (int i = 0;

5 i < min(secret.length, input.length);

6 i++)

7 if (i < secret.length && i < input.length)

8 r &= secret[i] == input[i];

9 return r;

10 }

11

12 public boolean unsafeCheck(byte[] input) {

13 for (int i = 0;

14 i < min(secret.length, input.length);

15 i++)

16 if (i < secret.length && i < input.length)

17 if( secret[i] != input[i])

18 return false;

19 return true;

20 }

Figure 10: Password Checking Programs, Safe and Unsafe Variants. Due to the
Early Exit in the Unsafe Variant, an Attacker That Can Observe Timing

Di�erence Between Evaluations with their own input can Coerce the Program
into Leaking the Content of secret

after, starting fuzzing from a fresh context each time. Overhead from CROCHET seems
low ( 3% to 5%), helping the overall use of it to scale.

k-Fuzzing. Current fuzzers, like AFL and libfuzzer, consider programs that take a single
input. They generate new inputs and run programs on those inputs, looking for violations
of safety properties. What about programs and safety properties that are parameterized
around 2-safety, such as timing-based side-channels? For a motivating example, consider the
password checking program in �gure 10.

Instead of generating one input, we would like our fuzzer to generate pairs of inputs,
pP, Sq to provide as the input and secret variables in the program, respectively. If our
fuzzer generates two test cases, pP, S1q and pP, S2q where the Hamming distance is minimal
between P and S1 but maximal between P and S2, then the observed running times should
demonstrate the side-channel.

Extending fuzzing to multiple inputs �ts into our previous algorithmic de�nition 9 by
expanding the notion of a �seed" into a �test case" which could have k di�erent inputs. One
might represent a public channel, another would represent a secret channel, and so on. The
particular concrete inputs in one seed are tied together to produce a single observation, but
mutators are free to change any input in any way.

We have begun preliminary work to extend our existing fuzzer to carry out k-fuzzing.
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In particular, we have organized the fuzzing loop to support this direction. However, we
have yet to �esh out all of the remaining elements for it to work beyond toy examples. For
example, mutation strategies should be augmented so that they generate variants of input
pP, Sq but also so that they vary P and S at di�erent rates. This could be important, since
without this control, the odds of producing a mutation that demonstrate a violation of safety
seem low. For example, in the unsafeCheck method, if secret and input each change on
every iteration, the fuzzer would learn less about how to change secret such that the running
time changed.

4.4.3 Evaluation and Next Steps. We used our fuzzer as part of the STAC Engagement
that ended in February 2018. We had some success using it in a targeted fashion. For the
program battleboats_1, we set up the fuzzer harness to repeatedly call suspicious, stateless
function. In the harness we created inputs for each of the function arguments, based on
random data provided from the fuzzer main loop. We set the scoring function for the fuzzer
to prioritize both coverage (us usual) and running time, with the result that the fuzzer found
a vulnerable input.

In stegosaurus we initiated a sessions object such that we could fuzz di�erent request
parameters. In particular we wanted to see if there was a side channel in space (while the
problem mentioned time), so we fuzzed the key parameter for encrypting the image and
changed scoring to be the size of the encrypted image. We also mocked the imageIO class
so that we only needed to load a �le once or could make the input be from the fuzzer. We
found a large gap in the sizes between of an encrypted image based on the secret used to
encrypt. This strongly pointed to the presence of a vulnerability.

Unfortunately, our fuzzer was not well-enough engineered to be of use for more programs.
Only by the end of the take-home engagement did we have a more customizable testing tool
for exploring particular suspect parts of the program. At the live engagement we found many
more places where the fuzzer's easy customization for mocking and scoring would have been
useful. With further engineering, we believe the approach will prove to be generally useful.

Further work. A key goal of SOUCIS is to combine overapproximating (�static�) and
underapproximating (�dynamic�) analysis. We see this interaction with NumInv, and there
is potential for it with our Java fuzzer too, by involving static analysis.

Static analysis can help fuzzing in three ways. Firstly, it can help with the process of
automatically creating mock I/O interfaces and inserting them into the application. Sec-
ondly, it can guide the process of inserting instrumentation that will help the fuzzer better
distinguish between interesting states. Finally, it can guide transformations of fuzzed code
that allow the fuzzer to e�ciently and precisely discern intermediate results about gatekeep-
ing operations that the fuzzer has a low chance of guessing, in the style of Steelix [93] and
laf-tintel [115]. We believe all of these directions constitute fruitful areas for subsequent
exploration.
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4.5 Evaluating Fuzz Testing

Fuzz testing seems to work well in practice, and this motivated us to explore using it for
SOUCIS. However, fuzz testing's long list of practical successes only says that it works,
not why it works. Since we are interested in applying fuzzing to a more sophisticated
problem (side channel and complexity attacks), we are also interested in understanding
the key elements that are the root of fuzz testing's success. That way, we can retain these
elements in our tools, varying the rest. While identi�cation of key ideas of fuzzing algorithms
may, in principle, be drawn from mathematical analysis, fuzzers are primarily evaluated
experimentally, in practice. As such, we examined prior, published experimental evaluations
and assessed their results.

We examined 32 recently published papers on fuzz testing located by perusing top-
conference proceedings and other quality venues, and studied their experimental evaluations.
To �nd these papers, we started from 10 high-impact fuzzing papers published in top security
venues. Then we chased citations to and from these papers. As a sanity check, we also did a
keyword search of titles and abstracts of the papers published since 2012. Finally, we judged
the relevance based on target domain and proposed advance, �ltering papers that did not
�t. Unfortunately, rather than yielding interesting scienti�cally valid insights, we found that
every evaluation in these 32 papers had serious �aws in its methodology.

To con�rm that such �aws would manifest as issues in practice, we carried out more than
50000 Central Processing Unit (CPU) hours of experiments, comparing AFLFast [111] with
AFL as a baseline B. We chose AFLFast as it was a recent advance over the state of the art;
its code was publicly available; and we were con�dent in our ability to rerun the experiments
described by the authors in their own evaluation and expand these experiments by varying
parameters that the original experimenters did not. We targeted three binutils programs
(nm, objdump, and cxx�lt) and two image processing programs (gif2png and FFmpeg) used
in prior fuzzing evaluations [112, 91, 90, 113, 101]. We found that experimental results
revealed the potential for serious �aws if best practices are not followed. In particular,

Fuzzing performance under the same con�guration can vary substantially from run to
run. Thus, comparing only single runs, as 2

3
of the examined papers seem to, does not give

a full picture. For example, on nm, one AFL run found just over 1200 crashing inputs while
one AFLFast run found around 800. Yet, comparing the median of 30 runs tells a di�erent
story: 400 crashes for AFL and closer to 1250 for AFLFast. Comparing averages is still
not enough, though: We found that in some cases, via a statistical test, that an apparent
di�erence in performance was not statistically signi�cant.

Fuzzing performance can vary over the course of a run. This means that short timeouts
(of less than 5 or 6 hours, as used by 11 papers) may paint a misleading picture. For example,
when using the empty seed, AFL found no crashes in gif2png after 13 hours, while AFLFast
had found nearly 40. But after 24 hours AFL had found 39 and AFLFast had found 52.
When using a non-empty seed set, on nm AFLFast outperformed AFLFast at 6 hours, with
statistical signi�cance, but after 24 hours the trend reversed. We similarly found substantial
performance variations based on the seeds used ; e.g., with an empty seed AFLFast found
more than 1000 crashes in nm but with a small valid seed it found only 24, which was
statistically indistinguishable from the 23 found by AFL. And yet, most papers treated the
choice of seed casually, apparently assuming that any valid seed would work equally well,
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without providing particulars.
The most direct measure of fuzzing e�ectiveness is unique bugs found, and yet only about

1
4
of papers used this measure. Most instead counted the number of crashing inputs found,

and then applied a heuristic procedure in an attempt to de-duplicate inputs that trigger
the same bug. The two most popular heuristics were AFL's coverage pro�le (used by 8
papers) and (fuzzy) stack hashes [116] (used by 7 papers). Unfortunately, there is reason to
believe these de-duplication heuristics are ine�ective. In a small experiment, we computed
a portion of ground truth by applying all patches to cxx�lt from the version we fuzzed up
until the present, grouping all crashing inputs that a particular patch addressed, i.e., how
many now resulted in a graceful exit. We found that all 57142 crashing inputs deemed
unique by coverage pro�les were addressed by merely 13 patches, and con�rmed that each
patch represented a distinct conceptual bug�x. This represents a dramatic overcounting of
the number of bugs. Ultimately, while AFLFast found many more �unique� crashing inputs
than AFL, it only had a slightly higher likelihood of �nding more bugs in a given run. Stack
hashes did better, but still over-counted bugs. Instead of the bug mapping to, say 500
AFL coverage-unique crashes in a given trial, it would map to about twelve stack hashes,
on average. Stack hashes were also subject to false negatives: roughly 1 in 13 hashes also
mapped to a di�erent crash not associated with the bug, which means that a bug could
be ultimately missed. This experiment suggests that reliance on heuristics for evaluating
performance is unwise. A better approach is to measure against ground truth directly by
assessing fuzzers against known bugs, e.g., as we did above, or by using a synthetic suite such
as Cyber Grand Challenge (CGC) [117] or Large-scale Automated Vulnerability Addition
(LAVA) [118], as done by 6 papers we examined.

Overall, fuzzing performance may vary with the target program. In our experiments,
we found that while AFLFast performed generally better than AFL on binutils programs
(basically matching its originally published result, when using an empty seed), it did not
provide a statistically signi�cant advantage on the image processing programs. And yet,
few papers use a common, diverse benchmark suite; about 6 used CGC or LAVA-M, and
2 discussed the methodology in collecting real-world programs, while the rest used a few
handpicked programs, with little overlap in these choices (and no overlap when versions
are considered) among papers. As a result, individual evaluations may present misleading
conclusions internally, and results are hard to compare across papers.

Our study suggests that meaningful scienti�c progress on fuzzing requires that claims of
algorithmic improvements be supported by more solid evidence. Every evaluation in the 32
papers we looked at lacks some important aspect in this regard. Fortunately, there are some
simple guidelines that future papers can follow that will address the issues. In particular,
researchers should perform multiple trials and use statistical tests; they should evaluate
di�erent seeds, and should consider longer (ě 24 hour vs. 5 hour) timeouts; and they should
evaluate bug-�nding performance against ground truth. We also identify some important
questions still to be decided by the community. Notably, we argue for the establishment
and adoption of a good fuzzing benchmark. The practice of hand selecting a few particular
targets, and varying them from paper to paper, is problematic. A well-designed and agreed-
upon benchmark would address this problem.

Detailed discussion of our results can be found in our published paper [10].
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Table 5: Basic-Block Attributes

Type Attribute name

Block-level attributes

String Constants
Numeric Constants
No. of Transfer Instructions
No. of Calls
No. of Instructions
No. of Arithmetic Instructions

Inter-block attributes
No. of o�spring
Betweenness

4.6 Machine Learning for Vulnerability Detection

Another promising kind of underapproximating analysis is machine learning. Machine learn-
ing cannot be certain that it always draws sound conclusions, but machine learning algo-
rithms have shown great promise in practice.

We developed a neural network approach for vulnerability detection. The basic idea is
to learn a neural network model to detect whether two binary codes are similar or not.
Using this functionality, given a new binary function, we can detect whether it is similar to
any of the code samples with complexity or side channel vulnerabilities in our database. In
the following, we will present the approach, the evaluation results, and issues to apply this
technique to the STAC problem. More details and results can be found in our published
paper [11].

4.6.1 Neural Network-based Code Similarity Detection. We �rst formally de�ne
the general code similarity detection problem, which can be task dependent. We assume

there exists an oracle π : F ˆF Ñ t´1, 1u determining the code similarity metric for a given
task, where F is the domain of all binary functions. This oracle is unknown, and we would
like to learn it. Given two binary program functions f1, f2, πpf1, f2q “ 1 indicates that they
are similar; otherwise, πpf1, f2q “ ´1 indicates that they are dissimilar.

The objective of code similarity embedding problem is to �nd a mapping φ which maps
a function f to a vector representation µ. Intuitively, such an embedding should capture
enough information for detecting similar functions. That is, given an easy-to-compute simi-
larity function Simp¨, ̈ q, (e.g., cosine function of two vectors), and two binary functions f1,
f2, i.e., Simpφpf1q, φpf2qq is large if πpf1, f2q “ `1, and is small otherwise.

One advantage of learning the embedding (i.e., the mapping φ) is that it enables e�cient
computation. The similarity between two functions can be computed using an inexpen-
sive similarity function between two vectors, without incurring the cost of expensive graph
matching algorithms.

Neural Network-based Program Embedding Our basic idea is to �rst use a pre-
processing step to represent a binary function into a directed graph, i.e., a control-�ow graph,
which captures the semantic information of the original binary function. In particular, we

leverage the existing work [119]  to use a control-�ow graph representation to represent each
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binary function. On each node, which corresponds to a basic block, we compute several
attributes in Table 5, which have been used in the literature [119]. In doing so, each binary
function can be converted into Attributed Control Flow Graph (ACFG) using a dissembler,
i.e., IDA Pro [120].

Then, we develop a neural network to compute an embedding for an ACFG. To this aim,
we leverage a general framework, called Structure2vec [121]. Structure2vec is inspired
by graphical model inference algorithms where vertex-speci�c features xv are aggregated
recursively according to graph topology g. After a few steps of recursion, the network
will produce a new feature representation (or embedding) for each vertex which takes into
account both graph characteristics and long-range interaction between vertex features. More
speci�cally, we denote Npvq as the set of neighbors of vertex v in graph g. Then one variant

of the Structure2vec network will initialize the embedding µ
p0q
v at each vertex as 0, and

update the embeddings at each iteration as

µpt`1qv “ F
`

xv,
ÿ

uPNpvq

µptqu
˘

, @v P V. (3)

In this �xed-point update formula, F is a generic nonlinear mapping which we will specify our
choice later. Based on the update formula, one can see that the embedding update process
is carried out based on the graph topology, and in a synchronous fashion. A new round of
embedding sweeping across the vertices will start only after the embedding update for all
vertices from the previous round has �nished. It is easy to see that the update also de�nes a
process where the vertex features xv are propagated to the other vertices via the nonlinear
propagation function F. Furthermore, the more iterations one carries out the update, the
farther away a vertex feature will propagate to distant vertices and get aggregated nonlinearly
at distant vertices. In the end, if one terminates the update process after T iterations, each
vertex embedding µ

pT q
v will contain information about its T -hop neighborhood determined

by both graph topology and the involved vertex features.
Instead of manually specifying the parameters in the nonlinear mapping F, we model it

as a neural network, and learn the parameters in it. In particular, we design F to have the
following form

Fpxv,
ÿ

uPNpvq

µuq “ tanhpW1xv ` σp
ÿ

uPNpvq

µuqq (4)

where xv is a d-dimensional vector for graph node (or basic-block) level features, W1 is
a d ˆ p matrix, and p is the embedding size as explained above. To make the nonlinear
transformation σp¨q more powerful, we will de�ne σ itself as an n layer fully-connected
neural network:

σplq “ P1 ˆ ReLUpP2 ˆ ...ReLUpPnlqq
looooooooooooooooooomooooooooooooooooooon

n levels

where Pi (i “ 1, ..., n) is a pˆ p matrix. We refer to n as the embedding depth. Here, ReLU
is the recti�ed linear unit, i.e., ReLUpxq “ maxt0, xu.

The original learning algorithm for a Structure2vec model is through a supervision on
an instance (i.e., the ACFG of a binary function) and its label. However, in our case, we do
not have labels for binary functions. Therefore, we devise a novel learning approach to train
the parameters in F.
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Learning Parameters Using Siamese Architecture. We use the Siamese architec-
ture [122] combined with the graph embedding Structure2vec network. The Siamese ar-
chitecture uses two identical graph embedding networks, i.e., Structure2vec, which join at
the top. Each graph embedding network will take one ACFG gi (i “ 1, 2) as its input and
outputs the embedding φpgiq. The �nal outputs of the Siamese architecture is the cosine
distance of the two embeddings. Further, the two embedding networks share the same set
of parameters; thus during training the two networks remain identical.

Given a set of K pairs of ACFGs xgi, g
1
iy, with ground truth pairing information yi P

t`1,´1u, where yi “ `1 indicates that gi and g
1
i are similar, i.e. πpgi, g

1
iq “ 1, or yi “ ´1

otherwise. We de�ne the Siamese network output for each pair as

Simpg, g1q “ cospφpgq, φpg1qq “
xφpgq, φpg1qy

||φpgq|| ¨ ||φpg1q||

where φpgq is produced by the Structure2vec model.
Then to train the the model parameters W1, P1, . . . , Pn, and W2, we will optimize the

following objective function

min
W1,P1,...,Pn,W2

K
ÿ

i“1

`

Simpgi, g
1
iq ´ yi

˘2
. (5)

We can optimize the objective (5) with stochastic gradient descent [123]. The gradients of
the parameters are calculated recursively according to the graph topology. In the end, once
the Siamese network can achieve a good performance (e.g., using AUC as the measure), the
training process terminates, and the trained graph embedding network can convert an input
graph to an e�ective embedding suiteable for similarity detection.

Dataset construction. Training the model requires a large amount of data on the ground
truth about oracle π, which may be di�cult to obtain. To tackle this issue, we construct a
training dataset using a default policy. Intuitively, the embedding generated for each binary
function should try to capture invariant features of the function across di�erent architectures
and compilers. We implement this intuition by constructing a dataset as follows using a
default oracle. Assuming a set of source codes are collected, we can compile them into
program binaries for di�erent architectures, using di�erent compilers, and with di�erent
optimizations. In doing so, the default oracle determines that two binary functions are similar
if they are compiled from the same source code, or dissimilar otherwise. To construct the
training dataset, for each binary function g, one other similar function g1 and one dissimilar
function g2 are sampled to construct two training samples, xg, g1,`1y and xg, g2,´1y.

4.6.2 Evaluation. We evaluate our approach on the previous vulnerability detection task
proposed in [119]. In all evaluations, our approach exhibits superior advantages over the
state-of-the-art approach [119]. In particular, we compile OpenSSL toolkit (version 1.0.1f
and 1.0.1u) using GNU Compiler Collection (GCC) v5.4. The compiler is set to emit code
in x86, MIPS, and Advanced RISC Machine (ARM) architectures, with optimization levels
O0-O3. In total, we obtain 18,269 binary �les containing 129,365 ACFGs. We split Dataset

41

Approved for Public Release; Distribution Unlimited.



Table 6: The Number of ACFGs in Dataset I

Training Validation Testing
x86 30,994 3,868 3,973
MIPS 41,477 5,181 5,209
ARM 30,892 3,805 3,966
Total 103,363 12,854 13,148
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Figure 11: ROC Curves for Di�erent Approaches Evaluated on the Testing
Similarity Dataset

I into three disjoint subsets of functions for training, validation, and testing respectively.
The statistics are presented in Table 6. During the split, we guarantee that no two binary
functions compiled from the same source function are separated into two di�erent sets among
training, validation and testing sets. In doing so, we can examine whether the model can
generalize to unseen functions. We choose this dataset to compare with the previous state-
of-the-art [119]. In particular, we compare our approach with two approaches, named BGM
and Genius respectively, proposed in [119].

Accuracy. We construct a similarity testing dataset as follows: from the testing set in
Dataset I, for each ACFG g in the set, we randomly select two ACFGs g1, g2 from the testing
dataset, such that the ground truth labels of xg, g1y and xg, g2y are `1 and ´1 (i.e., from the
same source function vs. not) respectively. This similarity testing dataset consists of 26,265
pairs of ACFGs. Figure 11a illustrates the Receiver Operating Characteristic (ROC) curves
for our neural network model as well as two baseline approaches. We can see that that our
approach outperforms both Binary Graph Matching (BGM) and Genius by a large margin.

To further examine the performance of our approach on graphs with di�erent sizes, we
split the similarity-accuracy testing set into a large-graph subset and a small-graph subset.
The large-graph subset contains only pairs of two ACFGs which both have at least 10
vertices. The small-graph subset contains the rest. The ROC curves of di�erent approaches
evaluated over the large-graph subset and the small-graph subset are plotted in Figure 11b
and Figure 11c respectively. From both �gures, we have consistent observations: 1) our
approach outperforms both BGM and Genius signi�cantly; and 2) Genius outperforms BGM
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on small graphs, the BGM performs better than Genius on large graphs, and our approach 
outperforms both BGM and Genius on large as well as small graphs.

Issues applying to STAC challenge problems.    We intended to apply this approach to STAC, but 
ultimately were unsuccessful. The most important issue was that our approach was adept at 
identifying whether a new binary function was semantically similar to an existing, vulnerable 
function. The problem is that we had insufficient  training data to effectively assess the method's 
utility. In the engagements, most vulnerabilities  were increasingly  challenging, and used 
concepts not used in previous engagements. This dissimilarity hindered the application/utility 
of this technique. Potentially, by the end of the STAC program, a sufficient corpus of 
vulnerable  functions could exist to enable training of such tools to find vulnerabilities in code.
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4.7 Workbench

The tools we have developed, as well as most third-party tools, are very command-line driven.
Results tend to be spread across multiple �les, and analyst notes are generally done in a very
ad hoc manner. Additionally, sharing analysis results often involves either shared folders or
relaying �les over some mechanism such as git or email. Shared folders are impractical for
analysts spread across multiple organizations; git is ill-suited to many types of �les; and
distribution channels like email make it easy to omit certain team members, and potentially
cumbersome to bring new team members up to speed.

As a solution to these issues, we developed a shared workbench. It allows team members
to run some of our analysis tools, view �les, and add annotations describing progress on
analyses. All analyses and notes are fully available to all team members, and adding a new
team member involves generating a public key certi�cate that they can then install into their
browser of choice. File organization and visualization is standardized for all team members,
which makes it easier to communicate about analysis results.

The workbench is implemented as a distributed service. A coordinator node provides
the UI, connects to a local database, and distributes processing tasks to worker nodes.
Connecting to the coordinator requires a digital certi�cate, signed by a trusted authority.
Currently, this authority is a self-signed certi�cate speci�c to the workbench system, and
all users and worker nodes are given client certi�cates. There is no password access to the
coordinator, so all connections must employ Public Key Infrastructure (PKI).

Worker nodes with available processing capacity periodically poll the coordinator for any
jobs currently queued but not running. Each job runs in a separate thread, and may start
additional threads or external processes, as necessary. The worker also periodically updates
the coordinator on the status of all jobs currently assigned to that node. This allows the
coordinator to detect failed or stalled workers, and restart or reassign jobs as needed. The
system is �exible in the number of workers: A new worker node merely needs to identify
itself (using valid credentials) to the coordinator node, and it becomes part of the distributed
system. A worker node departing the system simply stops responding; any jobs currently
assigned to it will eventually be reassigned.

Both the coordinator and worker nodes are implemented in Java, running in Tomcat
containers. We use Tomcat's built-in authentication and SSL capabilities, in order to avoid
having to write (and thoroughly test) our own. The emphasis on a secure design allows us
to run nodes on either owned or leased (such as Amazon Web Services (AWS) cluster nodes)
platforms that might be targeted by intrusion attempts. This prevents our nodes from being
recruited into botnets or being used to acquire Sensitive but Unclassi�ed (SBU) DARPA
data. The UI is written in Javascript, using Google Closure and JQuery.

The database is a MongoDB instance that provides unauthenticated access to localhost,
and so is colocated with the coordinator node. For this reason, no other processes should
be run on the same host. All of the challenge problems are loaded into the database, along
with any derived or uploaded �les, in a single �les collection, with problem names stored
in the programs collection. Requests, whether issued by users or by workers as part of a
multi-stage processing tasks, are stored in another requests collection. Worker nodes' job
status information is stored in the work collection. Users and workers can annotate �les
with simple key-value pairs, which are stored in the annotations collection. Finally, users
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can register interest in a particular problem, allowing the UI to �lter out problems that are
not of interest (Figure 12), and this information is stored in the users collection.

n The workbench integrates with several tools. When a �le is selected, the Analysis
menu indicates which analysis tool is available, as seen in Figure 13. Currently supported
are decompilation (Figure 14), fuzzing, and Pidgin taint analysis (Figure 15a). When a user
submits a request, it shows up in the Requests menu, as shown in Figure 15.

For many known Multipurpose Internet Mail Extensions (MIME) types, the workbench is
able to display �les with useful formatting (Figure 16). The default is to use application/octet-
stream as the MIME type with a hexdump display. A context menu allows the user to
override this, displaying the �le as text/plain or text/html (Figure 17). The workbench
also allows users to download �les, and upload both single �les and directories.

Some analysis tools, such as the decompiler, generate annotations automatically, as seen
in Figure 18. Users can also add annotations manually, in order to capture manual inspection
of source code, documentation, and analysis results (Figure 19). Annotations are simple text
key-value pairs, but a key can be speci�ed multiple times, and all values for that key will be
concatenated in the display. Since annotations cannot currently be edited or deleted, this is
a way to attach new pieces of information to a �le as work progresses.

There are a number of enhancements to the workbench that we had planned. Some
refactoring of the database and UI would improve performance, which can occasionally be
slow. Tool integration is incomplete, both in terms of the number of our tools available
through the workbench and the functionality of these tools and visualization of output. For
example, we would like to be able to connect taint analysis output directly to decompiled
source �les. There is some limited ability to do this, but there is considerable work still to
be done. We would also like to be able to schedule long-running fuzzer jobs, and monitor
the output as the jobs run. Currently, the database is not searchable, and this would be a
valuable addition. Bulk download of directories would also be helpful, rather than �le-by-
�le downloads. Additionally, we envisioned �le editing, both for plain text and JavaScript
Object Notation (JSON), but these have not been implemented yet.
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(a) All Programs

(b) Programs Filtered by User Interest

Figure 12: Workbench Challenge Programs Listing
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Figure 13: Analysis Menu, as Seen for a JAR File

Figure 14: Decompilation Output
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(a) Pidgin Program Dependent Graph (PDG) Request

Dialog

(b) Request List

(c) Details of Request

Figure 15: Job Requests
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(a) Image File

(b) Unknown File Type

Figure 16: Automatic Rendering
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(a) Alternate Display Selection

(b) Rendering a File as text/plain

Figure 17: Manual Rendering Speci�cation
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(a) Auto-Generated Annotations

(b) Annotation Details

Figure 18: Annotations from Decompilation
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(a) Added User Annotations

(b) Annotation Details

Figure 19: User-Generated Annotations
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5 CONCLUSION

This report has presented the technical accomplishments of the project SOUCIS: Sound
Over- & Under-Approximations of Complexity & Information Security. The goal
of the project has been to develop analysis techniques that identify, or prove the absence of,
side channels and complexity attacks in Java Virtual Machine programs.

The technical keystones of the SOUCIS project are the use of sound over-approximating
static analysis in conjunction with precise under-approximating analysis. For the �rst, which
emphasizes verifying properties of all of a program's runs, we have carried out the following
work:

• Blazer: A tool that employs a novel decomposition strategy for proving the absence
of timing side channels in Java programs. This decomposition strategy is potentially
more scalable than self-composition strategies typically used for proving properties of
multiple program runs (here, that di�erences in the timing of these runs do not leak
secret information).

• JANA: A sound numeric static analysis for Java programs. JANA was developed in
conjunction with Blazer. Much prior work on abstract interpretation existed, but no
prior tool of the size and complexity of JANA was available. As it turned out, bringing
together ideas from prior, simpler tools was not straightforward, so we carried out a
systematic study of an implementation of several features to understand interactions
among the combinations.

• NumInv: A numeric invariant generator. This tool combines equation solving and test
generation to produce sound, yet precise numeric invariants for interesting programs.
Such invariants could be used by Blazer, but we also found we could infer resource
usage estimates directly, even ones involving interesting, non-linear bounds.

For under-approximate analysis, we considered the following directions:

• Fuzz testing is a testing technique whereby inputs to a program are randomly generated
in a feedback loop in an attempt to uncover evidence of a vulnerability. Prior fuzz
testing work largely focused on identifying memory errors (resulting in crashes) in
�le-based C/C++ programs. For SOUCIS, we developed a fuzzer for Java bytecode
that instead could �nd complexity attacks, and contained novel features for fuzzing
server programs. These features include checkpointing (to handle statefulness) and I/O
mocking (to handle network messages and user interactions). Our fuzzer's architecture
could also be out�tted in a way to discover side channel attacks.

In the process of developing our fuzzer we studied fuzzing more generally. In a sys-
tematic review, we found that the empirical evaluation methodology in the published
literature is �awed, in that it does not follow best practices, and carried out experiments
to demonstrate as much. We make recommendations for improving this practice.

• Machine learning techniques aim to infer functions (such as classi�cation functions)
based on input/output examples. We developed a program similarity detection tech-
nique, based on neural networks, that could be used to identify when two functions are
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materially the same. We used this technique to identify vulnerable functions based on
prior examples.

To put all of these pieces together we developed a collaborative analyst workbench. The
workbench permitted organizing the process of studying a potentially vulnerable program,
permitting the analyst to more easily run SOUCIS tools, and tools from o� the shelf. Results
could visualized, stored, and communicated with team members.

The results of the SOUCIS project include code artifacts, technical reports, and published
papers appearing in peer-reviewed scienti�c venues.
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

ACFG Attributed Control Flow Graph
AFL American Fuzzy Lop
AFLFast National University of Singapore's extension of AFL
ARM Advanced RISC Machine � a family of RISC architectures

for computer processors
cex, cexs counterexample(s)
BGM Binary Graph Matching
CEGIR Counter-Example Guided Invariant Generation
CFG Control Flow Graph
CGC DARPA Cyber Grand Challenge
CVE Common Vulnerabilities and Exposures
DARPA Defense Advanced Research Products Agency
DIG Dynamic Invariant Generator
ELINA ETH Library for Numerical Analysis
ESOP European Symposium on Programming
GUI Graphical User Interface
HOLA Hoare Logic with Abduction program suite
I/O Input/Output
ICE Implication Counter-Examples learning model
JANA Java Numeric Analysis - University of Maryland's sound numeric

static analysis for Java
JAR Java Archive
JSON JavaScript Object Notation
LAVA Large-scale Automated Vulnerability Addition
LAVA-M A second LAVA corpus, with more than one bug at a time injected

into source code
MIME Multipurpose Internet Mail Extensions
MIPS A RISC instruction set architecture (originally Microprocessor

without Interlocked Pipeline Stages)
NLA Non-Linear Arithmetic program suite
NumInv Numeric Invariant hybrid analysis developed by University of Maryland
OpenSSL A robust, commercial-grade, and full-featured toolkit for the Transport Layer

Security (TLS) and Secure Sockets Layer (SSL) protocols.
PDG Program Dependenc Graph
PIE Precondition Inference Engine
PKI Public Key Infrastructure
PLDI Programming Language Design and Implementation Conference
RISC Reduced Instruction Set Computer
ROC Receiver Operating Characteristic
RQ Research Question
SBU Sensitive but Unclassi�ed
SC Side Channel
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SOUCIS Sound Over- and Under-Approximations of Complexity and Information Security
SSL Secure Sockets Layer
STAC Space/Time Analysis for Cybersecurity
UI User Interface
WALA T. J. Watson Library for Analysis
x86 A family of Intel-based instruction set architectures
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