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ABSTRACT 

Close-in weapon systems (CIWS) are an essential, computer-controlled defensive 

measure available on modern warships. Due to their size and weight, however, CIWS are 

deployed only on warships with a displacement over 1000 tons. Smaller ships, such as 

patrol boats, still carry and use less accurate crew-controlled heavy machine guns. We 

propose a small, light-weight, and portable CIWS that can be easily installed onto smaller 

warships. The proposed CIWS incorporates automated target tracking to reduce errors 

that arise from manual operation. 

A prototype system, consisting of a stabilizing platform and a gun control unit, 

was designed and constructed for this research. The prototype incorporated sensors and 

microcontrollers to provide an automated target tracking capability. Two independent 

closed-loop controllers were implemented integrating inertial and vison-based sensors to 

provide automatic stabilization and tracking. A support structure for the prototype was 

fabricated using parts made with a three-dimensional printer. 

Through experimental measurement and simulations, performance of the 

prototype was evaluated and compared favorably with that of existing CIWS systems; 

however, during the course of this work, we found that several improvements would be 

required to make the proposed portable CIWS a viable solution. The work highlighted the 

need for an upgraded inertial sensor, motor gear assemblies that have much less backlash, 

and stronger supporting structure. 
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I. INTRODUCTION 

 NAVAL CLOSE-IN WEAPON SYSTEMS 

Close-in weapon systems (CIWS) are the principal self-defense system of today’s 

battleships. Nearly all warships having a displacement over 1000 tons are equipped with a 

CIWS [1]. It is the ship’s last defense against incoming threats, such as missiles, rockets, 

and fast-moving craft. These systems consist of three major components: the sensor unit, 

the computer unit, and the gun control unit. Based on the type of firing unit, systems are 

classified as gun-based CIWS, Guided Missile Weapon Systems (GMWS), or Laser 

Weapon Systems (LWS). Their sensors are a combination of radars, Forward-Looking 

Infrared (FLIR) thermal cameras, and electro-optical sensors. The computer unit is the 

interface between the sensors and the gun control unit, with the operator having overall 

control of the system. CIWS are usually found on larger ship platforms because a typical 

CIWS is large and heavy, requiring dedicated space and ship’s resources above and below 

deck [1]. On smaller ships with a displacement less than 1000 tons, crew-controlled heavy 

machine guns are used instead of the larger CIWS due to the lack of space. This defense 

system alternative introduces targeting and firing errors since it is manually operated, and 

the operator must anticipate the target’s future position. 

 HISTORICAL REVIEW OF CIWS 

Defense companies initially designed CIWS to defeat short-range air and surface 

threats. In the Cold War, the evolution of anti-surface missiles indicated the need for a new 

naval self-defense system. The Russian AK-630, developed between 1960 and 1970, is the 

ancestor of the modern CIWS [2]. The AK-630 is fully automatic and uses a six-barrel 30 

mm machine gun. It combines a radar and an electro-optical sensor to track air and surface 

targets at a range of up to four kilometers [2]. Its rate of fire is 4,000 to 5,000 rounds per 

minute, and it is controlled from either its control console or a mounted gunsight. In 1979, 

the Russians developed the AK-630M version to resolve some of the major tracking and 

firing problems of the initial system [3]. Finally, in 2012, they developed the AK-630M-2 

version after several modifications.   
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In the same time period, several other countries developed similar CIWS to upgrade 

their ships’ air-defense capabilities. The Italian Dardo, the American Phalanx, and the 

Dutch Goalkeeper are some of the major CIWS that followed the AK-630 after 1980. 

Follow-on modifications improved the firing accuracy and tracking capabilities. The CIWS 

were also used as point-defense systems for several shore bases to protect valuable facilities 

and airports from missile threats [2]. Although the most recent gun-based systems can 

defend against several incoming threats, their effectiveness in many cases is poor. 

Projectile fragments, which emanate from the destroyed targets, have enormous kinetic 

energy and can cause severe damage to the defending ship. This security gap and the need 

for defensive measures over a larger area led to the development of GMWSs, such as the 

RIM-116 Rolling Airframe Missile (RAM). Today, the U.S. directed-energy weapon 

(DEW) or LWS marks the beginning of a new era for the naval CIWS.     

In spite of the many improvements made to CIWSs over several decades of 

development, they are still large, heavy structures that are usually only available on larger 

warships. Their average weight is over five tons, and their dependence on the ship’s power 

supply and sensors makes them incompatible with smaller warship platforms [1]; 

moreover, their total cost, as well as expensive maintenance, prohibits their installation on 

smaller platforms.   

 PORTABILITY IN NAVAL DESIGN 

Earlier naval architecture utilized passive self-defense systems, such as heavily 

armored superstructures. Modern naval architecture focuses on active self-defense and 

portability [4]. With this design approach, modern ships are platforms consisting of 

components such as mechanical systems and weapon systems that adapt and change their 

mission quickly and easily. Modular warships with plug-and-play systems are regarded as 

the future of naval architecture. Yet, the design of CIWS does not adhere to this design 

philosophy or evolve in the same way. They are to this day large, over-weight systems that 

are hard-mounted to the ship’s infrastructure; consequently, sailors cannot easily transfer 

and install them on smaller ship platforms.  
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In this thesis research, we investigate the feasibility of developing a CIWS suitable 

for smaller ships. The main requirements of a CIWS for smaller ships are that it be 

lightweight, modular, and portable. This allows for the CIWS to be easily installed on a 

warship of smaller size and be quickly adapted to a newly assigned mission or objective. 

A portable CIWS must be totally independent from the ship’s sensors and power supply. 

Another desirable characteristic is for the CIWS to have a high degree of autonomy through 

the use of automated systems integrating sensors and actuators. This is required to 

accommodate the reduced crew size available on smaller ships and in naval systems 

proposed in the future.  

 THESIS OBJECTIVE 

The modern CIWS is the point of the arrow in naval self-defense architecture. Such 

systems defend against all incoming threats and are the last defensive measure before 

impact. Due to their size and their dependence on a ship’s sensors, these units are usually 

installed only on larger ship platforms. While defense companies around the world are 

trying to improve the effectiveness of these systems, designers have made no progress 

towards making them available for smaller ship platforms. In this thesis, we investigate the 

feasibility of developing a portable, easily transferable CIWS for installation on smaller 

warships.  

There are a number of major requirements for a CIWS intended for smaller 

warships. First, with regard to the dimensions and the weight of the system, the CIWS must 

be compact and lightweight so that it can be easily moved and positioned as required by a 

limited crew with little or no support equipment; therefore, the prototype must be less than 

one cubic meter in size and less than 50 kg in weight. Although the typical firing range of 

a larger CIWS is 2,000 to 4,000 m, the firing range for the prototype does not need to 

exceed 1,500 m. This range is sufficient to defend against all incoming threats, such as fast 

patrol boats and fast-flying objects. Nonetheless, its firing accuracy must be comparable to 

that of existing systems. Finally, we limit the system’s power source to a 24-V/20-A battery 

source that can be easily installed.  
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 THESIS OUTLINE 

As described in this chapter, the objective of this thesis is to research the design 

and construction of a portable CIWS for smaller ship platforms. In the remaining chapters 

of this thesis, we detail the research as follows. In Chapter II, we provide some background 

information about the accuracy of the existing systems, and we analyze the natural motion 

of a typical patrol boat. We conclude Chapter II with a brief description of the proposed 

design to familiarize the reader with the prototype. In Chapter III, we introduce the 

hardware and describe the operation of the components used. In the first part of Chapter 

IV, we describe the experimental measurements that were conducted to measure the 

performance of the prototype. Through analysis of the measured performance, we report 

on the accuracy of the prototype and compare it with that of existing CIWS systems. In the 

second part of Chapter IV, we use a simulation to extrapolate the expected performance of 

the prototype CIWS for dynamic inputs that cannot be easily reproduced experimentally. 

In Chapter V we summarize the thesis research and conclude with recommendations for 

future work.  
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II. BACKGROUND 

 In this chapter we provide some useful background before discussing the CIWS 

prototype. We describe the method used to estimate the CIWS’s firing accuracy for a 

typical patrol boat. This estimate is used later in the thesis to evaluate the performance of 

the prototype. In this chapter, we also present the pitch and roll measurements made aboard 

a ship to quantify the dynamic environment for the CIWS prototype. Lastly, a brief 

description of the design approach is presented.  

 CIWS ACCURACY  

In this section, we develop a method to estimate the firing accuracy of an existing 

CIWS. This is done to provide a baseline level of performance for comparison with our 

proposed prototype discussed later in the thesis. The method presented here makes use of 

publicly available video images that were taken during the operation of a typical CIWS. 

These videos are available online on YouTube; they were recorded during several 

counterterrorist operations. An example of a typical video examined to estimate CIWS 

accuracy is shown in Figure 1. While this method is not necessarily very accurate, it 

nonetheless provides a rough estimate of CIWS’s firing accuracy.  

 

Figure 1. CIWS Phalanx Operating against Inflated Boat. Adapted from [5]. 
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The Line-of-Sight (LOS) is the imaginary line drawn between the gun control unit 

and the target, as shown in Figure 2. The Line-of-Fire (LOF) corresponds to the trajectory 

of the round fired by the gun control unit and is aligned with the gun’s barrel. Ideally, the 

LOF is the imaginary line that connects the gun control unit with the target’s future 

position. Stated in another way, the LOS is associated with the target’s current position and 

the LOF with the future position. When the target’s relative velocity with respect to the 

gun control unit is zero, the LOS is coincident with the LOF. During successful tracking 

of a target, a firing system estimates the LOS. By observing the target’s relative motion, 

the firing system calculates the target’s future position and computes the LOF. In this 

thesis, we only examine the tracking response of the prototype and estimated the system’s 

tracking angular accuracy over the LOS.  

 

Figure 2. Line-of-Sight and Line-of-Fire Representation 
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When a CIWS is firing, the impact zone IZR  around the target defines an area of 

error, as seen in Figure 3. The firing distance FDR  is the range between the firing unit and 

the target. Through a detailed examination of the available video frames, we roughly 

estimated both IZR  and FDR . These values were then used to estimate the angular accuracy 

sθ  using 

 arctan IZ
s

FD

R
R

θ
 

=  
 

 .  (1) 

 

Figure 3. Firing Distance and Impact Zone. Adapted from [6]. 

To find IZR , we observed in Figure 1 that the bullets falling near the target produced 

a large splash of sea water, which we used to estimate the size of the impact zone. We 

assumed the size of the inflatable boat was five meters. With the impact zone estimated to 

be 20 times the size of the boat, we found that 100IZR ≈  m.  

We next sought an estimate for the firing distance FDR . By examining a successive 

sequence of video frames, we observed that all of the sea splashes appeared almost 

simultaneously within a time period of 0.1 s, which indicated that the firing burst also lasted 
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this same amount of time. We also estimated the flight time of the burst flightt  to be one 

second by noting the moment within the video when the sound of the burst began and when 

the rounds were observed in the impact zone. Knowing that the muzzle velocity Bulletu  for 

a typical CIWS, such as a Phalanx, is 1,200 m/s, we found that the firing distance was 

approximately 

 1200 m.FD Bullet flightR u t= ⋅ =   (2) 

With approximations for IZR  and FDR  in hand, we used Eq. (1) to find the angular 

accuracy for the CIWS to be 4.76Sθ = o . This result was found with the assumption that 

the target was stationary and must be adjusted for the case of a moving target. We do this 

by finding the angular displacement of the moving target with respect to the CIWS and 

subtracting this value from Sθ . To find the angular displacement of the moving target, we 

assume that it is moving perpendicular to the LOF at a speed of 40 knots, which is typical 

for an inflatable boat of this size. For the burst time period of 0.1 s, the boat is able to travel 

a distance CDR  of approximately two meters. The corresponding angular displacement φ  

of the moving target is then estimated from 

 arctan 0.1 .CD

FD

R
R

φ
 

= = 
 

o   (3) 

The total angular accuracy totalθ  of the system is the angular accuracy Sθ  adjusted 

for the angular displacement of the moving target φ  using  

 total Sθ θ φ= − .  (4) 

For the Phalanx CIWS and using the estimated figures found by examining available video, 

we found the angular accuracy to be 4.66totalθ = o . Following the same analysis for the 

video available for other CIWS, we found the angular accuracy of the AK-630 and the 

GOALKEEPER were 4.75 degrees and 4.4 degrees, respectively. In Figures 4 and 5, we 

can see the bursts of these two CIWS systems. For the performance of our prototype, we 

adopted the more restrictive value of 4.4 degrees, or 2.2± degrees, for the angular accuracy 

specification. 
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Figure 4. AK-630 CIWS Operating against Boat. Adapted from [7]. 

 

Figure 5. Goalkeeper CIWS against Missile Target. Adapted from [8]. 
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 SHIP MOTION MEASUREMENTS 

There are three rotational motions that occur on ships, as shown in Figure 6. The 

tilting along the hull axis of the ship is called roll. The rotation perpendicular to ship’s hull 

axis is called pitch and occurs fore and aft. Finally, yaw is the rotational motion around the 

ship’s vertical axis. Depending on the sea state, the ship oscillates about each of these axes. 

The exact motion of a ship, however, is affected by many different factors and is too 

complicated to be described here. Nevertheless, to understand the dynamic environment in 

which our prototype CIWS is expected to operate, we carried out a series of measurements 

aboard ship. We used an Inertial Measurement Unit (IMU) to measure the motion of a 600-

ton warship operating in normal sea conditions. The ship was an offshore patrol boat of the 

Hellenic navy in the Aegean Sea during the month of July 2017. The results of these 

measurements are used later in this thesis to estimate the system response of the prototype 

CIWS. In this section, we explain the experimental equipment used for this series of 

measurements and analyze the recorded data.  

 

Figure 6. Ship Motion in Three Axes. Adapted from [9]. 
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We captured the pitch and roll motion of the aforementioned patrol boat with an 

MPU-6050 IMU sensor and an Arduino microcontroller, as shown in Figure 7. The IMU-

sensor measured the ship’s natural motion and transferred the data to the Arduino serial 

monitor in real time using open source code. This code and the sensor’s software library 

were available on Arduino’s official website [10]. Then, we plotted the recorded angular 

motion using the MATLAB software. The ship’s roll and pitch motion, in both the time 

and frequency domains, are shown in Figures 8 and 9, respectively. During the time period 

of the measurements shown in the figures, the ship operated in a sea state of 1.5 m. 

Additional measurements occurred during times of lower sea state conditions. Those 

results, however, are not included since the ship’s motion was much less.  

 

Figure 7. Ship’s Motion Sensing Device. Adapted from [10]. 
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Figure 8. Ship’s Roll Motion Analysis in Time and Frequency Domains 

 

Figure 9. Ship’s Pitch Motion Analysis in Time and Frequency Domains 
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As seen in the figures, the ship’s motion is not exactly periodic; however, 

MATLAB’s Discrete Fourier Transformation analysis tools enabled us to find the principal 

harmonics of the motion. The sampling period of the data is equal to the Arduino’s loop 

execution time, which was measured to be 0.015 s. The roll motion had a dominant 

frequency of 0.1 Hz, which corresponds to a period of ten seconds, as shown in Figure 8. 

The amplitude of the ship’s roll motion was almost 4.5 degrees. In the pitch axis, as shown 

in Figure 9, the measured frequency was 0.12 Hz. The measured amplitude of this motion, 

however, was less than 0.3 degrees. We use this frequency analysis later in this work to 

develop test signals for simulation and experimental testing.  

 DEGREES OF FREEDOM IN CIWS 

Existing CIWSs have two Degrees-of-Freedom (DOF), and they do not use 

stabilizing platforms. Yet, they implement the pitch and roll angular corrections over the 

elevation and azimuth axis through integration with the ship’s on-board sensors. The 

purpose of the elevation and azimuth axes is to reference the bullets’ trajectory or LOF. In 

our prototype, we propose to implement four DOF. In this approach, a stabilizing platform 

will be designed to maintain a stable platform for the rest of the prototype’s structure. This 

modification keeps the ship’s gun safety sectors independent of the ship’s motion and 

reduces the amount of integration required with the ship’s on-board sensors.  

All naval weapon systems have elevation and azimuth angle limits ensuring the 

safety of the ship and crew during firing operations. These limits prevent gun orientations 

beyond specified angles to avoid firing upon a ship’s own structure. Consequently, this 

creates an unprotected sector above the ship, as shown in Figure 10. Additionally, the 

orientation of this sector changes according to the ship’s motion, as shown in Figures 11 

and 12, and creates a larger unprotected sector. By having a two-DOF independent 

stabilizer at the base of the system, we maintain the desired elevation and azimuth safety 

limits, and a CIWS with four DOF produces an unprotected sector that is independent of 

the ship’s inclinations.  
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Figure 10. Unprotected Sector above a Battleship 

 

Figure 11. The Influence of the Ship’s Motion over the Unprotected Sector 

 

Figure 12. Aggregate of the Unprotected Sector Caused by the Ship’s Motion 
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 SUMMARY 

First, from the analysis of available video of the operation of existing CIWS 

systems, we establish that the angular accuracy of our prototype CIWS should be 4.4

degrees, or 2.2± degrees. We also specify the dynamic operating environment to be 0.1 Hz, 

as was found through the experimental measurements aboard the patrol boat operating in 

the Aegean Sea. Lastly, we decide on a CIWS having four DOF to minimize the 

unprotected zone and reduce the integration required with a ship’s on-board sensors. 
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III. DESIGN 

In this chapter, we provide a description of the prototype CIWS design, hardware 

specifications, and controller design and implementation through software. 

 BRIEF DESIGN DESCRIPTION 

The prototype CIWS consists of three major parts: a stabilizer at the base, a gun 

control unit at the top of the structure, and a computer unit, as shown in Figure 13. In this 

section, starting from the base and moving to the top of the structure, we explain the design 

characteristics of the prototype’s components. The purpose of the stabilizer is to reduce the 

influence of the ship’s motion during targeting and firing. The gun control unit, which 

contains the machine gun, is also equipped with a video camera to provide real-time video 

for the automatic control of the weapon’s orientation over the angles of elevation and 

azimuth. Finally, a computer control unit receives the real-time video and performs video 

image processing to complete the automatic control of the CIWS. At this point, it is useful 

to describe the design of each part and to introduce the specifications of the prototype 

configuration. 

 

Figure 13. Prototype’s Overall Design in SolidWorks Software 
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To begin with, the stabilizer is an independent, two-DOF unit that compensates for 

the ship’s pitch and roll motion, as shown in Figure 14. An MPU-6050 IMU sensor 

mounted at the top of the structure monitors the ship’s motion and transfers the data to an 

Arduino microcontroller. Two servomotors serve to stabilize the two-level structure in the 

pitch and roll axes. The servomotors are controlled through a proportional-integral-

derivative (PID) controller. The stabilizer is designed to operate independently from the 

other units of the prototype.  

  

Figure 14. Stabilizer Design in SolidWorks Software 

Secondly, the gun control unit is installed above the stabilizer; it operates totally 

independent of the unit below it. Similar to the stabilizer unit, it also has two-DOF, with 

two servomotors independently controlled over elevation and azimuth, as shown in Figure 

15. Although not shown in the figure, a machine gun and a camera are attached to the gun 

control unit. The camera is installed at the front of the unit and aligned with the gun’s 

muzzle, providing real-time video of the target to the computer unit. During each iteration 

of the control loop and once the computer vision process is completed, the Arduino 

microcontroller transfers the computed angular corrections for elevation and azimuth to the 

servomotors, as shown in Figure 16. 
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Figure 15. Gun Control Unit Design in SolidWorks Software 

 

Figure 16. Gun Control and Computer Unit Closed-Loop Block Diagram 
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The third and final component of the prototype CIWS is the computer unit. Its main 

role is to determine the angular difference in elevation and azimuth between the system’s 

LOS and the two-dimensional (2D) image position of the target using the video image 

frames it receives from the camera on the gun control unit. A typical image frame is shown 

in Figure 17, which also illustrates the image center highlighted with a red cross cursor and 

a designated target identified with a small green square. The image processing algorithm 

utilized within the computer unit computes the pixel difference between the red cross 

cursor and the green target designator. This pixel difference is then used to correct the 

elevation and azimuth angles of the gun control unit to maintain the LOS aligned with the 

LOF. The operator provides an initial indication of the target to the system by selecting a 

specific pixel area in the image frame.  

Figure 17. Computer Unit Video Frame 

HARDWARE 

In this section, we describe in more detail the hardware components used in the 
construction of the prototype CIWS. 
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1. Body and Material 

The initial design of the CIWS prototype used a metal support structure, as shown 

in Figure 18; however, this building material was soon abandoned because it was expensive 

and not easy to modify. The final prototype is a three-dimensional (3D)-printed structure 

made of polylactide (PLA). The material is biodegradable, is much easier to modify, and 

much less costly to produce. The CIWS prototype is shown in Figure 19. Both the stabilizer 

and the gun control unit are constructed with 3D-printed parts. Four DC servomotors, an 

MPU-6050 IMU sensor, and two Arduino microcontrollers are installed and integrated to 

give the assembly four DOF. The figure also shows a DC power supply located at the 

lower-left corner. A Hewlett-Packard ENVY m7 Notebook laptop computer, not shown in 

the figure, serves as the system’s computer unit. 

 

Figure 18. Initial Model 
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Figure 19. Final Prototype Model 

2. Stabilizer  

The maritime versions of any weapon system must provide a stabilization 

mechanism to compensate for the ship’s motion. A ship’s gyroscope senses the natural 

motion of the ship and provides its orientation. Usually, naval weapon systems have two 

DOF to control their orientation in elevation and azimuth. Additionally, to compensate for 

the ship’s motion, pitch and roll corrections are also applied to these two axes. In our four-

DOF prototype, we implement an automatic stabilizer to achieve the desired stabilization, 

as shown in Figure 20. We chose this architecture because it addresses the need for 

portability in our prototype design. This base consists of an IMU sensor, two servomotors, 

and an Arduino microcontroller. In the next paragraphs, we explain the purpose of the four-

DOF design and describe the electric/electronic components used in the assembly of the 

base.  
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Figure 20. Stabilizer Base Hardware 

In our design, the function of the ship’s gyroscope is achieved with the MPU-6050 

IMU providing the desired portability. IMUs are electronic devices that consist of 

gyroscopes and accelerometers and are used to measure the movement of a body [11]. The 

MPU-6050 IMU is a six-DOF motion tracking device that combines a three-axis gyroscope 

and a three-axis accelerometer. The accelerometer measures the inertial forces that occur 

during the movement of the device. Naturally, it is extremely sensitive to vibrations and 

mechanical noise. The gyroscope provides the angular velocities of the device with respect 

to each of the sensing axes. While they are less sensitive to mechanical noise than the 

accelerometers, the gyroscopic drift limits their performance. Finally, the combination of 

those two sensor types decreases the total orientation error [1]. For the purpose of our 

research, a single MPU-6050 IMU is sufficient to demonstrate our concept despite the 

aforementioned errors. This sensor is attached to the upper plate of the stabilizer and 

communicates with a connected Arduino microcontroller, as shown in Figure 21, to 

provide the orientation measurements for the control loop.  
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The Arduino is a single-board microcontroller that combines software and 

hardware, which simplifies the creation of interactive electronic projects [2]. This open-

source platform is controlled through user developed software using C and C++ 

programming languages. Digital and analog input-output channels on the Arduino board 

allow communications with different sensors and other electronic devices. The Arduino 

microcontroller is at the heart of the prototype CIWS control loop. It receives the IMU’s 

measurements and translates them into the angular corrections which command the motion 

of the attached servomotors to align the platform with the sea surface. 

 

Figure 21. Stabilizer Configuration and Schematics. Adapted from [12], [13]. 

Subsequently, the stabilizer’s servomotors received the angular corrections through 

the transferred pulse-width modulation (PWM) signal. Servomotors are a combination of 

a rotary encoder, a sophisticated controller, and a DC motor. Applying a discrete signal to 

a servomotor, we accurately control its shaft’s angular position. This accuracy is achieved 

through a closed-loop process built into the ASME-MXB servomotor assembly. 

Specifications of the ASME-MXB servomotors that we use for the prototype are shown in 

Figure 22. The output shaft of each servomotor is attached to each of the pitch and roll 

axes, respectively, to control the orientation of the base’s upper mounting plate. 
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Figure 22. ASME-MXB Servo Characteristics. Adapted from [14]. 

3. Gun Control Unit and Computer Unit 

The gun control unit and the computer unit work together to maintain the 

orientation of the gun. As with the stabilizer unit, the gun control unit also utilizes two 

ASME-MXB servomotors, as well as an Arduino microcontroller, and a web camera, as 
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shown in Figure 23. First, the attached laptop computer or computer unit provides the 

image processing resources needed for this component. Secondly, the camera is aligned 

with the gun’s barrel and transfers real-time video to the laptop computer. Thirdly, the 

laptop computer unit estimates the elevation and azimuth alignment errors of the gun 

control unit through an image processing algorithm. Next, it translates these errors into 

angular corrections for the elevation and azimuth axes and transfers the results to the 

Arduino microcontroller. Finally, the Arduino software controls the two servomotors to 

align the gun barrel with the target’s position. This is a closed-loop, self-correcting process 

that occurs once in every processing loop to keep the gun aligned to the target while it is 

moving. 

 

Figure 23. Gun Control Unit Hardware and Schematics 
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 THEORY AND IMPLEMENTATION OF CLOSED-LOOP SYSTEMS, PID 
CONTROLLERS, AND COMPUTER VISION 

Now that we have introduced the hardware components of the prototype, in this 

section, we explain how the control theory is implemented in the prototype. The prototype 

uses four servomotors, one for each DOF. While the stabilizer must counterbalance the 

ship’s motion in the pitch and roll directions, the gun control unit must align the barrel of 

the gun with the target over the elevation and azimuth angles. The overall tracking accuracy 

of the prototype is determined by the accuracy with which the motors can be controlled. 

To improve the CIWS response, we created a closed-loop PID controller for each of the 

motors. In this section, we review the fundamentals of closed-loop systems and PID 

controllers, and we explain how they are applied to the prototype. 

1. Closed-Loop Systems 

In engineering applications, we design feedback controllers to achieve higher 

accuracy in a system [15]. Disturbances can negatively influence and alter the output of a 

system. In a closed-loop system, the output is combined with the input to eliminate the 

influence of the disturbances [15]. For our prototype, we created a closed-loop control 

system for each of the four DOF: elevation, azimuth, pitch, and roll. With one motor 

controlling the motion of each DOF, these closed loops create a self-correcting system to 

achieve higher accuracy while tracking a target. The application of closed-loop control 

theory to the prototype’s main parts is shown in Figure 24. Within the next paragraphs, we 

describe the closed-loop control theory implementation for the two-DOF stabilizer and the 

two-DOF gun control unit. 
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Figure 24. Closed-Loop Control Theory Implementation within the Prototype 

During the initial design of the stabilizer, we installed the IMU sensor at the bottom 

of the structure, monitoring the ship’s pitch and roll orientation angles; however, the 

observed response was insufficient and resulted in an average error errorθ  of four degrees. 

While the purpose of the stabilizer is to ensure that the ship’s natural motion does not 

influence the gun, this angular error resulted in a missed target error errorD  of as much as 

84 m at an assumed firing distance FDR  of 1200 m, estimated by 

 tan( )error FD errorD R θ= ⋅  . (5) 

The control system approach described in the preceding paragraph essentially 

represents an open-loop control system due to the lack of a feedback loop. The sensor 

monitored the inclinations of the lower base and the controller adjusted the inclination of 

the upper base; however, the upper base inclination was not measured and compared to the 

desired orientation, resulting in the poor response. The need for higher accuracy led to the 

development of a feedback control loop that reduces the negative influence of the 

disturbances. By relocating the IMU sensor to the upper plate of the structure, we created 
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a closed-loop control that improves the stabilizing accuracy. Through this modification, 

the IMU sensor monitors the orientation of the upper base in each processing loop and 

results in a reduced total angular error. The block diagrams of the open and closed-loop 

control configurations are shown in Figure 25. 

 

Figure 25. Open- and Closed-Loop Stabilizer Configurations 

The closed-loop design is also utilized in the gun control unit. The main purpose of 

this unit is to align the gun’s barrel with the target. The gun and a camera are installed at 

the top of the structure aligned to each other and facing the target, as previously shown in 

Figure 19. This configuration ensures that the gun and the camera always point to the same 

spot or target in the LOF direction. The camera transfers real-time video of the target to 

the computer unit. The video images are processed to determine the pixel distance between 

the target and the center of the image, as shown in Figure 26. Subsequently, the pixel 

distance is converted into the appropriate angular corrections for elevation and azimuth. In 

turn, these corrections are transferred to the Arduino located on the gun control unit, which 
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controls the azimuth and elevation servomotors to maintain the LOF aligned with the 

target. This closed-loop process was previously shown in Figure 16. 

 

Figure 26. Pixel Distance between Target and Image’s Center 

In each processing loop, the computer unit determines the current pixel distance 

found in the last video frame. The feedback in the aforementioned procedure is the target-

center pixel distance. A zero pixel distance means that the barrel and the camera are 

perfectly aligned with the LOF directed at the target. At this point, it is crucial to mention 

that since the gun control unit is installed at the top of the stabilizing platform, the angular 

stabilizing errors also influence the pixel distance. Eventually, the factors that influence 

the accuracy of the gun control unit are the angular errors in the stabilizer unit and the 

target’s relative motion. Nonetheless, this closed-loop system minimizes these errors and 

drives the tracking error to zero. The prototype’s block diagram of the overall closed-loop 

system is shown in Figure 27.    
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Figure 27. Prototype’s Overall Closed-Loop Block Diagram 

2. PID Control from Theory to Implementation 

PID controllers are feedback-control loops that provide continuous and accurate 

control of an engineering system or process [15]. A real-life example of such a controller 

is the cruise control that maintains the desired speed of a car by adjusting the engine’s fuel 

flow. In our prototype, we implemented PID control loops for each of the motors to achieve 

higher control accuracy in each DOF. Through this feedback control process, the 

servomotor’s shaft angular position is adjusted automatically to maintain the desired pitch, 

roll, elevation, or azimuth angle. In this section, we review PID control theory, and we 

explain how it is implemented in the prototype. 

 
Specifically, a PID controller is a closed-loop algorithm in which the input is the 

difference between the desired and the current state of a plant or process [15]. The 

controller aims to eliminate this difference, which is called the error ( )e t . The user and/or 

other sensors in the system determine the desired state of the mechanism, which is called 
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the set point. The main role of the controller is to reduce the difference between the present 

and the desired angular position of the plant. The block diagram of a PID controller that 

regulates the angular position of a process is shown in Figure 28. 

 

Figure 28. PID Controller Block Diagram 

The PID controller is made up of three terms: the proportional term, the integral 

term, and the derivative term. The mathematical expression for the PID controller is  

 ( )u t P I D= + +  , (6) 
where the proportional term P  is given by 
 
 ( )pP K e t= ⋅  , (7) 
the integral term I  is 

 
0

( )
t

iI K e dτ τ= ⋅ ∫  , (8) 

and the derivative term D  is 

 ( )
d

de tD K
dt

= ⋅  . (9) 

Each of the terms in Eq. (6) influences the controller’s output ( )u t . The coefficients pK ,

iK , and dK  are the adjustable weights or gains for each of the terms in Eq. (6) and are 

tuned to achieve a desired overall system response.  
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Two PID controllers are used in the stabilizer to regulate the orientation of the upper 

plate. The first PID controller maintains the pitch of the plate by adjusting the angular 

position of the output shaft of the lower motor. A second PID controller maintains the roll 

angle of the stabilizer upper plate. The IMU sensor is installed on the upper plate and 

computes the orientation of the plate so that the PID controllers can maintain a zero pitch 

and roll orientation. The PID controllers are implemented in software on the Arduino 

microcontroller. Consequently, the controllers are discrete algorithms with a measured 

loop period of 0.015 s.  

3. Computer Vision 

Computer Vision (CV) integrates computer software and hardware [16] to extract 

information from images. In military applications, CV has a major role since cameras are 

passive sensors, and an enemy cannot easily detect them. Almost all modern weapon 

systems have CV capabilities that serve to enhance their ability to detect a target. In our 

prototype, a CV software program estimates the alignment error between the LOS of the 

gun control unit and the LOF. 

Using an image processing algorithm available from open-sourced CV software 

[17], we processed individual digital image frames that were captured by the gun control 

unit’s camera. The pixels in each frame had a value ranging from zero to 255 that 

represented their image intensity from black to white, respectively. Using these values the 

CV algorithm executes the following steps. First, the computer unit’s operator designates 

a target by selecting a 3-by-3 pixel area on the image [17]. Second, the algorithm identifies 

the target by tracking the average color value within this area in the image frame. Third, 

the algorithm computes the pixel distance distP  between the center of this target and the 

center of the image. Then, distP  is translated to the angular correction corθ  given the 

camera’s field-of-view viewφ  and the image’s total pixel width pixelW . In Figure 29, the 

relation between the pixel distance and the angular correction can be seen. Mathematically, 

this is described by 
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2arctan tan
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φθ
  =   

   
 . (10) 

Once corθ  is computed in each processing loop, the value is sent to the Arduino 

microcontroller where the PID controller computes the appropriate motion for the 

servomotors to regulate the elevation and azimuth angles. 

 

Figure 29. Pixel Distance Translated to Angular Correction 

 SOFTWARE 

In this section we describe the three primary software programs developed for this 

thesis project and discuss how they interface with the hardware. Two of the programs were 

developed for the Arduino microcontrollers, which are installed in the stabilizer unit and 

the gun control unit. The third software program is operated on the computer unit (laptop) 

executing the image processing algorithm. In our prototype, the stabilizer software is an 

Arduino program [18], also known as a sketch, which implements two PID controllers that 

control the pitch and roll servomotors. The gun control unit’s software is also an Arduino 

sketch that establishes the communication between this unit and the computer unit. The 

computer unit’s software is a CV program developed in the Processing programming 
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language that visualizes the data and interacts with the user [17]. The last two software 

programs communicate with each other enabling the precise control of the gun control unit. 

1. Arduino Code for the Stabilizer  

For the stabilizer software, we implement Arduino code to contain three major 

functions: 1) to read the IMU’s orientation, 2) to compute the optimum servomotor 

performance using a PID algorithm, and 3) to transfer the angular corrections to the 

servomotors. These three basic functions occur during every processing loop to keep the 

IMU that was installed on the upper plate aligned with the sea surface. To read the sensor’s 

data we include the i2cdev library. Furthermore, we integrate a significant part of the 

example code named MPU6050_DMP6 from the Arduino official site [18]. A flow chart 

of the stabilizer’s code is shown in Figure 30. 

 

Figure 30. Stabilizer Code Flow Chart 

2. Arduino Code for the Gun Control Unit 

In the gun control unit, we require an Arduino sketch that communicate with the 

computer unit and operate the servomotors for the elevation and azimuth angles. The code 
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receives the elevation and azimuth corrections from the computer unit and transfers them 

to the servomotors. These data are encoded by the computer unit’s software within a code 

word that has specific characters located in certain positions. To avoid any communication 

errors between the computer unit and the gun control unit, the received data is first decoded 

and then the order in which the characters were received is verified. A flow chart of the 

gun control unit’s code is shown in Figure 31. 

 

Figure 31. Gun Control Unit’s Code Flow Chart 

3. Code for the Computer Unit 

 The computer unit code is written in the Processing programming language and 

installed in the computer unit devoted to executing the CV algorithm. Parts of this code 

adjust several tracking and detection settings and determine the pixel distance between the 

target and the center of the image. Other functions facilitate the operator’s real-time 

interface with the system. Finally, two PID controllers estimate the optimal angular 

corrections in elevation and azimuth. These corrections are transferred to the Arduino 

microcontroller’s software. Several parts of this code were partially adapted from Daniel 

Shiffman’s online tutorials sequence [17]. A simplified flow chart of the code is shown in 

Figure 32. 
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Figure 32. Computer Unit’s Code Flow Chart 

 SUMMARY 

A closed-loop system is a system that includes feedback control. A simple closed-

loop system is composed of a sensor, a controller, and an engineering process or plant 

mechanism. To accurately control a closed-loop system, we can implement a PID 

controller in software within the controller processing unit. For this prototype, we 

implemented four PID controllers to regulate each of the DOF. The pitch and roll 

controllers were implemented in the Arduino software of the stabilizer. An IMU sensor 

that was installed on the upper plate of the unit provided the sea surface reference. Then 

the two controllers worked to maintain the orientation of the upper plate aligned with this 

reference as the base was free to pitch and roll. The gun control unit was installed on this 

upper stabilizer plate. In a similar way, the elevation and azimuth PID controllers trimmed 

the unit’s LOS. A camera sensor installed on the gun control unit provided digital frames 

to the computer unit. Through the computer unit’s software we estimated the pixel distance 

between the target and the image’s center. This distance is the feedback signal that is 

provided to the Arduino microcontroller of the gun control unit. 
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IV. EXPERIMENTAL RESULTS AND SIMULATION 

In this chapter, we evaluate the performance of the prototype through experimental 

measurement as well as simulation. The chapter is divided into two parts. In the first part, 

experimental measurements provide the response of the CIWS as it was stimulated with 

ship motion inputs similar to those described in Chapter II. Through this study, we examine 

the performance of the portable CIWS for ships of a size similar to the aforementioned 

patrol boat. In the second part, we use a simulation model to evaluate the potential 

performance of the prototype under a wider range of ship motions as these inputs were 

difficult to reproduce in the laboratory without the availability of specialized test 

equipment.  

 EXPERIMENTAL MEASUREMENTS 

Experimental measurements were taken to evaluate the tracking accuracy of the 

prototype system and for comparison with the performance of existing CIWSs operating 

on smaller ship platforms. In this section, we initially evaluate the stabilizer’s performance 

during simulated ship motion as described in Chapter II, Section B. Then we evaluate the 

gun control unit’s performance as it tracks a moving target. The accuracy results in each 

set of measurements are compared to the accuracy of existing CIWSs. Through this 

comparison, we determine whether it is feasible to create a portable CIWS for smaller ship 

platforms. 

1. Stabilizer Performance 

To evaluate the performance of the stabilizer, the prototype was installed on a 

wooden base, as shown in Figure 19. We manually moved the stabilizer base back and 

forth to simulate the natural ship motion presented in Chapter II, Section B. As we 

described in that chapter, the roll component of the ship’s motion was very similar to that 

of a sinusoid with a frequency of 0.1 Hz and a maximum amplitude of 4.5 degrees. The 

pitch component was also sinusoidal with a frequency of 0.12 Hz and amplitude of 0.3 

degrees.  
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 To evaluate the roll angle performance, we manually moved the base at a frequency 

of 0.1 Hz and an amplitude of five degrees along the roll axis. The roll angle response is 

shown in the upper plot in Figure 33. From the figure, it can be seen that the PID controller 

for the roll axis compensated for the 5±  degree input ship motion and stabilized the roll 

angle to within 1.5±  degrees of the horizontal as desired. Furthermore, the average angular 

error over a ten-second period was approximately 0.2 to 0.3 degrees. We also note that the 

motor backlash and the elasticity of the 3D-printed structure were significant components 

of the angular error. As discussed in Chapter II, Section A, a CIWS is sufficiently accurate 

when the amplitude of the angular error is less than 2.2 degrees. Keeping this in mind and 

that a CIWS is built to continuously fire against a target for several seconds, the average 

measured roll error indicates that the stabilizer is suitably accurate for its designed purpose. 

 

Figure 33. Measured Inclinations of Stabilizer’s Upper Plate 

In Figure 33, the pitch angle response is shown in the lower plot. To simulate the 

natural pitch angle motion of the ship, the stabilizer platform was rotated back and forth 

along the pitch axis at a frequency of 0.1 Hz and an amplitude of 0.5 degrees. As observed 

in this plot, the PID controller for the pitch axis did not compensate for the 0.5±  degrees 



 41 

of sinusoidal movement of the base. Conversely, we observed a pitch angular error of 0.8±  

degrees. Furthermore, we observed similar pitch errors even when the stabilizer base was 

completely stationary. Consequently, the servomotor backlash and elasticity of the 3D-

printed structure were more than likely responsible for these angular errors. To investigate 

the pitch and roll angle performance a bit more, we conducted several additional 

experiments with simulated ship motion of different amplitudes but with the same 

frequency. We observed that the stabilizer did not compensate for ship motions with 

amplitudes less than one degree due to these two negative factors.  

Next, we examined the step response of the stabilizer in each of the axes. Each axis 

was tested independently one at a time. To begin each measurement, the stabilizer was 

inclined five degrees in either roll or pitch with the power turned off. Then, when the 

stabilizer power was turned on and the PID controller program started, the angle was 

immediately corrected and reduced to close to the desired inclination of zero degrees. In 

this manner the step response for each axis was measured. Then we plotted the results to 

visualize these two step responses, as shown in Figure 34. The five-degree initial angular 

position was selected to keep our step response analysis within the linear area. 

 

Figure 34. Stabilizer’s Five-degree Real Step Response in Roll and Pitch 
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Analyzing the step response graph for the roll axis, we observe that the upper plate 

inclination was decreased from five-degrees to zero within 0.315 s. The roll angle error is 

observed to wander approximately 1.2 degrees about the zero reference. This behavior 

remains even when the stabilizer’s base is stationary after the initial step response has 

finished. As reported earlier, this error is attributed to the elasticity of the 3D-printed 

structure and servomotor backlash. We observed similar behavior for the pitch axis. Later 

in this chapter, we use the two step responses presented here to develop a mathematical 

model for the stabilizer.  

2. Gun Control and Computer Unit Performance 

We evaluated the gun control and computer unit performance in two stages. First, 

we examined the unit’s performance when operating against a target moving in the opposite 

direction, as shown in Figure 35. Through this measurement, we estimated the unit’s 

accuracy while operating onboard a ship. Second, we examined the step response in each 

of the elevation and azimuth axes. This measurement was used later to develop a 

mathematical model of the prototype for use in simulation. 

 

Figure 35. Angular Velocity of an Opposite-moving Target 
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To simulate the motion of a target, we estimated the relative angular speedω  

between our ship that is moving at a speed u  and a target traveling at the same speed u in 

the opposite direction. Given that a typical maximum speed for warships is 40 knots and 

that the nominal firing distance is 1,200 m, the relative angular velocity is given by 

 
arctan C

FD

R
R

T
ω

 
 
 =  , (11) 

where CR  is the target’s relative distance traveled during a specific time interval T  given 

by  

 2CR uT=  . (12) 

Substituting Eq. (12) into Eq. (11), we get that a typical relative angular velocity of a target 

is 3.92 degrees/s. 

We then used this last result to create a target that was moving at the 

aforementioned relative angular velocity with respect to the camera of the gun control unit. 

While tracking this target, we monitored the system’s performance and plotted its response 

for the azimuth and elevation axes, as shown in Figure 36. Through these plots, we 

observed that the tracking error slightly exceeded the error limits we had set at the 

beginning of the design process. Nonetheless, the unit maintained the desired accuracy 

after the first two seconds in spite of the backlash and elasticity, which created an error of 

0.8 degrees, as expected.   
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Figure 36. Gun Control Unit Real Response while Tracking a Moving Target 

To evaluate the five-degree step response of the system, we followed the same 

measurement process we used for the stabilizer. The results for each of the axes are shown 

in Figure 37. Because we use the same type of servomotors that we used for the stabilizer, 

we observed that they had a similar step response. Finally, we use these results to 

mathematically model the gun control unit in Section B. 
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Figure 37. Gun Control Unit Step Response 

3. Prototype Overall Performance 

As a result of the previous experiments, the IMU sensor began to fail and report 

faulty measurements. This problem, in combination with the existing structure’s elasticity 

and servomotor backlash, caused the performance of the prototype to degrade. After 

repeated trials, the 3D-printed structure gradually began to weaken, and some of the metal 

parts on the servomotor cracked, requiring repair. As a result, the overall performance of 

the prototype significantly decreased and highlighted the need for some parts of the 

prototype to be redesigned. Nevertheless, our previous measurements were sufficient to 

provide enough data to develop a mathematical model of the system and to create a 

simulation in Simulink which could be used for additional performance analysis. 
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 SIMULATION OF THE CIWS 

The simulation aimed to determine the limits of the prototype’s performance. It 

provided a means to further examine the response of the prototype CIWS and to study the 

response for those inputs that cannot be easily reproduced in the laboratory without 

specialized test equipment. By modeling the system in Simulink, we examined the system’s 

performance for different ship motions and relative target motions. First, we developed a 

mathematical model of the system using the measured step response presented earlier in 

the chapter. Then, we created a model in Simulink that operated similarly to the prototype, 

and we compared its response with the real step responses. We also verified the sinusoidal 

motion response, as well, to convince ourselves of the accuracy of our model. Finally, the 

model was used to extrapolate the performance of the CIWS prototype for different 

dynamic ship motions.  

1. Stabilizer Mathematical Model and Simulation 

Taking into consideration the measured step response, we created a mathematical 

model that described the stabilizer’s behavior. We created a second-order transfer function 

in Simulink with a feedback loop for each of the axes, as shown in Figure 38. Through trial 

and error, we found a transfer function that produced a step response similar to the 

stabilizer’s real step response in the roll axis. This transfer function was found to be  

 2

55
3.2s s+

 . (13) 

Plots of the real and the simulated step response are shown in Figure 39. We observed that 

they were almost identical during the first 0.3 s. Similarly, we determined the pitch axis 

transfer function to be 

 2

55
5.4s s+

 . (14) 

We also plotted the simulated and the real step response of the pitch axis, as shown in 

Figure 40.  



 47 

 

Figure 38. Stabilizer’s Single Axis Simulation Model 

 

Figure 39. Stabilizer’s Simulated and Real Step Response in Roll 
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Figure 40. Stabilizer’s Simulated and Step Response in Pitch 

The overall Simulink model of the stabilizer is shown in Figure 41. For each of the 

axes of our model, we included a random number generator to act as a disturbance 

representing the stabilizer’s elasticity and backlash errors. Then, we applied as an input a 

sinusoidal motion at a frequency of 0.1 Hz and amplitude five degrees, as we did previously 

for the actual prototype. We compared their responses, and we plotted the results in each 

of the axes, as shown in Figure 42. As expected, the simulated and real plots have similar 

frequencies and amplitudes. Moreover, their average stabilizing errors appeared almost the 

same. With these results, we concluded that our simulated model had similar performance 

characteristics to the actual prototype.  
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Figure 41. Stabilizer’s Simulink Model 
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Figure 42. Simulated and Real Response in Each of the Axes 

Since we were satisfied with the operation of our model simulation of the stabilizer, 

we used it to predict the performance of the actual prototype for different dynamic motion 

inputs. Through these additional simulations, we observed that if the frequency of the 

motion was 0.5 Hz or more, the amplitude of the stabilizing error exceeded 2.2 degrees, as 

shown in Figure 43. This frequency corresponded to motion having a period of two 

seconds, which is typical for smaller boats. In Chapter II, we found that angular errors 

exceeding this range did not satisfy the performance requirements for the prototype CIWS.  
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Figure 43. Stabilizer’s Performance in Different Frequencies 
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2. Gun Control and Computer Unit Mathematical Model and 
Simulation 

To model the gun control unit, we followed the same process as for the stabilizer. 

After some trial and error, we determined the transfer function for the azimuth angle to be 

 2

70
5s s+

 . (15) 

 
The transfer function for the elevation angle was found to be 
 

 2

120
4s s+

.  (16) 

Using these two transfer functions, we created a Simulink model for each of the elevation 

and azimuth axes. The real and the simulated step response were almost identical for the 

first 0.25 s, as shown in Figure 44.   

 

Figure 44. Real and Simulated Gun Control Unit Step Response 
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The overall Simulink model of the unit is shown in Figure 45. As we did with the 

stabilizer, we also included a disturbance generator. Then, we applied a constant input to 

the model to represent the moving target that moves at a constant angular speed of 2.2 

degrees/s. We compared the real with the simulated response, and we plotted the results 

for each of the axes, as shown in Figure 46. Through trials we observed that the gun control 

unit operated similarly to the aforementioned tracking plot for every moving target with a 

constant speed; however, the angular speed of the target must be less than the operational 

limits of the motors, 120 degrees/s. 

 

Figure 45. Gun Control Unit Simulink Model 
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Figure 46. Real and Simulated Response while Tracking 
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V. CONCLUSIONS 

In this thesis research, we investigated the feasibility of creating a portable CIWS 

that can be easily transferred and installed on small warships. Specifically, the objective 

was to design and build a prototype CIWS using commercial off-the-shelf components. 

The prototype that was developed used the popular Arduino microcontroller, the MPU-

6050 IMU, a webcam, and four DC servomotors. A supporting structure made from 3D 

printed parts was used to mount all of the hardware. Software was developed for the 

Arduino microcontrollers to implement the needed PID controllers. Additional software 

algorithms were developed in the Processing programming language for the image 

processing task and to implement the automated target tracking capability of the prototype 

CIWS.   

To characterize the operating environment of the prototype CIWS, pitch and roll 

measurements were acquired aboard a Hellenic navy ship. These measurements were then 

used to develop the performance specification for the CIWS. In addition, open video 

sources were analyzed to estimate the tracking accuracy of existing CIWS and for 

comparison with our prototype. 

Experimental measurements and simulations were conducted to determine the 

performance of the CIWS prototype. The results indicated that the tracking accuracy of the 

prototype was comparable to that of existing CIWS. With regard to the stabilizer, the 

stabilizing error was less than two degrees in ship motions at frequencies less than 0.5 Hz. 

On the other hand, the overall tracking error of the system was found to be less than one 

degree. 

To develop the CIWS beyond the initial prototype described in this research, 

several modifications are required. First, the supporting structure, which tended to flex 

because of the 3D printed material that was used, needs to be replaced with a more rigid 

material that is durable and able to operate in a naval environment. The supporting 

structure’s lack of rigidity negatively affected the operation of the PID controllers. Another 

required improvement is to replace the DC servomotors with units that are more suited to 
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the application. The units that were selected for the prototype were chosen for their low 

cost and light weight. The DC servomotors, however, exhibited considerable gear backlash 

that contributed to the overall performance error. To improve this, we recommend using a 

higher-quality gearbox with less backlash. Another recommended improvement is either 

to replace the MPU-6050 IMU with a more reliable and accurate sensor or, as suggested in 

other sources [19], to implement a combination of IMU sensors to achieve greater 

accuracy. Finally, the integration of a range measurement device, such as a LIDAR, would 

be another improvement useful to determine the range of a moving target and predict its 

future position sequentially.  
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APPENDIX A.  ARDUINO CODE FOR THE STABILIZER 

#include "I2Cdev.h" 
#include <Servo.h> 
#include <Wire.h> 
Servo servoX; 
Servo servoY; 
int apotelesmata; 
#include "MPU6050_6Axis_MotionApps20.h" 
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE 
#include "Wire.h" 
#endif 
double time,timePrev; 
double elapsedTime,dt; 
double Setpoint, Input, Output; 
float mpuy,mpux; 
float Xx=80,Yy=88,oldmpux=1,oldmpuy=1; 
int ssincomingByte ; 
MPU6050 mpu; 
#define OUTPUT_READABLE_YAWPITCHROLL 
bool dmpReady = false;  // set true if DMP init was successful 
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU 
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error) 
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes) 
uint16_t fifoCount;     // count of all bytes currently in FIFO 
uint8_t fifoBuffer[64]; // FIFO storage buffer 
 
Quaternion q;           // [w, x, y, z]         quaternion container 
VectorInt16 aa;         // [x, y, z]            accel sensor measurements 
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements 
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements 
VectorFloat gravity;    // [x, y, z]            gravity vector 
float euler[3];         // [psi, theta, phi]    Euler angle container 
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector 
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' }; 
 
// ===               INTERRUPT DETECTION ROUTINE                === 
volatile bool mpuInterrupt = false;     high 
void dmpDataReady() { 
    mpuInterrupt = true; 
} 
// ===                      INITIAL SETUP                       === 
void setup() { 
    time = millis();  



 58 

    #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE 
        Wire.begin(); 
        TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz) 
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE 
        Fastwire::setup(400, true); 
    #endif 
    // initialize serial communication 
    Serial.begin(115200); 
    while (!Serial); // wait for Leonardo enumeration, others continue immediately 
    Serial.println(F("Initializing I2C devices...")); 
    mpu.initialize(); 
    Serial.println(F("Testing device connections...")); 
    Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") :     
F("MPU6050 connection failed")); 
    Serial.println(F("\nSend any character to begin DMP programming and demo: ")); 
    Serial.println(F("Initializing DMP...")); 
    devStatus = mpu.dmpInitialize(); 
    mpu.setXGyroOffset(220); 
    mpu.setYGyroOffset(76); 
    mpu.setZGyroOffset(-85); 
    mpu.setZAccelOffset(1788);  
    if (devStatus == 0) { 
        Serial.println(F("Enabling DMP...")); 
        mpu.setDMPEnabled(true); 
        Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)...")); 
        attachInterrupt(0, dmpDataReady, RISING); 
        mpuIntStatus = mpu.getIntStatus(); 
        Serial.println(F("DMP ready! Waiting for first interrupt...")); 
        dmpReady = true; 
        packetSize = mpu.dmpGetFIFOPacketSize(); 
    } else { 
        Serial.print(F("DMP Initialization failed (code ")); 
        Serial.print(devStatus); 
        Serial.println(F(")")); 
    } 
 
servoX.attach(5,500,2500);  
servoY.attach(6,250,2500);  
servoX.write(Xx); 
servoY.write(Yy); 
delay(2000); 
 } 
 
// ===                    MAIN PROGRAM LOOP                     === 
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void loop()  
  { 
    time = millis(); 
    dt=time-timePrev; 
    timePrev=time; 
    Setpoint=0; 
    if (!dmpReady) return; 
    while (!mpuInterrupt && fifoCount < packetSize) {    } 
    mpuInterrupt = false; 
    mpuIntStatus = mpu.getIntStatus(); 
    fifoCount = mpu.getFIFOCount(); 
    // check for overflow (this should never happen unless our code is too inefficient) 
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) { 
        // reset so we can continue cleanly 
        mpu.resetFIFO(); 
        Serial.println(F("FIFO overflow!")); 
 
    } else if (mpuIntStatus & 0x02) { 
        // wait for correct available data length, should be a VERY short wait 
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); 
    // read a packet from FIFO 
        mpu.getFIFOBytes(fifoBuffer, packetSize);         
        // track FIFO count here in case there is > 1 packet available 
        // (this lets us immediately read more without waiting for an interrupt) 
        fifoCount -= packetSize; 
 
       #ifdef OUTPUT_READABLE_QUATERNION 
            // display quaternion values in easy matrix form: w x y z 
            mpu.dmpGetQuaternion(&q, fifoBuffer); 
            Serial.print("quat\t"); 
            Serial.print(q.w); 
            Serial.print("\t"); 
            Serial.print(q.x); 
            Serial.print("\t"); 
            Serial.print(q.y); 
            Serial.print("\t"); 
            Serial.println(q.z); 
        #endif 
 
        #ifdef OUTPUT_READABLE_EULER 
            // display Euler angles in degrees 
            mpu.dmpGetQuaternion(&q, fifoBuffer); 
            mpu.dmpGetEuler(euler, &q); 
            Serial.print("euler\t"); 
            Serial.print(euler[0] * 180/M_PI); 
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            Serial.print("\t"); 
            Serial.print(euler[1] * 180/M_PI); 
            Serial.print("\t"); 
            Serial.println(euler[2] * 180/M_PI); 
        #endif 
 
        #ifdef OUTPUT_READABLE_YAWPITCHROLL 
            // display Euler angles in degrees 
            mpu.dmpGetQuaternion(&q, fifoBuffer); 
            mpu.dmpGetGravity(&gravity, &q); 
            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); 
//--------------------------------- Debugging in the serial monitor------------------------ 
            //Serial.print(apotelesmata); 
            //Serial.print("ypr\t"); 
            //Serial.print(ypr[0] * 180/M_PI); 
            //Serial.print("\t"); 
             Serial.println(ypr[1] * 180/M_PI); 
            // Serial.print("\t"); 
            //Serial.println(ypr[2] * 180/M_PI);       
            Serial.print("\t"); 
            //Serial.println(elapsedTime);         
//-------------------------------- Results in degrees from mpu-6050 ---------------------- 
           mpux = ypr[1] * 180/M_PI;       // ready to use value from mpu-6050 in x-axis 
           mpuy = ypr[2] * 180/M_PI;        
//------------------PD controller for the x-axis & y-axis stabilizer-servo motors------ 
  apotelesmata ++;   
  if ((Xx==80) &&(Yy==88)&&(apotelesmata<1500))     
   {                                  // servos looked in ... degrees until the mpu is stabillized 
        Xx=80; 
               Yy=88; 
            } 
  else 
           {   //====================    X-AXIS ====================== 
               Xx= Xx -0.10*mpux -18*(mpux-oldmpux)/dt;         
               oldmpux=mpux; 
               //=====================   Y-AXIS ====================== 
               Yy= Yy -0.05*mpuy -11*(mpuy-oldmpuy)/dt;         
               oldmpuy=mpuy; 
            } 
  if (Yy>120)Yy=115; 
  else if (Yy<60) Yy=65; 
  if (Xx>120)Xx=115;               
  else if (Xx<60) Xx=65; 
  servoX.write(Xx); 
  servoY.write(Yy);  
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       #endif 
       #ifdef OUTPUT_READABLE_REALACCEL 
            // display real acceleration, adjusted to remove gravity 
            mpu.dmpGetQuaternion(&q, fifoBuffer); 
            mpu.dmpGetAccel(&aa, fifoBuffer); 
            mpu.dmpGetGravity(&gravity, &q); 
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity); 
            Serial.print("areal\t"); 
            Serial.print(aaReal.x); 
            Serial.print("\t"); 
            Serial.print(aaReal.y); 
            Serial.print("\t"); 
            Serial.println(aaReal.z); 
        #endif 
        #ifdef OUTPUT_READABLE_WORLDACCEL 
            // display initial world-frame acceleration, adjusted to remove gravity 
            // and rotated based on known orientation from quaternion 
            mpu.dmpGetQuaternion(&q, fifoBuffer); 
            mpu.dmpGetAccel(&aa, fifoBuffer); 
            mpu.dmpGetGravity(&gravity, &q); 
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity); 
            mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q); 
            Serial.print("aworld\t"); 
            Serial.print(aaWorld.x); 
            Serial.print("\t"); 
            Serial.print(aaWorld.y); 
            Serial.print("\t"); 
            Serial.println(aaWorld.z); 
        #endif 
        #ifdef OUTPUT_TEAPOT 
            // display quaternion values in InvenSense Teapot demo format: 
            teapotPacket[2] = fifoBuffer[0]; 
            teapotPacket[3] = fifoBuffer[1]; 
            teapotPacket[4] = fifoBuffer[4]; 
            teapotPacket[5] = fifoBuffer[5]; 
            teapotPacket[6] = fifoBuffer[8]; 
            teapotPacket[7] = fifoBuffer[9]; 
            teapotPacket[8] = fifoBuffer[12]; 
            teapotPacket[9] = fifoBuffer[13]; 
            Serial.write(teapotPacket, 14); 
            teapotPacket[11]++; // packetCount, loops at 0xFF on purpose 
        #endif 
 
    } 
} 
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APPENDIX B.  ARDUINO CODE FOR THE GUN CONTROL UNIT 

#include <Servo.h> 
#include <LiquidCrystal.h> 
Servo myservo1; 
Servo myservo2; 
int buffer [16];                             
float angleX = 78; 
float angleY = 78; 
int flag=0; 
 
void setup() { 
  Serial.begin(115200); 
  myservo1.attach(8);     //  azimuth 
  myservo2.attach(9);     // Elevation 
  myservo1.write(angleX); 
  myservo2.write(angleY); 
  delay(1000); 
} 
 
void loop() { 
  if (Serial.available() > 0) { 
    if (Serial.read() == '$') { 
      for (int i = 0; i < 12; i++) { 
        buffer[i] = Serial.read() - '0'; 
        delay(3); 
      } 
      angleX = (buffer[1] * 1000 + buffer[2] * 100 + buffer[3]*10 + buffer[4])/10; 
      angleY = (buffer[7] * 1000 + buffer[8] * 100 + buffer[9]*10 + buffer[10])/10; 
      Serial.flush(); 
    } 
      if (angleX<50) angleX=50; 
      else if(angleX>140) angleX=140; 
      if (angleY<50) angleY=50; 
      else if(angleY>140) angleY=140; 
      flag=1;    //starting control from processing program 
      myservo1.write(angleX); 
      myservo2.write(angleY); 
    
  }     
     } 
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APPENDIX C.  CV CODE FOR THE COMPUTER UNIT 

import processing.video.*; 
import processing.serial.*; 
Capture video; 
Serial myPort;  // Create object from Serial class 
int motor=0; 
color trackColor=1;  
float threshold = 35;               // color threshold 
float distThreshold = 50;        // distance between two blobs  
float Ltargetsize= 6500;         // Largest target  that detects 
float Stargetsize= 30;             // Smaller target that detects 
float errorX=0; 
float p_errorX=0; 
float errorY=0; 
float p_errorY=0; 
float a=0; 
float angleXlim=0; 
float angleYlim=0; 
int i=0; 
int j=0; 
int cc=3; 
int bb=3; 
int startTime; 
float oldtime=0; 
float newtime=0; 
float dt=0; 
float timecounter=0; 
ArrayList<Blob> blobs = new ArrayList<Blob>(); 
boolean recording = false; 
boolean trackingON = false; 
boolean red_target_window=false; 
 
// arxikes times strofis kai ipsosis 
float angleX=78;                    // initial angle of servo1 
float angleY=78;                    // initial angle of servo2 
 
// boundaries in elevation azimuth 
int KorioY = 60;  
int PorioY = 100;  
int KorioS = 50; 
int PorioS = 120; 
 
//improvement while auto tracking 
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int opitimize_trackingX=0;   
int opitimize_trackingY=0; 
 
// initial scope size 
float scopeSize=450;               
void setup() { 
  size(1600, 896); 
  startTime = millis(); 
  String portName = Serial.list()[0]; // change the 0 to a 1 or 2 etc. to match your port 
  myPort = new Serial(this, portName, 115200);   //arduino connection 
  String[] cameras = Capture.list(); 
  printArray(cameras); 
  //video = new Capture(this, 1920, 1080); 
  /*    Some of the modes for the existing camera 
 [101] "name=Logitech HD Pro Webcam C920,size=1600x896,fps=30" 
 [119] "name=Logitech HD Pro Webcam C920,size=640x360,fps=30" 
 [121] "name=Logitech HD Pro Webcam C920,size=800x448,fps=30" 
 [123] "name=Logitech HD Pro Webcam C920,size=800x600,fps=30"  
 [125] "name=Logitech HD Pro Webcam C920,size=864x480,fps=30"  
 [127] "name=Logitech HD Pro Webcam C920,size=960x720,fps=30" 
 [129] "name=Logitech HD Pro Webcam C920,size=1024x576,fps=30" 
 [131] "name=Logitech HD Pro Webcam C920,size=1280x720,fps=30"  
 [133] "name=Logitech HD Pro Webcam C920,size=1600x896,fps=30" 
 */ 
  video = new Capture (this, Capture.list()[101]);          // choose number from printed list 
below the program 
  video.start(); 
  trackColor = color(255, 0, 0); 
} 
 
void captureEvent(Capture video) { 
  video.read(); 
} 
 
// improvements and threasholds with keyboard 
void keyPressed() { 
  if (key == 'a') { 
    distThreshold+=5; 
  } else if (key == 'z') { 
    distThreshold-=5; 
  } 
  if (key == 's') { 
    threshold+=5; 
  } else if (key == 'x') { 
    threshold-=5; 
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  } 
  if (key == 'd') { 
    Ltargetsize+=20; 
  } else if (key == 'c') { 
    Ltargetsize-=20; 
  } 
  if (key == 'f') { 
    Stargetsize+=20; 
  } else if (key == 'v') { 
    Stargetsize-=20; 
  } 
  if (key == 'r' || key == 'R') { // video  recording 
    recording =! recording; 
  } 
  if (key == 'b') { 
    scopeSize+=20; 
  } else if (key == 'g') { 
    scopeSize-=20; 
  } 
  // use like joistic     but differs while auto tracking  OPTIMIZE 
  if ((keyCode == UP) && (angleY<PorioY)) { 
    if (trackingON) { 
      opitimize_trackingY+=5; 
    } else { 
      angleY+=0.5; 
    } 
  } else if ((keyCode == DOWN) && (angleY>KorioY)) { 
    if (trackingON) { 
      opitimize_trackingY-=5; 
    } else { 
      angleY-=0.5; 
    } 
  } 
  if ((keyCode == LEFT) && (angleX>KorioS)) { 
    if (trackingON) { 
      opitimize_trackingX-=5; 
    } else { 
      angleX-=0.5; 
    } 
  } else if ((keyCode == RIGHT) && (angleX<PorioS)) { 
    if (trackingON) { 
      opitimize_trackingX+=5; 
    } else { 
      angleX+=0.5; 
    } 
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  } 
  if (key == 'P' || key == 'p') { // give or take the control to auto-traking 
    trackingON =! trackingON; 
    if (!trackingON) scopeSize=450;   
    opitimize_trackingY=0; 
    opitimize_trackingX=0; 
    angleXlim=angleX; 
    angleYlim=angleY; 
    i=0; 
    j=0; 
  } 
} 
 
void draw() { 
  video.loadPixels(); 
  image(video, 0, 0); 
  int elapsed = millis() - startTime; 
  oldtime=newtime; 
  newtime= float(elapsed) / 1000; 
  dt=newtime-oldtime; 
  //timecounter=timecounter+dt; 
  //println(dt); 
  blobs.clear();  // blobs are areas with pixels having color under the color threashold 
  // Begin loop to walk through every pixel 
  for (int x = 0; x < video.width; x++ ) { 
    for (int y = 0; y < video.height; y++ ) { 
      int loc = x + y * video.width; 
      // What is current color 
      color currentColor = video.pixels[loc]; 
      float r1 = red(currentColor); 
      float g1 = green(currentColor); 
      float b1 = blue(currentColor); 
      float r2 = red(trackColor); 
      float g2 = green(trackColor); 
      float b2 = blue(trackColor); 
 
      float d = distSq(r1, g1, b1, r2, g2, b2);  // color distance 
 
      if (d < threshold*threshold) { 
 
        boolean found = false; 
        for (Blob b : blobs) { 
          if (b.isNear(x, y)) { 
            b.add(x, y); 
            found = true; 
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            break; 
          } 
        } 
 
        if (!found) { 
          Blob b = new Blob(x, y); 
          blobs.add(b); 
        } 
      } 
    } 
  } 
    for (Blob b : blobs) { 
    if ((b.size() > Stargetsize) && (b.size() < Ltargetsize)) {   // rejects targets smaller 
      //  print the center of the target on screen 
      float [] delta=b.show();    // delta[0] is the centerX of target and  delta[1] the centerY 
      // follows whatever is inside the red scope. 
      if ((delta[0]>(scopeSize)) && (delta[0]<(width-scopeSize)) && 
(delta[1]>(scopeSize/2)) && (delta[1]<(height-scopeSize/2))) {   
        fill(0, 255, 0); 
        textSize(20);  
        text("    Target LOCKED    center   X=" + delta[0], width/2+50, 30); 
        text("Y=" + delta[1], width/2+150, 30); 
        text("Size=" + b.size(), width/2+50, 50); 
        textSize(15);  
        text("Camera center       X=" + width/2, width/2, height-25); 
        text("Y=" + height/2, width/2+100, height-25); 
//println((delta[1]-448)*0.046512,newtime);  
  println((delta[0]-800)*0.04731861,newtime);  
//1pixel in x = 0.04731861 degrees    800 
//1pixel in y = 0.046512   degrees    448 
               
        //===========     PID CONTROL    =========================        
 
        // auto tracking (inside the red box that appears on screen) 
        if (trackingON) { 
          i++; 
          errorX=(delta[0]+opitimize_trackingX-width/2); 
          if (i==1) { 
            //angleX= map(errorX, -800, 800, angleXlim-26, angleXlim+26); 
          } else if (i>8) { 
            errorX= map(errorX, -800, 800, -27, +27); 
            if (abs(errorX)>0) angleX=angleX + 0.4*errorX + 0.1*(errorX-p_errorX)/dt;  
            p_errorX=errorX; 
          } 
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          //========================Y-AXIS======================= 
          j++; 
          errorY=(delta[1]-opitimize_trackingY-height/2); 
          if (j==1) { 
            //angleY= map(errorY, 448, -448, angleYlim-10, angleYlim+10); 
          } else if (j>8) { 
            errorY= map(errorY, 448, -448, -10, +10); 
            if (abs(errorY)>0) angleY=angleY + 0.4*errorY + 0.1*(errorY-p_errorY)/dt;  
            p_errorY=errorY; 
          } 
          //================================================= 
          if (i==12) scopeSize=630; 
          // Safety-Boundaries in elevation and azimuth 
          // when reaches the boundaries must return 1 angle degree back 
          if (angleX==PorioS) { 
            angleX=PorioS-1; 
          } else if (angleX==KorioS) { 
            angleX=KorioS+1; 
          } 
 
          if (angleY==PorioY) { 
            angleY=PorioY-1; 
          } else if (angleY==KorioY) { 
            angleY=KorioY+1; 
          } 
        } 
      } 
    } 
  } 
   
  // Sreen data 
  rectMode(CENTER); 
  textSize(12);  
  rect(50, 80, sqrt(Ltargetsize), sqrt(Ltargetsize)); 
  rect(40, 180, sqrt(Stargetsize), sqrt(Stargetsize)); 
  textAlign(LEFT); 
  text("Target smaller than: " + Ltargetsize, 10, 15); 
  text("Target bigger  than: " + Stargetsize, 10, 150); 
  textAlign(RIGHT); 
  text("distance threshold: " + distThreshold, width-10, 15); 
  line(width-20, 30, width-distThreshold, 30); 
  text("color threshold: " + threshold, width-10, 50); 
  fill(0); 
  // skopeftiko 
  stroke(255, 0, 0); 
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  line(width/2-30, height/2, width/2+30, height/2); 
  line(width/2, height/2-30, width/2, height/2+30); 
  rectMode(CENTER); 
  noFill(); 
  rect(width/2, height/2, width-2*scopeSize, height-scopeSize, 40); 
 
  //record screen 
  if (recording) { 
    stroke(0, 255, 100); 
    fill(0, 255, 0); 
    saveFrame("output/gol_####.png"); 
    textSize(30); 
    text("REC", 80, 350); 
  } 
  if (trackingON) { 
 
    textSize(30); 
    stroke(0, 255, 0); 
    fill(0, 255, 0); 
    text("ON", 80, 270); 
  } 
  // conection to arduino  throught serial splitting the massage 
  String c1="$"; 
  String c4="0"; 
  String c5="$07800780";  // initial position 
  String c2=str(round(1000*angleX)); 
  String c3=str(round(10*angleY));   
 
  if (angleX<100 &&angleX>=10) { 
    c2=c4+c2; 
  } else if (angleX<10) { 
    c2=c4+c4+c2; 
  } 
  if (angleY<100 &&angleY>=10) { 
    c3=c4+c3; 
  } else if (angleY<10) {  
    c3=c4+c4+c3; 
  } 
  c5=c1+c2+c3; 
  myPort.write(c5);          
  myPort.clear();  
  delay(90);           //     maybe needs more to slow down the commands to arduino 
} 
  float distSq(float x1, float y1, float x2, float y2) { 
  float d = (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1); 
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  return d; 
} 
 
// Colordistance funcion 
  float distSq(float x1, float y1, float z1, float x2, float y2, float z2) { 
  float d = (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) +(z2-z1)*(z2-z1); 
  return d; 
} 
 
void mousePressed() { 
  // Save color where the mouse is clicked in trackColor variable 
  int loc = mouseX + mouseY*video.width; 
  trackColor = video.pixels[loc]; 
  opitimize_trackingY=0; 
  opitimize_trackingX=0; 
} 
 
class Blob { 
  float minx; 
  float miny; 
  float maxx; 
  float maxy; 
 
  Blob(float x, float y) { 
    minx = x; 
    miny = y; 
    maxx = x; 
    maxy = y; 
  } 
 
  float [] show() {    // shows a square around the target 
    stroke(0, 255, 0); 
    noFill(); 
    strokeWeight(4); 
    rectMode(CORNERS); 
    rect(minx, miny, maxx, maxy); 
    return new float [] {(minx+maxx)/2, (miny+maxy)/2};  //returns the center of the target 
  } 
 
    void add(float x, float y) { 
    minx = min(minx, x); 
    miny = min(miny, y); 
    maxx = max(maxx, x); 
    maxy = max(maxy, y); 
  } 
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    float size() { 
    return (maxx-minx)*(maxy-miny); 
  } 
    boolean isNear(float x, float y) { 
    float cx = (minx + maxx) / 2; 
    float cy = (miny + maxy) / 2; 
 
    float d = distSq(cx, cy, x, y); 
    if (d < distThreshold*distThreshold) { 
    return true; 
   } else { 
      return false; 
    } 
  } 
}  
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