

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

DESIGN AND PROTOTYPING OF A PORTABLE
NAVAL WEAPON CONTROL SYSTEM FOR HEAVY

MACHINE GUNS

by

Evangelos Serris

June 2018

Thesis Advisor: Xiaoping Yun
Second Reader: James Calusdian

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
DESIGN AND PROTOTYPING OF A PORTABLE NAVAL WEAPON
CONTROL SYSTEM FOR HEAVY MACHINE GUNS

5. FUNDING NUMBERS

6. AUTHOR(S) Evangelos Serris

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 Close-in weapon systems (CIWS) are an essential, computer-controlled defensive measure available on
modern warships. Due to their size and weight, however, CIWS are deployed only on warships with a
displacement over 1000 tons. Smaller ships, such as patrol boats, still carry and use less accurate crew-controlled
heavy machine guns. We propose a small, light-weight, and portable CIWS that can be easily installed onto
smaller warships. The proposed CIWS incorporates automated target tracking to reduce errors that arise from
manual operation.
 A prototype system, consisting of a stabilizing platform and a gun control unit, was designed and constructed
for this research. The prototype incorporated sensors and microcontrollers to provide an automated target tracking
capability. Two independent closed-loop controllers were implemented integrating inertial and vison-based
sensors to provide automatic stabilization and tracking. A support structure for the prototype was fabricated using
parts made with a three-dimensional printer.
 Through experimental measurement and simulations, performance of the prototype was evaluated and
compared favorably with that of existing CIWS systems; however, during the course of this work, we found that
several improvements would be required to make the proposed portable CIWS a viable solution. The work
highlighted the need for an upgraded inertial sensor, motor gear assemblies that have much less backlash, and
stronger supporting structure.

14. SUBJECT TERMS
close-in weapon system, PID controller, computer vision, Arduino microcontroller

15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

93

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

DESIGN AND PROTOTYPING OF A PORTABLE NAVAL WEAPON
CONTROL SYSTEM FOR HEAVY MACHINE GUNS

Evangelos Serris
Lieutenant, Greek Navy

B.S., Hellenic Naval Academy, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2018

Approved by: Xiaoping Yun
Advisor

James Calusdian
Second Reader

R. Clark Robertson
Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Close-in weapon systems (CIWS) are an essential, computer-controlled defensive

measure available on modern warships. Due to their size and weight, however, CIWS are

deployed only on warships with a displacement over 1000 tons. Smaller ships, such as

patrol boats, still carry and use less accurate crew-controlled heavy machine guns. We

propose a small, light-weight, and portable CIWS that can be easily installed onto smaller

warships. The proposed CIWS incorporates automated target tracking to reduce errors

that arise from manual operation.

A prototype system, consisting of a stabilizing platform and a gun control unit,

was designed and constructed for this research. The prototype incorporated sensors and

microcontrollers to provide an automated target tracking capability. Two independent

closed-loop controllers were implemented integrating inertial and vison-based sensors to

provide automatic stabilization and tracking. A support structure for the prototype was

fabricated using parts made with a three-dimensional printer.

Through experimental measurement and simulations, performance of the

prototype was evaluated and compared favorably with that of existing CIWS systems;

however, during the course of this work, we found that several improvements would be

required to make the proposed portable CIWS a viable solution. The work highlighted the

need for an upgraded inertial sensor, motor gear assemblies that have much less backlash,

and stronger supporting structure.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
 NAVAL CLOSE-IN WEAPON SYSTEMS ..1
 HISTORICAL REVIEW OF CIWS ..1
 PORTABILITY IN NAVAL DESIGN ..2
 THESIS OBJECTIVE ...3
 THESIS OUTLINE ..4

II. BACKGROUND ..5
 CIWS ACCURACY ...5
 SHIP MOTION MEASUREMENTS ...10
 DEGREES OF FREEDOM IN CIWS ...13
 SUMMARY ..15

III. DESIGN ..17
 BRIEF DESIGN DESCRIPTION ..17
 HARDWARE ...20

1. Body and Material ...21
2. Stabilizer ...22
3. Gun Control Unit and Computer Unit25

 THEORY AND IMPLEMENTATION OF CLOSED-LOOP
SYSTEMS, PID CONTROLLERS, AND COMPUTER VISION27
1. Closed-Loop Systems ...27
2. PID Control from Theory to Implementation31
3. Computer Vision ..33

 SOFTWARE ...34
1. Arduino Code for the Stabilizer ...35
2. Arduino Code for the Gun Control Unit35
3. Code for the Computer Unit ...36

 SUMMARY ..37

IV. EXPERIMENTAL RESULTS AND SIMULATION39
 EXPERIMENTAL MEASUREMENTS ..39

1. Stabilizer Performance ..39
2. Gun Control and Computer Unit Performance42
3. Prototype Overall Performance ..45

 SIMULATION OF THE CIWS ..46
1. Stabilizer Mathematical Model and Simulation46

 viii

2. Gun Control and Computer Unit Mathematical Model
and Simulation ...52

V. CONCLUSIONS ..55

APPENDIX A. ARDUINO CODE FOR THE STABILIZER57

APPENDIX B. ARDUINO CODE FOR THE GUN CONTROL UNIT....................63

APPENDIX C. CV CODE FOR THE COMPUTER UNIT65

LIST OF REFERENCES ..75

INITIAL DISTRIBUTION LIST ...77

ix

LIST OF FIGURES

Figure 1. CIWS Phalanx Operating against Inflated Boat. Adapted from [5].5

Figure 2. Line-of-Sight and Line-of-Fire Representation ...6

Figure 3. Firing Distance and Impact Zone. Adapted from [6].7

Figure 4. AK-630 CIWS Operating against Boat. Adapted from [7]..........................9

Figure 5. Goalkeeper CIWS against Missile Target. Adapted from [8].9

Figure 6. Ship Motion in Three Axes. Adapted from [9]. ...10

Figure 7. Ship’s Motion Sensing Device. Adapted from [10]...................................11

Figure 8. Ship’s Roll Motion Analysis in Time and Frequency Domains12

Figure 9. Ship’s Pitch Motion Analysis in Time and Frequency Domains12

Figure 10. Unprotected Sector above a Battleship ..14

Figure 11. The Influence of the Ship’s Motion over the Unprotected Sector14

Figure 12. Aggregate of the Unprotected Sector Caused by the Ship’s Motion14

Figure 13. Prototype’s Overall Design in SolidWorks Software17

Figure 14. Stabilizer Design in SolidWorks Software ..18

Figure 15. Gun Control Unit Design in SolidWorks Software19

Figure 16. Gun Control and Computer Unit Closed-Loop Block Diagram19

Figure 17. Computer Unit Video Frame ...20

Figure 18. Initial Model...21

Figure 19. Final Prototype Model ...22

Figure 20. Stabilizer Base Hardware ...23

Figure 21. Stabilizer Configuration and Schematics. Adapted from [12], [13].24

Figure 22. ASME-MXB Servo Characteristics. Adapted from [14].25

Figure 23. Gun Control Unit Hardware and Schematics...26

x

Figure 24. Closed-Loop Control Theory Implementation within the Prototype28

Figure 25. Open- and Closed-Loop Stabilizer Configurations....................................29

Figure 26. Pixel Distance between Target and Image’s Center30

Figure 27. Prototype’s Overall Closed-Loop Block Diagram31

Figure 28. PID Controller Block Diagram ..32

Figure 29. Pixel Distance Translated to Angular Correction34

Figure 30. Stabilizer Code Flow Chart ..35

Figure 31. Gun Control Unit’s Code Flow Chart ..36

Figure 32. Computer Unit’s Code Flow Chart ..37

Figure 33. Measured Inclinations of Stabilizer’s Upper Plate40

Figure 34. Stabilizer’s Five-degree Real Step Response in Roll and Pitch41

Figure 35. Angular Velocity of an Opposite-moving Target42

Figure 36. Gun Control Unit Real Response while Tracking a Moving Target44

Figure 37. Gun Control Unit Step Response ...45

Figure 38. Stabilizer’s Single Axis Simulation Model..47

Figure 39. Stabilizer’s Simulated and Real Step Response in Roll47

Figure 40. Stabilizer’s Simulated and Step Response in Pitch....................................48

Figure 41. Stabilizer’s Simulink Model ..49

Figure 42. Simulated and Real Response in Each of the Axes50

Figure 43. Stabilizer’s Performance in Different Frequencies51

Figure 44. Real and Simulated Gun Control Unit Step Response52

Figure 45. Gun Control Unit Simulink Model ..53

Figure 46. Real and Simulated Response while Tracking ...54

 xi

LIST OF ACRONYMS AND ABBREVIATIONS

2D Two-dimensional
3D Three-dimensional
CIWS Close-In Weapon Systems
CV Computer Vision
DC Direct Current
DEW Directed-Energy Weapon
DOF Degrees-of-Freedom
FLIR Forward Looking Infrared
GMWS Guided Missile Weapon System
IDE Integrated Development Environment
IMU Inertial Measurement Unit
LOS Line-of-Sight
LOF Line-of-Firing
LWS Laser Weapon System
OTHT Over-the-Horizon Target
PID Proportional–Integral–Derivative
PWM Pulse-Width Modulation
RAM Rolling Airframe Missile
RPM Rounds per Minute

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Xiaoping Yun, for his support and his

guidance throughout this thesis. I would also like to give special thanks to Dr. James

Calusdian who patiently encouraged my efforts and vigorously contributed in

accomplishing by any means this idea. My special gratitude goes to the NPS Electrical

Engineering chairman, Dr. R. Clark Robertson, and my academic advisor, Dr. Preetha

Thulasiraman, for their substantial support during the last two years.

I am also grateful to my family for their constant motivation throughout my life.

My father, Thomas, has always been my rock and the example to follow. My mother,

Konstantina, taught me my first English words and always encourages me to follow my

dreams. My dear friend, Dimitris, who by all means, showed me the way to NPS.

Lastly, I have to single out my beautiful wife, Morfoula, for a really special thank

you. It wouldn’t be the same without you. You make my life complete.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

 NAVAL CLOSE-IN WEAPON SYSTEMS

Close-in weapon systems (CIWS) are the principal self-defense system of today’s

battleships. Nearly all warships having a displacement over 1000 tons are equipped with a

CIWS [1]. It is the ship’s last defense against incoming threats, such as missiles, rockets,

and fast-moving craft. These systems consist of three major components: the sensor unit,

the computer unit, and the gun control unit. Based on the type of firing unit, systems are

classified as gun-based CIWS, Guided Missile Weapon Systems (GMWS), or Laser

Weapon Systems (LWS). Their sensors are a combination of radars, Forward-Looking

Infrared (FLIR) thermal cameras, and electro-optical sensors. The computer unit is the

interface between the sensors and the gun control unit, with the operator having overall

control of the system. CIWS are usually found on larger ship platforms because a typical

CIWS is large and heavy, requiring dedicated space and ship’s resources above and below

deck [1]. On smaller ships with a displacement less than 1000 tons, crew-controlled heavy

machine guns are used instead of the larger CIWS due to the lack of space. This defense

system alternative introduces targeting and firing errors since it is manually operated, and

the operator must anticipate the target’s future position.

 HISTORICAL REVIEW OF CIWS

Defense companies initially designed CIWS to defeat short-range air and surface

threats. In the Cold War, the evolution of anti-surface missiles indicated the need for a new

naval self-defense system. The Russian AK-630, developed between 1960 and 1970, is the

ancestor of the modern CIWS [2]. The AK-630 is fully automatic and uses a six-barrel 30

mm machine gun. It combines a radar and an electro-optical sensor to track air and surface

targets at a range of up to four kilometers [2]. Its rate of fire is 4,000 to 5,000 rounds per

minute, and it is controlled from either its control console or a mounted gunsight. In 1979,

the Russians developed the AK-630M version to resolve some of the major tracking and

firing problems of the initial system [3]. Finally, in 2012, they developed the AK-630M-2

version after several modifications.

 2

In the same time period, several other countries developed similar CIWS to upgrade

their ships’ air-defense capabilities. The Italian Dardo, the American Phalanx, and the

Dutch Goalkeeper are some of the major CIWS that followed the AK-630 after 1980.

Follow-on modifications improved the firing accuracy and tracking capabilities. The CIWS

were also used as point-defense systems for several shore bases to protect valuable facilities

and airports from missile threats [2]. Although the most recent gun-based systems can

defend against several incoming threats, their effectiveness in many cases is poor.

Projectile fragments, which emanate from the destroyed targets, have enormous kinetic

energy and can cause severe damage to the defending ship. This security gap and the need

for defensive measures over a larger area led to the development of GMWSs, such as the

RIM-116 Rolling Airframe Missile (RAM). Today, the U.S. directed-energy weapon

(DEW) or LWS marks the beginning of a new era for the naval CIWS.

In spite of the many improvements made to CIWSs over several decades of

development, they are still large, heavy structures that are usually only available on larger

warships. Their average weight is over five tons, and their dependence on the ship’s power

supply and sensors makes them incompatible with smaller warship platforms [1];

moreover, their total cost, as well as expensive maintenance, prohibits their installation on

smaller platforms.

 PORTABILITY IN NAVAL DESIGN

Earlier naval architecture utilized passive self-defense systems, such as heavily

armored superstructures. Modern naval architecture focuses on active self-defense and

portability [4]. With this design approach, modern ships are platforms consisting of

components such as mechanical systems and weapon systems that adapt and change their

mission quickly and easily. Modular warships with plug-and-play systems are regarded as

the future of naval architecture. Yet, the design of CIWS does not adhere to this design

philosophy or evolve in the same way. They are to this day large, over-weight systems that

are hard-mounted to the ship’s infrastructure; consequently, sailors cannot easily transfer

and install them on smaller ship platforms.

 3

In this thesis research, we investigate the feasibility of developing a CIWS suitable

for smaller ships. The main requirements of a CIWS for smaller ships are that it be

lightweight, modular, and portable. This allows for the CIWS to be easily installed on a

warship of smaller size and be quickly adapted to a newly assigned mission or objective.

A portable CIWS must be totally independent from the ship’s sensors and power supply.

Another desirable characteristic is for the CIWS to have a high degree of autonomy through

the use of automated systems integrating sensors and actuators. This is required to

accommodate the reduced crew size available on smaller ships and in naval systems

proposed in the future.

 THESIS OBJECTIVE

The modern CIWS is the point of the arrow in naval self-defense architecture. Such

systems defend against all incoming threats and are the last defensive measure before

impact. Due to their size and their dependence on a ship’s sensors, these units are usually

installed only on larger ship platforms. While defense companies around the world are

trying to improve the effectiveness of these systems, designers have made no progress

towards making them available for smaller ship platforms. In this thesis, we investigate the

feasibility of developing a portable, easily transferable CIWS for installation on smaller

warships.

There are a number of major requirements for a CIWS intended for smaller

warships. First, with regard to the dimensions and the weight of the system, the CIWS must

be compact and lightweight so that it can be easily moved and positioned as required by a

limited crew with little or no support equipment; therefore, the prototype must be less than

one cubic meter in size and less than 50 kg in weight. Although the typical firing range of

a larger CIWS is 2,000 to 4,000 m, the firing range for the prototype does not need to

exceed 1,500 m. This range is sufficient to defend against all incoming threats, such as fast

patrol boats and fast-flying objects. Nonetheless, its firing accuracy must be comparable to

that of existing systems. Finally, we limit the system’s power source to a 24-V/20-A battery

source that can be easily installed.

 4

 THESIS OUTLINE

As described in this chapter, the objective of this thesis is to research the design

and construction of a portable CIWS for smaller ship platforms. In the remaining chapters

of this thesis, we detail the research as follows. In Chapter II, we provide some background

information about the accuracy of the existing systems, and we analyze the natural motion

of a typical patrol boat. We conclude Chapter II with a brief description of the proposed

design to familiarize the reader with the prototype. In Chapter III, we introduce the

hardware and describe the operation of the components used. In the first part of Chapter

IV, we describe the experimental measurements that were conducted to measure the

performance of the prototype. Through analysis of the measured performance, we report

on the accuracy of the prototype and compare it with that of existing CIWS systems. In the

second part of Chapter IV, we use a simulation to extrapolate the expected performance of

the prototype CIWS for dynamic inputs that cannot be easily reproduced experimentally.

In Chapter V we summarize the thesis research and conclude with recommendations for

future work.

 5

II. BACKGROUND

 In this chapter we provide some useful background before discussing the CIWS

prototype. We describe the method used to estimate the CIWS’s firing accuracy for a

typical patrol boat. This estimate is used later in the thesis to evaluate the performance of

the prototype. In this chapter, we also present the pitch and roll measurements made aboard

a ship to quantify the dynamic environment for the CIWS prototype. Lastly, a brief

description of the design approach is presented.

 CIWS ACCURACY

In this section, we develop a method to estimate the firing accuracy of an existing

CIWS. This is done to provide a baseline level of performance for comparison with our

proposed prototype discussed later in the thesis. The method presented here makes use of

publicly available video images that were taken during the operation of a typical CIWS.

These videos are available online on YouTube; they were recorded during several

counterterrorist operations. An example of a typical video examined to estimate CIWS

accuracy is shown in Figure 1. While this method is not necessarily very accurate, it

nonetheless provides a rough estimate of CIWS’s firing accuracy.

Figure 1. CIWS Phalanx Operating against Inflated Boat. Adapted from [5].

 6

The Line-of-Sight (LOS) is the imaginary line drawn between the gun control unit

and the target, as shown in Figure 2. The Line-of-Fire (LOF) corresponds to the trajectory

of the round fired by the gun control unit and is aligned with the gun’s barrel. Ideally, the

LOF is the imaginary line that connects the gun control unit with the target’s future

position. Stated in another way, the LOS is associated with the target’s current position and

the LOF with the future position. When the target’s relative velocity with respect to the

gun control unit is zero, the LOS is coincident with the LOF. During successful tracking

of a target, a firing system estimates the LOS. By observing the target’s relative motion,

the firing system calculates the target’s future position and computes the LOF. In this

thesis, we only examine the tracking response of the prototype and estimated the system’s

tracking angular accuracy over the LOS.

Figure 2. Line-of-Sight and Line-of-Fire Representation

 7

When a CIWS is firing, the impact zone IZR around the target defines an area of

error, as seen in Figure 3. The firing distance FDR is the range between the firing unit and

the target. Through a detailed examination of the available video frames, we roughly

estimated both IZR and FDR . These values were then used to estimate the angular accuracy

sθ using

 arctan IZ
s

FD

R
R

θ

=

 . (1)

Figure 3. Firing Distance and Impact Zone. Adapted from [6].

To find IZR , we observed in Figure 1 that the bullets falling near the target produced

a large splash of sea water, which we used to estimate the size of the impact zone. We

assumed the size of the inflatable boat was five meters. With the impact zone estimated to

be 20 times the size of the boat, we found that 100IZR ≈ m.

We next sought an estimate for the firing distance FDR . By examining a successive

sequence of video frames, we observed that all of the sea splashes appeared almost

simultaneously within a time period of 0.1 s, which indicated that the firing burst also lasted

 8

this same amount of time. We also estimated the flight time of the burst flightt to be one

second by noting the moment within the video when the sound of the burst began and when

the rounds were observed in the impact zone. Knowing that the muzzle velocity Bulletu for

a typical CIWS, such as a Phalanx, is 1,200 m/s, we found that the firing distance was

approximately

 1200 m.FD Bullet flightR u t= ⋅ = (2)

With approximations for IZR and FDR in hand, we used Eq. (1) to find the angular

accuracy for the CIWS to be 4.76Sθ = o . This result was found with the assumption that

the target was stationary and must be adjusted for the case of a moving target. We do this

by finding the angular displacement of the moving target with respect to the CIWS and

subtracting this value from Sθ . To find the angular displacement of the moving target, we

assume that it is moving perpendicular to the LOF at a speed of 40 knots, which is typical

for an inflatable boat of this size. For the burst time period of 0.1 s, the boat is able to travel

a distance CDR of approximately two meters. The corresponding angular displacement φ

of the moving target is then estimated from

 arctan 0.1 .CD

FD

R
R

φ

= =

o (3)

The total angular accuracy totalθ of the system is the angular accuracy Sθ adjusted

for the angular displacement of the moving target φ using

 total Sθ θ φ= − . (4)

For the Phalanx CIWS and using the estimated figures found by examining available video,

we found the angular accuracy to be 4.66totalθ = o . Following the same analysis for the

video available for other CIWS, we found the angular accuracy of the AK-630 and the

GOALKEEPER were 4.75 degrees and 4.4 degrees, respectively. In Figures 4 and 5, we

can see the bursts of these two CIWS systems. For the performance of our prototype, we

adopted the more restrictive value of 4.4 degrees, or 2.2± degrees, for the angular accuracy

specification.

 9

Figure 4. AK-630 CIWS Operating against Boat. Adapted from [7].

Figure 5. Goalkeeper CIWS against Missile Target. Adapted from [8].

 10

 SHIP MOTION MEASUREMENTS

There are three rotational motions that occur on ships, as shown in Figure 6. The

tilting along the hull axis of the ship is called roll. The rotation perpendicular to ship’s hull

axis is called pitch and occurs fore and aft. Finally, yaw is the rotational motion around the

ship’s vertical axis. Depending on the sea state, the ship oscillates about each of these axes.

The exact motion of a ship, however, is affected by many different factors and is too

complicated to be described here. Nevertheless, to understand the dynamic environment in

which our prototype CIWS is expected to operate, we carried out a series of measurements

aboard ship. We used an Inertial Measurement Unit (IMU) to measure the motion of a 600-

ton warship operating in normal sea conditions. The ship was an offshore patrol boat of the

Hellenic navy in the Aegean Sea during the month of July 2017. The results of these

measurements are used later in this thesis to estimate the system response of the prototype

CIWS. In this section, we explain the experimental equipment used for this series of

measurements and analyze the recorded data.

Figure 6. Ship Motion in Three Axes. Adapted from [9].

 11

We captured the pitch and roll motion of the aforementioned patrol boat with an

MPU-6050 IMU sensor and an Arduino microcontroller, as shown in Figure 7. The IMU-

sensor measured the ship’s natural motion and transferred the data to the Arduino serial

monitor in real time using open source code. This code and the sensor’s software library

were available on Arduino’s official website [10]. Then, we plotted the recorded angular

motion using the MATLAB software. The ship’s roll and pitch motion, in both the time

and frequency domains, are shown in Figures 8 and 9, respectively. During the time period

of the measurements shown in the figures, the ship operated in a sea state of 1.5 m.

Additional measurements occurred during times of lower sea state conditions. Those

results, however, are not included since the ship’s motion was much less.

Figure 7. Ship’s Motion Sensing Device. Adapted from [10].

 12

Figure 8. Ship’s Roll Motion Analysis in Time and Frequency Domains

Figure 9. Ship’s Pitch Motion Analysis in Time and Frequency Domains

 13

As seen in the figures, the ship’s motion is not exactly periodic; however,

MATLAB’s Discrete Fourier Transformation analysis tools enabled us to find the principal

harmonics of the motion. The sampling period of the data is equal to the Arduino’s loop

execution time, which was measured to be 0.015 s. The roll motion had a dominant

frequency of 0.1 Hz, which corresponds to a period of ten seconds, as shown in Figure 8.

The amplitude of the ship’s roll motion was almost 4.5 degrees. In the pitch axis, as shown

in Figure 9, the measured frequency was 0.12 Hz. The measured amplitude of this motion,

however, was less than 0.3 degrees. We use this frequency analysis later in this work to

develop test signals for simulation and experimental testing.

 DEGREES OF FREEDOM IN CIWS

Existing CIWSs have two Degrees-of-Freedom (DOF), and they do not use

stabilizing platforms. Yet, they implement the pitch and roll angular corrections over the

elevation and azimuth axis through integration with the ship’s on-board sensors. The

purpose of the elevation and azimuth axes is to reference the bullets’ trajectory or LOF. In

our prototype, we propose to implement four DOF. In this approach, a stabilizing platform

will be designed to maintain a stable platform for the rest of the prototype’s structure. This

modification keeps the ship’s gun safety sectors independent of the ship’s motion and

reduces the amount of integration required with the ship’s on-board sensors.

All naval weapon systems have elevation and azimuth angle limits ensuring the

safety of the ship and crew during firing operations. These limits prevent gun orientations

beyond specified angles to avoid firing upon a ship’s own structure. Consequently, this

creates an unprotected sector above the ship, as shown in Figure 10. Additionally, the

orientation of this sector changes according to the ship’s motion, as shown in Figures 11

and 12, and creates a larger unprotected sector. By having a two-DOF independent

stabilizer at the base of the system, we maintain the desired elevation and azimuth safety

limits, and a CIWS with four DOF produces an unprotected sector that is independent of

the ship’s inclinations.

 14

Figure 10. Unprotected Sector above a Battleship

Figure 11. The Influence of the Ship’s Motion over the Unprotected Sector

Figure 12. Aggregate of the Unprotected Sector Caused by the Ship’s Motion

 15

 SUMMARY

First, from the analysis of available video of the operation of existing CIWS

systems, we establish that the angular accuracy of our prototype CIWS should be 4.4

degrees, or 2.2± degrees. We also specify the dynamic operating environment to be 0.1 Hz,

as was found through the experimental measurements aboard the patrol boat operating in

the Aegean Sea. Lastly, we decide on a CIWS having four DOF to minimize the

unprotected zone and reduce the integration required with a ship’s on-board sensors.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

III. DESIGN

In this chapter, we provide a description of the prototype CIWS design, hardware

specifications, and controller design and implementation through software.

 BRIEF DESIGN DESCRIPTION

The prototype CIWS consists of three major parts: a stabilizer at the base, a gun

control unit at the top of the structure, and a computer unit, as shown in Figure 13. In this

section, starting from the base and moving to the top of the structure, we explain the design

characteristics of the prototype’s components. The purpose of the stabilizer is to reduce the

influence of the ship’s motion during targeting and firing. The gun control unit, which

contains the machine gun, is also equipped with a video camera to provide real-time video

for the automatic control of the weapon’s orientation over the angles of elevation and

azimuth. Finally, a computer control unit receives the real-time video and performs video

image processing to complete the automatic control of the CIWS. At this point, it is useful

to describe the design of each part and to introduce the specifications of the prototype

configuration.

Figure 13. Prototype’s Overall Design in SolidWorks Software

 18

To begin with, the stabilizer is an independent, two-DOF unit that compensates for

the ship’s pitch and roll motion, as shown in Figure 14. An MPU-6050 IMU sensor

mounted at the top of the structure monitors the ship’s motion and transfers the data to an

Arduino microcontroller. Two servomotors serve to stabilize the two-level structure in the

pitch and roll axes. The servomotors are controlled through a proportional-integral-

derivative (PID) controller. The stabilizer is designed to operate independently from the

other units of the prototype.

Figure 14. Stabilizer Design in SolidWorks Software

Secondly, the gun control unit is installed above the stabilizer; it operates totally

independent of the unit below it. Similar to the stabilizer unit, it also has two-DOF, with

two servomotors independently controlled over elevation and azimuth, as shown in Figure

15. Although not shown in the figure, a machine gun and a camera are attached to the gun

control unit. The camera is installed at the front of the unit and aligned with the gun’s

muzzle, providing real-time video of the target to the computer unit. During each iteration

of the control loop and once the computer vision process is completed, the Arduino

microcontroller transfers the computed angular corrections for elevation and azimuth to the

servomotors, as shown in Figure 16.

 19

Figure 15. Gun Control Unit Design in SolidWorks Software

Figure 16. Gun Control and Computer Unit Closed-Loop Block Diagram

20

The third and final component of the prototype CIWS is the computer unit. Its main

role is to determine the angular difference in elevation and azimuth between the system’s

LOS and the two-dimensional (2D) image position of the target using the video image

frames it receives from the camera on the gun control unit. A typical image frame is shown

in Figure 17, which also illustrates the image center highlighted with a red cross cursor and

a designated target identified with a small green square. The image processing algorithm

utilized within the computer unit computes the pixel difference between the red cross

cursor and the green target designator. This pixel difference is then used to correct the

elevation and azimuth angles of the gun control unit to maintain the LOS aligned with the

LOF. The operator provides an initial indication of the target to the system by selecting a

specific pixel area in the image frame.

Figure 17. Computer Unit Video Frame

HARDWARE

In this section, we describe in more detail the hardware components used in the
construction of the prototype CIWS.

 21

1. Body and Material

The initial design of the CIWS prototype used a metal support structure, as shown

in Figure 18; however, this building material was soon abandoned because it was expensive

and not easy to modify. The final prototype is a three-dimensional (3D)-printed structure

made of polylactide (PLA). The material is biodegradable, is much easier to modify, and

much less costly to produce. The CIWS prototype is shown in Figure 19. Both the stabilizer

and the gun control unit are constructed with 3D-printed parts. Four DC servomotors, an

MPU-6050 IMU sensor, and two Arduino microcontrollers are installed and integrated to

give the assembly four DOF. The figure also shows a DC power supply located at the

lower-left corner. A Hewlett-Packard ENVY m7 Notebook laptop computer, not shown in

the figure, serves as the system’s computer unit.

Figure 18. Initial Model

 22

Figure 19. Final Prototype Model

2. Stabilizer

The maritime versions of any weapon system must provide a stabilization

mechanism to compensate for the ship’s motion. A ship’s gyroscope senses the natural

motion of the ship and provides its orientation. Usually, naval weapon systems have two

DOF to control their orientation in elevation and azimuth. Additionally, to compensate for

the ship’s motion, pitch and roll corrections are also applied to these two axes. In our four-

DOF prototype, we implement an automatic stabilizer to achieve the desired stabilization,

as shown in Figure 20. We chose this architecture because it addresses the need for

portability in our prototype design. This base consists of an IMU sensor, two servomotors,

and an Arduino microcontroller. In the next paragraphs, we explain the purpose of the four-

DOF design and describe the electric/electronic components used in the assembly of the

base.

 23

Figure 20. Stabilizer Base Hardware

In our design, the function of the ship’s gyroscope is achieved with the MPU-6050

IMU providing the desired portability. IMUs are electronic devices that consist of

gyroscopes and accelerometers and are used to measure the movement of a body [11]. The

MPU-6050 IMU is a six-DOF motion tracking device that combines a three-axis gyroscope

and a three-axis accelerometer. The accelerometer measures the inertial forces that occur

during the movement of the device. Naturally, it is extremely sensitive to vibrations and

mechanical noise. The gyroscope provides the angular velocities of the device with respect

to each of the sensing axes. While they are less sensitive to mechanical noise than the

accelerometers, the gyroscopic drift limits their performance. Finally, the combination of

those two sensor types decreases the total orientation error [1]. For the purpose of our

research, a single MPU-6050 IMU is sufficient to demonstrate our concept despite the

aforementioned errors. This sensor is attached to the upper plate of the stabilizer and

communicates with a connected Arduino microcontroller, as shown in Figure 21, to

provide the orientation measurements for the control loop.

 24

The Arduino is a single-board microcontroller that combines software and

hardware, which simplifies the creation of interactive electronic projects [2]. This open-

source platform is controlled through user developed software using C and C++

programming languages. Digital and analog input-output channels on the Arduino board

allow communications with different sensors and other electronic devices. The Arduino

microcontroller is at the heart of the prototype CIWS control loop. It receives the IMU’s

measurements and translates them into the angular corrections which command the motion

of the attached servomotors to align the platform with the sea surface.

Figure 21. Stabilizer Configuration and Schematics. Adapted from [12], [13].

Subsequently, the stabilizer’s servomotors received the angular corrections through

the transferred pulse-width modulation (PWM) signal. Servomotors are a combination of

a rotary encoder, a sophisticated controller, and a DC motor. Applying a discrete signal to

a servomotor, we accurately control its shaft’s angular position. This accuracy is achieved

through a closed-loop process built into the ASME-MXB servomotor assembly.

Specifications of the ASME-MXB servomotors that we use for the prototype are shown in

Figure 22. The output shaft of each servomotor is attached to each of the pitch and roll

axes, respectively, to control the orientation of the base’s upper mounting plate.

 25

Figure 22. ASME-MXB Servo Characteristics. Adapted from [14].

3. Gun Control Unit and Computer Unit

The gun control unit and the computer unit work together to maintain the

orientation of the gun. As with the stabilizer unit, the gun control unit also utilizes two

ASME-MXB servomotors, as well as an Arduino microcontroller, and a web camera, as

 26

shown in Figure 23. First, the attached laptop computer or computer unit provides the

image processing resources needed for this component. Secondly, the camera is aligned

with the gun’s barrel and transfers real-time video to the laptop computer. Thirdly, the

laptop computer unit estimates the elevation and azimuth alignment errors of the gun

control unit through an image processing algorithm. Next, it translates these errors into

angular corrections for the elevation and azimuth axes and transfers the results to the

Arduino microcontroller. Finally, the Arduino software controls the two servomotors to

align the gun barrel with the target’s position. This is a closed-loop, self-correcting process

that occurs once in every processing loop to keep the gun aligned to the target while it is

moving.

Figure 23. Gun Control Unit Hardware and Schematics

 27

 THEORY AND IMPLEMENTATION OF CLOSED-LOOP SYSTEMS, PID
CONTROLLERS, AND COMPUTER VISION

Now that we have introduced the hardware components of the prototype, in this

section, we explain how the control theory is implemented in the prototype. The prototype

uses four servomotors, one for each DOF. While the stabilizer must counterbalance the

ship’s motion in the pitch and roll directions, the gun control unit must align the barrel of

the gun with the target over the elevation and azimuth angles. The overall tracking accuracy

of the prototype is determined by the accuracy with which the motors can be controlled.

To improve the CIWS response, we created a closed-loop PID controller for each of the

motors. In this section, we review the fundamentals of closed-loop systems and PID

controllers, and we explain how they are applied to the prototype.

1. Closed-Loop Systems

In engineering applications, we design feedback controllers to achieve higher

accuracy in a system [15]. Disturbances can negatively influence and alter the output of a

system. In a closed-loop system, the output is combined with the input to eliminate the

influence of the disturbances [15]. For our prototype, we created a closed-loop control

system for each of the four DOF: elevation, azimuth, pitch, and roll. With one motor

controlling the motion of each DOF, these closed loops create a self-correcting system to

achieve higher accuracy while tracking a target. The application of closed-loop control

theory to the prototype’s main parts is shown in Figure 24. Within the next paragraphs, we

describe the closed-loop control theory implementation for the two-DOF stabilizer and the

two-DOF gun control unit.

 28

Figure 24. Closed-Loop Control Theory Implementation within the Prototype

During the initial design of the stabilizer, we installed the IMU sensor at the bottom

of the structure, monitoring the ship’s pitch and roll orientation angles; however, the

observed response was insufficient and resulted in an average error errorθ of four degrees.

While the purpose of the stabilizer is to ensure that the ship’s natural motion does not

influence the gun, this angular error resulted in a missed target error errorD of as much as

84 m at an assumed firing distance FDR of 1200 m, estimated by

 tan()error FD errorD R θ= ⋅ . (5)

The control system approach described in the preceding paragraph essentially

represents an open-loop control system due to the lack of a feedback loop. The sensor

monitored the inclinations of the lower base and the controller adjusted the inclination of

the upper base; however, the upper base inclination was not measured and compared to the

desired orientation, resulting in the poor response. The need for higher accuracy led to the

development of a feedback control loop that reduces the negative influence of the

disturbances. By relocating the IMU sensor to the upper plate of the structure, we created

 29

a closed-loop control that improves the stabilizing accuracy. Through this modification,

the IMU sensor monitors the orientation of the upper base in each processing loop and

results in a reduced total angular error. The block diagrams of the open and closed-loop

control configurations are shown in Figure 25.

Figure 25. Open- and Closed-Loop Stabilizer Configurations

The closed-loop design is also utilized in the gun control unit. The main purpose of

this unit is to align the gun’s barrel with the target. The gun and a camera are installed at

the top of the structure aligned to each other and facing the target, as previously shown in

Figure 19. This configuration ensures that the gun and the camera always point to the same

spot or target in the LOF direction. The camera transfers real-time video of the target to

the computer unit. The video images are processed to determine the pixel distance between

the target and the center of the image, as shown in Figure 26. Subsequently, the pixel

distance is converted into the appropriate angular corrections for elevation and azimuth. In

turn, these corrections are transferred to the Arduino located on the gun control unit, which

 30

controls the azimuth and elevation servomotors to maintain the LOF aligned with the

target. This closed-loop process was previously shown in Figure 16.

Figure 26. Pixel Distance between Target and Image’s Center

In each processing loop, the computer unit determines the current pixel distance

found in the last video frame. The feedback in the aforementioned procedure is the target-

center pixel distance. A zero pixel distance means that the barrel and the camera are

perfectly aligned with the LOF directed at the target. At this point, it is crucial to mention

that since the gun control unit is installed at the top of the stabilizing platform, the angular

stabilizing errors also influence the pixel distance. Eventually, the factors that influence

the accuracy of the gun control unit are the angular errors in the stabilizer unit and the

target’s relative motion. Nonetheless, this closed-loop system minimizes these errors and

drives the tracking error to zero. The prototype’s block diagram of the overall closed-loop

system is shown in Figure 27.

 31

Figure 27. Prototype’s Overall Closed-Loop Block Diagram

2. PID Control from Theory to Implementation

PID controllers are feedback-control loops that provide continuous and accurate

control of an engineering system or process [15]. A real-life example of such a controller

is the cruise control that maintains the desired speed of a car by adjusting the engine’s fuel

flow. In our prototype, we implemented PID control loops for each of the motors to achieve

higher control accuracy in each DOF. Through this feedback control process, the

servomotor’s shaft angular position is adjusted automatically to maintain the desired pitch,

roll, elevation, or azimuth angle. In this section, we review PID control theory, and we

explain how it is implemented in the prototype.

Specifically, a PID controller is a closed-loop algorithm in which the input is the

difference between the desired and the current state of a plant or process [15]. The

controller aims to eliminate this difference, which is called the error ()e t . The user and/or

other sensors in the system determine the desired state of the mechanism, which is called

 32

the set point. The main role of the controller is to reduce the difference between the present

and the desired angular position of the plant. The block diagram of a PID controller that

regulates the angular position of a process is shown in Figure 28.

Figure 28. PID Controller Block Diagram

The PID controller is made up of three terms: the proportional term, the integral

term, and the derivative term. The mathematical expression for the PID controller is

 ()u t P I D= + + , (6)
where the proportional term P is given by

 ()pP K e t= ⋅ , (7)
the integral term I is

0

()
t

iI K e dτ τ= ⋅ ∫ , (8)

and the derivative term D is

 ()
d

de tD K
dt

= ⋅ . (9)

Each of the terms in Eq. (6) influences the controller’s output ()u t . The coefficients pK ,

iK , and dK are the adjustable weights or gains for each of the terms in Eq. (6) and are

tuned to achieve a desired overall system response.

 33

Two PID controllers are used in the stabilizer to regulate the orientation of the upper

plate. The first PID controller maintains the pitch of the plate by adjusting the angular

position of the output shaft of the lower motor. A second PID controller maintains the roll

angle of the stabilizer upper plate. The IMU sensor is installed on the upper plate and

computes the orientation of the plate so that the PID controllers can maintain a zero pitch

and roll orientation. The PID controllers are implemented in software on the Arduino

microcontroller. Consequently, the controllers are discrete algorithms with a measured

loop period of 0.015 s.

3. Computer Vision

Computer Vision (CV) integrates computer software and hardware [16] to extract

information from images. In military applications, CV has a major role since cameras are

passive sensors, and an enemy cannot easily detect them. Almost all modern weapon

systems have CV capabilities that serve to enhance their ability to detect a target. In our

prototype, a CV software program estimates the alignment error between the LOS of the

gun control unit and the LOF.

Using an image processing algorithm available from open-sourced CV software

[17], we processed individual digital image frames that were captured by the gun control

unit’s camera. The pixels in each frame had a value ranging from zero to 255 that

represented their image intensity from black to white, respectively. Using these values the

CV algorithm executes the following steps. First, the computer unit’s operator designates

a target by selecting a 3-by-3 pixel area on the image [17]. Second, the algorithm identifies

the target by tracking the average color value within this area in the image frame. Third,

the algorithm computes the pixel distance distP between the center of this target and the

center of the image. Then, distP is translated to the angular correction corθ given the

camera’s field-of-view viewφ and the image’s total pixel width pixelW . In Figure 29, the

relation between the pixel distance and the angular correction can be seen. Mathematically,

this is described by

 34

2arctan tan

2
dist view

cor
pixel

P
W

φθ
 =

 . (10)

Once corθ is computed in each processing loop, the value is sent to the Arduino

microcontroller where the PID controller computes the appropriate motion for the

servomotors to regulate the elevation and azimuth angles.

Figure 29. Pixel Distance Translated to Angular Correction

 SOFTWARE

In this section we describe the three primary software programs developed for this

thesis project and discuss how they interface with the hardware. Two of the programs were

developed for the Arduino microcontrollers, which are installed in the stabilizer unit and

the gun control unit. The third software program is operated on the computer unit (laptop)

executing the image processing algorithm. In our prototype, the stabilizer software is an

Arduino program [18], also known as a sketch, which implements two PID controllers that

control the pitch and roll servomotors. The gun control unit’s software is also an Arduino

sketch that establishes the communication between this unit and the computer unit. The

computer unit’s software is a CV program developed in the Processing programming

 35

language that visualizes the data and interacts with the user [17]. The last two software

programs communicate with each other enabling the precise control of the gun control unit.

1. Arduino Code for the Stabilizer

For the stabilizer software, we implement Arduino code to contain three major

functions: 1) to read the IMU’s orientation, 2) to compute the optimum servomotor

performance using a PID algorithm, and 3) to transfer the angular corrections to the

servomotors. These three basic functions occur during every processing loop to keep the

IMU that was installed on the upper plate aligned with the sea surface. To read the sensor’s

data we include the i2cdev library. Furthermore, we integrate a significant part of the

example code named MPU6050_DMP6 from the Arduino official site [18]. A flow chart

of the stabilizer’s code is shown in Figure 30.

Figure 30. Stabilizer Code Flow Chart

2. Arduino Code for the Gun Control Unit

In the gun control unit, we require an Arduino sketch that communicate with the

computer unit and operate the servomotors for the elevation and azimuth angles. The code

 36

receives the elevation and azimuth corrections from the computer unit and transfers them

to the servomotors. These data are encoded by the computer unit’s software within a code

word that has specific characters located in certain positions. To avoid any communication

errors between the computer unit and the gun control unit, the received data is first decoded

and then the order in which the characters were received is verified. A flow chart of the

gun control unit’s code is shown in Figure 31.

Figure 31. Gun Control Unit’s Code Flow Chart

3. Code for the Computer Unit

 The computer unit code is written in the Processing programming language and

installed in the computer unit devoted to executing the CV algorithm. Parts of this code

adjust several tracking and detection settings and determine the pixel distance between the

target and the center of the image. Other functions facilitate the operator’s real-time

interface with the system. Finally, two PID controllers estimate the optimal angular

corrections in elevation and azimuth. These corrections are transferred to the Arduino

microcontroller’s software. Several parts of this code were partially adapted from Daniel

Shiffman’s online tutorials sequence [17]. A simplified flow chart of the code is shown in

Figure 32.

 37

Figure 32. Computer Unit’s Code Flow Chart

 SUMMARY

A closed-loop system is a system that includes feedback control. A simple closed-

loop system is composed of a sensor, a controller, and an engineering process or plant

mechanism. To accurately control a closed-loop system, we can implement a PID

controller in software within the controller processing unit. For this prototype, we

implemented four PID controllers to regulate each of the DOF. The pitch and roll

controllers were implemented in the Arduino software of the stabilizer. An IMU sensor

that was installed on the upper plate of the unit provided the sea surface reference. Then

the two controllers worked to maintain the orientation of the upper plate aligned with this

reference as the base was free to pitch and roll. The gun control unit was installed on this

upper stabilizer plate. In a similar way, the elevation and azimuth PID controllers trimmed

the unit’s LOS. A camera sensor installed on the gun control unit provided digital frames

to the computer unit. Through the computer unit’s software we estimated the pixel distance

between the target and the image’s center. This distance is the feedback signal that is

provided to the Arduino microcontroller of the gun control unit.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

IV. EXPERIMENTAL RESULTS AND SIMULATION

In this chapter, we evaluate the performance of the prototype through experimental

measurement as well as simulation. The chapter is divided into two parts. In the first part,

experimental measurements provide the response of the CIWS as it was stimulated with

ship motion inputs similar to those described in Chapter II. Through this study, we examine

the performance of the portable CIWS for ships of a size similar to the aforementioned

patrol boat. In the second part, we use a simulation model to evaluate the potential

performance of the prototype under a wider range of ship motions as these inputs were

difficult to reproduce in the laboratory without the availability of specialized test

equipment.

 EXPERIMENTAL MEASUREMENTS

Experimental measurements were taken to evaluate the tracking accuracy of the

prototype system and for comparison with the performance of existing CIWSs operating

on smaller ship platforms. In this section, we initially evaluate the stabilizer’s performance

during simulated ship motion as described in Chapter II, Section B. Then we evaluate the

gun control unit’s performance as it tracks a moving target. The accuracy results in each

set of measurements are compared to the accuracy of existing CIWSs. Through this

comparison, we determine whether it is feasible to create a portable CIWS for smaller ship

platforms.

1. Stabilizer Performance

To evaluate the performance of the stabilizer, the prototype was installed on a

wooden base, as shown in Figure 19. We manually moved the stabilizer base back and

forth to simulate the natural ship motion presented in Chapter II, Section B. As we

described in that chapter, the roll component of the ship’s motion was very similar to that

of a sinusoid with a frequency of 0.1 Hz and a maximum amplitude of 4.5 degrees. The

pitch component was also sinusoidal with a frequency of 0.12 Hz and amplitude of 0.3

degrees.

 40

 To evaluate the roll angle performance, we manually moved the base at a frequency

of 0.1 Hz and an amplitude of five degrees along the roll axis. The roll angle response is

shown in the upper plot in Figure 33. From the figure, it can be seen that the PID controller

for the roll axis compensated for the 5± degree input ship motion and stabilized the roll

angle to within 1.5± degrees of the horizontal as desired. Furthermore, the average angular

error over a ten-second period was approximately 0.2 to 0.3 degrees. We also note that the

motor backlash and the elasticity of the 3D-printed structure were significant components

of the angular error. As discussed in Chapter II, Section A, a CIWS is sufficiently accurate

when the amplitude of the angular error is less than 2.2 degrees. Keeping this in mind and

that a CIWS is built to continuously fire against a target for several seconds, the average

measured roll error indicates that the stabilizer is suitably accurate for its designed purpose.

Figure 33. Measured Inclinations of Stabilizer’s Upper Plate

In Figure 33, the pitch angle response is shown in the lower plot. To simulate the

natural pitch angle motion of the ship, the stabilizer platform was rotated back and forth

along the pitch axis at a frequency of 0.1 Hz and an amplitude of 0.5 degrees. As observed

in this plot, the PID controller for the pitch axis did not compensate for the 0.5± degrees

 41

of sinusoidal movement of the base. Conversely, we observed a pitch angular error of 0.8±

degrees. Furthermore, we observed similar pitch errors even when the stabilizer base was

completely stationary. Consequently, the servomotor backlash and elasticity of the 3D-

printed structure were more than likely responsible for these angular errors. To investigate

the pitch and roll angle performance a bit more, we conducted several additional

experiments with simulated ship motion of different amplitudes but with the same

frequency. We observed that the stabilizer did not compensate for ship motions with

amplitudes less than one degree due to these two negative factors.

Next, we examined the step response of the stabilizer in each of the axes. Each axis

was tested independently one at a time. To begin each measurement, the stabilizer was

inclined five degrees in either roll or pitch with the power turned off. Then, when the

stabilizer power was turned on and the PID controller program started, the angle was

immediately corrected and reduced to close to the desired inclination of zero degrees. In

this manner the step response for each axis was measured. Then we plotted the results to

visualize these two step responses, as shown in Figure 34. The five-degree initial angular

position was selected to keep our step response analysis within the linear area.

Figure 34. Stabilizer’s Five-degree Real Step Response in Roll and Pitch

 42

Analyzing the step response graph for the roll axis, we observe that the upper plate

inclination was decreased from five-degrees to zero within 0.315 s. The roll angle error is

observed to wander approximately 1.2 degrees about the zero reference. This behavior

remains even when the stabilizer’s base is stationary after the initial step response has

finished. As reported earlier, this error is attributed to the elasticity of the 3D-printed

structure and servomotor backlash. We observed similar behavior for the pitch axis. Later

in this chapter, we use the two step responses presented here to develop a mathematical

model for the stabilizer.

2. Gun Control and Computer Unit Performance

We evaluated the gun control and computer unit performance in two stages. First,

we examined the unit’s performance when operating against a target moving in the opposite

direction, as shown in Figure 35. Through this measurement, we estimated the unit’s

accuracy while operating onboard a ship. Second, we examined the step response in each

of the elevation and azimuth axes. This measurement was used later to develop a

mathematical model of the prototype for use in simulation.

Figure 35. Angular Velocity of an Opposite-moving Target

 43

To simulate the motion of a target, we estimated the relative angular speedω

between our ship that is moving at a speed u and a target traveling at the same speed u in

the opposite direction. Given that a typical maximum speed for warships is 40 knots and

that the nominal firing distance is 1,200 m, the relative angular velocity is given by

arctan C

FD

R
R

T
ω

 = , (11)

where CR is the target’s relative distance traveled during a specific time interval T given

by

 2CR uT= . (12)

Substituting Eq. (12) into Eq. (11), we get that a typical relative angular velocity of a target

is 3.92 degrees/s.

We then used this last result to create a target that was moving at the

aforementioned relative angular velocity with respect to the camera of the gun control unit.

While tracking this target, we monitored the system’s performance and plotted its response

for the azimuth and elevation axes, as shown in Figure 36. Through these plots, we

observed that the tracking error slightly exceeded the error limits we had set at the

beginning of the design process. Nonetheless, the unit maintained the desired accuracy

after the first two seconds in spite of the backlash and elasticity, which created an error of

0.8 degrees, as expected.

 44

Figure 36. Gun Control Unit Real Response while Tracking a Moving Target

To evaluate the five-degree step response of the system, we followed the same

measurement process we used for the stabilizer. The results for each of the axes are shown

in Figure 37. Because we use the same type of servomotors that we used for the stabilizer,

we observed that they had a similar step response. Finally, we use these results to

mathematically model the gun control unit in Section B.

 45

Figure 37. Gun Control Unit Step Response

3. Prototype Overall Performance

As a result of the previous experiments, the IMU sensor began to fail and report

faulty measurements. This problem, in combination with the existing structure’s elasticity

and servomotor backlash, caused the performance of the prototype to degrade. After

repeated trials, the 3D-printed structure gradually began to weaken, and some of the metal

parts on the servomotor cracked, requiring repair. As a result, the overall performance of

the prototype significantly decreased and highlighted the need for some parts of the

prototype to be redesigned. Nevertheless, our previous measurements were sufficient to

provide enough data to develop a mathematical model of the system and to create a

simulation in Simulink which could be used for additional performance analysis.

 46

 SIMULATION OF THE CIWS

The simulation aimed to determine the limits of the prototype’s performance. It

provided a means to further examine the response of the prototype CIWS and to study the

response for those inputs that cannot be easily reproduced in the laboratory without

specialized test equipment. By modeling the system in Simulink, we examined the system’s

performance for different ship motions and relative target motions. First, we developed a

mathematical model of the system using the measured step response presented earlier in

the chapter. Then, we created a model in Simulink that operated similarly to the prototype,

and we compared its response with the real step responses. We also verified the sinusoidal

motion response, as well, to convince ourselves of the accuracy of our model. Finally, the

model was used to extrapolate the performance of the CIWS prototype for different

dynamic ship motions.

1. Stabilizer Mathematical Model and Simulation

Taking into consideration the measured step response, we created a mathematical

model that described the stabilizer’s behavior. We created a second-order transfer function

in Simulink with a feedback loop for each of the axes, as shown in Figure 38. Through trial

and error, we found a transfer function that produced a step response similar to the

stabilizer’s real step response in the roll axis. This transfer function was found to be

 2

55
3.2s s+

 . (13)

Plots of the real and the simulated step response are shown in Figure 39. We observed that

they were almost identical during the first 0.3 s. Similarly, we determined the pitch axis

transfer function to be

 2

55
5.4s s+

 . (14)

We also plotted the simulated and the real step response of the pitch axis, as shown in

Figure 40.

 47

Figure 38. Stabilizer’s Single Axis Simulation Model

Figure 39. Stabilizer’s Simulated and Real Step Response in Roll

 48

Figure 40. Stabilizer’s Simulated and Step Response in Pitch

The overall Simulink model of the stabilizer is shown in Figure 41. For each of the

axes of our model, we included a random number generator to act as a disturbance

representing the stabilizer’s elasticity and backlash errors. Then, we applied as an input a

sinusoidal motion at a frequency of 0.1 Hz and amplitude five degrees, as we did previously

for the actual prototype. We compared their responses, and we plotted the results in each

of the axes, as shown in Figure 42. As expected, the simulated and real plots have similar

frequencies and amplitudes. Moreover, their average stabilizing errors appeared almost the

same. With these results, we concluded that our simulated model had similar performance

characteristics to the actual prototype.

 49

Figure 41. Stabilizer’s Simulink Model

 50

Figure 42. Simulated and Real Response in Each of the Axes

Since we were satisfied with the operation of our model simulation of the stabilizer,

we used it to predict the performance of the actual prototype for different dynamic motion

inputs. Through these additional simulations, we observed that if the frequency of the

motion was 0.5 Hz or more, the amplitude of the stabilizing error exceeded 2.2 degrees, as

shown in Figure 43. This frequency corresponded to motion having a period of two

seconds, which is typical for smaller boats. In Chapter II, we found that angular errors

exceeding this range did not satisfy the performance requirements for the prototype CIWS.

 51

Figure 43. Stabilizer’s Performance in Different Frequencies

 52

2. Gun Control and Computer Unit Mathematical Model and
Simulation

To model the gun control unit, we followed the same process as for the stabilizer.

After some trial and error, we determined the transfer function for the azimuth angle to be

 2

70
5s s+

 . (15)

The transfer function for the elevation angle was found to be

 2

120
4s s+

. (16)

Using these two transfer functions, we created a Simulink model for each of the elevation

and azimuth axes. The real and the simulated step response were almost identical for the

first 0.25 s, as shown in Figure 44.

Figure 44. Real and Simulated Gun Control Unit Step Response

 53

The overall Simulink model of the unit is shown in Figure 45. As we did with the

stabilizer, we also included a disturbance generator. Then, we applied a constant input to

the model to represent the moving target that moves at a constant angular speed of 2.2

degrees/s. We compared the real with the simulated response, and we plotted the results

for each of the axes, as shown in Figure 46. Through trials we observed that the gun control

unit operated similarly to the aforementioned tracking plot for every moving target with a

constant speed; however, the angular speed of the target must be less than the operational

limits of the motors, 120 degrees/s.

Figure 45. Gun Control Unit Simulink Model

 54

Figure 46. Real and Simulated Response while Tracking

 55

V. CONCLUSIONS

In this thesis research, we investigated the feasibility of creating a portable CIWS

that can be easily transferred and installed on small warships. Specifically, the objective

was to design and build a prototype CIWS using commercial off-the-shelf components.

The prototype that was developed used the popular Arduino microcontroller, the MPU-

6050 IMU, a webcam, and four DC servomotors. A supporting structure made from 3D

printed parts was used to mount all of the hardware. Software was developed for the

Arduino microcontrollers to implement the needed PID controllers. Additional software

algorithms were developed in the Processing programming language for the image

processing task and to implement the automated target tracking capability of the prototype

CIWS.

To characterize the operating environment of the prototype CIWS, pitch and roll

measurements were acquired aboard a Hellenic navy ship. These measurements were then

used to develop the performance specification for the CIWS. In addition, open video

sources were analyzed to estimate the tracking accuracy of existing CIWS and for

comparison with our prototype.

Experimental measurements and simulations were conducted to determine the

performance of the CIWS prototype. The results indicated that the tracking accuracy of the

prototype was comparable to that of existing CIWS. With regard to the stabilizer, the

stabilizing error was less than two degrees in ship motions at frequencies less than 0.5 Hz.

On the other hand, the overall tracking error of the system was found to be less than one

degree.

To develop the CIWS beyond the initial prototype described in this research,

several modifications are required. First, the supporting structure, which tended to flex

because of the 3D printed material that was used, needs to be replaced with a more rigid

material that is durable and able to operate in a naval environment. The supporting

structure’s lack of rigidity negatively affected the operation of the PID controllers. Another

required improvement is to replace the DC servomotors with units that are more suited to

 56

the application. The units that were selected for the prototype were chosen for their low

cost and light weight. The DC servomotors, however, exhibited considerable gear backlash

that contributed to the overall performance error. To improve this, we recommend using a

higher-quality gearbox with less backlash. Another recommended improvement is either

to replace the MPU-6050 IMU with a more reliable and accurate sensor or, as suggested in

other sources [19], to implement a combination of IMU sensors to achieve greater

accuracy. Finally, the integration of a range measurement device, such as a LIDAR, would

be another improvement useful to determine the range of a moving target and predict its

future position sequentially.

 57

APPENDIX A. ARDUINO CODE FOR THE STABILIZER

#include "I2Cdev.h"
#include <Servo.h>
#include <Wire.h>
Servo servoX;
Servo servoY;
int apotelesmata;
#include "MPU6050_6Axis_MotionApps20.h"
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif
double time,timePrev;
double elapsedTime,dt;
double Setpoint, Input, Output;
float mpuy,mpux;
float Xx=80,Yy=88,oldmpux=1,oldmpuy=1;
int ssincomingByte ;
MPU6050 mpu;
#define OUTPUT_READABLE_YAWPITCHROLL
bool dmpReady = false; // set true if DMP init was successful
uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount; // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

Quaternion q; // [w, x, y, z] quaternion container
VectorInt16 aa; // [x, y, z] accel sensor measurements
VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements
VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements
VectorFloat gravity; // [x, y, z] gravity vector
float euler[3]; // [psi, theta, phi] Euler angle container
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };

// === INTERRUPT DETECTION ROUTINE ===
volatile bool mpuInterrupt = false; high
void dmpDataReady() {
 mpuInterrupt = true;
}
// === INITIAL SETUP ===
void setup() {
 time = millis();

 58

 #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
 Wire.begin();
 TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
 #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
 Fastwire::setup(400, true);
 #endif
 // initialize serial communication
 Serial.begin(115200);
 while (!Serial); // wait for Leonardo enumeration, others continue immediately
 Serial.println(F("Initializing I2C devices..."));
 mpu.initialize();
 Serial.println(F("Testing device connections..."));
 Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") :
F("MPU6050 connection failed"));
 Serial.println(F("\nSend any character to begin DMP programming and demo: "));
 Serial.println(F("Initializing DMP..."));
 devStatus = mpu.dmpInitialize();
 mpu.setXGyroOffset(220);
 mpu.setYGyroOffset(76);
 mpu.setZGyroOffset(-85);
 mpu.setZAccelOffset(1788);
 if (devStatus == 0) {
 Serial.println(F("Enabling DMP..."));
 mpu.setDMPEnabled(true);
 Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
 attachInterrupt(0, dmpDataReady, RISING);
 mpuIntStatus = mpu.getIntStatus();
 Serial.println(F("DMP ready! Waiting for first interrupt..."));
 dmpReady = true;
 packetSize = mpu.dmpGetFIFOPacketSize();
 } else {
 Serial.print(F("DMP Initialization failed (code "));
 Serial.print(devStatus);
 Serial.println(F(")"));
 }

servoX.attach(5,500,2500);
servoY.attach(6,250,2500);
servoX.write(Xx);
servoY.write(Yy);
delay(2000);
 }

// === MAIN PROGRAM LOOP ===

 59

void loop()
 {
 time = millis();
 dt=time-timePrev;
 timePrev=time;
 Setpoint=0;
 if (!dmpReady) return;
 while (!mpuInterrupt && fifoCount < packetSize) { }
 mpuInterrupt = false;
 mpuIntStatus = mpu.getIntStatus();
 fifoCount = mpu.getFIFOCount();
 // check for overflow (this should never happen unless our code is too inefficient)
 if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
 // reset so we can continue cleanly
 mpu.resetFIFO();
 Serial.println(F("FIFO overflow!"));

 } else if (mpuIntStatus & 0x02) {
 // wait for correct available data length, should be a VERY short wait
 while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();
 // read a packet from FIFO
 mpu.getFIFOBytes(fifoBuffer, packetSize);
 // track FIFO count here in case there is > 1 packet available
 // (this lets us immediately read more without waiting for an interrupt)
 fifoCount -= packetSize;

 #ifdef OUTPUT_READABLE_QUATERNION
 // display quaternion values in easy matrix form: w x y z
 mpu.dmpGetQuaternion(&q, fifoBuffer);
 Serial.print("quat\t");
 Serial.print(q.w);
 Serial.print("\t");
 Serial.print(q.x);
 Serial.print("\t");
 Serial.print(q.y);
 Serial.print("\t");
 Serial.println(q.z);
 #endif

 #ifdef OUTPUT_READABLE_EULER
 // display Euler angles in degrees
 mpu.dmpGetQuaternion(&q, fifoBuffer);
 mpu.dmpGetEuler(euler, &q);
 Serial.print("euler\t");
 Serial.print(euler[0] * 180/M_PI);

 60

 Serial.print("\t");
 Serial.print(euler[1] * 180/M_PI);
 Serial.print("\t");
 Serial.println(euler[2] * 180/M_PI);
 #endif

 #ifdef OUTPUT_READABLE_YAWPITCHROLL
 // display Euler angles in degrees
 mpu.dmpGetQuaternion(&q, fifoBuffer);
 mpu.dmpGetGravity(&gravity, &q);
 mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
//--------------------------------- Debugging in the serial monitor------------------------
 //Serial.print(apotelesmata);
 //Serial.print("ypr\t");
 //Serial.print(ypr[0] * 180/M_PI);
 //Serial.print("\t");
 Serial.println(ypr[1] * 180/M_PI);
 // Serial.print("\t");
 //Serial.println(ypr[2] * 180/M_PI);
 Serial.print("\t");
 //Serial.println(elapsedTime);
//-------------------------------- Results in degrees from mpu-6050 ----------------------
 mpux = ypr[1] * 180/M_PI; // ready to use value from mpu-6050 in x-axis
 mpuy = ypr[2] * 180/M_PI;
//------------------PD controller for the x-axis & y-axis stabilizer-servo motors------
 apotelesmata ++;
 if ((Xx==80) &&(Yy==88)&&(apotelesmata<1500))
 { // servos looked in ... degrees until the mpu is stabillized
 Xx=80;
 Yy=88;
 }
 else
 { //==================== X-AXIS ======================
 Xx= Xx -0.10*mpux -18*(mpux-oldmpux)/dt;
 oldmpux=mpux;
 //===================== Y-AXIS ======================
 Yy= Yy -0.05*mpuy -11*(mpuy-oldmpuy)/dt;
 oldmpuy=mpuy;
 }
 if (Yy>120)Yy=115;
 else if (Yy<60) Yy=65;
 if (Xx>120)Xx=115;
 else if (Xx<60) Xx=65;
 servoX.write(Xx);
 servoY.write(Yy);

 61

 #endif
 #ifdef OUTPUT_READABLE_REALACCEL
 // display real acceleration, adjusted to remove gravity
 mpu.dmpGetQuaternion(&q, fifoBuffer);
 mpu.dmpGetAccel(&aa, fifoBuffer);
 mpu.dmpGetGravity(&gravity, &q);
 mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
 Serial.print("areal\t");
 Serial.print(aaReal.x);
 Serial.print("\t");
 Serial.print(aaReal.y);
 Serial.print("\t");
 Serial.println(aaReal.z);
 #endif
 #ifdef OUTPUT_READABLE_WORLDACCEL
 // display initial world-frame acceleration, adjusted to remove gravity
 // and rotated based on known orientation from quaternion
 mpu.dmpGetQuaternion(&q, fifoBuffer);
 mpu.dmpGetAccel(&aa, fifoBuffer);
 mpu.dmpGetGravity(&gravity, &q);
 mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
 mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
 Serial.print("aworld\t");
 Serial.print(aaWorld.x);
 Serial.print("\t");
 Serial.print(aaWorld.y);
 Serial.print("\t");
 Serial.println(aaWorld.z);
 #endif
 #ifdef OUTPUT_TEAPOT
 // display quaternion values in InvenSense Teapot demo format:
 teapotPacket[2] = fifoBuffer[0];
 teapotPacket[3] = fifoBuffer[1];
 teapotPacket[4] = fifoBuffer[4];
 teapotPacket[5] = fifoBuffer[5];
 teapotPacket[6] = fifoBuffer[8];
 teapotPacket[7] = fifoBuffer[9];
 teapotPacket[8] = fifoBuffer[12];
 teapotPacket[9] = fifoBuffer[13];
 Serial.write(teapotPacket, 14);
 teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
 #endif

 }
}

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

APPENDIX B. ARDUINO CODE FOR THE GUN CONTROL UNIT

#include <Servo.h>
#include <LiquidCrystal.h>
Servo myservo1;
Servo myservo2;
int buffer [16];
float angleX = 78;
float angleY = 78;
int flag=0;

void setup() {
 Serial.begin(115200);
 myservo1.attach(8); // azimuth
 myservo2.attach(9); // Elevation
 myservo1.write(angleX);
 myservo2.write(angleY);
 delay(1000);
}

void loop() {
 if (Serial.available() > 0) {
 if (Serial.read() == '$') {
 for (int i = 0; i < 12; i++) {
 buffer[i] = Serial.read() - '0';
 delay(3);
 }
 angleX = (buffer[1] * 1000 + buffer[2] * 100 + buffer[3]*10 + buffer[4])/10;
 angleY = (buffer[7] * 1000 + buffer[8] * 100 + buffer[9]*10 + buffer[10])/10;
 Serial.flush();
 }
 if (angleX<50) angleX=50;
 else if(angleX>140) angleX=140;
 if (angleY<50) angleY=50;
 else if(angleY>140) angleY=140;
 flag=1; //starting control from processing program
 myservo1.write(angleX);
 myservo2.write(angleY);

 }
 }

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

APPENDIX C. CV CODE FOR THE COMPUTER UNIT

import processing.video.*;
import processing.serial.*;
Capture video;
Serial myPort; // Create object from Serial class
int motor=0;
color trackColor=1;
float threshold = 35; // color threshold
float distThreshold = 50; // distance between two blobs
float Ltargetsize= 6500; // Largest target that detects
float Stargetsize= 30; // Smaller target that detects
float errorX=0;
float p_errorX=0;
float errorY=0;
float p_errorY=0;
float a=0;
float angleXlim=0;
float angleYlim=0;
int i=0;
int j=0;
int cc=3;
int bb=3;
int startTime;
float oldtime=0;
float newtime=0;
float dt=0;
float timecounter=0;
ArrayList<Blob> blobs = new ArrayList<Blob>();
boolean recording = false;
boolean trackingON = false;
boolean red_target_window=false;

// arxikes times strofis kai ipsosis
float angleX=78; // initial angle of servo1
float angleY=78; // initial angle of servo2

// boundaries in elevation azimuth
int KorioY = 60;
int PorioY = 100;
int KorioS = 50;
int PorioS = 120;

//improvement while auto tracking

 66

int opitimize_trackingX=0;
int opitimize_trackingY=0;

// initial scope size
float scopeSize=450;
void setup() {
 size(1600, 896);
 startTime = millis();
 String portName = Serial.list()[0]; // change the 0 to a 1 or 2 etc. to match your port
 myPort = new Serial(this, portName, 115200); //arduino connection
 String[] cameras = Capture.list();
 printArray(cameras);
 //video = new Capture(this, 1920, 1080);
 /* Some of the modes for the existing camera
 [101] "name=Logitech HD Pro Webcam C920,size=1600x896,fps=30"
 [119] "name=Logitech HD Pro Webcam C920,size=640x360,fps=30"
 [121] "name=Logitech HD Pro Webcam C920,size=800x448,fps=30"
 [123] "name=Logitech HD Pro Webcam C920,size=800x600,fps=30"
 [125] "name=Logitech HD Pro Webcam C920,size=864x480,fps=30"
 [127] "name=Logitech HD Pro Webcam C920,size=960x720,fps=30"
 [129] "name=Logitech HD Pro Webcam C920,size=1024x576,fps=30"
 [131] "name=Logitech HD Pro Webcam C920,size=1280x720,fps=30"
 [133] "name=Logitech HD Pro Webcam C920,size=1600x896,fps=30"
 */
 video = new Capture (this, Capture.list()[101]); // choose number from printed list
below the program
 video.start();
 trackColor = color(255, 0, 0);
}

void captureEvent(Capture video) {
 video.read();
}

// improvements and threasholds with keyboard
void keyPressed() {
 if (key == 'a') {
 distThreshold+=5;
 } else if (key == 'z') {
 distThreshold-=5;
 }
 if (key == 's') {
 threshold+=5;
 } else if (key == 'x') {
 threshold-=5;

 67

 }
 if (key == 'd') {
 Ltargetsize+=20;
 } else if (key == 'c') {
 Ltargetsize-=20;
 }
 if (key == 'f') {
 Stargetsize+=20;
 } else if (key == 'v') {
 Stargetsize-=20;
 }
 if (key == 'r' || key == 'R') { // video recording
 recording =! recording;
 }
 if (key == 'b') {
 scopeSize+=20;
 } else if (key == 'g') {
 scopeSize-=20;
 }
 // use like joistic but differs while auto tracking OPTIMIZE
 if ((keyCode == UP) && (angleY<PorioY)) {
 if (trackingON) {
 opitimize_trackingY+=5;
 } else {
 angleY+=0.5;
 }
 } else if ((keyCode == DOWN) && (angleY>KorioY)) {
 if (trackingON) {
 opitimize_trackingY-=5;
 } else {
 angleY-=0.5;
 }
 }
 if ((keyCode == LEFT) && (angleX>KorioS)) {
 if (trackingON) {
 opitimize_trackingX-=5;
 } else {
 angleX-=0.5;
 }
 } else if ((keyCode == RIGHT) && (angleX<PorioS)) {
 if (trackingON) {
 opitimize_trackingX+=5;
 } else {
 angleX+=0.5;
 }

 68

 }
 if (key == 'P' || key == 'p') { // give or take the control to auto-traking
 trackingON =! trackingON;
 if (!trackingON) scopeSize=450;
 opitimize_trackingY=0;
 opitimize_trackingX=0;
 angleXlim=angleX;
 angleYlim=angleY;
 i=0;
 j=0;
 }
}

void draw() {
 video.loadPixels();
 image(video, 0, 0);
 int elapsed = millis() - startTime;
 oldtime=newtime;
 newtime= float(elapsed) / 1000;
 dt=newtime-oldtime;
 //timecounter=timecounter+dt;
 //println(dt);
 blobs.clear(); // blobs are areas with pixels having color under the color threashold
 // Begin loop to walk through every pixel
 for (int x = 0; x < video.width; x++) {
 for (int y = 0; y < video.height; y++) {
 int loc = x + y * video.width;
 // What is current color
 color currentColor = video.pixels[loc];
 float r1 = red(currentColor);
 float g1 = green(currentColor);
 float b1 = blue(currentColor);
 float r2 = red(trackColor);
 float g2 = green(trackColor);
 float b2 = blue(trackColor);

 float d = distSq(r1, g1, b1, r2, g2, b2); // color distance

 if (d < threshold*threshold) {

 boolean found = false;
 for (Blob b : blobs) {
 if (b.isNear(x, y)) {
 b.add(x, y);
 found = true;

 69

 break;
 }
 }

 if (!found) {
 Blob b = new Blob(x, y);
 blobs.add(b);
 }
 }
 }
 }
 for (Blob b : blobs) {
 if ((b.size() > Stargetsize) && (b.size() < Ltargetsize)) { // rejects targets smaller
 // print the center of the target on screen
 float [] delta=b.show(); // delta[0] is the centerX of target and delta[1] the centerY
 // follows whatever is inside the red scope.
 if ((delta[0]>(scopeSize)) && (delta[0]<(width-scopeSize)) &&
(delta[1]>(scopeSize/2)) && (delta[1]<(height-scopeSize/2))) {
 fill(0, 255, 0);
 textSize(20);
 text(" Target LOCKED center X=" + delta[0], width/2+50, 30);
 text("Y=" + delta[1], width/2+150, 30);
 text("Size=" + b.size(), width/2+50, 50);
 textSize(15);
 text("Camera center X=" + width/2, width/2, height-25);
 text("Y=" + height/2, width/2+100, height-25);
//println((delta[1]-448)*0.046512,newtime);
 println((delta[0]-800)*0.04731861,newtime);
//1pixel in x = 0.04731861 degrees 800
//1pixel in y = 0.046512 degrees 448

 //=========== PID CONTROL =========================

 // auto tracking (inside the red box that appears on screen)
 if (trackingON) {
 i++;
 errorX=(delta[0]+opitimize_trackingX-width/2);
 if (i==1) {
 //angleX= map(errorX, -800, 800, angleXlim-26, angleXlim+26);
 } else if (i>8) {
 errorX= map(errorX, -800, 800, -27, +27);
 if (abs(errorX)>0) angleX=angleX + 0.4*errorX + 0.1*(errorX-p_errorX)/dt;
 p_errorX=errorX;
 }

 70

 //========================Y-AXIS=======================
 j++;
 errorY=(delta[1]-opitimize_trackingY-height/2);
 if (j==1) {
 //angleY= map(errorY, 448, -448, angleYlim-10, angleYlim+10);
 } else if (j>8) {
 errorY= map(errorY, 448, -448, -10, +10);
 if (abs(errorY)>0) angleY=angleY + 0.4*errorY + 0.1*(errorY-p_errorY)/dt;
 p_errorY=errorY;
 }
 //===
 if (i==12) scopeSize=630;
 // Safety-Boundaries in elevation and azimuth
 // when reaches the boundaries must return 1 angle degree back
 if (angleX==PorioS) {
 angleX=PorioS-1;
 } else if (angleX==KorioS) {
 angleX=KorioS+1;
 }

 if (angleY==PorioY) {
 angleY=PorioY-1;
 } else if (angleY==KorioY) {
 angleY=KorioY+1;
 }
 }
 }
 }
 }

 // Sreen data
 rectMode(CENTER);
 textSize(12);
 rect(50, 80, sqrt(Ltargetsize), sqrt(Ltargetsize));
 rect(40, 180, sqrt(Stargetsize), sqrt(Stargetsize));
 textAlign(LEFT);
 text("Target smaller than: " + Ltargetsize, 10, 15);
 text("Target bigger than: " + Stargetsize, 10, 150);
 textAlign(RIGHT);
 text("distance threshold: " + distThreshold, width-10, 15);
 line(width-20, 30, width-distThreshold, 30);
 text("color threshold: " + threshold, width-10, 50);
 fill(0);
 // skopeftiko
 stroke(255, 0, 0);

 71

 line(width/2-30, height/2, width/2+30, height/2);
 line(width/2, height/2-30, width/2, height/2+30);
 rectMode(CENTER);
 noFill();
 rect(width/2, height/2, width-2*scopeSize, height-scopeSize, 40);

 //record screen
 if (recording) {
 stroke(0, 255, 100);
 fill(0, 255, 0);
 saveFrame("output/gol_####.png");
 textSize(30);
 text("REC", 80, 350);
 }
 if (trackingON) {

 textSize(30);
 stroke(0, 255, 0);
 fill(0, 255, 0);
 text("ON", 80, 270);
 }
 // conection to arduino throught serial splitting the massage
 String c1="$";
 String c4="0";
 String c5="$07800780"; // initial position
 String c2=str(round(1000*angleX));
 String c3=str(round(10*angleY));

 if (angleX<100 &&angleX>=10) {
 c2=c4+c2;
 } else if (angleX<10) {
 c2=c4+c4+c2;
 }
 if (angleY<100 &&angleY>=10) {
 c3=c4+c3;
 } else if (angleY<10) {
 c3=c4+c4+c3;
 }
 c5=c1+c2+c3;
 myPort.write(c5);
 myPort.clear();
 delay(90); // maybe needs more to slow down the commands to arduino
}
 float distSq(float x1, float y1, float x2, float y2) {
 float d = (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1);

 72

 return d;
}

// Colordistance funcion
 float distSq(float x1, float y1, float z1, float x2, float y2, float z2) {
 float d = (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) +(z2-z1)*(z2-z1);
 return d;
}

void mousePressed() {
 // Save color where the mouse is clicked in trackColor variable
 int loc = mouseX + mouseY*video.width;
 trackColor = video.pixels[loc];
 opitimize_trackingY=0;
 opitimize_trackingX=0;
}

class Blob {
 float minx;
 float miny;
 float maxx;
 float maxy;

 Blob(float x, float y) {
 minx = x;
 miny = y;
 maxx = x;
 maxy = y;
 }

 float [] show() { // shows a square around the target
 stroke(0, 255, 0);
 noFill();
 strokeWeight(4);
 rectMode(CORNERS);
 rect(minx, miny, maxx, maxy);
 return new float [] {(minx+maxx)/2, (miny+maxy)/2}; //returns the center of the target
 }

 void add(float x, float y) {
 minx = min(minx, x);
 miny = min(miny, y);
 maxx = max(maxx, x);
 maxy = max(maxy, y);
 }

 73

 float size() {
 return (maxx-minx)*(maxy-miny);
 }
 boolean isNear(float x, float y) {
 float cx = (minx + maxx) / 2;
 float cy = (miny + maxy) / 2;

 float d = distSq(cx, cy, x, y);
 if (d < distThreshold*distThreshold) {
 return true;
 } else {
 return false;
 }
 }
}

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

LIST OF REFERENCES

[1] S. Crowford, Twenty-first Century Warships: Surface Combatants of Today’s
Navies. St. Paul, MN, USA: MBI Pub. Co., 2002.

[2] F. Norman, The Naval Institute Guide to World Naval Weapons Systems.
Annapolis, MD, USA: Naval Institute Press, 1989.

[3] T. Szulc, “The “last hope”: Russian close-in weapon systems,” Military
Technology, vol. 30, no. 11, pp. 75–80, 2006. Accessed September 5, 2017.
[Online]. Available:
http://libproxy.nps.edu/login?url=https://search.proquest.com/
docview/199096135?accountid=12702

[4] E. H. Lundquist, “Modular warship construction,” Naval Forces, vol. 33, no. 1,
Month 2012.

[5] Daily Military Defense & Archive, “The powerful U.S. CIWS in action against
poor boat—CIWS live fire exercise,” YouTube, May 15, 2015. Accessed January
23, 2017. [Online]. Available:
https://www.youtube.com/watch?v=6a_XYaTgG4Y&t=5s

[6] U.S. Navy, “Official website of the United States Navy.” Accessed January 24,
2017. [Online]. Available: http://www.navy.mil/view_image.asp?id=66498

[7] Cata Lin, “Russian warship fire at Somali pirates,” YouTube, April 27, 2015.
Accessed January 24, 2017. [Online]. Available:
https://www.youtube.com/watch?v=eozty7Bb29g

[8] “Goalkeeper CIWS Gun System,” YouTube, July 7, 2006. Accessed January 24,
2017. [Online]. Available: https://www.youtube.com/watch?v=nY6nm-6eCzM

[9] “Ship motion is divided into six components in the six degrees of freedom,”
ResearchGate. Accessed March 20, 2017. [Online]. Available:
https://www.researchgate.net/figure/Ship-motion-is-divided-into-six-
components-in-the-six-degrees-of-freedom_220868905

[10] “Arduino.cc,” Arduino. Accessed April 20, 2017. [Online]. Available:
https://playground.arduino.cc/Main/MPU-6050#info.

[11] E. Bekir, Introduction to Modern Navigation Systems. Singapore: World
Scientific Publishing Co Pte Ltd., 2007. [Online]. ProQuest Ebook Central.

[12] N. Murali, “Balancing instructable robot,” Instructables, June 21, 2014. [Online].
Available: https://www.instructables.com/id/Balancing-Instructable- Robot/

https://www.youtube.com/watch?v=6a_XYaTgG4Y&t=5s
https://www.youtube.com/watch?v=eozty7Bb29g
https://www.researchgate.net/figure/Ship-motion-is-divided-into-six-%09components-in-the-six-degrees-of-freedom_220868905
https://www.researchgate.net/figure/Ship-motion-is-divided-into-six-%09components-in-the-six-degrees-of-freedom_220868905
https://playground.arduino.cc/Main/MPU-6050#info
https://www.instructables.com/id/Balancing-Instructable-

 76

[13] “ASME-MXB-High-power-high-torque-servo,” Aliexpress. Accessed June 5
2017. [Online]. Available: https://www.aliexpress.com/store/product/ASME-
MXB- High-power-high-torque-servo-the-3600-Degree-servo-12V-24V-380kg-
cm- 0/325585_32686976772.html

[14] “ASME-MXB-High-power-high-torque-servo,” Ebay. Accessed June 5 2017.
[Online]. Available: http://www.ebay.com/itm/ASME-MXB-High-power-high-
torque-servo-the-3600-Degree-servo-12V-24V-380kg-cm /302003723970?
Hash=item4650d31ec2:g:C0wAAOSwbYZXeSQm

[15] N. S. Nise, Control Systems Engineering. Pomona, CA: Wiley, 2015.

[16] D. H. Ballard and C. M. Brown, Computer Vision. Upper Saddle River, NJ, USA:
Prentice-Hall Inc., 1982.

[17] D. Shiffman, Learning Processing: A Beginner’s Guide to Programming Images,
Animation, and Interaction. Burlington, MA, USA: Morgan Kauffmann, 2008.

[18] J. Rowberg, “i2cdevlib.” Accessed March 4 2017. [Online]. Available:
https://www.i2cdevlib.com/devices/mpu6050#source

[19] J. Cole, “A personal inertial-navigation system based on multiple distributed,
nine-degrees-of-freedom, inertial measurement units,” M.S. thesis, Dept. of
Comp. and Elec. Eng., NPS, Monterey, CA, 2016. [Online]. Available:
http://hdl.handle.net/10945/51727

https://www.aliexpress.com/store/product/ASME-MXB-%09High-power-high-torque-servo-the-3600-Degree-servo-12V-24V-380kg-cm-%090/325585_32686976772.html
https://www.aliexpress.com/store/product/ASME-MXB-%09High-power-high-torque-servo-the-3600-Degree-servo-12V-24V-380kg-cm-%090/325585_32686976772.html
https://www.aliexpress.com/store/product/ASME-MXB-%09High-power-high-torque-servo-the-3600-Degree-servo-12V-24V-380kg-cm-%090/325585_32686976772.html
http://www.ebay.com/itm/ASME-MXB-High-power-high-%09torque-servo-the-3600-Degree-servo-12V-24V-380kg-cm%20/302003723970
http://www.ebay.com/itm/ASME-MXB-High-power-high-%09torque-servo-the-3600-Degree-servo-12V-24V-380kg-cm%20/302003723970

 77

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

	I. INTRODUCTION
	A. NAVAL close-in weapon SYSTEMS
	B. historical review of CIWS
	C. portability in naval design
	D. THESIS OBJECTIVE
	E. THESIS OUTLINE

	II. BACKGROUND
	A. CIWS ACCURACY
	B. SHIP MOTION MEASUREMENTS
	C. degrees of freedom in CIWS
	D. SUMMARY

	III. DESIGN
	A. BRIEF DESIGN DESCRIPTION
	B. HARDWARE
	1. Body and Material
	2. Stabilizer
	3. Gun Control Unit and Computer Unit

	C. theory and implementation of CLOSED-LOOP systemS, pid CONTROLlers, AND COMPUTER VISION
	1. Closed-Loop Systems
	2. PID Control from Theory to Implementation
	3. Computer Vision

	D. SOFTWARE
	1. Arduino Code for the Stabilizer
	2. Arduino Code for the Gun Control Unit
	3. Code for the Computer Unit

	E. SUMMARY

	IV. EXPERIMENTAL RESULTS AND SIMULATION
	A. Experimental measurements
	1. Stabilizer Performance
	2. Gun Control and Computer Unit Performance
	3. Prototype Overall Performance

	B. SIMULATION of the ciws
	1. Stabilizer Mathematical Model and Simulation
	2. Gun Control and Computer Unit Mathematical Model and Simulation

	V. CONCLUsIONS
	appendix a. arduino code for the stabilizer
	Appendix b. ARDUINO code for the gun control unit
	appendix c. Cv code for the computer unit
	LIST OF REFERENCES
	initial distribution list

