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ABSTRACT 

 We develop an algorithm blending Sequential Importance Sampling (SIS) and 

Markov Chain Monte Carlo (MCMC) to conduct goodness of fit testing on three-way 

contingency tables under the no-three-way interaction model. Unlike previous studies, we 

conduct SIS utilizing the hypergeometric distribution. Further, our hybrid method 

capitalizes on the positive aspects of SIS and MCMC while reducing their inefficiencies. 

We demonstrate the algorithm’s performance on equal marginal data sets to highlight 

computational speed and accuracy. We then demonstrate the algorithm in accurately 

constructing the null distribution for dense tables that satisfy the asymptotic distribution 

assumptions. With this result in mind, we estimate the null distribution for sparse tables 

that violate these assumptions. Our hybrid scheme is shown, via simulation, to be more 

accurate than simply using the asymptotic distribution for sparse tables. 
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Executive Summary

A contingency table, X, is one of the oldest objects which researchers use to analyze
associations or interrelations between discrete random variables. In this research we assume
that each random variable has a finite number of categories, which are often called “levels.”
A “cell” is a particular event with these discrete random variables and a “cell count” is the
number of the particular events observed in the given sample.

This research focuses on conducting a goodness of fit test under the no-three-way interaction
model for I×J×K contingency tables where I, J, K ≥ 2. We consider “dense” contingency
tables and “sparse” contingency tables. A “dense” contingency table is a table where the
Maximum Likelihood Estimator (MLE) for each cell count under a particular model greater
than five. In this instance, we can use the χ2 distribution, which is an asymptotic distribution
of the null distribution of test statistics for a goodness of fit test. A contingency table can
be “sparse” and have a small conditional state space. By “sparse” we mean not all of the
MLE for each cell count under the null model is greater than five. Therefore, we cannot use
the asymptotic distribution as the null distribution for the goodness of fit test. In this case,
Fisher’s exact test provides an accurate estimation of the p-value for the test. A contingency
table can be “sparse” and have a large conditional state space. In this situation, we cannot
use the asymptotic distribution as the null distribution and we cannot use Fisher’s exact test
because Fisher’s exact test has to enumerate all contingency tables in the conditional state
space. These types of tables require a sampling procedure in order to conduct a goodness
of fit test. In this research we develop this sampling method.

Our sampling method is a hybrid of two popular sampling methods, Sequential Importance
Sampling (SIS) and Markov Chain Monte Carlo (MCMC). We modify the SIS method
developed by Chen et. al, in 2005. This method is a recursive algorithm that populates
a contingency table cell by cell while conditioning on the marginal sums of the observed
table. Our SIS method runs in a similar fashion except we conduct sampling for I × J × K

tables and we sample each cell count from the hypergeometric distribution instead of the
uniform distribution. Our MCMC method is based on the work of Diaconis and Sturmfels
in 1998. This method operates by conducting a series of basic moves and a metropolis
algorithm to traverse the conditional state space. The addition of the metropolis algorithm

xiii



ensures that the MCMC sampling is also from the hypergeometric distribution.

By conducting a hybrid method of SIS and MCMC we are able to leverage the positive
aspects of both methods while balancing out the weaknesses. For instance, the MCMC
method creates autocorrelation. This requires significant burn-in and thinning, which
means that in order to reach a desired sample size, we have to sample many more tables
and we have to discard most of the sampled tables for burn-in and thinning processes.
The SIS method, on the other hand, samples tables which are independently and identically
distributed. In addition, AMarkov chain with basic moves is not guaranteed to be connected
in the conditional state space. In order to make sure the chain is connected, we use the SIS
procedure to sample initial contingency tables and then using such tables as initial states, we
run multiple chains in the conditional state space. Doing this, we can sample contingency
tables from the state space without sampling bias.

We demonstrate, via simulation, that our sampling method accurately estimates the asymp-
totic distribution for a “dense” table. With this result in mind, with “sparse” tables, we
demonstrate that our novel method can estimate accurately the null distribution than using
the asymptotic distribution.

Lastly, our hybrid sampling method has usability to any field interested in conducting
goodness of fit testing. There are no restrictions to its applicability. Instead of answering a
question, our hybrid methodology solves a problem.

xiv
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CHAPTER 1:
Introduction

In this chapter we provide background, motivation, and the novel aspects of our methodol-
ogy.

1.1 Background
A contingency table, X, is one of the oldest objects researchers use to analyze associations
or interrelations between discrete random variables [1]. In this research we assume that
each random variable has a finite number of categories, which are often called “levels.” A
“cell” is a particular event with these discrete random variables and a “cell count” is the
number of times the particular event was observed in the given sample [2].

To illustrate a contingency table, we can consider a famous example problem from 1935.
Muriel Bristol claimed, given a cup of tea with milk added, she had the ability to taste
whether milk or tea was added to the cup first. Ronald Fisher developed an experiment to
test her ability. He made eight cups of tea with milk, four in which milk was poured in first
and four in which tea was poured in first. He then randomly gave these tea cups to Bristol
and recorded her responses. Figure 1.1 is this 2 × 2 contingency table [2].

Figure 1.1. Fisher’s Tea Test

In Figure 1.1, the "levels" are whether milk or tea was poured into the cup first. The “cell”
Milk/Milk, or X11, has the “cell count” of three. This means in three cases that milk was
poured first, it was guessed as being poured first.
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In this example, we would like to test the hypothesis that Bristol can truly distinguish the
difference in how the cups of tea weremade. If wewere to conduct a χ2 test of independence
on Figure 1.1, the p-value would be .4795. But this table does not meet the assumption for
the asymptotic distribution. For this reason, we would utilize Fisher’s exact test.

Fisher’s exact test is accomplished by enumerating all possible contingency tables in the
conditional state space. The conditional state space is all tables that have the same marginal
sums as the observed table, in this case all marginal sums are four. We use the marginal
sums as our condition because the marginal sums are the sufficient statistics to determine a
contingency table’s Maximum Likelihood Estimator (MLE). The complete state space for
this table is shown in Figure 1.2.

Figure 1.2. Fisher’s Tea Test

To complete the exact test, we calculate the probability of seeing the tables that exist in
the conditional state space. These probabilities are calculated using the hypergeometric
distribution. The hypergeometric distribution can be described in a situation where we have
green and red balls in an urn and we want to calculate the probability of drawing a certain
number of green balls given that we draw some number of balls without replacement [1].
To calculate the p-value, we sum the probabilities of seeing the observed table and any table
more extreme. In this case, more extreme would be arrangements of the table where Bristol
could have identified more cups of tea correctly than she did. These values, which are listed
below each table in Figure 1.2, sum to a p-value of .24 [2].

What this example has shown us is that even with a small contingency table, ignoring the
asymptotic requirements have the potential to lead to incorrect conclusions. This example

2



also shows a limitation of Fisher’s exact test. This small table only has five tables in the
conditional state space. As was shown by [3], evenmoderately sized tables can have trillions
of possible arrangements and thus using Fisher’s exact test is computationally prohibitive.

As we show in Chapter 4, an I × J × K contingency table that has a large conditional
state space and violates the cell count assumption has a different null distribution than the
asymptotic distribution. Figure 1.3 shows the difference between these distributions and
these differences are confirmed by usage of the Kolmogorov-Smirnov test.

Figure 1.3. I × J × K Null Distribution Result

1.2 Motivation
As large data sets become increasingly utilized by industry and governments, there is an
ever increasing need for accurate model fitting procedures allowing for the extraction of
information from these data sets. If a data set is sparse, the expected value of each cell
is less than five, and enumerating all tables is computationally prohibitive then in order
to extract information about the relationship between the variables a new methodology is
required.

When confronted with a data set that violates the expected cell count assumption and has
a computationally prohibitive conditional state space, the solution, in order to conduct
accurate goodness of fit testing, is sampling. Sampling is done by randomly selecting
tables from the conditional state space of the observed table. As the tables we sample are
conditioned on the marginal sums, the sufficient statistics to infer the MLE, the sampled
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tables have a relationship with the observed table; they all have the same MLE. Therefore,
we can utilize the sampled tables to construct the null distribution of test statistics and
conduct hypothesis testing. There are two popular methods for sampling when utilizing
contingency tables, Sequential Importance Sampling (SIS) and Markov Chain Monte Carlo
(MCMC).

Kale et.al. [4], demonstrates the pros and cons of the SIS and MCMC methods for sampling 
contingency tables. These can be found in Figure 1.4.

Figure 1.4. SIS/MCMC Pros and Cons

Chen et. al. [5], developed and utilized a SIS method for estimating the total number of 
tables with given marginal sums utilizing the uniform distribution. They compared the 
efficiency of this SIS method with a MCMC method utilizing basic moves to sample tables 
from the uniform distribution. In this research, we develop a novel sampling method that 
blends the SIS method, sampling values from the hypergeometric distribution, with the 
MCMC method in order to conduct a goodness of fit test.

We propose a blend of the SIS method and the MCMC method, based on [4], in order to
conduct model fitting on I × J × K contingency tables under the no-three-way interaction
model. Further, during SIS, we construct tables in the conditional state space by sampling
from the hypergeometric distribution and not the uniform distribution. The algorithms we
developed are fully described in Chapter 3.

1.3 Research Objectives
In the remainder of the work, we accomplish the following research objectives.

• Conduct SIS sampling from the hypergeometric distribution on I × J × K data sets.
• Blend the SIS method with the MCMC method to create a more efficient sampler.

4



• Apply the blended method to 5 × 4 × 2 sparse data set generated from the Poisson
distribution to test the efficiency of the sampler.

• Apply the blended method to a real world data set.

1.4 Novelty
One of the novelties of our approach is applying the SIS method to three way contingency
tables utilizing the hypergeometric distribution. Another novelty is the combination of the
SIS method we developed in this research and MCMC methods for I × J × K contingency
tables. The blend of these two methods leads to gained efficiency’s and reduction in the
negative aspects of each method.

5
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CHAPTER 2:
Background and Literature Review

In this chapter we define the notation used throughout the paper and a brief overview of the
theoretical background. This chapter also includes guidance to additional sources.

2.1 Notation
The following notation is used throughout the paper.

• Random variables are represented by capital letters; X

• Fixed values are represented by lower case letters; x

• Vectors, Arrays and Tables are represented by bold letters; X, x
• Initial tables are lower case and bold with a superscript; x0

• An individual cell in a table is x0
i j k

• Summing over a dimension is x0
+jk. In this case we sum over the I dimension.

• Searching over a dimension is x0
·jk. In this case we are looking at the values in the I

dimension.

2.2 Definitions
Figure 2.1 is used to provide direction for the mathematical concepts we utilize in the
construction of our SIS/MCMC blended algorithm.

2.2.1 Contingency Table
A contingency table, X, is used to analyze associations or interrelations between discrete
random variables [1]. In our research we assume that each random variable has a finite
number of categories, which are often called “levels.” A “cell” is a particular event with
these discrete random variables and a “cell count” is the number of the particular event
observed in the given sample.

In this research, we focus on three way contingency tables, I × J × K , a representation for
three discrete random variables W ∈ {1, . . . , I}, Y ∈ {1, . . . , J}, and Z ∈ {1, . . . ,K} for

7



Figure 2.1. Methodology Flow Diagram

I, J, K ≥ 2.

When referencing X, individual cell counts are defined as Xi j k . For our analysis, we
condition our data on the marginal sums. The row sums are defined as:

X+ j k =

I∑
i=1

Xi j k for 1 ≤ j ≤ J, 1 ≤ k ≤ K .

Similarly, we can obtain the marginal sums over the second random variable Y , that is, the
Xi+k and the marginals, Xi j+ over the third random variable Z , which we refer to as the K
way sums.

In our algorithms we represent the marginal sums as matrices. The row sum matrix is a
J × K matrix where each row represents a “layer”, we define “layer” as the different values
of k ∈ {1, . . . ,K}, of x0 and each column represents the row number. For instance, if the
dimensions of x0 are 3× 4× 5 then the I-way sum matrix is a 4× 5 matrix where cell 3,2 is
the third row sum of k = 2.

2.2.2 Hypothesis Testing
A goodness of fit test is a variant of a hypothesis test which determines whether a null
model or an alternative model better fits to an observed data set by measuring the difference
between the observed data and the expectation under the null model [2]. If an observed data
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set is close to the expectation under the null model, we select the null model [2]. If it is
significantly different, we select an alternative model. In order to measure this difference,
we utilize a test statistic. In this thesis we use the χ2 test statistic to measure the difference
between the sampled table and the MLE.

In particular, we are interested in the no-three-way interaction model. With a given three
way contingency table, X, with categorical variables W , Y , and Z , the general log-linear
model is defined as follows: Each cell count Xi j k is distributed according to the Poisson
distribution with parameter θ such that

log θi j k = λ + λ
W
i + λ

Y
j + λ

Z
k + λ

WY
i j + λ

W Z
ik + λ

Y Z
jk + λ

WY Z
i jk

where λWY Z
i jk is the association parameter between the ith category in W , the jth category

in Y , and the kth category in Z [2]. Under the no-three-way interaction model, λWY Z
i jk = 0.

We are interested in conducting goodness-of-fit tests, that is, hypothesis tests with the null
hypothesis

H0 : λWY Z
i jk = 0.

In our project we consider the saturation model as the alternative hypothesis, i.e.,

H1 : λWY Z
i jk , 0.

Under this model, the sufficient statistics are the statistics that contain enough information
to infer the maximum likelihood estimator (MLE) for the parameters under this model.

For the no-three-way interaction model the sufficient statistics are, X+ j k for all j ∈

{1, . . . , J}, k ∈ {1, . . . ,K}, Xi+k for all i ∈ {1, . . . , I}, k ∈ {1, . . . ,K}, and Xi j+ for all
i ∈ {1, . . . , I}, j ∈ {1, . . . , J} which are the marginal sums of x0.

Random variables W and Y are conditionally independent at level k of a random variable Z
if:

P(Y = j |W = i, Z = k) = P(Y = j |Z = k), for all i = 1, . . . I, for all j = 1, . . . J .

9



Let
πi j k = P(W = i, Y = j, Z = k),

and

π+ j k = P(Y = j, Z = k) =
I∑

i=i

P(W = i, Y = j, Z = k).

By the multiplication rule and Bayes rule, if W and Y are conditionally independent of Z ,
then

πi j k = P(W = i, Z = k)P(Y = j |W = i, Z = k) (2.1)

= πi+k P(Y = j |Z = k)

= πi+k P(Y = j Z = k)/P(Z = k)

= πi+kπ+ j k/π++k

where π++k = P(Z = k) =
∑I

i=1
∑J

j=1 πi j k . Therefore, if W and Y are conditionally
independent of Z ,

µi j k = nπi j k (2.2)

log(µi j k) = log(nπi j k)

= log(n) + log(πi+k) + log(π+ j k) − log(π++k),

where n is the sample size and µi j k is the expected cell count in cell Xi j k . Since we assume
that each cell count is generated under the Poisson distribution, the expected cell count is
a parameter for the cell count. Therefore, the sufficient statistics are the sums X+ j k , and
Xi+k of the observed table X since one can estimate π+ j k = X+ j k/n, πi j+ = Xi j+/n, and
πi+k = Xi+k/n.

Similarly we can show that if W and Z are conditionally independent of Y , then

πi j k = πi j+π+ j k/π+ j+

10



and if Y and Z are conditionally independent of W , then

πi j k = πi j+πi+k/πi++.

Therefore, the sufficient statistics of x0 are the marginal sums since one can estimate the
expected cell count x0 which is the MLE for the Poisson distribution for this particular cell.

2.2.3 Maximum Likelihood Estimation
Agresti, [2], defines Maximum Likelihood for parameter estimation as "given data for a 
chosen probability distribution the likelihood function is the probability of the data treated 
as a function of an unknown parameter. The maximum likelihood estimate is the parameter 
value that maximizes the function." In other words, it is the parameter that maximizes the 
probability of seeing the observed data. In our case we utilize the marginal sums in order 
to calculate the MLE of x0, which is the contingency table with the highest probability of 
being observed.

To determine theMLE for a given table, x0, we utilize an Iterative Proportional Fitting (IPF)
technique as described in [6] via Algorithm 2.2.1.

Algorithm 2.2.1 Input: The observed table x0 =
(
x0

i j k

)
1≤i≤I, 1≤ j≤J, 1≤k≤K

∈ Z I×J×K for
I, J,K ∈ N .

Output: The MLE m =
(
mi j k

)
1≤i≤I, 1≤ j≤J, 1≤k≤K under the no three-way interaction mode.

Algorithm:

1. Initialize m1
i j k = 1, 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K .

2. Compute the marginals

xi j+ =
∑K

k=1 x0
i j k for 1 ≤ i ≤ I, 1 ≤ j ≤ J .

xi+k =
∑J

j=1 x0
i j k for 1 ≤ i ≤ I, 1 ≤ k ≤ K .

x+ j k =
∑I

i=1 x0
i j k for 1 ≤ j ≤ J, 1 ≤ k ≤ K .

3. Until convergence, iterate for l = 1, 2, . . .:

11



3.1. m3+l−1
i j k =

m3+l−2
i jk

xi j+∑K
k=1 m3+l−2

i jk

for 1 ≤ i ≤ I, 1 ≤ j ≤ J,

3.2. m3+l
i j k =

m3+l−1
i jk

xi+k∑J
j=1 m3+l−1

i jk

for 1 ≤ i ≤ I, 1 ≤ k ≤ K ,

3.3. m3+l+1
i j k =

m3+l
i jk

x+jk∑I
i=1 m3+l

i jk

for 1 ≤ j ≤ J, 1 ≤ k ≤ K ,
4. Return m.

2.2.4 χ2 Test Statistic
The χ2 test statistic is utilized to determine differences between the expected frequencies
and the observed frequencies in one or more categories of a contingency table [1]. The
calculation of the test statistic uses the sum of squared differences between the observed
data set and the expected values of the table, or the maximum likelihood estimate, m. The
test statistic is calculated as follows.

χ2 =
I∑

i=1

J∑
j=1

K∑
k=1

(x0
i j k − mi j k)

2

mi j k
.

2.2.5 Conditional State Space
The conditional state space is the set of all tables that satisfy the marginal sums of a given
data set [7]. As was described, the marginal sums are the sufficient statistics to determine
the probabilities of seeing a particular Xi j k and constructing the MLE of the observed table.
If we construct a new table, x1, with the same marginal sums as the observed data set, x0,
this table exists in the conditional state space of x0. For this reason, we can use x1 and the
MLE of x0, m, to calculate a test statistic. By repeating this process we can estimate the
Null Distribution of x0. We use Fisher’s Tea Test from Chapter One to illustrate an observed
tables entire conditional state space. All marginal sums in Fisher’s Tea Test are equal to
four, Figure 2.2 is the complete conditional state space of Fisher’s Tea Test. The data sets
we use in our research have a conditional state space that is too large to enumerate all tables
and there for we use our hybrid SIS/MCMC method to sample.
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2.2.6 Null Distribution
In order to conduct conditional goodness-of-fit tests under log-linear models, usually we use
asymptotic distributions. These distributions are utilized when the expected cell counts of
each cell in the table are greater than five [1]. However, for sparse contingency tables, it is
not appropriate to use asymptotic distributions [1] as this can lead to incorrect conclusions.

If the conditional state space is small, it is appropriate to utilize Fisher’s Exact Test [1]. This
was seen in the tea tasting example in Chapter 1 and again in Figure 2.2. All tables that are
more extreme than the observed table are enumerated and their probability of occurring are
used to construct the p-value.

To demonstrate the conditional state space and its connection to the hypergeometric dis-
tribution we use Fisher’s Tea Test from Chapter 1. In Figure 2.2 we have enumerated all
possible tables with equal marginal sums to what Fisher observed. We use the hyperge-
ometric distribution, described fully below, to calculate the probability of observing each
tables.

Figure 2.2. Fisher’s Tea Test State Space

As can be seen in Figure 2.2 the observed table has a probability of occurring of .23. The
only table in the conditional state space that is more extreme is if Bristol had gotten every
cup of tea correct. This occurs with a probability of .014. Our p-value for this test is the
sum of these two events occurring which is approximately .24.

Fisher’s exact test is inappropriate if the conditional state space is large. When we have
sparse contingency tables and a large conditional state space the null distribution must
be estimated by sampling. The hybrid SIS/MCMC method we developed can be utilized
to construct the null distribution of the observed contingency table and more accurately
estimate a p-value than by ignoring the asymptotic distribution violations.
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2.2.7 P-value
In our test a p-value is used to determine whether to reject H0 and utilize H1 or determine
there is insufficient evidence to reject H0. To calculate the p-value we utilize the following
algorithm. The outline of an exact conditional test is described in Algorithm 2.2.2:

Algorithm 2.2.2 Exact conditional test

Input: The observed table x0 ∈ ZI×J×K for I, J,K ∈ N .

Output: The estimated p-value of H0.

Algorithm:

1. Compute the sufficient statistics from x0 for the MLE under the null model.
2. Compute MLE.
3. Compute the test statistic χ2(x0).
4. Sample tables x1, . . . , xn from the conditional state space given the sufficient statistics.
5. Calculate the test statistics χ2(x1), . . . , χ2(xn) for x1, . . . , xn, respectively.
6. Estimate p-value by computing ∑n

i=1 Iχ2(x0)≥χ2(xi)

n
.

The focus of our work is Step 4 of the ’Exact Conditional Test’ algorithm. We demonstrate
how we successfully conduct a hybrid approach leveraging the positive aspects of SIS and
MCMC while minimizing the drawbacks [4]. This algorithm is fully described in Chapter
3.

2.2.8 Sequential Importance Sampling
Chen et. al [5], developed an SIS method for an exact conditional test on the 
discrete exponential family. Chen et. al [8], focused on the independence model for 
two-way contingency tables and applied the SIS procedure to the volume test which is 
developed by [3] instead of a classical conditional goodness of fit test on the 
independence model. One of the issues of their method is only sampling contingency 
tables from the uniform
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distribution. In order to conduct a goodness of fit test, one must sample tables from the
hypergeometric distribution.

Another issue with the sampling method developed in [8] is computational time. In their
method, one has to compute lower and upper bounds for each cell count in a table by
solving integer programming problems. Since solving an integer programming problem is
NP-hard [9] and one has to solve 2 · I · J many integer programming problems for sampling
a I × J contingency table, their method is computationally expensive.

Therefore, in this thesis, we propose a novel method to sample an I× J×K table contingency
from the hypergeometric distribution efficiently by blending the SIS and MCMC methods.

2.2.9 Hypergeometric Distribution
The reason we sample from the hypergeometric distribution is the relationship between
contingency tables and the hypergeometric distribution [2]. As can be seen below, a
contingency table is a representation of the hypergeometric distribution. In this table, A is
the total number of balls in the urn, G is the number of green balls in the urn, and A −G is
the number of red balls in the urn. a+ x is the total number of balls drawn from the urn, x is
the number of green balls drawn from the urn, a − x is the total number of red balls drawn.

Drawn Not Drawn Total
Green x G − x G
Red a A − a − G A − G

Total a + x A − a − x A

The probability that we draw some value of green balls, x, given we draw a + x total balls,
is calculated using the hypergeometric distribution:

P(X = x) =

(G
x

) (A−G
a

)( A
a+x

) .

This relationship is not limited to 2 × 2 tables. For three-way contingency tables the
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hypergeometric distribution is defined as

(
∏

i Xi++!)
(∏

j X+ j+!
)
(
∏

k X++k!)

(n!)2
∏

i
∏

j
∏

k Xi j k!

where n = X+++.

As can be seen by the 2 × 2 example above, the marginal sums are the sufficient statistics
that can determine the probability of drawing a certain number of green balls, x, [2]. This
relationship is true in I × J × K tables as well. In our method for sampling, we utilize
the marginal sums to create a 2 × 2 × 2 matrix that calculates the required probabilities for
sampling.

Before that can occur, wemanipulate the marginal summatrices introduced in Section 2.2.1.
Algorithm 2.2.3 runs on the r, c, and k marginal sum matrices prior to sampling from the
hypergeometric distribution. The sum matrix, S, will be used to describe the algorithm
because the algorithm operates on r, c, and k in the same way.

Algorithm 2.2.3 Create 2 × 2 table for hypergeometric sampling

• Input: Marginal Sum matrix S.
• Output: 2 × 2 matrix, S̄.
Algorithm:
1. Set S̄11 = S11

2. Set S̄12 =
∑J

j=1 S1 j − S11.
3. Set S̄21 =

∑I
i=1 Si1 − S11.

4. Set S̄22 =
∑J

j=1
∑I

i=1 Si j − S̄21 − S̄12 − S11.

We input each marginal sum matrix and utilize the returned r̄, c̄, k̄ to determine the
hypergeometric probabilities for sampling. We populate the 2 × 2 × 2, which we define as
ζ , in the following way:

K = 1 C1 C2
R1 x r̄11 − x

R2 c̄11 − x r̄12 − c̄11 + x
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K = 2 C1 C2

R1 k̄11 − x r̄21 + x − k̄11

R2 c̄21 + x − k̄11 r̄22 − c̄21 − x + k̄11

The value of x in the above table takes values between a lower and upper bound calculated
from the below formulas.

The lower bound is computed by:

L = max(0, c̄11 − r̄12, c̄11 − c̄21 − k̄11).

The upper bound is calculated by:

U = min(r̄11, c̄11, k̄11).

In our method, the hypergeometric probabilities are then calculated with the following
formula:

P(X = x) =

(∏2
l=1

∏2
s=1 r̄ls!c̄ls!k̄ls!

)
(n!)2ζ111!ζ121!ζ211!ζ221!ζ112!ζ122!ζ212!ζ222!

.

2.2.10 Markov Chain Monte Carlo
The Monte Carlo Method simulation technique utilizes repeated random sampling in order
to find an approximate solution to a numerical problem which would be difficult to solve
by other methods [7]. A Markov Chain is a sequence of random variables with the same
conditional state space which satisfy the Markov property. The combination of these tools
is the MCMC method. We use the MCMC method as described by [10]. This method is
a way to traverse the conditional state space while conditioning upon fixed marginal sums
from x0 [10].

This method utilizes a series of moves in a Markov basis, described in the following
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subsection, in order to traverse the conditional state space. The MCMC method utilizes a
set of ’basic moves’ in order to traverse the conditional state space. This concept is best
described by the example in Figure 2.3. In Figure 2.3, x0 is our observed data set. The
basic move is the process of adding and subtracting 1 to cells in x0 in a way the transitions
us from x0 to x1 while maintaining the marginal sums. This procedure moves us to a new
table in the conditional state space. This process is repeated until a large enough sample
size has been achieved, taking into account the requirement for burn-in and thinning. In
general, basic moves cannot guarantee that a chain is connected which can cause sampling
bias [11]. An example of a table where basic move cannot traverse the conditional state
space is provided in Figure 2.4.

Figure 2.3. Example of Basic Move
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2.2.11 Markov Basis
A drawback of a purely MCMC sampling method is the computation of a Markov Basis. A
Markov Basis is the set of all moves such that any table in the conditional state space are
connected to any other table via a finite number of moves without sampling from outside of
the conditional state space [7]. Without computing a Markov Basis, one cannot know if all
tables are connected which can possibly introduce sampling bias. Figure 2.4 is an example
of a 3× 3× 2 table that is not connected by a set of basic moves and therefore MCMC alone
would be unable to sample from this state space.

Figure 2.4. Non-Ergodic State Space

As can be seen from Figure 2.4, a basic move cannot connect x0 to x1. This issue is solved
by utilizing SIS as the sampling method.

De Loera and Onn, [11], showed that for tables I × J × K , in general, there are unbounded
many moves in a Markov Basis for the no-three-way interaction model. By conducting
hybrid sampling with the SIS and MCMC we bypass the need for computing a Markov
Basis as the SIS samples depend on the marginal sums and not the previous tables values.

2.2.12 Metropolis Algorithm
We utilize the Metropolis step described in [10], this additional step guarantees that the
Markov Chain is aperiodic and reversible. These properties are important because aMarkov
Chain that is aperiodic does not have cycles in the chain and reversibility means the Markov
Chain has the same probability mass function both forwards and backwards. When these
three properties exists, we are sampling from the hypergeometric distribution [7].

We calculate a statistic, a log of ratios, g, defined as:

g =

I∑
i=1

J∑
j=1

K∑
k=1

log xn
ijk! − log xn+1

ijk !.
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Where xn is the current table in the MCMC chain and xn+1 is the proposed move. Once g is
calculated, a random uniform [0, 1], U, is generated. If min(eg, 1) ≤ U the move is accepted
and the move occurs. If min(eg, 1) > U the move is not accepted and we remain at table xn.

2.2.13 Kolmogorov-Smirnov Two-Sample Test
We utilize the Kolmogorv-Smirnov Two Sample test to validate whether our estimated null
distribution and the asymptotic distribution are in fact equal. In the test, the null hypothesis
is:

H0 : FY (x) = FX(x) ∀ x

If the null hypothesis is true, we are unable to conclusively state the the distributions are
from different populations [12].

2.3 Literature Review
SIS and MCMC methods for contingency tables have gained increasing attention in recent
years. The research in this thesis utilizes findings from the following papers. A full review
of these works is beyond the scope of this thesis and thus we refer readers to the original
articles.

Chen, Diaconis, Holmes, Liu [5] describe methods for efficient SIS on two way 0-1 con-
tingency tables and tables without a 0-1 constraint. The authors describe their method
of SIS and its usage in determining the total number of tables in the conditional state
space with given marginal sums by sampling from the uniform distribution.
The authors describe a SIS method for constructing contingency tables based on the
marginal sums by recursively sampling each cell utilizing the uniform distribution.
Their algorithm is described in Algorithm 2.3.1.

Algorithm 2.3.1 (SIS for two way tables)
• Input the number of rows I, the number of columns J, the observed table x0.
• Output A table x with the same row and column sums with x0 sampled via SIS.
Algorithm
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1. Compute the row sums Xi+ for i = 1, . . . , I and column sums X+ j for
j = 1, . . . J.

2. For i = 1, . . . , (I − 1) do:
2.1. For j = 1, . . . , (J − 1) do:

i. Pick an integer x uniformly from [0,min{Xi+ − (
∑ j−1

k=1 Xik), X+ j −

(
∑i−1

k=1 Xk j)}], where we define
∑0

k=1 Xik =
∑0

k=1 Xk j = 0.
3. For i = 1, . . . , I do:
3.1. Set XiJ = Xi+ −

∑J−1
k=1 Xik .

4. For j = 1, . . . , J do:
4.1. Set XI j = X+ j −

∑I−1
k=1 Xk j .

5. Return x.

Chen, Dinwoodie, and Sullivant [8] generalized the SIS procedures for all models in the
discrete exponential family. They consider a system of linear equations and inequali-
ties to define the sufficient statistics under a log-linear model. The sampling scheme
they developed utilizes linear integer programming to recursively sample from the
uniform distribution. Currently the SIS procedure uses uniform conditional distri-
butions because the proposed distribution from the SIS procedure is close to the
uniform distribution. Sampling from the hypergeometric distribution currently does
not perform well for sparse tables.

Diaconis and Sturmfels [10] developed a MCMC approach to the goodness of fit test on
log-linear models using the notion of Markov bases. The algorithms allows for sam-
pling from the conditional distribution, given the marginals of a contingency tables,
for discrete exponential families. They describe the implementation of the MCMC
algorithm with a Markov basis to ensure an irreducible, aperiodic, and reversible
Markov chain. See [10] for details.

Kahle, Yoshida, and Garcia-Puente [4] consider hybrid schemes to conduct exact con-
ditional inference in discrete exponential families. The authors describe various
methods of both MCMC and SIS algorithms as well as the pros and cons of each
individual method. The MCMC method faces two major problems, (1) converging
to the hypergeometric distribution on the conditional state space, called mixing, and
(2) the efficiency of the chain. These problems create samples that are identically
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distributed but because the moves are Markovian, the nth sampled table, tn, is de-
pendent on the tn−1,th sampled table which creates the requirement for burn-in and
thinning. In general it is unknown how many samples are required to thin in order to
create iid samples. Benefits of the MCMC method are the speed of computation and
once convergence on the conditional state space has occurred, the algorithm generates
samples from the hypergeometric distribution allowing for exact inference. Two of
the issues facing the SIS method is the ability to use the hypergeometric distribution
as the conditional distribution and because of the recursive nature of the method, is
is computationally expensive. The advantages of the SIS method is that it samples
independent identically distributed tables by construction and does not require thin-
ning and burn-in or any precomputation such as the construction of a Markov basis.
The authors propose and explain the costs and benefits of multiple hybrid schemes
that combine the SIS and MCMC method. In our paper we utilize one such method,
SIS Initializations, in an attempt to leverage the iid sampling of the SIS method, with
the convergence via the MCMC method.
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CHAPTER 3:
Algorithm Description

In this chapter we describe our algorithm.

3.1 Algorithms
For describing our algorithm, the observed data set is defined as x0 and the output of the
algorithm is defined as x1. The implementation of this algorithm in R takes marginal sums
computed from the observed data x0 as its input. Our marginal sums are stored as matrices
and manipulated through the execution of the algorithm. The matrices for the marginal
sums are defined as follows.

The Row sums matrix, r is a J × K matrix where

r j k :=
J∑

j=1
X0

i j k, for i = 1, . . . I and k = 1, . . .K .

The Column sums matrix, c is a I × K matrix where

cik :=
I∑

i=1
X0

i j k, for j = 1, . . . J and k = 1, . . .K .

The K-way sums matrix, k is a J × I matrix where

k ji :=
K∑

k=1
X0

i j k, for j = 1, . . . J and i = 1, . . . I .

For accounting purposes during the construction of x1 we conduct row, column, and k-
directional swaps of x1 in order to only operate on X1

111. Because we only operate on X1
111,

we also only utilize cell count on (1, 1) of r, c, k. The swap is conducted on x1, r, c, and k.
Example 3.1.1 demonstrates this procedure.
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Example 3.1.1 To describe the method we will use a numeric example on r , which for this
example will be a 3 × 3 Matrix. 

1 2 3
4 5 6
7 8 9

 .
The column swap occurs after X1

111 has been sampled and the marginal sums have been
updated. After the swap r is displayed below.


2 3 1
5 6 4
8 9 7

 .
Algorithm 3.1.2 Swap of Columns

• Input: x1, r, c, k.
• Output: Updated x1, r, c, k.

Algorithm

1. Set X1
1,(1,...,J),1 = X1

1,(2,...,J,1),1.
2. Set r1,(1,...,J) = r1,(2,...,J,1).
3. Set c1,(1,...,I) = c1,(2,...,I,1).
4. Set k(1,...,J),1 = k(2,...,J,1),1.

Algorithm 3.1.2 does not only occur on the columns but the rows and layers as well. In our
algorithm rows, columns, or layers are swapped based on which x1 cell is being operated
on. It is easy to work through which row, column, or pillar of x1, r, c, or k is to be swapped.

Our SIS algorithm under the no-three-way interaction model is completed by utilizing
a compilation of several smaller algorithms, the largest of which is the SIS step, which
generates a new table.
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3.1.1 X1 < 0 Correction Algorithms
Algorithms 3.1.3, 3.1.4, and 3.1.5 described below, are utilized to prevent unnecessary
rejections of sampled tables. During the SIS procedure, it is possible that the hypergeometric
sampling creates new tables with different marginal sums than x0. This table cannot be
utilized for calculating a p-value because the sufficient statistics are different.

We are interested in reducing the rejection rate of the SIS method because our algorithm
utilizes a ’While’ loop to achieve the desired quantity of SIS samples. For this reason, high
rejection rates leads to longer computational time.

If wewere sampling from I×J tables, none of these additional algorithmswould be required.
It is the addition of the K direction to our arrays that the correction algorithms become a
necessity. The algorithms are described below and simple examples of the algorithms are
shown in Appendix A.

Algorithm 3.1.3 is used to reduce the rejection rate by utilizing computed cell counts in x1

to correct a potential negative value from being forced into the table during the final step.
This algorithm runs when j = J in the SIS procedure.

Algorithm 3.1.3 j = J Corrective Action

• Input: x1.

• Output: Corrected x1.

Algorithm

1. If k11 or c11 < r11,
1.1. Then X1

111 = min(k11, c11).
1.2. Update k11, c11, r11.
1.3. Locate k·1 or c1· ≥ r11 = w.
1.4. Set X1

1w1 = X1
1w1 + r11.

1.5. Set c1w = c1w − r11.
1.6. Set kw1 = kw1 − r11.
1.7. Set r11 = 0.

2. Else X1
111 = r11.

2.1. Set k11 = k11 − r11.
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2.2. Set c11 = c11 − r11.
2.3. Set r11 = 0.

Algorithm 3.1.4 is used in the same way as 3.1.3. The algorithm runs when i = I during
the SIS procedure. An example of this procedure is given in Appendix A.

Algorithm 3.1.4 i = I Corrective Action

• Input: x1.

• Output: Corrected x1.

Algorithm

1. If k11 < c11,
1.1. Then X1

111 = k11.
1.2. Set r11 = r11 − k11; k11 = 0.
1.3. Locate b in X1

·21 = c11.
i. If b = ∅ Reject X1.

1.4. Set X1
b11 = X1

b21 + X1
b11.

1.5. Set k1b = k1b + X1
b21.

1.6. Set r11 = r11 − X1
b21.

1.7. Set r12 = r12 + X1
b21.

1.8. Set X1
b21 = 0.

2. Else X1
111 = c11.

2.1. Set k11 = k11 − c11.
2.2. Set r11 = r11 − c11.
2.3. Set c11 = 0.

Algorithm 3.1.5 is used to reduce rejection rates by distributing potential negative value
into neighboring cells. There is an example of 3.1.5 in Appendix A. This algorithm is used
to eliminate the negative value and provide an acceptable table, i.e. x1 ≥ 0. However, it has
the potential to move the negative cell count to a different place in x1, leading to a rejection.

Algorithm 3.1.5 i = I and j = J corrective action
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• Input: x1.
• Output: Corrected x1.

Algorithm

1. If X1
i j1 < 0,

1.1. Set X1
i j1 = X1

i j1 − X1
111.

1.2. Set X1
i11 = X1

i11 − X1
111.

1.3. Set X1
1 j1 = X1

1 j1 − X1
111.

1.4. Set X1
i11 = 0.

1.5. Update r, c, k.
1.6. If any x1 < 0, reject X1.

2. Else X1
i j1 = c11.

2.1. Set c11 = 0.
2.2. Set r11 = 0.
2.3. Set k11 = k11 − c11.

3.1.2 SIS Algorithms
Algorithm 3.1.6 is our SIS method.

Algorithm 3.1.6 SIS Algorithm

• Input: I, J, K , r, c, k.
• Output: x1.

Algorithm

1. For k = 1, . . . ,K − 1,
1.1. For i = 1, . . . , I,

i. For j = 1, . . . J,
A. While j , J and i , I,

• Algorithm 2.2.3.
• x1

111 = Hypergeometric Sample Result.
• Algorithm 3.1.2.
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B. If j = J,
• Algorithm 3.1.3.
• Algorithm 3.1.2.

C. If i = I,
• Algorithm 3.1.4.
• Algorithm 3.1.2.

D. If i = I and j = J,
• Algorithm 3.1.5.
• Algorithm 3.1.2.

2. When k = K ,
2.1. x1

i jK = k.

Return x1.

Algorithm 3.1.7 is our MCMC algorithm. To calculate a p-value on a given data set,
Algorithm 3.1.7 is executed a given number of times, n, for each SIS sample constructed.
For our simulation we generate 10,000 MCMC samples per each SIS table. We set the
burn-in value at 25% and thinning at 25 tables.

Algorithm 3.1.7 MCMC Algorithm

• Input: x1.
• Output: x2 via MCMC.

Algorithm

1. For n = 1, . . . N
1.1. Draw 2 Random Rows, 2 Random Columns, and 2 Random layers.
1.2. x2 = Execute "Basic Move" on x1.

1.3. x1 = x2.

1.4. Next n.

Algorithm 3.1.8 is the full algorithm which takes an initial data set x0 and estimates a
p-value for the no-three-way interaction model.
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Algorithm 3.1.8 P-Value Algorithm ; n is our required SIS sample size and m is our
required MCMC sample size

• Input: x0, n, m.
• Output: Estimated p-value.

Algorithm

1. Collect Dimensional data of x0.
2. Calculate r, c, and k of x0.
3. Calculate the MLE of x0.
4. Calculate the initial χ2 of x0 and MLE.
5. While t < n,

5.1. Calculate x1 using Algorithm 3.1.6.
5.2. Accept or Reject x1.
5.3. Calculate χ2 of x1 and the MLE.

• For m = 1 . . . M
– x2 = Execution of 3.1.7 on x1

– Metropolis Score calculated and acceptance determined
– Calculate χ2 of x2 and the MLE.
– next m.

• Burn-in and Thinning of MCMC χ2 values
5.4. Next t.

6. Calculate p-value by:∑n
t=1 Iχ2(x0)≥χ2(xi)

n
, where I is the indicator function.

7. Return p-value.
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CHAPTER 4:
Data Sets, Analysis, and Results

In the chapter we describe our data sets and examine the results of our simulations.

4.1 Data Sets
We utilize the following simulated data sets:

1. 3×3×3 Data Table, All Marginals = 10.
2. 4×4×4 Data Table, All Marginals = 4.
3. 5×5×5 Data Table, All Marginals = 5.
4. Randomly Generated Dense 5×4×2 table.
5. Randomly Generated Sparse 5×4×2 Table.
6. Sleep Data from [2], 3×4×2 Data Table.

Data sets 1, 2, and 3 are non random data sets. These data sets are only used to test the
performance of the SIS algorithm not to conduct goodness of fit testing. Data set 4 is a
dense table. This table satisfies the asymptotic distribution assumptions. For this reason,
we expect the estimated null distribution to match the asymptotic distribution. Data set 5
is a sparse data set that does not match the asymptotic distribution assumptions. We expect
the null distribution from data set 5 to be different than the asymptotic distribution. Data
set 6 is Time to Falling Asleep, by Treatment and Occasion from [2], which is also a sparse
table. This data set is shows in Figure 4.1.

Figure 4.1. Time to Falling Asleep, by Treatment and Occasion
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4.2 Equal Marginals Tables
The first tables were utilized simply to test our SIS algorithms performance. The following
table summarizes computational time and rejection rates for the 3 × 3 × 3, 4 × 4 × 4, and
5 × 5 × 5. We created 100 tables with the SIS algorithm and determine the rejection rates.
The results can be seen in the below table.

Array Computation Time Rejection Rate
3 × 3 × 3 14.27 Seconds 2%
4 × 4 × 4 28.63 Seconds 22%
5 × 5 × 5 61.76 Seconds 45%

4.3 Dense 5 × 4 × 2 Table
This data setmeets the requirements of the asymptotic distribution. Therefore, if our sampler
works, our estimated null distribution will match the χ2 distribution with 12 degrees of
freedom. The MLE for this table is shown in Figure 4.2.

Figure 4.2. MLE of Dense 5 × 4 × 2 Table

Figure 4.3 is the result of executing 1,000 SIS samples with 10,000 MCMC tables for each
SIS table.

The distribution of test statistics seems to match the χ2 distribution. Further, we conducted
a Kolmogorov-Smirnov test for fit between our sampled tables and the χ2

12 distribution and
failed to reject H0. This result demonstrates that our hybrid sampling scheme is accurate.
Further, since the data does satisfy the χ2 assumptions the p-value calculated from a χ2
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Figure 4.3. Results of Dense 5 × 4 × 2 Table with Hybrid Sampling

table should match the p-value estimated by our algorithm. The χ2 p-value is .549 and the
p-value calculated by our algorithm is .522.

4.4 Sparse 5 × 4 × 2 Table
This data set does not meet the requirements of the asymptotic distribution. As can be seen
from the MLE of this table in Figure 4.4, none of the cells in the MLE are greater than five.

Figure 4.4. MLE of Sparse 5 × 4 × 2 Table

The histogram of 1,000 SIS tables with 10,000 MCMC samples are found in Figure 4.5.
As can be seen, the distribution does not match the χ2

12, which can lead to incorrect
conclusions when conducting goodness-of-fit testing. However, determining a p-value
utilizing our methodology prevents these errors.
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Figure 4.5. Results of Sparse 5 × 4 × 2 Table with Hybrid Sampling

As can be seen, the distribution does not appear to match the χ2
12, which we expected.

After conducting Kolmogorov-Smirnov test we reject H0 and have determined the two
distributions are not the same. This result shows us that simply ignoring the violation of
cell count requirements from the asymptotic distribution can lead to incorrect conclusions
and model selection.

4.5 Time to Falling Asleep by Treatment and Occasion
Figure 4.6 is the result of the simulation of 1,000 SIS and 10,000 MCMC samples on the
Time to Falling Asleep by Treatment and Occasion data set from [2]. As you can see
from the histogram, the data does not follow a χ2

6 distribution; it is skewed to the left. A
Kolmogorov-Smirnov test conducted on the estimated null distribution and a χ2

6 led to a
rejection of H0. The p-value calculated when utilizing a χ2

6 is .002 which rejects the null
hypothesis that H0 : λXY Z

i jk = 0. The p-value we calculate is .035, which fails to reject at the
α = .01 level.

These results show the value of our new methodology. The potential for incorrect model
fitting exists when using the asymptotic distribution on sparse I × J ×K contingency tables.
This error is not present when utilizing our SIS MCMC hybrid sampling scheme.
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Figure 4.6. Results of Sleep Data
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CHAPTER 5:
Conclusion

In this chapter we summarize our main results and provide recommendations for follow on
work.

5.1 Conclusions
Contingency tables will continue to be a widely used method for analyzing data sets. As
large data sets become more and more common, sparse data sets will also be more common.
As we have shown, the χ2 distribution is not a good approximation for the null distribution
of test statistics for sparse data sets. Therefore, using the asymptotic distribution, i.e., the
χ2 distribution for sparse I × J × K contingency tables, can lead to incorrect conclusion
when conducting goodness of fit testing.

Via simulation we demonstrated that our SIS/MCMCmethodology accurately estimates the
null distribution for dense I × J × K contingency tables under the no-three-way interaction
model. Therefore, we are confident that our method works accurately for estimating the
null distribution for sparse I × J ×K contingency tables. As was demonstrated, our method
provides a more accurate p-value estimate for a given data set than the result obtained by
simply utilizing the χ2 distribution and ignoring the MLE assumptions.

Finally, our SIS/MCMC hybrid scheme can be utilized on I × J × K contingency tables
that are sparse or dense from any academic field. Our new methodology is not limited to
the conclusion we derived for Time to Falling Asleep by Treatment and Occasion from [2].
This new sampling scheme can be utilized on any I × J × K , for I, J, K ≥ 2, data set in
any field of research. It provides a goodness-of-fit test under the no-three-way interaction
model regardless of the source of the data.

5.2 Follow-on Work
Although this method is successful, the SIS scheme has limitations in terms of its ability to
handle high dimensional I × J ×K contingency tables. As the dimensional size of the table
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increases, rejection rates also increase, leading to increased computational time for a given
simulation. Improvements in the SIS method would reduce this issue.

The SIS/MCMC has general applicability for I × J ×K contingency tables. For this reason,
the method would benefit many different researchers if it was modified and developed into
an R package.
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APPENDIX: Algorithm Examples

A.1 Example 1
This example demonstrates Algorithm 3.1.5 from Chapter 3 using a 3 × 3 × 3 table with all
marginal sums, r, c, and k equal to 10. Algorithm 3.1.5 only occurs when i = I and j = J,
the last cell to be sampled for each layer k ∈ K. For this example, we look at k = 1. We
choose k = 1 to demonstrate the concept of the algorithm. Algorithm 3.1.5 operates the
same regardless of which layer we are currently sampling for.

k = 1

������ 10 0 0
0 10 0
0 0 10

������
k = 2

������ 0 10 0
0 0 10

10 0 0

������
k = 3

������ 0 0 10
10 0 0
0 10 0

������
The below is the current value of x1. As you can see, the required value to complete this
table is to place -1 into X1

331. This would lead to a rejection. To complete the algorithm, we
place -1 into X1

331 and can now execute Algorithm 3.1.5.

k = 1

������
3 2 5
3 1 6
4 7 -1

������
The algorithm takes the -1 from X1

331 and subtracts it from X1
331 and X1

221. It then adds the
-1 to X1

321 and X1
231. The values for k = 1 are now valid and sampling can continue for the

remainder of x1.

39



k = 1

������ 3 2 5
3 2 5
4 6 0

������
A.2 Example 2
This example demonstrates Algorithm 3.1.4 from Chapter 3 using a 3 × 3 × 3 table with all
marginal sums, r, c, and k equal to 10. This can be seen below.

k = 1

������ 10 0 0
0 10 0
0 0 10

������
k = 2

������ 0 10 0
0 0 10

10 0 0

������
k = 3

������ 0 0 10
10 0 0
0 10 0

������
Let’s suppose we have already sampled k = 1 and are currently sampling cells in k = 2. For
this example, we are currently on x1

322, which is where our error could occur.

k = 1

������ 3 2 5
3 2 5
4 6 0

������
k = 2

������
5 3 2
4 1 5
1 0 0

������
k = 3

������ 0 0 0
0 0 0
0 0 0

������
The current values of c. The bold value is the current required value to make

∑
X1
+22 = 10.

The current values of k. The bold value is the current required value to make
∑

X1
32+ = 10.
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������
0 0 0
0 6 3

10 10 10

������
If we place the value of 6, from c, into X1

322 then k23 will become -2. Forcing a negative
value into the k = 3 layer of x1 causing a rejection.������

2 3 5
5 7 4
3 0 10

������
We set X1

322 = 4, which is min(k32, c22). Then we set k32 = 0, C22 = 2. X1 now holds these
values. Currently, X1

+22 does not sum to 10. We now scan X1
.32 for the leftover value of 2

from c22. We find this in X1
132. We add this value to X1

122 thus c22 = 0. All marginals are
now updated and X1

132 is set = 0.

k = 1

������ 3 2 5
3 2 5
4 6 0

������
k = 2

������
5 3 2
4 1 5
1 4 0

������
k = 3

������ 0 0 0
0 0 0
0 0 0

������
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After executing Algorithm 3.1.4 x1 where k = 2 satisfies all marginal sums.

k = 1

������ 3 2 5
3 2 5
4 6 0

������
k = 2

������ 5 5 0
4 1 5
1 4 0

������
k = 3

������ 0 0 0
0 0 0
0 0 0

������
Values of c after Algorithm 3.1.4. ������ 0 0 0

0 0 0
10 10 10

������
Values of k after Algorithm 3.1.4. ������ 2 3 5

3 7 0
5 0 5

������
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Below is the completed Table. With the inclusion of Algorithm 3.1.4 we were able to
salvage a x1 that would have been rejected.

k = 1

������ 3 2 5
3 2 5
4 6 0

������
k = 2

������ 5 5 0
4 1 5
1 4 5

������
k = 3

������ 2 3 5
3 7 0
5 0 5

������
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